

August 16, 2022

Clary Auburn RE, LLC Mr. Bryce Clary P.O. Box 127 Longview, WA 98632

Subject: Updated Subsurface Investigation Report Project Number: BE-0107-D Auburn VW Dealership Property 3109 Auburn Way North Auburn, WA 98002

Dear Mr. Clary:

Thank you for the opportunity to provide our services. Bluestone Environmental NW (Bluestone) is pleased to present this updated report for the recently completed subsurface investigation efforts on the above referenced property. This report presents our findings and opinions from the completed subsurface investigation. With your review and comments, we look forward to identifying next steps towards obtaining regulatory closure for this Site.

Sincerely, Bluestone Environmental NW

n Hoton

Dan Hatch President/Operations Manager

Haley Carter, LG Project Geologist

Updated Subsurface Investigation Report Auburn VW Dealership Property Auburn, WA

August 16, 2022

Prepared for: Clary Auburn RE, LLC

TABLE OF CONTENTS

1 INTRODUCTION	1
2 BACKGROUND	1
2.1 REGULATORY BACKGROUND	2
2.1.1 Regulatory & Contaminant Definitions	
2.2 SITE SETTING	
2.3 GEOLOGY SETTING	3
2.4 ARSENIC IN SOIL DISCUSSION	3
2.5 ARSENIC IN GROUNDWATER DISCUSSION	3
3 SUMMARY OF SUBSURFACE INVESTIGATIONS	4
3.1 UNDERGROUND UTILITY CLEARANCE	А
3.2 SOIL BORINGS	
3.3 GRAB-GROUNDWATER SAMPLING	
3.4 GROUNDWATER MONITORING WELL INSTALLATION AND SAMPLING	
4 SUBSURFACE INVESTIGATION FINDINGS	c
4.1 SOIL SAMPLE FINDINGS	
4.1.1 GRO Analytical Results	
4.1.2 DRO and ORO Analytical Results	
4.1.3 VOC Analytical Results	
4.1.4 Polycyclic-Aromatic Hydrocarbon (PAH) Analytical Results	
4.1.5 Metal Analytical Results	
4.2 GROUNDWATER FINDINGS	
4.2.1 GRO Analytical Results	
4.2.2 DRO and ORO Analytical Results	
4.2.2.1 Initial Investigation Results	
4.2.2.2 May 2022 Investigation Results	
4.2.2.3 July 2022 Investigation Results 4.2.3 VOC Analytical Results	
4.2.3 VOC Analytical Results	
4.2.5 Metals Analytical Results	
4.3 GROUNDWATER ELEVATION AND FLOW	
4.4 QUALITY ASSURANCE/QUALITY CONTROL	
5 SITE CHARACTERIZATION SUMMARY	
6 CONCLUSIONS AND OPINIONS	
7 LIMITATIONS	

TABLE OF CONTENTS

Attachments

Tables

Table 1a, Soil Laboratory Analytical Results: Petroleum, PAHs, Metals

Table 1b, Soil Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic Hydrocarbons

Table 2, Groundwater Laboratory Analytical Results: Petroleum, PAHs, Metals

Table 3, Well Construction & Groundwater Depths

Table 4, Groundwater Parameters

Figures:

Figure 1, Site Location Maps
Figure 2, Site Diagram, Features, Exploration Locations, and ORO Contamination in Soil
Figure 3, DRO Iso-concentrations in Groundwater
Figure 4a, Groundwater Elevation Contour Map (5/26/2022)
Figure 4b, Groundwater Elevation Contour Map (7/26/2022)

Appendices

Appendix A, Environmental Reports by G-Logics Inc., dated April 12, 2018, and February 5, 2019.

Appendix B, No Further Action Letter, Pollution Liability Insurance Agency, May 6, 2019.

Appendix C, Boring Logs

Appendix D, Field Methods

Appendix E, Groundwater Sampling Purge Logs

Appendix F, Ecology's MCTATPH Spreadsheet for cPAHs

Appendix G, Laboratory Analytical Reports

1 INTRODUCTION

The subject property (Property) is located at 3109 Auburn Way North, in Auburn, Washington (Figure 1). The Property is currently under contract by Clary Auburn RE, LLC to purchase the Property from Conducere Investments, LLC. This report documents the findings and opinions of three completed subsurface investigation efforts. The purpose of these investigation efforts was to assess soils and groundwater for petroleum and other related contaminants that are commonly associated with automobile repair facilities.

2 BACKGROUND

Bluestone performed a Phase I Environmental Site Assessment (ESA) on the Property, report dated April 6, 2022. The ESA recommended that the subsurface investigations in areas near the interior trench-drain and oil/water separator be assessed¹. Based on the recommendations of the ESA, Bluestone completed an initial subsurface investigation on April 24, 2022.

Six soil borings were drilled to a depth of fifteen feet during the initial investigation efforts. Detections of petroleum contaminants in groundwater, i.e., diesel-range organics (DRO), were reported in a grab-groundwater sample collected from an open boring drilled within the service shop area. Additionally, a detection of a carcinogenic-polycyclic-aromatic hydrocarbon (cPAH) was found in a shallow soil sample collected beneath the service shop concrete floor.

Based on the findings of the initial investigation, Bluestone completed a second subsurface characterization effort on May 23, 2022, in which five borings were drilled and completed as groundwater monitoring wells (MW-1 through MW-5). With the findings of the two subsurface characterization efforts, two areas in the service shop detected elevated concentrations of petroleum related contaminants in soil, i.e., oil-range organics (ORO) in boring MW-4 and benzo(a)-pyrene in boring B-2 (Tables 1a and 1b). The detected concentrations of these petroleum contaminants were found to be in shallow soils, i.e., within five feet of the ground surface.

Groundwater data from the second subsurface characterization effort reported detections of diesel-range organics (DRO) in each of the five monitoring wells at concentrations below CULs. However, Arsenic was detected at concentrations above the CULS in three of the five monitoring wells².

² Detections of arsenic in the second subsurface characterization effort were analyzed by Total Metal reporting methods only.

¹ The interior trench drain is located in the service shop area of the dealership. The oil/water separator is located outside, adjacent to the north side of the service shop building.

In an effort to refine the area of shallow soil contamination and assess concentrations of arsenic in groundwater using both Total and Dissolved analysis methods, Bluestone conducted as third subsurface characterization effort on July 20 and 26, 2022. A discussion of the updated findings from the third characterization effort are presented below.

2.1 Regulatory Background

The characterization and remediation of hazardous substances in Washington State is regulated under the Model Toxics Control Act (MTCA). MTCA establishes administrative processes and standards to identify, investigate, and cleanup facilities where hazardous substances have come to be located (WAC 173-340-100). The MTCA regulations are administered by the Washington State Department of Ecology (Ecology) and is also implemented by the Pollution Liability Insurance Agency (PLIA).

2.1.1 Regulatory & Contaminant Definitions

The term 'Property' refers to the tax parcel identified as 000400-0041, located at 3109 Auburn Way North, Auburn, as described by King County. The term 'Site' is defined in MTCA as the lateral and vertical extent of contamination, be it on or off the Property.

The term 'contaminant' refers to the presence of petroleum or other hazardous substances that do not occur naturally or which are found at concentrations greater than what occurs naturally. The term 'contamination' refers to the presence of petroleum or other hazardous substances that are present with concentrations greater than established MTCA CULs.

For this report, 'non-impacted' soil refers to soils without detectable concentrations of Site contaminants. Soil with detectable concentrations of contaminants, but that are below CULs, are referred to as 'impacted.' Soil with reported concentrations of Site contaminants above applicable CULs are referred to as 'contaminated'.'

For this report, 'cleanup levels' are in reference to the MTCA Method A CULs.

2.2 Site Setting

The Property is located in a retail and commercial area north of downtown Auburn. Based on Google Earth measurements, the Property is at an approximate elevation of 58 feet above sea level. The nearest surface body of water is the Green River, approximately 0.42 miles to the east of the Property.

2.3 Geology Setting

The Property is located in the Duwamish Valley, west of the Green River. In this area, floodplain deposits cover the drift plain forming a broad, fertile area. The valley floor is described as alluvium of the White River: dark reddish-gray pebble-cobble gravel and sand derived largely from Mt. Rainier with a thickness generally less than 30 feet in the White River Valley and probably more than 200 feet in course fan deposits in the Duwamish Valley near Auburn. Post glacial deposits include peat, the Osceola mud flow, mass-wasting debris, and alluvial flood-plain deposits from the White, Green and Cedar Rivers (Luzier, 1969).

2.4 Arsenic in Soil Discussion

The historical review of the Property did not identify any commercial or industrial uses or sources of arsenic from the prior or current automobile operations on the Property. Based on the reported environmental cleanup actions completed on the Property in 2018/2019 by G-Logics, Inc., (GLogics) natural/background concentrations of arsenic on the Property are elevated³. These elevated concentrations are understood to be present on the Property as it is located within the Asarco area-wide smelter plume, from the volcanic materials contained in the Osceola mud flow, and from agricultural practices in the area that may have contributed to area-wide arsenic concentrations.

2.5 Arsenic in Groundwater Discussion

Concentrations of arsenic were detected above Method A cleanup levels (CULs) in grab-groundwater and permanent monitoring groundwater samples, in both Totals and Dissolved analysis. Based on a No Further Action Letter from PLIA, dated May 6, 2019, which was provided for a separate Site on the Property⁴, Bluestone understands the background level of arsenic in the groundwater at the Site is understood to be 8.0 μ g/L. Based on the May 6, 2019 NFA Letter, the background arsenic concentration in groundwater of 8.0 μ g/L can be subtracted from the detections of arsenic in the developed/permanent monitoring wells to establish an adjusted concentration for comparison to CULs.

⁴ See attached NFA Letter for the Site remediated on the Property in 2018/2019 in Appendix B.

³ See attached GLogics reports, dated April 12, 2018, and February 5, 2019, in Appendix A.

3 SUMMARY OF SUBSURFACE INVESTIGATIONS

On April 24, 2022, Bluestone completed an initial subsurface investigation on the Property. Holocene Drilling (Holocene) was retained to advance six soil-probe borings (B-1 through B-6) to depths of 15 feet below ground surface (bgs).

On May 23, 2022, Bluestone completed a follow-up investigation on the Property. Holocene was once again retained to advance five additional soil-probe borings to depths of 17 feet bgs. These five borings were also completed as monitoring wells (MW-1 through MW-5).

On July 20, 2022, a third subsurface investigation effort was conducted on the Property in an attempt to refine contaminant conditions in shallow soils and assess arsenic in groundwater using both Total and Dissolved analysis methods. A summary of the investigation efforts is presented below.

3.1 Underground Utility Clearance

Due to the possible presence of subsurface utilities in the areas where borings were advanced, Bluestone coordinated with public and private utility-locating firms before beginning field work for the subsurface investigation activities. The inferred locations of subsurface utility locations were identified on the surface with paint.

3.2 Soil Borings

As previously mentioned, Bluestone completed six soil borings on the property on April 24, 2022, using direct-push drilling methods. On May 23, 2022, five additional direct-push borings were completed and on July 20, 2022, eight additional direct-push borings were completed.

In general, the soils recovered during the subsurface investigations consisted of loose fill material from the surface to approximately three feet bgs, silty sands from approximately three feet to 12 feet bgs, and poorly graded sands from approximately 12 feet bgs to the explored depths. During the drilling efforts, soil cores were extracted in five-foot polypropylene liners. Soil samples were generally collected at three to five-foot intervals in each of the borings. The boring locations are shown on Figure 2. Boring logs are attached in Appendix C.

All soil cores were screened field for indications of contamination, such as observable staining or odors. Additionally, soil cores were field screened using a photoionization detector (PID) for the presence of volatile-organic compounds. Select soil samples were submitted to the Friedman and Bruya laboratory for analysis.

3.3 Grab-Groundwater Sampling

During the initial subsurface investigation, grab-groundwater samples were collected from five of the six soil borings (B-1, B-2, B-4, B-5, and B-6) completed on April 24, 2022. Samples were collected using clean one-inch PVC well casing and screen. The well casing/screen was lowered into the open boring, followed by lowering a ¹/₄" I.D. low-density polyethylene (LDPE) tubing into the well casing/screen. Groundwater was collected using a peristaltic pump in general accordance with low-flow sampling procedures. Collected groundwater samples were submitted to Friedman and Bruya laboratory for analysis.

3.4 Groundwater Monitoring Well Installation and Sampling

Five soil borings were completed as two-inch groundwater monitoring wells on May 23, 2022, and designated MW-1 through MW-5. The locations of monitoring wells can be seen on Figure 2. Well construction information is presented in Table 3.

Bluestone collected groundwater samples on May 26, and July 26, 2022, from the five monitoring wells. Prior to the purging and sampling activities, depth to water levels were measured in each well. The recorded depths were then converted to elevations using the elevation data.

For this and previous site characterization reports, the elevation data was obtained from data reported by GLogics in a *Well Installation and Groundwater Sampling* report, dated April 12, 2018. Specifically, GLogics stated that the north entrance of the service shop⁵ was identified to be at an elevation of 57.70 feet above mean sea level. GLogics stated that this elevation data was determined by Terrane, a professional surveying company, in August 2017. Using this elevation data, Bluestone surveyed the five monitoring wells on the property to establish elevation control for each well.

Purging was performed until groundwater parameters stabilized. Groundwater conditions were monitored during purging using a YSI-556 meter with a flow-thru cell. Sampling and field methods are described in greater detail in Appendix D. Groundwater parameters are presented in Table 4 and purge logs are attached in Appendix E.

⁵ The north entrance is in reference to the Subaru dealership that is on the south adjoining property, 3025 Auburn Way North.

4 SUBSURFACE INVESTIGATION FINDINGS

The findings of the three subsurface investigations are presented below.

4.1 Soil Sample Findings

Selected soil samples from the borings were submitted for laboratory analysis as shown on Table 1. A summary of the analytical results is discussed below.

4.1.1 GRO Analytical Results

GRO was not detected in any of the selected analyzed soil samples above the laboratory reporting limit.

4.1.2 DRO and ORO Analytical Results

DRO was not detected in any of the selected analyzed soil samples above the laboratory reporting limits.

ORO was detected in soil above the CUL of 2,000 mg/kg in one of the analyzed samples (MW-4-3) at a concentration of 2,900 mg/kg. ORO was not detected in any of the remaining selected analyzed soil samples above the laboratory reporting limit.

4.1.3 VOC Analytical Results

Vinyl Chloride was detected in one soil sample (B-1-10) at a concentration of 0.073 mg/kg. This concentration is below the MTCA Method B CUL of 0.67 mg/kg. VOCs were not detected above the laboratory reporting limits in any of the other selected analyzed soil samples.

4.1.4 Polycyclic-Aromatic Hydrocarbon (PAH) Analytical Results

Benzo(a)-pyrene, a carcinogenic (c) PAH⁶, was detected at a concentration of 2.6 mg/kg in soil sample B-2-5 which is above the CUL of 0.1 mg/kg. Other PAHs also were detected in soil samples from boringsB-1, MW-4, and MW-5, but at concentrations below the MTCA Method A and/or B CULs.

To further assess the impact of the benzo(a)-pyrene detection in B-2-5, Bluestone performed a site-specific Method B analysis using Ecology's MCTATPH Spreadsheet. The results of the site-specific Method B calculations indicate that a concentration of 2.6 mg/kg would be the Method B risk-based cleanup level for direct contact (human health) at this Site. Because the calculated cleanup level is 2.6 mg/kg, the detected concentration of benzo(a)-pyrene in sample B-2-5 was at the cleanup level, not below,

⁶ cPAHs are a subset up polycyclic-aromatic hydrocarbons which are classified as carcinogenic.

therefore it fails the protectiveness criteria for direct contact/human health. However, the results of the Method B calculations indicate that the detect concentration of benzo(a)-pyrene in the soil sample B-2-5 are protective of the groundwater leaching pathway.⁷

A soil sample from a depth of three feet bgs in boring MW-3, which was completed near boring B-2 on May 23, 2022, did not contain a detection of benzo(a)-pyrene or other cPAHs. To refine the lateral boundaries of benzo(a)-pyrene detected in boring B-2, four additional boring were completed on July 20, 2022, i.e., B-9 through B-12. Soil samples from the depths of three, five, and six feet bgs from these four borings did not contain detections of cPAHs with the exception of soil sample B-12-5, which detected concentrations of cPAHs below the CULs. Soil sample B-12-5 was collected at a depth of five feet bgs.

Note, during the July 20, 2022, sampling efforts, pieces of asphalt were observed in borings B-10 and B-12 between the depths of three and five feet bgs. Based on this observation, Bluestone reasons that the detection of benzo(a)-pyrene in boring B-2 are from asphalt material used in the backfill and grading activities completed to construct the current building in 2001. Additionally, the completed Phase I ESA did not identify any business operations on the Property that would have used or created cPAH waste or a release.

4.1.5 Metal Analytical Results

Arsenic, Chromium, and Lead were detected in all of the analyzed samples but at concentrations below the CULs. Cadmium and Mercury were not detected above laboratory reporting limits in any of the analyzed samples.

4.2 Groundwater Findings

Groundwater samples were submitted for laboratory analysis as shown on Table 2. Note, grab-groundwater was collected from the open borings during the initial investigation effort on April 24, 2022. The subsequent May 26 and July 26, 2022, groundwater sampling events collected groundwater from the developed/permanent monitoring wells installed on May 23, 2022. A summary of the analytical results is discussed below.

4.2.1 GRO Analytical Results

GRO was not detected in any of the selected analyzed groundwater samples above the laboratory reporting limits.

⁷ Please see the MCTATPH Spreadsheet calculations for soil sample B-2-5 in Appendix F.

4.2.2 DRO and ORO Analytical Results

4.2.2.1 Initial Investigation Results

DRO was detected in the grab-groundwater sample collected from boring B-4⁸ at a concentration of 2,500 μ g/L, above the MTCA Method A CUL of 500 μ g/L. DRO also was detected in the other four grab-groundwater samples from borings B-1, B-2, B-5, and B-6, but at concentrations below the CUL.

ORO also was detected in the groundwater sample B-4-W, but at concentrations below the CUL, at 370 μ g/L. ORO was not detected in the grab-groundwater samples from borings B-1, B-2, B-5, and B-6.

In reviewed the chromatograms for sample B-4-W, the laboratory noted that the material was heavily weather and contained a large quantity of metabolites. It was also noted that the chromatograms were similar and that the analyzed material quantify as a single product, i.e., DRO extended (C_{10} - C_{36}).

4.2.2.2 May 2022 Investigation Results

The analyzed groundwater samples from the May 26, 2022, sampling event detected concentrations of DRO below the CUL of 500 μ g/L in each of the five monitoring wells (MW-1 through MW-5). Only one groundwater sample, collected from MW-3, had a laboratory reported concentration of ORO, which was below the CUL of 500 μ g/L. However, as with the earlier grab-groundwater sample B-4-W, the material in the sample from MW-3 eluted as a single product, in-between the diesel (C₁₀-C₂₅) and motor oil (C₂₅-C₃₆) quantification ranges, as well as being heavily weather with a large population of metabolites.

Since the chromatograms indicated that the material was a single product, specifically an unresolved complex mixture (UCM), it was determined that a more accurate reporting representation of the material would be to report the material as Diesel extended (C₁₀-C₃₆) rather than splitting the quantification range at C₂₅ and reporting as it as two separate products. Accordingly, the reported concentrations of DRO extended in groundwater collected from monitoring wells MW-1 through MW-5 were all below the CUL.

4.2.2.3 July 2022 Investigation Results

The analyzed groundwater samples from the July 26, 2022, sampling event detected concentrations of DRO extended above the CUL in four of the five monitoring wells, i.e.,

⁸ Boring B-4 was completed during the initial investigation efforts on April 24, 2022.

MW-1 through MW-4 (Figure 3). MW-5 detected a concentration of DRO extended at a concentration of 300 μ g/L, below the CUL.

4.2.3 VOC Analytical Results

VOCs were not detected in any of the selected analyzed groundwater samples at concentrations above the laboratory reporting limits.

4.2.4 PAH Analytical Results

Phenanthene (a non-cPAH) was detected in the groundwater grab sample collected from the grab-groundwater sample from boring B-4 at a concentration of 0.092 ug/L. A CUL for Phenanthene has not been established by Ecology. PAHs, including cPAHs, were not detected in any of the remaining selected analyzed samples above the laboratory reporting limits.

4.2.5 Metals Analytical Results

Arsenic (total) was detected above the CUL in the initial grab-groundwater samples collected from open borings B-1, B-2, B-4, B-5, and B-6 on April 24, 2022.

Arsenic (total) also was detected above the CUL in the second groundwater sampling event completed on May 26, 2022, which were collected from the developed groundwater monitoring wells. Specifically, arsenic was detected above the CULs in monitoring wells MW-1, MW-4, and MW-5. The reported concentrations of arsenic in the groundwater samples collected from monitoring wells MW-2 and MW-3 were below the CUL.

The analytical results from the July 26, 2022, sampling event detected concentrations of arsenic above the CULs in both of the totals and dissolved analyzed samples in each of the five monitoring wells.

Chromium (total) was detected above the MTCA Method A CUL in the grabgroundwater sample collected from boring B-4 during the initial sampling event. The reported concentration of chromium in the remaining open boring samples B-1, B-2, B-5, and B-6 were below the CUL.

Chromium (total) was detected in the groundwater sampled during the May 26, 2022, sampling event in monitoring well MW-3 at a concentration below the CUL. Concentrations chromium were not detected in the remaining four monitoring wells in the May 26, 2022, sampling event. Additionally, chromium was not detected in the five monitoring wells during the July 26, 2022, sampling event.

Lead (total) was detected in the five analyzed grab-groundwater samples collected from the open borings at concentrations below the MTCA Method A CUL. As the samples were turbid, the nitric acid preservative could have released the lead. Lead was not detected in any of the samples analyzed from the developed monitoring wells during the May 26, 2022, sampling event.

Cadmium and Mercury (total) were not detected in any of the analyzed groundwater samples at concentrations above the laboratory reporting limit.

4.3 Groundwater Elevation and Flow

Measured groundwater elevations are tabulated in Table 3. Measured groundwater depths during the May 26, 2022, sampling event ranged from 7.44 to 8.20 in the five monitoring wells. Measured groundwater depths during the July 26, 2022, sampling event ranged from 9.36 to 9.85 in the five monitoring wells. Depths to groundwater were measured on August 11, 2022, and were found to range from 9.14 to 9.89, similar to the July 26, 2022 measurements, but fluctuating at each well location (Table 3).

As shown on Figures 4a, 4b, and 4c, the calculated groundwater elevations indicate that groundwater on the Property has little gradient and has a seasonally changing flow direction, generally towards the west and north.

4.4 Quality Assurance/Quality Control

Procedures for Quality Assurance/Quality Control (QA/QC) were observed during the performed efforts, including generally accepted procedures for sample collection, storage, tracking, and documentation. Collected samples were labeled with a sample number, date, time, and sampler name, recorded on a chain-of-custody document, placed in a cooler and chilled before delivery to the laboratory for analysis. Laboratory analytical reports are attached in Appendix G. Field Methods are attached in Appendix D.

5 SITE CHARACTERIZATION SUMMARY

Soil data indicates that petroleum contamination, i.e., ORO, is present in a limited area beneath the service shop slab near boring MW-4. The ORO contamination in soil is understood to be located in the shallow vadose soils, within four-to-five feet of the ground surface. The ORO contamination in soil is not in contact with groundwater, which is present at an approximate depth of eight to nine feet bgs. Field indications and analytical results indicate that the ORO contamination in soil is laterally bound within the explored area as shown on Figure 2.

As discussed in Section 4.1.4, the isolated detection of benzo(a)-pyrene in soil sample B-2-3 is not considered concern with the understanding that the source is from asphalt material that was incorporated into the backfill material used during the construction of the building in 2001. Additionally, as the asphalt debris in the backfill material is well above the groundwater table and covered with the concrete slab of the shop floor and does not present a concern for groundwater.

As discussed in Section 4.2.2, the chromatograms indicated that the DRO material found in groundwater is not a single product and is better represented by identifying the material as DRO extended (C_{10} - C_{36}). Accordingly, groundwater data from the July 26, 2022, sampling event indicates that the DRO extended contamination in groundwater is a concern at this Site. At this time, the source of the DRO extended contamination in groundwater is not known.

Concentrations of total and dissolved arsenic in groundwater were reported above the CULs in the samples collected from the five monitoring wells on July 26, 2022. However, area-wide elevated concentrations of arsenic are understood to be present due to the Asarco smelter plume, from the volcanic materials that comprised the Osceola mud flow, and from past agricultural practices in the area. This issue will need to be further addressed with the regulatory agency that oversees the cleanup and request for an NFA.

6 CONCLUSIONS AND OPINIONS

A limited area of shallow soil, which is separated from groundwater, is impacted with ORO contamination beneath the concrete slab of the service shop. The detected concentration of benzo(a)-pyrene/cPAH contaminants in shallow soils⁹ are related to the asphalt debris that was incorporated into the backfill material during the construction of the building and therefore are not considered a contaminant requiring further action on the Property.

As illustrated on Figure 3, DRO extended is present in groundwater at concentrations exceeding CULs in a large footprint on the Property. The source and extent of this DRO plume is unknown at this time and will require additional efforts to fully understand. Additionally, the use of silica gel cleanup methods should be reviewed for application to this issue.

It should also be noted that in Bluestone's experience, season groundwater elevations will affect detected concentrations of contaminants at a site. Specifically, when groundwater depths are deeper (a lower elevation), contaminant concentrations generally will increase. Accordingly, the higher concentrations of DRO extended detected in the July 26, 2022 sampling event (compared to the May 26, 2022 event) are not atypical.

As discussed in Sections 2.4 and 2.5, the issue of arsenic in groundwater at the Site are understood to be biased high due to area-wide human-made and naturally occurring releases of arsenic. Additionally, as presented in the previously completed environmental cleanup efforts conducted on the Property¹⁰, soil concentrations for arsenic generally increase at the approximate depths between 5 and 8 feet. These higher concentrations of arsenic are understood to be associated with the native soils at the Site, which are located beneath the structural-fill materials. This indicates that arsenic would have been present at the property prior to placement of the structural-fill material and construction of the building on the Property.

Additionally, potential exposures to arsenic in the groundwater are limited as the area is covered with buildings and/or asphalt, prohibiting direct contact with the groundwater. Also, the shallow groundwater on the Property is unlikely to be used as a drinking water source due to its low quality. These conditions were previous accepted by PLIA in there No Further Action letter dated May 6, 2019.

¹⁰ As documented in the attached G-Logics, Inc., Groundwater Sampling Reports, dated April 12, 2018, and February 5, 2019, and No Further Action letter dated May 6, 2019, prepared by PLIA. See Appendix A and B, respectively.

⁹ Soil sample B-2-5.

However, additional study is more than likely necessary to convince a regulatory agency that arsenic in groundwater is not a concern at this site. Specifically, as stated by Ecology in the January 2022 *Natural Background Groundwater Arsenic Concentrations in Washington State* study,

- Groundwater arsenic concentrations greater than 10 µg/L are typically the result of geochemical changes in iron oxide.
- Arsenic may be released by reactions of iron oxide with natural or anthropogenic organic carbon (e.g., petroleum products).
- Arsenic releases may also occur as a result of iron oxide reacting with alkaline groundwater from various geologic environments, such as felsic volcanic rock or alkaline aquifers.
- Low- lying topography, with flat groundwater gradients, may also result in higher arsenic (i.e., not enough dilution; Smedley and Kinniburgh 2002).

To validate that the detected concentrations of arsenic in groundwater can be considered a natural occurring background condition and not a site contaminant, demonstration of one or more of the above bulleted conditions will likely be required.

7 LIMITATIONS

The completed site investigation services were designed to provide an evaluation of subsurface contaminant conditions on the Property. These services were not designed to find or identify all potential issues or eliminate all risks that could be associated with contaminants on the Properties. Even the most carefully performed environmental assessments are not likely to identify all contaminant conditions existing at a Site.

Our opinions and interpretations presented in this report may change as new information is made available. This may be obtained during additional explorations, remediation actions, or redevelopment of the Property. Additionally, regulations often change that may affect the findings of our work. Accordingly, our opinions, findings, and recommendations are only valid up to the date of this report.

The presented remedial alternatives and accompanying rough-estimated costs are provided to assist with decision making processes for Clary Auburn RE, LLC. As such, this report has been prepared and is intended for the sole use by the client, Clary Auburn RE, LLC. Others may not use or rely on this report. Within the limitations of scope, schedule, and budget, this report was completed in a manner consistent with that level of care and skill exercised by members of the profession currently practicing in the same locality under similar conditions as this project. No warranty is either expressed or implied.

To the extent that the preparation of this report required the application of best professional judgment and the application of scientific principles, certain results of this effort were based on subjective interpretation. Bluestone makes no warranties, express or implied, including and without limitation warranties as to merchantability or fitness for a particular purpose. The information provided in this report is not to be construed as legal advice.

Attachments

Tables

Table 1Soil Laboratory Analytical Results: Petroleum, PAHs, Metals ⁽¹⁾Auburn Volkswagen3109 Auburn Way North, Auburn, WAProject No. BE-0107-D

B-1 B-2	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-1-5 B-1-10 B-1-13 B-1-15 B-2-5 B-2-10 B-2-13		od A Cleanup Levels nup Levels (Cancer) 0.0 0.0 0.0 0.0 0.0	30/100* † <5 <5	2,000 † <50 <50	2,000 †	0.03 18	7	6				ed in mg/kg							252
B-2	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-1-10 B-1-13 B-1-15 B-2-5 B-2-10	5 10 13 15	0.0 0.0 0.0	<5		-050	10	T	-	9	<u>†</u> 0.67	<u> </u>	<u>†</u>	5	various	<u>20</u> 0.67	2.0	2,000	2.0	250
B-2	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-1-10 B-1-13 B-1-15 B-2-5 B-2-10	10 13 15	0.0 0.0	<5		.050			T	<u> </u>	0.67	T	T	T	various	0.67	T	T		
	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-1-13 B-1-15 B-2-5 B-2-10	13 15	0.0		~50	<250	<0.03	<0.05	<0.05	<0.1	<0.05	<0.01	<0.01	0.032	(2)					
	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-1-15 B-2-5 B-2-10	15		<5		<250	<0.03	<0.05	<0.05	<0.1	0.073									
	4/24/22 4/24/22 4/24/22 4/24/22 4/24/22	B-2-5 B-2-10		0.0	. –	<50	<250	<0.03	<0.05	<0.05	<0.1	< 0.05	<0.01	<0.01	<0.01	(2)	2.14	<1	11.8	<1	2.89
	4/24/22 4/24/22 4/24/22	B-2-10	5																		
	4/24/22 4/24/22			0.0	<5	<50	<250	<0.03	<0.05	<0.05	<0.1	< 0.05	0.17	0.17	0.074		4.22	<1	10.8	<1	4.73
	4/24/22	B-2-13	10	0.0		<50	<250						<0.01	<0.01	<0.01	(2)					
.			13	0.0		<50	<250	<0.03	<0.05	<0.05	<0.1	<0.05									
	4/24/22	B-2-15	15	0.0																	
B-3	1/2 1/22	B-3-5	5	0.0	<5	<50	<250	<0.03	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	<0.05	< 0.05	(2)					
	4/24/22	B-3-10	10	0.0																	
	4/24/22	B-3-12	12	0.2	<5	<50	<250	<0.03	< 0.05	< 0.05	<0.1	< 0.05									
	4/24/22	B-3-15	15	0.0																	
B-4	4/24/22	B-4-5	5	0.0		<50	<250						< 0.05	< 0.05	< 0.05	(2)					
	4/24/22	B-4-10	10	0.0	<5	<50	<250	<0.03	<0.05	< 0.05	<0.1	< 0.05									
	4/24/22	B-4-14	14	0.0	<5	<50	<250	<0.03	<0.05	<0.05	<0.1	< 0.05	< 0.01	<0.01	< 0.01	(2)	3.15	<1	9.17	<1	1.82
	4/24/22	B-4-15	15	0.3																	
B-5	4/24/22	B-5-5	5	0.0																	
	4/24/22	B-5-10	10	0.0		<50	<250	< 0.03	< 0.05	< 0.05	<0.1	< 0.05	< 0.01	< 0.01	< 0.01	(2)					
	4/24/22	B-5-12	12	0.0																	
	4/24/22	B-5-15	15	0.3		<50	<250	<0.03	<0.05	<0.05	<0.1	< 0.05					1.27	<1	8.95	<1	1.27
B-6	4/24/22	B-6-5	5	0.0									<0.01	< 0.01	< 0.01	(2)					
	4/24/22	B-6-10	10	0.0		<50	<250	<0.03	< 0.05	< 0.05	<0.1	< 0.05									
	4/24/22	B-6-13	13	0.0	<5	<50	<250	<0.03	<0.05	<0.05	<0.1	< 0.05	<0.01	<0.01	< 0.01	(2)	3.27	<1	9.23	<1	1.99
	4/24/22	B-6-15	15	0.0																	
B-7	7/20/22	B-7-3	3	0.0		<50	<250														
	7/20/22	B-7-5	5	0.0		<50	<250														
	7/20/22	B-7-8	8	0.0																	
B-8	7/20/22	B-8-3	3	0.1		<50	<250														
-	7/20/22	B-8-5	5	0.0		<50	<250														
	7/20/22	B-8-8	8	0.0																	
B-9	7/20/22	B-9-3	3	0.1									<0.01	<0.01	<0.01	(2)					
	7/20/22	B-9-5	5	0.0									0.014	< 0.01	< 0.01	(2)					
	7/20/22	B-9-8	8	0.0												、-/					

Table 1Soil Laboratory Analytical Results: Petroleum, PAHs, Metals ⁽¹⁾Auburn Volkswagen3109 Auburn Way North, Auburn, WAProject No. BE-0107-D

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs	Arsenic	Cadmium	Chromium	Mercury	Lead
												Labor	ratory Units Reporte	ed in mg/kg							
				od A Cleanup Levels Inup Levels (Cancer)	30/100*	2,000	2,000	0.03	7	6	9	t		<u>†</u>	5	various	20	2.0	2,000	2.0	250
D 40	7/00/00	D 10 0	1	, ,	Ť	†	t	18	Ť	Ť	Ť	0.67	†	Ť	<u>†</u>	various	0.67	Ť	Ť	+	t
B-10	7/20/22	B-10-3	3	0.0									<0.01	<0.01	<0.01	(2)					
	7/20/22	B-10-5	5	4.9																	
	7/20/22	B-10-6	6	0.0									0.042	0.029	0.013	(2)					
	7/20/22	B-10-8	8	0.0																	
B-11	7/20/22	B-11-3	3	0.0									< 0.01	<0.01	< 0.01	(2)					
	7/20/22	B-11-5	5	0.0									< 0.01	< 0.01	< 0.01	(2)					
	7/20/22	B-11-8	8	0.0																	
B-12	7/20/22	B-12-3	3	0.0									<0.01	< 0.01	< 0.01	(2)					
	7/20/22	B-12-5	5	0.0									< 0.01	< 0.01	< 0.01	0.336					
	7/20/22	B-12-8	8	0.0																	
B-13	7/20/22	B-13-3	3	0.0		<50	<250														
2.0	7/20/22	B-13-5	5	0.0		<50	<250														
	7/20/22	B-13-8	8	0.0																	
B-14	7/20/22	B-14-3	3	0.0		<50	<250														
D-14	7/20/22	В-14-3 В-14-5	5	0.0		<50 <50	<250 <250														
	7/20/22	B-14-5 B-14-8	8	0.0																	
			0	0.0																	
MW-1	5/23/22	MW-1-5	5	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06										
	5/23/22	MW-1-7	7	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06		<0.01	<0.01	<0.01	(2)	13.4	<1	12.0	<1	10.3
	5/23/22	MW-1-12	12	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06										
	5/23/22	MW-1-15	15	0.0																	
MW-2	5/23/22	MW-2-5	5	0.0	<5	<50	<250	<0.02	<0.02	< 0.02	<0.06										
	5/23/22	MW-2-8	8	0.0	<5	<50	<250	<0.02	< 0.02	<0.02	<0.06		< 0.01	< 0.01	< 0.01	(2)	11.0	<1	18.8	<1	4.6
	5/23/22	MW-2-12	12	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06										
	5/23/22	MW-2-15	15	0.0																	
MW-3	5/23/22	MW-3-3	3	0.0	<5	<50	<250	< 0.02	<0.02	< 0.02	<0.06	< 0.05	<0.01	< 0.01	<0.01	(2)	2.96	<1	9.05	<1	6.38
	5/23/22	MW-3-5	5	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	<0.06			==		(_)					
	5/23/22	MW-3-10	10	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06										
	5/23/22	MW-3-15	15	0.0																	
													<u> </u>]

Table 1 Soil Laboratory Analytical Results: Petroleum, PAHs, Metals ⁽¹⁾ Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-D

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs	Arsenic	Cadmium	Chromium	Mercury	Lead
			Moth	od A Cleanup Levels	30/100*	2,000	2.000	0.03	7	6	0	Labor	ratory Units Reporte	ed in mg/kg	E	verieue	20	2.0	2,000	2.0	250
				anup Levels (Cancer)	30/100	2,000	2,000	18	+	+	<u> </u>	0.67	+	+	<u> </u>	various various	0.67	2.0	2,000	2.0	250
MW-4	5/23/22	MW-4-3	3	0.6	<5	<50	2,900	< 0.02	< 0.02	< 0.02	<0.06	< 0.05	<0.2	<0.2	<0.2	(2)	2.33	<1	7.46	<1	2.88
	5/23/22	MW-4-5	5	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06										
	5/23/22	MW-4-10	10	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06										
	5/23/22	MW-4-15	15	0.0																	
MW-5	5/23/22	MW-5-3	3	0.5	<5	<50	<250	< 0.02	< 0.02	< 0.02	<0.06	< 0.05	0.038	0.028	0.014	(2)	5.56	<1	10.4	<1	5.86
	5/23/22	MW-5-5	5	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	<0.06										
	5/23/22	MW-5-10	10	0.0	<5	<50	<250	< 0.02	<0.02	< 0.02	<0.06										
	5/23/22	MW-5-15	15	0.0																	

Notes: Analysis Methods: NWTPH-Gx & Dx, EPA 5035A/8260C. See Laboratory reports for specifics.

(1) Summary Table of most common analytes. See Laboratory Analytical Report for full list of analyzed compounds.

(2) Analytes not listed were not detected above laboratory reporting limits.

* GRO Cleanup Level: 30 when benzene is present at the Site, 100 when benzene is not present.

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

<0.02 Not Detected, concentration less than the laboratory method detection limit.

12 Black Bold Number(s) Indicates Contaminant Detected.

33 Red Bold Number(s) Indicates Concentration Exceeds MTCA Method A Cleanup Level.

Table 1aSoil Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic HydrocarbonsAuburn Volkswagen3109 Auburn Way North, Auburn, WAProject No.BE-0107-D

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)-pyrene	Benzo(b)-fluoranthene	Benzo(k)-fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene
		A Cleanup Levels	†	t	0.1	†	t	t	t
	Method B Clean	up Levels (Cancer)	<u>t</u>	t	0.19	t	t	t	t
B-1	4/24/22	B-1-5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4/24/22	B-1-10							
	4/24/22	B-1-13	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
	4/24/22	B-1-15							
B-2	4/24/22	B-2-5	2.1	2.0	2.60	2.3	0.72	0.94	0.17
	4/24/22	B-2-10	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
	4/24/22	B-2-13							
	4/24/22	B-2-15							
B-3	4/24/22	B-3-5	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
	4/24/22	B-3-10							
	4/24/22	B-3-12							
	4/24/22	B-3-15							
B-4	4/24/22	B-4-5	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	4/24/22	B-4-10							
	4/24/22	B-4-14	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4/24/22	B-4-15							
B-5	4/24/22	B-5-5							
	4/24/22	B-5-10	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
	4/24/22	B-5-12							
	4/24/22	B-5-15							
B-6	4/24/22	B-6-5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4/24/22	B-6-10							
	4/24/22	B-6-13	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4/24/22	B-6-15							

Table 1aSoil Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic HydrocarbonsAuburn Volkswagen3109 Auburn Way North, Auburn, WAProject No.BE-0107-D

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)-pyrene	Benzo(b)-fluoranthene	Benzo(k)-fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene
	Method	A Cleanup Levels	+	+	0.1	+	+	+	+
	Method B Clean	up Levels (Cancer)	t t	t	0.19	<u>†</u>	†	ŧ	ŧ.
B-7	7/20/22	B-7-3							
	7/20/22	B-7-5							
	7/20/22	B-7-8							
B-8	7/20/22	B-8-3							
	7/20/22	B-8-5							
	7/20/22	B-8-8							
B-9	7/20/22	B-9-3	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
	7/20/22	B-9-5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	7/20/22	B-9-8							
B-10	7/20/22	B-10-3	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	7/20/22	B-10-5							
	7/20/22	B-10-6	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
	7/20/22	B-10-8							
B-11	7/20/22	B-11-3	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	7/20/22	B-11-5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	7/20/22	B-11-8							
B-12	7/20/22	B-12-3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	7/20/22	B-12-5	0.068	0.069	0.090	0.075	0.027	0.033	<0.01
	7/20/22	B-12-8							
B-13	7/20/22	B-13-3							
	7/20/22	B-13-5							
	7/20/22	B-13-8							
B-14	7/20/22	B-14-3							
	7/20/22	B-14-5							
	7/20/22	B-14-8							

Table 1aSoil Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic HydrocarbonsAuburn Volkswagen3109 Auburn Way North, Auburn, WAProject No.BE-0107-D

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)-pyrene	Benzo(b)-fluoranthene	Benzo(k)-fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene
		A Cleanup Levels	+	+	0.1	t	†	†	t
M	lethod B Clean	up Levels (Cancer)	t	t	0.19	+	+	<u> </u>	<u>t</u>
MW-2	5/23/22	MW-2-5							
	5/23/22	MW-2-8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	5/23/22	MW-2-12							
	5/23/22	MW-2-15							
MW-3	5/23/22	MW-3-3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	5/23/22	MW-3-5							
	5/23/22	MW-3-10							
	5/23/22	MW-3-15							
MW-4	5/23/22	MW-4-3	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	5/23/22	MW-4-5							
	5/23/22	MW-4-10							
	5/23/22	MW-4-15							
MW-5	5/23/22	MW-5-3	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
	5/23/22	MW-5-5							
	5/23/22	MW-5-10							
	5/23/22	MW-5-15							

Notes: Analysis Methods: See Laboratory reports for specifics analysis methods.

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

<0.02 Not Detected, concentration less than the laboratory method detection limit.

12 Black Bold Number(s) Indicates Contaminant Detected.

33 Red Bold Number(s) Indicates Concentration Exceeds MTCA Method A Cleanup Level.

Table 2Groundwater Laboratory Analytical Results: Petroleum, PAHs, MetalsAuburn Volkswagen3109 Auburn Way North, Auburn, WAProject No. BE-0107-D

Well /						Gasoline Range Organics	TPH Diesel ⁽³⁾ (C ₁₀ -C ₃₆)	TPH Oil (C ₂₅ -C ₃₆)	Benzene	Toluene	Ethyl- benzene	Xylenes	Other Volatile Organic Compounds & Fuel Additives	Phenanthrene	Other Semivolatile Compounds/ Polycyclic Aromatic Hydrocarbons	Arsenic	Cadmium	Chromium	Mercury	Lead
Location	тос	Depth to	Groundwater	Sample	Sample	GRO	DRO	ORO			VOCs				PAHs			Metals		
Identifier	Elevation	Water	Elevation (1)	Date	Name									Reported in µg/L						
			M		A Cleanup Levels up Levels (Cancer)	800/1,000*	500 +	500	<u> </u>	1,000	700	1,000	various**	<u>t</u>	various**	<u>5</u> 0.058	5	50	2	15
			IV	lethou B Clean	up Levels (Cancer)	T	T	<u> </u>	0.8	<u> </u>	T	<u> </u>	various**	T	various**	0.058	<u> </u>	T	T	<u>T</u>
B-1				4/24/22	B-1-W	<100	88x	<200	<0.35	<1	<1	<2	(2)	< 0.04	(2)	70.2	<1	5.64	<1	1.37
B-2				4/24/22	B-2-W	<100	180x	<200	<0.35	<1	<1	<2	(2)	< 0.04	(2)	13.9	<1	7.57	<1	1.82
B-4				4/24/22	B-4-W	<100	2,500x	370x	<0.35	<1	<1	<2	(2)	0.092	(2)	104	<1	77.7	<1	9.27
B-5				4/24/22	B-5-W	<100	240x	<250	< 0.35	<1	<1	<2	(2)	<0.04	(2)	18.1	<1	22.9	<1	3.27
B-6				4/24/22	B-6-W	<100	110x	<250	< 0.35	<1	<1	<2	(2)	<0.04	(2)	29.2	<1	7.02	<1	1.27
MW-1	57.16	8.17 9.42	48.99 47.74	5/26/22 7/26/22	MW-1-W MW-1-W	<100 	420x 960x		<0.35 	<1 	<1 	<2 	(2)	<0.02	(2)	11.8 20.0 (T)/17.8 (D)	<1 	<5 	<1 	<1
MW-2	56.41	7.44 9.85	48.97 46.56	5/26/22 7/26/22	MW-2-W MW-2-W	<100	300x 940x		<0.35	<1 	<1	<2 	(2)	<0.02	(2)	4.9 58.1 (T)/55.6 (D)	<1 	<5 	<1 	<1
MW-3	57.08	8.10 9.38	48.98 47.70	5/26/22 7/26/22	MW-3-W MW-3-W	<100	470x 670x		<0.35	<1	<1	<2	(2)	<0.02	(2)	3.33 14.3 (T)/16.2 (D)	<1 	2.19	<1 	<1
MW-4	57.18	8.20	48.98	5/26/22	MW-4-W	<100	290x		<0.35	<1	<1	<2	(2)	<0.02	(2)	7.15	<1	<5	<1	<1
		9.48	47.70	5/26/22 7/26/22	MW-Dup MW-4-W	<100 	330x 550x		<0.35	<1 	<1 	<2	(2)	<0.02	(2)	6.96 11.4 (T)/11.1 (D)	<1 	<5 	<1 	<1
				7/26/22	MW-Dup		510x									11.5 (T)/11.9 (D)				
MW-5	57.14	8.12 9.36	49.02 47.78	5/26/22 7/26/22	MW-5-W MW-5-W	<100	310x 300x		<0.35 	<1 	<1 	<2 	(2)	<0.02	(2)	53.3 35.4 (T)/34.5 (D)	<1 	<5 	<1 	<1

Notes:

Analysis Methods: NWTPH-Gx & Dx, EPA 8260D/8270E/6020B. See Laboratory reports for specifics.

(1) Presented Elevations are based on elevation data based on others work, i.e., work performed on the south adjoining property, 3025 Auburn Way North (Auburn Subaru) and Bluestone Site Measurements.

(2) Analytes not listed were not detected above laboratory reporting limits. See laboratory report for details.

(3) Chromatographs of samples quantify constituent as one product using NWTPH-HCID/Dx methods. See report Appendix G For chromatographs.

* 30 when benzene is present at the Site, 100 when benzene is not present.

** Reported concentrations of analytes for listed method analysis were not detected at laboratory reporting limits except as noted in table. See laboratory report for details.

1 Method (A or B) Cleanup Level has not been establis Reported concentrations of analytes for listed method analysis were not detected at laboratory reporting limits except as noted in table. See laboratory report for details.

-- Not Analyzed / Unknown

<0.02 Not Detected, concentration less than the laboratory Not Analyzed / Unknown

12 Black Bold Nurr Black Bold Nurr Black Bold Number(s) Indicates Contaminant Detected.

33 Red Bold Numt Red Bold Numt Red Bold Number(s) Indicates Concentration Exceeds MTCA Method A Cleanup Level.

Dup Duplicate Sample for QA/QC.

x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

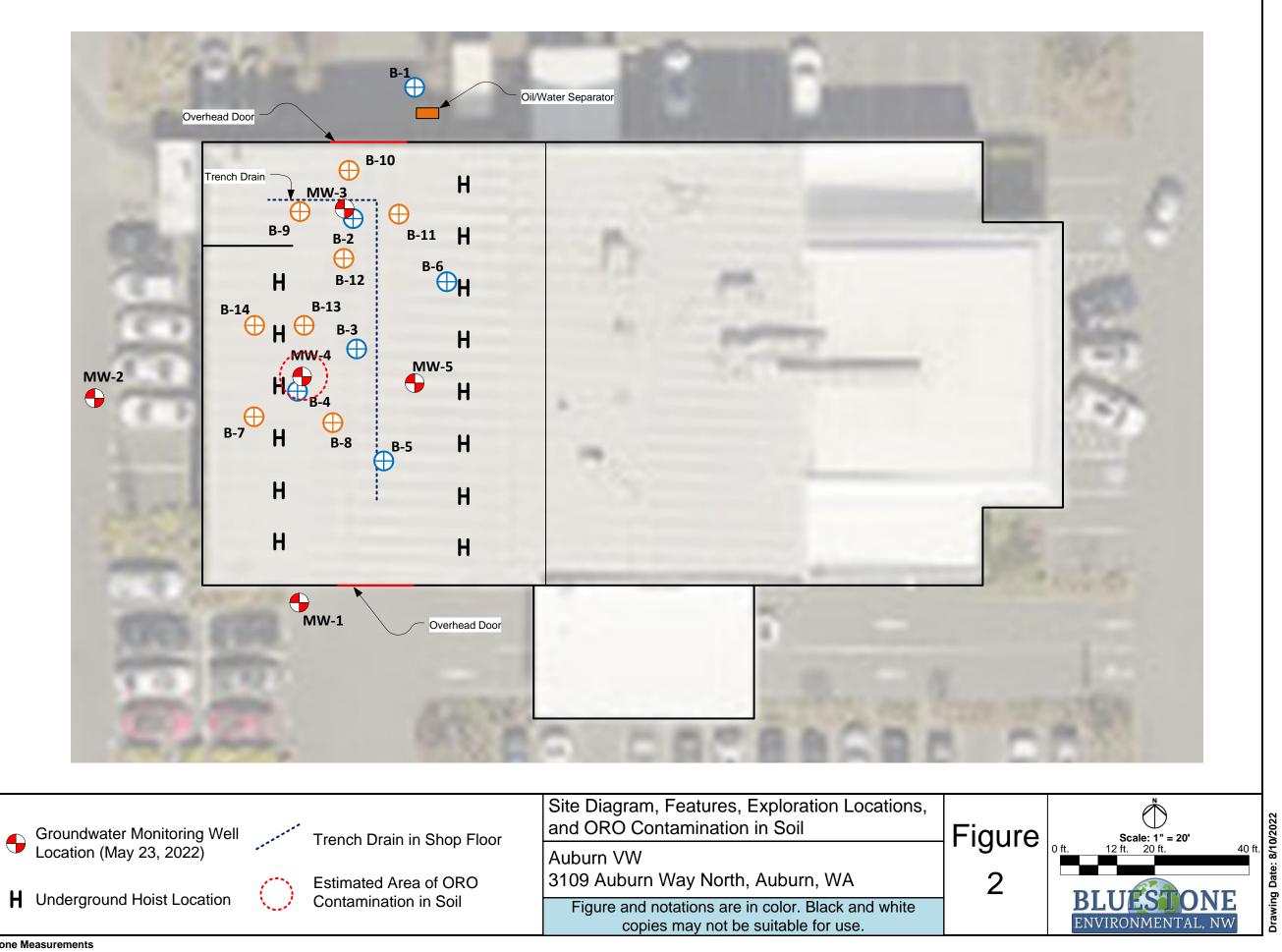
Table 3 Well Construction & Groundwater Depths Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-D

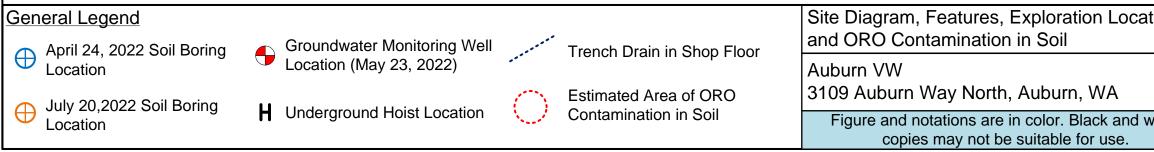
Well Identifier	Well Installation Date	Well Construction Material	Monument / Surface Elevation*	Top of Casing Elevation *	Length of Screen (ft.)	Bottom of Well	Well Diameter (in.)	Measurement Date	Depth to Water	Calculated Water Elevation
MW-1	5/23/22	PVC	57.61	57.16	10	16.2	2	5/26/2022 7/26/2022 8/11/2022	8.17 9.42 9.88	48.99 47.74 47.28
MW-2	5/23/22	PVC	56.91	56.41	10	17	2	5/26/2022 7/26/2022 8/11/2022	7.44 9.85 9.14	48.97 46.56 47.27
MW-3	5/23/22	PVC	57.48	57.08	10	17	2	5/26/2022 7/26/2022 8/11/2022	8.10 9.38 9.83	48.98 47.70 47.25
MW-4	5/23/22	PVC	57.56	57.18	10	17	2	5/26/2022 7/26/2022 8/11/2022	8.20 9.48 9.89	48.98 47.70 47.29
MW-5	5/23/22	PVC	57.55	57.14	10	17	2	5/26/2022 7/26/2022 8/11/2022	8.12 9.36 9.85	49.02 47.78 47.29

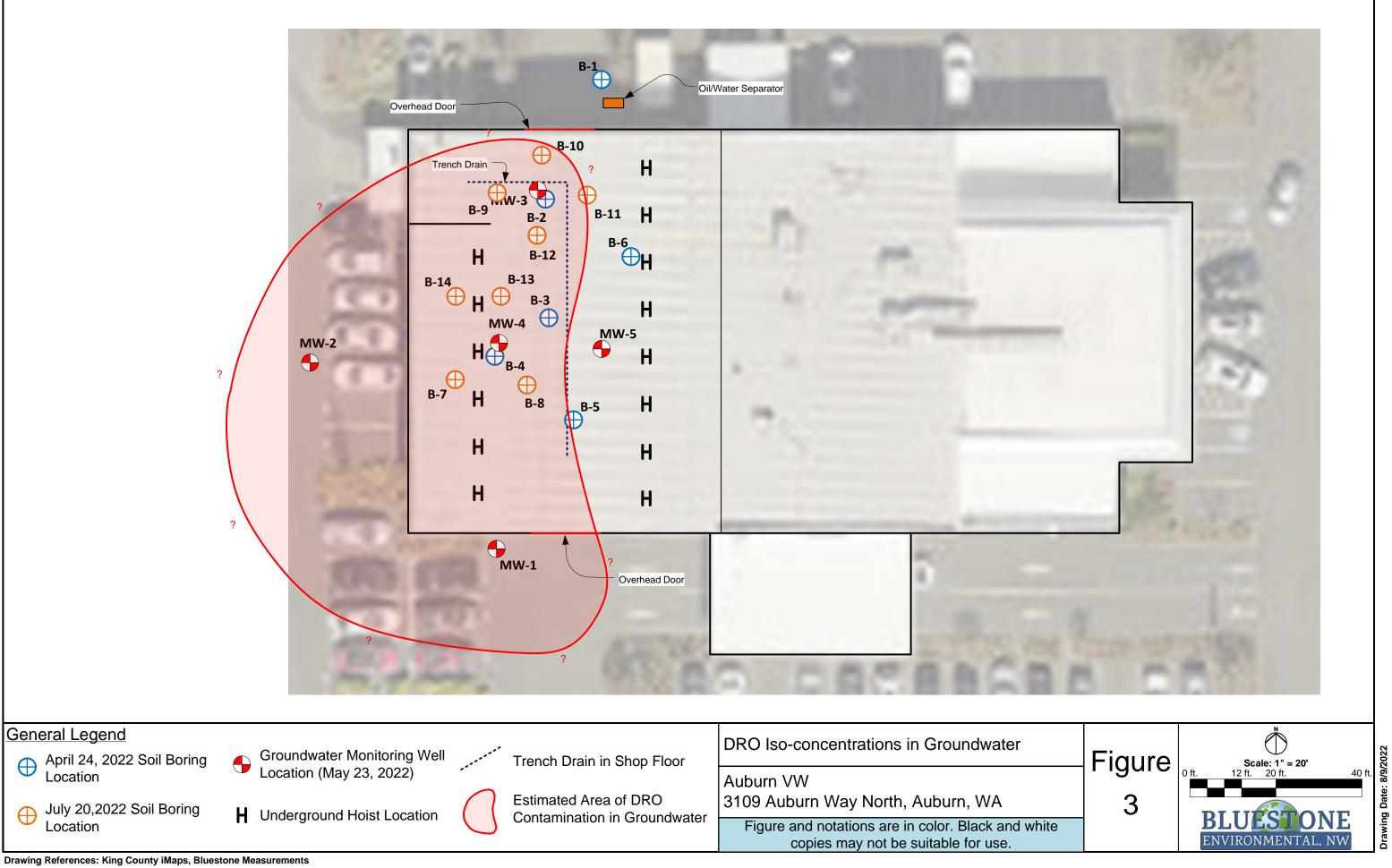
Notes:

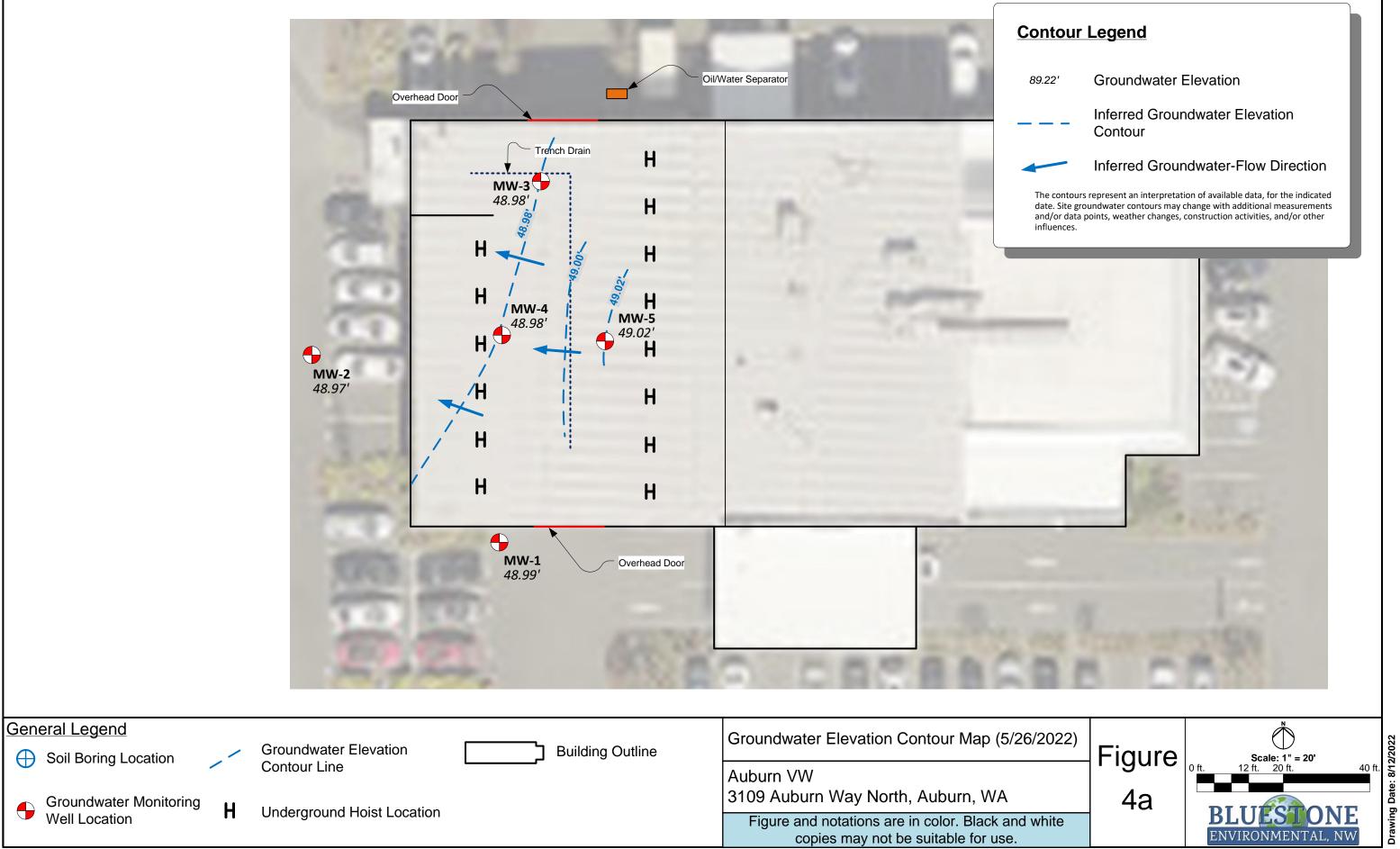
* Presented Elevations are based on elevation data based on others work, i.e., work performed on the south adjoining property, 3025 Auburn Way North (Auburn Subaru) and Bluestone Site Measurements.

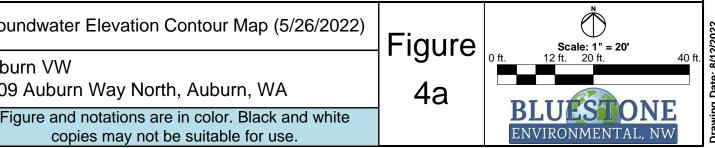
Table 4Groundwater Parameters (1)Auburn Volkswagen3109 Auburn Way NorthProject No. BE-0107-D

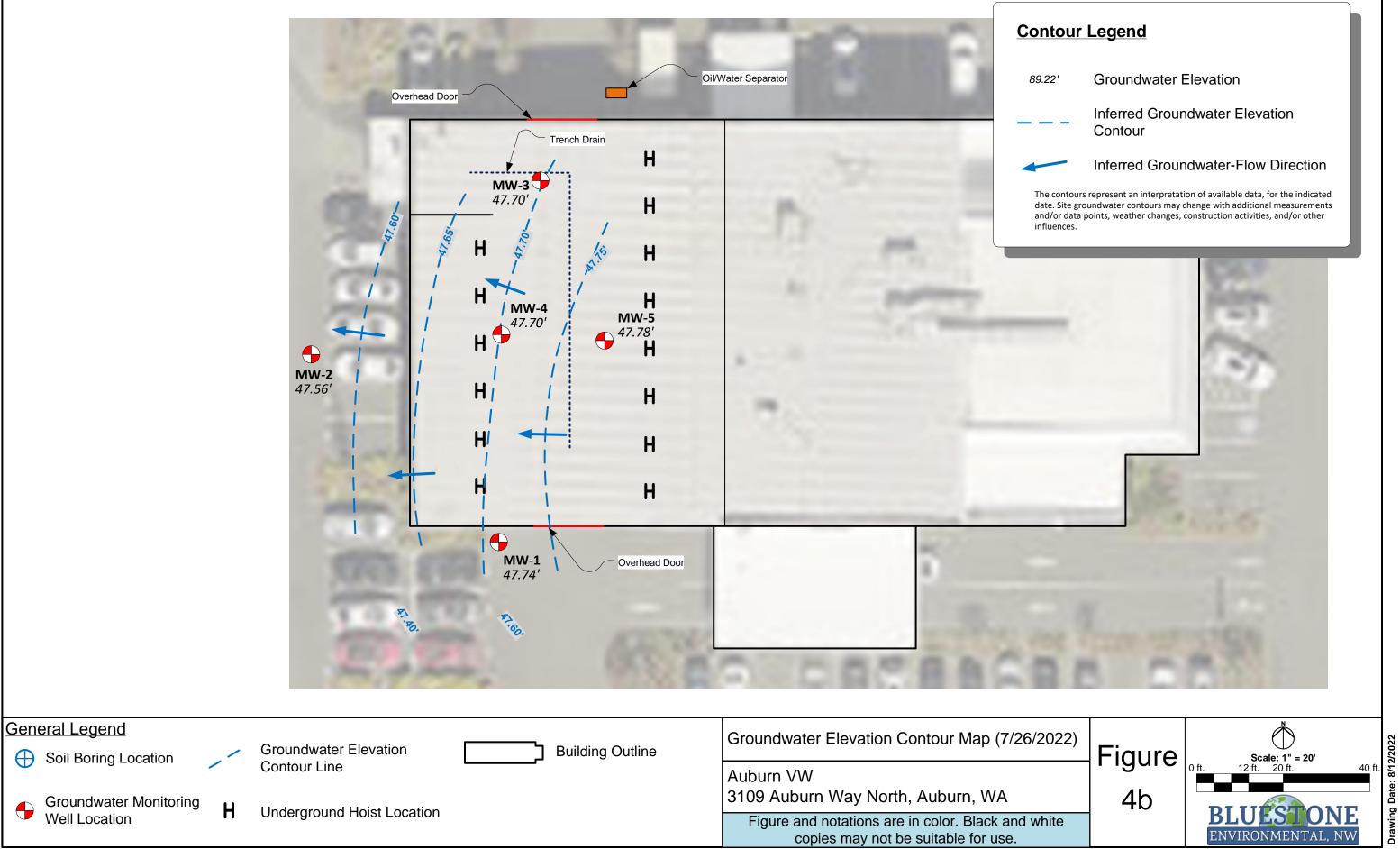

Well Identifier	Measurement Date	Temperature (⁰C)	Conductivity (µS/cm)	Dissolved Oxygen (%)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential
MW-1	5/26/22	15.37	997	22.2	2.21	7.46	-106.1
	7/26/22	15.54	1094	11.1	1.10	6.76	-129.2
MW-2	5/26/22	14.12	698	100	10.24	6.62	-86.3
	7/26/22	13.87	731	22.9	2.30	6.74	-136.8
MW-3	5/26/22	16.70	1,259	385	3.68	6.84	-96.2
	7/26/22	15.70	1,235	5.7	0.56	5.71	-136.8
MW-4	5/26/22	16.65	665	32.1	3.12	6.74	-72.6
	7/26/22	15.63	796	5.6	0.55	6.66	-97.6
MW-5	5/26/22	16.80	896	50.1	4.84	6.73	-112.6
	7/26/22	15.72	620	7.8	0.76	6.71	-123.7

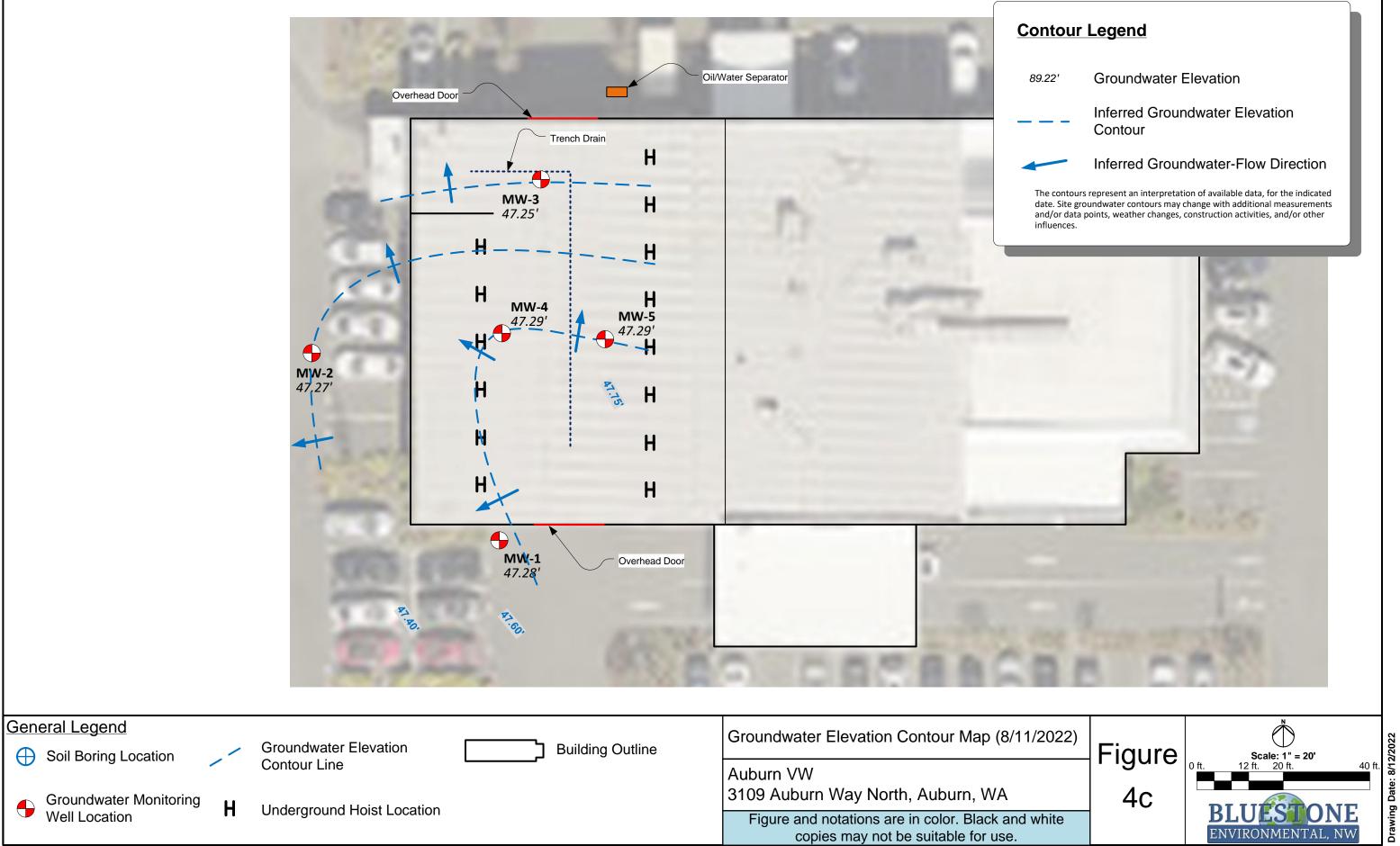

Notes: (1) Parameters at time of sample collection.


Figures




Drawing References: Getty Image, King County iMaps





 \bigcirc

 \bigcirc

 \bigcirc

Appendices

Appendix A

g-logics

April 12, 2018 G-Logics Project Number 01-1140-E

M&M Ventures, LLC Mr. Mike Scarff 33 Knights Lane Friday Harbor, WA 98250

R&E Investments, LLC Mr. Roger Vermazen 16932 SE 354th Street Auburn, WA 98092

Subject: Well Installation and Groundwater Sampling Facility/Site No. 57361549 PTAP Project No. PNW030 Auburn Way Properties 3025 and 3109 Auburn Way N Auburn, WA 98002

Dear Mr. Scarff and Mr. Vermazen:

G-Logics was authorized by M&M Ventures (recent 3025 property owner) and R&E Investments (recent 3109 property owner) to install and sample groundwater monitoring wells at the Site (Figure 1). This work was a collaborative effort to verify the successful removal of petroleum contaminants at the Site in order to request a No Further Action (NFA) Opinion from the State of Washington's Pollution Liability Insurance Agency (PLIA).

G-Logics performed this work as described in our workplan date February 13, 2018 which was approved in a letter from PLIA dated February 21, 2018. Pervious G-Logics site-exploration and remediation work completed at the Site is documented in our *Additional Soil and Groundwater Sampling* report dated August 13, 2017 and our *Environmental Media Management Report* dated December 4, 2017.

G-Logics, Inc. 40 2nd Avenue SE Issaquah, WA 98027 T: 425-391-6874 F: 425-313-3074 01-1140-E-RT-Final

1.0 Site Background

The Site is composed of two properties, 3025 and 3109 Auburn Way N. The 3025 property is identified as King County tax parcel number 0004000039. The 3109 property is identified as King County tax parcel number 0004000041.

As summarized in the G-Logics Phase I report dated July 18, 2017, this area was primarily agricultural land prior to the 1970s. A review of aerial photographs appears to show row crops throughout the area, with occasional small orchards.

Since at least the early 1970s, an automobile dealership and a service garage historically occupied the northern portion of the 3025 property and the southern portion of the 3109 property (adjacent property to the north). A former 550-gallon used-oil underground storage tank (UST) was removed from west side of the former dealership building located on the 3025 property.

1.1 Exploration Background

Stemen Environmental, Inc. (SEI) conducted a Phase II exploration in this area (report dated December 20, 2012). Soil and groundwater samples were collected on both the 3025 and the 3109 properties. None of the samples that SEI analyzed from the 3025 property contained concentrations of gasoline (GRO), diesel (DRO), oil-range hydrocarbons (ORO), or volatile organic compounds (VOCs) at concentrations above MTCA Method A cleanup levels. Exploration locations are shown on Figure 2. Figure 2a presents the same information, but the background survey mapping has been removed for readability.

In the SEI Phase II exploration, GRO and ORO hydrocarbons were found exceeding MTCA Method A cleanup levels in soils along the southern boundary of the 3109 property. SEI conducted additional sampling work in June 2017 (see Figures 2 and 2a). ORO in soil was detected but at concentrations below MTCA Method A cleanup levels. None of the analyzed groundwater samples contained concentrations of GRO, DRO, ORO, or VOCs. However one groundwater sample contained lead at the MTCA Method A cleanup level (15 ug/L).

To provide additional data for the former UST area, G-Logics conducted soil and groundwater sampling in July 2017. On the 3025 property, the ORO hydrocarbons were found exceeding the MTCA Method A cleanup level in soils along the northern property boundary. DRO and ORO also were found above MTCA Method A cleanup levels in two

g-logics

grab-groundwater samples collected in this area. Total and dissolved concentrations of arsenic also were reported above the MTCA Method A cleanup level in two of the four grab-groundwater samples and in one monitoring well-sample (see G-Logics *Additional Soil and Groundwater Sampling* report dated August 13, 2017 for more information).

The arsenic is likely due to area-wide sources, based on location and lack of relevant operations and activities on the properties. This area is located within the Tacoma Smelter plume. Other off-property sources may include former-agricultural practices in the area, and/or volcanic deposits from Mount Rainier. Specifically, the Osceola Mudflow buried a large portion this area with volcanic material, originating during eruptions approximately 5,600 years ago.

To address the petroleum-contamination, G-Logics recommended a remedial excavation. Mr. Vermazen (3109 property owner) agreed that if petroleum-contaminated soil was found to extend onto his property, then those contaminated soils also should be removed. Accordingly, the remedial excavation planned for the 3025 property extended to the north onto the 3109 property.

1.2 Remediation Background

In November 2017, petroleum-contaminated media (soil and groundwater) was removed from an area spanning the property line. The work consisted of the removal and disposal of approximately 384 tons of petroleum-contaminated soil and approximately 2,600 gallons of water (rain and groundwater). Analyzed confirmation samples indicated that all petroleumcontaminated soils above MTCA Method A cleanup levels were successfully removed from this area. After the remedial excavation had been completed, 200 pounds of an oxygenrelease compound (ORC Advanced) was added to groundwater in the excavation, as well as the backfill material near the groundwater interface (see G-Logics *Environmental Media Management Report* dated December 4, 2017 for more information).

1.3 Regulatory Background

The law that guides the remediation process at sites located within Washington State is the Model Toxics Control Act (MTCA). The regulations implementing MTCA are located in the Washington Administrative Code (WAC), Chapter 173-340. This regulation is administered by the Washington Department of Ecology (Ecology).

The property owners performed an independent remedial action for this site, in accordance with the Ecology guidance. Such remedial actions are specifically allowed by MTCA, also encouraged by Ecology and PLIA.

1.4 PLIA Background

As of January 2, 2018 the Pollution Liability Insurance Agency (PLIA) has authority to respond and deliver opinions on qualifying petroleum-contaminated sites throughout Washington. This ability is called the Petroleum Technical Assistance Program (PTAP), as established under RCW 70.149.040(9).

After the intake meeting with PLIA on January 31, 2018, the Site was accepted into the PTAP program. PLIA offered that the two properties (3025 and 3109) be considered as one Site. PLIA requested additional sampling be conducted on both properties to address potential data gaps and to document that any residual contamination did not migrate beyond the Site boundaries. PLIA also requested that the potential for vapor intrusion in nearby buildings also be assessed. The information requested by PLIA is presented below.

2.0 Soil Sampling and Monitoring Well Installation

On March 12th and 13th, 2018, hollow-stem auger borings were drilled and completed as groundwater monitoring wells (MW-02, MW-03, MW-04, MW-05, and MW-06). One soil boring also was drilled (GLB-10). Boring locations (Figures 2 and 2a) were selected based on the findings of the previously completed G-Logics site-exploration and remediation work (Figure 3). This work was conducted to address potential data-gap concerns expressed by PLIA during the intake meeting. Several borings met drilling refusal, these locations also are shown on Figures 2 and 2a.

The completed borings were advanced to depths ranging from approximately 11.5 to 15 feet below ground surface. These borings generally encountered a structural-fill material (believed to be placed sometime between the mid 70's and mid 80's) from the surface to approximately a depth of 4 to 5 feet. The fill consisted of a silty sand and gravel mix. Fine-grain native soils were encountered below the fill, generally consisting of silt with clay to a depth of 8 to 9 feet, followed by silty, fine grain sand to the bottom of the borings.

During drilling, soil samples were collected for soil identification and chemical analysis. A photoionization detector (PID) was used to screen for volatile-organic compounds (VOCs)

g-logics

in the collected soil samples. The results, measured in parts per million by volume (ppmv), were noted on the soil data table (Table 1) and boring logs. Collected soils samples were submitted to the analytical laboratory (Fremont Analytical, Seattle, Washington). Selected soil samples from each boring were analyzed for diesel-range organics (DRO), oil-range organics (ORO), and arsenic.

A description of our field exploration methods is presented in Appendix A. The boring logs are presented in Appendix B. Each log presents soil types and descriptions, field-screening observations, PID readings, and a schematic of the monitoring well installed.

2.1 Analytical Results, Soil Samples

In the analyzed soil samples, ORO was detected in GL-MW-2-2.5 and GL-MW-6-8, but at concentrations below MTCA Method A Cleanup Levels. DRO was not detected in any of the analyzed soil samples. Arsenic was detected in all of the soil samples analyzed but at concentrations below MTCA Method A Cleanup Levels. Results of these analyses are presented in Table 1 of this report. Soil analytical laboratory reports and completed chain-of-custody forms, from this recent effort, are attached as Appendix C.

2.2 Quality Assurance/Quality Control Findings

Quality Assurance/Quality Control (QA/QC) included generally accepted procedures for sample collection, storage, tracking, documentation, and analysis. All sampling equipment was washed with a liquinox wash and distilled water rinse before the collection of the samples. All samples were labeled with a sample number, date, time, and sampler name, and were stored in an ice chest containing frozen blue ice. Appropriate chain-of-custody documentation was completed.

Laboratory duplicate samples were analyzed for data repeatability. The detected concentrations were within acceptable limits for laboratory-repeatability information. The laboratory also conducted matrix spike, matrix-spike duplicate, and method blank analyses. Laboratory QA/QC information is included (with the laboratory report) in Appendix C.

g-logics

3.0 Groundwater Sampling

On March 20th, 2018, six groundwater-monitoring wells (MW-1 through MW-6, Figures 2 and 2a) were sampled to obtain information regarding groundwater contaminants. Seven groundwater samples were collected (including a field duplicate) from the six wells. Collected samples from each well were submitted to the analytical laboratory (Fremont Analytical). These seven water samples were analyzed for DRO, ORO, and arsenic (total and dissolved).

3.1 Analytical Results, Groundwater Samples

In the analyzed samples, DRO and ORO were detected in MW-1, MW-4, and MW-6. ORO was also detected in MW-2. All detected petroleum concentrations were below MTCA Method A Cleanup Levels. Total arsenic was found above MTCA Method A Cleanup Levels in all wells except GL-MW-5. Dissolved arsenic was below MTCA Method A Cleanup Levels in all wells except GL-MW-2 and GL-MW-4. The highest dissolved arsenic concentration was 14.1 ug/L in GL-MW-2.

Results of these analyses are presented in Table 2 of this report. Appendix A presents field-exploration methods, while Appendix C includes the laboratory reports and chain-of-custody forms.

3.2 Quality Assurance/Quality Control Findings

Laboratory duplicate samples, as well as one blind-duplicate groundwater sample (MW-1), were analyzed for data repeatability. The detected concentrations were within acceptable limits for laboratory-repeatability information. The laboratory also conducted matrix spike, matrix-spike duplicate, and method blank analyses. Laboratory QA/QC information is included (with the laboratory report) in Appendix C.

4.0 Elevation Survey- Monitoring Wells

The elevations of the well casings (five new wells and one existing well) were surveyed by G-Logics. The survey was based on a backsight shot to the concrete floor at the north entrance of the auto shop. A previous survey by Terrane, dated 8/3/2017, identified the floor elevation at this location to be 57.7'.

g-logics

5.0 Groundwater-Depth Measurement Findings

On March 14th, 2018, groundwater depths were measured in the six monitoring wells, see Table 3. Depth measurements were made from the top of the PVC well casing, prior to well development. Groundwater was found at depths ranging from 6.19 to 8.11 feet below top of PVC casing. Measured groundwater elevations for these wells have been plotted on Figure 4. The plotted groundwater elevations indicate groundwater flow toward the northeast, with a very flat gradient.

6.0 Initial Petroleum Vapor-Intrusion Assessment

Given the presence of residual petroleum contaminants at the Site, G-Logics has performed an initial petroleum vapor-intrusion (PVI) assessment. For this assessment, we followed the Ecology vapor intrusion guidance documents: *Guidance for Evaluating Soil Vapor Intrusion in Washington State*, dated October 2009, revised February 2016, and the *Implementation Memorandum No. 18*, dated January 10, 2018. The PVI assessment is further discussed below.

6.1 PVI Exposure Pathways

At sites with volatile contaminants, contaminated soil-vapor can present a potential risk to human health through inhalation. Specifically, an exposure pathway could exist for contaminants to migrate into indoor air via vapor intrusion. At this Site, the primary contaminant of concern is ORO, which contains little of the volatile contaminants associated with vapor-intrusion risks from a petroleum release (i.e., benzene and naphthalene). DRO also has been detected in soil and groundwater at the Site, but at low concentrations below applicable cleanup levels.

6.2 PVI Lateral-Inclusion Zones and Vertical Separation

Based on the PVI guidance documents published by the United States Environmental Protection Agency and Ecology (*Memorandum No. 14* dated March 2016), existing and/or future buildings located laterally and/or vertically within set distances of subsurface contamination may experience unacceptable vapor-intrusion impacts. The screening levels used for PVI assessments, for benzene and total petroleum hydrocarbons as presented in Appendix B of Ecology's *Memorandum 14*, are presented in the following table.

g-logics

Recommended Screening Levels for Assessing PVI

Media	Benzene	ТРН
Soil	≤ 10	≤ 100 (for unweathered GRO) ≤ 250 (for weathered GRO & DRO)
(mg/kg)	> 10	> 100 (for unweathered GRO) > 250 (for weathered GRO & DRO)
Groundwater	≤ 5,000	≤ 30,000
(µg/L)	> 5,000	> 30,000

Further information regarding the lateral-inclusion zone and vertical separation distance is described below.

6.2.1 Lateral-Inclusion Zone

Based on the guidance documents, buildings that are laterally within 30 feet of subsurface petroleum contamination with soil and/or groundwater concentrations above screening levels (presented in the table above) may experience unacceptable vapor-intrusion impacts. This distance is referred to as the lateral-inclusion zone and is defined as the area surrounding a petroleum-contaminant source through which vapor-phase contamination might travel and intrude into buildings at unacceptable concentrations.

The lateral distance to subsurface contamination should first be identified to assess if a building or buildings are within the lateral-inclusion zone. If existing or planned buildings are not in the lateral inclusion zone (30 feet), then the initial PVI assessment process is complete. Specifically, a 30-foot horizontal separation distance from the edge of the contamination to a structure is likely to provide an adequate separation distance to exclude vapor-intrusion concerns.

g-logics

At this Site, low-level concentrations of DRO and/or ORO have been detected in soil and groundwater samples collected within 30 lateral feet of a building footprint. Specifically, concentrations have been detected in samples collected from boring GLB-5 and wells GL-MW-1 and GL-MW-2. Because contaminants are present within the lateral-inclusion zone, the vertical separation distance was assessed.

6.2.2 Vertical Separation Distance

If a building or buildings are within the lateral-inclusion zone, the vertical separation distance between the contaminant source and the building foundation also should be considered to assess if unacceptable vapor-intrusion impacts may occur. The vertical separation distance represents the thickness of clean, biologically-active soil between the source of petroleum-hydrocarbon vapors and the deepest point of a structure.

For the vertical-separation distances, soil and groundwater must be assessed separately. As described in Ecology's *Memorandum No. 14*, the depths of contaminants in soil and/or groundwater are compared to the screening-level concentrations of benzene and/or total petroleum-hydrocarbons (TPH). The vertical separation distances for petroleum contaminants in soil and groundwater are shown in the following table.

Media	Benzene	ТРН	Vertical Separation
Soil	≤ 10	≤ 100 (for unweathered GRO) ≤ 250 (for weathered GRO & DRO)	6'
(mg/kg)	> 10	> 100 (for unweathered GRO) > 250 (for weathered GRO & DRO)	15′
Groundwater	≤ 5,000	≤ 30,000	6′
(µg/L)	> 5,000	> 30,000	15′

Recommended Vertical-Separation Distances Between Contamination and Building Basement, Foundation, or Crawlspace

g-logics

The depth to subsurface contamination should be assessed to identify if a building or buildings are within the specified vertical-separation distance. Dependent on contaminant concentrations, if the separation-distance criteria are met (as specified in the table above) based on the measured soil and groundwater concentrations for benzene and TPH, then the initial PVI assessment process is complete.

For this Site, benzene and DRO were not detected in soil samples collected within the lateral inclusion zone. ORO was detected in one soil samples collected at a depth of 2.5 feet from well GL-MW-2. Although this ORO concentration slightly exceeds the specified TPH concentration for DRO in the above table, ORO contains little volatile contaminants and does not pose a vapor-intrusion risk.

Groundwater at the Site is at a depth greater than six feet. In addition, all detectable concentrations of benzene, GRO, DRO, and ORO have been well below the screening levels presented in the table above. Therefore, based on the lateral and vertical PVI review conducted above, residual petroleum contaminants found in soil and groundwater do not pose a PVI risk to the nearby buildings.

7.0 Conclusions

Petroleum contaminated soils and groundwater were removed through the remedial excavation conducted in November 2017. Analyzed confirmation samples (Table 1, and Figure 3) collected during the excavation indicate that all petroleum-contaminated soils had been successfully removed from this area.

The additional sampling, conducted during this March 2018 exploration (Table 1, Table 2, Figures 2 and 2a), has confirmed that the petroleum contamination (associated with the former UST) has been successfully removed and did not migrate beyond the remedial-excavation boundaries. Additionally, a review of PVI risks also documents that vapor intrusion is not a concern, due to the low concentrations of residual petroleum contaminants and the low volatility of ORO.

With the completion of this work, M&M Ventures and R&E Investments have successfully addressed the petroleum-contaminated soils and groundwater water in this area of the two properties.

g-logics

With respect to arsenic, historical review of the Site did not identify any commercial or industrial source of arsenic from prior activities or operations. The Site is within the Asarco area-wide smelter plume, and volcanic deposits from the Osceola mud flow are likely also present. Agricultural practices in the area may also have contributed to area-wide arsenic concentrations.

Notably, soil concentrations for arsenic generally increase at approximate depths of 5-8 feet (Table 1). These higher concentrations of arsenic at 5-8 feet bgs are associated with the native soils at the Site, which are located beneath the structural-fill materials. This information would indicate that arsenic would have been present at the property prior to placement of the structural-fill material and construction of the site buildings. Potential exposures to arsenic in the groundwater are very limited. Specifically, this area is covered with buildings or asphalt, prohibiting direct contact with the groundwater. Additionally, the shallow groundwater in this area likely would be of low quality and would yield insufficient quantities to be considered to be a viable source of drinking water. With these understandings, detected arsenic concentrations do not present any risk to human health or the environment, and therefore do not require further evaluation or remediation.

8.0 Recommendations

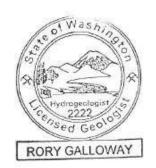
The completed work documents the successful remediation of the former UST area, demonstrates the lack of vapor-intrusion concerns, and identifies that arsenic is an areawide issue with no presented risk. Based on the completed work, G-Logics recommends that PLIA provide a No Further Action opinion for the Site.

9.0 Limitations

The scope of work on this project was presented in our identified workplan and subsequently approved by M&M Ventures and R&E Investments. Please be aware our scope of work was limited to those items specifically identified in the workplan. Other activities not specifically included in the presented scope of work (in a workplan, correspondence, or this report) are excluded and are therefore not part of our services.

Land use, site conditions (both on-site and off-site), and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the site sampling.

This report is prepared for the sole use of our client and reviewing regulatory agencies. The scope of services performed during this assessment may not be appropriate for the needs of other users. Re-use of this document or the findings, conclusions, or recommendations presented herein, are at the sole risk of said user(s). Any party other than our client who would like to use this report shall notify G-Logics of such intended use by executing the "Permission and Conditions for Use and Copying" contained in this document. Based on the intended use of the report, G-Logics may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements will release G-Logics from any liability resulting from the use of this report by any unauthorized party.


No warranty, either express or implied, is made.

10.0 Closing

We appreciate this opportunity to provide our services on this project. Please contact us at your convenience with any questions regarding our work or findings.

Sincerely, G-Logics, Inc.

Eur/ Your why

Karis Vandehey, LG, WSLWD Staff Geologist

Rory L. Galloway, LG, LHG Principal

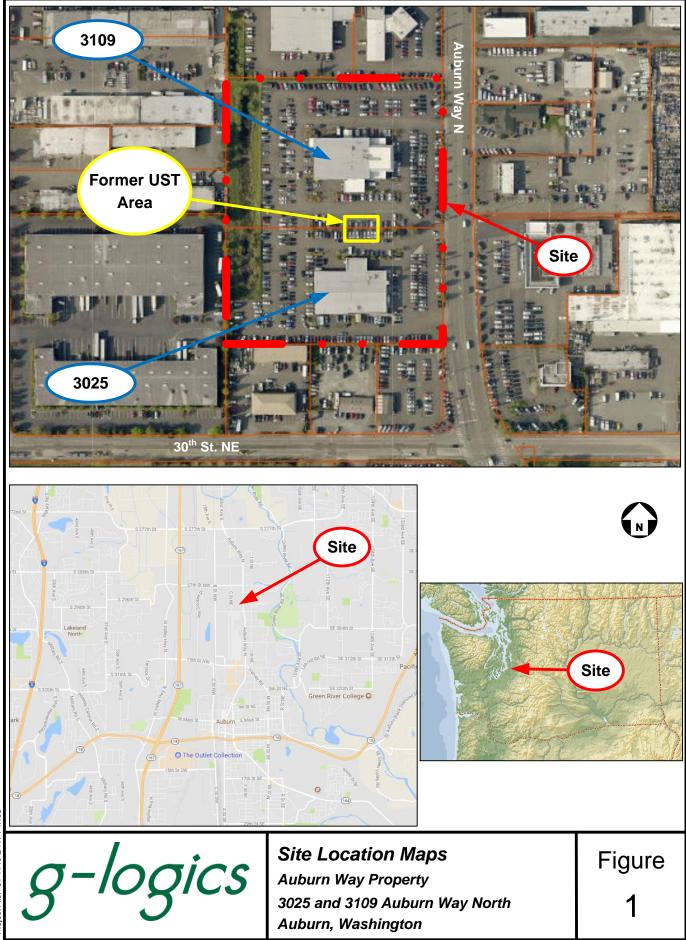
Galozo

cc Greg Rairdon Ken Lederman

FIGURES

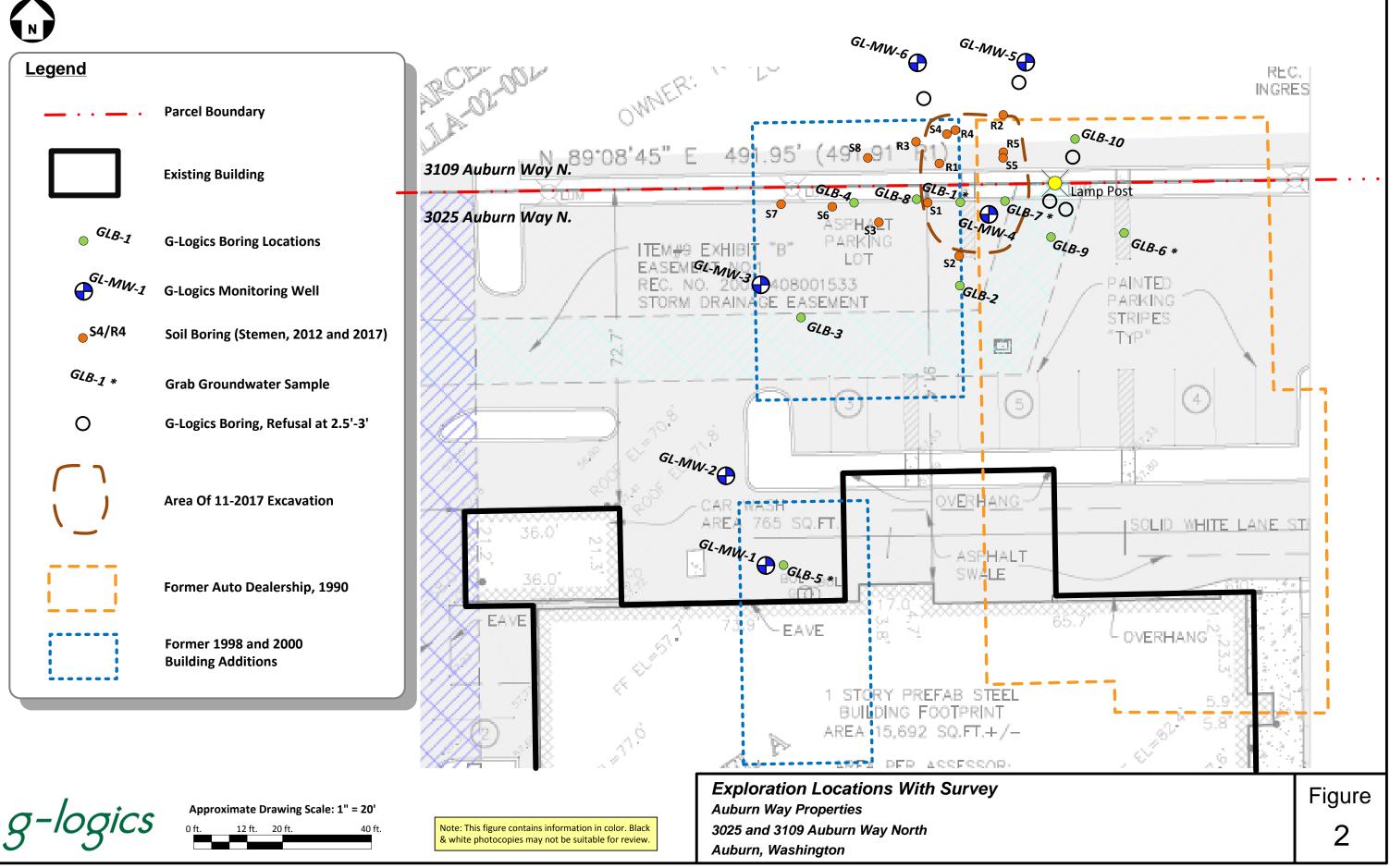
Figure 1:	Site Location Maps
Figure 2:	Exploration Locations with Survey
Figure 2a:	Exploration Locations
Figure 3	Excavation-Sampling Locations
Figure 4	Groundwater Elevations (3/14/2018)
TABLES	
Table 1	Soil Sample Analyses
Table 2	Groundwater Sample Analyses
Table 3	Groundwater Elevation Measurements

APPENDICES

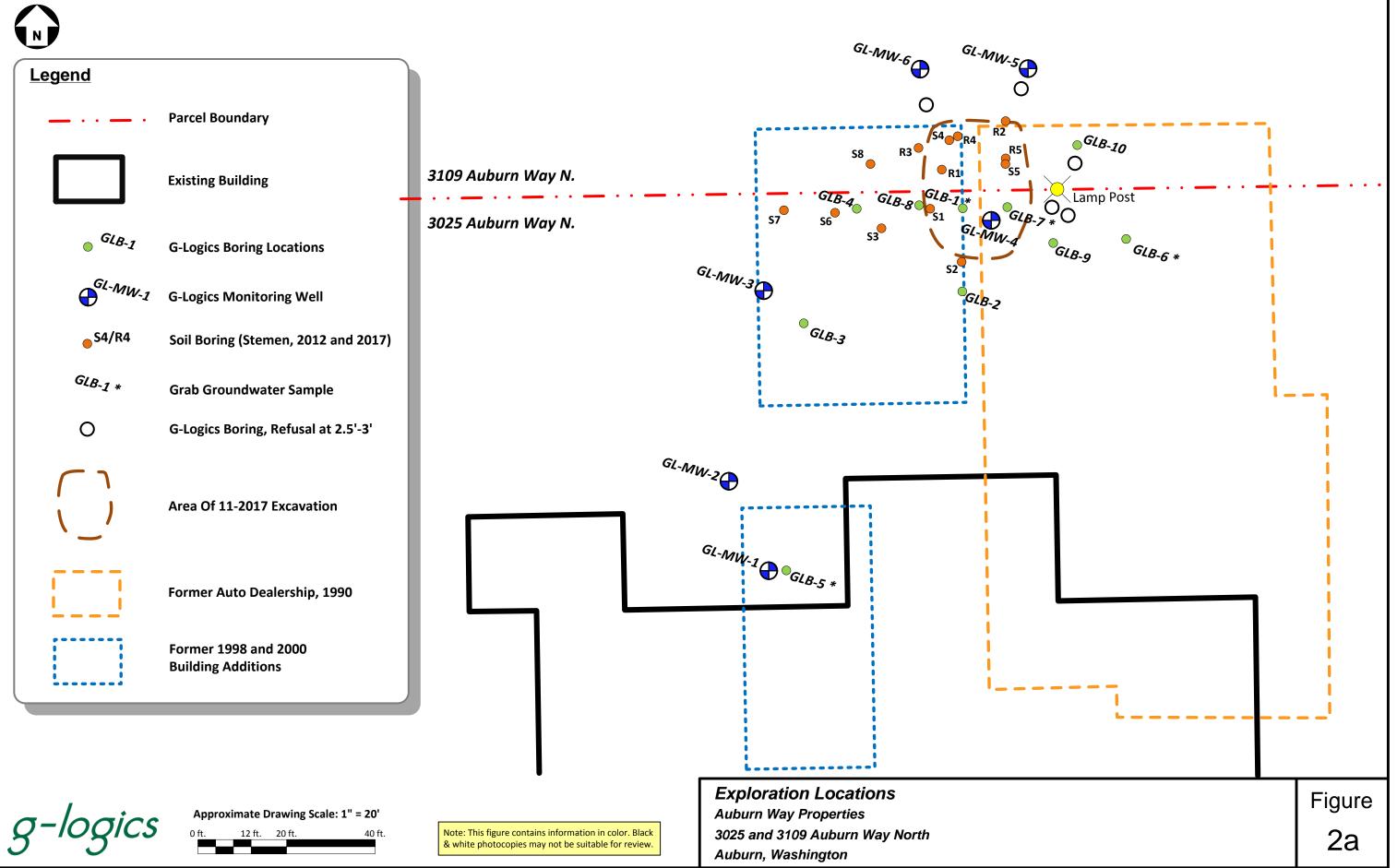

Appendix A:	Field Exploration Methods
Appendix B:	Boring/Well Logs
Appendix C:	Laboratory Data and Chain-of-Custody Documents

ATTACHMENTS

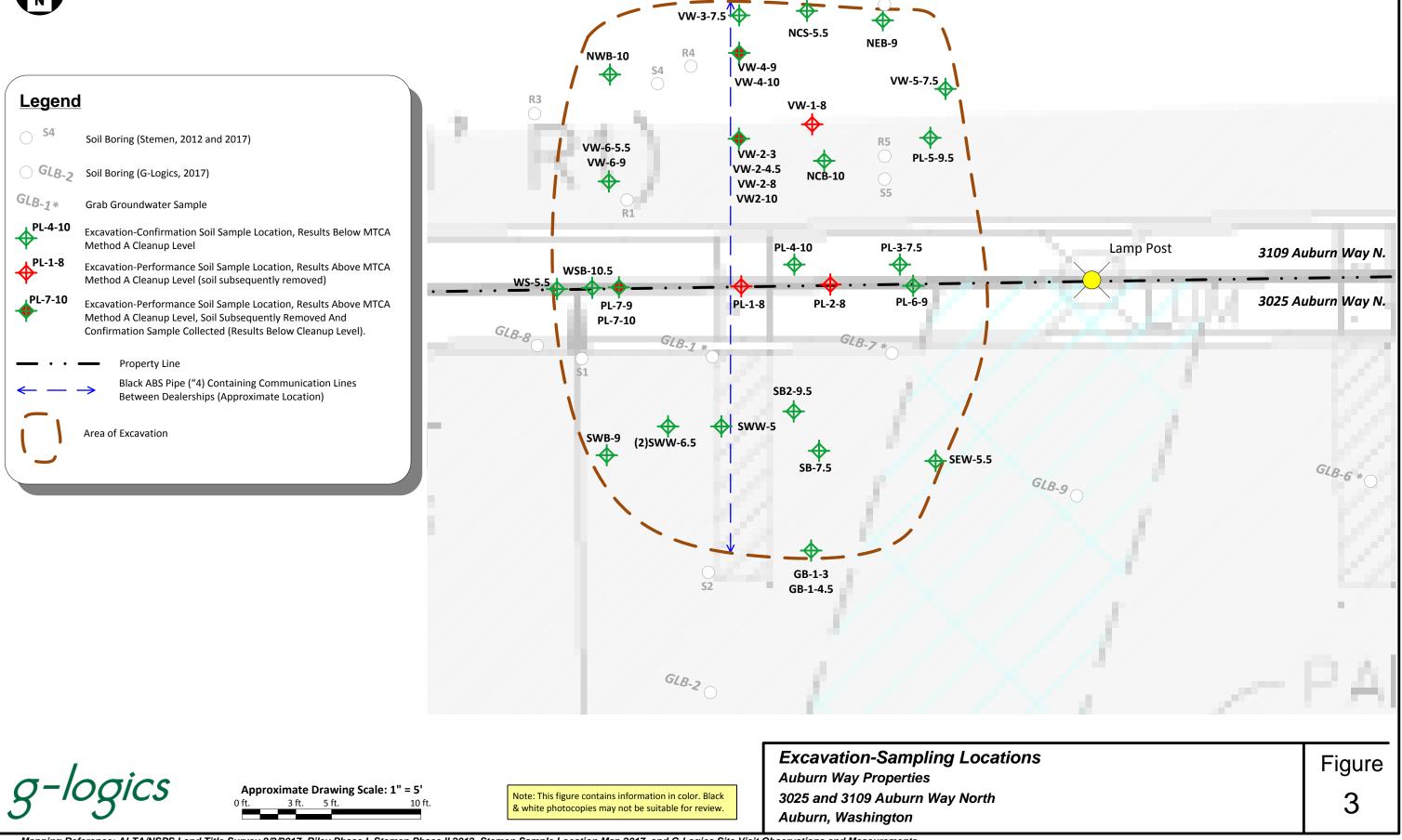
Attachment A: Permission and Conditions for Use and Copying

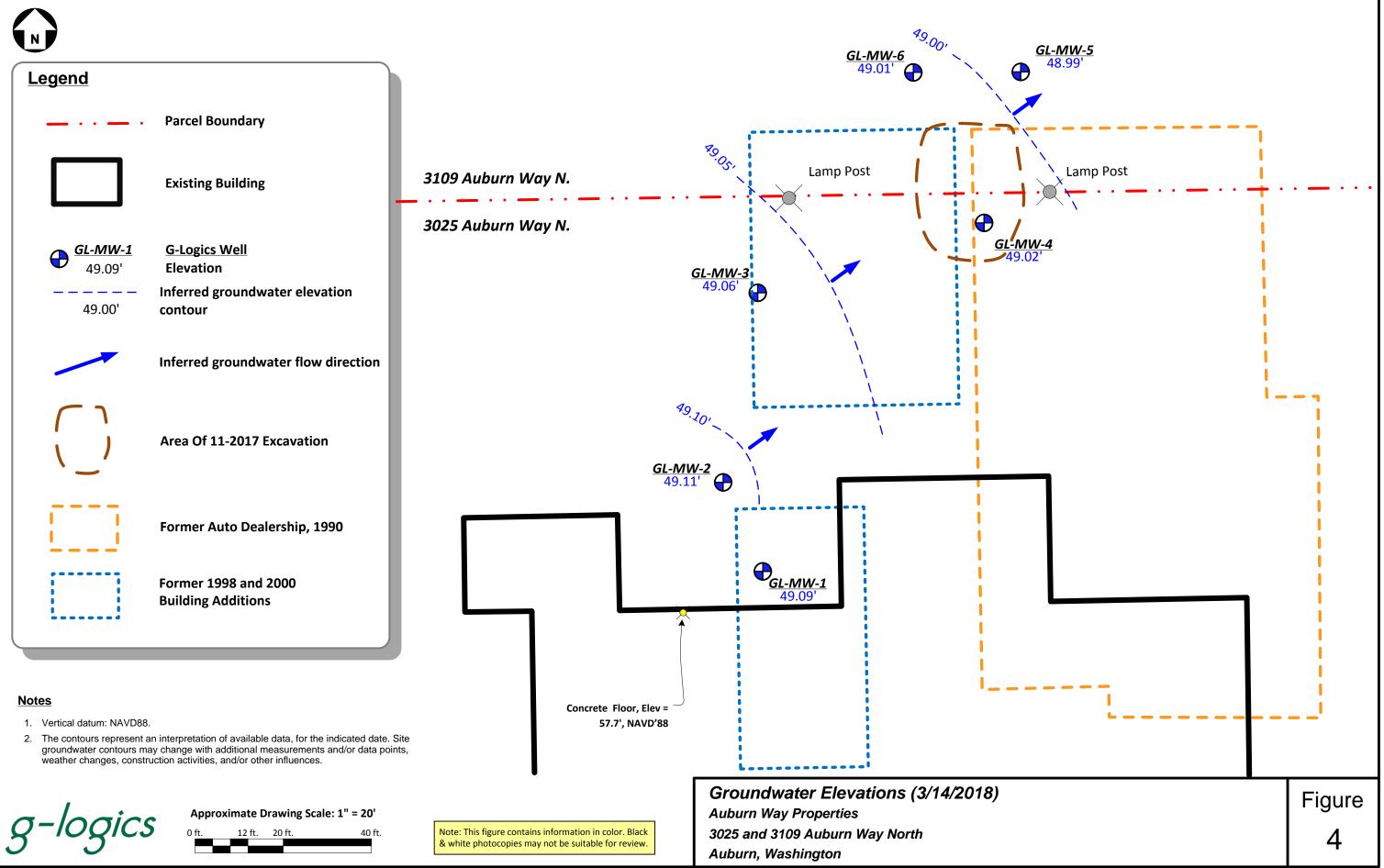

01-1140-E-RT-Final Copyright 2018 G-Logics, Inc.

g-logics

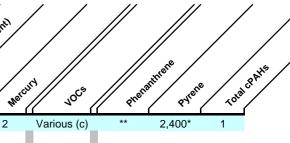


Mapping Reference: King County iMap, Delorme, Google Maps, and G-Logics Site Visit Observations

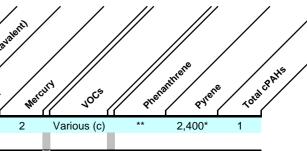

Project File: 01-1140-E-RT-F1.vsd


Mapping Reference: ALTA/NSPS Land Title Survey 8/3/2017, King County iMap Aerials 1990, 1998, 2000, Riley Phase I, Stemen Phase II 2012, Stemen Sample Location Map 2017, and G-Logics Site Visit Observations and Measurements

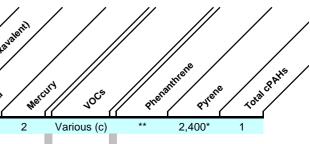
Mapping Reference: ALTA/NSPS Land Title Survey 8/3/2017, King County iMap Aerials 1990, 1998, 2000, Riley Phase I, Stemen Phase II 2012, Stemen Sample Location Map 2017, and G-Logics Site Visit Observations and Measurements

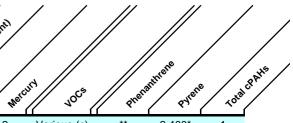


R2



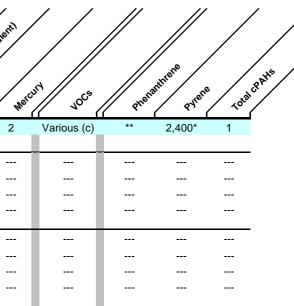
Mapping Reference: Terrane ALTA/NSPS Land Title Survey 8/3/2017, King County iMap Aerials 1990, 1998, 2000, Riley Phase I, Stemen Phase II 2012, Stemen Sample Location Map 2017, and G-Logics Site Visit Observations and Measurements


						ani	\$.5	nanics	anics		/	/	/	' //	"	//	/ /		valenti	/ /			' /
Exploration Location	Sample Date	Sample Number	Sample Depth (ft.)	PID	Reading Hopmy	e Range Digani	Early Oldanics	Bange Organics	pang organics pang organics peng	ne Tolue	ne Einvit	sentene tylen	55 TOUR	PCB5	nic cadi	hum Chor	num UN Chron	nium w. Here	Merci	IN JOES	Phe	nonthene pyret	ne totace
MTCA Cleanup I	Level (2)(3)			NA	100(a)/30(b		2,000	2,000	0.03	7	6	9	1	20	2	2,000	19	250	2	Various (c)	**	2,400*	1
(units in mg/kg)									_					_							_		
Stemen Enviro December, 201				_											_	_	_	_	_				
S1	12/12/2012	C1 0	8		<10	<50	<100							_							_		
51	12/12/2012	S1-0 S1-12	12		<10	<50	<100		-											-			
S2	12/12/2012	S2-9	9		<10	<50	120																
S3	12/12/2012	S3-9	9		<10	<50	<100																
S4	12/12/2012	S4-8	8		500	<50	3,800																
S5	12/12/2012	S5-9	9		<10	<50	<100																
S6	12/12/2012	S6-9	9		<10	<50	<100																
S7	12/12/2012	S7-8	8		<10	<50	<100																
S8	12/12/2012	S8-8	8		<10	<50	<100																
Stemen Enviro	nmental Inc.																						
June, 2017				_	_				_				_	_							_		
R1	6/2/2017	R1-5 R1-8	5 8		<10 <10	<50 <50	710 210		<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.15 <0.15											
R2	6/2/2017	R2-5	5		<10	<50	<100		<0.02	<0.05	<0.05	<0.15											
		R2-8	8		<10	<50	<100		<0.02	<0.05	<0.05	<0.15								-			
R3	6/2/2017	R3-5 R3-8	5 8		<10 <10	<50 <50	<100 <100		<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.15 <0.15											
		1.0-0	U		<10	\ 00	<100		NU.UZ	<0.00	<0.00	NU.10											


			Sample		Casoling looking	B RANGE O SAN	Rando Organica Heavy C	UI RAPE OLIGANIES	Range Organics			erre					.000	-IN-HE	Merci Nerci			ere	
Exploration Location	Sample Date	Sample Number	Depth (ft.)	PID	Reading Gasolin	e' Diesel	Rai Heavy	Heavy OI	Benze	ne Tolue	ne Ethyl	Dentene Avene	5 Total	CD AISE	nic cadr	un cho	mium IIII	nium. Lead	Merch	N VOCS	Phen	anthene pyren	e Totale
MTCA Cleanup	Level (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	1	20	2	2,000	19	250	2	Various (c)	**	2,400*	1
(units in mg/kg)																							
R4	6/2/2017	R4-5 R4-8	5 8		<10 <10	<50 <50	<100 <100		<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.15 <0.15	-										
R5	6/2/2017	R5-5 R5-10	5 10		<10 <10	67 <50	110 <100		<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.15 <0.15											
G-Logics	Demodial Ex																						
July, 2017 (Pre			5	0.4	.0.40	.00.0	0.440	5 000	0.0044	0.0044	0.0205	0.0010	0.422	45.0	0.070	07.7	0.000	04.0	0.045	a d	0.0505	0.0505	
GLB-1	7/21/2017	GLB-1-5 GLB-1-10 GLB-1-14	5 10 14	8.4 0.4 0.3	<6.10 	<26.2 <23.8	6,110 <59.5 	5,990 	<0.0244 	<0.0244 	<0.0305 	<0.0610 	0.132 	15.2 	0.278 	27.7 	<0.682 	91.8 	<0.345 	nd 	<0.0525 	<0.0525 	nd
GLB-2	7/21/2017	GLB-2-4	4	1.4		<24.3	<60.7		-					-						-			
GLB-2	1/21/2017	GLB-2-4 GLB-2-8	4 8	1.4 0.3		<24.3	<00.7																
		GLB-2-111	11	0.3																			
GLB-3	7/21/2017	GLB-3-4	4	0.8																			
		GLB-3-8 GLB-3-11	8 11	0.5 0.4		<24.3 	<60.9		-				-										
GLB-4	7/21/2017	GLB-4-4	4	0.5																			
		GLB-4-8	8	0.3		<23.9	<59.9																
		GLB-4-11	11	0.5																			
GLB-5	7/21/2017	GLB-5-8	8	0.4	<5.91	<25.3	<63.4		< 0.0237	< 0.0237	<0.0296	<0.0591											
OLD U	1/2 1/2011	GLB-5-12	12	0.4																			
GLB-6	7/21/2017	GLB-6-4	4	0.6																			
		GLB-6-8	8	0.5	<5.60	<25.3	<63.2		<0.0224	<0.0224	<0.0280	<0.0560											
		GLB-6-11	11	0.4																			
GLB-7	7/21/2017	GLB-7-6	6	5.5	<5.70	<23.8	2,160	2,500	<0.0228	<0.0228	<0.0285	0.0468											
		GLB-7-9	9	8.3	24.3	<26.1	2,900	3,250		<0.0241		1	0.316	3.47	<0.222	20.9		4.09	<0.340	nd	0.0651	0.0701	nd
		GLB-7-11	11	-		<22.3	<55.7																
GLB-8	7/21/2017	GLB-8-9	9	<u> </u>		<22.3	<55.7																
GLB-9	7/21/2017	GLB-9-9	9			<26.9	<67.2																

					SPINY	RE OISENI	organics	108 Organics	organics									Here	valenti				
Exploration Location	Sample Date	Sample Number	Sample Depth (ft.)	PID	Reading Provide Casolin	e Range Digani	Range Organics Heavy Oil	Range Organics	Lange Organics	ne Tolue	ne Etnyl	Dentene +ylene	5 100	PCB5 ASS	ie cadr	ium chron	NUM (III)	num du, Hesta	Werch	IN VOES	Phene	nitrene pyrer	ie rotace
MTCA Cleanup I	Level (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	1	20	2	2,000	19	250	2	Various (c)	**	2,400*	1
(units in mg/kg)								_	_			_	_		_		_		_				
G-Logics	wation Novan	ah ar 2017																					
Remedial Exca	11/6/2017	SWW-5	5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
	11/0/2017	3000-5	5		<10	<50	<230		<0.02	<0.10	<0.05	<0.15											
(2)SWW	11/7/2017	(2)SWW-6.5	6.5			<50	<250																
SWB	11/9/2017	SWB-9	9		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
SEW	11/6/2017	SEW-5.5	5.5		<10	<50	<250		<0.02	<0.10	< 0.05	<0.15											
NWB	11/8/2017	NWB-10	10		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
NCS	11/8/2017	NCS-5.5	5.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
NEB	11/8/2017	NEB-9	9			<50	<250													-			
WS	11/9/2017	WS-5.5	5.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
WSB	11/9/2017	WSB-10.5	10.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
GB-1	11/6/2017 11/6/2017	GB-1-3 GB-1-4.5	3 4.5											<5.0 6.2									
SB	11/6/2017	SB-7.5	7.5		<10	<50	<250		<0.02	<0.10	< 0.05	<0.15		6.2									
SB2	11/9/2017	SB2-9.5	9.5			<50	<250																
PL-1	11/7/2017	PL-1-8	8			<500	12,200E																
PL-2	11/7/2017	PL-2-8	8			<500	20,800																
PL-3	11/7/2017		7.5			<50	<250													-			
PL-4	11/7/2017		10		<10	<50	<250		<0.02	<0.10	<0.05	0.17											
PL-5	11/7/2017		9.5		<10	<50	<250			<0.10	<0.05	<0.15											
PL-6	11/7/2017	PL-6-9	9		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											

				TROUM	THE OTOEN	es organics	ange Organics	ange organics			~						W.He	kavalenti				,
Sample Date	Sample Number	Sample Depth (ft.)	PID	Reading Casoli	e Pa	Range Heavy	Heavy Oil	Bent	ane Tolue	ne Ehni	penter tylen	5 1010	PCB5 Arse	nic cad	mium chro	mium tr	onium te ast	Merci	UN VOCS	Phe	anthreat Pyret	ne Tot
.evel (2)(3)			NA			2,000	2,000	0.03	7	6	9	1	20	2	2,000	19	250	2	Various (c)	**	2,400*	1
		9 10	=		280 <50	18,000E 1,650													-			
11/7/2017	VW-1-8	8	-		<500	4,390																
11/8/2017	NCB-10	10		<10	<50	<250		<0.02	<0.10	< 0.05	<0.15											
11/7/2017	VW-2-3	3											<5.0									
11/7/2017	VW-2-4.5	4.5											<5.0									
11/7/2017	VW-2-8	8			<500	17,200							<5.0									
11/9/2017	VW2-10	10		<10	<50	<250		<0.02	<0.10	<0.05	<0.15											
11/7/2017	VW-3-7.5	7.5	-		<50	<250																
11/7/2017	VW-4-9	9			<500	22,700																
11/8/2017	VW-4-10	10			<50	<250													- 1			
11/7/2017	VW-5-7.5	7.5		<10	<50	<250		<0.02	<0.10	< 0.05	<0.15								1			
11/8/2017	VW-6-5.5	5.5			<50	<250																
11/8/2017	VW-6-9	9			<50	<250							-							-		
ost Remedial	Excavation)																					
3/12/2018		5 2.5	0.4		<20	320							3.45									
		6	0.7		<20	<50							10.80									
					<20	<50							6.26						-			
	GL-MW-2-11	11	0.7										5.20									
3/12/2018	GL-MW-3-2.5	5 2.5	0.2																			
	GL-MW-3-6	6	0.3		<20	<50							9.86									
			0.3		<20	<50							6.03									
			0.3										2.57									
3/12/2018	GL-MW-4-11	11	1.4		<20	<50							2.47									
	GL-MW-4-13	13											-						-			
3/12/2018	GL-MW-5-3	4																	1			
	GL-MW-5-8	8	0.3		<20	<50							4.56									
	GL-MW-5-11	11	0.3										2.46									
	Date Level (2)(3) 11/8/2017 11/8/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/7/2017 11/8/2017 11/8/2017 11/8/2017 3/12/2018 3/12/2018 3/12/2018	Date Number .evel (2)(3) 11/8/2017 PL-7-9 11/8/2017 PL-7-10 11/8/2017 11/8/2017 PL-7-10 11/7/2017 11/7/2017 VW-1-8 11/8/2017 11/7/2017 VW-2-3 11/7/2017 11/7/2017 VW-2-4.5 11/7/2017 11/7/2017 VW-2-8 11/9/2017 11/7/2017 VW-3-7.5 11/7/2017 11/7/2017 VW-4-9 11/8/2017 11/8/2017 VW-6-5.5 11/8/2017 11/8/2017 VW-6-5.5 11/8/2017 3/12/2018 GL-MW-2-2.5 GL-MW-2-6 GL-MW-2-6 GL-MW-2-6 GL-MW-3-6 GL-MW-3-6 GL-MW-3-6 GL-MW-3-6 GL-MW-3-6 GL-MW-3-11 3/12/2018 GL-MW-4-13 3/12/2018 GL-MW-4-13 3/12/2018 GL-MW-5-3 3/12/2018 GL-MW-5-3 GL-MW-5-8 GL-MW-5-8	Date Number (ft.) .evel (2)(3)	Level (2)(3) NA 11/8/2017 PL-7-9 9 11/8/2017 PL-7-10 10 11/8/2017 VW-1-8 8 11/8/2017 NCB-10 10 11/7/2017 VW-2-3 3 11/7/2017 VW-2-4.5 4.5 11/7/2017 VW-2-8 8 11/7/2017 VW-2-8 8 11/9/2017 VW-2-8 8 11/7/2017 VW-3-7.5 7.5 11/7/2017 VW-4-9 9 11/8/2017 VW-6-5.5 5.5 11/8/2017 VW-6-9 9 11/8/2017 VW-6-5.5 5.5 11/8/2017 VW-6-9 9 11/8/2017 VW-6-5.5 5.5 3/12/2018 GL-MW-2-2.5 2.5 0.4 GL-MW-2-6 6 0.3	Level (2)(3) NA 100(a)/30(b) 11/8/2017 PL-7-9 9 11/8/2017 PL-7-10 10 11/8/2017 NCB-10 10 11/8/2017 NCB-10 10 11/7/2017 VW-2-3 3 11/7/2017 VW-2-4.5 4.5 11/7/2017 VW-2-8 8 11/7/2017 VW-2-8 8 11/7/2017 VW-2-8 8 11/7/2017 VW-2-8 9 11/7/2017 VW-4-9 9 11/7/2017 VW-4-9 9 11/7/2017 VW-6-9 9 11/7/2017 VW-6-5.5 5.5 11/8/2017 VW-6-5.5 5.5 11/8/2017 VW-6-9 9 3/12/2018 GL-MW-2-2.5 2.5 0.4 GL-MW-2-11 11 0.7 3/12/2018 GL-MW-3-2.5	And 100(a)/30(b) 2,000 11/8/2017 PL-7-9 9 280 11/8/2017 PL-7-10 10 <50	And 100(a)/30(b) 2,000 2,000 11/8/2017 PL-7-9 9 280 18,000E 11/8/2017 PL-7-10 10 <-500	Autor NA 100(a)/30(b) 2,000 2,000 2,000 11/8/2017 PL-7-9 9 <50	A.R. 100(a)/30(b) 2,000 2,000 2,000 2,000 2,000 2,000 0.03 11/8/2017 PL-7-9 9 <50	.evel (2)(3) NA 100(a)/30(b) 2,000 2,000 2,000 0.03 7 11/8/2017 PL-7-10 10	Level (2)(3) NA 100(a)/30(b) 2.000 2.000 2.000 0.03 7 6 11/8/2017 PL-7-9 9	A.W. 100(a)/30(b) 2.000 2.000 2.000 0.03 7 6 9 11/8/2017 PL-7-9 9	exercl (2)(3) NA 100(a)/30(b) 2.000 2.000 2.000 0.03 7 6 9 1 11/8/2017 PL-7-9 9 260 18.000E <td< td=""><td>accel (2)(3) NA 100(a)/30(b) 2,000 2,000 2,000 0,03 7 6 9 1 20 11/82017 PL-7.9 9 1 1 280 18,000 1 </td><td>care(2)(2) NA 100(a)/30(b) 2,000 2,000 0,03 7 6 9 1 20 2 11/8/2017 PL-740 9 200 18,000 </td><td>add (2)(3) view view</td><td>and (2)(3) v NA 100(a)(3)(a) 2.00 2.00 0.03 7 6 9 1 20 2 2.00 19 11/82017 PL-7.9 9 <t< td=""><td>aver (2)(3) v NA 100(a)200 2.000 2.000 0.03 7 6 9 1 20 2 2.000 19 250 11/82017 PL.710 0 10 200 4.000 100 10 100 10 100 10</td></t<></td></td<> <td>and (2K) NA 10(a) 3(b) 2.00 2.00 0.03 7 6 9 1 20 2 200 10 20 2 200 10 200</td> <td>and (2(3)) set set</td> <td>and (QK) v.v. No total (300) 2.00<!--</td--><td>and (2) y 100(a) 2.00 2.00 2.00 2.00 0.0 0.0 0.0 <th< td=""></th<></td></td>	accel (2)(3) NA 100(a)/30(b) 2,000 2,000 2,000 0,03 7 6 9 1 20 11/82017 PL-7.9 9 1 1 280 18,000 1	care(2)(2) NA 100(a)/30(b) 2,000 2,000 0,03 7 6 9 1 20 2 11/8/2017 PL-740 9 200 18,000	add (2)(3) view view	and (2)(3) v NA 100(a)(3)(a) 2.00 2.00 0.03 7 6 9 1 20 2 2.00 19 11/82017 PL-7.9 9 <t< td=""><td>aver (2)(3) v NA 100(a)200 2.000 2.000 0.03 7 6 9 1 20 2 2.000 19 250 11/82017 PL.710 0 10 200 4.000 100 10 100 10 100 10</td></t<>	aver (2)(3) v NA 100(a)200 2.000 2.000 0.03 7 6 9 1 20 2 2.000 19 250 11/82017 PL.710 0 10 200 4.000 100 10 100 10 100 10	and (2K) NA 10(a) 3(b) 2.00 2.00 0.03 7 6 9 1 20 2 200 10 20 2 200 10 200	and (2(3)) set set	and (QK) v.v. No total (300) 2.00 </td <td>and (2) y 100(a) 2.00 2.00 2.00 2.00 0.0 0.0 0.0 <th< td=""></th<></td>	and (2) y 100(a) 2.00 2.00 2.00 2.00 0.0 0.0 0.0 <th< td=""></th<>



Soil Sample Analyses (1) Auburn Way Properties 3025 and 3109 Auburn Way North Auburn, Washington

Exploration Location	Sample Date	Sample Number	Sample Depth (ft.)	PUP PUT	Lesding toping	Pane Organ	ES OTSPICE	I Party Organics	and Sent	ne tone	te Elimite	estene Wert	55 TOUR	PCBS Res	ite cost	John Cho	Shin the Chro	John W. He	a kavaler
MTCA Cleanup L	evel (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	1	20	2	2,000	19	250	
(units in mg/kg)																			
GL-MW-6	3/13/2018	GL-MW-6-2	2											3.78					
		GL-MW-6-5	5	0.5		<20	<50							8.57					-
		GL-MW-6-8	8			<20	206							8.34					-
		GL-MW-6-10	10	- 1															-
GLB-10	3/13/2018	GLB-10-2	2											4.43					-
		GLB-10-6	6	0.3		<20	<50							15.70					-
		GLB-10-8.5	8.5	0.2		<20	<50							4.83					-
		GLB-10-10.5	10.5	0.2		<20	<50							2.52					-

Notes:

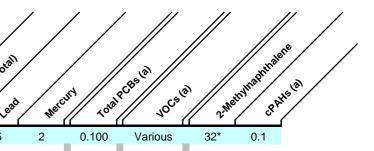

- (1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.
- (2) Available Method A Cleanup Levels or Most Conservative Method B Cleanup Levels, MTCA, revised 2013. Exceeding Cleanup Levels does not necessarily trigger requirements for Cleanup Actions under MTCA. Refer to site diagram(s) for sampling locations.
- (3) Results For Cd, Cr, Pb, PAHs, PCB, and VOCs can be found in G-Logics Additional Soil and Groundwater Sampling report dated August 13, 2017
- (a) Soil Cleanup Level For Gasoline With No Detectable Benzene In The Soil.
- (b) Soil Cleanup Level For Gasoline With Detectable Benzene In The Soil.
- --- Sample not analyzed.
- E Indicates Reported Result Is An Estimate Because It Exceeds The Calibration Range
- <50.0 Sample concentration below laboratory reporting limit.
- 27 Bold number(s) indicates contaminant detected, below cleanup level.
- 160 Bold number(s) and yellow shading indicates concentration exceeds MTCA Cleanup Level.
- SGT Silica Gel Treatment
- * Method B Cleanup Level.
- ** Not researched, no available data.
- <250 Reporting limits exceeds cleanup level.
- (c) VOCs analyzed were not detected. See attached analytical laboratory reports for details.

TABLE 2 (1) Groundwater Sample Analyses

Auburn Way Property 3025 Auburn Way North Auburn, Washington

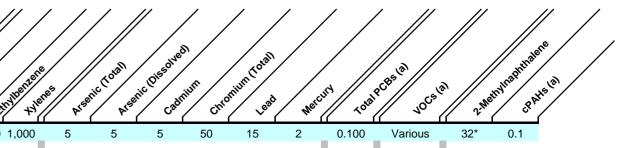
					Organics	hel Danies	. / /	/ /	/		///			//	/ » /						lere
Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	Gasoline P	tense organics tense tene perter betectene pese P	ange organics ange organics Diese P	and sell of the se	Heavy Oldan	nge still es son	ene	ene timberter	e Arse	hie Totall	spic Dissolver	iun chr	onium Totali	Werch	UN TOTAL	CBS (8) VOCS	a) 2.Me	Invinantinations
MTCA Cleanup Level (2)(3) (units in ug/L)				1,000	500	500	500	500	5.00 1	,000	700 1,000	5	5	5	50	15	2	0.100	Various	32*	0.1
Stemen Environmental Inc. December, 2012																					
S1	12/12/2012	S1-W	8	<100	<250		<500		<1	<1	<1 <3								nd		
S4 (b)	12/12/2012	S4-W	8	<100	<250		<500		<1	<1	<1 <3										
S6	12/12/2012	S6-W	8	<100	<250		<500		<1	<1	<1 <3										
Stemen Environmental Inc.																					
December, 2012 R2 (b)	6/2/2017	R2-W		<100	<250		<500		<1	<1	<1 <3					15			nd		
R5 (b)	6/2/2017	R5-W		<100	<250		<500		<1	<1	<1 <3										
G-Logics																					
July, 2017 (Pre Remedial Eacvation) GLB-1-W (4)	7/21/2017	GLB-1-W	9-14ft	<50	<49.9		1,670	1,210	<1	<1	<1 <1	2.44		<0.200	1.79	2.06	<0.100	<0.100	nd	<0.0997	nd
GLB-5-W (4)	7/21/2017	GLB-5-W	9-14ft	<50	<49.9		700	599			<1 <1	20.7		<0.200	8.68	0.592	<0.100		nd		
GLB-6-W (4)	7/21/2017	GLB-6-W	9-14ft	<50	<49.9		161				<1 <1	6.25		<0.200	2.00	1.32	<0.100		nd		
GLB-7-W (4)	7/21/2017	GLB-7-W	9-14ft	<50	1,200	857	4,370	3,090	<1	<1	<1 <1	19.0	6.94	<0.200	1.87	1.89	<0.100	<0.999	nd	0.143	nd

TABLE 2 (1)

Groundwater Sample Analyses

Auburn Way Property 3025 Auburn Way North

Auburn, Washington


Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	Gasoline	2.2019 Organics 2.2019 Construction of the section of the section	ane Disnie Disnie	sande politice heavy of the party of the par	Heavy Old	and an the set of the	e e peres prs	ant total	c Dissored	Chron	um total	Werch	Topal	ACES IN VOLS	a) 2.116	SIVINS PHISER
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500	5.00 1,000 700 1,000	5	5	5	50	15	2	0.100	Various	32*	0.1
(units in ug/L)	_ /_ /_ / /_														_				
GL-MW-1	7/31/2017	GL-MW-1	5-15ft		<49.9		426			25.0	20.7								
GL-MW-1(Dup.)	7/31/2017	GL-MW-100	5-15 ft		<49.8		375			27.9	21.1								
G-Logics																			
Excavation)											-								
GL-MW-1	3/20/2018	GL-MW-1	5-15ft	<50	119		219		<1 <1 <1 <1	26.0	4.31								
	3/20/2018	GL-MW-A	Field Dup.	<50	78.1		291		<1 <1 <1 <1	27.0	4.61								
GL-MW-2	3/20/2018	GL-MW-2	5-15ft	<50	<49.9		161		<1 <1 <1 <1	44.3	14.1								
GL-MW-3	3/20/2018	GL-MW-3	5-15ft	<50	<49.9		<99.9		<1 <1 <1 <1	25.70	4.56								
GL-MW-4	3/20/2018	GL-MW-4	5-15ft	<50	152		259		<1 <1 <1 <1	6.16	6.15								
GL-MW-5	3/20/2018	GL-MW-5	5-15ft	<50	<50		<100		<1 <1 <1 <1	1.80	<1.75								
GL-MW-6	3/20/2018	GL-MW-6	5-15ft	<50	69.8		346		<1 <1 <1 <1	11.1	2.57								

Notes:

(1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.

(2) Available Method A Cleanup Levels or Most Conservative Method B Cleanup Levels, MTCA, revised 2013. Exceeding Cleanup Levels does not necessarily trigger requirements for Cleanup Actions under MTCA. Refer to site diagram(s) for sampling locations.

- (3) Gasoline Analyses by Method NWTPH-Gx, Diesel and Heavy Oil by NWTPH-Dx/Dx Ext., MTCA 5 Metals by 200.8/245.1, VOCs by 8260C, PAH by 8270 (SIM), PCB by 8082.
- (4) Grab Groundwater Sample
- Analytes were not detected. See attached analytical laboratory reports for details. (a)
- No analytical laboratory report included in the Stemen Environmental report to verify analytical data. (b)
- Method B Cleanup Level. *
- ** Not researched, no available data.
- Sample not analyzed. ----
- nd Not Detected
- Duplicate Sample for QA/QC. Dup.
- Sample concentration below laboratory reporting limit. <50.0
- 27 Bold number(s) indicates contaminant detected, below cleanup level.
- 160 Bold number(s) and yellow shading indicates concentration exceeds MTCA Cleanup Level.
- SGT Silica Gel Treatment

Groundwater Elevation Measurements Auburn Way Properties

Well Designation	Well Installation Date	Elevation Top of PVC Casing (ft.)*	Depth to Top of Screen (ft.)	Depth to Bottom of Screen (ft.)	Well Diam. (in.)	Date Measured	Depth to Water (ft.)	Calculated GW Elevations (ft.)
GL-MW-01	7/31/18	57.20	5	15	2	03/14/18 03/20/18	8.11 8.29	49.09 48.91
GL-MW-02	3/12/18	56.64	5	15	2	03/14/18 03/20/18	7.53 7.68	49.11 48.96
GL-MW-03	3/12/18	56.09	5	15	2	03/14/18 03/20/18	7.03 7.21	49.06 48.88
GL-MW-04	3/12/18	55.87	5	15	2	03/14/18 03/20/18	6.85 7.02	49.02 48.85
GL-MW-05	3/12/18	55.18	5	15	2	03/14/18 03/20/18	6.19 6.35	48.99 48.83
GL-MW-06	3/13/18	55.53	5	15	2	03/14/18 03/20/18	6.52 6.7	49.01 48.83

Notes:

* Elevations based on a backsight to the concrete floor at the north entrance of the auto shop. The floor elevation at this location is 57.7' (Figure 2).

Depth not recorded.

-- Not Applicable.

PRIMARY DIV	ISIONS		SYMBOL	DESCRIPTIONS
	GRAVELS	CLEAN GRAVEL	GW	Well graded gravel, many different particle sizes, little or no fines
SOILS	Over 50% of coarse material retained on #4 sieve	Less than 5% passing #200 sieve	GP	Poorly graded, few different particle sizes, little or no fines
Sands & Gravels, Over 50% retained		GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures
n #200 sieve			GC	Clayey gravels, gravel-sand-clay mixtures
	SAND	CLEAN SANDS	SW	Well graded gravel, many different particle sizes, little or no fines
	Over 50% of coarse material	Less than 5% passing #200 sieve	SP	Poorly graded, few different particle sizes, little or no fines
	passed #4 sieve	SAND WITH FINES	SM	Silty gravels, gravel-sand-silt mixtures
			SC	Clayey gravels, gravel-sand-clay mixtures
FINE GRAINED	SILTS AND CLA	AYS	ML	Inorganic silts, slight to no plasticity
	Liquid limit is les	s than 50 %	CL	Inorganic clays, low to moderate plasticity
Silts & Clays, Over 50% passing the 4200 sieve			OL	Organic silts and clays of low plasticity
	SILTS AND CLA	AYS	МН	Inorganic silts, moderate to high plasticity
	Liquid limit is mo	ore than 50 %	СН	Inorganic clays, high plasticity, fat clays
			ОН	Organic silts and clays of high plasticity
Highly Organic S	Soils		PT	Peat and other highly organic soils
<u>Soil Sa</u>	mples_			Field Measurements
Disturbed,	bag, bulk, or gra	ab sample		Water Level Observed During Drilling
			PID	Photoionization Detector
Standard p	penetration split	spoon sample	ppmv	Parts Per Million by Volume
Cuttings			\bigtriangledown	End of Boring (E.O.B)
Continuous	s-Core Sample		spoon (2" OD) sa	r foot is the number of blows used to drive a split- ampler through the last 12 inches of an 18-inch t. One blow is a 30-inch fall of a 140-pound hammer
■ xplorationLogLegend.pub			boundaries only. provided as to th locations. Logs r	eparating strata on the logs represents approximate The actual transition may be gradual. No warranty is the continuity of the strata between exploration epresent the soil section observed at the exploration late of exploration only.
σ -loc			Expl	oration Log Legend

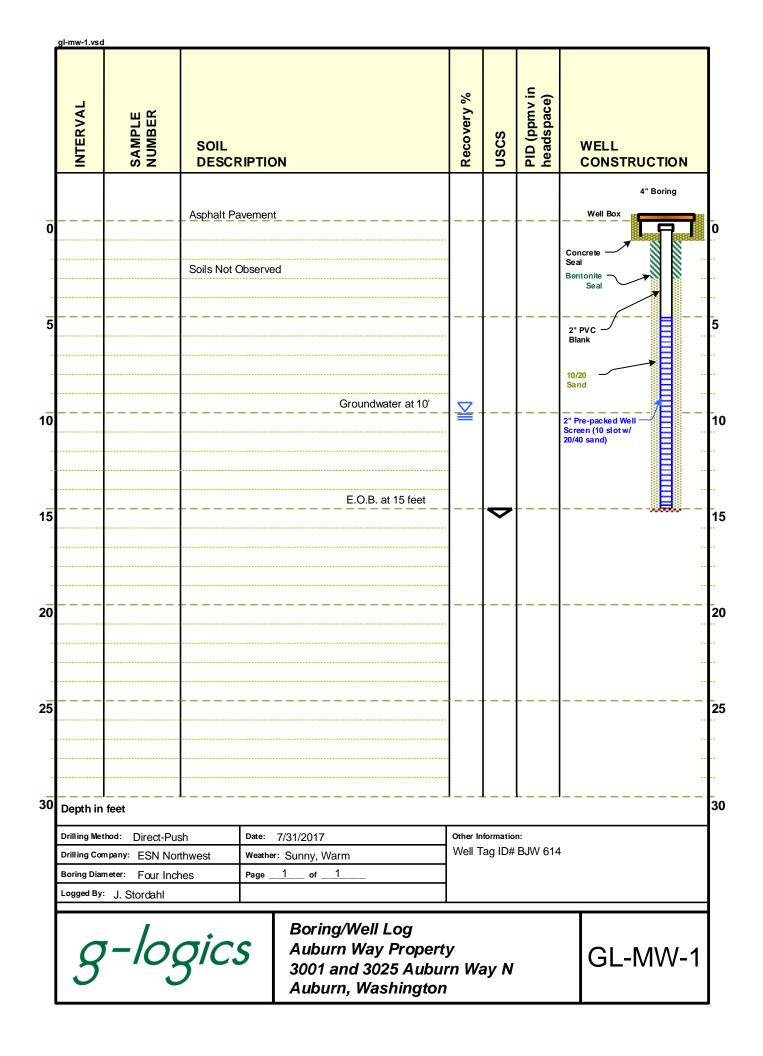
INTERVAL	SAMPLE NUMBER	SOIL DESC	SOIL DESCRIPTION			nscs	PID (ppmv in headspace)	WELL CONSTI	RUCTION	N
									2" Borin	g
		Asphalt F							-	
			Y SAND, well-grade			SW				
				avel; fine to medium	40		1			
		sand; son shoe, mo		roleum odor in cutting	40	ſ				
		2'-5': No i								
╶ ^ᇓ ┏╶╴	GLB1-5					 ML	8.4	0.75"	· — — 1 ⊨	
		5'-9': SILT	with clay: medium	plasticity; gray brown,				PVC Blank		
				ole, moist to wet @ 9	90					
		feet.		Groundwater at 9.02'		L				
	GLB1-10	9'-13': SIL	TY SAND: fine grai	n; olive brown, no odor,		SM	0.4			
		wet.			90					
	GLB-1-W									
.	GLB1-14			: fine grain; olive brown,		SP	0.3	.075" PVC Scree	^ ──	
		no odor, v	vet	E.O.B. at 14 feet					·	
		+							·	
Depth in	 i feet	·			•	•			·	
Drilling Me	thod: Direct-Pu	ush	Date: 7/21/2017			oformatio				
	mpany: ESN No		Weather: Sunny, V					llected with a peole collection, P		
Boring Dia	meter: Two Inc	hes	Page <u>1</u> of _		remov	ed and		ig was backfille		
Logged By	 K. Vandehey 	,			bento	nite.				
S	-10	qic	ς Αυbι	ng/Well Log Irn Way Property and 3025 Aubur		av N		GI	LB-′	1

INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSI	RUCTION
		Annhalt	D						
			Pavement TY SAND, well-grade						
			ded fine to coarse gra			sw			
			me fines; brown, no c		40				
		2'-4': No	recovery.]	r			
	GLB2-4					ML	1.4		
				plasticity; gray brown	90				
				et, no odor, moist to wet					
		@ 6 feet		Groundwater at 7.58			0.3		
	GLB2-8	8'-12'- SI		n; olive brown, no odor,	90		0.3		
- + -	 GLB2-11	wet.				<u>SM</u>	0.4		
		Wet					••••		
				E.O.B. at 12 feet					
]				
		+							
		_							
Depth	_	L]	L	L		
	Method: Direct-Pu		Date: 7/21/2017		Other In	oformatio	n:		
	Company: ESN No		Weather: Sunny, W						
	Diameter: Two Inc		Page1 of						
Logged	By: K. Vandehey	1							
S	3-10	gic	S Aubu	g/Well Log rn Way Propert and 3025 Aubu		ay N		G	LB-2

INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	Recovery % USCS PID (ppmv in headspace)			WELL CONSTRUCTION	
		Asphalt I	Pavement							
				aded with gravel:		CW/				
		-		gravel; fine to medium		SW				
			me fines; brown, i	no odor, moist.	40	\vee				
	GLB3-4	2-4. NO	recovery.			ML	0.8			
+-		4'-8': SIL	T with clav: medi	um plasticity; yellow brown						
		-	gray @ 7 feet, n		- 80					
	GLB3-8			grain; olive brown, no odor,			0.5			
		wet @ 8	feet.		90	SM				
	GLB3-11			Groundwater at 10.8			0.4			
.		-		E.O.B. at 12 feet						
				E.O.D. at 121000						
		-								
		<u> </u>				† ·				
		+								
		-								
		L				L				
		-								
		-								
		-								
Depth ir	n feet	-			J	-	L			
	ethod: Direct-Pu mipany: ESN No		Date: 7/21/20		Other In	nformatio	n:			
	meter: Two Incl		Weather: Sunny Page <u>1</u>		-					
	 K. Vandehey 		•		1					
S	-10	qic	S Au	ring/Well Log burn Way Proper 01 and 3025 Aubi		ay N			GLB-3	

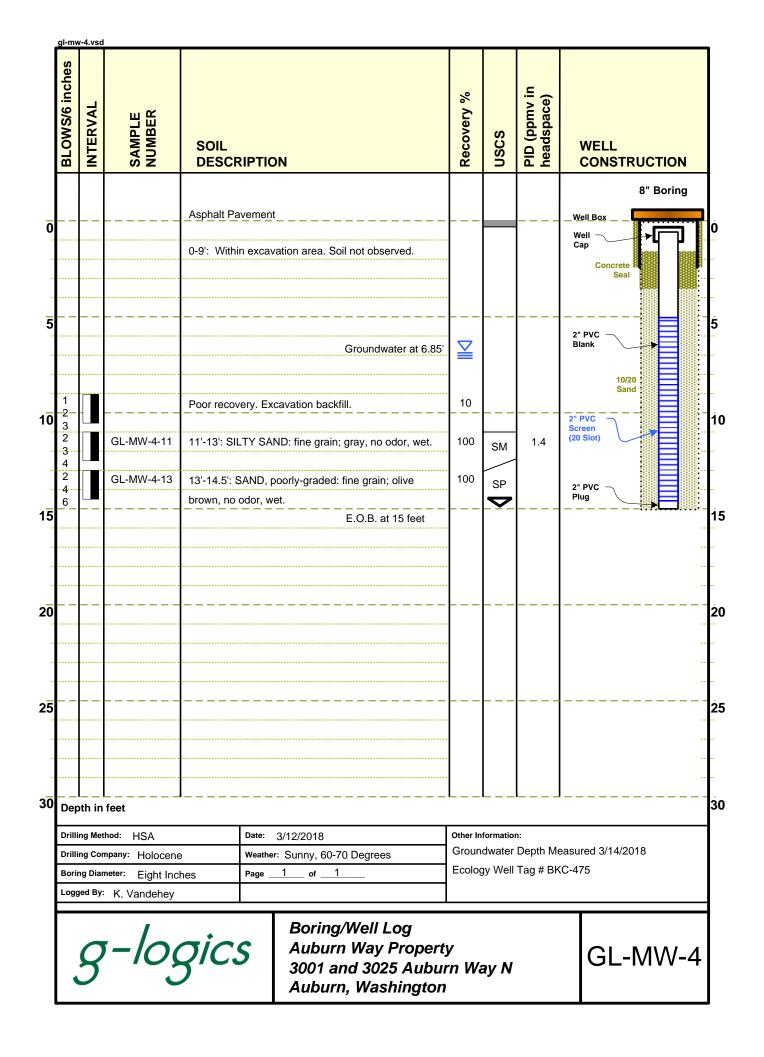
INTERVAL	SAMPLE NUMBER	SOIL	CRIPTION			USCS	PID (ppm v in headspace)	WEL	L ISTRUCTION
		Asphalt	Pavement						
_ ∎		T		aded with gravel:					
		subround	led fine to coarse	gravel; fine to medium		SW			
		sand; so	me fines; brown,	no odor, moist.	50				
			recovery.			[
F-	GLB4-4	+		um plasticity; olive brown,		+	0.5		
			noist to wet @ 6	feet.	60	ML			
		6'-8': No	recovery.		54'				
	GLB4-8	8' 0' Sc-	ne as above; gra	Groundwater at 7.	⁰⁴		0.3		
	GLD4-0			grain; olive brown, no odo	. 80		0.5		
		wet.			,		0.5		
				E.O.B. at 12 feet					
		+				+			
									-
						1			
Depth in	 feet	L				1	L		
Drilling Me	thod: Direct-Pu	ush	Date: 7/21/20	17	Other	Informatio	n:		
	mpany: ESN No		Weather: Sunn		_				
	meter: Two Inc		Page1	of <u>1</u>					
S			S Au	ring/Well Log burn Way Prope 01 and 3025 Aub		/ay N		(GLB-4

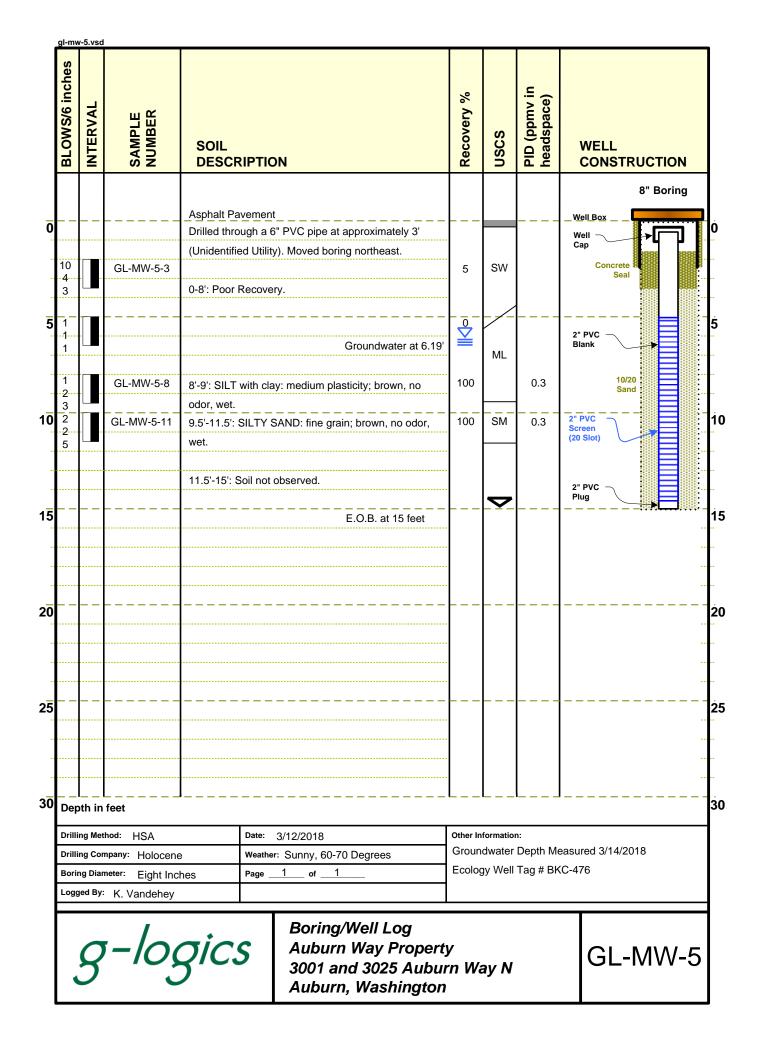
INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTIO	ON
							2" Boi	ring 1
			Pavement Y SAND, well-graded with gravel: ed fine to coarse gravel; fine to med		sw			
		sand; sor	ne fines; brown, no odor, moist.	50				
.		4'-6': No	ecovery.					
		6'-9': SIL	with clay: medium plasticity; gray b	prown	ML		0.75" PVC Blank	
	GLB5-8		ay blue @ 7 feet, no odor, moist to ible sheen in water.	wet @ 8 75		0.4		
			Groundwater	— — — <u>— —</u>	 			
	GLB5-12		TY SAND: fine grain; gray brown tu vn @ 11 feet, no odor, wet.	Iming	SM	0.4		
	OLD3-12			50		0.4		
	GLB-5-W	12'-14': N	o recovery.				.075" PVC Screen	
		+	E.O.B. at 14		+			
		+			+			
		<u></u>			1			
					l	L		
Depth in	feet							
Drilling Met		-	Date: 7/21/2017				Recovery on water. lected with a peristaltic	
	mpany: ESN No meter: Two Inc		Weather: Sunny, Warm Page of	pump	. Follow	ing samp	le collection, PVC was g was backfilled with	
	· K. Vandehey		• · · · · · · · · · · · · · · · · · · ·	bento			y was backlined with	
9	-10	qic	S Boring/Well Lo Auburn Way Pl 3001 and 3025	operty	av N		GLB-	5


INTERVAL	INTERVAL SAMPLE NUMBER DESC			IL SCRIPTION			nscs	PID (ppmv in headspace)	WELL CONSTR	IOITOU	١
										2" Boring	g
- -		T	Pavement	graded with gravel:						- ·	
				se gravel; fine to med	lium		SW				
				n, no odor, moist.		55					
	GLB6-4	2'-4': No	recovery.				- <u> </u>	0.6		- ·	
		4'-9'· SII	T with clay: me	dium plasticity; gray t	vrown		ML		0.75" PVC		
			moist to wet @		, , , , , , , , , , , , , , , , , , ,	75			Blank		
₽ -	GLB6-8			Groundwate	er at 9.02'			0.5			
		 								[]	
	GLB-6-W GLB6-11		LTY SAND: fin	e grain; olive brown, r	no odor,		SM	0.4		目	
	GLD0-11	wet.				75	$\mathbf{\nabla}$	0.4			
		12'-14': N	lo sample colle	cted, drove casing to	14' to				.075" PVC Screen		
		set PVC.		E.O.B. at 14	feet						
		-									
		-									
		-									
		[
		-									
Depth in	feet	•					• — — ·				
Drilling Met	thod: Direct-Pu	ısh	Date: 7/21/				formatio		lease of 191		_
	mpany: ESN No		Weather: Sur			pump.	Follow	ing samp	lected with a peri le collection, PV0	C was	
	^{meter:} Two Incl : K. Vandehey		Page <u>1</u>	_ ofI		remov bentor		the borin	g was backfilled	with	
8		*	S A	oring/Well Lo uburn Way Pi 001 and 3025	roperty		av N		GL	.B-6	5

INTEDVAL	SAMPLE SAMPLE NUMBER	SOIL	RIPTION		Recovery %	uscs	PID (ppmv in headspace)	WELL CONST	RUCTIOI	N
		Asphalt I	Pavement						2" Borin	g
					-					
_ P		4'-9': SIL	T with clay: medium	plasticity; brown turning		<u> </u>				
	GLB7-6	gray @ 5	feet, petroleum odo	or, moist to wet @ 9 feet.	- 75	ML	5.5	0.75" PVC Blank		
	GLB7-9	9'-12': SI	LTY SAND: fine gra	Groundwater at 9.09 in; gray brown tuming			8.3			
	GLB7-11			eum odor decreasing	75	SM				
	GLB-7-W	/ 12'-14': N set PVC.		drove casing to 14' to E.O.B. at 14 feet				.075" PVC Scree	n	
						·				
					-					
					-					
Dep	I	- 			J	• ·	⊾		·	
Drill ir Borin	ng Company: ESN	Inches	Date: 7/21/2017 Weather: Sunny, V Page	Varm	Grab pump	. Follow ed and	ample col ing samp	lected with a p le collection, P g was backfille	VC was	
	g-k	ngic	S Aubu	ng/Well Log Jrn Way Proper and 3025 Aubu		av N		G	LB-7	7

INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	uscs	PID (ppmv in headspace)	WELL CONS	TRUCTION
		Asphalt I	Pavement						
		4'-5': SIL	TY SAND, well-grade	d with gravel:					
P		subround	led fine to coarse grav	vel; fine to medium		SW			
		sand; so	ne fines; brown, no o	dor, moist.	70				
		5'-9.5': S	LT with clay: medium	plasticity; yellow		ML			
			ning gray @ 7 feet, n	o odor, moist to wet @					
		6 feet.		Groundwater at 9'					
	GLB8-9	9.5-12:3		in; gray, no odor, wet.	70	SM			
						SIVI			
·····				E.O.B. at 12 feet					
		_				_			
		+							
						_			
					-				
					-				
					-				
Depth i		L			J	L	∟		
Drilling M			Date: 7/21/2017		Other In	nformatio	n:		
	ompany: ESN No ameter: Two Inc		Weather: Sunny, Wa						
	y: K. Vandehey			<u></u>	1				
	7-10		S Aubu	g/Well Log rn Way Propert and 3025 Aubu		ay N		G	LB-8


INTERVAL	SAMPLE NUMBER	SOIL	RIPTION			Recovery %	nscs	PID (ppmv in headspace)	ELL DNSTRUCTION
		Asphalt	Pavement						
		4'5': SIL	TY SAND, well	-graded with grave	el:				
P				se gravel; fine to m			SW		
		sand; so	ne fines; brown	, no odor, moist.		70	·		
				medium plasticity;			ML		
			ming gray @ 7 f	feet, no odor, mois					
	GLB9-9	9 feet.	SILTY SAND: fi	Groundwa ne grain; gray, no					
		0.0 12.1				70	SM		
				E.O.B. at	12 feet				
		+							
		+							
]	 		 ·
		1]	l		
Depth in	feet								
Drilling Met			Date: 7/21/2			Other In	nformatio	n:	
	mpany: ESN No meter: Two Inc		Weather: Sun Page1						
	K. Vandehey		· • • • • • • • • • • • • • • • • • • •	<u></u>					
3	-10		'ς Αι	oring/Well L uburn Way 201 and 302	Property	y m Wa	ay N		GLB-9


BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	1			Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUC	TION
			Asphalt F	avement							 	
					entified Obje	ect). Moved bori	ng					
12		GL-B-10-2	northeast			with aroual		100	sw			
13 16		OLD TO Z				with gravel: el; fine to mediu	m	100	000			
10					own, no od							
1		GL-B-10-6				asticity; gray bro	wn,	75	/-	0.3	 	
2			no odor,	noist to we	t by 8'.				ML			
1										0.2		
-1		GL-B-10-8.5	8'-11.5': \$	SILTY SAN	D: fine grain	n; gray, no odor,	wet.	100		0.2		
2 2		GL-B-10-10.5						100	SM	_ <u></u>	 	
2 2												
						E.O.B. at 11.5	feet					
									L		 	
Dep	th in						L		L	I	 	
		thod: HSA		Date: 3	/13/2018			Other In	formatio	n:		
		mpany: Holocene		-	Cloudy, 60					e at appro Object). I	tely 2.5' and 3'	
	ng Diar	^{meter:} Eight Incl	hes	Page	1 of1	<u> </u>		(01100	- minou	<i>22,000,</i> 1	 o ooning.	
LUGĘ			nic	c	-	/Well Log n Way Pro		,				
	5		<i>y</i> ^{<i>i</i>}	5	3001 a	nd 3025 A n, Washin	ubur		ay N		GL-B	9-1U

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCI	RIPTIC	DN			Recovery %	USCS	PID (ppmv in headspace)		ELL	JCTION	1
													8" Borin	g
			Asphalt Pa						_		Well_B	<u>ox</u>		
						ided with g					Well · Cap	\sim	┝	
6		GL-MW-2-2.5	subrounde sand; som				to medium	50		0.4		Concrete		
8 7	•		Sanu, Son	5 11165,	brown, n	0 0001, 1110	151.		SW			Seal		
		GL-MW-2-6						100		0.7				-
1 2			6'-11': SIL	with cl	lay: medi	um plastici	ty; gray brown				2" PV0 Blank	:~		
			turning gra	y @ 8',	no odor,	moist to w	et.	3' 100						
2		GL-MW-2-8.5				Grou	indwater at 7.5	^{3'} 100	ML	0.4		10/20 Sand		
_11		GL-MW-2-11		SILTY S	AND: fine	e grain; gra	y, no odor, we	. 100		0.7	2" PVC Screen	- <u>-</u>		-
-1 -4									SM		(20 Slot)		
		11.5'-15		Soil not	observed	I.					2" PV0			
											Plug	·		
						E.O.	B. at 15 feet							
								L						
Dep	oth in	feet						_						
		Method: HSA			3/12/201				Informatio	n: Depth M	ageurad	3/14/201	8	
		g Company: Holocene I Diameter: Eight Inches		Weathe Page		60-70 Deg	grees			Tag # Bh		5, 17/201	~	
	-	K. Vandehey	1165	i aye _	or	!				5				
	g-logic.				Auk 300	1 and 3	ell Log ay Prope 3025 Aub /ashingto	irn W	/ay N		C	SL-N	ЛVV-	-2

BLOWS/6 inches		INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIC	ON					Recovery %	nscs	PID (ppmv in headspace)	WE		UCTIOI	N
Γ																8" Borin	g
<u> </u>	_ _	_		Asphalt P										Well_Bo	<u>ox</u>		
1				0-5': SILT subround										Well - Cap	\sim	╞┾╽┌─┐	
10 -8 -8			GL-MW-3-2.5	sand; son							50	sw	0.2	c	oncrete Seal		
5 3			GL-MW-3-6	5'-9.5': SII	_T with o	clay: r		plasticity	gray bro	 wn,	75	<	0.3				
3 10				no odor, r								ML		2" PVC Blank	$\overline{}$		
1			GL-MW-3-8.5					Ground	lwater at	7.03'	100		0.3		10/20 Sand		
1 1 0 2	_ _			9.5'-11.5':	SILTY	SAND): fine g	rain; gray	no odor,					2" PVC			
3			GL-MW-3-11	wet.							100	SM	0.3	Screen (10 Slot)			
				11.5'-15':	Soil not	ohaa	avad										
				11.5-15	5011 1101	obsei	vea.					$\overline{\nabla}$		2" PVC Plug	$\overline{}$		
5								E.O.B.	at 15 feet								-
0		_															
5	_ -	_															
-																	
)												L	L				
Ľ	epth illing		feet		Date:	0/40	/2040				Other !	formatio					
-	-		hod: HSA 1pany: Holocene				/2018 nny, 60	-70 Degre	es		Groun	dwater	Depth M				
	-		neter: Eight Inch	nes	Page _	1	of	1			was d	ecomm		because	it kept fi	lling with	
	Ś	3		zic	5	A 3	ubui 001 a	g/Well rn Way and 30 rn, Wa	/ Prop 25 Au	erty bur	,		теріасе				

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTION		Recovery %	nscs	PID (ppmv in headspace)	WE COI	LL NSTRUCI	ION
										8" B	oring
			Asphalt Pa	vement					Well_Bo	x 🗖	
)			Refusal at	approximately 3' (Un	identified Object).				Well -		
			Moved bor	ng northwest.					Сар		
20 18		GL-MW-6-2	0-5': Poor I	Recovery. SILTY SA	ND, well-graded with	15	SW	0.5	C	oncrete B Seal	
12			gravel: sub	rounded fine to coar	se gravel; fine to						
				nd; some fines; brov			-/-				į
5 2	₽ ₽	GL-MW-6-5			plasticity; gray turning	50	r		2" PVC	~	
2			gray brown	@ 8', no odor, mois		_	ML		Blank		
2	 				Groundwater at 6.52'	10				10/20	÷
2	+	GL-MW-6-8				10				Sand	÷
17		GL-MW-6-10	0.5'-11.5'-9			15	SM		2" PVC		
9 5	╋		wet.	SETT SAND. IIIe gi					Screen (20 Slot)		
5			Wot.								
1			11.5'-15': S	oil not observed.		·					
									2" PVC Plug		
5					E.O.B. at 15 feet		⊢ ▼ −				90996
							L				
2	ļ										
	ļ										
ļ	ļ										
	ļ										
							L				
' 	 										
	 										
	 										
	†										
De	pth in	feet				L	L	I			
Drill	ing Me	thod: HSA		Date: 3/13/2018		Other In	formatio	n:			
Drill	ing Co	mpany: Holocene	9	Weather: Cloudy, 60	Degrees					/14/2018	
Bori	ing Dia	meter: Eight Inc	hes	Page of	1	Ecolo	gy Well	Tag # BK	C-477		
Log	ged By	K. Vandehey									
	9	-105	zics	S Aubur 3001 a	g/Well Log n Way Propert nd 3025 Aubui n, Washington	n W	ay N		G	iL-M\	N-6

g-logics

February 5, 2019 G-Logics Project Number 01-1140-F

M&M Ventures, LLC Mr. Mike Scarff 33 Knights Lane Friday Harbor, WA 98250 R&E Investments, LLC Mr. Roger Vermazen 16932 SE 354th Street Auburn, WA 98092

Subject: Groundwater-Sampling Report, December 2018 Fourth Quarter Groundwater Sampling Results Facility/Site No. 57361549 PTAP Project No. PNW030 Auburn Way Properties 3025 and 3109 Auburn Way N Auburn, WA 98002

Dear Mr. Scarff and Mr. Vermazen:

G-Logics was authorized by M&M Ventures (recent 3025 property owner) and M&M Ventures (recent 3109 property owner) to conduct three additional quarters of groundwater monitoring at the Site (Figure 1). This work is a collaborative effort to verify the successful removal of petroleum contaminants at the Site in order to request a No Further Action (NFA) Opinion from the State of Washington's Pollution Liability Insurance Agency (PLIA).

G-Logics performed this work as described in our workplan dated June 27, 2018. Pervious G-Logics site-exploration and remediation work completed at the Site is documented in our *Additional Soil and Groundwater Sampling* report dated August 13, 2017, our *Environmental Media Management Report* dated December 4, 2017, and our *Well Installation and Groundwater Sampling* report dated April 12, 2018.

G-Logics, Inc. 40 2nd Avenue SE Issaquah, WA 98027 T: 425-391-6874 F: 425-313-3074 01-1140-F-QR-December 2018

1.0 Site Background

The Site is composed of two properties, 3025 and 3109 Auburn Way N. The 3025 property is identified as King County tax parcel number 0004000039. The 3109 property is identified as King County tax parcel number 0004000041.

As summarized in the G-Logics Phase I report dated July 18, 2017, this area was primarily agricultural land prior to the 1970s. A review of aerial photographs appears to show row crops throughout the area, with occasional small orchards.

Since at least the early 1970s, an automobile dealership and a service garage historically occupied the northern portion of the 3025 property and the southern portion of the 3109 property (adjacent property to the north). A former 550-gallon used-oil underground storage tank (UST) was removed from west side of the former dealership building located on the 3025 property.

1.1 Exploration Background

Stemen Environmental, Inc. (SEI) conducted a Phase II exploration in this area (report dated December 20, 2012). Soil and groundwater samples were collected on both the 3025 and the 3109 properties. None of the samples that SEI analyzed from the 3025 property contained concentrations of gasoline (GRO), diesel (DRO), oil-range hydrocarbons (ORO), or volatile organic compounds (VOCs) at concentrations above MTCA Method A cleanup levels.

In the SEI Phase II exploration, GRO and ORO hydrocarbons were found exceeding MTCA Method A cleanup levels in soils along the southern boundary of the 3109 property. SEI conducted additional sampling work in June 2017. ORO in soil was detected but at concentrations below the cleanup level. None of the analyzed groundwater samples contained concentrations of GRO, DRO, ORO, or VOCs. However one groundwater sample contained lead at the MTCA Method A cleanup level (15 ug/L) (see G-Logics *Additional Soil and Groundwater Sampling* report dated August 13, 2017 for more information).

To provide additional data for the former UST area, G-Logics conducted soil and groundwater sampling in July 2017. On the 3025 property, the ORO hydrocarbons were found exceeding the MTCA Method A cleanup level in soils along the northern property boundary. DRO and ORO also were found above cleanup levels in two grab-groundwater

samples collected in this area. Total and dissolved concentrations of arsenic also were reported above the MTCA Method A cleanup level in two of the four grab-groundwater samples and in one monitoring well-sample (see G-Logics *Additional Soil and Groundwater Sampling* report dated August 13, 2017 for more information).

The arsenic is likely due to area-wide sources, based on location and lack of relevant operations and activities on the properties. This area is also located within the Tacoma Smelter plume, which may also have contributed to arsenic detections. Other off-property sources may include former-agricultural practices in the area, and/or volcanic deposits from Mount Rainier. Specifically, the Osceola Mudflow buried a large portion this area with volcanic material, originating during eruptions approximately 5,600 years ago.

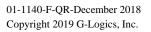
To address the petroleum-contamination, G-Logics recommended a remedial excavation. Mr. Vermazen (3109 property owner) agreed that if petroleum-contaminated soil was found to extend onto his property, then those contaminated soils also should be removed. Accordingly, the remedial excavation planned for the 3025 property extended to the north onto the 3109 property.

1.2 Remediation Background

In November 2017, petroleum-contaminated media (soil and groundwater) was removed from an area spanning the property line. The work consisted of the removal and disposal of approximately 384 tons of petroleum-contaminated soil and approximately 2,600 gallons of water (rain and groundwater). Analyzed confirmation samples indicated that all petroleumcontaminated soils above MTCA Method A cleanup levels were successfully removed from this area. After the remedial excavation had been completed, 200 pounds of an oxygenrelease compound (ORC Advanced) was added to groundwater in the excavation, as well as the backfill material near the groundwater interface (see G-Logics *Environmental Media Management Report* dated December 4, 2017 for more information).

1.3 Regulatory Background

The law that guides the remediation process at sites located within Washington State is the Model Toxics Control Act (MTCA). The regulations implementing MTCA are located in the Washington Administrative Code (WAC), Chapter 173-340. This regulation is administered by the Washington Department of Ecology (Ecology).


The property owners performed an independent remedial action for this Site, in accordance with the Ecology guidance. Such remedial actions are specifically allowed by MTCA, and are encouraged by Ecology and PLIA.

1.4 PLIA Background

As of January 2, 2018 the Pollution Liability Insurance Agency (PLIA) has authority to respond and deliver opinions on qualifying petroleum-contaminated sites throughout Washington. This ability is called the Petroleum Technical Assistance Program (PTAP), as established under RCW 70.149.040(9).

During the intake meeting with PLIA on January 31, 2018, PLIA offered that the two properties (3025 and 3109) be considered as one Site. PLIA requested additional sampling be conducted on both properties to address potential data gaps and to document that any residual contamination did not migrate beyond the Site boundaries. PLIA also requested that the potential for vapor intrusion in nearby buildings be assessed. The Site was accepted into the PTAP program in February, 2018 (letter date February 5, 2018).

To satisfy PLIA's request, additional well installation and sampling was conducted in March 2018 (see G-Logics *Well Installation and Groundwater Sampling* report dated April 12, 2018 for more information). Following their review of this report, PLIA issued a Further Action Letter for the Site, dated May 31, 2018. During a follow-up meeting with PLIA on June 13, 2018, it was confirmed that the potential for vapor intrusion in nearby buildings was not an issue, and that soil contamination associated with a former used-oil UST had been successfully removed (revised Further Action Letter, dated July 13, 2018). However, in order to obtain an NFA Opinion, PLIA indicated that quarterly groundwater monitoring of GRO, DRO, ORO, BTEX (benzene, toluene, ethylbenzene, and xylenes), and arsenic would need to be conducted for at least four additional consecutive quarters.

g-logics

1.5 Quarterly Groundwater-Monitoring Background

In March 2018 (first quarter) six groundwater-monitoring wells were sampled. GRO and BTEX were not detected in any of the analyzed groundwater samples. All detected concentrations of DRO and ORO were below MTCA Method A cleanup levels. Total arsenic was found above the cleanup level in all wells except GL-MW-5. Dissolved arsenic was below the cleanup level in all wells except GL-MW-4. The highest dissolved arsenic concentration was 14.1 ug/L in GL-MW-2.

In June 2018 (second quarter), six groundwater-monitoring wells were sampled. GRO and BTEX were not detected in any of the analyzed groundwater samples. Analytical results document that GRO and BTEX have never been detected in groundwater samples collected at this Site. Based on these findings, G-Logics requested that GRO and BTEX be removed from the list of analytes for the remaining events. PLIA approved this request in an e-mail dated August 28, 2018.

In June and September 2018, all detected concentrations of DRO and ORO were below cleanup levels with the exception of GL-MW-4 and GL-MW-6, where ORO was detected above the cleanup level in the two wells. Selected water samples also were analyzed using silica-gel methods. Based on the analytical results both DRO and ORO concentration dropped, leaving all detected petroleum concentrations below cleanup levels.

Also in June and September 2018, arsenic was found above the cleanup level in all wells except GL-MW-4 and GL-MW-5. Dissolved arsenic was below the cleanup level in all wells during the June sampling event, and all but one well (GL-MW-2) during the September sampling event. Historical groundwater analytical results are summarized in Table 1. The information for the fourth quarter of monitoring is presented below.

2.0 Groundwater Sampling

G-Logics conducted the fourth quarter of groundwater sampling on December 27, 2018. Six groundwater-monitoring wells (MW-1 through MW-6, Figures 2) were sampled to obtain information regarding groundwater contaminants. Eight groundwater samples were collected (including two field duplicates) from the six wells. Collected samples from each well were submitted to the analytical laboratory (Fremont Analytical). Water samples were analyzed for DRO, ORO, and arsenic (total and dissolved). Results of these analyses are presented in Section 4.0 of this report. Field exploration methods are described in Appendix A.

3.0 Groundwater-Depth Measurement

On December 27, 2018, groundwater depths were measured in the six monitoring wells. Information regarding groundwater depths, elevations, and well construction is summarized in Table 2. Depth measurements were made from the top of the PVC well casing, prior to well sampling. Groundwater was found at depths ranging from 6.54 to 8.48 feet below top of PVC casing. Groundwater elevations are shown on Figure 3. Contours and inferred-flow directions were not depicted due to the flat gradient.

4.0 Groundwater Analytical Results

During the December sampling event, DRO was not detected in any of the analyzed groundwater samples. Detected concentrations of ORO were below MTCA Method A cleanup level in all wells except GL-MW-4 and GL-MW-6. The field duplicate of MW-4 and a lab duplicate of MW-6 show detected concentrations below the cleanup level.

To assess if biological factors such as bacteria (resulting from the treatment compound added at the completion of the 2017 excavation), or other naturally occurring organic material (peat, roots, wood debris) may result in a false positive for ORO concentrations in groundwater, the water samples from selected wells also were analyzed using silica-gel methods. Based on the silica-gel results, ORO concentration dropped below the cleanup level, leaving all detected petroleum concentrations below cleanup levels.

Total arsenic was found above the cleanup level in all wells except GL-MW-4 and GL-MW-5. Dissolved arsenic was below the cleanup level in all wells except GL-MW-2, in which it was slightly above (5.78 ug/L).

g-logics

Results of these analyses are presented in Table 1 of this report. Appendix A presents fieldexploration methods, while Appendix B includes the laboratory reports and chain-ofcustody forms.

5.0 Quality Assurance/Quality Control Findings

Laboratory duplicate samples, as well as two blind-duplicate groundwater samples (GL-MW-2, and GL-MW-4), were analyzed for data repeatability. The detected concentrations were within acceptable limits for laboratory-repeatability information. The laboratory also conducted matrix spike, matrix-spike duplicate, and method blank analyses. Laboratory QA/QC information is included (with the laboratory report) in Appendix B.

6.0 Conclusions

The findings of the quarterly groundwater sampling efforts are summarized below and are presented in Tables 1 and 2 of this report.

- Over the past four quarters of sampling, groundwater was encountered from approximately 6 to 11 feet below the ground surface. During the spring sampling event, groundwater-flow direction appeared to be to the northeast with a very flat gradient, however during the summer, fall, and winter events, groundwater-flow direction was not determined since the gradient was too flat to accurately assess.
- ORO in groundwater was detected slightly above the cleanup level in MW-4 and MW-6 over the last three quarters of sampling.
- DRO in groundwater was not detected above the cleanup level in any of the monitoring wells over the past four quarters.
- Selected groundwater-monitoring well samples also were analyzed using silica-gel methods. Based on the analytical results, both DRO and ORO concentration dropped, leaving all detected petroleum concentrations below cleanup levels.
- GRO and BTEX were not detected in any of the analyzed groundwater samples during the first two quarters, therefore they were removed from the list of analytes going forward.
- Total arsenic in groundwater was found above the cleanup level in all wells except GL-MW-4 (last three quarters) and GL-MW-5 (all four quarters).
- For groundwater samples that exhibited total arsenic concentrations above the cleanup level, duplicate samples were lab filtered to remove turbidity and then analyzed for dissolved arsenic concentrations.

- Dissolved arsenic in groundwater was below cleanup levels in all wells except GL-MW-2, in which it was slightly above for three of the four quarters. The first quarter for GL-MW-4 also was slightly above the cleanup level.
- Groundwater sampling work conducted during 2017 showed that GRO, BTEX, PCBs, VOCs, cPAHs were not detected in any of the analyzed groundwater samples. Naphthalene, and metals (with the exception of arsenic) were not detected above cleanup levels in any of the analyzed groundwater samples.

7.0 Discussion

Petroleum-contaminated soils and groundwater were removed through the remedial excavation conducted in November 2017. Confirmation soil samples collected during the excavation, as well as the additional soil sampling conducted during the March 2018 exploration, has confirmed that the petroleum-contaminated soils (associated with the former UST) have been successfully removed. This information also indicates the petroleum-contaminated soils did not extend beyond the remedial-excavation boundaries (see G-Logics *Well Installation and Groundwater Sampling* report dated April 12, 2018 for more information).

Based on the information gathered over the last four quarters of groundwater sampling, all detected DRO and ORO groundwater concentrations remained below cleanup levels when using silica-gel methods. Biological factors such as bacteria (resulting from the treatment compound added at the completion of the 2017 excavation), or other naturally occurring organic material (peat, roots, wood debris) may result in a false positive for ORO concentrations in groundwater, justifying the use of silica-gel methods.

Dissolved arsenic also now appears to be below the cleanup level in all wells except GL-MW-2. With respect to arsenic, historical review of the Site did not identify any commercial or industrial source of arsenic from prior activities or operations. The Site is within the Asarco area-wide smelter plume, and volcanic deposits from the Osceola mudflow also likely are present. Agricultural practices in the area also may have contributed to area-wide arsenic concentrations. Furthermore potential exposures to arsenic in the groundwater are very limited. Specifically, this area is covered with buildings or asphalt, prohibiting direct contact with the groundwater. Additionally, the shallow groundwater in this area likely would be of low quality and would yield insufficient

01-1140-F-QR-December 2018 Copyright 2019 G-Logics, Inc.

quantities to be considered to be a viable source of drinking water. With these understandings, detected arsenic concentrations do not present a risk to human health or the environment, and it is our opinion that arsenic does not require further evaluation or remediation.

Analytical data shows ORO slightly exceeds the Method A cleanup level in groundwater found in GL-MW-4 and GL-MW-6. Furthermore, the use of silica-gel for samples collected from these wells indicate ORO is not present above the cleanup level. We recognize that the use of silica-gel currently is being evaluated.

Given the extensive remediation and the associated monitoring work conducted to date, we believe that further expenditure of resources is not warranted. Specifically, M&M Ventures and R&E Investments have successfully addressed the petroleum-contaminated soils and groundwater in this area of the two properties. Additionally, it has been previously established that residual elevated concentrations of petroleum hydrocarbons, in both soil and groundwater, do not extend beyond the Site boundaries.

8.0 **Recommendations**

The completed work documents the successful remediation of the former UST area. Groundwater monitoring indicates the low and residual arsenic and ORO concentration do not present an unacceptable risk. Accordingly G-Logics recommends that PLIA provide a No Further Action opinion for the Site.

9.0 Limitations

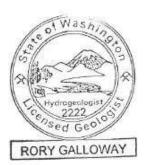
The scope of work on this project was presented in our identified workplan and subsequently approved by M&M Ventures and R&E Investments. Please be aware our scope of work was limited to those items specifically identified in the workplan. Other activities not specifically included in the presented scope of work (in a workplan, correspondence, or this report) are excluded and are therefore not part of our services.

The provided scope of services was intended to provide a quarterly assessment of groundwater conditions at the Site. This work was not designed to identify all potential concerns or to eliminate all risk. This work only included services specifically described above.

Land use, site conditions (both on-site and off-site), and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the site sampling.

This report is prepared for the sole use of our client and reviewing regulatory agencies. The scope of services performed during this assessment may not be appropriate for the needs of other users. Re-use of this document or the findings, conclusions, or recommendations presented herein, are at the sole risk of said user(s). Any party other than our client who would like to use this report shall notify G-Logics of such intended use by executing the "Permission and Conditions for Use and Copying" contained in this document. Based on the intended use of the report, G-Logics may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements will release G-Logics from any liability resulting from the use of this report by any unauthorized party.

No warranty, either express or implied, is made.


10.0 Closing

We appreciate this opportunity to provide our services on this project. Please contact us at your convenience with any questions regarding our work or findings.

Sincerely, G-Logics, Inc.

Rory L. Galloway, LG, LHG Principal

cc Greg Rairdon Ken Lederman Li Ma

w/ Voursky

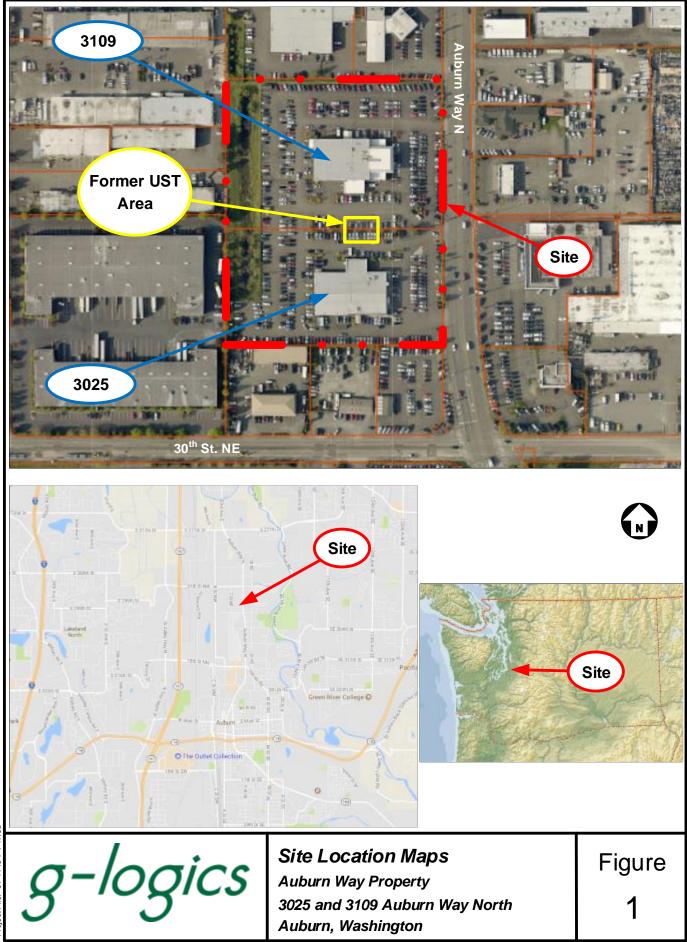
Karis Vandehey, LG, WSLWD Staff Geologist

q-loqics

FIGURES

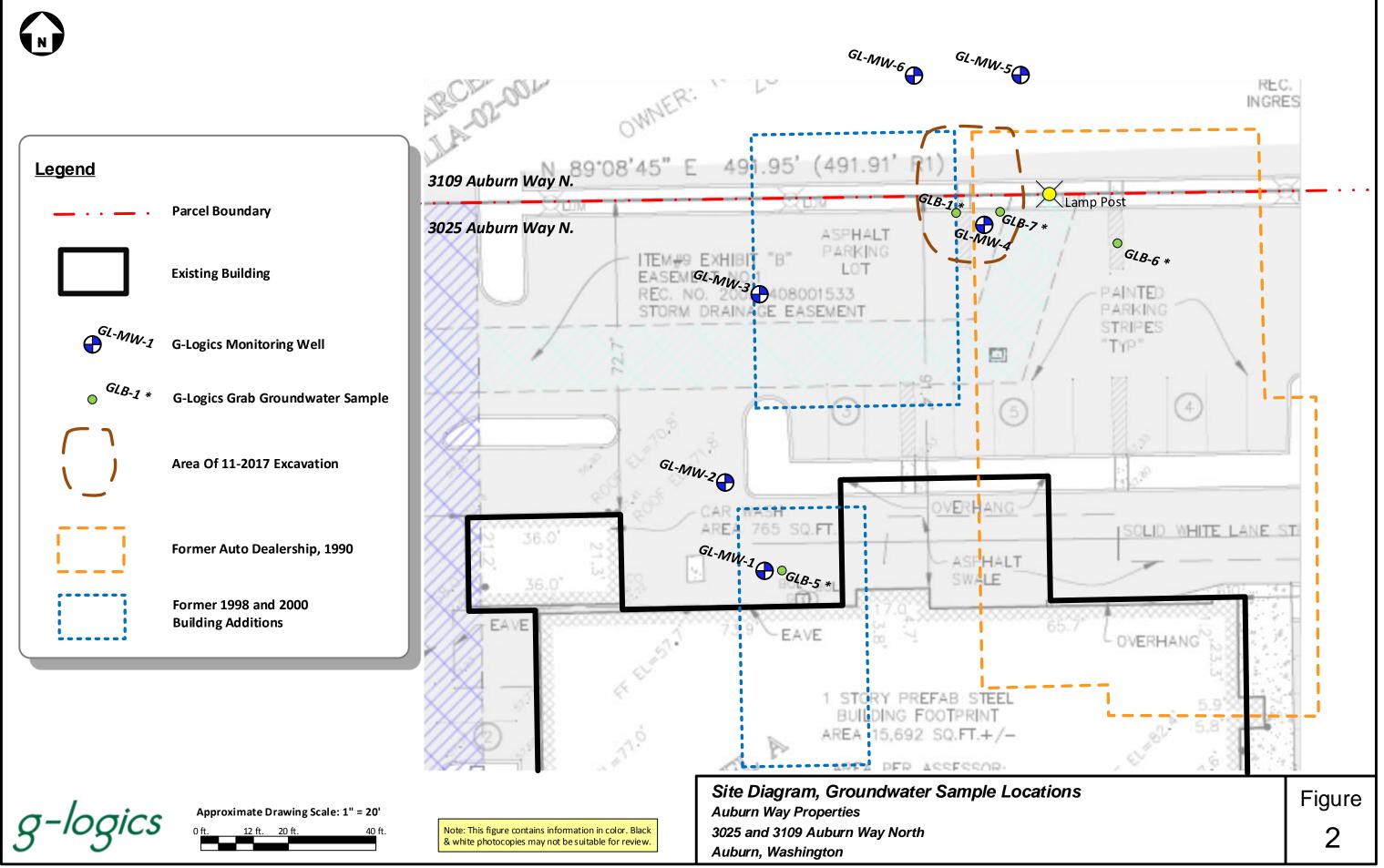
Figure 1:	Site Location Maps
Figure 2:	Site Diagram, Groundwater Sample Locations
Figure 3	Groundwater Elevations (12/27/2018)

TABLES

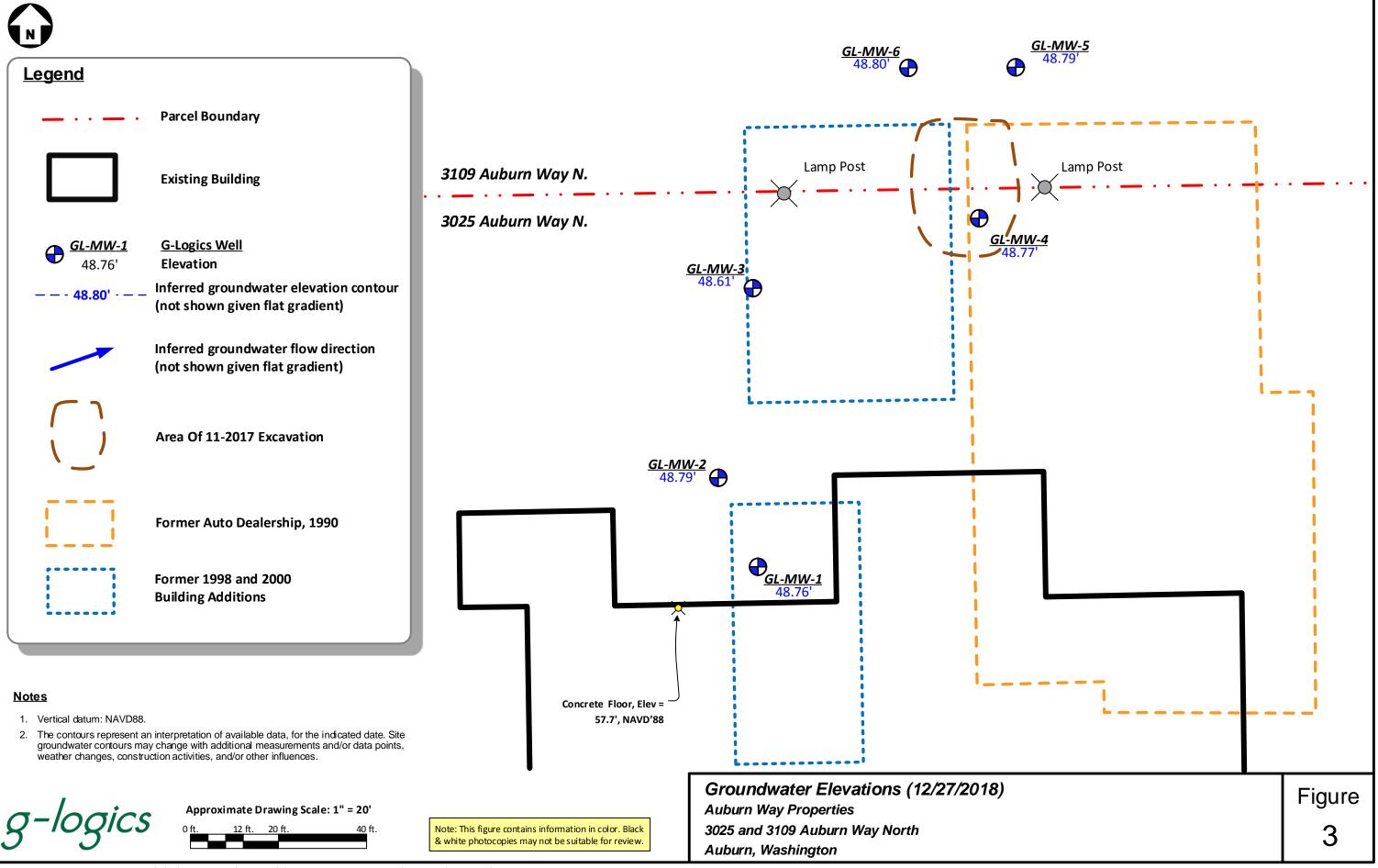

Table 1	Groundwater Sample Analyses
Table 2	Groundwater Elevation Measurements

APPENDICES

Appendix A:	Field Exploration Methods
Appendix B:	Laboratory Data and Chain-of-Custody Documents


ATTACHMENTS

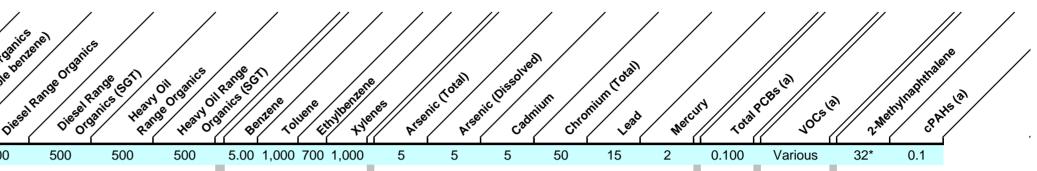
Attachment B:	Permission and Conditions for Use and Copying
---------------	---


Mapping Reference: King County iMap, Delorme, Google Maps, and G-Logics Site Visit Observations

Project File: 01-1140-F-F1.vsd

Mapping Reference: ALTA/NSPS Land Title Survey 8/3/2017, Riley Phase I, and G-Logics Site Visit Observations and Measurements

Project File: 01-1140-F-F2.vse



Mapping Reference: Terrane ALTA/NSPS Land Title Survey 8/3/2017, Riley Phase I, and G-Logics Site Visit Observations and Measurements

TABLE 1 (1) Groundwater Sample Analyses

Auburn Way Property 3025 Auburn Way North Auburn, Washington

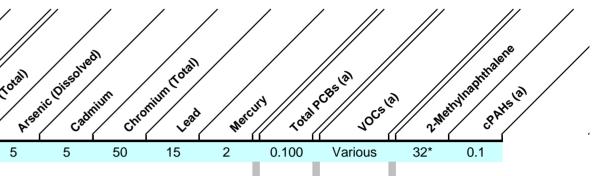

					anics	enel	,c ⁵						//				/ /	/ /				
Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	Gasoline	Range Organic Range organic Range of the performance of the set of the performance of the set	Range Organi	Range Sell	Oil Organics Organics Heavy Heavy	ARANDE SO	IN TOP TOP	Jene Ethyllog	tylenes	Arsenic	Totall Arsen	he Dissolved	um chro	mium Total	Werc	UN TOTAL	PCBS (8) VOCS	a) 2.Met	Etymaphtrall
MTCA Cleanup Level (2)(3) units in ug/L)				1,000	500	500	500	500			700 1,0	000	5	5	5	50	15	2	0.100	Various	32*	0.1
Stemen Environmental Inc.																						
December, 2012									_			_										
S1	12/12/2012	S1-W	8	<100	<250		<500		<1	<1	<1 <	3								nd		
S4 (b)	12/12/2012	S4-W	8	<100	<250		<500		<1	<1	<1 <	3										
S6	12/12/2012	S6-W	8	<100	<250		<500		<1	<1	<1 <	3										
Stemen Environmental Inc.																						
December, 2012												_									_	
R2 (b)	6/2/2017	R2-W		<100	<250		<500		<1	<1	<1 <	3					15			nd		
R5 (b)	6/2/2017	R5-W		<100	<250		<500		<1	<1	<1 <	3										
G-Logics																						
July, 2017 (Pre Remedial Eacvation)									_			_										
GLB-1-W (4)	7/21/2017	GLB-1-W	9-14ft	<50	<49.9		1,670	1,210	<1	<1	<1 <	1 2	.44		<0.200	1.79	2.06	<0.100	<0.100	nd	<0.0997	nd
GLB-5-W (4)	7/21/2017	GLB-5-W	9-14ft	<50	<49.9		700	599	<1	<1	<1 <	1 2	0.7	<mark>5.19</mark>	<0.200	8.68	0.592	<0.100		nd		
GLB-6-W (4)	7/21/2017	GLB-6-W	9-14ft	<50	<49.9		161		<1	<1	<1 <	1 6	. <mark>25</mark>		<0.200	2.00	1.32	<0.100		nd		
GLB-7-W (4)	7/21/2017	GLB-7-W	9-14ft	<50	1,200	857	4,370	3,090	<1	<1	<1 <	1 1	<mark>9.0</mark>	<mark>6.94</mark>	<0.200	1.87	1.89	<0.100	<0.999	nd	0.143	nd
GL-MW-1	7/31/2017	GL-MW-1 GL-MW-100	5-15ft Field Dup		<49.9 <49.8		426 375							20.7 21.1								

TABLE 1 (1) Groundwater Sample Analyses

Auburn Way Property 3025 Auburn Way North Auburn, Washington

					,					,					,	,	,				
					mic	mel	5		/					/ /	/ /	/ /	/ /	/ /			
					ne oroganeri	te organit	, _		Se al	$\langle / /$			//、	olveci	» /	atall			///		thaten
Exploration	Sample	Sample	Sample	ine	Range Organics	Range Organic Range Organic	ange seil anics Heav	N Organics N Organics Heavy Heavy	Ranseo	ne	ene Ethylbente	1 ⁰ 25	enic Totall	nic Dissolved	um	hum Total		.a // .	PCBS (a) VOCS	a //	Inviraphitaler CPAH
Location		Number	Depth (ft)	63501m	De Diese	Dieser	an Her Ral	nge Heavy	Sall Bel	zene Tolu	ETIME +	Jenes Are	en Arse	nic Dr. cadir	the chron	Lead	Merch	Total	PCBS VOCS	2.110	invinate cpart
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500			700 1,000	5	5	5	50	15	2	0.100	Various	32*	0.1
(units in ug/L)																					
G-Logics		_			_	_		_											_		
Post Remedial Excavation																					
GL-MW-1	3/20/2018	GL-MW-1	5-15ft	<50	119		219		<1	<1	<1 <1	26.0	4.31								
	3/20/2018	GL-MW-A	Field Dup.	<50	78.1		291		<1	<1	<1 <1	27.0	4.61								
	6/26/2018	GL-MW-1	5-15ft	<50	78.9	63.3	307	232	<1	<1	<1 <1	30.8	3.00								
	9/24/2018	GL-MW-1	5-15ft		97.5	81.2	255	<99.6				38.6	4.83								
	12/27/2018	GL-MW-1	5-15ft		<50		323					37.4	3.87								
GL-MW-2	3/20/2018	GL-MW-2	5-15ft	<50	<49.9		161		<1	<1	<1 <1	44.3	14.1								
	6/26/2018	GL-MW-2	5-15ft	<50	<50	<50	209	156	<1	<1	<1 <1	100	4.24								
	9/24/2018	GL-MW-2	5-15ft		<50.4	<50.4	208	142				113	11.70								
	12/27/2018	GL-MW-2	5-15ft		<49.7		228					117	5.78								
	12/27/2018	GL-MW-B	Field Dup.									122	5.75								
GL-MW-3	3/20/2018	GL-MW-3	5-15ft	<50	<49.9		<99.9		<1	<1	<1 <1	25.7	4.56								
		GL-MW-3	5-15ft	<50	<49.8	<49.8	125	<99.7	<1	<1	<1 <1	24.2	<1.75								
	9/24/2018	GL-MW-3	5-15ft		56.1	<49.6	127	<99.1				24.7	3.18								
	12/27/2018	GL-MW-3	5-15ft		<50.3		155					25.2	1.97								
GL-MW-4	3/20/2018	GL-MW-4	5-15ft	<50	152		259		<1	<1	<1 <1	6.16	6.15								
		GL-MW-4	5-15ft	<50	152	148	798	461	<1		<1 <1	2.90									
	9/24/2018	GL-MW-4	5-15ft		149	119	759	499				3.43									
	12/27/2018	GL-MW-4	5-15ft		<49.7	<49.7	725	300				2.17									
	12/27/2018		Field Dup.		<50.1	<50.1	489	234													
GL-MW-5	3/20/2018	GL-MW-5	5-15ft	<50	<50		<100		<1	<1	<1 <1	1.80	<1.75								
		GL-MW-5	5-15ft	<50	<49.9		<99.8		<1		<1 <1	2.54									
		GL-MW-5	5-15ft		<49.7	<60.6	114	<121				2.00									
	12/27/2018		5-15ft		<50		117					<1.75									
				1			·														

TABLE 1 (1)Groundwater Sample Analyses

Auburn Way Property 3025 Auburn Way North Auburn, Washington

Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	6850 Inc	Range Organic Range organic Range of the per-	tenel pange organi piesel piesel	es Range 551 Banics Heav	NOW OF DATES	I Range G	ntene to	Juene El	nylbenter typ	e anes Arse	and Total	enic
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500	5.00	1,000	700	1,000	5	5	
(units in ug/L)															
GL-MW-6	3/20/2018	GL-MW-6	5-15ft	<50	69.8		346		<1	<1	<1	<1	11.1	2.57	
	6/26/2018	GL-MW-6	5-15ft	<50	102	81.3	608	438	<1	<1	<1	<1	8.96	<1.75	
	6/26/2018	GL-MW-A	Field Dup.	<50	58.7	<49.9	658	441	<1	<1	<1	<1	8.82		
	9/24/2018	GL-MW-6	5-15ft		128	100	510	276					9.41	2.85	
	9/24/2018	GL-MW-A	Field Dup.		154	121	545	380					9.43		
	12/27/2018	GL-MW-6	5-15ft		<50.2	<50.2	596	289					9.16	2.16	
	12/27/2018	GL-MW-6	Lab Dup.		<50.3		499								

Notes:

(1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.

(2) Available Method A Cleanup Levels or Most Conservative Method B Cleanup Levels, MTCA, revised 2015. Exceeding Cleanup Levels does not necessarily trigger requirements for Cleanup Actions under MTCA. Refer to site diagram(s) for sampling locations.

(3) Gasoline Analyses by Method NWTPH-Gx, Diesel and Heavy Oil by NWTPH-Dx/Dx Ext., MTCA 5 Metals by 200.8/245.1, VOCs by 8260C, PAH by 8270 (SIM), PCB by 8082.

(4) Grab Groundwater Sample

(a) Analytes were not detected. See attached analytical laboratory reports for details.

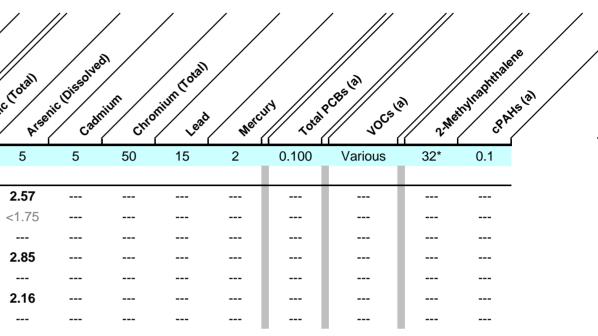
(b) No analytical laboratory report included in the Stemen Environmental report to verify analytical data.

* Method B Cleanup Level.

** Not researched, no available data.

- --- Sample not analyzed.
- nd Not Detected

Dup. Duplicate Sample for QA/QC.


- <50.0 Sample concentration below laboratory reporting limit.
- 27 Bold number(s) indicates contaminant detected, below cleanup level.

160 Bold number(s) and yellow shading indicates concentration exceeds MTCA Cleanup Level.

SGT Silica Gel Treatment

12/27/2018 Indicates most recent sampling event.

Important Note: This Table Contains Information in color. Black & white photocopies may not be suitable for review.

TABLE 2

Groundwater Elevation Measurements Auburn Way Properties

Well Designation	Well Installation Date	Elevation Top of PVC Casing (ft.)* (1)	Depth to Top of Screen (ft.)	Depth to Bottom of Screen (ft.)	Well Diam. (in.)	Date Measured	Depth to Water (ft.)	Calculated GW Elevations (ft.)
GL-MW-01	7/31/18	57.20	5	15	2	03/14/18	8.11	49.09
02	1/01/10	01.20	0	10	-	03/20/18	8.29	48.91
		57.24				06/26/18	9.67	47.57
		01.21				09/24/18	10.71	46.53
						12/27/18	8.48	48.76
GL-MW-02	3/12/18	56.64	5	15	2	03/14/18	7.53	49.11
						03/20/18	7.68	48.96
		56.66				06/26/18	9.08	47.58
						09/24/18	10.12	46.54
						12/27/18	7.87	48.79
GL-MW-03**	3/12/18	56.09	5	15	2	03/14/18	7.03	49.06
	3/20/18		5	15	2	03/20/18	7.21	48.88
		56.13				06/26/18	8.54	47.59
						09/24/18	9.59	46.54
						12/27/18	7.52	48.61
GL-MW-04	3/12/18	55.87	5	15	2	03/14/18	6.85	49.02
						03/20/18	7.02	48.85
		55.97				06/26/18	8.39	47.58
						09/24/18	9.45	46.52
						12/27/18	7.20	48.77
GL-MW-05	3/12/18	55.18	5	15	2	03/14/18	6.19	48.99
						03/20/18	6.35	48.83
		55.33				06/26/18	7.75	47.58
						09/24/18	8.79	46.54
						12/27/18	6.54	48.79
GL-MW-06	3/13/18	55.53	5	15	2	03/14/18	6.52	49.01
						03/20/18	6.7	48.83
		55.67				06/26/18	8.07	47.60
						09/24/18	9.12	46.55
						12/27/18	6.87	48.80
								<u> </u>

Notes:

(1) Original survey was completed on 3/13/2018, prior to the reinstallation of GL-MW-3. Updated survey of all wells was completed on 6/26/2018.

* Elevations based on a backsight to the concrete floor at the north entrance of the auto shop. The floor elevation at this location is 57.7' (Figure 2).

** GL-MW-3 was installed on 3/12/18. Due to drillers sand continually coming into the well durring development (broken screen?), the original well was decommissioned and reinstalled on 3/20/18.

Depth not recorded.

-- Not Applicable.

Appendix B

State of Washington POLLUTION LIABILITY INSURANCE AGENCY 300 Desmond Drive SE • PO Box 40930 • Olympia, Washington 98504-0930 (360) 407-0520 • (800) 822-3905 • FAX (360) 407-0509 www.plia.wa.gov

May 6, 2019

Ms. Karis Vandehey G-Logics, Inc. 40 2nd Ave SE Issaquah, WA 98027

Re: No Further Action at the Following Site:

- Site Name: Auburn Way Properties
- Site Address: 3025 and 3109 Auburn Way N, Auburn, WA 98002
- Facility/Site ID: 57361549
- **PTAP Project ID:** PNW030

Dear Ms. Vandehey:

The Washington State Pollution Liability Insurance Agency (PLIA) received your request for an opinion on your independent cleanup of the Auburn Way Properties (Site), by G-Logics, Inc.

This letter constitutes an advisory opinion regarding a review of submitted documents/reports pursuant to the substantive requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW and WAC 173-340-515 (Independent Remedial Actions), for characterizing and addressing releases discussed below at the Site.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

No. PLIA has determined that no further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Ms. Karis Vandehey May 6, 2019 Page 2 of 25

Description of the Site

This opinion applies only to the Site located at 3025 and 3109 Auburn Way N, Auburn, Washington and comprises two King County parcels described below (Fig. 1). This opinion does not apply to any other release(s) that may affect the Properties. Any such sites, if known, are identified separately below.

1. Description of the Properties and Tax Parcels within the Site.

The Properties include the following tax parcel(s) in King County, affected by the Site and addressed by your cleanup (Fig. 1):

- Tax Parcel No. 0004000039
- Tax Parcel No. 0004000041

2. Description of the Site.

The two parcels that make up the Site are defined by the nature and extent of contamination associated with the following release (Figs. 2 and 3):

• Total petroleum hydrocarbons (TPH-g, TPH-d, and TPH-o) and arsenic in the soil/groundwater/vapor.

3. Identification of Other Sites that may affect the Property.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that these Properties were affected by other sites.

Enclosure A includes a detailed description and diagram of the Site, as currently known to PLIA.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- Natural Background Groundwater Arsenic Concentrations in Washington State. Toxics Cleanup Program. May 2018, Review Draft. Publication No. 14-09-044.
- Groundwater-Sampling Report, December 2018. Fourth Quarter Groundwater Sampling Results. Facility/Site No. 57361549. PTAP Project No. PNW030, Auburn Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 1-1140-E, February 5, 2019.
- Groundwater-Sampling Report, September 2018. Third Quarter Groundwater Sampling Results. Facility/Site No. 57361549. PTAP Project No. PNW030, Auburn

Ms. Karis Vandehey May 6, 2019 Page 3 of 25

Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 1-1140-E, October 23, 2018.

- Groundwater-Sampling Report, December 2018. Second Quarter Groundwater Sampling Results. Facility/Site No. 57361549. PTAP Project No. PNW030, Auburn Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 1-1140-E, August 20, 2018.
- Well Installation and Groundwater Sampling. Facility/Site No. 57361549, PTAP Project No. PNW030, Auburn Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 01-1140-E, April 12, 2018.
- Environmental Media Management Report, Soil Removal and Sampling, Auburn Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 01-1140-C, December 4, 2017.
- Additional Soil and Groundwater Sampling. Auburn Way Properties, 3025 and 3109 Auburn Way N, Auburn, WA 98002, G-Logics Project Number 01-1140-B, August 13, 2017.

Documents submitted to PLIA are subject to the Public Records Act (Chapter 42.56 RCW). To request public records, please email <u>pliamail@plia.wa.gov</u>.

This opinion is void if any information contained in those documents is materially false or misleading.

Analysis of the Cleanup

1. Cleanup of the Site

PLIA has concluded that **no further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

a. Characterization of the Site

PLIA has determined that the characterization of the Site was sufficient to establish cleanup standards and select a cleanup action. That conclusion is based on the following analysis:

Conceptual Site Model (CSM)

i. **Direct Contact:** The completed borings were advanced to depths ranging from approximately 11.5' to 15' below ground surface (bgs), which generally encountered a structural-fill material from the surface to approximately a depth of 4' to 5'. The fill consisted of a silty sand and gravel mix. Fine grain native soils were encountered below the fill, generally consisting of silt with clay to a depth of 8' to 9' followed by silty, fine grain sand to the bottom of the borings.

Ms. Karis Vandehey May 6, 2019 Page 4 of 25

> On the western edge of the former automobile dealership/service garage, a 550-gallon used-oil underground storage tank (UST) was discovered and subsequently removed. In 2012, Stemen Environmental conducted a phase II exploration in this area to determine if the former UST had impacted the soil and groundwater at the Site. Soil and groundwater samples were collected on both the 3025 and 3109 Properties, with results yielding concentrations of total petroleum hydrocarbons in the gasoline and heavy oil ranges (TPH-g/o), respectively, above the MTCA Method A cleanup levels for soil and groundwater. Soil boring S4 detected concentrations of 500 mg/kg TPH-g and 3,800 mg/kg TPH-o above the MTCA Method A cleanup level of 100 mg/kg TPH-g and 2,000 mg/kg TPH-o. Additional sampling work was performed again in 2017 with TPH-o as the only constituent of concern (COC) that was above MTCA Method A cleanup levels. G-Logics then mobilized to the Site to provide additional data for the former UST area. TPH-o was found exceeding the MTCA Method A cleanup levels on the 3025 Property at soil borings GLB-1 and GLB-7 with concentrations of TPH-o at 5,990 mg/kg and 3,250 mg/kg respectively.

The location of the PCS was within the depths (0 to 15' bgs) that humans (utility workers and property developers) may come in contact with.

<u>Result: The direct contact exposure pathway was a concern at the</u> <u>Site.</u>

ii. Vapor Exposure: The 3025 and 3109 Properties building footprints and other nearby off-property buildings boundaries are about 70' outside the lateral inclusion zone of 30' from the edge of the contamination area (Fig. 2). The utility overlay showed the stormwater easement is about 45' from the building (Fig. 2). The lateral inclusion zone is defined as the area surrounding a contaminant source through which vapor phase contamination might travel and intrude into buildings (ITRC 2018, EPA 2018, Ecology Draft VI Guidance update 2018).

Result: The vapor exposure pathway is not a concern at the Site.

iii. Groundwater: Depth to the shallow groundwater at the Site ranges from 6' to 11' bgs based on grab samples and groundwater level measurement from monitoring wells. Measured groundwater elevations indicate that groundwater flow is toward the northeast, with a flat gradient. TPH-d was detected above MTCA cleanup levels pre-excavation in GLB-7-W. TPH-o was detected above MTCA preMs. Karis Vandehey May 6, 2019 Page 5 of 25

excavation in GLB-1-W, GLB-5-W, and GLB-7-W. Arsenic (total) was detected above MTCA cleanup levels in GLB-5-W, GLB-6-W, GLB-7-W and GL-MW-1. Arsenic (dissolved) was detected above MTCA cleanup levels in GLB-5-W, GLB-7-W and GL-MW-1 (Table 4).

Result: The groundwater pathway was a concern at the Site.

iv. Surface water: The Green River is about 2,500' east of the Site.

Result: Surface water is not a concern at the Site.

b. Establishment of cleanup standards.

PLIA has determined the cleanup levels and points of compliance you established for the Site meet the substantive requirements of MTCA.

i. Cleanup Levels

]
Contaminants of Concern (COCs)	Soil Cleanup Level mg/kg (<u>Method A)</u> <u>Un-restricted</u> <u>Land Use</u>	Groundwater Cleanup Level ug/l (Method A)	Sub-slab/soil gas Screening Levels ug/m ³ (Method B SL)	Indoor/Air Cleanup Levels ug/m ³ (Method B CUL)
TPH-d	2,000	500	-	-
TPH-o	2,000	500	-	-
TPH-g	100/30	1000/800	-	-
Benzene (carcinogen)	0.03	5	-	0.321
Toluene	7	1000	-	2290
Ethylbenzene	6	700	-	457
Xylenes, -m, -o	9	1000	-	45.7
Naphthalene (<u>carcinogen</u>) (does <u>not</u> include 1-methyl and 2-methyl naphthalene)	-	-		0.0735
Total Petroleum Hydrocarbon	-	-	-	140
APH [EC5-8 Aliphatics]	-	-	-	2,700
APH [EC9-12 Aliphatics]	-	-	-	140
APH [EC9-10 Aromatics]	-	-	-	180
Arsenic	20	5	-	-

Table 1. The COCs and cleanup levels are:

* Based on the current attenuation factor of 0.03.

ii. Points of Compliance.

The proposed Points of Compliance are:

Soil-Direct Contact: For soil cleanup levels based on human exposure via direct contact, the point of compliance is: "*...throughout the Site from ground surface to 15 ft. below the ground surface.*"

Groundwater: For groundwater, the standard point of compliance as established under WAC 173-340-720(8) is: "*…throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth which could potentially be affected by the Site."*

Vapor: Ambient and indoor air throughout the Site.

c. Selection of cleanup action.

PLIA has determined the cleanup action you selected for the Site meets the substantive requirements of MTCA.

i. Decommissioning of former USTs

- 550-gallon used-oil UST was removed.
- Excavation and removal of 384 tons of PCS at the Site.
- Conducted soil confirmation sampling post excavation to assess the effectiveness of the cleanup action.
- Conducted groundwater monitoring (2018) post excavation to confirm the effectiveness of the cleanup action.

2. Cleanup.

PLIA has determined the cleanup action you performed at the Site meets the substantive requirements of MTCA.

a. Direct contact, groundwater, surface water and vapor exposure pathways:

 Decommissioning of former UST. The former 550-gallon diesel UST was permanently decommissioned by removal.

ii. Excavation and removal of PCS at the Site:

The lateral and vertical extent of PCS detected at the Site was successfully excavated to levels below the MTCA Method A cleanup level for unrestricted land use of 2,000 mg/kg for TPH-d-o.

Ms. Karis Vandehey May 6, 2019 Page 7 of 25

iii. Conducted performance sampling of the soil and groundwater to confirm effectiveness of the remedial action.

Soil Direct Contact - Points of Compliance: The limit of the excavation is bounded by the extent of PCS confirmation sampling results below cleanup levels: laterally, to the north it is bounded by Borings NWB-10, VW-3-7.5, NCS-5.5, and NEB-9. To the east it is bounded by Borings VW-5-7.5, PL-5-9.5, PL-3-7.5, PL-6-9, and SEW-5.5. The excavation is bound to the south by Borings GB-1-3, GB-1-4.5, and SWB-9. The excavation is bound to the west by Boring WS-5.5, WSB-10.5, VW-6-5.5 and VW-6-9. The base of the excavation is bound by Borings PL-7-9, PL-7-10, SWW-6.5, SB-7.5, SWW-5, SB2-9.5, PL-4-10, PL-3-7.5, PL-6-9, VW-2-3, VW-2-4.5, VW-2-8, VW-2-10, and NCB-10 (Fig. 3 and Table 2). The Performance sampling results for the PCS is below the MTCA Method A cleanup level for unrestricted land use of 2,000 mg/kg for TPH-d-0.

<u>Result: The soil direct contact pathway is no longer a concern at this Site.</u>

Groundwater Exposure Pathway- Points of Compliance: The effectiveness of the remedial action for groundwater is depicted by groundwater quality sampling results below cleanup levels: The Site wells (GL-MW-1 through GL-MW-6) were <u>below MTCA Method A</u> <u>cleanup Levels</u> for TPH-d, TPH-o and BTEX for four consecutive quarters.

Silica gel sample cleanup was utilized in all groundwater analytical samples submitted to remove interference from non-petroleum organic materials (peat, bark, leaf litter, etc.) that naturally occurred at the Site. This was done in accordance to NWTPH-d analytical methodology. The analytical results for samples prior to silica gel cleanup, and post silica gel cleanup are depicted in Tables 3 and 4.

Concentrations of dissolved arsenic in groundwater samples exceeded MTCA Method A cleanup levels prior to the remedial excavation and post remedial excavation. G-Logics performed a literature search that indicated the background level of arsenic in the groundwater at the Site is 8.0 μ g/L (Fig. 5). When this background concentration is subtracted from the laboratory data for groundwater at the site, four quarters of sampling below <u>MTCA Method A cleanup levels</u> were observed regarding Arsenic at the Site.

<u>Result: The groundwater exposure pathway is no longer a</u> <u>concern at this Site.</u>

Ms. Karis Vandehey May 6, 2019 Page 8 of 25

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Under the MTCA, liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release(s) of hazardous substances at the Site. This opinion **does not:**

- Change the boundaries of the Site.
- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with the Office of the Attorney General and the Department of Ecology under RCW 70.105D.040 (4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is equivalent. Courts make that determination (RCW 70.105D.080 and WAC 173-340-545).

3. State is immune from liability.

The state, PLIA, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion.

Termination of Agreement

Thank you for choosing to cleanup your Property under the Petroleum Technical Assistance Program (PTAP). This opinion terminates the PTAP Agreement governing Project #PNW030. Ms. Karis Vandehey May 6, 2019 Page 9 of 25

Contact Information

If you have any questions about this opinion, please contact us by phone at 1-800-822-3905, or by email at <u>li.ma@plia.wa.gov</u> or <u>caleb.kaiser@plia.wa.gov</u>.

Sincerely,

Li Ma, PHD, LHG, CGWP Hydrogeologist

Caleb Kaiser Environmental Specialist

Enclosure A: Figure 1: Site Vicinity Map

- Figure 2: Exploration Locations with Survey
- Figure 3: Excavation Boundary and POCs
- Figure 4: Groundwater Flow Direction
- Figure 5: Groundwater Background Arsenic Concentrations in Washington State
- Table 1: Soil Data Pre-Excavation
- Table 2: Soil Data Post-Excavation
- Table 3: Groundwater Data Pre-Excavation
- Table 4: Groundwater Data Post-Excavation
- cc: Mr. Roger Vermazen, R&E Investments, LLC.
 - Mr. Mike Scarff, M&M Ventures, LLC
 - Mr. Matthew Welsh, Conducere Investments, LLC.
 - Mr. Greg Rairdon, Rairdon Auto Group
 - Mr. Rory Galloway, G-Logics, Inc. (email only)
 - Ms. Shanyese Trujillo, PLIA (email only)
 - Mr. Nnamdi Madakor, PLIA (email only)
 - Ms. Kristin Evered, PLIA (email only)

Ms. Karis Vandehey May 6, 2019 Page 10 of 25

Enclosure A

Auburn Way Properties Site – PNW030

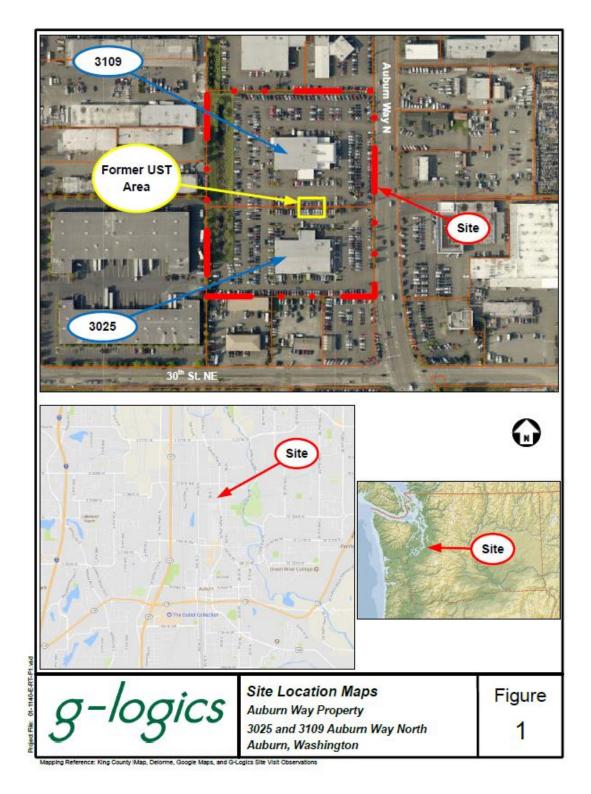
Ms. Karis Vandehey May 6, 2019 Page 11 of 25

Description of the Site:

Setting: The Site is composed of two properties, 3025 and 3109 Auburn Way N, occupying two King County tax parcels (0004000039 and 0004000041).

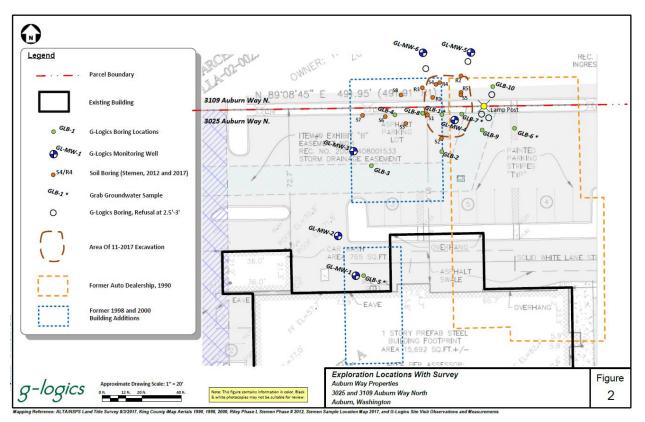
Historical Use: The area that the Site resides in was previously used as agricultural land prior to the 1970s. Since the early 1970s, the land was developed and used historically as an automobile dealership and a service garage. A former 550-gallon used oil UST was removed from the west side of the former dealership building located on the 3025 Property.

Current Use: The Site is located adjacent to several industrial properties and is currently an automobile dealership and service garage.


Geology: Soil at the Site consisted of a structural-fill material. The fill consisted of a silty sand and gravel mix from the surface to approximately 4.5'-5' bgs. Fine-grained native soils were found below the fill material, generally consisting of silt with clay to a depth of 8'-9' bgs. This layer was followed by silty, fine grained sand to the bottom of the excavation.

Hydrogeology: Groundwater was encountered at 8' bgs but was determined to fluctuate in between 6' and 11' bgs. Groundwater well elevations indicate that groundwater flow is to the northeast. The Green River is 2,500' east of the Site.

Site Investigations: In June 2017, Stemen Environmental, Inc. performed a Phase II exploration at the Site. TPH-g, TPH-d and TPH-o were found at the Site above MTCA Method A cleanup Levels. TPH-g and TPH-o were determined to be over MTCA Method A cleanup Levels on the Property boundary between the two Properties. Additional soil borings were obtained by G-Logics in August 2017 in order to bound the MTCA plume.


Remedial Efforts: A 550-gallon used oil UST was removed from the Site. A remedial excavation was performed, removing 348 tons of PCS. Twenty-eight soil samples were obtained below MTCA Method A cleanup Levels. Following the excavation, 200 pounds of oxygen-releasing compound was placed into the excavation pit and backfilled. Four quarters of groundwater monitoring were performed in order to determine if the cleanup action met the cleanup objective. Four quarters of groundwater monitoring yielded detected all COCs below MTCA Method A cleanup Levels using silica gel sample cleanup and a literature search for regional background arsenic groundwater concentrations.

Ms. Karis Vandehey May 6, 2019 Page 12 of 25

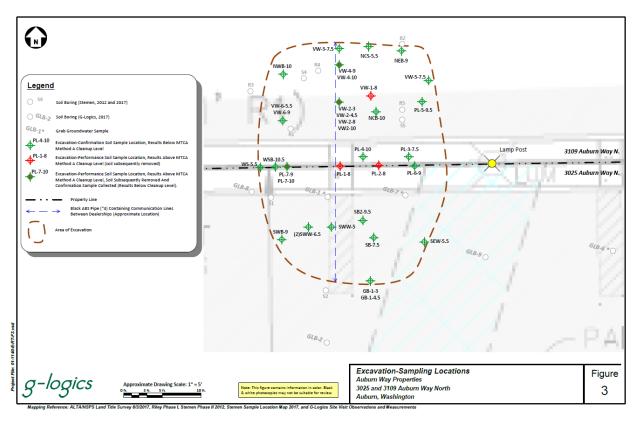


Figure 1: Site Vicinity Map

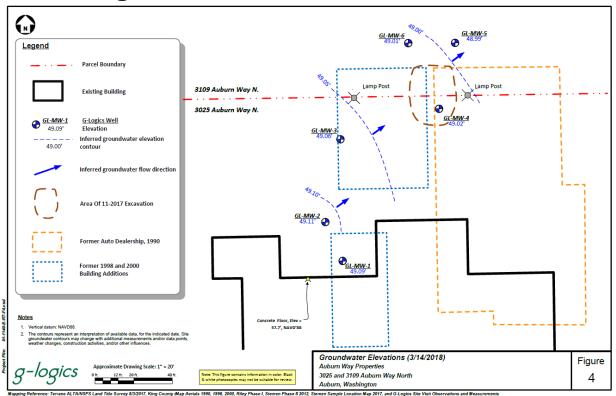

Ms. Karis Vandehey May 6, 2019 Page 13 of 25

Figure 2: Exploration Locations with Survey

Figure 3: Excavation Boundary and POCs

Figure 4: Groundwater Flow Direction

Figure 5: Groundwater Background Arsenic Concentrations in Washington State

Table 1: Natural background groundwater arsenic concentrations in Washington state (2003-10).

				OKG				1 1 1 1 1	
Natural Background	µg/L	7.0	13.3	14.6	8.0	11.8	5.3	4.9	6.0

All = Statewide. ISL = Island County. OKG = Okanogan Basin. PSB = Puget Sound Basin. SNO = Snohomish Basin. SPK = Spokane Basin. SW = Southwest Washington. YB = Yakima Basin.

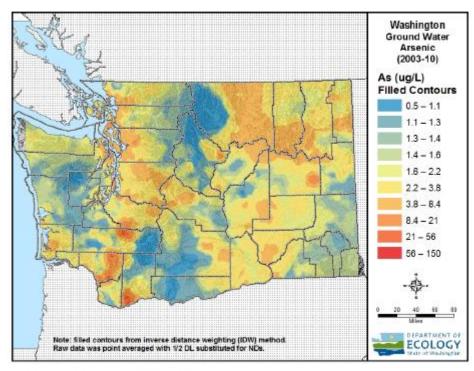


Figure 1: Natural background groundwater arsenic concentrations in Washington state (2000-10).

					/	//	. /	1	1	//	//	/	/ /
					(SPINY)	TR Organ	organics	-ge Organics	100 Organics				
Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	PID	Reading Dopmy	Rande Organ	HER DORRICS	Rande Organics	panes organics	one Tour	are Elity	penzene Syler	at Arsen
MTCA Cleanup Le	evel (2)(3)			NA	100(a)/30(b)		2,000	2,000	0.03	7	6	9	20
(units in mg/kg)					_					_		_	_
Stemen Environ													
December, 2012				_									_
S1	12/12/2012	S1-8 S1-12	8 12		<10 <10	<50 <50	<100 <100						
		31-12	12		<10	<30	<100						
\$2	12/12/2012	S2-9	9		<10	<50	120						
\$3	12/12/2012	S3-9	9		<10	<50	<100						
\$ 4	12/12/2012	S4-8	8	-	500	<50	3,800						
\$5	12/12/2012	S5-9	9		<10	<50	<100						
S 6	12/12/2012	S6-9	9		<10	<50	<100						
\$7	12/12/2012		8		<10	<50	<100						
S8	12/12/2012	S8-8	8		<10	<50	<100						
Stemen Environ	mental Inc.												
June, 2017									_				_
R1	6/2/2017	R1-5	5		<10	<50	710		< 0.02	< 0.05	<0.05	<0.15	-
		R1-8	8		<10	<50	210		<0.02	< 0.05	<0.05	<0.15	
R2	6/2/2017	R2-5	5		<10	<50	<100		<0.02	< 0.05	<0.05	<0.15	
		R2-8	8	-	<10	<50	<100		<0.02	<0.05	<0.05	<0.15	-
R3	6/2/2017	R3-5	5		<10	<50	<100		<0.02	< 0.05	<0.05	<0.15	
		R3-8	8		<10	<50	<100		<0.02	<0.05	<0.05	<0.15	

Table 1: Soil Data Pre-Excavation

					AD NOT	Organi	es montes	ne Organica	ne Organica		//		
Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	PID	Reading topond	Range Organi	ES OTORNES HEAVY	OI PARTE OFFICE	party organics	ane tour	are Estavi	Dentere Hylene	an Arser
MTCA Cleanup Le	evel (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	20
(units in mg/kg)													
R4	6/2/2017	R4-5	5		<10	<50	<100		< 0.02	< 0.05	<0.05	<0.15	
		R4-8	8		<10	<50	<100		<0.02	<0.05	<0.05	<0.15	
R5	6/2/2017	R5-5	5		<10	67	110		<0.02	< 0.05	<0.05	<0.15	
		R5-10	10		<10	<50	<100		<0.02	< 0.05	<0.05	<0.15	
G-Logics					-								
July, 2017													
GLB-1	7/21/2017	GLB-1-5	5	8.4	<6.10	<26.2	6,110	5,990	<0.0244	<0.0244	<0.0305	<0.0610	15.2
		GLB-1-10	10	0.4		<23.8	<59.5						
		GLB-1-14	14	0.3									
GLB-2	7/21/2017	GLB-2-4	4	1.4		<24.3	<60.7						
		GLB-2-8	8	0.3									
		GLB-2-111	11	0.3									
GLB-3	7/21/2017	GLB-3-4	4	0.8									
		GLB-3-8	8	0.5		<24.3	<60.9						
		GLB-3-11	11	0.4									
GLB-4	7/21/2017	GLB-4-4	4	0.5									
		GLB-4-8	8	0.3		<23.9	<59.9						
		GLB-4-11	11	0.5									
GLB-5	7/21/2017	GLB-5-8	8	0.4	<5.91	<25.3	<63.4		<0.0237	<0.0237	<0.0296	<0.0591	
		GLB-5-12	12	0.4									
GLB-6	7/21/2017	GLB-6-4	4	0.6									
		GLB-6-8	8	0.5	<5.60	<25.3	<63.2		<0.0224	<0.0224	<0.0280	<0.0560	
		GLB-6-11	11	0.4									

Table 1: Soil Data Pre-Excavation (continued)

Heart Of Bange Of B Heart OI Parge Or ange Organ PIDRe Sample Depth (ft) Exploration Sample Sample Ethyl tyles Location Date Number 2è PS ଔ d' MTCA Cleanup Level (2)(3) NA 100(a)/30(b) 2,000 2,000 2,000 0.03 20 9 (units in mg/kg) GLB-7 7/21/2017 GLB-7-6 5.5 2,160 2,500 <5.70 <23.8 < 0.0228 0.0468 6 GLB-7-9 9 8.3 24.3 <26.1 2,900 3,250 <0.0241 <0.0241 <0.0302 <0.0604 3.47 GLB-7-11 11 <22.3 <55.7 --------------------------------GLB-8 7/21/2017 GLB-8-9 9 ------------------------------GLB-9 7/21/2017 GLB-9-9 9 <26.9 <67.2 -------------------------------

Table 1: Soil Data Pre-Excavation (continued)

Ms. Karis Vandehey May 6, 2019 Page 20 of 25

					/	///	/	/	/	//	//	/ /	/ /
					m /	organ	ites sanics	Organics	Organics				
Exploration	Sample	Sample	Sample	/	Residing topony	Rande Ores	HES OTOMICS	II BARRO COMPILS	panesoroanics	ne /		Denterie Tyler	。//
Location	Date	Number	Depth (ft)	PID	Re Gasolt	Diese	er Heard	Heary	Bent	ne Tolue	a. End	penal tylen	at Arset
MTCA Cleanup	Level (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	20
(units in mg/kg)							_						
GLB-7	7/21/2017	GLB-7-6	6	5.5	<5.70	<23.8	2,160	2,500	<0.0228	<0.0228		0.0468	
		GLB-7-9	9	8.3	24.3	<26.1	2,900	3,250	<0.0241	<0.0241	<0.0302	< 0.0604	3.47
		GLB-7-11	11			<22.3	<55.7						-
GLB-8	7/21/2017	GLB-8-9	9			<22.3	<55.7						
GLB-9	7/21/2017	GLB-9-9	9			<26.9	<67.2						
G-Logics													
Soil Excavatio	n, November 2	2017											
sww	11/8/2017	SWW-5	5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
(2)SWW	11/7/2017	(2)SWW-6.5	6.5			<50	<250						
SWB	11/9/2017	SWB-9	9		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
SEW	11/6/2017	SEW-5.5	5.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
NWB	11/8/2017	NWB-10	10		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
NCS	11/8/2017	NCS-5.5	5.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
NEB	11/8/2017	NEB-9	9			<50	<250						
ws	11/9/2017	WS-5.5	5.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
WSB	11/9/2017	WSB-10.5	10.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
GB-1	11/6/2017	GB-1-3	3										<5.0
	11/8/2017	GB-1-4.5	4.5										6.2

Table 2: Soil Data Post-Excavation

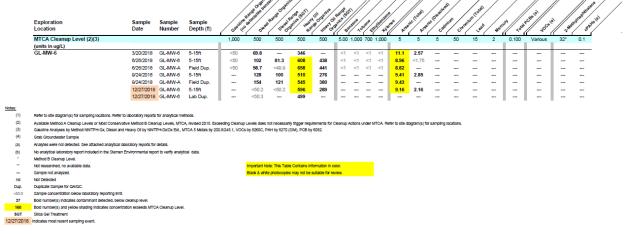
					/		。/、	mics	mics		// /	/ /	/
Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	PID	Casoline Convil	Range Organi	ES ORDIES	Bange Organica	angeorgenice angeorgenice	Tours Tour	are Ethyl	oortene Hier	5° // 55
MTCA Cleanup I	_evel (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	20
(units in mg/kg)													
SB	11/6/2017	SB-7.5	7.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	6.2
SB2	11/9/2017	SB2-9.5	9.5			<50	<250						
PL-1	11/7/2017	PL-1-8	8			<500	12,200E						
PL-2	11/7/2017	PL-2-8	8			<500	20,800						
PL-3	11/7/2017	PL-3-7.5	7.5			<50	<250						
PL-4	11/7/2017	PL-4-10	10		<10	<50	<250		<0.02	<0.10	<0.05	0.17	
PL-5	11/7/2017	PL-5-9.5	9.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
PL-6	11/7/2017	PL-6-9	9		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
PL-7	11/8/2017	PL-7-9	9			280	18,000E						
	11/8/2017	PL-7-10	10			<50	1,650						
VW-1	11/7/2017	VW-1-8	8			<500	4,390						
NCB	11/8/2017	NCB-10	10		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	
VW-2	11/7/2017	VW-2-3	3										<5.0
	11/7/2017	VW-2-4.5	4.5										<5.0
	11/7/2017	VW-2-8	8			<500	17,200						<5.0
	11/9/2017	VW2-10	10		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	

Table 2: Soil Data Post-Excavation (continued)

Table 2: Soil Data Post-Excavation (continued)

Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	810	Realing Darry	Range Organi	Earling Ordenics	Range Crownics	panse organis panse of the series	are Town	100 EBW	postero Hiero	st stored	
MTCA Cleanup L	.evel (2)(3)			NA	100(a)/30(b)	2,000	2,000	2,000	0.03	7	6	9	20	
(units in mg/kg)														
VW-3	11/7/2017	VW-3-7.5	7.5			<50	<250							
VW-4	11/7/2017	VW-4-9	9			<500	22,700							
	11/8/2017	VW-4-10	10	-		<50	<250						-	
VW-5	11/7/2017	VW-5-7.5	7.5		<10	<50	<250		<0.02	<0.10	<0.05	<0.15	- 1	Í.
VW-6	11/8/2017	VW-6-5.5	5.5			<50	<250							
	11/8/2017	VW-6-9	9			<50	<250						-	

Table 3: Groundwater Data Pre-Excavation


Cleanup Level (2)(3) 1,000 500 15 2 0.100 Various 32° 0.1 n Environmental Inc. 12/12/2012 51.W 8 <100						miles	enel		/	/	/		/	//		// /	/ /	/ /	/ /	/ /	///			
Cleanup Level (2/G) Cleanup Level (2/G) Sol Sol <th>ploration cation</th> <th></th> <th></th> <th></th> <th>Gasolin</th> <th>and a start of the second</th> <th>Range Organ</th> <th>partice SCT</th> <th>OI OF BRICK</th> <th>panes 50</th> <th>ST. ST.</th> <th>suere</th> <th>Alberten's</th> <th>in the second</th> <th>and Local</th> <th>ant Dissolved</th> <th>uun che</th> <th>anium Total</th> <th>a staro</th> <th>ury Total</th> <th>CES (B) VOCS</th> <th>(a) 2.8687</th> <th>Streeptinger</th>	ploration cation				Gasolin	and a start of the second	Range Organ	partice SCT	OI OF BRICK	panes 50	ST. ST.	suere	Alberten's	in the second	and Local	ant Dissolved	uun che	anium Total	a staro	ury Total	CES (B) VOCS	(a) 2.8687	Streeptinger	
A Parvisonmental Inc. ber, 2012 S1-W 8 <100	CA Cleanup Level (2)(3)									5.00	1,000	ſΥ	. (<u>،</u> ۱	5	5				0.100	í	((· (
ber, 2012 12/12/2012 S1-W 8 <100	its in ug/L)																							
12/12/2012 S1-W 8 <th<< td=""><td>men Environmental Inc.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>	men Environmental Inc.																							
12/12/2012 S4-W 8 <th<< td=""><td>cember, 2012</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>	cember, 2012									_														
12/12/2012 S6-W 8 color color <th< td=""><td></td><td>12/12/2012</td><td>S1-W</td><td>8</td><td><100</td><td><250</td><td></td><td><500</td><td>-</td><td><1</td><td><1</td><td><1</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>- </td><td>nd</td><td>-</td><td></td></th<>		12/12/2012	S1-W	8	<100	<250		<500	-	<1	<1	<1	3							-	nd	-		
n Environmental Inc. Be/2017 R2-W R3/2017 R3-W R3-W<	(b)	12/12/2012	S4-W	8	<100	<250	-	<500		<1	<1	<1	⊲		-		-		-			-	-	
bber,2012 R2-W </td <td></td> <td>12/12/2012</td> <td>S6-W</td> <td>8</td> <td><100</td> <td><250</td> <td></td> <td><500</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td>⊲</td> <td></td>		12/12/2012	S6-W	8	<100	<250		<500		<1	<1	<1	⊲											
bber,2012 R2-W </td <td>mon Environmental Inc</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td>	mon Environmental Inc				-				_	-										_		_		
622017 R5W R5W <t< td=""><td>cember, 2012</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	cember, 2012										_	_	_											
Set S	(b)	6/2/2017	R2-W		<100	<250		<500		<1	<1	<1	⊲					15			nd			
0017 (Pre Remedial Eacvation) W(4) 7212017 GLB-1-W 9-14ft <	(b)	6/2/2017	R5-W		<100	<250		<500		<1	<1	<1	⊲											
0017 (Pre Remedial Eacvation) W(4) 7212017 GLB-1-W 9-14ft <	ogics								-	_														
W(4) 7212017 GLB-5-W 0-14ft <50 <48.9 - 700 598 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	y, 2017 (Pre Remedial Eacvation)																							
W(4) 7/21/2017 GLB-8-W 9-14ft 161 - 6.25 - 0.20 1.32 0.10 - nd - - W(4) 7/21/2017 GLB-7-W 9-14ft 1.20 857 4.370 3.080 <1< <td><1</td> <1	<1	B-1-W (4)	7/21/2017	GLB-1-W	9-14ft	<50	<49.9		1,670	1,210	<1	<1	<1	<1	2.44		<0.200	1.79	2.06	<0.100	<0.100	nd	<0.0997	nd
W(4) 7/21/2017 GLB-7-W 0-14ft <50 1,200 857 4,370 3,090 <1 <1 <1 19.0 6.94 <0.200 1.87 1.89 <0.100 <0.143 nd 0.143 nd V-1 7/31/2017 GL-MW-1 5-15ft - - 426 - </td <td>B-5-W (4)</td> <td>7/21/2017</td> <td>GLB-5-W</td> <td>9-14ft</td> <td><50</td> <td><49.9</td> <td></td> <td>700</td> <td>599</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td>20.7</td> <td>5.19</td> <td><0.200</td> <td>8.68</td> <td>0.592</td> <td><0.100</td> <td></td> <td>nd</td> <td></td> <td></td>	B-5-W (4)	7/21/2017	GLB-5-W	9-14ft	<50	<49.9		700	599	<1	<1	<1	<1	20.7	5.19	<0.200	8.68	0.592	<0.100		nd			
V-1 7/31/2017 GL-MW-1 5-15ft - <49.9 - 426 25.9 20.7	.B-6-W (4)	7/21/2017	GLB-6-W	9-14ft	<50	<49.9		161		<1	<1	<1	<1	6.25	-	<0.200	2.00	1.32	<0.100	-	nd	-		
	.B-7-W (4)	7/21/2017	GLB-7-W	9-14ft	<50	1,200	857	4,370	3,090	<1	<1	<1	<1	19.0	6.94	<0.200	1.87	1.89	<0.100	<0.999	nd	0.143	nd	
7/31/2017 GL-MW-100 Field Dup	-MW-1	7/31/2017	GL-MW-1	5-15ft		<49.9		426						25.0	20.7									
		7/31/2017	GL-MW-100	Field Dup.	-	<49.8		375	-	-			-	27.9	21.1					-		-		

Exploration	Sample	Sample	Sample	oline	Party Crowner	a range Organi	and soft	N OT OF HER OF	pando 50	S /		inerteen type		Me Com	NE DISSOURCE	and a second sec	mun Tom	store	r	PCBN(P)	•	Drawner Bar	AD A
Location	Date	Number	Depth (ft)	Gastin	o over	O*Or	\$ 	Hen Or	// 🗞	1	*/ #	¥ +3*	ALS ALS	ALAN ALAN	C.80	CIRC	Lead	Wer	104	1 200	// ²³⁶	/ 8	<u> </u>
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500	5.00	1,000	700 1	,000	5	5	5	50	15	2	0.100	Various	32*	0.1	
(units in ug/L)				-					-										_	-			
G-Logics																							
Post Remedial Excavation																							
GL-MW-1	3/20/2018	GL-MW-1	5-15ft	<50	119		219		<1	<1	<1	<1	26.0	4.31									
	3/20/2018	GL-MW-A	Field Dup.	<50	78.1		291		<1	<1	<1	<1	27.0	4.61									
	6/26/2018	GL-MW-1	5-15ft	<50	78.9	63.3	307	232	<1	<1	<1	<1	30.8	3.00									
	9/24/2018	GL-MW-1	5-15ft		97.5	81.2	255	<99.6					38.6	4.83									
	12/27/2018	GL-MW-1	5-15ft		<50		323		-				37.4	3.87									
GL-MW-2	3/20/2018	GL-MW-2	5-15ft	<50	<49.9		161		<1	<1	<1	<1	44.3	14.1									
	6/26/2018	GL-MW-2	5-15ft	<50	<50	<50	209	156	<1	<1	<1	<1	100	4.24									
	9/24/2018	GL-MW-2	5-15ft		<50.4	<50.4	208	142					113	11.70									
	12/27/2018	GL-MW-2	5-15ft		<49.7		228	-		_			117	5.78				-					
	12/27/2018	GL-MW-B	Field Dup.	-	-			-	-	-			122	5.75				-	-	-	-		
GL-MW-3	3/20/2018	GL-MW-3	5-15ft	<50	<49.9		<99.9		<1	<1	<1	<1	25.7	4.56					-	-			
	6/26/2018	GL-MW-3	5-15ft	<50	<49.8	<49.8	125	<99.7	<1	<1	<1	<1	24.2	<1.75									
	9/24/2018	GL-MW-3	5-15ft		56.1	<49.6	127	<99.1					24.7	3.18									
	12/27/2018	GL-MW-3	5-15ft		<50.3		155		-				25.2	1.97									
GL-MW-4	3/20/2018	GL-MW-4	5-15ft	<50	152		259		<1	<1	<1	<1	6.16	6,15									
	6/26/2018	GL-MW-4	5-15ft	<50	152	148	798	461	<1	<1	<1	<1	2.90										
	9/24/2018	GL-MW-4	5-15ft		149	119	759	499					3.43										
	12/27/2018	GL-MW-4	5-15ft		<49.7	<49.7	725	300					2.17										
	12/27/2018	GL-MW-A	Field Dup.	-	<50.1	<50.1	489	234	-	-		-						-	-	-	-		
GL-MW-5	3/20/2018	GL-MW-5	5-15ft	<50	<50		<100		<1	<1	<1	<1	1.80	<1.75							-		
	6/26/2018	GL-MW-5	5-15ft	<50	<49.9		<99.8		<1	<1	<1	<1	2.54					_					
	9/24/2018	GL-MW-5	5-15ft		<49.7	<60.6	114	<121					2.00										
	12/27/2018	GL-MW-5	5-15ft		<50		117						<1.75										
												_											

Table 4: Groundwater Data Post-Excavation

Ms. Karis Vandehey May 6, 2019 Page 25 of 25

Table 4: Groundwater Data Post-Excavation (continued)

Appendix C

· - x	Surface: Asphalt				
· - \		1			
	0-3': FILL (silt, sand, gravel), brown, dry, loose, no odor.	 60	FILL		Temporary Boring. Backfilled with Bentonite
	3-5': SILTY SAND, fine grained, gray, dry, loose, no		SM	0.0	Demonite
B-1-5'	odor. 5-13': SANDY SILT interbedded with silty sand lenses, gray, moist to wet at 12', loose, no odor.	· ··			
B-1-10'		70	ML	0.0	
××		·			
B-1-13'	13-15': SAND, fine to medium grained, dark brown,	100		0.0	
B-1-15'			SP	0.0	
	EOB at 15'				•
		·			
h in feet			L		
g Method: Direct Pus	bh Date: 4/24/2022	Other In	formatio	n:	
g Company: Holocene	Weather: Sunny, mid 60s	-			
d By: Dan Hatch	es Page <u>1</u> of <u>1</u>				
9 9	B-1-15' B-1-15' in feet Method: Direct Pus Company: Holocene Diameter: Two inch	B-1-10' B-1-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. B-1-15' EOB at 15' EOB at 15' in feet Method: Direct Push Date: 4/24/2022 Company: Holocene Weather: Sunny, mid 60s Diameter: Two inches Page 1 of 1	B-1-10' Image: Company: Holocene Image: Company: Holocene	B-1-10' 70 ML B-1-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. 100 B-1-15' EOB at 15' 100 B-1-15' EOB at 15' 100 Image: the state of the state	B-1-10' 70 ML B-1-10' 0.0 B-1-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. 100 0.0 B-1-15' EOB at 15' 0.0 SP 0.0 B-1-15' EOB at 15' 0.0 SP 0.0 Image: Second

B-2-5'	Surface-6": Concrete 6"-3': FILL (silt, sand, gravel), brown, dry, l odor.				
B-2-5'	odor.		-	1	
B-2-5'		60	FILL		Temporary Boring. Backfilled with Bentonite
<	3-5': SILTY SAND, fine grained, gray, dry, odor.	loose, no	SM	0.0	Bentomte
	5-13': SANDY SILT interbedded with silty s lenses, light gray, moist to wet at 12', loose				
B-2-10'				0.0	
< >		~~~~~			
B-2-13'		rk brown, 100		0.0	
- H-2-15'				0.0	
		L			
	h Date: 4/24/2022	Other	Informatior	1:	
	Weather: Sunny, mid 60s				
^{iameter:} Two incl ³ y: Dan Hatch	es Page <u>i</u> of <u>i</u>				
1 i	B-2-13' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-15' B-2-13' B-2-13' B-2-13' B-2-15	B-2-13' 13-15': SAND, fine to medium grained, dan wet, loose, no odor. B-2-15' B-2-15' n feet ethod: Direct Push Date: 4/24/2022 ompany: Holocene Weather: Sunny, mid 60s ameter: Two inches Page 1_ of 1_	B-2-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. B-2-15' EOB at 15' EOB at 15' EOB at 15' an feet ethod: Direct Push Date: 4/24/2022 Other ompany: Holocene Weather: Sunny, mid 60s ameter: Two inches Page 1 of 1 y: Dan Hatch	B-2-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. B-2-15' EOB at 15' EOB at 15' n feet ethod: Direct Push Date: 4/24/2022 Other Information ompany: Holocene Weather: Sunny, mid 60s ameter: Two inches Page _1_ of _1	B-2-13' 13-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. B-2-15' 100 0.0 FOB at 15' 0.0 F

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface-6"	: Concrete					
			6"-3': FILL odor.	(silt, sand, gravel), brown, dry,	loose, no	40	FILL		Temporary Boring. Backfilled with Bentonite
		B-3-5'	3-5': SILT odor.	Y SAND, fine grained, gray, dry,	loose, no		SM	0.0	Dentonite
			5-12': SAN	IDY SILT interbedded with silty interbedded w		70	ML		
		B-3-10'						0.0	
		B-3-12'		ND, fine to medium grained, da loose, no odor.	rk 🎴	90	SP	0.2	
		B-3-15'			EOB at 15'			0.0	
 Dept	LL th in fe	 et	-l		L		L		
Drillin Boring	g Diamete	l: Direct Pu ny: Holocene er: Two incl Dan Hatch	e	Date: 4/24/2022 Weather: Sunny, mid 60s Page Of		Other In	formation	n:	
B EN	JJ	JES	TON	Boring Log Auburn VW 3109 Auburn	Way Nor	th			B-3

INTERVAL	SAMPLE NUMBER		SOIL	DESCRIP	TION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
		Surface-6"	: Concrete								
		6"-3': FILL odor.	. (silt, sand	l, gravel), bro	own, dry, loo	 se, no	60	FILL		Temporary Boring. Backfilled with Bentonite	
	B-4-5'		Y SAND, fi	ine grained, l	ight gray, dr	y, loose,		SM	0.0	Bentonite	
- `* *		5-14': SAN									
-	B-4-10'						70	ML			
						¥	100		0.0		
	B-4-14' B-4-15'	14-15' [.] SA	ND fine to	o medium ar	ained dark h	orown		SP	0.3		-
		wet, loose	, no odor.		EC	DB at 15'					
th in fe		_									
ng Metho	d: Direct Pu	ısh	Date: 4/	/24/2022			Other In	formatio	1:		
					60s						
	^{ær:} Two inc Dan Hatch	hes	Page	i of1					m open be placed fro	-	
r	ng Metho ng Compa	B-4-10' B-4-10' B-4-10' B-4-14' B-4-15' 	Surface-6" 6"-3': FILL odor. 3-5': SILT B-4-5' no odor. 5-14': SAN lenses, lig B-4-10' B-4-15' 14-15': SA wet, loose	B-4-10' B-4-10' B-4-10' B-4-10' B-4-10' B-4-15	Surface-6": Concrete 6"-3": FILL (silt, sand, gravel), bro odor. 3-5": SILTY SAND, fine grained, I B-4-5" no odor. 5-14": SANDY SILT interbedded v lenses, light gray, moist to wet at B-4-10" B-4-10" B-4-10" B-4-11" B-4-12" 14-15": SAND, fine to medium grawet, loose, no odor. wet, loose, no odor. Image: state st	Surface-6": Concrete 6"-3': FILL (silt, sand, gravel), brown, dry, loo odor. 3-5': SILTY SAND, fine grained, light gray, dr B-4-5' no odor. 5-14': SANDY SILT interbedded with silty sar lenses, light gray, moist to wet at 12', loose, r B-4-10' B-4-10'	Surface-6": Concrete 6"-3": FILL (silt, sand, gravel), brown, dry, loose, no 3-5": SILTY SAND, fine grained, light gray, dry, loose, no odor. 5-14": SANDY SILT interbedded with silty sand lenses, light gray, moist to wet at 12', loose, no odor. B-4-10' B-4-11' B-4-12' Ita-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. EOB at 15' Ita-15': SAND, fine to medium grained, dark brown, wet, loose, no odor. EOB at 15' Ita-15': SAND, fine to medium grained, dark brown, the follower dark brown, wet, loose, no odor. Ita-15': SAND, fine to medium grained, dark brown, the follower dar	Surface-6": Concrete 6"-3": FILL (silt, sand, gravel), brown, dry, loose, no odor. 60 3-5": SILTY SAND, fine grained, light gray, dry, loose, no odor. 60 B-4-5" no odor. 514": SANDY SILT interbedded with silty sand lenses, light gray, moist to wet at 12", loose, no odor. B-4-10" Image: Sand gray and gra	Surface-6": Concrete 6"-3": FILL (silt, sand, gravel), brown, dry, loose, no odor. 60 FILL 3-5": SILTY SAND, fine grained, light gray, dry, loose, no odor. 60 FILL SM B-4-5" no odor. 5-14": SANDY SILT interbedded with silty sand lenses, light gray, moist to wet at 12", loose, no odor. 70 ML B-4-10" Image: second	Surface-6": Concrete 6"-3": FILL (silt, sand, gravel), brown, dry, loose, no. odor. 60 B-4-5" no odor. 5-14": SANDY SILT interbedded with silty sand lenses, light gray, moist to wet at 12", loose, no odor. 70 B-4-10" B-4-10" B-4-10" 0.0 B-4-14" B-4-15" 14-15": SAND, fine to medium grained, dark brown, wet, loose, no odor. EOB at 15" 0.3 B-4-14" B-4-15" 14-15": SAND, fine to medium grained, dark brown, 0.1 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.7 0.	Surface-6": Concrete 6"-3": FILL (sit, sand, gravel), brown, dry, loose, no odor. 3-5": SILTY SAND. fine grained, light gray, dry, loose, 5-14": SANDY SLT interbedded with sity sand lenses, light gray, moist to wet at 12; loose, no odor. 70 B-4-10" 0.0 0.0 B-4-11" B-4-12" 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface-6	s": Concrete						
	- >		6"-3': FIL odor.	L (silt, sand, gravel), brown, dry,		60	FILL		– – – – – – – – – – – – – – – – – – –	
		D <i>E E</i> '		TY SAND, fine grained, light gray	, dry, loose,		SM	0.0	Bentonite	
	╎╲┽	B-5-5' 	no_odor. 5-13': SA	NDY SILT interbedded with silty				0.0		
			lenses, li	ight gray, moist to wet at 12', loos	e, no odor.					
						70	ML			
	$ \downarrow_{\gamma} $	B-5-10'								
		B-5-12'			$\mathbf{\nabla}$			0.0		
			14 154 0	AND find to modium grained, do		100				
		B-5-15'		AND, fine to medium grained, da	rk gray,		SP	0.3		
					EOB at 15'					
	+		-		·					
Dept	th in fe	et	_•		L		-	J		
	ig Metho			Date: 4/24/2022			formatio			
		any: Holocene		Weather: Sunny, mid 60s Page 1 of 1					nple (B-5-W) oring. Stainless	
		Dan Hatch	1100					placed fro		
B	Ll	JEŚ	FO NTAL,	NE Boring Log Auburn VW 3109 Auburn	Way Nort	th			B-5	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL	DESCRIPTI	ON	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	I
			Surface-6	: Concrete							
	· - >		6"-3': FIL odor.	_ (silt, sand,	gravel), brown	, dry, loose, no	40	FILL		Temporary Boring. Backfilled with	
		B-6-5'		Y SAND, fir	ne grained, ligh	t gray, dry, loose,		sм	0.0	Bentonite	
	- x 4				nterbedded with	n silty sand ', loose, no odor.	· _				
							80	ML			
	┥┥╲	B-6-10'	-								
		B-6-13'		AND, fine to e, no odor.	medium graine	ed, dark gray,	90		0.0		
	-	B-6-15'						SP	0.0		
						EOB at 15'					
	h in fe										
	g Metho		ish	Date: 4/2	24/2022		Other In	formatio	n:		
Drillin	g Compa	any: Holocene			Sunny, mid 60s	6	Grab	ground	dwater sar	nple (B-6-W)	
_		^{er:} Two inc Dan Hatch	hes	Page1	of1				m open be placed fro	oring. Stainless	
B	Ll		IOI	NE	<i>Boring Lo</i> Auburn V 3109 Aub		•			B-6	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPT	ION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	1
			Surface-6":	Concrete						
	1 - ÌI		6"-3': FILL	(silt, sand, gravel), brown	n, dry, loose, no				Temporary Boring.	
			odor.				FILL		Backfilled with	
		B-7-3'	3-4': SILT)	Y SAND, fine grained, da	rk gray, dry,	50		0.0	Bentonite	
	$\left \right\rangle $		loose, no c	odor.						
	$\left \left \right \right $	B-7-5'	4-7': SILT)	SAND, fine grained with	wood debris and		<u>sm</u>	0.0		
	-			yer from 4.5 to 5', dark g	ray, moist,					
				iff, no odor.		100	ML			
		B-7-8'		with wood debris, dark g				0.0		
			medium st	iff, no odor.	EOB at 8'					
	++									
										-
	•••••									
	11									
						L	L			
L – -	{ }		-				⊢ – –			
L	⊥L th in fe	 et	_			L	L	L]		
-				_						
	ng Metho			Date: 7/20/2022		Other In	formatio	n:		
		er: Two inc		Weather: Sunny, mid 70 Page <u>1</u> of <u>1</u>	5					
		Haley Carter								
- 55	, .			1						
R	JJ	IFS	TON	Boring L Auburn V					B-7	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	NSCS	PID (ppmv in headspace)	WELL CONSTRUCTION	I
			Surface-6": 6"-3': FILL odor.	Concrete (silt, sand, gravel), brown, dry		 50	FILL		– – – – – – – – – – – – – – – – – – –	
		B-8-3'	3-4': SILTY loose, no c	′ SAND, fine grained, dark gra dor.	ay, dry,	50		0.1	Bentonite	
		B-8-5'	4-7': SILTY	SAND, fine grained and a gr 5', dark gray, moist, medium	stiff, no odor.		<u>SM</u>	_ 0.0 _		
		B-8-8'	7-8': SILT,	dark gray, moist, medium stif		100	ML	0.0		
										•••
	th in fe	- — — — ət				[
Drillin	g Method	: Direct Pu		Date: 7/20/2022	Ot	ther Inf	formatior	n:		
Boring	g Diamete	ny: Holocene er: Two inc faley Carter	hes	Weather: Sunny, mid 70s Page of						
			TON NTAL,	3107 AUDUI	n Way Nort	h			B-8	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
			odor.	(silt, sand, gravel), brown, dry, loose, no	50	FILL		— — — — — — — — — — — — — — — — — — —
		B-9-3'	3-4': SILT loose, no c	Y SAND, fine grained, dark gray, dry, odor.			0.1	Bentonite
		B-9-5'		Y SAND, fine grained and a gravel layer 4.25', dark gray, moist, medium stiff, no		<u>_sm</u>	_ <u>0.0</u> _	
		B-9-8'	odor. 7-8': SILT,	dark gray, moist, medium stiff, no odor. EOB at 8	100 3'	ML	0.0	
					·			
					·			
					·			
Dept	th in fe	et	_!			-	<u> </u>	
Drillin	ig Methoo ig Compa g Diameto	ny: Holocene	9	Date: 7/20/2022 Weather: Sunny, mid 70s Page	Other I	nformatio	n:	
		aley Carter			-			
			TON NTAL,		North			B-9

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface-6":	Concrete				
	<u> </u> _}		6"-3': FILL	(silt, sand, gravel), brown, dry, lo	- 	-		– – – – – – – – – – – – – – – – – – –
			odor.			FILL		Backfilled with
		B-10-3'		Y SAND, fine grained with plastic	debris, 50		0.0	Bentonite
	$ \downarrow \downarrow $			dry, loose, no odor.				
	┥┽╶┝	B-10-5' B-10-6'		with fine grained sand and a grav			$-\frac{4.9}{0.0}$	
		D-10-0		9 4.75' and an asphalt layer from 5 moist, medium stiff, no odor.	100 5.2',	ML	0.0	
		B-10-8'		dark gray, moist, medium stiff, no			0.0	
	· · · · · · · · · · · · · · · · · · ·							
					·			
	th in fe							
	ng Method		ısh	Date: 7/20/2022	Other	Informatio	n:	
Drillir	ng Compa	ny: Holocene		Weather: Sunny, mid 70s				
Borin	g Diamet	er: Two incl	hes	Page <u>1</u> of <u>1</u>				
Logg	ed By:	laley Carter						
				Boring Log Auburn VW				B-10

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface-6":	Concrete				
	- 7		6"-3': FILL odor.	(silt, sand, gravel), brown, dry, loo	40	FILL		– – – – – – – – – – – – – – – – – – –
		B-11-3'	3-4': SILTY loose, no c	∕ SAND, fine grained, dark gray, di odor.	y, 40	SM	0.0	Bentonite
		B-11-5'		with fine grained sand and wood d er from 4 to 4.25', dark gray, moist,	medium		_ <u>0.0</u>	
		B-11-8'	stiff, no od 7-8': SILT,	dark gray, moist, medium stiff, no	odor. DB at 8'		0.0	
	· — — -							
	h in fe				L			
Drilling	g Methoo	1: Direct Pu		Date: 7/20/2022	Other I	nformatio	n:	
Boring	g Diamet	ny: Holocene ^{er:} Two incl Haley Carter		Weather: Sunny, mid 70s Page of				
				Boring Log	I			
Ы	LL	JES	IUN	Auburn VW 3109 Auburn W				B-11

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface-6"	Constato					
	<u> -</u>)		-	(silt, sand, gravel), brown, dry, loose, n		-	╉╌╌┨	– – – – – – – – – – – – – – – – – – –	
			odor.		40	FILL		Backfilled with	
		B-12-3'		Y SAND, fine grained, dark gray, dry,			0.0	Bentonite	
	$ \gamma $	B-12-5'	loose, no			SM			
	┥┽╺┝	D-12-3	-	with fine grained sand with wood and bris, gravel layer from 4 to 4.25', dark g			<u> </u>		
				im stiff, no odor.	100	ML			
		B-12-8'		, dark gray, moist, medium stiff, no odor			0.0		•••
				EOB a					
	+		-						
					•••••				•••
	┥╴╌┝		-						
			•••••••••••••••••••••••••••••••••••••••		•••••				
						L			
Dep	⊥L th in fe	 et				. L	LJ.		
	ng Methoo		ısh	Date: 7/20/2022	Other I	nformatio	n:		_
Drillir	ng Compa	ny: Holocene	e	Weather: Sunny, mid 70s					
Borin	g Diamet	er: Two inc	hes	Page1 of1					
Logg	ed By:	Haley Carter							
B	Ll	JES	TOT	Boring Log Auburn VW 3109 Auburn Way	North			B-12	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTIO	DN	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface-6"	· Concrete						
	-` \		-	(silt, sand, gravel), brown,	dry, loose, no				— — — — — — — — — — — — — — — — — — —	
			odor.			50	FILL		Backfilled with	
		B-13-3'		Y SAND, fine grained, dark	gray, dry,	50		0.0	Bentonite	
	$ \downarrow \downarrow $	B-13-5'			vol lovor from 4		SM	0.0		
	ł † – ŀ		-	with fine grained sand, gra rk gray, dry, medium stiff, n				_ <u>0.0</u> _		
			,,			100	ML			
		B-13-8'						0.0		
					EOB at 8'					
	-+		-							
	}									
							L			
	t t									
 Dept	⊥L th in fe	- — — — — - et	_I		L		L			
Drillin	g Method	I: Direct Pu	Jsh	Date: 7/20/2022		Other In	formatio	n:		_
		ny: Holocene		Weather: Sunny, mid 70s						
Boring	g Diamet	er: Two inc	hes	Page <u>1</u> of <u>1</u>	-					
Logge	ed By:	laley Carter								_
B	JJ	JEŚ	TOT	NE Boring Lo Auburn V		. (].			B-13	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPT	ION	Recovery %	nscs	PID (ppmv in headspace)		N
			Surface-6":	Concrete						
	<u> </u> _}		-	(silt, sand, gravel), brow	— — — — — — — — — — — — — — — — — — —	+				
			odor.				FILL		Backfilled with	
		B-14-3'	3-4': SILTY	Y SAND, fine grained, da	rk gray, dry,	40		0.0	Bentonite	
	$\left \mathbf{x} \right $		loose, no c	odor.			SM			
	╎╎	B-14-5'		with fine grained sand an		L	L	_ 0.0 _		
			from 4 to 4	l.5', dark gray, dry, mediu	ım stiff, no odor.		мL			
		B-14-8'	_ ~ ~ ~ ~			100				
		D-14-0	7-8': SILT,	dark gray, moist, mediur	n stiff, no odor. EOB at 8'			0.0		
	} - − 		-							
	<u> </u>		-							
	↓ –									
	 									
	[F	 			
	ļļ									
	LL th in fe	- — — — et	_I			L	L			
-	g Method		ısh	Date: 7/20/2022		Other In	formatio	n:		
		ny: Holocene		Weather: Sunny, mid 70	s					
		er: Two inc		Page of						
Logge	ed By:	laley Carter								
			TON	Boring L Auburn					B-14	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)		ELL RUCTION	
			0						8" Boring Well Box	
	- >		Surface: A 0-3': FILL odor.	(silt, sand, gravel), brown, dry, loose, no	50	FILL		Concrete Seal Well Cap Bentonite		
		MW-1-5		Y SAND, fine grained with gravel, gray, dium dense, no odor.		SM	0.0	Seal		
	- - - -		5-12': SAI	NDY SILT interbedded with silty sand ay, moist to wet at 7', medium dense, no	≤ 65	ML	0.0	2" PVC Blank	·	
	- X X	MW-1-12	13-17': SA	ND, fine to medium grained, dark gray,	90		0.0	2" PVC Screen Sand		
	~ ×		wet, loose	e, no odor.		SP	0.0	2" PVC		
				EOB at	17'		-			
										•••
Dept	h in fe		I		L	.L	L			
Drillin Boring	g Diamet	d: Direct Pus any: Holocene ter: Two inch Dan Hatch	-	Date: 5/23/2022 Weather: Sunny, mid 60s Page 1		Informatio E Well T		er: BPK-204		
B		JES			North			M	W-1	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	со	WELL		
			Surface: A	anhalt							Boring	
	- >			(silt, sand, gravel), brown, dry,	loose, no	50	FILL		Well — Cap	crete Seal		
		MW-2-5		Y SAND, fine grained with grav				0.0				
		MW-2-8		LTY SAND, interbedded with sist to wet at 8', medium dense, n		90	SM	0.0	2" PVC - Blank			
		MW-2-12	12.5-14.5' loose, no	SAND with silt, fine grained, g	ray, wet,	100	 SM	0.0	2" PVC - Screen	Sand		
	~~		14.5-17': 5 wet, loose	SAND, fine to medium grained, , no odor.		100	 SP	0.0	 2" PVC - Sump			
	×				EOB at 17'					2224 		
	· ·											
 Dept	th in fe							L				
Drillin Drillin Boring	ng Metho ng Compa g Diamet	d: Direct Pus any: Holocene		Date: 5/23/2022 Weather: Sunny, mid 60s Page 1			formatio Well T	n: ag Numb	er: BPK-2	205		
B	JJ	JES	101	Boring Log Auburn VW 3109 Auburn		*				MW	-2	_

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION		
			Surface C!	". Oomoot				8" Boring Well Box		
) 	- \	MW-3-3	odor.	(silt, sand, gravel), brown, dry, loose, no	50	FILL	0.0	Concrete Seal Well Cap Bentonite Seal		
	<u></u>	MW-3-5		Y SAND, fine grained with gravel, gray, dium dense, no odor.		L	0.0		· · · · ·	
	••••			LTY SAND, interbedded with sandy silt ay, moist to wet at 7', medium dense, no	75	SM/ ML		2" PVC Blank →		
	• \ \			SAND, fine to medium grained with trace ray, wet, loose, no odor.	100	SM/ ML		2" PVC Screen		
	┝┥	MW-3-15		ND, fine to medium grained, dark gray,	100	SP 	0.0	2" PVC		
			wet, loose	, no odor. EOB at 17'						
Dept	LI h in fe		I		L	L				
Drilling Method: Direct Push Date: 5/23/2022 Drilling Company: Holocene Weather: Sunny, mid 60s Boring Diameter: Two inches Page 1 Logged By: Dan Hatch Image State Image State			Other Information: DOE Well Tag Number: BPK-206							
Boring Log Auburn VW 3109 Auburn Way North Auburn, WA						MW	MW-3			

BLOWS/6 inches INTERVAL		SAMPLE NUMBER	SOIL DESCRIPTION		Recovery %	NSCS	PID (ppmv in headspace)	WELL CONSTRUCTION		
									8" Bo Well B	-
		MW-4-3	Surface-6" 6"-3': FILL slight odo	(silt, sand, gravel), brown, dry, loose	, very 50	FILL	0.6	Concrete Seal Well Cap Bentonit Se		
		MW-4-5		Y SAND, fine grained with gravel, gra dium dense, no odor.	ıy,		0.0			
	· > *		5-14.5': S	ILTY SAND, interbedded with sandy ay, moist to wet at 7', medium dense		SM/ ML			-	
	- \ \				75	 SM/ ML		2" PVC Screen Sa	nd	
	- x x	MW-4-15	14.5-17': 5 wet, loose		100 gray,	SP	0.0	2" PVC Sump		
	th in fe		I		L	_L	.L			
Drilling Method: Direct Push Drilling Company: Holocene Boring Diameter: Two inches Logged By: Dan Hatch				Date: 5/23/2022 Weather: Sunny, mid 60s Page		Information		er: BPK-207		
BLUESTONE ENVIRONMENTAL, NW Boring Log Auburn VW 3109 Auburn Way North Auburn, WA							MW-4			

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	nscs	PID (ppmv in headspace)	WE CONSTR	
									5" Boring Well Box
		 MW-5-3	Surface-6" 6"-3': FILL slight odo	. (silt, sand, gravel), brown, dry, loose, w	ery 50	FILL	0.5	Concrete Seal Well Cap Bentonite Seal	
		MW-5-5		Y SAND, fine grained with gravel, gray, dium dense, no odor.			0.0		-
	+ ~ *		5-12.5': SI	LTY SAND, interbedded with sandy silt ay, moist to wet at 7', medium dense, no	100	SM/		2" PVC Blank	• •
	┥┥╲	MW-5-10	12.5-17': \$	SAND, fine to coarse grained, dark gray,	100	SM/ ML		2" PVC Screen Sand	
		MW-5-15	wet, loose			SP	0.0		
				EOB at	100 17'			2" PVC Sump	
									-
									-
									-
-	th in fe			_					
Drillir Borin	g Diame	any: Holocene		Date: 5/23/2022 Weather: Sunny, mid 60s Page Of		nformatio E Well T		er: BPK-208	
	Boring Log Auburn VW 3109 Auburn Way Auburn, WA							M	N-4

FIELD EXPLORATION METHODS

Bluestone conducted the sampling in general accordance with Ecology's guidelines and regulations.

Underground Utility Clearance

Before conducting subsurface exploration and excavation remediation, Bluestone contacted the Washington Utilities Locate Center, a service that notifies public utilities of proposed subsurface investigations. Site public utilities were located and marked prior to the start of subsurface work. All below-grade utility locations were identified by marking their inferred location on the ground surface. This information was used to aid in identifying sampling locations.

Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) for the presented scope of work included generally accepted procedures for sample collection, storage, tracking, and documentation. All sampling equipment was washed and water rinse before the collection of the samples. Samples were placed into laboratory supplied containers. All samples were labeled with a project identifier, sample number, date, time, sampler name, and analytical method. Samples were placed and stored inside a cooler/shipping container packed with ice or an ice substitute. Appropriate chain-of-custody documentation was completed. All samples were delivered to an Ecology-certified analytical laboratory under chain-of-custody (COC) within their required holding times after being collected.

Direct Push Soil Sampling

- Subsurface soil sampling was accomplished utilizing direct push technology. Soil samples were recovered from each boring using a 60-inch long macro-core sampler. Inside the sampler is a disposable, PVC single-use sample tube. A core catcher was attached to the sampler to keep loose soil from escaping the liner when the sampler was withdrawn from the ground. The liner was removed from the sampler and cut open to allow logging and sampling of the soil core. The core sampler, including the cutting tip and rods, was decontaminated, and a new liner placed in the core sampler between each use.
- After the liner was cut, the soil type was evaluated by the Bluestone field representative and recorded into a soil boring log. Soils were observed and categorized for grain-size, color, presence of artifacts, moisture, odor, staining, sheen, and any other indications of contamination. The soil core retained in the

sample liner was field-screened by visually inspecting the soil for staining and other evidence of contaminants. Soil samples were collected where indications of contamination were observed or from where contamination would likely be present (i.e. at the groundwater interface). All soil samples were collected in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A.

- Collected samples were labeled with a sample number, date, time, and sampler's name and stored in an ice chest containing frozen "blue ice." Chain-of-custody procedures were followed to document sample handling. Samples were transported to an Ecology approved laboratory within 48 hours.
- Upon completion of each soil boring the resulting hole was either backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original or a monitoring well was installed.

Groundwater Monitoring Well Construction

If installed, groundwater monitoring wells were completed in the following manner:

- The well casing materials consisted of 2-inch-diameter, flush-threaded, schedule 40 PVC pipe.
- The screened interval of the well casing was perforated with either 0.010 or 0.020-inch factory-cut slots.
- The filter pack for the well consisted of clean, 10/20 Colorado Silica Sand.
- The annular seal of the well consisted of granulated Wyoming Bentonite.
- All PVC casing materials were cleaned at the factory before installation.
- The bottom of the well casing was sealed with a threaded or slip sediment cup. Blank (non-slotted) riser casing was used to extend the well from the top of the screened interval to ground surface. The length of the screened interval is identified on the boring logs.
- Well construction was accomplished by lowering the casing, into the completed boring, through the inside of the hollow-stem augers. The augers were withdrawn from the boring about three feet at a time, allowing for the resulting annular space around the well screen to be backfilled with sand (poured through the top of the hollow-stem augers). This process was repeated until the filter pack was installed to about two feet above the top of the screened interval. The augers were completely withdrawn from the boring, and the annular space around the blank riser was backfilled with granulated bentonite to the depth shown on the boring logs.
- The well casing was sealed at the ground surface with a watertight expansion cap or PVC slip cap.

- A tamper-resistant steel cover was set over the well, flush to the ground surface. The cover was grouted in place with concrete.
- A reference point was marked on the top of the PVC well casing for consistent groundwater depth measurements.
- The well identification was written on a waterproof tag and placed inside the well box.

Well Development, Surge Block / Over Pumping

Well development efforts were completed on the newly installed groundwater monitoring well after a minimum of 24-hours. This allowed sufficient time for the well materials to cure before development procedures were initiated. The main purpose of developing new monitoring wells is to remove the residual materials remaining in the wells after installation has been completed, and to establish the natural hydraulic flow conditions of the formations which may have been disturbed by well construction. Each new monitoring well was developed by continuous pumping until the pump discharge was free of visible turbidity. The main purpose of developing new monitoring wells is to re-establish the natural hydraulic flow conditions of the formations which may have been disturbed during well construction. Over pumping or removing water from the well at a rapid rate, was the devolvement technique used. Well development continued until the initially turbid water turned nearly clear.

Water Level Measurements in Wells

Water level measurements were referenced to the top of the well casing. The static water level was measured in each monitoring well using a water level indicator or an interface probe. The water level probe was lowered into the well until the instrument detected water. The cable on the indicator is laser-marked in 0.01-foot graduations with labels at 0.1-foot and 1.0-foot intervals.

Temporary Well Sampling, Direct-Push Method

Upon completion of the soil boring, well casing materials consisted of 1-inch PVC pipe with a five-foot section of screen at the bottom, was placed in the open borehole. A 1/4 inch-diameter, disposable, flexible polyethylene tubing was lowered into the well casing for the collection of the groundwater sample. A peristaltic pump was used to purge and sample each well. Purging was performed to remove suspended sediments and to stabilize well-screen materials.

Upon completion of the groundwater sampling, all well material was extracted. The resulting hole was backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original surface. The extracted Strata-probe rod was washed between boring locations and new tubing was used between sampling locations.

Monitoring Well Purging & Sampling

- Purging and Sampling was completed in general accordance with Ecology's Standard Operation Procedure EAP099, Version 1.0, Purging and Sampling Monitoring Wells for General Chemistry Parameters, dated April 2018 and EPA's Region 4 Groundwater Sampling Operating Procedure, dated April 26, 2017.
- Prior to purging, the caps on the monitoring wells were removed, exposing the wells to the atmosphere, allowing the well to equilibrate for minimum of 5 to 10 minutes before collecting an initial depth to groundwater measurement and beginning purging activities.
- The water-level meter or interface probe was slowly lowered into the well to assess the depth to water and/or depth to product. If product was present, the thickness was measure via the interface probe and recorded on the purge log.

Purging Methods

- The wells were purged using a low-flow purge method, in which minimal drawdown was achieved by low-flow rates. The tubing was centrally located within the screen interval or approximately in the position correlating to the top one-half to one-third of the water column. Water quality parameters were observed and recorded using a YSI-556 multiparameter instrument. Water quality parameters were measured until they were observed to stabilize, specifically within 5%~ for pH and 10%~ for other parameters, e.g., DO and conductivity, for three consecutive readings, adequately low turbidity was achieved, and the drawdown change in water level was stabilized.
- During purging, sheen was assessed at each measurement interval by collecting a small quantity of purge water into a clean container.

Sampling Methods

Groundwater sampled using a peristaltic pump was completed using the following protocol:

- The thickness of the water column within the well was calculated by subtracting the depth to water from the total depth of the well.
- Water samples were obtained from the well casing following EPA low stress and purging procedures.
- The tubing was located within the top one-half to one-third of screen interval or approximately in a position correlating to the top one-half to one-third of the water column if water was found below the top of the well screen.
- The contract laboratory prepared the sample containers to conform to EPArecommended preservation techniques for the analytes of concern.
- Sample containers were open only as long as necessary to collect the samples.
- Dedicated tubing was used at each sampling location.
- All purge water was collected for proper disposal (determined by analytical results).

Additionally, as a general practice, where applicable, sample containers for the more turbidity-sensitive analyses were filled first. Specifically, poly containers for metals analyses were filled first, followed by glass bottles for SVOCs, and finally40-ml VOAs for VOC analyses were filled last.

Purging and sampling equipment were cleaned/decontaminated between each sampling location/well using laboratory grade detergent in a water solution followed by rinsing in clean water.

Monitoring Well Purging and Sampling, Low Yield Wells Sample Method

For wells that experience significant drawdown and/or run dry even while using low pumping rates, the following protocol was utilized:

- For this sampling event, a peristaltic pump was used to sample all on-site monitoring wells.
- Due to low yield conditions, samples were collected without prior purging.
- Sample containers were open only as long as necessary to collect the samples.
- The contract laboratory prepared the sample containers to conform to EPArecommended preservation techniques for the analytes of concern.
- Collected samples were labeled with a sample number, date, and time, and stored in an ice chest containing frozen "blue ice". Chain-of-custody procedures were followed to document sample handling.
- Dedicated tubing was used at each sampling location.
- Before use, the sampling equipment was washed and rinsed.

Appendix E

Well Purge an			m	Client:	Auburr	ו VW	Location		Auburn		
Bluestone En	vironment	al		Well Name:	MW-1			Date	5/26	6/2022	
We	ll depth (ft):	17'		Initial Dep	oth to Water:	8.17	Tubing/Pu	mp Depth			
	ameter (in):	2		-	easurement:	9:45	Purgi	ng method		staltic	
Screen Interval (ft)			olumn within n Interval:		Volume p	er foot:	3/4"=.0229		// 1"=0.045 // 2"= 0.174 // 3"=0.384 // 4"=0.661		
Water quality m	eter used:	YSI 556	6 Multimeter with	flow cell		Well volum		e purged:			
Time	Purge Rate	Purge Volume	Temperature	Condu	uctivity	Dissolve	d Oxygen	рН	ORP (mv)	Water Leve	
	(ml/min)	(Gallon)	(C)	ms/cm2	μS/cm	%	mg/L		(1117)		
11:08			15.42		991	31.60	3.13	8.00	-113.0		
11:12			15.41		988	25.00	2.49	7.66	-107.8		
11:16			15.44		994	25.00	2.49	7.59	-106.4		
11:20			15.37		997	22.20	2.21	7.46	-106.1		
44.00		olor	<u>Odor</u>	Partic			<u>een</u>		Notes		
11:08		ay	No		bon		lo lo	Weather: S	-		
11:12	Gr	ay	No	Car	bon	N	lo	Sampled a			
<u>11:16</u> 11:20								Sample Bo			
0:00									echarge rat	e.	
0:00											
0:00											
0:00											
0:00											
0:00											

	II Purge and Development Form lestone Environmental				Auburi	n VW	Location		Auburn	
Bluestone En	vironment	tal		Well Name:	MW-2			Date	5/23	3/2022
We	ll depth (ft):	17'		Initial Dep	oth to Water:	7.44	Tubing/Pu	mp Depth		12'
	ameter (in):	2			easurement:	8:30	-	ng method	Per	istaltic
Screen Interval			olumn within				3/4"=.0229			// 3"=0.384 //
(ft)	10		n Interval:	10	Volume p	er foot:			0.661	
Water quality n	neter used:		6 Multimeter with	flow cell			Well volum	e purged:		
Time	Purge Rate	Purge Volume	Temperature	Condu	uctivity	Dissolve	d Oxygen	pН	ORP (mv)	Water Leve
	(ml/min)	(Gallon)	(C)	ms/cm2	μS/cm	%	mg/L		(IIIV)	
8:45			14.14		695	289.00	29.34	6.71	-74.0	
8:49			14.10		690	134.80	13.62	6.67	-72.2	
8:53			14.12		691	117.40	12.04	6.64	-70.9	
8:57			14.12		699	103.00	10.52	6.62	-85.5	
9:01			14.12		698	100.00	10.24	6.62	-86.3	
		<u>olor</u>	Odor	Partic			een		Notes	
8:45		<u>SIr</u>	Petroleum	Alg			lo	Weather:		
8:49		Sir	Petroleum		0		lo	Sampled a		
8:53	C	Slr	Petroleum	N	0	N	10	Sample Bo	ttles: 5	
8:57										
9:01										
0:00										
0:00										
0:00										
0:00										
0:00										

Well Purge ar			m	Client:	Auburr	ו VW	Location		Auburn	
Bluestone En	vironment	tal		Well Name:	MW-3			Date	5/20	6/2022
We	ll depth (ft):	17'		Initial Dep	oth to Water:	8.1	Tubing/Pu	mp Depth		
	ameter (in):	2			easurement:	9:45		ng method	Per	istaltic
Screen Interval (ft)			olumn within n Interval:		Volume p	ar faat:	3/4"=.0229		// 2"= 0.174 0.661	// 3"=0.384 //
Water quality m	leter used:		6 Multimeter with	flow cell	volume p	er loot.	Well volum		0.001	
Time	Purge Rate	Durgo	Temperature		uctivity	Dissolve	d Oxygen	pH	ORP	Water Leve
	(ml/min)	(Gallon)	(C)	ms/cm2	µS/cm	%	mg/L		(mv)	
10:34			16.89		1,138	121.40	11.62	6.82	-96.6	
10:38			16.75		1,188	81.30	7.85	6.81	-98.7	
10:42			16.73		1,220	61.70	5.95	6.83	-90.5	
10:46			16.70		1,237	48.00	4.60	6.86	-91.9	
10:50			16.70		1,254	40.00	3.87	6.85	-95.8	
10:54			16.70		1,259	38.50	3.68	6.84	-96.2	
	Co	blor	Odor	Partic	culate	Sh	een		Notes	
10:34	Cle	ear	Petroleum	Orange	e Algae	Ν	lo	Weather:		
10:38	Cle	ear	Petroleum	N	0	N	lo	Sampled at	t: 1:00pm	
10:42	Cle	ear	Petroleum	N	о	Ν	lo	Sample Bo	ttles: 5	
10:46								DUP-1		
10:50										
10:54										
0:00										
0:00										
0:00										
0:00										

Well Purge ar			m	Client:	Auburr	ו VW	Location		Auburn		
Bluestone En	vironment	tal		Well Name:	MW-4			Date	5/26	6/2022	
We	ll depth (ft):	17'		Initial Dep	oth to Water:	8.2	Tubing/Pu	mp Depth			
	ameter (in):	2			easurement:	9:45	Purgi	ng method		staltic	
Screen Interval (ft)			olumn within n Interval:		Volume p	er foot:	3/4"=.0229		0 // 1"=0.045 // 2"= 0.174 // 3"=0.384 // 4"=0.661		
Water quality m	eter used:		6 Multimeter with	flow cell			Well volum				
Time	Purge Rate	Purge Volume	Temperature	Condu	uctivity	Dissolve	d Oxygen	рН	ORP (mv)	Water Leve	
	(ml/min)	(Gallon)	(C)	ms/cm2	μS/cm	%	mg/L		(1117)		
9:52			16.77		648	38.20	3.68		-77.8		
9:56			16.70		645	32.40			-69.1		
10:00			16.65		654	31.30			-68.6		
10:04			16.65		665	32.10	3.12	6.74	-72.6		
		blor	Odor	Dortic	culate		een		Notes		
9:52		lr	No				<u>een</u> lo	Weather: S			
9:56		lr	No		lo		lo	Sampled a	,		
10:00		Sir	No		lo		lo	Sample Bo			
10:04		;ir	No		lo		lo				
0:00											
0:00											
0:00											
0:00											
0:00											
0:00											

Well Purge ar			rm	Client:	Auburr	ו VW	Location		Auburn	
Bluestone En	vironment	tal		Well Name:	MW-5			Date	5/26	6/2022
We	II depth (ft):	17'		Initial Dep	oth to Water:	8.12	Tubing/Pu	Imp Depth		
	iameter (in):	2			easurement:	9:45	_	ing method Peristaltic		staltic
Screen Interval (ft)			olumn within n Interval:		Volume p	er foot:		9 // 1"=0.045	// 2"= 0.174 0.661	// 3"=0.384 //
Water quality m	neter used:	YSI 55	6 Multimeter with	flow cell			Well volum	e purged:		
Time	Purge Rate	Purge Volume	Temperature (C)	Condu	uctivity	Dissolve	d Oxygen	рН	ORP (mv)	Water Leve
	(ml/min)	(Gallon)		ms/cm2	μS/cm	%	mg/L		(1117)	
9:26			16.77		1,077	57.60	5.57	7.12	-112.2	
9:30			16.77		963	54.60	5.28	6.75	-116.4	
9:34			16.79		924	52.50	5.08	6.73	-117.1	
9:38			16.80		896	50.10	4.84	6.73	-112.6	
	Co	olor	Odor	Partic	culate	Sh	een		Notes	
9:26	C	lr	No	N		Ν	lo	Weather:		
9:30		lr	No	N			lo	Sampled at	t:13:30	
9:34	C	lr	No	N	lo	Ν	lo	Sample Bo		
9:38										
0:00	1									
0:00	1									
0:00										
0:00										
0:00										

	I Purge and Development Form estone Environmental				Aubur	n VW	Location		Auburn	
Bluestone En	vironment	tal		Well Name:	MW-2			Date	7/26	6/2022
We	II depth (ft):	17'		Initial Dep	oth to Water:	9.85	Tubing/Pump Depth		12'	
	ameter (in):	2			easurement:	8:00		ng method	Per	staltic
Screen Interval (ft)	10		olumn within n Interval:	10	Volume p	er foot	3/4"=.0229		// 2"= 0.174 0.661	// 3"=0.384 //
Water quality m			6 Multimeter with		volume p		Well volum		0.001	
Time	Purge Rate	Purge Volume	Temperature (C)	Condu	-		d Oxygen	pН	ORP (mv)	Water Leve
	(ml/min)	(Gallon)		ms/cm2	µS/cm	%	mg/L		()	
8:06			14.40		745				-124.4	
8:10			13.98		734	27.40			-135.6	
8:14			13.90		733	25.10			-138.6	-
8:18			13.87	0.928	731	22.90	2.30	6.74	-136.8	
	Co	blor	Odor	Partic	rulate	Sh	een		Notes	
8:06		Clr	Petroleum	Alg			lo	Weather:	110100	
8:10		Clr	Petroleum	/ N			lo	Sampled a	t: 08:20	
8:14		Clr	Petroleum	N			lo	Sample Bo		
8:18					-			20		
0:00										
0:00										
0:00										
0:00										
0:00										
0:00										

Appendix F

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u>

Date:	05/09/22
Site Name:	Auburn VW

Sample Name: B-2-5

2. Enter Soil Concentrat	tion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentr	ation Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Concentrat	ion Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	0	0.00%		
AL_EC >6-8	0	0.00%	REMARK:	
AL_EC >8-10	0	0.00%	Boring B-2-5	
AL_EC >10-12	0	0.00%		
AL_EC >12-16	0	0.00%		
AL_EC >16-21	0	0.00%		
AL_EC >21-34	0	0.00%		
AR_EC >8-10	0	0.00%		
AR_EC >10-12	0	0.00%		
AR_EC >12-16	0	0.00%		
AR_EC >16-21	0	0.00%		
AR_EC >21-34	0	0.00%		
Benzene	0	0.00%		
Toluene	0	0.00%		
Ethylbenzene	0	0.00%		
Total Xylenes	0	0.00%		
Naphthalene	0	0.00%		
1-Methyl Naphthalene	0	0.00%		
2-Methyl Naphthalene	0	0.00%		
n-Hexane	0	0.00%		
MTBE	0	0.00%		
Ethylene Dibromide (EDB)	0	0.00%		
1,2 Dichloroethane (EDC)	0	0.00%		
Benzo(a)anthracene	2.1	19.39%		
Benzo(b)fluoranthene	2.3	21.24%		
Benzo(k)fluoranthene	0.72	6.65%		
Benzo(a)pyrene	2.6	24.01%		
Chrysene	2	18.47%		
Dibenz(a,h)anthracene	0.17	1.57%		
Indeno(1,2,3-cd)pyrene	0.94	8.68%	4	
Sum	10.83	100.00%		
	1 1	,		
<u> 3. Enter Site-Specific Hy</u>				
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
<u>4. Target TPH Ground Wa</u>		f adjusted)		
If you adjusted the target TPH grou		~		
concentration, enter adjusted	500	ug/L		
value here:			·····	•••••••••••••••••••••••••••••••••••••••

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

 Date: 5/9/2022

 Site Name: Auburn VW

 Sample Name: B-2-5

 Measured Soil TPH Concentration, mg/kg:

 10.830

1. Summary of Calculation Results

Eurogene Bathman	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Mietnod/Goai	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	3	4.17E-06	1.39E-01	Fail
Contact: Human Health	Method C	109	9.95E-07	9.97E-03	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	100% NAPL	3.33E-07	3.89E-03	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	100% NAPL	NA	NA	Pass

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2.60	108.90
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	Total Risk=1E-5

	Pro	otective Soil Concentra	ation @Method	В	Protective Soil Concentration @Method C				
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI =1	NO	7.77E+01	2.99E-05	1.00E+00	NO	1.09E+03	9.98E-05	1.00E+00	
Total Risk=1E-5	NO	2.60E+01	1.00E-05	3.34E-01	YES	1.09E+02	1.00E-05	1.00E-01	
Risk of Benzene= 1E-6	NA	NA	NA	NA					
Risk of cPAHs mixture= 1E-6	YES	2.60E+00	1.00E-06	3.34E-02		NA			
EDB	NA	NA	NA	NA	A2.0	INA			
EDC	NA	NA	NA	NA					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

Protective Soil Concentration, mg/kg Soil-to-Ground Water is not a critical pathway!		
Protective Ground Water Concentration, ug/L NA		
Most Stringent Criterion NA		
3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection		

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B			
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	YES	1.57E-01	3.53E-07	3.93E-03	100% NAPL
Total Risk = 1E-5	YES	1.57E-01	3.53E-07	3.93E-03	100% NAPL
Total Risk = 1E-6	YES	1.57E-01	3.53E-07	3.93E-03	100% NAPL
Risk of cPAHs mixture= 1E-5	YES	1.57E-01	3.53E-07	3.93E-03	100% NAPL
Benzene MCL = 5 ug/L	NA	NA	NA	NA	NA
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 113000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective Ground Water Concentration			Protective Soil
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	1.57E-01	3.53E-07	3.93E-03	100% NAPL

Appendix G

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 4, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on April 25, 2022 from the Auburn VW BE-0107-B, F&BI 204418 project. There are 64 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures BST0504R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 25, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-B project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
204418 -01	B-1-5
204418 -02	B-1-10
204418 -03	B-1-13
204418 -04	B-1-15
204418 -05	B-1-W
204418 -06	B-2-5
204418 -07	B-2-10
204418 -08	B-2-13
204418 -09	B-2-15
204418 -10	B-2-W
204418 -11	B-3-5
204418 -12	B-3-10
204418 -13	B-3-12
204418 -14	B-3-15
204418 -15	B-4-5
204418 -16	B-4-10
204418 -17	B-4-14
204418 -18	B-4-15
204418 -19	B-4-W
204418 -20	B-5-5
204418 -21	B-5-10
204418 -22	B-5-12
204418 -23	B-5-15
204418 -24	B-5-W
204418 - 25	B-6-5
204418 -26	B-6-10
204418 - 27	B-6-13
204418 -28	B-6-15
204418 -29	B-6-W

The 8260D calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for dichlorofluoromethane. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 04/29/22 Date Analyzed: 04/29/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
B-1-10 204418-02	<5	82
B-1-13 204418-03	<5	87
B-2-5 204418-06	<5	80
B-3-5 204418-11	<5	68
B-3-12 204418-13	<5	82
B-4-10 204418-16	<5	79
B-4-14 204418-17	<5	81
B-6-13 204418-27	<5	81
Method Blank 02-894 MB	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 04/28/22 Date Analyzed: 04/29/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
B-1-W 204418-05	<100	83
B-2-W 204418-10	<100	78
B-4-W 204418-19	<100	88
B-5-W 204418-24	<100	86
B-6-W 204418-29	<100	82
Method Blank 02-0893 MB	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 04/26/22 Date Analyzed: 04/26/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-1-10 204418-02	<50	<250	99
B-1-13 204418-03	<50	<250	99
B-2-5 204418-06	<50	<250	93
B-2-13 204418-08	<50	<250	100
B-3-5 204418-11	<50	<250	96
B-3-12 204418-13	<50	<250	98
B-4-10 204418-16	<50	<250	102
B-4-14 204418-17	<50	<250	96
B-5-10 204418-21	<50	<250	104
B-5-15 204418-23	<50	<250	102
B-6-10 204418-26	<50	<250	99

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 04/26/22 Date Analyzed: 04/26/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-6-13 204418-27	<50	<250	95
Method Blank 02-1033 MB	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 04/27/22 Date Analyzed: 04/27/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
B-1-W 204418-05 1/0.8	88 x	<200	81
B-2-W 204418-10 1/0.8	180 x	<200	105
B-4-W 204418-19	2,500 x	370 x	112
B-5-W 204418-24	240 x	<250	100
B-6-W 204418-29	110 x	<250	103
Method Blank 02-1024 MB2	<50	<250	136

ENVIRONMENTAL CHEMISTS

B-1-13 04/25/22 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-03 204418-03.053 ICPMS2 SP
Concentration mg/kg (ppm)		
2.14 <1 11.8 2.89		
	04/25/22 04/26/22 Soil mg/kg (ppm) Dry Weight Concentration mg/kg (ppm) 2.14 <1 11.8	04/25/22 04/26/22 Soil mg/kg (ppm) Dry Weight 2.14 <pre> 2.14 <1 11.8 2.89</pre> Project: Lab ID: Data File: Instrument: Operator:

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-5 04/25/22 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-06 204418-06.054 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	4.22 <1 10.8 4.73 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-14 04/25/22 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-17 204418-17.055 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	3.15 <1 9.17 1.82 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-15 04/25/22 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-23 204418-23.056 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	1.27 <1 8.95 1.27 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-13 04/25/22 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-27 204418-27.057 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	3.27 <1 9.23 1.99 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/26/22 04/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 I2-309 mb2 I2-309 mb2.048 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	<1 <1		
Chromium	<1		
Lead Mercury	<1 <1		
mercury	N 1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-05 204418-05.079 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		70.2		
Cadmium		<1		
Chromium		5.64		
Lead		1.37		
Mercury		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-10 204418-10.080 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic Cadmium Chromium Lead Mercury		13.9 <1 7.57 1.82 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-19 204418-19.081 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		104		
Cadmium		<1		
Lead		9.27		
Mercury		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-19 x10 204418-19 x10.093 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)	-	
Chromium		77.7		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-24 204418-24.085 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		18.1		
Cadmium		<1		
Lead		3.27		
Mercury		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B-5-W 04/25/22 04/28/22 04/28/22 Water		Client: Project: Lab ID: Data File: Instrument:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-24 x10 204418-24 x10.094 ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		entration L (ppb)		
Chromium		22.9		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-W 04/25/22 04/28/22 04/28/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-29 204418-29.086 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic Cadmium		29.2 <1		
Chromium Lead		7.02 1.27		
Matrix: Units: Analyte: Arsenic Cadmium Chromium	Water	ug/L (ppb) 29.2 <1 7.02	Instrument:	ICPMS2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/28/22 04/28/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 I2-321 mb I2-321 mb.072 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-10 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-02 042706.D GCMS4 RF	
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5	1,2-Dichloroethane Toluene-d8		100 97	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	
Toluene<0.05Hexachlorobutadiene<0.25trans-1,3-Dichloropropene<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane one pene	$\begin{array}{c} < 0.5 \\ 0.073 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$

ENVIRONMENTAL CHEMISTS

B-1-13 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:		
	% Recovery: 102 96 97	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) ethene ene (EDC) ne e le nane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.25 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene "etrachloroethane ene " dbenzene methylbenzene " denzene imethylbenzene " ctrachloroethane chloropropane otoluene ylbenzene methylbenzene " dbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.$
	<0.05 <0.05 <0.5	-		<0.05 <0.25
	04/25/22 04/27/22 04/27/22 Soil	$\begin{array}{c ccccc} 04/25/22 \\ 04/27/22 \\ Soil \\ mg/kg (ppm) Dry Weight \\ && & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-5 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-06 042711.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze		% Recovery: 100 98 102	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroe 1,1-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethan 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentano cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop	nane r (MTBE) thene e ene (EDC) ne e le ane pone pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Cetrachloroethane ene dibenzene frm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene jylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.5		ichlorobenzene	<0.25

ENVIRONMENTAL CHEMISTS

B-2-13 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:		
	% Recovery: 107 100 100	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
-	<0.05 <0.5			<0.25
	04/25/22 04/27/22 Soil mg/kg (ppm -d4 ene thane thane er (MTBE) thene ee	$\begin{array}{c cccc} 04/25/22 \\ 04/27/22 \\ Soil \\ mg/kg (ppm) Dry Weight \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ENVIRONMENTAL CHEMISTS

B-3-5 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:		
	% Recovery: 106 99 100	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) ethene ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene "etrachloroethane ene " dbenzene methylbenzene " denzene imethylbenzene " ctrachloroethane chloropropane otoluene ylbenzene methylbenzene " dbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
-	<0.05 <0.5			<0.25
	04/25/22 04/27/22 04/27/22 Soil	$\begin{array}{c cccc} 04/25/22 \\ 04/27/22 \\ Soil \\ mg/kg (ppm) Dry Weight \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ENVIRONMENTAL CHEMISTS

Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05Chloromethane<0.5Tetrachloroethene<0.025Vinyl chloride<0.05Dibromochloromethane<0.05Bromomethane<0.51,2-Dibromoethane (EDB)<0.05Chloroethane<0.5Chlorobenzene<0.05Trichlorofluoromethane<0.5Ethylbenzene<0.05Acetone<51,1,1,2-Tetrachloroethane<0.051,1-Dichloroethene<0.05mp-Xylene<0.05Methylen chloride<0.5Styrene<0.05Methyle t-butyl ether (MTBE)<0.05Isopropylbenzene<0.051,1-Dichloroethane<0.05n-Propylbenzene<0.05trans-1,2-Dichloroethane<0.05n-Propylbenzene<0.052,2-Dichloroethane<0.051,3,5-Trimethylbenzene<0.052,2-Dichloropopane<0.051,1,2,2-Tetrachloroethane<0.052,2-Dichloroethane<0.051,1,2,2-Tetrachloroethane<0.052,2-Dichloroethane<0.051,1,2,2-Tetrachloroethane<0.051,1-Trichloropenpane<0.052-Chlorotoluene<0.051,1-Dichloroethane<0.051,2,2-Tetrachloroethane<0.051,1-Dichloroethane<0.051,2,3-Trichloropthane<0.051,1-Dichloroethane<0.051,2,2-Tetrachloroethane<0.051,1-Dichloroethane<0.051,2,2-Tetrachloroethane<0.051,1-Dichloroethane<0.	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-3-12 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 20- 204418-13 042714.D GCMS4 RF	
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5	1,2-Dichloroethane Toluene-d8		99 96	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	Concentration mg/kg (ppm)
Dibromomethane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane one pene oropene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene orm lbenzene orm lbenzene enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene imethylbenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene ionobenzene lorobenzene ionobenzene ichloropropane ichlorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-10 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 20- 204418-16 042715.D GCMS4 RF	
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 94	Limit: 90	Limit: 109	
Toluene-d8	-44	99	89	105	
4-Bromofluorobenz	ene	104	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	<0.05
Chloroethane Trichlorofluoromet	h	<0.5 <0.5	Chlorobe		$< 0.05 \\ < 0.05$
Acetone	nane	<0.5 <5	Ethylber 1 1 1 2 7	Tetrachloroethane	<0.05
1,1-Dichloroethene		<0.05	m,p-Xyle		<0.05
Hexane		< 0.25	o-Xylene		< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		vlbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy		< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	<0.05
2-Butanone (MEK) 1,2-Dichloroethane		<1 <0.05	1,2,3-1 r 2-Chloro	ichloropropane	$< 0.05 \\ < 0.05$
1,1,1-Trichloroetha		<0.05	4-Chloro		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorio		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03		lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	<0.25
Toluene trans-1,3-Dichlorog	ronono	<0.05 <0.05	Hexachi Naphtha	orobutadiene	$< 0.25 \\ < 0.05$
1,1,2-Trichloroetha		<0.05	-	ichlorobenzene	<0.05 <0.25
2-Hexanone		<0.5	1, 2 ,0 11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-14 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 20- 204418-17 042716.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze		% Recovery: 102 100 100	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropthane 2,2-Dichloropthane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-Dichloropthane 4-Methyl-2-pentance cis-1,3-Dichloroptop Toluene trans-1,3-Dichloroptop	nane r (MTBE) thene e ene (EDC) ne e le ane ane one oene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Cetrachloroethane ene v Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
1,1,2-Trichloroethau 2-Hexanone		<0.05 <0.5	-	ichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-10 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-21 042717.D GCMS4 RF	
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5	1,2-Dichloroethane Toluene-d8		96 98	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	
Toluene<0.05Hexachlorobutadiene<0.25trans-1,3-Dichloropropene<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane one pene oropene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane ence cetrachloroethane inethylbenzene cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene inethylbenzene inethylbenzene otoluene cobenzene lorobenzene lorobenzene ichloropropane ichloropropane ichloropropane ichloropropane ichloropropane ichloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-15 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-23 042718.D GCMS4 RF	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloroethane Toluene-d8		95 98	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	Concentration mg/kg (ppm)
Dibromomethane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentanc cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop	hane er (MTBE) ethene ene (EDC) ine ie de hane one pene propene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane ence cetrachloroethane inethylbenzene cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene inethylbenzene inethylbenzene otoluene cobenzene lorobenzene lorobenzene ichloropropane ichloropropane ichloropropane ichloropropane ichloropropane ichloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-10 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmo BE-0107-B, F&BI 20 204418-26 042719.D GCMS4 RF	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	e-d4	101	90	109	
Toluene-d8		99	89	112	
4-Bromofluorobenz	ene	100	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.05
Chloroethane				< 0.05	
Trichlorofluoromethane		<0.5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-1 m,p-Xyle	Fetrachloroethane	<0.05 <0.1
Hexane		<0.05	o-Xylene		<0.1 <0.05
Methylene chloride	2	<0.25	Styrene	2	< 0.05
Methyl t-butyl ethe		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropar		< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1			< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05		ylbenzene	<0.05
Carbon tetrachlori		<0.05		imethylbenzene	<0.05
Benzene	ac	< 0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopropyltoluene		< 0.05
1,2-Dichloropropar	ie	< 0.05	1,3-Dichlorobenzene		< 0.05
Bromodichloromet	hane	< 0.05	1,4-Dichlorobenzene		< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	<0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop	-	<0.05 <0.05	Naphtha 1 2 2 Trai		$< 0.05 \\ < 0.25$
1,1,2-Trichloroetha 2-Hexanone	ine	<0.05 <0.5	1, 2 , 5 -11	ichlorobenzene	~0.20
		-0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-13 04/25/22 04/27/22 04/27/22 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 20- 204418-27 042720.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 100 99	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
4-Bromonuorobenz Compounds:	ene	99 Concentration mg/kg (ppm)	84 Compou		Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) ethene ene (EDC) ne e de de	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 04/27/22 04/27/22 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 02-991 mb 042705.D GCMS4 RF	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	99	90	109	
Toluene-d8		98 07	89	112	
4-Bromofluorobenz	ene	97	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1.3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobenzene		< 0.05
Trichlorofluoromethane		< 0.5	Ethylbenzene		< 0.05
Acetone		<5	1,1,1,2-Tetrachloroethane		< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xylene		<0.1
Hexane		<0.25	o-Xylene	9	<0.05
Methylene chloride Methyl t-butyl ether (MTBE)		<0.5 <0.05	Styrene Isopropylbenzene		$< 0.05 \\ < 0.05$
trans-1,2-Dichloroe		<0.05	Bromofo		<0.05
1,1-Dichloroethane		<0.05		lbenzene	< 0.05
2,2-Dichloropropane		< 0.05			< 0.05
cis-1,2-Dichloroethene		< 0.05			< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1			< 0.05
1,2-Dichloroethane		< 0.05	2-Chlorotoluene		< 0.05
	1-Trichloroethane <0.05		4-Chlorotoluene		< 0.05
1,1-Dichloropropen			tert-Butylbenzene		< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Trimethylbenzene		<0.05
Benzene			sec-Butylbenzene		<0.05 <0.05
Trichloroethene<0.021,2-Dichloropropane<0.05		p-Isopropyltoluene 1,3-Dichlorobenzene		<0.05	
Bromodichloromethane <0.05		1,3-Dichlorobenzene 1,4-Dichlorobenzene		< 0.05	
Dibromomethane			1,4-Dichlorobenzene 1,2-Dichlorobenzene		< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
	cis-1,3-Dichloropropene <0.05		1,2,4-Trichlorobenzene		< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-W 04/25/22 04/29/22 04/29/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-05 042936.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 99 93	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroetha 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de de		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	
Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10	Hexachlorobutadiene <0 Naphthalene <1		<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-W 04/25/22 04/29/22 04/29/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-10 042937.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 103 98	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroperpan cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloroethane 1,1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloroperpan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane pene	$<1 \\ <10 ca \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 ca \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	hzene 'etrachloroethane ene 'lbenzene rm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene imethylbenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphthalene<11,2,3-Trichlorobenzene<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-W 04/25/22 04/29/22 05/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Bluestone Environme BE-0107-B, F&BI 204 204418-19 050228.D GCMS13 WE Upper	
Surrogates:	14	% Recovery: 105	Limit: 85	Limit: 117	
1,2-Dichloroethane Toluene-d8	-04	103	88 88	117 112	
4-Bromofluorobenz	ene	97	90	112	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10 ca	Tetrachl	loroethene	<1
Vinyl chloride		< 0.02		ochloromethane	< 0.5
Bromomethane		<5		omoethane (EDB)	<1
Chloroethane	1	<1 <1	Chlorobenzene Ethylbenzene		<1
Trichlorofluoromethane Acetone		<1 <50		retrachloroethane	<1 <1
1,1-Dichloroethene		<1	m,p-Xyle		<2
Hexane		<5	o-Xylene		<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe		<1		vlbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo		<5
1,1-Dichloroethane		<1		lbenzene	<1
2,2-Dichloropropane		<1 <1	Bromobenzene		<1 <1
cis-1,2-Dichloroethene Chloroform		<1 <1	1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane		<0.2
2-Butanone (MEK)		<20	1,2,3-Trichloropropane		<1
			otoluene	<1	
1,1,1-Trichloroetha			otoluene	<1	
1,1-Dichloropropene <1			tert-Butylbenzene		<1
Carbon tetrachlorie	de	< 0.5		imethylbenzene	<1
Benzene		<0.35	sec-Butylbenzene		<1
Trichloroethene 1,2-Dichloropropan		<0.5 <1	p-Isopropyltoluene		<1 <1
Bromodichlorometl		<0.5	1,3-Dichlorobenzene 1,4-Dichlorobenzene		<1
Dibromomethane	liane	<1	1,4-Dichlorobenzene 1,2-Dichlorobenzene		<1
4-Methyl-2-pentan	one	<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro		< 0.4	1,2,4-Tr	ichlorobenzene	<1
Toluene		<1		orobutadiene	< 0.5
trans-1,3-Dichlorop		<0.4	Naphtha		<1
1,1,2-Trichloroetha	ne	< 0.5	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-W 04/25/22 04/29/22 04/29/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 204 204418-24 042938.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 99 98	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane	hane er (MTBE) ethene ene (EDC) ne e de de	$<1 \\ <10 ca \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 ca \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr	nzene Cetrachloroethane ene e Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-W 04/25/22 04/29/22 04/29/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme BE-0107-B, F&BI 20- 204418-29 042942.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 108 100 94	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane 4-Methyl-2-pentane	hane er (MTBE) ethene ene (EDC) ne e de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr: 1,1,2,2-T 1,2,3-Tr: 2-Chloro 4-Chloro tert-But 1,2,4-Tr: sec-Buty p-Isopro 1,3-Dich 1,2-Dibr	nzene Cetrachloroethane ene vilbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene vibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane	
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	oropene	<1 <0.4 <0.5 <10	1,2,4-Trichlorobenzene<1		<0.5 <1

ENVIRONMENTAL CHEMISTS

		Client: Project: Lab ID: Data File: Instrument: Operator:		
	% Recovery: 100 105 94	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
hane er (MTBE) ethene eene (EDC) ne e de nane pene	$ \begin{array}{c} <1 \\ <10 \ ca \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \ ca \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene "etrachloroethane ene " dbenzene methylbenzene " dbenzene enzene " methylbenzene otoluene toluene ylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
-	<0.5 <10	-		<1
	Not Applica 04/29/22 04/29/22 Water	$\begin{array}{cccc} 04/29/22 \\ Water \\ ug/L (ppb) \end{array} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ -d4 & & & & & & \\ & & & & & & \\ 100 \\ ene & & & & & & \\ & & & & & & \\ & & & & & $	Not ApplicableProject: $04/29/22$ Lab ID: $04/29/22$ $04/29/22$ Data File: Instrument: ug/L (ppb)Data File: Instrument: ug/L (ppb) ug/L (ppb)Operator:·Lower Limit: -d4100 85 eneene9490Concentration ug/L (ppb)Compou Compou compou concentration ug/L (ppb)thane<1	Not Applicable Project: BE-0107-B, F&BI 20-04/29/22 04/29/22 Lab ID: 02-1000 MB 04/29/22 Data File: 042907.D Water Instrument: GCMS13 ug/L (ppb) Operator: WE -4 100 85 117 105 88 112 ene 94 90 111 Concentration ug/L (ppb) Compounds: thane <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-13 04/25/22 04/26/22 04/27/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-03 1/5 042721.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol		Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-5 04/25/22 04/26/22 04/27/22 Soil mg/kg (ppm) Dry We	Client: Project: Lab ID: Data File: Instrument: ight Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-06 1/25 042711.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Reco 67 80 73 82 nol 79 96	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Upper Limit: 103 109 138 150 127 150
Compounds:	Concent mg/kg (
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne 0.1 ne 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	-7 993 -8 35 9 2 3 3 3 - 9 2 3 3 3 - 9 2 3 3 3 - 9 2 3 3 3 - 9 2 3 3 3 - 9 2 3 3 3 - 9 2 3 3 5 9 2 3 3 5 9 2 3 5 9 3 - 2 9 3 - 2 9 3 - 2 9 9 3 - 2 9 9 3 - 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-14 04/25/22 04/26/22 04/27/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-17 1/5 042722.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery 58 72 67 75 nol 87 98	: Lower : Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentratio mg/kg (ppm		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	$\begin{array}{rcrcr} \text{ne} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ & ene & <0.01 \\ ene & <0.01 \\ ene & <0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-10 04/25/22 04/26/22 04/27/22 Soil mg/kg (ppm) Dry V	Insti	ect: ID: a File: rument:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-21 1/5 042723.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	covery: 67 79 76 87 83 03	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:		ntration g (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne < ne	0.01 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-13 04/25/22 04/26/22 04/27/22 Soil mg/kg (ppm) I	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-27 1/5 042724.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		% Recovery: 75 88 83 91 87 113	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:		oncentration ng/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene eene eene	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/26/22 04/27/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 02-1026 mb2 1/5 042720.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery:	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{rcl} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01$		

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	B-1-W 04/25/22 04/26/22 04/27/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-05 1/2 042715.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14	ol	% Recovery: 53 43 82 75 83 94	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 10 \\ 10 \\ 15 \\ 25 \\ 10 \\ 41 \end{array}$	Upper Limit: 60 49 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace Benzo(g,h,i)perylene	e e ne ne	$<0.4 \\<0.4 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.08 $		

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	B-2-W 04/25/22 04/26/22 04/27/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-10 1/2 042716.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14	ol		Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace Benzo(g,h,i)perylene	e e ne ne	$< 0.4 \\ < 0.4 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.08 $		

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	B-4-W 04/25/22 04/26/22 04/27/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-19 1/2 042717.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14	ol	% Recovery: 52 45 80 77 97 99		Upper Limit: 60 49 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace Benzo(g,h,i)perylene	e e ne ne	$<0.4 \\<0.4 \\<0.4 \\<0.04 \\<0.04 \\<0.04 \\<0.092 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.03$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-5-W 04/25/22 04/26/22 04/27/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-24 1/2 042718.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 49 46 91 87 88 106	Lower Limit: 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne ne ne ene ene	< 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-W 04/25/22 04/26/22 04/27/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 204418-29 1/2 042719.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 48 46 84 78 84 104	Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthaler 1-Methylnaphthaler Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace Benzo(g,h,i)perylene	ne ne ene ene	< 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applicab 04/26/22 04/26/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW BE-0107-B, F&BI 204418 02-1032 mb2 042617.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 27 18 97 95 95 117	Lower Limit: 11 10 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne ne ene eene	<0.2 < 0.2 < 0.2 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.04 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 204418-02 (Duplicate)						
		Samp	le Du	plicate		
	Reporting	Resu	lt R	esult	RPD	
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)	
Gasoline	mg/kg (ppm)	<5		<5	nm	
Laboratory Code: Laboratory Control Sample Percent						
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria	_	
Gasoline	mg/kg (ppm)	20	100	71-131	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 204465-01 (Duplicate)								
	Reporting	Samp	le Duj	plicate	RPD			
Analyte	Units	Resul	lt R	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	:100	nm			
Laboratory Code: Laboratory Control Sample Percent								
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	_			
Gasoline	ug/L (ppb)	1,000	108	69-134	-			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	204415-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	390	87	88	63-146	1
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	5			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	90	79-1	144		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	100	63-142	11

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204314-03 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	81	75 - 125	2
Cadmium	mg/kg (ppm)	10	<5	87	86	75 - 125	1
Chromium	mg/kg (ppm)	50	10.8	80	78	75 - 125	3
Lead	mg/kg (ppm)	50	51.1	92	81	75 - 125	13
Mercury	mg/kg (ppm	5	<5	86	87	75 - 125	1

Laboratory Co	ue. Laboratory Com	i oi bampie	-	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	80	80-120
Cadmium	mg/kg (ppm)	10	91	80-120
Chromium	mg/kg (ppm)	50	90	80-120
Lead	mg/kg (ppm)	50	88	80-120
Mercury	mg/kg (ppm)	5	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204454-01 (Matrix Spike)

Laboratory Co	ue. 204404-01 (matrix of	JIKC)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	<1	114	108	75 - 125	5
Cadmium	ug/L (ppb)	5	<1	102	96	75 - 125	6
Chromium	ug/L (ppb)	20	<1	112	107	75 - 125	5
Lead	ug/L (ppb)	10	1.43	93	88	75 - 125	6
Mercury	ug/L (ppb)	5	<1	96	100	75 - 125	4

Laboratory Co	ue. Laboratory	00111101 08	unpie	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	99	80-120
Cadmium	ug/L (ppb)	5	97	80-120
Chromium	ug/L (ppb)	20	95	80-120
Lead	ug/L (ppb)	10	93	80-120
Mercury	ug/L (ppb)	5	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 204418-02 (Matrix Spike)

Laboratory Code: 204418-02 (J	Matrix Spike)		0	Dever	Dever		
		~	Sample	Percent	Percent		
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	18	13	10-142	32 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	45	43	10-126	5
Vinyl chloride Bromomethane	mg/kg (ppm)	1	0.066 <0.5	44 77	40 66	10-138 10-163	10 15
Chloroethane	mg/kg (ppm) mg/kg (ppm)	1	<0.5 <0.5	60	58	10-163	10
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	57	51	10-176	11
Acetone	mg/kg (ppm)	5	<5	79	84	10-163	6
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	66	63	10-160	5
Hexane	mg/kg (ppm)	1	< 0.25	51	44	10-137	15
Methylene chloride	mg/kg (ppm)	1	< 0.5	84	85	10-156	1
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	80	80	21 - 145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	73	71	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	75	74	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	106	97	10-158	9
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.05	77 84	76 81	25-135 21-145	1 4
2-Butanone (MEK)	mg/kg (ppm)	5	<0.05	84 78	81	21-145 19-147	4
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	<0.05	78	78	12-160	0
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	79	77	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	77	74	17-140	4
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	78	76	9-164	3
Benzene	mg/kg (ppm)	1	< 0.03	76	75	29-129	1
Trichloroethene	mg/kg (ppm)	1	< 0.02	77	76	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	74	78	30-135	5
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	85	85	23-155	0
Dibromomethane	mg/kg (ppm)	1	< 0.05	82	82	23-145	0
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm)	5 1	<1 <0.05	86 83	90 86	24-155 28-144	$\frac{5}{4}$
Toluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	80	80	35-130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	87	90	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	86	89	10-205	3
2-Hexanone	mg/kg (ppm)	5	< 0.5	87	91	15-166	4
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	83	87	31-137	5
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	80	82	20-133	2
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	88	89	28-150	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	85	85	28-142	0
Chlorobenzene Ethylbenzene	mg/kg (ppm)	1	<0.05 <0.05	$\frac{86}{85}$	87 87	32-129 32-137	$\frac{1}{2}$
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	<0.05	93	93	31-143	2
m,p-Xylene	mg/kg (ppm)	2	<0.05	86	53 87	34-136	0
o-Xylene	mg/kg (ppm)	1	< 0.05	89	88	33-134	1
Styrene	mg/kg (ppm)	1	< 0.05	89	88	35-137	1
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	90	90	31-142	0
Bromoform	mg/kg (ppm)	1	< 0.05	89	92	21-156	3
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	88	89	23-146	1
Bromobenzene	mg/kg (ppm)	1	< 0.05	85	88	34-130	3
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	87	89	18-149	2
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	1	<0.05 <0.05	91 89	96 93	28-140 25-144	5 4
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	87	90	25-144 31-134	4 3
4-Chlorotoluene	mg/kg (ppm)	1	<0.05	86	90	31-134	5
tert-Butylbenzene	mg/kg (ppm)	1	<0.05	90	92	30-137	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	88	89	10-182	1
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	91	92	23-145	1
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	92	92	21-149	0
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	88	91	30-131	3
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	88	92	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	1	<0.05	89	92	31-132	3
1,2-Dibromo-3-chloropropane 1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.5 <0.25	93 93	97 92	11-161 22-142	4
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1	<0.25 <0.25	93 98	92 94	22-142 10-142	4
Naphthalene	mg/kg (ppm) mg/kg (ppm)	1	<0.25 <0.05	98 92	94 92	10-142 14-157	4 0
1.2.3-Trichlorobenzene	mg/kg (ppm)	1	<0.05	92 92	92 92	20-144	0
, ,		-					-

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laborator	у — — — — — — — — — —		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	40	10-146
Chloromethane	mg/kg (ppm)	1	59	27-133
Vinyl chloride	mg/kg (ppm)	1	64	22-139
Bromomethane	mg/kg (ppm)	1	78	38-114
Chloroethane	mg/kg (ppm)	1	69	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	73	10-196
Acetone	mg/kg (ppm)	5	95	52-141
1,1-Dichloroethene Hexane	mg/kg (ppm) mg/kg (ppm)	1	79 88	47-128 43-142
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	1	88 96	43-142 10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	91	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	89	67-129
1.1-Dichloroethane	mg/kg (ppm)	1	86	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	111	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	85	72-127
Chloroform	mg/kg (ppm)	1	88	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	81	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	84	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	88	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	85	69-128
Carbon tetrachloride	mg/kg (ppm)	1	90	60-139
Benzene	mg/kg (ppm)	1	83	71-118
Trichloroethene	mg/kg (ppm)	1	84	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	82	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm)	1 1	91 87	57-126 62-123
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	5	87	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	89	43-143 67-122
Toluene	mg/kg (ppm)	1	83	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	89	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	81	64-115
2-Hexanone	mg/kg (ppm)	5	80	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	83	72-130
Tetrachloroethene	mg/kg (ppm)	1	85	72-114
Dibromochloromethane	mg/kg (ppm)	1	86	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	84	74-132
Chlorobenzene	mg/kg (ppm)	1	83	76-111
Ethylbenzene	mg/kg (ppm)	1	83	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	$\frac{1}{2}$	89 85	64-121
m,p-Xylene o-Xylene	mg/kg (ppm)	2	83	78-122 77-124
Styrene	mg/kg (ppm) mg/kg (ppm)	1	85	74-124
Isopropylbenzene	mg/kg (ppm)	1	86	74-120 76-127
Bromoform	mg/kg (ppm)	1	87	56-132
n-Propylbenzene	mg/kg (ppm)	1	85	74-124
Bromobenzene	mg/kg (ppm)	1	83	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	82	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	87	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	84	61-137
2-Chlorotoluene	mg/kg (ppm)	1	83	74-121
4-Chlorotoluene	mg/kg (ppm)	1	83	75-122
tert-Butylbenzene	mg/kg (ppm)	1	85	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	83	76-125
sec-Butylbenzene	mg/kg (ppm)	1 1	85 85	71-130
p-Isopropyltoluene	mg/kg (ppm)	1		70-132
1,3-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	82 84	75-121 74-117
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	84 83	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	88	58-138
1,2.4-Trichlorobenzene	mg/kg (ppm)	1	87	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	85	50-153
Naphthalene	mg/kg (ppm)	1	84	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	86	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 204474-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recoverv	Acceptance
Analyte	Units		Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	110	50-150
Chloromethane	ug/L (ppb)	10	<10	87	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	89	16-176
Bromomethane	ug/L (ppb)	10	<5	106	10-193
Chloroethane	ug/L (ppb)	10	<1	101	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	104	50-150
Acetone	ug/L (ppb)	50	<50	84	15-179
1,1-Dichloroethene	ug/L (ppb)	10	<1	112	50 - 150
Hexane	ug/L (ppb)	10	<5	71	49-161
Methylene chloride	ug/L (ppb)	10	<5	106	40-143
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	108	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	97	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	99	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	80	10-335
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50-150
Chloroform	ug/L (ppb)	10	<1	104	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	81	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	119	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	112	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	95	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	109	50-150
Benzene	ug/L (ppb)	10 10	<0.35	96 97	50-150
Trichloroethene	ug/L (ppb)	10	<0.5 <1	97 87	43-133 50-150
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	<0.5	101	50-150 50-150
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	<0.5	101	50-150
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	10 50	<10	99	50-150
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	<0.4	99 85	48-145
Toluene	ug/L (ppb)	10	<1	90	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	<0.4	83	37-152
1.1.2-Trichloroethane	ug/L (ppb)	10	<0.5	89	50-150
2-Hexanone	ug/L (ppb)	50	<10	83	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	90	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	98	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	96	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	96	50-150
Chlorobenzene	ug/L (ppb)	10	<1	96	50-150
Ethylbenzene	ug/L (ppb)	10	<1	104	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	107	50-150
m,p-Xylene	ug/L (ppb)	20	<2	102	50-150
o-Xylene	ug/L (ppb)	10	<1	96	50-150
Styrene	ug/L (ppb)	10	<1	98	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	102	50-150
Bromoform	ug/L (ppb)	10	<5	92	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	88	50-150
Bromobenzene	ug/L (ppb)	10	<1	93	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	92	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	87	10-235
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	84	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	90	50-150
4-Chlorotoluene	ug/L (ppb)	10 10	<1 <1	90 93	50-150
tert-Butylbenzene 1.2.4-Trimethylbenzene	ug/L (ppb)	10	<1	93 92	50-150 50-150
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	92 90	46-139
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10	<1	90 94	46-139
1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	93	50-150
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	93 92	50-150
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	92 95	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	84	50-150
1,2.4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<10	90	50-150
Hexachlorobutadiene	ug/L (ppb)	10	<0.5	86	42-150
Naphthalene	ug/L (ppb)	10	<1	89	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	90	44-155
· · · · · · · · ·	8 41-7	-			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Coue. Laborati	v i		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	90	84	70-130	7
Chloromethane	ug/L (ppb)	10	102	104	70-130	2
Vinyl chloride	ug/L (ppb)	10	110	109	70-130	1
Bromomethane	ug/L (ppb)	10	126	112	28-182	12
Chloroethane	ug/L (ppb)	10	119	117	70-130	2
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	97 86	88 89	70-130 42-155	10 3
1,1-Dichloroethene	ug/L (ppb)	10	94	89	70-130	5
Hexane	ug/L (ppb)	10	54 82	81	50-161	1
Methylene chloride	ug/L (ppb)	10	97	88	29-192	10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	98	94	70-130	4
trans-1,2-Dichloroethene	ug/L (ppb)	10	94	88	70-130	7
1,1-Dichloroethane	ug/L (ppb)	10	97	92	70-130	5
2,2-Dichloropropane	ug/L (ppb)	10	94	88	70-130	7
cis-1,2-Dichloroethene	ug/L (ppb)	10	96	90	70-130	6
Chloroform	ug/L (ppb)	10	98	90	70-130	9
2-Butanone (MEK)	ug/L (ppb)	50	94	87	50 - 157	8
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	95	89	70-130	7
1,1,1-Trichloroethane	ug/L (ppb)	10	97	92	70-130	5
1,1-Dichloropropene	ug/L (ppb)	10	96	88	70-130	9
Carbon tetrachloride	ug/L (ppb)	10	96	88	70-130	9
Benzene	ug/L (ppb)	10	96	93	70-130	3
Trichloroethene	ug/L (ppb)	10 10	93 93	87 91	70-130 70-130	7 2
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	93 94	91 85	70-130	2 10
Dibromomethane	ug/L (ppb)	10	94 95	89	70-130	10
4-Methyl-2-pentanone	ug/L (ppb)	50	92	93	70-130	1
cis-1,3-Dichloropropene	ug/L (ppb)	10	90	89	70-130	1
Toluene	ug/L (ppb)	10	94	95	70-130	1
trans-1.3-Dichloropropene	ug/L (ppb)	10	96	98	70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	95	98	70-130	3
2-Hexanone	ug/L (ppb)	50	95	103	69-130	8
1,3-Dichloropropane	ug/L (ppb)	10	95	100	70-130	5
Tetrachloroethene	ug/L (ppb)	10	94	93	70-130	1
Dibromochloromethane	ug/L (ppb)	10	94	97	63-142	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98	97	70-130	1
Chlorobenzene	ug/L (ppb)	10	97	96	70-130	1
Ethylbenzene	ug/L (ppb)	10	100	99	70-130	1
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb)	10 20	102 100	99 99	70-130 70-130	3 1
o-Xylene	ug/L (ppb) ug/L (ppb)	10	100	99 98	70-130	2
Styrene	ug/L (ppb)	10	100	100	70-130	2
Isopropylbenzene	ug/L (ppb)	10	102	100	70-130	4
Bromoform	ug/L (ppb)	10	97	95	50-157	2
n-Propylbenzene	ug/L (ppb)	10	101	99	70-130	2
Bromobenzene	ug/L (ppb)	10	95	94	70-130	1
1,3,5-Trimethylbenzene	ug/L (ppb)	10	102	97	52-150	5
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	104	99	70-130	5
1,2,3-Trichloropropane	ug/L (ppb)	10	96	96	70-130	0
2-Chlorotoluene	ug/L (ppb)	10	100	97	70-130	3
4-Chlorotoluene	ug/L (ppb)	10	100	97	70-130	3
tert-Butylbenzene	ug/L (ppb)	10	101	96	70-130	5
1,2,4-Trimethylbenzene	ug/L (ppb)	10	103	98 98	70-130	5
sec-Butylbenzene	ug/L (ppb)	10 10	102 102	98 97	70-130 70-130	4 5
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	102	97 96	70-130	э 4
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	97	96 94	70-130	4 3
1,2-Dichlorobenzene	ug/L (ppb)	10	100	94 96	70-130	4
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	99	96 96	70-130	3
1.2.4-Trichlorobenzene	ug/L (ppb)	10	96	50 87	70-130	10
Hexachlorobutadiene	ug/L (ppb)	10	93	86	70-130	8
Naphthalene	ug/L (ppb)	10	103	95	70-130	8
1,2,3-Trichlorobenzene	ug/L (ppb)	10	101	91	69-143	10

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 204385-02 1/5 (Matrix Spike)

Laboratory Code: 204385-02 1/5 (Matrix Spike)							
C C		1	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ú nits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	78	79	50 - 150	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	79	81	50 - 150	2
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	78	80	50 - 150	3
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	84	87	50 - 150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	83	92	50 - 150	10
Fluorene	mg/kg (ppm)	0.83	< 0.01	84	84	50 - 150	0
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	84	87	50 - 150	4
Anthracene	mg/kg (ppm)	0.83	< 0.01	86	89	50 - 150	3
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	89	93	50 - 150	4
Pyrene	mg/kg (ppm)	0.83	< 0.01	90	88	50 - 150	2
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	87	89	50 - 150	2
Chrysene	mg/kg (ppm)	0.83	< 0.01	88	89	50 - 150	1
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	93	95	50 - 150	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	95	97	50 - 150	2
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	91	94	50 - 150	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	100	93	50 - 150	7
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	100	93	50 - 150	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	98	89	50-150	10

Laboratory Code: Laboratory	Control San	npie 1/5	Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	80	61-102
2-Methylnaphthalene	mg/kg (ppm)	0.83	83	62-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	82	62-108
Acenaphthylene	mg/kg (ppm)	0.83	89	61-111
Acenaphthene	mg/kg (ppm)	0.83	93	61-110
Fluorene	mg/kg (ppm)	0.83	88	62-114
Phenanthrene	mg/kg (ppm)	0.83	88	64-112
Anthracene	mg/kg (ppm)	0.83	90	63-111
Fluoranthene	mg/kg (ppm)	0.83	94	66-115
Pyrene	mg/kg (ppm)	0.83	95	65-112
Benz(a)anthracene	mg/kg (ppm)	0.83	93	64-116
Chrysene	mg/kg (ppm)	0.83	93	66-119
Benzo(a)pyrene	mg/kg (ppm)	0.83	98	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	96	61-118
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	96	65-119
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	108	64-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	108	67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	106	67-126

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	2.5	74	78	62-90	5
2-Methylnaphthalene	ug/L (ppb)	2.5	80	86	64-93	7
1-Methylnaphthalene	ug/L (ppb)	2.5	80	84	64-93	5
Acenaphthylene	ug/L (ppb)	2.5	82	88	70-130	7
Acenaphthene	ug/L (ppb)	2.5	80	86	70-130	7
Fluorene	ug/L (ppb)	2.5	85	95	70-130	11
Phenanthrene	ug/L (ppb)	2.5	83	92	70-130	10
Anthracene	ug/L (ppb)	2.5	85	93	70-130	9
Fluoranthene	ug/L (ppb)	2.5	90	99	70-130	10
Pyrene	ug/L (ppb)	2.5	89	96	70-130	8
Benz(a)anthracene	ug/L (ppb)	2.5	87	99	70-130	13
Chrysene	ug/L (ppb)	2.5	88	98	70-130	11
Benzo(a)pyrene	ug/L (ppb)	2.5	92	105	70-130	13
Benzo(b)fluoranthene	ug/L (ppb)	2.5	91	105	70-130	14
Benzo(k)fluoranthene	ug/L (ppb)	2.5	89	102	70-130	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	2.5	99	113	70-130	13
Dibenz(a,h)anthracene	ug/L (ppb)	2.5	100	118	70-130	17
Benzo(g,h,i)perylene	ug/L (ppb)	2.5	97	113	70-130	15

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

20441B			SAMPL	E CHAIN	VOF	cys	0₽¥	DY	Ou	1/23	-122	•	٧९.ſ	ζŲ	/ A#	2/W3/BJ
Report to Dan	Hatch		SAMPI	LERS (sign	ature) .	[]		10							Page #	AROUND TIME
Company Bluest		menta	A PROJE	ECT NAME			P0 #	;		7		ndard	l turnaround			
Address				urn l	JW			B	E-a	07	-B	•				es authorized by:
City State ZIP				RKS					INV							PLE DISPOSAL
PhoneF	Imail dankel	Nuestanon	Project	specific RL	<u>s? - Y</u>	es (No	Bl	ws.	for	e) Oth	er	ispose after 30 days
			r	1	T	Į,	T	·····	AN	ALYS	ES RI		****	D	1	······································
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	SVJZW	sperard	-		Notes
B-1-5	OT A.E	4/24/2	9:40	5	S											
B-1-10	02	*****	9:45			X	X		λ	1					,	i
13-1-1-3	63		9:50			X	χÌ		Tχ	X		X				
B-1-15	64		9,55	V	J											
B-1-W	05 A.F		10:10	ω	6	\mathbb{X}	X		Ì	λ		\times				4-6- VOD /2 C Po(4
B-2-5	06 A.E		10:30	5	5	X	1		\overline{X}	X		\times				
B-2-10	07		10:35												ŗ	
<u>B-2-13</u>	08		10:40			\times			X				I			
3-2-15	09		10:45	V	V											
B-2-W	10	V	10:55	W	6	λ	X		X	X		χ				
Prindra on & Product Tool	SIG Relinguished by	NATURE			PRIN	T NA	ME				C	OMI	PAN'	ζ		DATE TIME
Friedman & Bruya, Inc. 3012 16th Avenue West	Received by			Da	n	He	to	h		P	she.	51	n-Q			4/25/2 13:00
1	Relinquished by:			EAL	_46	Ŵ	2_			14	ev,	B				4/20/20/0000
Ĺ	Received by:	********										San	mla	2 1 0/		ed at <u>4</u> oC

204418			SAMPL	E CHAIN	VOF	CU	ŞTC	DDY	•		ΛU	125	7,2	BIY	/vs-84/	I VW3
Report To Dan H	atch		SAMPI	ERS (sign	ature)			S				1-01		Page	$\frac{Z'}{NAROUND}$	of <u>5/</u>
Company Blues.	tone	×	PROJE	CT NAME	6			ľ		PO	#				d turnarour	
Address	·		- Aubi	ion V	$ \omega $			BE	E-0	<i><i></i></i>	2	В			ges authori:	ed by:
City, State, ZIP			REMAI	RKS							CE TO				(PLE DISP(samples	OSAL
PhoneEr	nail	Netal Mada and Analy Surgely Barray	_ Project	specific RI	<u>.s? - Y</u>	<u>es /</u>	No	$ \mathcal{B} $	lue:	st	one			her	Dispose aft	er 30 day
		<u> </u>	г	T	1	1		r r					STED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	1 0.1	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PCBs EPA 8270	mera s		, , , , , , , , , , , , , , , , , , ,	N	otes
B-3-5	I A.E	4/24/22	11:10	5	5	X	$\boldsymbol{\lambda}$		<	2						
B-3-10	风		11:15		1											
B-3-12 B-3-15	13		11:20			Х	X		2	Κ.						
	14		11:25										e			
BARBARA B-4-5	5 15		11:50													
B-4-10	16		11:55			X	Х		>	<						
<u>B-4-14</u>	17		12:00			χ	\mathcal{X}		λ	\sum	1	Х				
8-4-15	18		12:05	\checkmark	Ψ											
B-4-W	19 A.F		12:10	ω	6	义.	$\boldsymbol{\chi}$		λ	Żχ		X			1	
						1									1	*****
Enindry on & Dry Tay	SIG	NATURE			PRIN	TN/	AME				(OMP.	ANY		DATE	TIME
÷ /	Relinquished by:	14)ajo	H	A	S	, 1		340	546	me		4/25/27	
	Relinquisheri by:	****		ELIC	45	hМ	<u></u>				Fa	β_			Apsp.	1835
Ph. (206) 285-8282	leceived by:											S	ample	s rec	wived at	

. .

204418 Report To Blue:		and the second se		N OF CUSI	'ODY	mulast	·> 🔎	BJH/US-BY E03 Page # 3 of 3 mus
Report To Blue :	stone	SAMP	LERS (sign	nature)	12-			Page # 3 or 3 WW
Company		PROJE	ECT NAME		$\gamma \gamma$	PO #		TURNAROUND TIME Standard turnaround
Address		n i	;	13/3	REA	107-E		RUSH
	,	Hu!	<u>nurn</u>	<u>uu</u>	~~			ush charges authorized by:
City, State, ZIP			111713		IN	VOICE TO	G	SAMPLE DISPOSAL Archive samples
Phone	_Email	Project	specific RI	<u>.s? - Yes / No</u>	Blue	stone		Other
				1		VALYSES RI		efault: Dispose after 30 days
	·					8 2 8		
Sample ID	Lab ID Date	Time	Sample	# of Jars X0-HdLMN	A 80	A 82 A 82 A 80	18	
	Sample	d Sampled	Type	Jars J. J.	X BH	EP S S		Notes
	······			Í Í Í	BTEX EPA 8021 NWTPH-HCID	PCB PAH	meters	
B-5-5	RDAE 4/24h	2 12:55	\leq	5				- per DH
B-5-10	2(]	13:00						1 2 424
3-5-12	22	13:05				+ + + +		
3-5-15	23	13:10		VX		,╋╾-┠┣		-
B-5-W	RYA-F		U.		K		X	
B-6-5		13:15	W	6XX			$\langle $	
B-6-10	25A.E	13:30	5	5				
}	26	13:35			X			· · · · · · · · · · · · · · · · · · ·
B-6-13	27	13:40		XX	X	XX		
B-6-15	28	13:45	J.	J / /				
B-6-W	29 A.F	1	W	6 X X		x x	,	
¥** * *	SIGNATURE	······································		PRINT NAME		·····		unpreserved Ploi
Friedman & Bruya, Inc. Ph. (206) 285-8282	Relinquished by:		n	1. K		{	MPANY	DATE TIME
	Received &		-Jan Fin t	2 Contraction of the second se		BULL	phone b	4/25/22 13:00
	Relinquished by		J× (form			<u>vp</u>	4/2/1838
	Received by:						Sample	sreceived at 4 oC
		l_			·····		~	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 12, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on April 25, 2022 from the Auburn VW BE-0107-B, F&BI 204418 project. There are 15 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0512R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 25, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-B, F&BI 204418 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Bluestone Environmental NW
204418 -01	B-1-5
204418 -02	B-1-10
204418 -03	B-1-13
204418 -04	B-1-15
204418 -05	B-1-W
204418 -06	B-2-5
204418 -07	B-2-10
204418 -08	B-2-13
204418 -09	B-2-15
204418 -10	B-2-W
204418 -11	B-3-5
204418 -12	B-3-10
204418 -13	B-3-12
204418 -14	B-3-15
204418 - 15	B-4-5
204418 -16	B-4-10
204418 -17	B-4-14
204418 -18	B-4-15
204418 -19	B-4-W
204418 -20	B-5-5
204418 -21	B-5-10
204418 -22	B-5-12
204418 -23	B-5-15
204418 - 24	B-5-W
204418 -25	B-6-5
204418 -26	B-6-10
204418 - 27	B-6-13
204418 -28	B-6-15
204418 -29	B-6-W

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for bromomethane. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 05/06/22 Date Analyzed: 05/06/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-1-5 204418-01	<50	<250	107
B-2-10 204418-07	<50	<250	111
B-4-5 204418-15	<50	<250	109
Method Blank 02-1073 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-5 04/25/22 05/06/22 05/06/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 204418-01 050615.D GCMS4 RF		
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 97 97	Lower Limit: 90 89 84	Upper Limit: 109 112 115		
Compounds:		Concentration mg/kg (ppm)	Compou	Concentration mg/kg (ppm)		
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropar Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropar Bromodichloromethane 4-Methyl-2-pentan cis-1,3-Dichloropro	hane er (MTBE) ethene ene ene e (EDC) ine de de hane one	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.25 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene v Vlbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene otoluene pylbenzene imethylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$	
	trans-1,3-Dichloropropene <0. 1,1,2-Trichloroethane <0.			Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 05/06/22 05/06/22 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 02-988 mb 050605.D GCMS4 RF		
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 98 100	Lower Upper Limit: Limit 90 109 89 112 84 115			
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)	
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	nzene Cetrachloroethane ene vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene vlbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$	
· •	,1,2-Trichloroethane <0.05			Naphthalene 1,2,3-Trichlorobenzene		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-01 1/5 050920.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 66 73 71 76 73 87	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	$\begin{array}{c} 0.032 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-10 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-07 1/5 050921.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 59 67 62 72 73 88	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-3-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm) Dry Wei	Client: Project: Lab ID: Data File: Instrument: ght Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-11 1/25 050923.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recov 59 d 67 d 62 d 76 d 75 d 82 d	$39 \\ 48 \\ 23 \\ 50 \\ 40$	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentr mg/kg (p		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-15 1/25 050924.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 63 d 73 d 66 d 79 d 77 d 89 d	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.0$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-6-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm) Dry V	Pro La Da Ins	ent: oject: b ID: ta File: strument: perator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-25 1/5 050922.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	covery: 64 71 66 76 75 85	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 39 \\ 48 \\ 23 \\ 50 \\ 40 \\ 50 \end{array}$	Upper Limit: 103 109 138 150 127 150
Compounds:		ntration g (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne < ne < ne ne	0.01 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/06/22 05/09/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 02-1076 mb 1/5 050909.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 80 88 84 94 102	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{rcr} \text{ne} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ \text{ene} & <0.01 \\ & \\ \text{ene} & <0.01 \\ & \\ \text{ene} & <0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 204286-08 (Matrix Spike) Percent Sample Percent Reporting Spike Result Recovery RPD Recovery Acceptance Units Level MSD Criteria Analyte (Wet Wt) MS(Limit 20) **Diesel Extended** mg/kg (ppm) 5,000810 104 100 63-146 4 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Analyte Units Level LCS Criteria 5,000**Diesel Extended** mg/kg (ppm) 110 79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 205057-03 (Matrix Spike)

Laboratory Code: 2050a	57-03 (Matrix Spike)		G 1				
			Sample	Percent	Percent		
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	17	19	10-142	11
Chloromethane	mg/kg (ppm)	1	<0.5	46	45	10-126	2
Vinyl chloride	mg/kg (ppm)	1	< 0.05	44 64	47 83	10-138 10-163	7 26 vo
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.5	64 59	83 61	10-163	26 V0 3
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	50	56	10-176	11
Acetone	mg/kg (ppm)	5	<5	68	68	10-163	0
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	65	68	10-160	5
Hexane	mg/kg (ppm)	1	< 0.25	54	56	10-137	4
Methylene chloride	mg/kg (ppm)	1	< 0.5	80	76	10-156	5
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	87	86	21 - 145	1
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	77	75	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	79	80	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	98	98	10-158	0
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	80	85	25-135	6
Chloroform	mg/kg (ppm)	1	<0.05 <1	84 79	87 83	$21-145 \\ 19-147$	4 5
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	5 1	<0.05	79 80	83 82	19-147 12-160	5 2
1,1,1-Trichloroethane	mg/kg (ppm)	1	<0.05	80	82	10-156	2
1,1-Dichloropropene	mg/kg (ppm)	1	<0.05	76	80	17-140	5
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	80	81	9-164	1
Benzene	mg/kg (ppm)	1	< 0.03	77	81	29-129	5
Trichloroethene	mg/kg (ppm)	1	< 0.02	80	80	21-139	0
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	77	80	30 - 135	4
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	83	85	23 - 155	2
Dibromomethane	mg/kg (ppm)	1	< 0.05	80	84	23-145	5
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	86	89	24-155	3 6
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	1 1	<0.05 <0.05	79 76	84 78	28-144 35-130	6
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	78	80	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	85	83	10-205	2
2-Hexanone	mg/kg (ppm)	5	< 0.5	83	90	15-166	8
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	77	81	31-137	5
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	77	79	20-133	3
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	75	77	28-150	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	77	81	28-142	5
Chlorobenzene	mg/kg (ppm)	1	< 0.05	79	81	32-129	2
Ethylbenzene	mg/kg (ppm)	1	< 0.05	80 82	83	32-137	4 1
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	1 2	<0.05 <0.1	82 79	83 82	31-143 34-136	4
o-Xylene	mg/kg (ppm)	1	<0.05	82	82	33-134	0
Styrene	mg/kg (ppm)	1	< 0.05	78	81	35-137	4
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	85	87	31-142	2
Bromoform	mg/kg (ppm)	1	< 0.05	74	77	21 - 156	4
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	83	83	23-146	0
Bromobenzene	mg/kg (ppm)	1	< 0.05	74	78	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	76	80	18-149	5
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	93	85	28-140	9 9
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm)	1 1	<0.05 <0.05	75 77	82 80	25-144 31-134	9 4
4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	75	80 79	31-136	4 5
tert-Butylbenzene	mg/kg (ppm)	1	<0.05	81	83	30-137	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	80	83	10-182	4
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	83	84	23-145	1
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	82	84	21-149	2
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	77	79	30-131	3
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	77	80	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	77	80	31-132	4
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	80	81	11-161	1
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	<0.25	83	85	22-142	2 2
Hexachlorobutadiene Naphthalene	mg/kg (ppm)	1 1	<0.25 <0.05	90 91	88 89	$10-142 \\ 14-157$	$\frac{2}{2}$
1.2.3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	83	89 85	20-144	2
1,2,0-111cmorobenzene	mg/kg (bhm)	1	~0.20	θθ	00	20-144	4

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	40	10-146
Chloromethane	mg/kg (ppm)	1	64	27-133
Vinyl chloride	mg/kg (ppm)	1	70	22-139
Bromomethane	mg/kg (ppm)	1 1	96 82	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	1	82	9-163 10-196
Acetone	mg/kg (ppm) mg/kg (ppm)	5	83 76	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	91	47-128
Hexane	mg/kg (ppm)	1	88	43-142
Methylene chloride	mg/kg (ppm)	1	107	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	95	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	94	67-129
1.1-Dichloroethane	mg/kg (ppm)	1	95	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	133	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	97	72-127
Chloroform	mg/kg (ppm)	1	97	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	88	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	94	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	98	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	93	69-128
Carbon tetrachloride	mg/kg (ppm)	1	99	60-139
Benzene	mg/kg (ppm)	1	93	71-118
Trichloroethene	mg/kg (ppm)	1	91	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	88	72-127
Bromodichloromethane	mg/kg (ppm)	1 1	97	57-126
Dibromomethane	mg/kg (ppm)	5	95 95	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	ъ 1	95 95	45-145
cis-1,3-Dichloropropene Toluene	mg/kg (ppm) mg/kg (ppm)	1	95 88	67-122 66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	94	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	54 89	64-115
2-Hexanone	mg/kg (ppm)	5	98	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	89	72-130
Tetrachloroethene	mg/kg (ppm)	1	91	72-114
Dibromochloromethane	mg/kg (ppm)	1	91	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	92	74-132
Chlorobenzene	mg/kg (ppm)	1	91	76-111
Ethylbenzene	mg/kg (ppm)	1	92	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	98	64-121
m,p-Xylene	mg/kg (ppm)	2	92	78-122
o-Xylene	mg/kg (ppm)	1	94	77-124
Styrene	mg/kg (ppm)	1	91	74-126
Isopropylbenzene	mg/kg (ppm)	1	93	76-127
Bromoform	mg/kg (ppm)	1	92	56-132
n-Propylbenzene	mg/kg (ppm)	1	90	74-124
Bromobenzene	mg/kg (ppm)	1	87	72-122
1,3,5-Trimethylbenzene 1,1,2.2-Tetrachloroethane	mg/kg (ppm)	1 1	89 91	76-126 56-143
1,1,2,2-1 etrachloropethane 1,2,3-Trichloropropane	mg/kg (ppm)	1	91 90	61-137
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	90 91	74-121
4-Chlorotoluene	mg/kg (ppm)	1	90	75-122
tert-Butylbenzene	mg/kg (ppm)	1	92	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	90	76-125
sec-Butylbenzene	mg/kg (ppm)	1	91	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	92	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	91	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	91	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	91	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	95	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	94	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	96	50-153
Naphthalene	mg/kg (ppm)	1	93	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	94	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 205099-02 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result		Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	82	78	50-150	5
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	83	50-150	2
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	84	82	50 - 150	2
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	85	84	50 - 150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	83	83	50 - 150	0
Fluorene	mg/kg (ppm)	0.83	0.016	84	88	50-150	5
Phenanthrene	mg/kg (ppm)	0.83	0.18	69 b	67 b	50 - 150	3 b
Anthracene	mg/kg (ppm)	0.83	0.024	85	85	50 - 150	0
Fluoranthene	mg/kg (ppm)	0.83	0.17	72 b	71 b	50 - 150	1 b
Pyrene	mg/kg (ppm)	0.83	0.15	76	71	50-150	7
Benz(a)anthracene	mg/kg (ppm)	0.83	0.063	81	83	50-150	2
Chrysene	mg/kg (ppm)	0.83	0.089	79	80	50-150	1
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.077	84	84	50 - 150	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.084	90	86	50-150	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.030	94	93	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.034	65	72	50-150	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	74	79	50 - 150	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.030	63	69	50-150	9

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	86	61-102
2-Methylnaphthalene	mg/kg (ppm)	0.83	85	62-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	85	62-108
Acenaphthylene	mg/kg (ppm)	0.83	92	61-111
Acenaphthene	mg/kg (ppm)	0.83	91	61-110
Fluorene	mg/kg (ppm)	0.83	87	62-114
Phenanthrene	mg/kg (ppm)	0.83	92	64-112
Anthracene	mg/kg (ppm)	0.83	90	63-111
Fluoranthene	mg/kg (ppm)	0.83	90	66-115
Pyrene	mg/kg (ppm)	0.83	94	65-112
Benz(a)anthracene	mg/kg (ppm)	0.83	90	64-116
Chrysene	mg/kg (ppm)	0.83	93	66-119
Benzo(a)pyrene	mg/kg (ppm)	0.83	90	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	91	61-118
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	91	65-119
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	94	64-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	101	67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	102	67-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

20441B REPARTO Dan	Hatch		SAMPL	E CHAIF		/				1/25	122	<u>∠</u> ∨	'S-BY	Page TTI		VW.S	/ BI
Company Bluest		ormenta	PROJE	CT NAME				<i>7</i>		PO #			XS OR	anda	rd turn		
Address				urn l	JW			B	E-0.	107	-B	3			rges aut	horized	l by:
City, State, ZIP		٦	REMAI	RKS					INV	OICE	C TO	<u></u>			MPLE I e sample		iAL
PhoneI	imail danher	bluestorer	Lu. Dar Project	specific RI	<u>18? - Y</u>	es 12	\$0	B					D O Def	ther_	<u> </u>		30 days
		1	1	1	Τ		1		1		1	EQUE	STED	Т	1		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	PAHs EPA 8270	PCBs EPA 8082	MRLAS		***	•	Per I Sl)H 6 22 88 ~ F
B-1-5	OI A-E	4/24/22	9:40	5	5	•			•								
B-1-10	02	ł	9:45			X	X		<u>د</u>						·	ĩ	9999
13-1-13	63		9:50			\mathbf{x}	x		\neg	X		X					
B-1-15	04		9,55	V	V		T	1								*	
B-1-W	OSTA.F		10:10	ω	6	X	$\overline{\mathbf{x}}$		3	$\langle \chi \rangle$		X			44	. UPA PR	125
B-Z-5	06 A.E		10:30	5	5	X	X		$\left \right\rangle$	X		X					
B-2-10	07		10:35			•				•							
13-2-13	- <i>C</i> B		10:40			X			X								
B-2-15	09		10:45	V	V							ľ					
13-2-W	10	V	10:55	ω	6	入	<		X	X.		X		·			
Friedman & Bruya, Inc.	Relinquished by	NATURE		Da	PRIN	T NA				Į		юмр. 54-2	********		DA 4/25	12-	TIME 13 00
Seattle, WA 98119-2029	Received by Relinquished by:			FAIL.	-46	ON/S	2			4	-2	乃_			14/2	12	1835
Ph. (206) 285-8282	Received by:					***	,/->*				*** **** * ***	Sam	ples r	ecei	ved at	: 4	°C

Report To Dan H. Company Blues	tone.	, ,	PROJE	CT NAME	6			¥		PO #			Stand	lard t	ROUND		
Address			Aubi	ion V	W		,	BE	-0	10	2-B		Rush charges authorized by:				
City, State, ZIP	·····		REMAI		*****					OICE					LE DISPO mples	SAL	
PhoneEn	nail		Project	specific RI	<u>/s? - Y</u>	<u>es /)</u>	No	Blu	æ٤	60;	<u>~2</u>		Other	٢		er 30 days	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·····		······································			I		·····			es requ	JESTE				******	
Sample ID	Lab ID	Date Sample	Time d Sampled	Sample Type	# of Jars	XQ-H4TWN	NWTPH-Gx	BTEX EPA 8021 NIVERDEL UCITY	VOCs BPA 8260	PAHs EPA 8270	POB8 EPA 8082		a sa a s	-	Ne	otes	
B-3-5	IN A.E	4/24h	211:10	5	5	λ	$\overline{\chi}^{\dagger}$		\overline{x}	•					*******		
B-3-10	R		11:15	1			<u></u>										
B-3-12 B-3-15	3		11:20			X	X		$\hat{\chi}$					1			
	14		11:25						1								
BARBAND B-4-5	5		11:50			•			1	•							
B-4-10	16		11:55			X	X		X								
B-4-14	17		12:00			XX	-		X	\mathbf{A}	X						
8-4-15	18	<u>}</u>	12:05	$\overline{\mathbf{V}}$	J.	····						 					
B-4-W	AF		12:10	ω	6	XZ	X		X	χ	χ						
		$\overline{\mathbf{V}}$				1											
Friedman & Bruya, Inc.	SI diaquished by:	GNATURE	and the second se		PRIN)ago			- L		R	COM Lest	PANY	·····		DATE 125/27	TIME 13(30)	
012 16th Avenue West Re	ceived the		Y	Frir	. []	h h h h			**********		SB.	<u>ur ur</u>		··· · · · · · ·	lbsh	19745	
	linguished by:				-FO		<u></u>			<u> </u>	<u>-up</u>				100100	1835	
h. (206) 285-8282 Re	ceived by:				~						· · ·	Same	tae r	appi	ved at	4 °C	

204418 Report to Blue 54	DM.C			LERS (sign		F	5,	A	5				r	Page	# <u>3</u>	-84 3
Company			PROJI	ECT NAME	2	>	C	\int	\checkmark	PO	#		25	anda	rd turnard	
Address			A	NU FVA	$\mathbf{O}(\mathbf{A})$)		B	EC	10	7-B	******		USH_ h chai	ges autho	rized by:
City, State, ZIP			REMA	<u>nurn</u> Rks		<u> </u>					ETO			SAT	MPLE DIS	POSAT
PhoneEn	nail		-					17	3	. 1				chive	samples	
		****	- Project	specific RI	<u>.s? - Y</u>	<u>'es /</u>	No			****	me]	Defa	ult:]	Dispose a	after 30 da
		T		1	1						SES REQ		FED		· · · ·	
Sample ID	Lab ID	Date	Time	Sample	#of	NWTPH-Dx	Ğ	BTEX EPA 8021	NWTPH-HCID	VUCa EPA 8260 PAHs EPA 8270	PCBs BPA 8082	Ŷ			*	*
	11080	Sampled	Sampled	Type	Jars	VTPF	NWTPH-Gx	CEP.	'HH-	EP/	Vala	No.				Notes
						Â	NN	BTE	LANN	V U CC	ACBS 1	S				-11
B-S-5	ZDAE	4/2upz	12:55	5	5							1	1	+	1º=P	er of
B-5-10	21		13:00		1	$\overline{\mathbf{X}}$			λ	杬		-		-	13	4/24/2
<u>B-5-12</u>	22		13:05							$\downarrow \triangle$				+		
8-5-15	23		13:10		V	$\overline{\mathbf{V}}$		<u> </u>	-tx	,	$ \chi$	-			-	
B-5-W	24AF		3:15	Ŵ	6	$\frac{\lambda}{\lambda}$	A		f>		X	1		 		*****
B-6-5	25 A.E	the second s	13:30	S	$\frac{1}{5}$	식	쑤	-	4		$ - \Delta$	-		<u> </u>		
B-6-10	26	1	13:35	\rightarrow	\rightarrow	$\overline{\mathbf{f}}$			$-\frac{1}{x}$							
B-6-13	27	l l	3:40		+	<u>X</u>				+ + +	· · · · · · · · · · · · · · · · · · ·					
B-6-15	28		3:45		┟┼	$\Delta \mu$	4		X	X	<u> X</u>	ļ				
B-6-W	29 A.F		355		<u> </u>		_		_			ļ	ļ			
		VASURE_	0 00 1			<u>x)</u>	<u>[]</u>		X	$ \chi $	<u> X</u>				unpro	served
	inquished by:	TAURES			PRINT		1		**************************************		COM				DATE	
Ph. (206) 285-8282	eived of 1				The second		~	*******	*******	$\frac{k}{k}$	ship	for	e			z 13:6
Rel	nquished by:			Ge l	'la	<u>v~~</u>				 	Est	<u>5</u>			epilo	- 183

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 7, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on May 27, 2022 from the Auburn VW BE-0107-C, F&BI 205474 project. There are 34 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures BST0607R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 27, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205474 -01	MW-1-W
205474 -02	MW-2-W
205474 -03	MW-3-W
205474 -04	MW-4-W
205474 -05	MW-5-W
205474 -06	MW-Dup

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474 Date Extracted: 05/31/22 Date Analyzed: 05/31/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-W 205474-01	280 x	<250	142
MW-2-W 205474-02	200 x	<250	138
MW-3-W 205474-03	320 x	250 x	141
MW-4-W 205474-04	210 х	<250	126
MW-5-W 205474-05	200 x	<250	135
MW-Dup 205474-06	240 x	<250	145
Method Blank 02-1320 MB	<50	<250	135

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-W 05/27/22 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-01 205474-01.094 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	11.8		
Cadmium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-1-W	Client:	Bluestone Environmental NW
Date Received:	05/27/22	Project:	Auburn VW BE-0107-C, F&BI 205474
Date Extracted:	05/31/22	Lab ID:	205474-01 x5
Date Analyzed:	06/01/22	Data File:	205474-01 x5.045
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-W 05/27/22 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-02 205474-02.097 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	4.94		
Cadmium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-2-W 05/27/22 05/31/22 06/01/22 Water	Client: Project: Lab ID: Data File: Instrument:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-02 x5 205474-02 x5.046 ICPMS2
Units:	ug/L (ppb) Concentration	Operator:	SP
Analyte:	ug/L (ppb)		
Chromium	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-W 05/27/22 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-03 205474-03.098 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	3.33		
Cadmium	<1		
Chromium	2.19		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-W 05/27/22 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-04 205474-04.099 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	7.15		
Cadmium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-4-W	Client:	Bluestone Environmental NW
Date Received:	05/27/22	Project:	Auburn VW BE-0107-C, F&BI 205474
Date Extracted:	05/31/22	Lab ID:	205474-04 x5
Date Analyzed:	06/01/22	Data File:	205474-04 x5.047
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <5	- 1	

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-W 05/27/22 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-05 205474-05.100 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	53.3		
Cadmium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-5-W	Client:	Bluestone Environmental NW
Date Received:	05/27/22	Project:	Auburn VW BE-0107-C, F&BI 205474
Date Extracted:	05/31/22	Lab ID:	205474-05 x5
Date Analyzed:	06/01/22	Data File:	205474-05 x5.048
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-Dup 05/27/22 05/31/22 06/03/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-06 205474-06.057 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	6.96		
Cadmium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-Dup	Client:	Bluestone Environmental NW
Date Received:	05/27/22	Project:	Auburn VW BE-0107-C, F&BI 205474
Date Extracted:	05/31/22	Lab ID:	205474-06 x5
Date Analyzed:	06/01/22	Data File:	205474-06 x5.052
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/31/22 05/31/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 I2-391 mb I2-391 mb.082 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-W 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205474-01 060225.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 88 87 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroeth ane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de hane one	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Cetrachloroethane ene e Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10	Naphtha		<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-W 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmo Auburn VW BE-0107 205474-02 060226.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 92 101 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethan 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentand	hane er (MTBE) othene eene (EDC) ne e de de	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	nzene Cetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$<1 \\<1 \\<0.5 \\<1 \\<1 \\<1 \\<1 \\<2 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1$
cis-1,3-Dichloroproj Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	oropene	<0.4 <1 <0.4 <0.5 <10	Hexachl Naphtha	ichlorobenzene orobutadiene alene ichlorobenzene	<1 <0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-W 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205474-03 060227.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 101 100	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane	hane er (MTBE) ethene ene ene e (EDC) une de de	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	nzene Cetrachloroethane ene ene vlbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene imethylbenzene lorobenzene lorobenzene lorobenzene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
4-Methyl-2-pentan- cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	pene propene	<0.4 <1 <0.4 <0.5 <10	1,2,4-Tri Hexachl Naphtha	omo-3-chloropropane ichlorobenzene orobutadiene alene ichlorobenzene	<1 <0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-W 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205474-04 060228.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 96 93 97	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropar Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropar Bromodichlorometh Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropropar	hane er (MTBE) ethene ene ene e (EDC) une le de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10	Naphtha	orobutadiene alene ichlorobenzene	<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-W 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205474-05 060229.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 97 105	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl etho trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloropropar cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlori Benzene Trichloroethene 1,2-Dichloropropar Bromodichloromethane 4-Methyl-2-pentan cis-1,3-Dichloropro	hane er (MTBE) ethene ene ene e (EDC) une de de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Fetrachloroethane ene ene orm Ibenzene orm Ibenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene ylbenzene pyltoluene ilorobenzene ilorobenzene omo-3-chloropropane ichlorobenzene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10	Naphtha	orobutadiene alene ichlorobenzene	<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-Dup 05/27/22 06/02/22 06/02/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205474-06 060230.D GCMS11 VM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 100 95	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropar Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropar Bromodichlorometh Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropropar	hane er (MTBE) ethene ene ene e (EDC) une le de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<1 <0.4 <0.5 <10	Naphtha	orobutadiene alene ichlorobenzene	<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

		Client: Project: Lab ID: Data File: Instrument: Operator:			
-d4 ene	% Recovery: 96 101 105	Lower Limit: 78 84 72	Upper Limit: 126 115 130		
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)	
ethane hane er (MTBE) ethene ene (EDC) ne e de hane pene pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene ene ene ene ene ene ene ene ene		
ne	<0.4 <0.5 <10	-		<1 <1	
	Not Applica 06/02/22 06/02/22 Water ug/L (ppb) -d4 ene thane hane er (MTBE) thene ee ene (EDC) ne e de hane pene pone pene	$\begin{array}{cccc} 06/02/22 \\ Water \\ ug/L (ppb) \end{array} \\ & & & & & & & \\ & & & & & \\ & & & &$	Not ApplicableProject: $06/02/22$ Lab ID: $0ata File:$ 06/02/22Data File: Instrument: ug/L (ppb)Data File: Instrument: ug/L (ppb)-d4967810184ene10572ug/L (ppb)Compouug/L (ppb)Con	Not ApplicableProject:Auburn VW BE-0107 $06/02/22$ Lab ID: $02.1308 mb$ $06/02/22$ Data File: $060207.D$ WaterInstrument:GCMS11ug/L (ppb)Operator:RF-4967812610184115ene10572130Concentrationug/L (ppb)Compounds:Concentrationug/L (ppb)Compounds:Concentrationug/L (ppb)Compounds:Concentrationug/L (ppb)Compounds:Concentrationug/L (ppb)Compounds:Concentrationug/L (ppb)Compounds:ConcentrationConcentrationUg/C (ppb)Compounds:ConcentrationConcentrationUg/C (ppb)Compounds:ConcentrationConcentrationUg/C (ppb)Compounds:ConcentrationConcentrationUg/C (ppb)Compounds:ConcentrationConcentrationConcentrationConcentrationConcentrationConcentrationConcentrationConcentration <td colspa<="" td=""></td>	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-W 05/27/22 06/01/22 06/01/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-01 060110.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ıol	% Recovery: 21 14 78 78 68 83	Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene eene	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.04 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-2-W 05/27/22 06/01/22 06/01/22 Water	1 0	Client: Project: Lab ID: Data File: Instrument:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-02 060111.D GCMS12
Units:	ug/L (ppb)		Operator:	VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 23 13 83 81 77 85	Lower Limit: 11 50 44 10 50	UpperLimit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	ene	<pre><0.2 <0.2 <0.2 <0.2 <0.02 <0.02</pre>		
Benzo(a)pyrene Benzo(b)fluoranthe	ene	<0.02 <0.02		
Benzo(k)fluoranthe	ene	< 0.02		
Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac		<0.02 <0.02		
Benzo(g,h,i)peryler		<0.02		

ENVIRONMENTAL CHEMISTS

Date Received:ODate Extracted:ODate Analyzed:OMatrix:N	MW-3-W)5/27/22)6/01/22)6/01/22 Water 1g/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-03 060112.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14	% R	ecovery: 20 14 86 81 72 87	Lower Limit: 11 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		entration L (ppb)		
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyren Dibenz(a,h)anthracene	e e e e e e e e e e e e e e e e e e e	<0.2 <0.2 <0.2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-W 05/27/22 06/01/22 06/01/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-04 060113.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	$\% \ {\rm Recovery:} \\ 11 \\ 11 \\ 83 \\ 83 \\ 44 \\ 90 \\ \end{cases}$	Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene cene cene	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.04 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-W 05/27/22 06/01/22 06/01/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-05 060114.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol			Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene cene cene	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.04 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-Dup 05/27/22 06/01/22 06/01/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 205474-06 060115.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ıol		Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene rene reene reene	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.04 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/01/22 06/01/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-C, F&BI 205474 02-1325 mb 060108.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recover 23 14 86 87 nol 72 98	y: Lower 11 11 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:	Concentrati ug/L (ppb		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{rcrcr} \text{ne} & <0.2 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ <0.02 \\ ene & <0.02 \end{array}$		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	140	132	63-142	6

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 205474-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	12.4	96	96	75 - 125	0
Cadmium	ug/L (ppb)	5	<10	100	95	75 - 125	5
Chromium	ug/L (ppb)	20	<10	91	83	75 - 125	9
Lead	ug/L (ppb)	10	<10	95	93	75 - 125	2
Mercury	ug/L (ppb)	5	<10	92	100	75 - 125	8

Laboratory Code: Laboratory Control Sample

Laboratory 00	ue. Baseratory	Control De	linpic	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120
Cadmium	ug/L (ppb)	5	96	80-120
Chromium	ug/L (ppb)	20	98	80-120
Lead	ug/L (ppb)	10	98	80-120
Mercury	ug/L (ppb)	5	102	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 206027-01 (Matrix Spike)

	Reporting	Spike	Sample	Percent	Acceptance
A 1 (-	-		-
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	114	50-150
Chloromethane	ug/L (ppb)	10	<10	110	50-150
Vinyl chloride	ug/L (ppb)	10 10	< 0.02	108	50-150
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	10	<5 <1	$105 \\ 106$	50-150 50-150
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10	<1	108	50-150
Acetone	ug/L (ppb)	50	<50	80	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	97	50-150
Hexane	ug/L (ppb)	10	<5	106	50-150
Methylene chloride	ug/L (ppb)	10	<5	93	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	103	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	99	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	98	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	117	50 - 150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	97	50 - 150
Chloroform	ug/L (ppb)	10	<1	96	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	96	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	98	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	101	50 - 150
1,1-Dichloropropene	ug/L (ppb)	10	<1	93	50 - 150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	105	50 - 150
Benzene	ug/L (ppb)	10	< 0.35	99	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	99	50 - 150
1,2-Dichloropropane	ug/L (ppb)	10	<1	102	50 - 150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	105	50 - 150
Dibromomethane	ug/L (ppb)	10	<1	100	50 - 150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	104	50 - 150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	98	50-150
Toluene	ug/L (ppb)	10	<1	95	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	94	50-150
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	99	50-150
2-Hexanone	ug/L (ppb)	50	<10	109	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	92	50-150
Tetrachloroethene	ug/L (ppb)	10 10	<1 <0.5	101 94	50-150
Dibromochloromethane	ug/L (ppb)		0.0		50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10 10	<1 <1	95 93	50-150 50-150
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	93 94	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1	94 91	50-150
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<2	91	50-150
o-Xylene	ug/L (ppb)	10	<1	92	50-150
Styrene	ug/L (ppb)	10	<1	93	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	92	50-150
Bromoform	ug/L (ppb)	10	<5	89	50-150
n-Propylbenzene	ug/L (ppb)	10	<1	99	50-150
Bromobenzene	ug/L (ppb)	10	<1	98	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	96	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	99	50-150
1.2.3-Trichloropropane	ug/L (ppb)	10	<1	98	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	96	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	98	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	95	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	93	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	95	50-150
p-Isopropyltoluene	ug/L (ppb)	10	<1	97	50-150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	100	50 - 150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	98	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	96	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	101	50 - 150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	95	50-150
Naphthalene	ug/L (ppb)	10	<1	94	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	97	50 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laborat			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	93	102	46-206	9
Chloromethane	ug/L (ppb)	10	93	101	70-142	8
Vinyl chloride	ug/L (ppb)	10	95	105	70-130	10
Bromomethane	ug/L (ppb)	10	104	110	56-197	6
Chloroethane	ug/L (ppb)	10	97	107	70-130	10
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10	96 90	108 102	70-130	$\frac{12}{12}$
Acetone 1.1-Dichloroethene	ug/L (ppb) ug/L (ppb)	$\frac{50}{10}$	90 90	96	10-140 70-130	6
Hexane	ug/L (ppb) ug/L (ppb)	10	90 101	96 104	54-136	3
Methylene chloride	ug/L (ppb) ug/L (ppb)	10	71	79	43-134	11
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	95	101	70-130	6
trans-1,2-Dichloroethene	ug/L (ppb)	10	92	98	70-130	6
1,1-Dichloroethane	ug/L (ppb)	10	91	96	70-130	5
2,2-Dichloropropane	ug/L (ppb)	10	113	117	70-130	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	89	102	70-130	14
Chloroform	ug/L (ppb)	10	93	99	70-130	6
2-Butanone (MEK)	ug/L (ppb)	50	95	102	17-154	7
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	92	98	70-130	6
1,1,1-Trichloroethane	ug/L (ppb)	10	96	101	70-130	5
1,1-Dichloropropene	ug/L (ppb)	10	89	97	70-130	9
Carbon tetrachloride	ug/L (ppb)	10	92	102	70-130	10
Benzene	ug/L (ppb)	10	92 92	97	70-130	5
Trichloroethene 1.2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	92 100	97 102	70-130 70-130	$\frac{5}{2}$
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	96	102	70-130	27
Dibromomethane	ug/L (ppb)	10	91	100	70-130	13
4-Methyl-2-pentanone	ug/L (ppb)	50	96	101	68-130	5
cis-1,3-Dichloropropene	ug/L (ppb)	10	95	99	69-131	4
Toluene	ug/L (ppb)	10	96	97	70-130	1
trans-1,3-Dichloropropene	ug/L (ppb)	10	95	94	70-130	1
1,1,2-Trichloroethane	ug/L (ppb)	10	101	101	70-130	0
2-Hexanone	ug/L (ppb)	50	115	119	45-138	3
1,3-Dichloropropane	ug/L (ppb)	10	97	91	70-130	6
Tetrachloroethene	ug/L (ppb)	10	101	99	70-130	2
Dibromochloromethane	ug/L (ppb)	10	92	93	60-148	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98 94	97	70-130	1
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	94 96	93 95	70-130 70-130	1
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	93	90 90	70-130	3
m,p-Xylene	ug/L (ppb)	20	95	95	70-130	0
o-Xylene	ug/L (ppb)	10	93	93	70-130	Ő
Styrene	ug/L (ppb)	10	93	93	70-130	Õ
Isopropylbenzene	ug/L (ppb)	10	92	95	70-130	3
Bromoform	ug/L (ppb)	10	91	83	69-138	9
n-Propylbenzene	ug/L (ppb)	10	95	98	70-130	3
Bromobenzene	ug/L (ppb)	10	91	94	70-130	3
1,3,5-Trimethylbenzene	ug/L (ppb)	10	91	90	70-130	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	96	97	70-130	1
1,2,3-Trichloropropane	ug/L (ppb)	10	97	94	70-130	3 2
2-Chlorotoluene	ug/L (ppb)	10	90	92	70-130	
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	10 10	94 90	93 95	70-130 70-130	$\frac{1}{5}$
1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	90 90	95 91	70-130	1
sec-Butylbenzene	ug/L (ppb)	10	89	93	70-130	4
p-Isopropyltoluene	ug/L (ppb)	10	91	95	70-130	4
1,3-Dichlorobenzene	ug/L (ppb)	10	95	98	70-130	3
1,4-Dichlorobenzene	ug/L (ppb)	10	98	94	70-130	4
1,2-Dichlorobenzene	ug/L (ppb)	10	94	95	70-130	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	101	100	70-130	1
1,2,4-Trichlorobenzene	ug/L (ppb)	10	88	94	70-130	7
Hexachlorobutadiene	ug/L (ppb)	10	86	89	70-130	3
Naphthalene	ug/L (ppb)	10	85	92	70-130	8
1,2,3-Trichlorobenzene	ug/L (ppb)	10	87	93	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/22 Date Received: 05/27/22 Project: Auburn VW BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory C	-					
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
· · ·		Level				(Limit 20)
Naphthalene	ug/L (ppb)	5	85	82	62-90	4
2-Methylnaphthalene	ug/L (ppb)	5	86	82	64-93	5
1-Methylnaphthalene	ug/L (ppb)	5	85	81	64-93	5
Acenaphthylene	ug/L (ppb)	5	94	92	70-130	2
Acenaphthene	ug/L (ppb)	5	91	89	70-130	2
Fluorene	ug/L (ppb)	5	88	86	70-130	2
Phenanthrene	ug/L (ppb)	5	91	88	70-130	3
Anthracene	ug/L (ppb)	5	96	93	70-130	3
Fluoranthene	ug/L (ppb)	5	103	96	70-130	7
Pyrene	ug/L (ppb)	5	99	96	70-130	3
Benz(a)anthracene	ug/L (ppb)	5	96	93	70-130	3
Chrysene	ug/L (ppb)	5	97	94	70-130	3
Benzo(a)pyrene	ug/L (ppb)	5	103	98	70-130	5
Benzo(b)fluoranthene	ug/L (ppb)	5	97	93	70-130	4
Benzo(k)fluoranthene	ug/L (ppb)	5	106	98	70-130	8
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	82	86	70-130	5
Dibenz(a,h)anthracene	ug/L (ppb)	5	88	89	70-130	1
Benzo(g,h,i)perylene	ug/L (ppb)	5	84	85	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

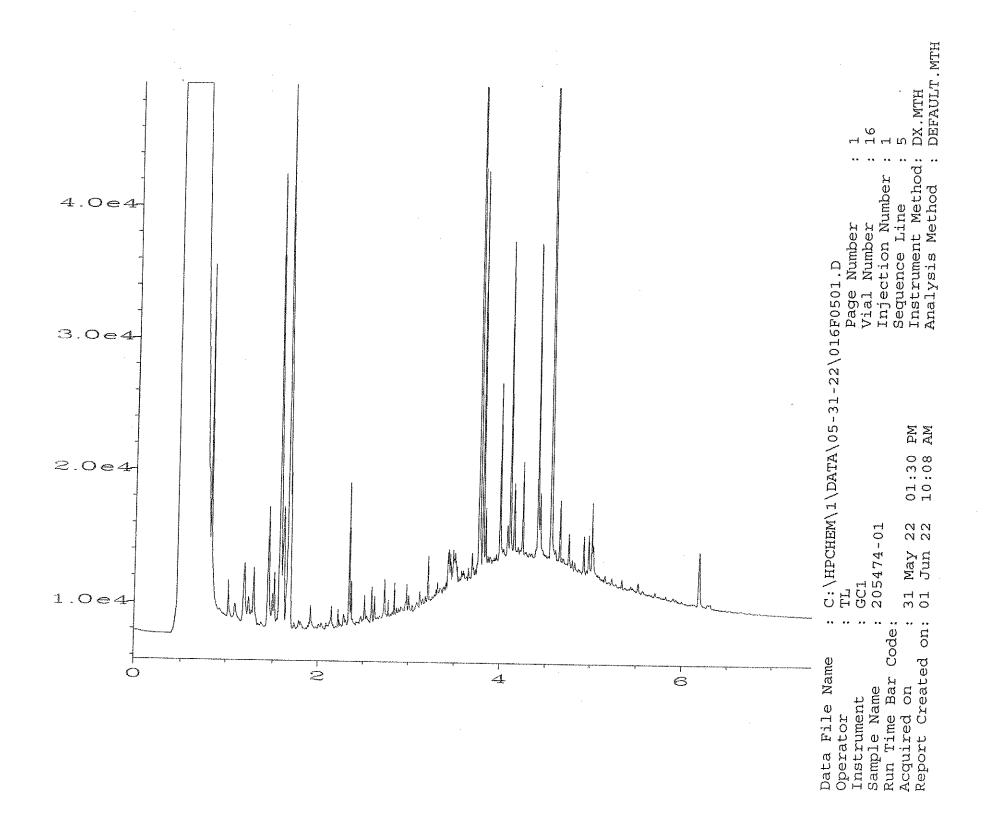
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

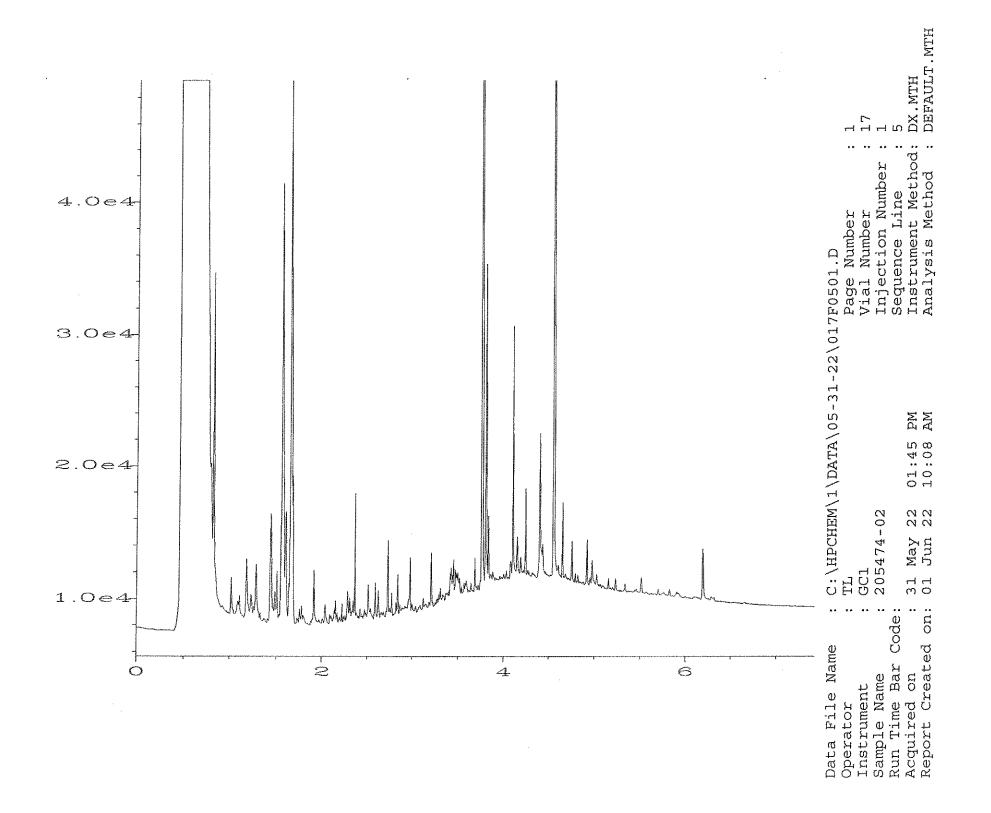
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

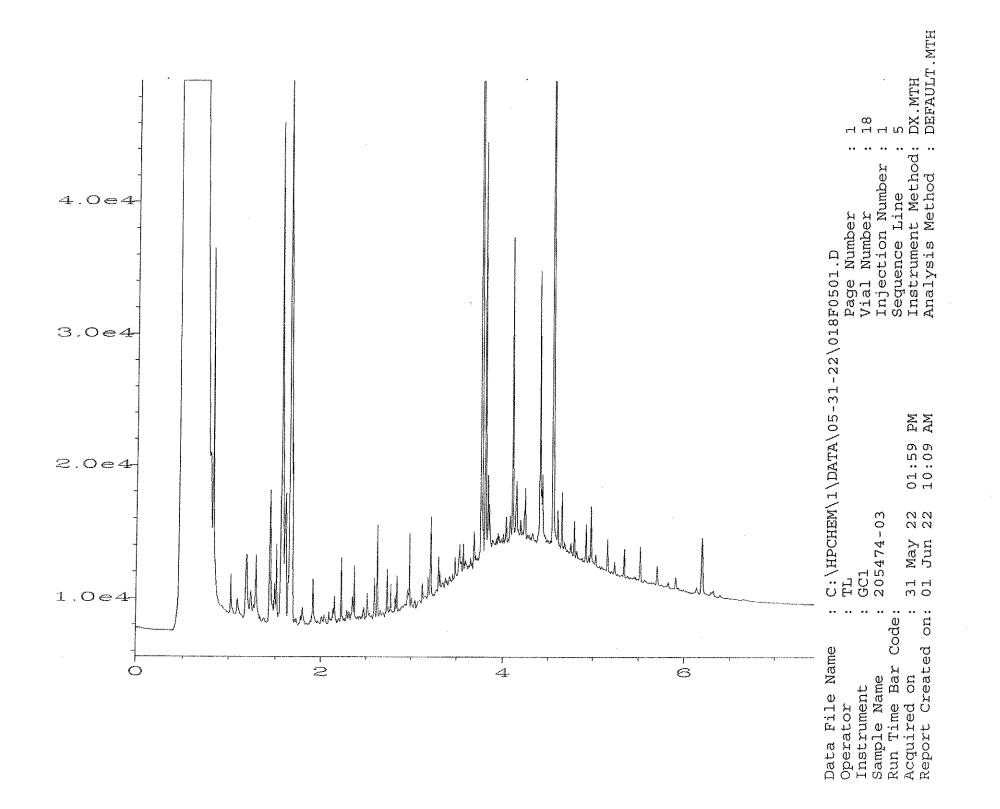
lc - The presence of the analyte is likely due to laboratory contamination.

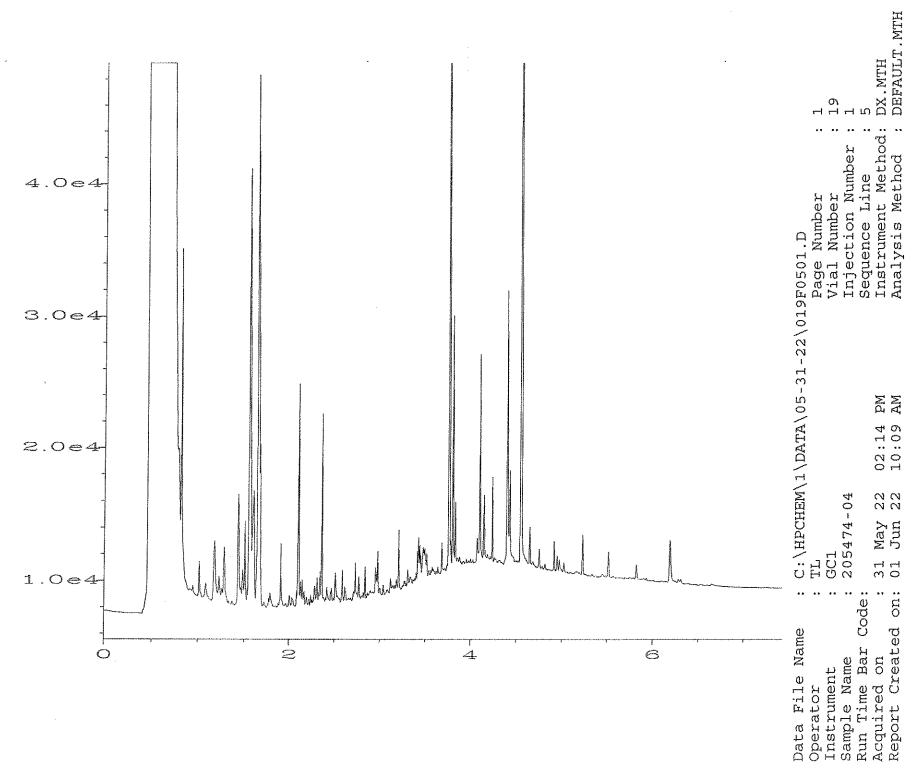
L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

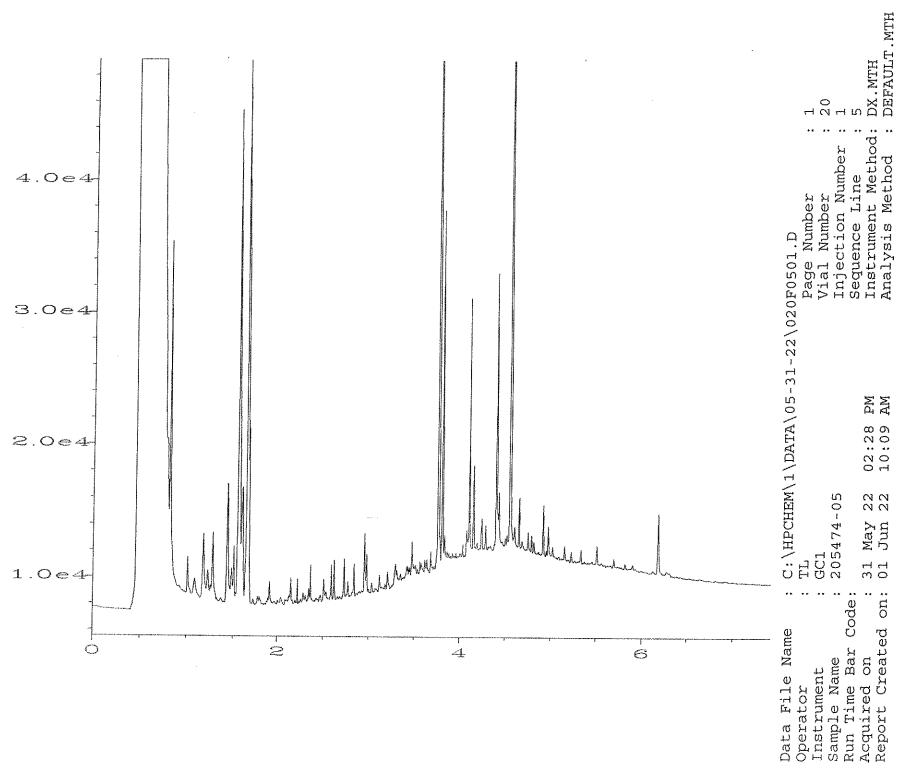

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

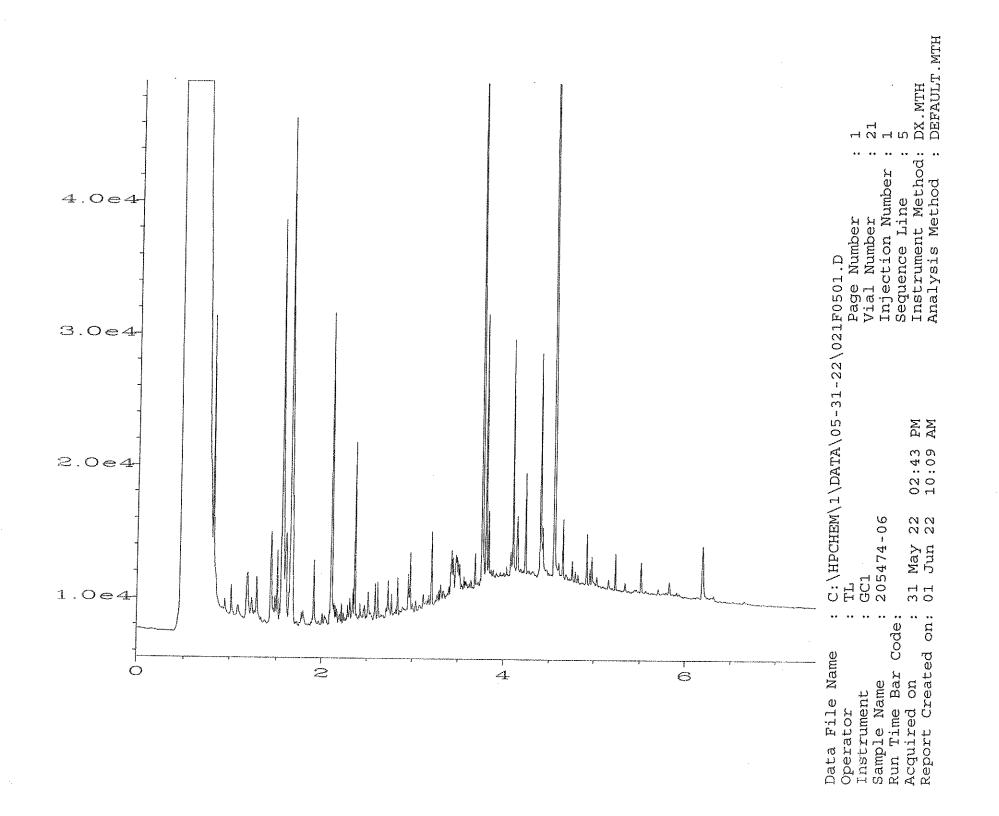

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		Friedman & Bruya, Inc. Ph. (206) 285-8282	1		MW-DUP	WW-5-6	MW-4-6	MW-3-4	Mw-2-6	MW - 1 - 6	Sample ID			Dhomo -	City, State, ZIP	Address	Company BUT STONE		205474
Received by:		1, Inc. Reinquisheavy	let let		1 010 V	95	NO	8	707	OIAT	D Lab ID			Empil Janlaholatasharan 1 man			STONE	DAN HATCH	
	D. MAS	MUMAT	QNA NUR		K					5/26/22	Date Sampled			alaren 1 ma		n a mar prana a Verting Andrean a Verting Andre			
		7			Shee	950	105	1100	210	1/38	Time Sampled		·		REMARI	Aub	PROJEC	SAMPRE	
	612	HALES			\ 					E	Sample Type		Project specific KLs? -		S	Auburn VW	PROJECT NAME	SAMPBERS Signature	
	Liz Webber	HALEY CARTER	PRINT NAME							q >	Jars Jars		1					Madre	
	1	192	NAME								NWTPH-Dx NWTPH-Gx		Yes / No						
	1 mg										BTEX EPA 8021			B		D,		• 1	
					$ \ge $	\ge	\mathbf{b}	\gtrsim	>	\mathbf{X}	NWTPH-HCID VOCs EPA 8260	ANA		UEST	INVO	9	· .		S
		D2			X	\square	\ge	\ge	\ge	\times	PAHs EPA 8270	ANALYSES REQUESTED		300	INVOICE TO	62-0107-0	P0 #		1-50
S	Fik	BUESCENE	CO		\leftarrow			$\left \right\rangle$	\sim	\times	PCBs EPA 8082	S REQ		١	N	Ļ	\$		+
mple		NE.	COMPANY		$\uparrow \frown$			\ge			MTCA 5 METALS	UES							ή
s receive			YN									UED	Default:	□ Other_	□ Amnhiv	Rush cha	□ RUSH	Page #	9
Samples received at 40C	5/27/122	5121/22	DATE							+	Notes		Default: Dispose after 30 days	□ Other	SAMPLE DISPOSAL	Rush charges authorized by:	Standard turnaround ⊓ RUSH	Page # of TURNAROUND TIME	TUS/RIS/INVS
	257	950	TIME								tes		r 30 days	Service of the Service of Se	SAL	ed by:	ц г .	rime	Y WWY





din.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on May 27, 2022 from the Auburn BE-0107-C, F&BI 205474 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 27, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn BE-0107-C, F&BI 205474 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205474 -01	MW-1-W
205474 -02	MW-2-W
205474 -03	MW-3-W
205474 -04	MW-4-W
205474 -05	MW-5-W
205474 -06	MW-Dup

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/27/22 Project: Auburn BE-0107-C, F&BI 205474 Date Extracted: 06/10/22 Date Analyzed: 06/10/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-1-W 205474-01	<100	91
MW-2-W 205474-02	<100	75
MW-3-W 205474-03	<100	76
MW-4-W 205474-04	<100	76
MW-5-W 205474-05	<100	81
MW-Dup 205474-06	<100	82
Method Blank 02-1150 MB	<100	83

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/27/22 Project: Auburn BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 206151-01 (Duplicate)								
	Reporting	Samp	le Du	plicate	RPD			
Analyte	Units	Resul	t R	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	:100	nm			
Laboratory Code: Laboratory Control Sample Percent								
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	_			
Gasoline	ug/L (ppb)	1,000	111	69-134				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		Friedman & Bruya, Inc. Ph. (206) 285-8282) - 	MW-DUP	WW-2-C	MW-4-6	MW-3-4	Mw-2-6	MW - 1 - cc	Sample ID			Dhano	Miter State 7TD	Address	10 . ł		205474
Received by:	Relingdished by:	i, Inc.	let let	20 V	37	by ov	5	5	OIAT	D Lab ID			En si danlahitatanini 1 man			STONE	DAN HATCH	
	D. MAS	MANA	QNADURE .	K					5/26/22	Date Sampled	1		stare al ma					
		(Show 1	950	105	1100	015	18	Time Sampled		·		REMARY	Aub	PROJEC	SAMPS	
	Lizy	HALES		<					ω	Sample Type		Project specific RLs? -		S	Auburn VW	PROJECT NAME	SAMPBERS signuture	
	Liz Webber	HAVEY CARTER	PRINT NAME						q >	Jars Jars		1					WIND THE	
	L L	192	NAME							NWTPH-Dx NWTPH-Gx		Yes / No						
	3m Ye									BTEX EPA 8021			B		Q	1	, (
					$\mathbf{\nabla}$	Þ	\gtrsim	>	\mathbf{X}	NWTPH-HCID VOCs EPA 8260	ANA		UEST	INVC	9 2		90	S
		P			X	\geq	\ge	\ge	\times	PAHs EPA 8270	ANALYSES REQUESTED		BUESTONE	DICE '	BE-0107-C	PO #		1-50
S	P.S.F.	Swesenve	CO					\square	$\overline{}$	PCBs EPA 8082	S REG		/	TO	Ļ	2		+-2
umple		ONE	COMPANY	\square			X	X	\sim	MTCA 5 MEJAG	UES							ŕ
s receive			YN								TED	Default	□ Archiv □ Other	4S	Rush cha	RUSH	Pag TU	ÿ
Samples received at 40C		5121/22	DATE						+	Notes		Default: Dispose after 30 days	□ Archive samples □ Other	SAMPLE DISPOSAL	Rush charges authorized by:	Standard turnaround ⊓ RUSH	Page # of	KINI STU/ SMI
	257	98 ⁰	TIME							ites		<u>r 30 days</u>)SAL	ed by:	đ	TIME	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 2, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on May 23, 2022 from the Auburn VW BE-0107_C, F&BI 205405 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures BST0602R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 23, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107_C, F&BI 205405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205405 -01	MW-1-5
205405 -02	MW-1-7
205405 -03	MW-1-12
205405 -04	MW-1-15
205405 -05	MW-2-5
205405 -06	MW-2-8
205405 -07	MW-2-12
205405 -08	MW-2-15
205405 -09	MW-3-3
205405 -10	MW-3-5
205405 -11	MW-3-10
205405 -12	MW-3-15
205405 -13	MW-4-3
205405 -14	MW-4-5
205405 -15	MW-4-10
205405 -16	MW-4-15
205405 -17	MW-5-3
205405 -18	MW-5-5
205405 -19	MW-5-10
205405 -20	MW-5-15

The 8260D calibration standard failed the acceptance criteria for several analytes in the method blank. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405 Date Extracted: 05/25/22 Date Analyzed: 05/25/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogata

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (<u>% Recovery</u>) (Limit 48-168)
MW-1-7 205405-02	<50	<250	110
MW-2-8 205405-06	<50	<250	109
MW-3-3 205405-09	<50	<250	108
MW-3-10 205405-11	<50	<250	109
MW-4-3 205405-13	<50	2,900	108
MW-4-10 205405-15	<50	<250	110
MW-5-3 205405-17	<50	<250	110
MW-5-10 205405-19	<50	<250	109
Method Blank 02-1271 MB2	<50	<250	112

02-1271 MB2

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-7 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-02 205405-02.043 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	13.4 <1		
Chromium	12.0		
Lead Mercury	10.3 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-8 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-06 205405-06.044 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic	11.0		
Cadmium	<1		
Lead	4.60		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-2-8	Client:	Bluestone Environmental NW
Date Received:	05/23/22	Project:	Auburn VW BE-0107_C
Date Extracted:	05/26/22	Lab ID:	205405-06 x5
Date Analyzed:	05/26/22	Data File:	205405-06 x5.085
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	WE
Analyte: Chromium	Concentration mg/kg (ppm) 18.8		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-09 205405-09.045 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead	2.96 <1 9.05 6.38		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-13 205405-13.048 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	2.33 <1 7.46 2.88 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-17 205405-17.049 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	5.56 <1 10.4 5.86 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C I2-379 mb2 I2-379 mb2.038 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/25/22 05/31/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-09 053117.D GCMS4 RF	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloroethane Toluene-d8		100 99	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
cis-1,3-Dichloropropene<0.051,2,4-Trichlorobenzene<0.25Toluene<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine de hane one pene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene or Vlbenzene or m lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene ionobenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/25/22 05/31/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-13 053118.D GCMS4 RF	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloroethane Toluene-d8		102 98	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
trans-1,3-Dichloropropene<0.05Naphthalene<0.051,1,2-Trichloroethane<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro Toluene trans-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine ie de hane one pene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.25 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene hzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene chloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene otoluene chlorobenzene lorobenzene lorobenzene iorobenzene omo-3-chloropropane orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

Date Received:05Date Extracted:05Date Analyzed:05Matrix:So	W-5-3 /23/22 /25/22 /31/22 il g/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-17 053119.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 102 100 101	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromethan Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (M trans-1,2-Dichloroethene 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EI 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	Azene Vetrachloroethane ene Vetrachloroethane ene vetrachloroethane imethylbenzene Vetrachloroethane ichloropropane otoluene v	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 05/25/22 05/26/22 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 02-1229 mb 052607.D GCMS4 RF	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	103	90	109	
Toluene-d8	ui	100	89	112	
4-Bromofluorobenz	ene	93	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5 ca		loroethene	< 0.025
Vinyl chloride		<0.05 ca		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5 ca	Chlorobe		< 0.05
Trichlorofluoromet	nane	<0.5 ca <5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<0.05 <0.1
Hexane		< 0.25	o-Xylene		<0.1 <0.05
Methylene chloride		<0.20	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		<0.05 ca	2-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.05 <0.05	4-Chloro tort But	ylbenzene	<0.05 <0.05
Carbon tetrachlorid		< 0.05		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		<0.05
1,1,2-Trichloroetha	ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-7 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weig	Client: Project: Lab ID: Data File: Instrument: ght Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-02 1/5 053112.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	$\begin{array}{c} \% \ {\rm Recov} \\ 70 \\ 81 \\ 74 \\ 76 \\ 91 \\ 97 \end{array}$	ery: Lower 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentra mg/kg (p		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	ne <0.01 <0.01 <0.01 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ene <0.01 rene <0.01 rene <0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-8 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-06 1/5 053113.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 74 85 79 81 94 96	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	(Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene rene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weigh	Client: Project: Lab ID: Data File: Instrument: t Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-09 1/5 053114.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recover 67 80 76 81 nol 99 102	y: Lower 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentrati mg/kg (ppn		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-13 1/100 053120.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recovery: 63 d 69 d 70 d 82 d nol 67 d 86 d	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	ne <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-17 1/5 053115.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recovery: 68 81 77 86 108 115	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/27/22 05/27/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 02-1289 mb 1/5 052718.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 96 102 96 99 nol 105 108	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 205412-01 (Matrix Spike)							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	92	73-135	8
Laboratory Code: L	aboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptan	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	94	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 205364-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	87	75 - 125	5
Cadmium	mg/kg (ppm)	10	<5	90	96	75 - 125	6
Chromium	mg/kg (ppm)	50	18.5	90	95	75 - 125	5
Lead	mg/kg (ppm)	50	<5	90	97	75 - 125	7
Mercury	mg/kg (ppm	5	<5	93	103	75 - 125	10

Laboratory Code: Laboratory Control Sample

Laboratory Co	ue. Laboratory Com	of bample		
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	90	80-120
Cadmium	mg/kg (ppm)	10	96	80-120
Chromium	mg/kg (ppm)	50	96	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 205359-07 (Matrix Spike)

Laboratory Code: 205359-07	(Matrix Spike)		a 1		D (
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	8 vo	14	10-142	55 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	28	37	10-126	28 vo
Vinyl chloride	mg/kg (ppm)	1	< 0.05	30	38	10-138	24 vo
Bromomethane	mg/kg (ppm)	1	< 0.5	52	61	10-163	16
Chloroethane	mg/kg (ppm)	1	<0.5	37	44	10-176	17
Trichlorofluoromethane Acetone	mg/kg (ppm) mg/kg (ppm)	$\frac{1}{5}$	<0.5 <5	39 55	42 62	10-176 10-163	7 12
1,1-Dichloroethene	mg/kg (ppm)	1	<0.05	56	62 61	10-165	9
Hexane	mg/kg (ppm)	1	<0.25	50 42	46	10-137	9
Methylene chloride	mg/kg (ppm)	1	<0.25	72	80	10-156	11
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	69	77	21-145	11
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	66	74	14-137	11
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	67	73	19-140	9
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	76	82	10-158	8
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	72	81	25 - 135	12
Chloroform	mg/kg (ppm)	1	< 0.05	71	77	21-145	8
2-Butanone (MEK)	mg/kg (ppm)	5	<1	67	72	19-147	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	61	65	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	67	74	10-156	10
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	69	74	17-140	7
Carbon tetrachloride Benzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.03	70 73	75 80	9-164 29-129	7 9
Trichloroethene	mg/kg (ppm)	1	<0.03	73 72	81	21-139	9 12
1,2-Dichloropropane	mg/kg (ppm)	1	<0.02	72	79	30-135	9
Bromodichloromethane	mg/kg (ppm)	1	<0.05	72	80	23-155	11
Dibromomethane	mg/kg (ppm)	1	< 0.05	71	80	23-145	12
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	81	90	24-155	11
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	79	87	28-144	10
Toluene	mg/kg (ppm)	1	< 0.05	76	80	35-130	5
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	75	84	26-149	11
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	74	83	10-205	11
2-Hexanone	mg/kg (ppm)	5	< 0.5	74	81	15-166	9
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	75	81	31-137	8
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	76	82	20-133	8
Dibromochloromethane 1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	<0.05 <0.05	77 75	83 83	28-150 28-142	7 10
Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	76	82	32-129	8
Ethylbenzene	mg/kg (ppm)	1	<0.05	75	82	32-125	9
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	78	86	31-143	10
m,p-Xylene	mg/kg (ppm)	2	< 0.1	76	84	34-136	10
o-Xylene	mg/kg (ppm)	1	< 0.05	80	87	33-134	8
Styrene	mg/kg (ppm)	1	< 0.05	76	84	35-137	10
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	76	81	31 - 142	6
Bromoform	mg/kg (ppm)	1	< 0.05	77	81	21-156	5
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	72	79	23-146	9
Bromobenzene	mg/kg (ppm)	1	< 0.05	73	80	34-130	9
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	73	80	18-149	9
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	1	<0.05 <0.05	75 73	83 79	28-140 25-144	10 8
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	73 72	79	31-134	9
4-Chlorotoluene	mg/kg (ppm)	1	<0.05	71	75 78	31-134	9
tert-Butylbenzene	mg/kg (ppm)	1	<0.05	75	83	30-137	10
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	74	82	10-182	10
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	74	81	23-145	9
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	74	81	21-149	9
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	74	82	30-131	10
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	73	82	29-129	12
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	75	84	31-132	11
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	70	83	11-161	17
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	76	86	22-142	12
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	74	81	10-142	9
Naphthalene 1.2.3-Trichlorobenzene	mg/kg (ppm)	1	<0.05 <0.25	77 75	87 84	14-157 20-144	12 11
1,2,0-1 richlorobenzene	mg/kg (ppm)	1	~ 0.20	19	04	20-144	11

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	34	10-146
Chloromethane	mg/kg (ppm)	1	51	27-133
Vinyl chloride	mg/kg (ppm)	1	57	22-139
Bromomethane	mg/kg (ppm)	1	64	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	1	56 60	9-163 10-196
Acetone	mg/kg (ppm)	1 5	69	52-141
1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	69 76	47-128
Hexane	mg/kg (ppm)	1	76 74	43-142
Methylene chloride	mg/kg (ppm)	1	93	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	84	60-123
trans-1.2-Dichloroethene	mg/kg (ppm)	1	86	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	85	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	94	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	90	72-127
Chloroform	mg/kg (ppm)	1	86	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	81	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	74	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	85	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	86	69-128
Carbon tetrachloride	mg/kg (ppm)	1	87	60-139
Benzene	mg/kg (ppm)	1	90	71-118
Trichloroethene	mg/kg (ppm)	1	89	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	89	72-127
Bromodichloromethane	mg/kg (ppm)	1	88	57-126
Dibromomethane	mg/kg (ppm)	1	87	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	96	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	95	67-122
Toluene	mg/kg (ppm)	1	89	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	90	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	90	64-115
2-Hexanone	mg/kg (ppm)	5	89	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	1	89 92	72-130 72-114
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	1	92 90	55-121
1.2-Dibromoethane (EDB)	mg/kg (ppm)	1	50 89	74-132
Chlorobenzene	mg/kg (ppm)	1	92	76-111
Ethylbenzene	mg/kg (ppm)	1	91	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	93	64-121
m,p-Xylene	mg/kg (ppm)	2	91	78-122
o-Xylene	mg/kg (ppm)	1	93	77-124
Styrene	mg/kg (ppm)	1	92	74-126
Isopropylbenzene	mg/kg (ppm)	1	91	76-127
Bromoform	mg/kg (ppm)	1	91	56-132
n-Propylbenzene	mg/kg (ppm)	1	88	74-124
Bromobenzene	mg/kg (ppm)	1	88	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	87	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	91	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	86	61-137
2-Chlorotoluene	mg/kg (ppm)	1	87	74-121
4-Chlorotoluene	mg/kg (ppm)	1	85	75-122
tert-Butylbenzene	mg/kg (ppm)	1	89	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	88	76-125
sec-Butylbenzene	mg/kg (ppm)	1	89	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	89	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	90	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	89	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	89	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	84	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	93	64-135
		1	87	50-153
Hexachlorobutadiene	mg/kg (ppm)			
Hexachlorobutadiene Naphthalene 1.2.3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1	90 90	63-135 63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 205441-01 1/5 (Matrix Spike)

Laboratory Code: 205441-01 1/5 (Matrix Spike)											
			Sample	Percent	Percent						
	Reporting	Spike	Result	Recovery	Recoverv	Acceptance	RPD				
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)				
Naphthalene	mg/kg (ppm)	0.83	< 0.01	75	76	34-118	1				
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	77	81	29-130	5				
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	75	79	37-119	5				
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	80	83	45-128	4				
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	76	79	36 - 125	4				
Fluorene	mg/kg (ppm)	0.83	< 0.01	80	85	48-121	6				
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	78	82	50-150	5				
Anthracene	mg/kg (ppm)	0.83	< 0.01	81	86	50-150	6				
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	82	87	50-150	6				
Pyrene	mg/kg (ppm)	0.83	< 0.01	77	80	50-150	4				
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	80	82	50-150	2				
Chrysene	mg/kg (ppm)	0.83	< 0.01	79	83	50-150	5				
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	78	84	50-150	7				
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	78	82	50-150	5				
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	75	83	50-150	10				
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	93	92	41-134	1				
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	95	98	44-130	3				
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	92	95	33-131	3				

Laboratory Code: Laboratory Control Sample 1/5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	79	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	84	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	83	66-107
Acenaphthylene	mg/kg (ppm)	0.83	85	70-130
Acenaphthene	mg/kg (ppm)	0.83	82	66-112
Fluorene	mg/kg (ppm)	0.83	89	67-117
Phenanthrene	mg/kg (ppm)	0.83	84	70-130
Anthracene	mg/kg (ppm)	0.83	87	70-130
Fluoranthene	mg/kg (ppm)	0.83	87	70-130
Pyrene	mg/kg (ppm)	0.83	88	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	82	70-130
Chrysene	mg/kg (ppm)	0.83	83	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	85	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	85	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	83	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	94	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	97	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	94	64-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			SAMPLE	E CHAIN	OF	CUS	бто	DY		05	7231	22	US-	B4/BIC	17	
205 405 Report TO_DAN 14ATCH			SAMPL	ERS (signa	iture)	1 NI	1100	Le	 7				Pag TU	RNAROUND	<u>ғ</u> гіме	
Company BLUESTONS			1.0002	SAMPLERS (signature) PROJECT NAME			PO# BE:0:07-BC				Standard turnaround					
Address	** **********************************		- Aubu	Auburn VW				DE: 0101-BC				F	Rush charges authorized by:			
City, State, ZIP			REMAR	REMARKS			INVOICE TO					SAMPLE DISPOSAL				
	maildanholduz	storenwico	M Project	anecific PT		00 1	No	B	SULS	STC	NG		Other_		n 30 4a	
			- · [III0]ect i	specific fil	<u>s: - 1</u>				AN	ALY	SES REQU			Dispose arte	<u>1 00 uz</u>	
<i>,</i>			·)x	XE	3021	<u>a</u>	\$260 \$970	082	-				
Sample ID	Lab ID	Date	Time	Sample	# of	1 0.1	NWTPH-Gx	EPA 8	H-H(SPA S	A PAS			No	otes	
•		Sampled	Sampled	Туре	Jars	LWN	LMN	BTEX EPA 8021	NWTPH-HCID	VUUS EPA 8260 PAHs RPA 8970	PCBs EPA 8082	2				
MW-1-5	OI A-E	5123122	905	S	5			<u>ñ</u>		> <u> </u>		<u></u>		······		
MW-1-7	02	I	010			X				$\frac{1}{\sqrt{2}}$	+					
MW-1-12	03		915							\uparrow						
MW -1-15	04		920	-											····.	
MW - 2-5	05		1050													
MW-2-8	06		1065			\mathbf{X}				X						
MW-2-12	07		.[[00													
MW-2-15	08		1105													
MW-3-3	09		135			X				X				·····		
MW-3-5	10	$\overline{\mathbf{V}}$	1350	Ŷ	V											
	Ste	GNATURE]			PRIN	JT NA	AMF	2			COM	IPAN	Y	DATE	TIM	
Friedman & Bruya, Inc. Ph. (206) 285-8282	Relinquished by: Received by:-	BURNAC	the	HAL	EXCA	RTS	<u>e</u>				BURES		ī	5/24/22	1	
	Relinguished by:	"D. M. 1	2	Li2	· Vle	660	v	Br	<u>zez-</u>		F?			5/24/22		
	Received by:		<u>)</u>						_		Sa	ample	es rece	eived at <u>3</u>	- °C	
	Received by:												2) ² 2,2 2,3			

٨,

0	- CUOC			SAMPLE	CHAIN	OF	çus	TO	DY		05	-/23	:/2	. 2	VS	-BL	1/2 BI	47	
2	DS405 Report To DAN HATC			SAMPL	ERSteign	iture)	V AT	11	R		ei ¢				Pa TI	<u>.ge #/</u> JRN	AROUND 'I	TME	-
				PROJEC	CT NAME	<u>per</u>	(CAN				PO			1 P	Stand	lard	turnaround		
	Company			Auh	um Vil)	U		B	£-0	510	7-C			RUSH ush ch		es authorize	d by:	
	Address			REMAR						INV	7OIC	ЕТО		-	S.	AMI	PLE DISPO	SAL	-
	City, State, ZIP								0			JE			Archi Other		amples		
	PhoneE	mail danh (1)	estorenw, co	Project s	specific RL	<u>s? - Y</u> e	es /]	No	(H)	1723							ispose after	r 30 days	
Ľ		······	1		······			r				SES R	EQUE	ESTE	D	·7	<u>.</u>]
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VUUS BLA 5200 DAH, PDA 0070	PCBs EPA 8082	MTCA 5 METH				Not	tes	
	MW-3-10	211 AF	3/23/22	1355	S	6	\mathbf{X}											-	
F	MW-3-10 MW-3-15	22 12	e l	1400	ľ	l r								-					
	MW-4-3.	13		1450		1	Х				$\langle \rangle$		Х						
	MW-4-5	: 14		1455															
-	MW - 4-10	' 15		1500			\boxtimes										ŝ		
h l	MW-4-15	16		595															
ŀ	MW-5-3	(7-		1540			\boxtimes			\rightarrow	$\langle \! \! \rangle$		X						
	MW-5-5	18		1545		And the second sec													
	MW-5-10	19		1550		a manager and	\mathbf{X}										,	a]
	MW-5-15	20		1555	V	V													
h			GNATURE	Λ		PRIN	IT NA	AMF	5			(COMI	PANY	ζ		DATE	TIME	
	Friedman & Bruya, Inc.	Relinquished by:	WILL AT	the	t Ha	ET (ART	52_	-	-		BUG	sto,	NE			SiBula	750	
	Ph. (206) 285-8282	Received by:	GO. W	6	Liz	- M	elelocs		Bn	=>		F	?B		<u></u>		3/24/22	1110	
	· · · · · · · · · · · · · · · · · · ·	Relinquished by:	- 07	5		v	-	•		}				,					
		Received by:																¥	

. :

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 2, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on May 23, 2022 from the Auburn VW BE-0107_C, F&BI 205405 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures BST0602R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 23, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107_C, F&BI 205405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205405 -01	MW-1-5
205405 -02	MW-1-7
205405 -03	MW-1-12
205405 -04	MW-1-15
205405 -05	MW-2-5
205405 -06	MW-2-8
205405 -07	MW-2-12
205405 -08	MW-2-15
205405 -09	MW-3-3
205405 -10	MW-3-5
205405 -11	MW-3-10
205405 -12	MW-3-15
205405 -13	MW-4-3
205405 -14	MW-4-5
205405 -15	MW-4-10
205405 -16	MW-4-15
205405 -17	MW-5-3
205405 -18	MW-5-5
205405 -19	MW-5-10
205405 -20	MW-5-15

The 8260D calibration standard failed the acceptance criteria for several analytes in the method blank. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405 Date Extracted: 05/25/22 Date Analyzed: 05/25/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogata

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 48-168)
MW-1-7 205405-02	<50	<250	110
MW-2-8 205405-06	<50	<250	109
MW-3-3 205405-09	<50	<250	108
MW-3-10 205405-11	<50	<250	109
MW-4-3 205405-13	<50	2,900	108
MW-4-10 205405-15	<50	<250	110
MW-5-3 205405-17	<50	<250	110
MW-5-10 205405-19	<50	<250	109
Method Blank 02-1271 MB2	<50	<250	112

02-1271 MB2

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-7 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-02 205405-02.043 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	13.4 <1		
Chromium	12.0		
Lead Mercury	10.3 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-8 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-06 205405-06.044 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic	11.0		
Cadmium	<1		
Lead	4.60		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-2-8	Client:	Bluestone Environmental NW
Date Received:	05/23/22	Project:	Auburn VW BE-0107_C
Date Extracted:	05/26/22	Lab ID:	205405-06 x5
Date Analyzed:	05/26/22	Data File:	205405-06 x5.085
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	WE
Analyte: Chromium	Concentration mg/kg (ppm) 18.8		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-09 205405-09.045 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead	2.96 <1 9.05 6.38		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-13 205405-13.048 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	2.33 <1 7.46 2.88 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-3 05/23/22 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-17 205405-17.049 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	5.56 <1 10.4 5.86 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/26/22 05/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C I2-379 mb2 I2-379 mb2.038 ICPMS2 WE
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/25/22 05/31/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-09 053117.D GCMS4 RF	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloroethane Toluene-d8		100 99	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
cis-1,3-Dichloropropene<0.051,2,4-Trichlorobenzene<0.25Toluene<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine de hane one pene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene or Vlbenzene or m lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene ionobenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/25/22 05/31/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-13 053118.D GCMS4 RF	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloroethane Toluene-d8		102 98	Limit: 90 89	Limit: 109 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
trans-1,3-Dichloropropene<0.05Naphthalene<0.051,1,2-Trichloroethane<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro Toluene trans-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine ie de hane one pene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.25 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene hzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene chloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene otoluene chlorobenzene lorobenzene lorobenzene iorobenzene omo-3-chloropropane orobutadiene alene	$\begin{array}{c} < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$

ENVIRONMENTAL CHEMISTS

Date Received:05Date Extracted:05Date Analyzed:05Matrix:So	W-5-3 /23/22 /25/22 /31/22 il g/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 205405-17 053119.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 102 100 101	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromethan Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (M trans-1,2-Dichloroethene 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EI 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	Azene Vetrachloroethane ene Vetrachloroethane ene vetrachloroethane imethylbenzene Vetrachloroethane ichloropropane otoluene v	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 05/25/22 05/26/22 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environme Auburn VW BE-0107 02-1229 mb 052607.D GCMS4 RF	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	103	90	109	
Toluene-d8	ui	100	89	112	
4-Bromofluorobenz	ene	93	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5 ca		loroethene	< 0.025
Vinyl chloride		<0.05 ca		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5 ca	Chlorobe		< 0.05
Trichlorofluoromet	nane	<0.5 ca <5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<0.05 <0.1
Hexane		< 0.25	o-Xylene		<0.1 <0.05
Methylene chloride		<0.20	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05	-	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		<0.05 ca	2-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.05 <0.05	4-Chloro tort But	ylbenzene	<0.05 <0.05
Carbon tetrachlorid		< 0.05		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		<0.05
1,1,2-Trichloroetha	ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-7 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weig	Client: Project: Lab ID: Data File: Instrument: ght Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-02 1/5 053112.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	$\begin{array}{c} \% \ {\rm Recov} \\ 70 \\ 81 \\ 74 \\ 76 \\ 91 \\ 97 \end{array}$	ery: Lower 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentra mg/kg (p		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	ne <0.01 <0.01 <0.01 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ene <0.01 rene <0.01 rene <0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-8 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-06 1/5 053113.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 74 85 79 81 94 96	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	(Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene rene cene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weigh	Client: Project: Lab ID: Data File: Instrument: t Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-09 1/5 053114.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recover 67 80 76 81 nol 99 102	y: Lower 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentrati mg/kg (ppn		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-13 1/100 053120.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recovery: 63 d 69 d 70 d 82 d nol 67 d 86 d	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	ne <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5-3 05/23/22 05/27/22 05/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 205405-17 1/5 053115.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recovery: 68 81 77 86 108 115	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylem	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/27/22 05/27/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107_C 02-1289 mb 1/5 052718.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 96 102 96 99 nol 105 108	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 205412-01 (Matrix Spike)							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	92	73-135	8
Laboratory Code: L	Laboratory Code: Laboratory Control Sample						
			Percent				
	Reporting	Spike	Recovery	Acceptan	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	94	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 205364-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	87	75 - 125	5
Cadmium	mg/kg (ppm)	10	<5	90	96	75 - 125	6
Chromium	mg/kg (ppm)	50	18.5	90	95	75 - 125	5
Lead	mg/kg (ppm)	50	<5	90	97	75 - 125	7
Mercury	mg/kg (ppm	5	<5	93	103	75 - 125	10

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Arsenic	mg/kg (ppm)	10	90	80-120			
Cadmium	mg/kg (ppm)	10	96	80-120			
Chromium	mg/kg (ppm)	50	96	80-120			
Lead	mg/kg (ppm)	50	98	80-120			
Mercury	mg/kg (ppm)	5	101	80-120			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 205359-07 (Matrix Spike)

Laboratory Code: 205359-07	(Matrix Spike)		a 1		D (
		~	Sample	Percent	Percent		
	Reporting	Spike	Result	•		Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	8 vo	14	10-142	55 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	28	37	10-126	28 vo
Vinyl chloride Bromomethane	mg/kg (ppm)	1	<0.05 <0.5	30 52	$\frac{38}{61}$	10-138 10-163	24 vo 16
Chloroethane	mg/kg (ppm) mg/kg (ppm)	1	<0.5	52 37	44	10-163	16
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	39	44 42	10-176	7
Acetone	mg/kg (ppm)	5	<5	55	62	10-163	12
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	56	61	10-160	9
Hexane	mg/kg (ppm)	1	< 0.25	42	46	10-137	9
Methylene chloride	mg/kg (ppm)	1	< 0.5	72	80	10-156	11
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	69	77	21 - 145	11
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	66	74	14-137	11
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	67	73	19-140	9
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	76	82	10-158	8
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	72 71	81 77	25-135 21-145	12 8
2-Butanone (MEK)	mg/kg (ppm)	5	<0.05	67	72	19-147	8 7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	<0.05	61	65	12-160	6
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	67	74	10-156	10
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	69	74	17-140	7
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	70	75	9-164	7
Benzene	mg/kg (ppm)	1	< 0.03	73	80	29-129	9
Trichloroethene	mg/kg (ppm)	1	< 0.02	72	81	21-139	12
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	72	79	30-135	9
Bromodichloromethane Dibromomethane	mg/kg (ppm)	1	<0.05 <0.05	72 71	80 80	23-155 23-145	11 12
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	1 5	<0.05 <1	71 81	80 90	23-145 24-155	12
cis-1,3-Dichloropropene	mg/kg (ppm)	1	<0.05	79	90 87	24-155 28-144	10
Toluene	mg/kg (ppm)	1	< 0.05	76	80	35-130	5
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	75	84	26-149	11
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	74	83	10-205	11
2-Hexanone	mg/kg (ppm)	5	< 0.5	74	81	15-166	9
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	75	81	31-137	8
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	76	82	20-133	8
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	77	83	28-150	7
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	75 76	83 82	28-142 32-129	10 8
Ethylbenzene	mg/kg (ppm)	1	<0.05	76 75	82 82	32-129	9
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05	78	86	31-143	10
m,p-Xylene	mg/kg (ppm)	2	<0.1	76	84	34-136	10
o-Xylene	mg/kg (ppm)	1	< 0.05	80	87	33-134	8
Styrene	mg/kg (ppm)	1	< 0.05	76	84	35-137	10
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	76	81	31 - 142	6
Bromoform	mg/kg (ppm)	1	< 0.05	77	81	21-156	5
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	72	79	23-146	9
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	1	<0.05 <0.05	73 73	80 80	34-130 18-149	9 9
1,3,3-1 rimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	<0.05	73 75	83	28-149	9 10
1,2,3-Trichloropropane	mg/kg (ppm)	1	<0.05	73	79	25-140	8
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	72	79	31-134	9
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	71	78	31-136	9
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	75	83	30-137	10
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	74	82	10-182	10
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	74	81	23 - 145	9
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	74	81	21-149	9
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	74	82	30-131	10
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	1 1	<0.05 <0.05	73 75	82 84	29-129 31-132	12 11
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	1	<0.05	70	84 83	11-161	11 17
1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.25	76	86	22-142	12
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	74	81	10-142	9
Naphthalene	mg/kg (ppm)	1	< 0.05	77	87	14-157	12
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	75	84	20-144	11

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	34	10-146
Chloromethane	mg/kg (ppm)	1	51	27-133
Vinyl chloride	mg/kg (ppm)	1	57	22-139
Bromomethane	mg/kg (ppm)	1	64	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	1	56 60	9-163 10-196
Acetone	mg/kg (ppm)	1 5	69	52-141
1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	69 76	47-128
Hexane	mg/kg (ppm)	1	76 74	43-142
Methylene chloride	mg/kg (ppm)	1	93	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	84	60-123
trans-1.2-Dichloroethene	mg/kg (ppm)	1	86	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	85	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	94	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	90	72-127
Chloroform	mg/kg (ppm)	1	86	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	81	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	74	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	85	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	86	69-128
Carbon tetrachloride	mg/kg (ppm)	1	87	60-139
Benzene	mg/kg (ppm)	1	90	71-118
Trichloroethene	mg/kg (ppm)	1	89	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	89	72-127
Bromodichloromethane	mg/kg (ppm)	1	88	57-126
Dibromomethane	mg/kg (ppm)	1	87	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	96	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	95	67-122
Toluene	mg/kg (ppm)	1	89	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	90	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	90	64-115
2-Hexanone	mg/kg (ppm)	5	89	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	1	89 92	72-130 72-114
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	1	92 90	55-121
1.2-Dibromoethane (EDB)	mg/kg (ppm)	1	50 89	74-132
Chlorobenzene	mg/kg (ppm)	1	92	76-111
Ethylbenzene	mg/kg (ppm)	1	91	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	93	64-121
m,p-Xylene	mg/kg (ppm)	2	91	78-122
o-Xylene	mg/kg (ppm)	1	93	77-124
Styrene	mg/kg (ppm)	1	92	74-126
Isopropylbenzene	mg/kg (ppm)	1	91	76-127
Bromoform	mg/kg (ppm)	1	91	56-132
n-Propylbenzene	mg/kg (ppm)	1	88	74-124
Bromobenzene	mg/kg (ppm)	1	88	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	87	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	91	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	86	61-137
2-Chlorotoluene	mg/kg (ppm)	1	87	74-121
4-Chlorotoluene	mg/kg (ppm)	1	85	75-122
tert-Butylbenzene	mg/kg (ppm)	1	89	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	88	76-125
		1	89	71-130
sec-Butylbenzene	mg/kg (ppm)			
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	1	89	70-132
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1	89 90	70-132 75-121
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1	89 90 89	70-132 75-121 74-117
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1 1	89 90 89 89	$70-132 \\ 75-121 \\ 74-117 \\ 76-121$
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1 1 1	89 90 89 89 84	70-132 75-121 74-117 76-121 58-138
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibhorob-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1 1 1	89 90 89 89 84 93	$\begin{array}{c} 70\text{-}132\\ 75\text{-}121\\ 74\text{-}117\\ 76\text{-}121\\ 58\text{-}138\\ 64\text{-}135\end{array}$
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1 1 1 1	89 90 89 84 93 87	$\begin{array}{c} 70\text{-}132\\ 75\text{-}121\\ 74\text{-}117\\ 76\text{-}121\\ 58\text{-}138\\ 64\text{-}135\\ 50\text{-}153\\ \end{array}$
sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibhorob-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	1 1 1 1 1	89 90 89 89 84 93	$\begin{array}{c} 70\text{-}132\\ 75\text{-}121\\ 74\text{-}117\\ 76\text{-}121\\ 58\text{-}138\\ 64\text{-}135\end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 06/02/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_C, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 205441-01 1/5 (Matrix Spike)

Laboratory Code: 205441	01 1/5 (Mat	rix Spik	e)				
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recoverv	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	75	76	34-118	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	77	81	29-130	5
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	75	79	37-119	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	80	83	45-128	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	76	79	36 - 125	4
Fluorene	mg/kg (ppm)	0.83	< 0.01	80	85	48-121	6
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	78	82	50-150	5
Anthracene	mg/kg (ppm)	0.83	< 0.01	81	86	50-150	6
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	82	87	50-150	6
Pyrene	mg/kg (ppm)	0.83	< 0.01	77	80	50-150	4
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	80	82	50-150	2
Chrysene	mg/kg (ppm)	0.83	< 0.01	79	83	50-150	5
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	78	84	50-150	7
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	78	82	50-150	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	75	83	50-150	10
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	93	92	41-134	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	95	98	44-130	3
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	92	95	33-131	3

Laboratory Code: Laboratory Control Sample 1/5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	79	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	84	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	83	66-107
Acenaphthylene	mg/kg (ppm)	0.83	85	70-130
Acenaphthene	mg/kg (ppm)	0.83	82	66-112
Fluorene	mg/kg (ppm)	0.83	89	67-117
Phenanthrene	mg/kg (ppm)	0.83	84	70-130
Anthracene	mg/kg (ppm)	0.83	87	70-130
Fluoranthene	mg/kg (ppm)	0.83	87	70-130
Pyrene	mg/kg (ppm)	0.83	88	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	82	70-130
Chrysene	mg/kg (ppm)	0.83	83	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	85	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	85	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	83	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	94	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	97	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	94	64-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

a a C I la C			SAMPLE	E CHẠIN	\mathbf{OF}	CUS	бТО	DY		05	123/2	22	US-B	# / BIU	17
205 405 Report TO DAN HATCH			SAMPL	ERS (sign	itare)	1 N/O	110-1	L.				* 	Page TUR	#//	r <u> </u>
Company BLUESTONS		····	10002		~					PO #	7-BC	- k	<i>x</i>	rd turnaround	
Address			- Aubu	in Vu)	U		D	2:0	· · · ·	1-5-	Ra		ges authorize	ed by:
City, State, ZIP			REMAR	KS						OICE				MPLE DISPO samples	SAL
	maildanh@duz	storenwo	m Project	meetine PT.	•? V		No	B	JUE	STOI	vá		Other_	Dispose after	r 30 da
			- · [110]ect i	specific tel	<u>s: - 1</u>				AN	ALYS	ES REQU			Dispose arte.	1 00 42
· · ·			•			Х	XX	3021	CID	3270	8082				
Sample ID	Lab ID	Date	Time Sampled	Sample	# of	NWTPH-Dx	NWTPH-Gx	EPA (H-H(EPA 6	PA 8			No	tes
	Sample 15 Sampled			Туре	Jars	LMN	LMN	BTEX EPA 8021	NWTPH-HCID	PAHs EPA 8270	PCBs EPA 8082				
MW-1-5	OI A-E	5123122	905	S	5			<u>Â</u>		- A				×	·,
MW-1-7	02	1	010			\mathbf{X}				$\overline{\mathbf{X}}$					<u>, , , , </u>
MW-1-12	03		915							\square					
MW -1-15	:04		920	*							× .				
MW - 2-5	05		1050											Ŷ	
MW-2-8	06		1065			\ge				X		, ,			
MW-2-12	07	- 1 0 - Frank	[[00											,	
MW-2-15	08		1105									•			
MW-3-3	09		135			\times			_X	KI					. <u></u>
MW-3-5	10		1350	V	V										
Friedman & Bruya, Inc.	Relinguished by:	GNATURE			PRIN			1	· · · · ·		COM	PANY	-	DATE	TIM
Prieaman & Bruya, Inc. Ph. (206) 285-8282	Received by:	BUUNDE	DU	HAL	<u>EY CA</u>	<u>RT9</u>	P	0		<u> </u>	<u>BUVEST</u>		/	5124/22	1
	Relingenshed by:	<u>~0. ps ~1</u>	2	Liz	Ule	400	<u>/ -</u>	Br	ja_		<u> </u>			5/24/22	
		/	1	1						1		T -	in	ived at 3	OC.

٨,

0	- CUOC			SAMPLE	CHAIN	OF	çus	TO	DY		05	-/23	:/2	. 2	VS	-BY	1/2 BI	47	
2	DS405 Report To DAN HATC	u-		SAMPL	ERSteign	iture)	V AT	11	R		ei ¢				Pa TI	ge #/ JRN	AROUND 'I	TME	-
				PROJEC	CT NAME	<u>per</u>	(CAN				PO			1 P	Stand	lard	turnaround		
	Company			Aut	um Vil)	U		B	£-0	510	7-C			RUSH ush ch		es authorize	d by:	
	Address	,,, <u>,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		REMAR						INV	70IC	ЕТО		-	SAL	-			
	City, State, ZIP	<u> </u>	i						0			JE			Archi Other		amples		
	PhoneE	mail danh (1)	estorenw, a	Project s	specific RL	<u>s? - Y</u> e	es /]	No	(H)	1723							ispose after	r 30 days	
Ĺ			1		······			r				SES R	EQUE	ESTE	D		<u>.</u>]
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	PAULS BLA 0200	PCBs EPA 8082	MTCA 5 METH				Not	tes	
	MW-3-10	211 AF	3/23/22	1355	S	6	\mathbf{X}											-	
	MW-3-10 MW-3-15	20012	:	1400	ľ	l í								-					
	MW-4-3.	13		1450		1	X				$\langle \! \rangle$		Х						
	MW-4-5	. 14		1455	-														
	MW - 4-10	' 15		1500			\boxtimes										ŝ		
F	MW-4-15	16		1595															
F	MW-5-3	(7-		1540			\boxtimes			\rightarrow	$\langle \! \! \rangle$		X						
	MW-5-5	18		1545		And the second sec													
	MW-5-10	19		1550		a manager and	\mathbf{X}										,	a]
	MW-5-15	20		1555	V	V													
ь. Г.			GNATURE	1		PRIN	IT NA	AMF	5			(COMI	PANY	ζ		DATE	TIME	
	Friedman & Bruya, Inc.	Relinquished by:	WILL HAT	the	t HBI	ET (ART	52_	-	-		BUG	sto,	NE			SiBula	750	
	Ph. (206) 285-8282	Received by:	KO. W	6_	Liz	- M	elelocs		Bn	=>		F	?B		<u></u>		3/24/22	1110	
	· · · · · · · · · · · · · · · · · · ·	Relinquished by:		5		v	-	•		}				,					
		Received by:																	

. :

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 9, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on May 23, 2022 from the Auburn VW BE-0107_BC, F&BI 205405 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0609R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 23, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107_BC, F&BI 205405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205405 -01	MW-1-5
205405 -02	MW-1-7
205405 -03	MW-1-12
205405 -04	MW-1-15
205405 -05	MW-2-5
205405 -06	MW-2-8
205405 -07	MW-2-12
205405 -08	MW-2-15
205405 -09	MW-3-3
205405 -10	MW-3-5
205405 -11	MW-3-10
205405 -12	MW-3-15
205405 -13	MW-4-3
205405 -14	MW-4-5
205405 -15	MW-4-10
205405 -16	MW-4-15
205405 -17	MW-5-3
205405 -18	MW-5-5
205405 -19	MW-5-10
205405 -20	MW-5-15

The NWTPH-Dx analysis in this report was requested outside of the holding time The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/09/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405 Date Extracted: 06/07/22 Date Analyzed: 06/07/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogata

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 48-168)
MW-1-5 ht 205405-01	<50	<250	114
MW-1-12 ht 205405-03	<50	<250	112
MW-2-5 ht 205405-05	<50	<250	111
MW-2-12 ht 205405-07	<50	<250	113
MW-3-5 ht 205405-10	<50	<250	110
MW-4-5 ht 205405-14	<50	<250	108
MW-5-5 ht 205405-18	<50	<250	109
Method Blank ^{02-1361 MB}	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 06/09/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 206049-09 (Matrix Spike) Sample Percent Percent Reporting Result Acceptance RPD Spike Recovery Recovery Analyte Units Level (Wet Wt) MSMSD Criteria (Limit 20) Diesel Extended mg/kg (ppm) 112 73-135 5,000100 1239 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 5,000 74-139 mg/kg (ppm) 106

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

205 405 REPORT TO DAN HATCH	f	SAMPI	E CHAIL	atane)					5[23]	26536 	ຸກປ	BY BIL RNAROUND	TIME			
Company <u>BLUESTON</u> Address	Ê NO		PROJE	PROJECT NAME BEIDE AUDUMN VW BEIDE								© Standard turnaround © RUSH Rush charges authorized by:				
City, State, ZIP	maildanhQUUE	stonenwco	REMAI		<u>.s? - Y</u>	es / N	0		VVOIC	E TO WG		□ Archiv □ Other_	MPLE DISPO /e samples : Dispose afte			
		1		1	· {			.L	- 1	SES REQ	UEST	ED		Der D		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH.Dx	NWTPH-Gx BTEX EPA 8021	NWTEH-HCID	VOCs EPA 8260	EPA 8082			R.	14D		
	· · · ·					MZ	NN BTEX	IWN	NOC	A PCB			1-6	¥1. N¥		
MW-1-5	OI A-E	5123122	905	S	5	1	30				<u>}</u>		- P	\int		
MW-1-7	02	ĺ	0110	1	1	∇			X				~	1/1		
MW-1-12.	03		915			Ńċ							- Vi	1		
MW -1-15	:04		920													
MW-2-5	05		1050			14	NQ				4					
MW-2-8	06		1055			ХÇ	20		_¥	X	4	<u> </u>		······································		
MW-2-12	07		.[[00		 	N	必			ļ		<u> </u>				
MW-2-15	08		1105								-					
$M\omega - 3 - 3$	09		135	. j		XIS	NO NO		XХ	ĻΧ				k		
MW-3-5	10 1	Δ	1350		<u>V</u>	MC	R									
Friedman & Bruya, Inc.		AVILLE	T	HAI:	EX. CA	<u>IT NAI</u> 2 752	******	,,		<u> </u>	IPAN TORI		DATE 5124/22	TIME 75		
1	Received by	D. A A	2		- Ule			<u>be</u>			B		5/24/22	1		
(Relingerished by: Received by:	\sim	>				($\sum_{i=1}^{n}$		S	amp	les rece	te bavie	_•C_		

Report To DAN HATCH	4		PROJE	ERS Sign	<u>nn</u>	H	ND	R		PO ;	¥					ROUND '	
Company		·	Aut	wn Wu)	· V		P		010		•	Rush charges authorized by:				
City, State, ZIP	mail Janh Wblo	store in s c	REMAR					R		VOIC STOM	•		0	Archiv Other	ve sa	LE DISPO mples	SAL
Eu	man (X Grangyro		- Protect	specific RL	<u>s? - 1</u>	<u>es /</u> T	NO I	<u>\</u>		NALY		FOUF			<u>: Di</u>	spose arre	r ou days
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021		VOCs EPA 8260	1	1				No	ites
	······································			- · · ·			ļļ.		MN		PCB	1470			ľ		
MW-3-10	211 HE	3/23/22	1355	S	5	X	B										
MW-3-15	2012		1400													<u>, , , , , , , , , , , , , , , , , , , </u>	
MW-4-3.	13		1450			X	Ð	\overline{X}		XX		X					
MW-4-5	. 14		1455			\mathbf{V}	W	5								*	
MW -4-10	15		1500			\boxtimes	Ŕ	2								7	-
MW-4-16	16		1595														·
MW-5-3	17-		1540			\square	$\widehat{\mathbb{Q}}$	Ø		XX		X			T		
MIN-5-5	18		1545				100	র্রা		¥	1						
MIN-5-10	19		1550		{	\mathbf{X}	Ś	é									с
110-5-15	2011		1555	V	Ŵ												
		MATURE	1		PRIN				·····			***	ANY			DATE	TIME
(90,0) 900 9909	Relinquished by:	WWWW	dtr_		EN C				v		******	\$701	Vě-			5174/hr	1
	Relinquished by:	230. M.	<u>b</u>	Liz	- M	bha	d	3n	peiz_		6	16			3	5/24/22	HIO

205 405 TREPORT TO DAN HATCH	L.	SAMPI	E CHAIL						5/23/		TUI	84 BIL	IME	
Company <u>BLVESTON</u> Address	ENO		PROJE	CTNAME Um VU	<i>Q</i> .	Activities and a second	ſ		~ PO ১ (c	107 BC ORUSH			rd turnaround rges authorize	
City, State, ZIP PhoneE	City, State, ZIP						REMARKS					SAMPLE DISPOSAL C Archive samples C Other Default: Dispose after 30 day		
		1	I	1	•			.L	- 1	SES REQU	jeste T	D I	10-6	2-1)
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx BTEX EPA 8021	NWTEH-HCID	VOCs EPA 8260	PCBS BPA 8082			R.	(4D)
		· · · · ·				MZ	NN	IWN	NOC	PCBS PCBS			1-6	Fr Nt
MW-1-5	OI A-E	5123122	905	S	5	1	918				<u>}</u>		T. P])
MW-1-7	02	Í	0110	Í	1	∇T			<u>کر</u>					1/1
MW-1-12.	03		915			Ńè							- bi	
MW -1-15	:04		920	-										
MW-2-5	05		1050			VX	NO				1		,	
MW-2-8	06		1055			XG	20		_ <u>×</u>	XX				········
MW-2-12	07		.[]00			N	必				ļ		×	
MW-2-15	08		1105								-		-	
$M\omega - 3 - 3$	04		135	<i>į</i>		XĮ§	QĘ		XХ	<u> </u>				k
MW-3-5	10		1350	<u>ئ</u>	\mathbb{V}	NO	Ø							
Friedman & Bruya, Inc.		AVENDEL	Æ	HAL	PRIN EY CA	FT NAF	*****			COM	PAN TONY	**************************************	DATE 5124/22	TIME 75
1	Received by	-D. 18 - 1	2	••••••••••••••••••••••••••••••••••••••	Ule		*	50		p?	***************************************		5/24/22	
L.	Relingershed by: Received by:		>				($\sum_{i=1}^{n}$		Sa	mple	is rece	ived at <u>3</u>	_ <u>°C</u>

Report To DAN HATCH	Ł	******	PROJE	ERS Gign CT NAME	<u>han</u>	H	ND	R		PO;	¥					AROUND '	
Company		······································	Aut	Auburn VW					BE-0107-C				Rush charges authorized by:				ed by:
City, State, ZIP	nail Janh Wblo	edna	REMAR			*****		R		VOIC STOM	•		0	Archiv Other	ve sa	LE DISPO unples	
PhoneEr	nail <u>A Anilyn</u>	CTURNWA	Project	specific RL	<u>s? - Y</u>	<u>es /</u>	No	<u></u>		NALY		POTT			t: Di	spose afte	r <u>30 days</u>
						·Dx	Ğ	\$ 8021		1		METR	201101	, I			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWITPH-HCID	VOCs EPA 8260 PAH* EPA 8270	PCBs EPA 8082	M7045.			* - 1 * Inclusion from the form	No	ites
	· · · · ·						ļļ.		Z	<u>Š</u>	<u></u>	N/					
MW-3-10	211 HE	3/23/22		S	6	\boxtimes	B										
MW-3-15	22 12		1400			Ŀ					ļ						
MW-4-3.	13		1480			\mathbb{X}	P	\overline{X}	ľ	\times		X		•			
MW-4-6	. 14		1455			\mathbf{V}	R	5			1					•	
MW -4-10	' 15		1500			Х	Ŕ	$\overline{\mathbf{A}}$								7	-
MW-4-15	16		1595														•
MW-5-3	17-		1540			\square	$\widehat{\mathbb{Q}}$	Ø		XX		X		.*			
MN -5-5	18		1545			\hat{A}	100	র্ম		frances	1						*****
MW-5-10	19		1550			\mathbf{X}	Ś	6									с.,
112-5-15	2011	J.	1555	V	\vee												
		NATURE	1	ļ	PRIN				·····		(OMF	ANY		-	DATE	TIME
(900) 900 9909	Relinguished by:	WWW MA	th_		ÊN (Ŧ		******	S701	Vě_			<u>5194/hr</u>	1
	Received by:	<u>ZSD. M.</u>	<u>b</u>	Li2	- M	bla	d	3n-	pez_		6	16			3	5/24/22	HIO

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on May 23, 2022 from the Auburn VW BE-0107_BC, F&BI 205405 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 23, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107_BC, F&BI 205405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205405 -01	MW-1-5
205405 -02	MW-1-7
205405 -03	MW-1-12
205405 -04	MW-1-15
205405 -05	MW-2-5
205405 -06	MW-2-8
205405 -07	MW-2-12
205405 -08	MW-2-15
205405 -09	MW-3-3
205405 -10	MW-3-5
205405 -11	MW-3-10
205405 -12	MW-3-15
205405 -13	MW-4-3
205405 -14	MW-4-5
205405 -15	MW-4-10
205405 -16	MW-4-15
205405 -17	MW-5-3
205405 -18	MW-5-5
205405 -19	MW-5-10
205405 -20	MW-5-15

The NWTPH-Gx and BTEX samples were requested outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405 Date Extracted: 06/13/22 Date Analyzed: 06/13/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-1-5 ht 205405-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW-1-7 ht 205405-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
MW-1-12 ht 205405-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	67
MW-2-5 ht 205405-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
MW-2-8 ht 205405-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
$\frac{\text{MW-2-12 ht}}{_{205405\cdot07}}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	86
MW-3-3 ht 205405-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
MW-3-5 ht 205405-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
MW-3-10 ht 205405-11	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW-4-3 ht 205405-13	< 0.02	< 0.02	< 0.02	< 0.06	<5	61
$\operatorname{MW-4-5}_{205405-14}$ ht	< 0.02	< 0.02	< 0.02	< 0.06	<5	81

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405 Date Extracted: 06/13/22 Date Analyzed: 06/13/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-4-10 ht 205405-15	< 0.02	< 0.02	< 0.02	< 0.06	<5	74
MW-5-3 ht 205405-17	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
MW-5-5 ht 205405-18	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
MW-5-10 ht 205405-19	< 0.02	< 0.02	< 0.02	< 0.06	<5	75
Method Blank 02-1153 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	84

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 205405-01 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	90	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

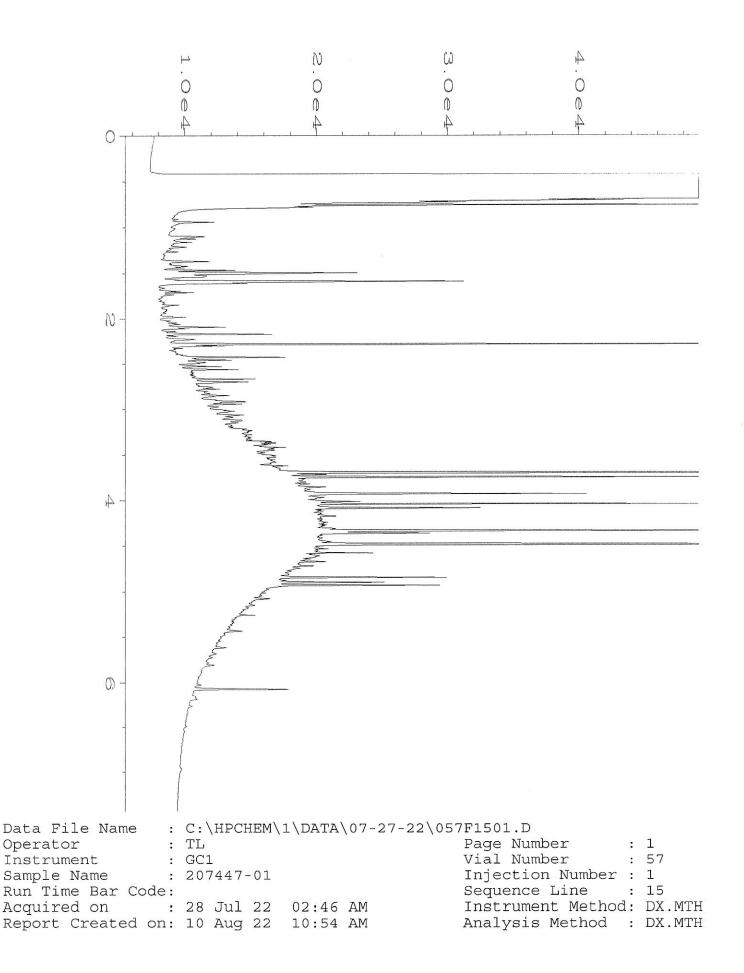
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

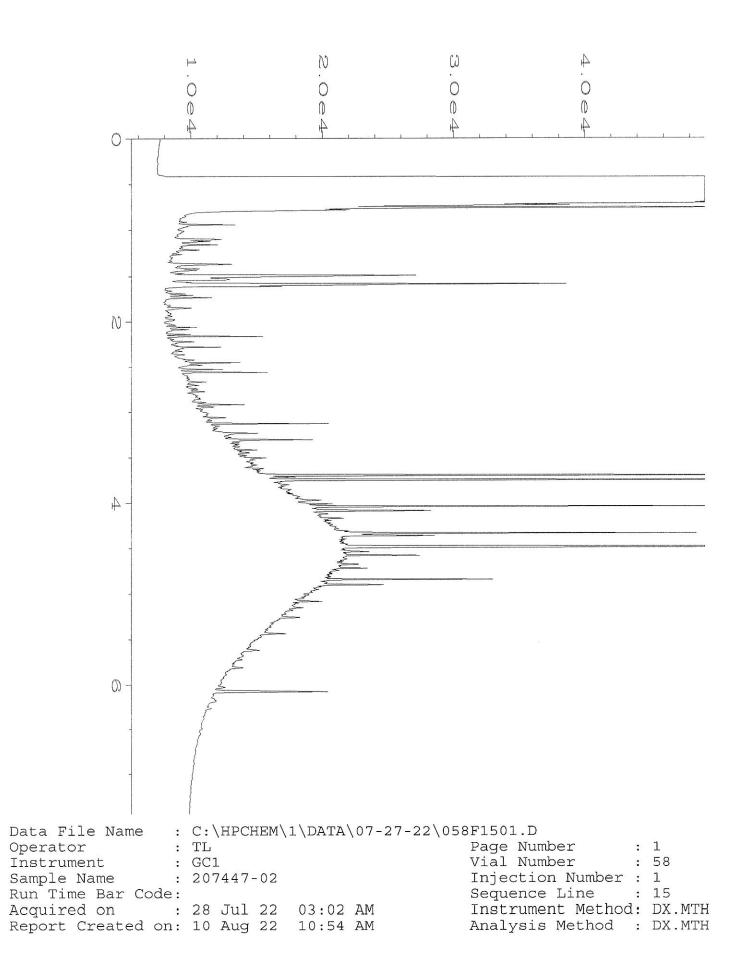
lc - The presence of the analyte is likely due to laboratory contamination.

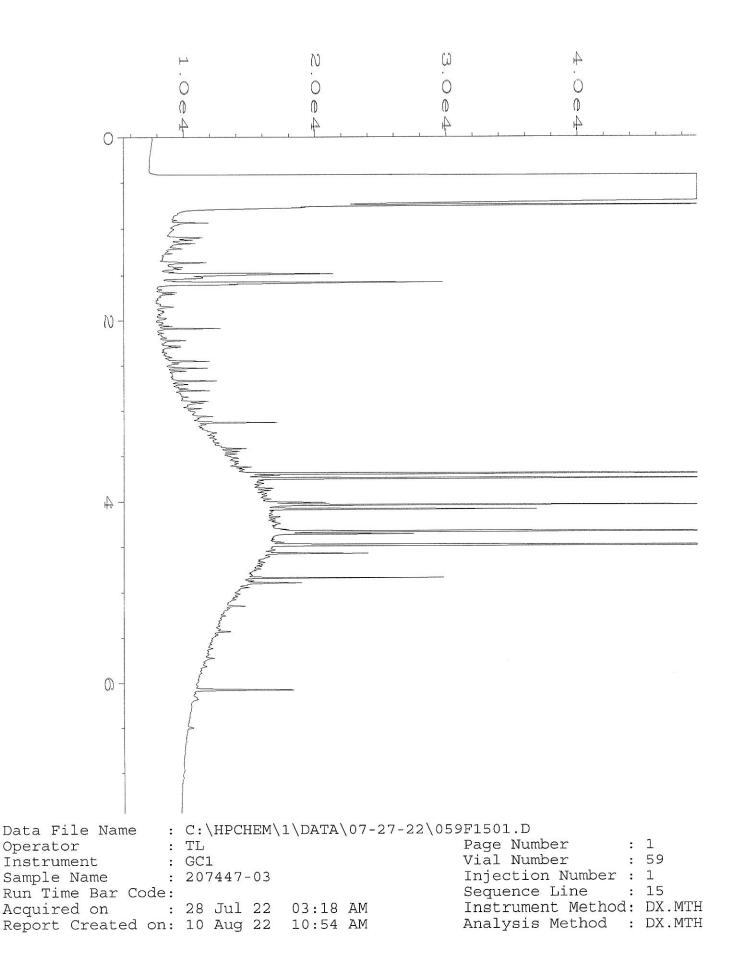
L - The reported concentration was generated from a library search.

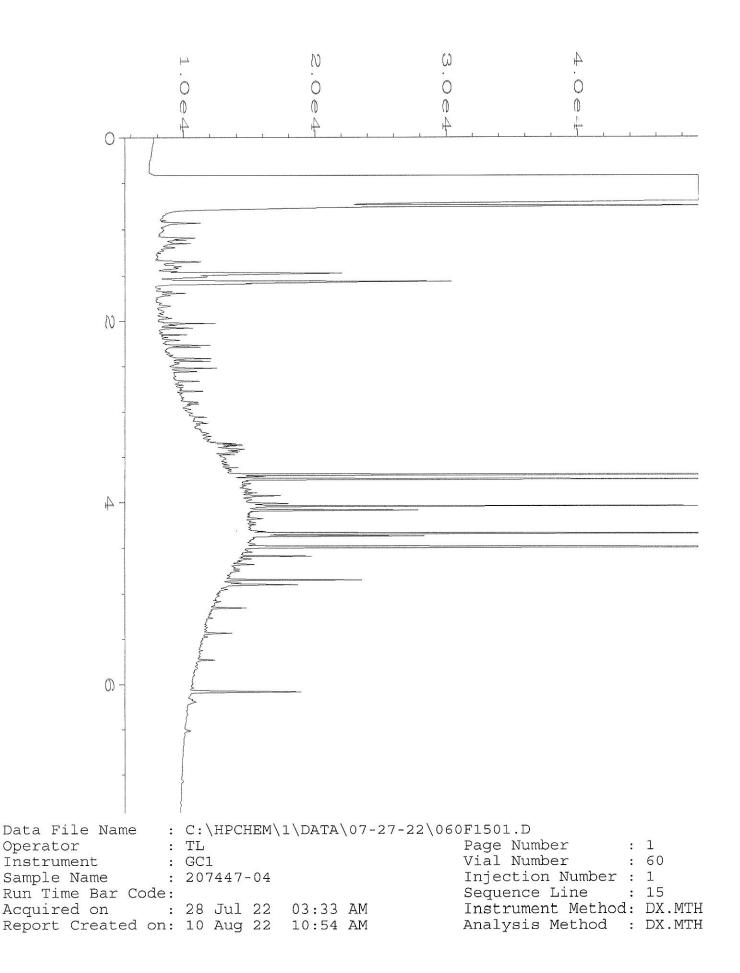
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

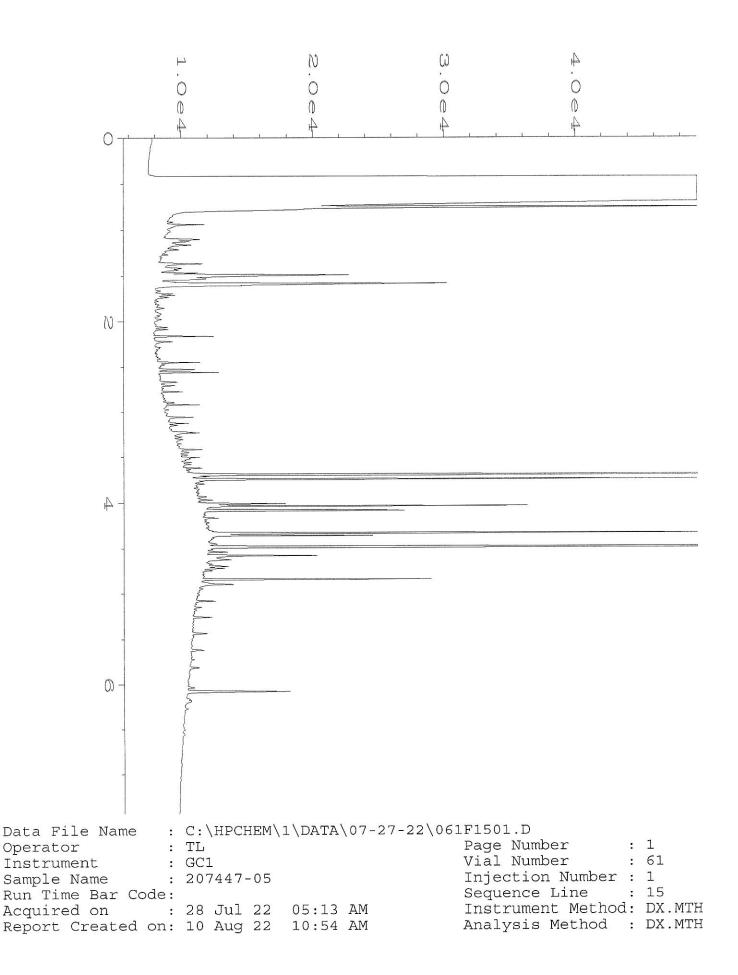
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

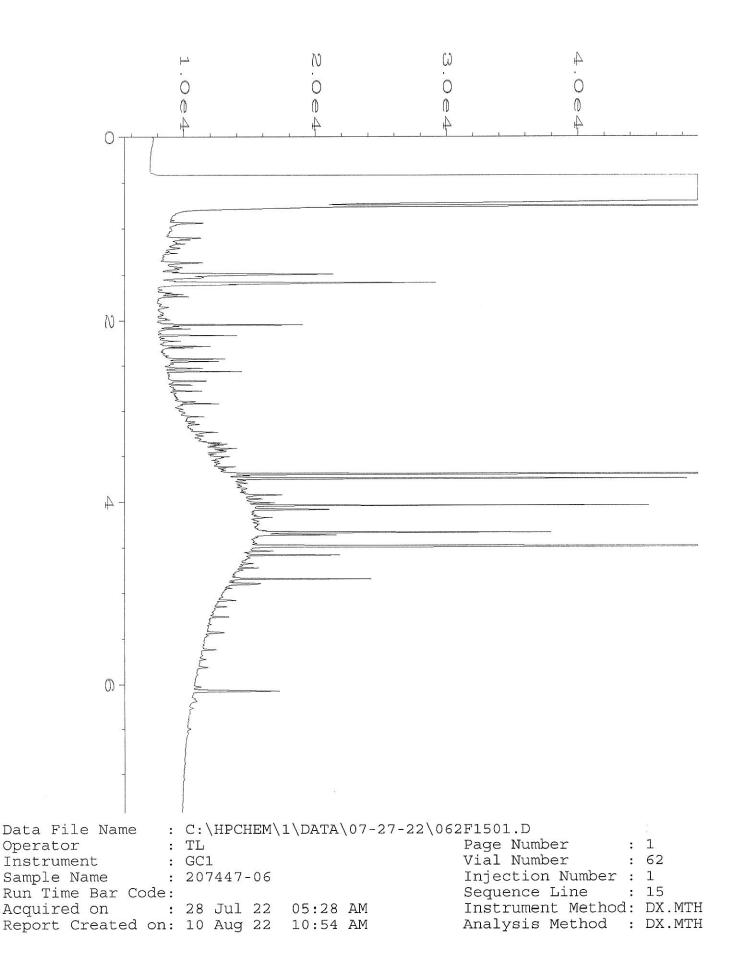

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

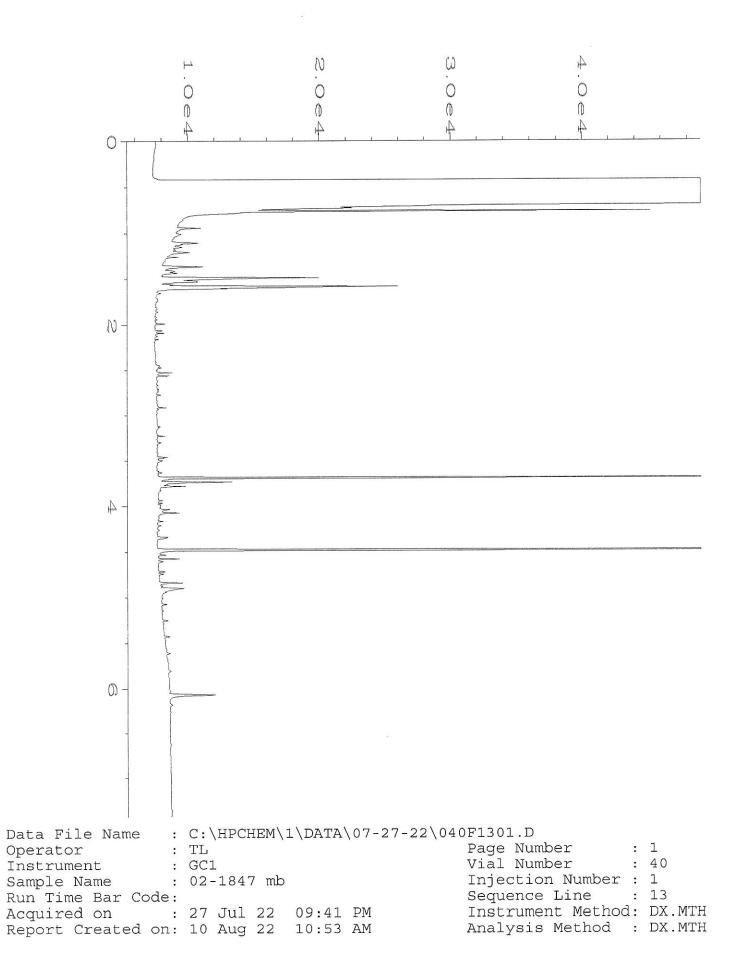

vo - The value reported fell outside the control limits established for this analyte.

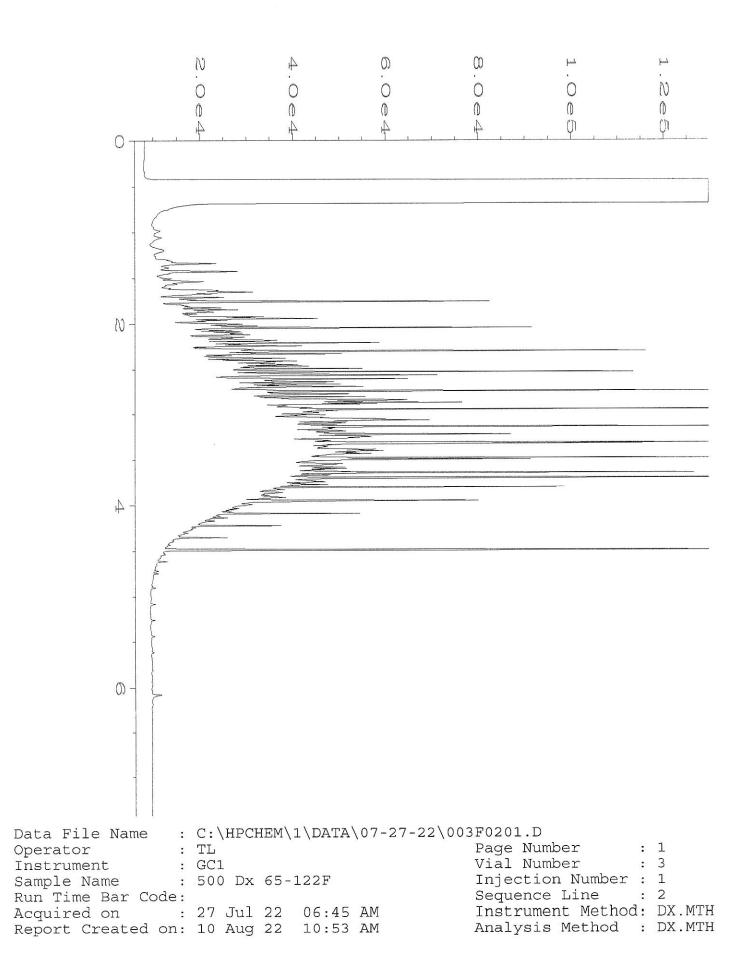

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

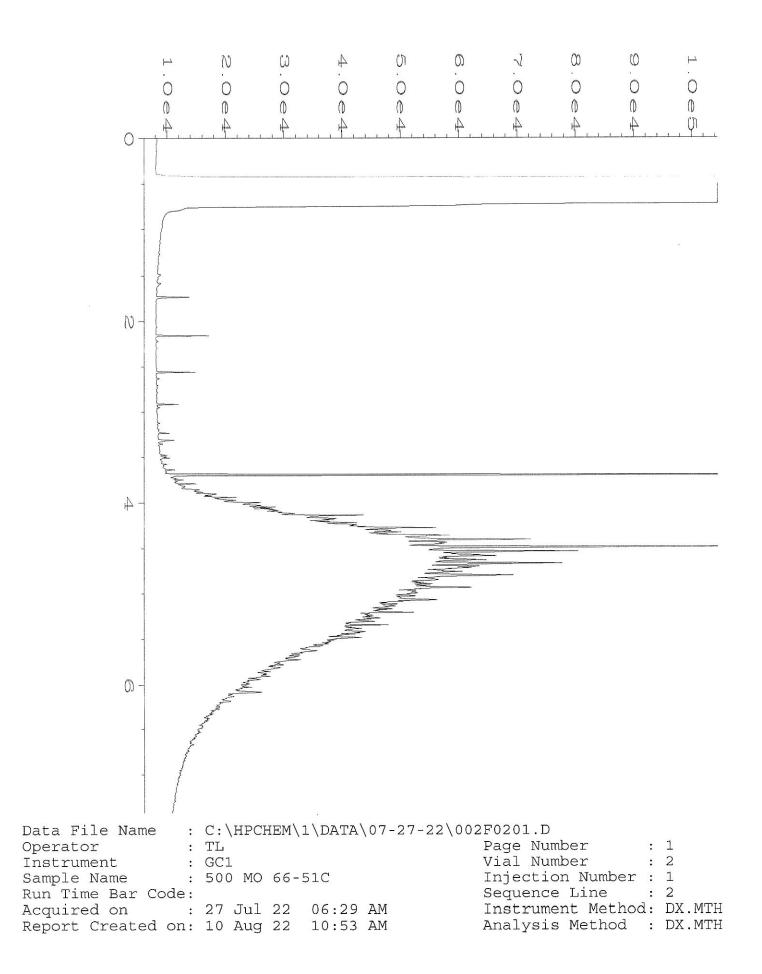

PROJECT NAME PO# Auburn VIL B: Sample Time Sample Type Jars IOSS S IOSS S <	Received by:	- <u>r</u>	Friedman & Bruya, Inc. Relinquished by		MW-3-5 101	MW-3-3 01	MW-2-15 08	MW-2-12 07	MW -2-8 06	MW - 2-5 . 05	MW -1-15 . OH	MW-1-12 03	MW-1-7 02	MW-1-5 01 A-E 5	Sample ID Lab ID		-	City, State, ZIP	Company <u>BLUESTONE</u> NO
Involve Involve		J. W. E	Variation /	SIGNATURE	V 1950	1365	1105		1065	1050	920	ġ15	910	5/23/22 905	ي م		Ne Marcum Project	REMA	PROJE
Samp Samp		Liz Webber-Boy	HALEY CARTER	PRINT NAME					×					 	NWTPH-Dx NWTPH-Gx BTEX EPA 8021		Yes / No		BE
	Samples r	863	BURSTONG	COMPANY		XX X		· · · · ·	X				X		VOCs EPA 8260 PAHs EPA 8270	ANALYSES REQUESTED			PO#


		Ph. (206) 285-8282	Friedman & Bruya, Inc.		21-5-MW	MIN -5-10	2-5-MM	MW-5-3	MW-4-15	MW -4-10	MW-4-5	MW-4-2.	MW-3-15	MW-3-10	Sample ID		Phone	City, State, ZIP	Address	Company	Report To DAN HATCH	Suzdos
Received by	Relinquisher by:	Received by:	Relinquished by		20 1	19	8	F	<i>b</i> / <i>l</i> / <i>b</i> / <i>b</i> / <i>b</i> / <i>l</i> / <i>b</i>	. 12	, Iq	13	2 ag 12	311 7	Lab ID		Email danhablestorens, cor				TCH	
	C. D. Wei			SIGNATURE	«						7%		-	510312	Date Sampled		farenu ia				-	
			HT J		1555	1550	98	1540	555	1500	1455)h(\$0	1400	1355	Tìme Sampled			REMARKS	Aubo	PROJEC	SAMPLE	SAMPLE CHAIN OF CUS
	102		MH ,		4									S	Sample Type		Project specific RLs? -	S	Auburn VW	PROJECT NAME	SAMPLERStatentu	
	1		HALEY LARTER	PRIN	<	Parage () (Parat of the	1	an a						\mathcal{O}	# of Jars						Sure)	OF
	MANN		ART	PRINT NAME		\geq	ļ	X		X		$\mid \times \mid$	1.	X	NWTPH-Dx		Yes / N		4	\sim	G	NUS.
	10	à	P	ME		· .									NWTPH-Gx		No				A	
	C.	5											<u> </u>		BTEX EPA 8021 NWTPH-HCID		30101530RD		30))	$\left \bigcap \right $	×
 -	Ĩ							$\overline{\mathbf{X}}$				\mathbf{X}	/		VOCs EPA 8260	ANA	1S	INVOICE TO	62-0107-0	דרו		
			\$					\geq	<u> </u>	-		\mathbb{X}	ļ		PAHs EPA 8270	ANALYSES REQUESTED	NO	ICE	Ļ 1	PO#		5
	-	Ũ	ë Së							<u> </u>	1			<u> </u>	PCBs EPA 8082	SRE		Ţ	Ċ	5		2
	1	40	BULESTONE	OMI		ļ	ļ	$\mid \times$			ļ	$ \times$	\$		MTCA 5 META	Ê						12
			R	COMPANY										-		STE			1 22	DØ		Ĩ∾
, ¹																	□ Other Default	Arc	ush c	RUS		3 0
 																	IF: Di	SAMT ive sa	harge	H H	TURN.	N8-51
	120	2/24/22	51841hr	DATE													□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by	Standard turnaround	TURNAROUND TIME	Z
	142	5	the	TE											Notes		<u>afte</u>	ISPO	horize	round	JUD .	* 0 /2
 x			160	EL		5									tes		r 30	SAL	əd by:	<u>سر</u>	TIME	J'
		-		TIME											,		days					`
 -				•••••••••						., ?			· · ·				ŧ			,	L	









ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 8, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on July 26, 2022 from the Auburn VW, F&BI 207447 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Haley Carter BST0808R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 26, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW, F&BI 207447 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Bluestone Environmental NW
207447 -01	MW-1
207447 -02	MW-2
207447 -03	MW-3
207447 -04	MW-4
207447 -05	MW-5
207447 -06	MW-DUPA

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447 Date Extracted: 07/27/22 Date Analyzed: 07/27/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Extended (C10-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 207447-01	960 x	144
MW-2 207447-02	940 x	ip
MW-3 207447-03	670 x	145
MW-4 207447-04	550 x	ip
MW-5 207447-05	300 x	ip
MW-DUPA 207447-06	510 x	141
Method Blank 02-1847 MB	<250	111

ENVIRONMENTAL CHEMISTS

Client ID:	MW-1	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	07/27/22	Lab ID:	207447-01 x5
Date Analyzed:	08/01/22	Data File:	207447-01 x5.189
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 20.0	o por address	

ENVIRONMENTAL CHEMISTS

Client ID:	MW-2	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-02 x5
Date Analyzed:	08/03/22	Data File:	207447-02 x5.151
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 58.1	Operator.	51

ENVIRONMENTAL CHEMISTS

Client ID:	MW-3	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-03 x5
Date Analyzed:	08/03/22	Data File:	207447-03 x5.152
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 14.3	-	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-4	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	07/27/22	Lab ID:	207447-04 x10
Date Analyzed:	08/01/22	Data File:	207447-04 x10.056
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 11.4	-	

6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-5	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-05 x5
Date Analyzed:	08/03/22	Data File:	207447-05 x5.153
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 35.4		

7

ENVIRONMENTAL CHEMISTS

Client ID:	MW-DUPA	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-06 x5
Date Analyzed:	08/03/22	Data File:	207447-06 x5.154
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 11.5	-	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 07/28/22 07/28/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW, F&BI 207447 I2-511 mb I2-511 mb.046 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Bluestone Environmental NW
Date Received:	NA	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	I2-526 mb
Date Analyzed:	08/03/22	Data File:	I2-526 mb.116
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) <1		

10

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-1 07/26/22 08/01/22 08/01/22 Water	Client: Project: Lab ID: Data File: Instrument:	Bluestone Environmental NW Auburn VW, F&BI 207447 207447-01 207447-01.192 ICPMS2
Units: Analyte:	ug/L (ppb) Concentration ug/L (ppb)	Operator:	SP
Arsenic	17.8		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2 07/26/22 08/03/22 08/03/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW, F&BI 207447 207447-02 x5 207447-02 x5.145 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)	Operator.	Sr
Arsenic	55.6		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-3	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-03 x5
Date Analyzed:	08/03/22	Data File:	207447-03 x5.146
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 16.2	-	

ENVIRONMENTAL CHEMISTS

Client ID:	MW-4	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/01/22	Lab ID:	207447-04 x10
Date Analyzed:	08/01/22	Data File:	207447-04 x10.182
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 11.1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5 07/26/22 08/03/22 08/03/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW, F&BI 207447 207447-05 x5 207447-05 x5.147 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)	Operator.	51
Arsenic	34.5		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-DUPA	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-06 x5
Date Analyzed:	08/03/22	Data File:	207447-06 x5.148
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 11.9		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Bluestone Environmental NW
Date Received:	NA	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	I2-527 mb
Date Analyzed:	08/03/22	Data File:	I2-527 mb.083
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) <1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 08/01/22 08/01/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW, F&BI 207447 I2-519 mb I2-519 mb.141 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 207468-07	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	<1	98	102	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Cod	le: 207447-04 x	10 (Matri	x Spike)				
	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	11.4	95	91	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 207416-01 x10 (Matrix Spike)

Laboratory C	oue. 207410-01 x	10 (Matri	ix opike)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.6	85	84	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code	: 207489-03	(Matrix Sp	oike)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	22.9	126 b	126 b	75-125	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Relinquisher Ph. (206) 285-8282 Received by: Relinquished Received by:	MW-DUPA	MW-7	MW-3	MW - 1	Sample II)		PhoneEmail	City, State, ZIP	Address	2074447 Report To DAN HATCH Company BLUESTONE
Relinquished by: Received by: Received by: Relinquished by: Received by:	06 1 1 24		07 015	01A-6 /126/22 8	Lab ID Date Sampled Sa		Email Control blue Schenky Con Project specific RLs? -			\$ HANCY CAPITE
PRINT NAME NHEY CAUTER NHUT TRUC	2400 V VX	Cub Cub	XX	W 7X	Sampled Type For Sampled Type Jars NWTPH-Dx NWTPH-Gx		Project specific RLs? - Yes / No	REMARKS	Aubern VW	SAMPLERS CHAIN OF CUSTODY SAMPLERS SPATE
MG F4BJ Sample					BTEX EPA 8021 NWTPH-HCID OCs EPA 8260 PAHs EPA 8270 CBs EPA 8082	ANALYSES REQUEST		INVOICE TO		7/26/72 PO#
PANY DATE TIME $70 \lambda \mathcal{E}$ $7/26/2\tau$ 705 Samples received at $2 \circ C$					Notes)	Arc Oth efau	SAMPLE DISPOSAT	□ RUSH Rush charges authorized by:	Page #of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 28, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on July 21, 2022 from the Auburn VW BE-0107-D, F&BI 207331 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Haley Carter BST0728R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 21, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-D, F&BI 207331 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
207331 -01	B-7-3
207331 -02	B-7-5
207331 -03	B-7-8
207331 -04	B-8-3
207331 -05	B-8-5
207331 -06	B-8-8
207331 -07	B-9-3
207331 -08	B-9-5
207331 -09	B-9-8
207331 -10	B-10-3
207331 -11	B-10-5
207331 -12	B-10-6
207331 -13	B-10-8
207331 -14	B-11-3
207331 -15	B-11-5
207331 -16	B-11-8
207331 -17	B-12-3
207331 -18	B-12-5
207331 -19	B-12-8
207331 -20	B-13-3
207331 -21	B-13-5
207331 -22	B-13-8
207331 -23	B-14-3
207331 -24	B-14-5
207331 - 25	B-14-8

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331 Date Extracted: 07/22/22 Date Analyzed: 07/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-7-3 207331-01	<50	<250	107
B-7-5 207331-02	<50	<250	100
B-8-3 207331-04	<50	<250	103
B-8-5 207331-05	<50	<250	101
B-13-3 207331-20	<50	<250	104
B-13-5 207331-21	<50	<250	107
B-14-3 207331-23	<50	<250	101
B-14-5 207331-24	<50	<250	100
Method Blank 02-1825 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-9-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-07 1/5 072616.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	ıol	% Recovery: 80 91 84 93 99 103	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne ne ene ene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-9-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm	h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-08 1/5 072617.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 70 84 82 89 60 98	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ 0.014 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-10-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm	h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-10 1/5 072607.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 78 88 85 97 93 102	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-10-6 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-12 1/5 072608.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol		Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$\begin{array}{c} 0.013\\ 0.042\\ 0.029\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-14 1/5 072609.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	$\% \ { m Recovery:} \ 80 \ 90 \ 86 \ 95 \ 99 \ 104$	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-15 1/5 072610.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol		Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-12-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) I	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-17 1/5 072611.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		% Recovery: 77 86 83 96 95 100		Upper Limit: 103 109 138 150 127 150
Compounds:		oncentration ng/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne ne ene ene eene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-12-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weigh	Client: Project: Lab ID: Data File: Instrument: t Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-18 1/5 072612.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery 70 84 78 90 nol 85 96	$\begin{array}{ccc} & \text{Lower} \\ \text{Limit:} \\ 39 \\ 48 \\ 23 \\ 50 \\ 40 \\ 50 \end{array}$	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentrati mg/kg (ppn		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace Benzo(g,h,i)perylen	$\begin{array}{rcrcrc} \text{ne} & < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.065 \\ 0.011 \\ 0.12 \\ 0.14 \\ 0.068 \\ 0.069 \\ 0.090 \\ \text{ne} & 0.075 \\ \text{ne} & 0.027 \\ \text{rene} & 0.033 \\ \text{rene} & < 0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 07/25/22 07/25/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 02-1830 mb 1/5 072505.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery:	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	$\begin{array}{rcl} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ ene & <0.01 \\ ene & <0.01 \\ ene & <0.01 \\ ene & <0.01 \\ \end{array}$		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	207357-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	106	112	63-146	6
Laboratory Code:	Laboratory Contr	rol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	122		144		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 207385-02 1/5 (Matrix Spike)

Laboratory Code:	207385-02 1/5 (Mat	rix Spik	e)				
-	D (а. ·1	Sample	Percent	Percent		DDD
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	78	79	34-118	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	83	29-130	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	83	37-119	1
Acenaphthylene	mg/kg (ppm)	0.83	0.034	83	83	45 - 128	0
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	85	85	36 - 125	0
Fluorene	mg/kg (ppm)	0.83	0.032	85	84	48-121	1
Phenanthrene	mg/kg (ppm)	0.83	0.35	46 b	46 b	50 - 150	0 b
Anthracene	mg/kg (ppm)	0.83	0.063	82	80	50 - 150	2
Fluoranthene	mg/kg (ppm)	0.83	0.31	57 b	56 b	50 - 150	2 b
Pyrene	mg/kg (ppm)	0.83	0.40	45 b	45 b	50 - 150	0 b
Benz(a)anthracene	mg/kg (ppm)	0.83	0.16	72	73	50-150	1
Chrysene	mg/kg (ppm)	0.83	0.17	68 b	68 b	50-150	0 b
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.16	76	75	50-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.13	79	80	50 - 150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.045	87	88	50 - 150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.079	91	83	41-134	9
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	0.015	97	90	44-130	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.075	86	78	33-131	10

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	78	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	81	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	81	66-107
Acenaphthylene	mg/kg (ppm)	0.83	90	70-130
Acenaphthene	mg/kg (ppm)	0.83	89	66-112
Fluorene	mg/kg (ppm)	0.83	94	67-117
Phenanthrene	mg/kg (ppm)	0.83	88	70-130
Anthracene	mg/kg (ppm)	0.83	90	70-130
Fluoranthene	mg/kg (ppm)	0.83	91	70-130
Pyrene	mg/kg (ppm)	0.83	87	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	91	70-130
Chrysene	mg/kg (ppm)	0.83	90	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	91	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	90	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	92	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	106	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	109	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	107	64-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

V-10-1-		B-9-3	8-8-8	0-8-5	5-8-0	8-7-8	B-7-5	B-7-3	Sample ID			City, State, ZIP	Address	Company BLUESTO,	20733 Report To DAN HATCH &
10	28	<u>t</u>	8	05	8	03	02	01 A-E 7	Lab ID		Email Jan W Juzst				+ + HALEY CARTER
00	quo	935	920	915	910	CES CES	Soc	7/20/22 945			1	RE		PF	-
								5	Sample Type		iect specific RLs?	MARKS	toburn VW	DJECT NAME	SAMPLERS (signature)
							X	X	NWTPH-Dx NWTPH-Gx	1	- Yes / No				OFCUSTOD
X		X		· · · ·					NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270	ANALYSES	Burl Clar	INVOICE T	D-1010-E	,	X 07-2
									PUBS EPA 8082	REQUESTED	Defau	Transmission of the second sec		A BIIG	VSB3/
											nve samples 9 <u>r lt: Dispose af</u>	SAMPLE DISI	harges author	idard turnaro	Page# 107 of 2
	10-3 10 10 10 10 10	-9-5 08 -9-5 09 -10-3 10 V	-9-3 -9-5 -9-5 -9-5 -0-3 -0-3 -0-3 -0-3	-9-5 -9-5 -9-5 -9-5 -9-5 -9-5 -9-5 -9-5	-9-5 -9-5 -9-5 -9-5 -9-5 -9-5 -9-5 -9-5	-9-8-2 -9-8-8-2 -9-8-8-2 -9-8-8-2 -9-8-8-9-8- -9-8-8- -9-8-8-9-8-8- -9-8-8- -9-8-9-8	-9-8-5 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-8-7 -9-7 -9	-9-8-3 -9-8-9-9-1 -9-8-3 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-9-1 -9-8-1 -9-9	-9.5 01 A-E 710012 -8-5 02 -8-5 02 -9-5 02	Sample ID Lab ID Sample ID Sample ID Lab ID Sample	Sample ID Lab ID Sample ID Lab ID Sample ID Lab ID Sample ID Lab ID Sample ID Lab ID Sample ID Lab ID Sample I Sample I S	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	REMARKS INVOICE TO Email day (D) U (D) U Project specific RLs? · Yes / No WC (Q) U Bample ID Lab ID Date Time Sample T Sample ID Lab ID Date Time Sample T $ANALYSSE REQUEST 7-5 01 A-E T (D) Z Z Z Z 7-5 02 1 Z Z Z Z 7-5 02 Z Z Z Z Z 7-5 02 Z Z Z Z Z Z 7-5 02 Z$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	Ph. (206) 285-8282	Friedman & Bruya, Inc.	3-13-3	8-12-8	8-12-5	B-12-3	B-11-8	R-11-5	B-11-3	8-10-8	B-10-6	5-10-8	Sample ID		E TIATE		City, State, ZIP	Address	Company BLUESTONE	Report To DAN HA-	907331
Kelinquished by: Received by:	Received by:	Relinquished MAT	20	191	14	tl	16	15	14	13	12	11 6-6	Lab ID		Ennanceshi@uuzski kine wi 7 Project specific RLs? -	English and the second			UZ/	DAN HATCH & HOLEY CARTER	
	AA UC	NATURE									>	7800/22_	Date Sampled							ettel	
			Bio	∞	1055	0201	1035	1030	520	1010	10°7	1005	Time Sampled		Project s		REMARKS	Aub	PROJE		SAMPLE CHAIN OF CUS
	Ann		J.									S	Sample Type		pecific RLs		KS	Auburn WW	PROJECT NAME	SAMPLERS (signature)	CHAIN
	HADAN W	PRINT NAME	Ę.									יט	# of Jars		? - Yes			\sim	_	ture)	2
			K										NWTPH-Dx		s / No				4	Z	L'SUC
	221	Æ	· ·										NWTPH-Gx BTEX EPA 8021	-	0					Ę	TQDY
			:										NWTPH-HCID	-		Soc	, T	R		2	X
			ļ			$\overline{}$:		~				VOCs EPA 8260	ANAI		Bod Claru	INVOICE TO	BE-0107-D	ď	R	
					걱	싀		X	riangle		즤		PAHs EPA 8270	YSE.		à	ICE '	07	PO#	1	D
	TIE	8	:										PCBs EPA 8082	SRE	P	F.	Ю	Ġ	-	X	N
Sa	FAB	COMPANY	-											ANALYSES REQUESTED							1-2
mjle	NESTONE F&B	YN										ч.,		YTED	De			Rus			3
s rece															fault:	□ Other_	SA	sh cha	tands USH	Page #	ŗ
ived.	1-10%														Disp	Other	MPLI	rges a	urd tu	e#	、
Samples received at 5 dc	1/2/12	DATE													ose a	, pres	SAMPLE DISPOSAL	Rush charges authorized by:	Standard turnaround	Page # of	3
	5												Notes		fter 3		POSA	rized l	und	of	
	20015	TIME	-												Default: Dispose after 30 days		L	by:			N

Friedman & Bruya, Inc. Ph. (206) 285-8282		8-11-9		B-13-2			City, State, ZIP Phone	Report To <u>VAN HATCH</u> Company <u>BUIZSTONE</u> Address	152102
Received by: Received by: Received by: Received by:		24	23	21 A-E 7/10/2	Lab ID Date Sampled		Smail and plastice 12	OF	13.31
HALEY LADTER THINK WISINCYS		12vs V VX	I Dice	IDIS S SX	Time Sampled Type Jars NWTPH-Dx NWTPH-Gx		Email Annu pluz Curly Con Project specific RLs? - Yes / No	PROJECT NAME	AIN OF CUST
COMPANY D BLUESTONE 7/2 F9B 7/2 Samples received at					BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED	INVOICE TO S/ Bud Clary Other	Po# BE-0107-D Bush cha	9PY 07-24-22
DATE TIME 7/21/22 822 7/21/22 0815					Notes		SAMPLE DISPOSAL	Page # <u>S</u> of <u>S</u> TURNAROUND TIME Standard turnaround RUSH Rush charges authorized by:)