# Remedial Investigation Addendum King County Metro South Facilities

Prepared for



February 2023

Prepared by Parametrix

# Remedial Investigation Addendum King County Metro South Facilities

Prepared for

King County Metro Transit 201 South Jackson Street M.S. KSC-TR-0431 Seattle, WA 98104-3856

Prepared by

**Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In cooperation with

**HWA Geosciences, Inc.** 21312 30th Drive SE, Suite 110 Bothell, WA 98021 T. 425.774.0106

## CITATION

Parametrix & HWA Geosciences, Inc., 2023. Remedial Investigation Addendum King County Metro South Facilities. Prepared by Parametrix, Seattle, Washington. February 2023.

## CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

has

Prepared by Chris Bourgeois



Checked by Lisa Gilbert, LHG



Approved by Michael P. Brady LG, LHG

# TABLE OF CONTENTS

| 1.                         | INTR                                                                                       | ODUCTION                                                                                                                                                                                                                                                                                                                                           | 1-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                            | 1.1 General Property Information1                                                          |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|                            | 1.2 Physical Setting                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.2.1 Surface Water                                                                                                                                                                                                                                                                                                                                | 1-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.2.2 Soil                                                                                                                                                                                                                                                                                                                                         | 1-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.2.3 Geology                                                                                                                                                                                                                                                                                                                                      | 1-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.2.4 Groundwater                                                                                                                                                                                                                                                                                                                                  | 1-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            | 1.3                                                                                        | Site History and Use                                                                                                                                                                                                                                                                                                                               | 1-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.3.1 South Facilities                                                                                                                                                                                                                                                                                                                             | 1-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            | 1.3.2 Surrounding Area                                                                                                                                                                                                                                                                                                                             | 1-3                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 2.                         | PREV                                                                                       | /IOUS INVESTIGATIONS                                                                                                                                                                                                                                                                                                                               | 2-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            | 2.1                                                                                        | South Annex                                                                                                                                                                                                                                                                                                                                        | 2-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            | 2.2                                                                                        | South Facilities                                                                                                                                                                                                                                                                                                                                   | 2-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            | 2.3                                                                                        | RI and VCP Opinion                                                                                                                                                                                                                                                                                                                                 | 2-2                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 2                          |                                                                                            |                                                                                                                                                                                                                                                                                                                                                    | 2 1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| э.                         | DLCL                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 4.                         | <b>SUR</b>                                                                                 | /EY                                                                                                                                                                                                                                                                                                                                                | 4-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 5.                         | QUA                                                                                        | RTERLY GROUNDWATER MONITORING                                                                                                                                                                                                                                                                                                                      | 5-1                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 5.                         | <b>QUA</b><br>5.1                                                                          | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient                                                                                                                                                                                                                                                                                              | <b>5-1</b><br>5-1                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 5.<br>6.                   | <b>QUA</b><br>5.1<br><b>UPD</b>                                                            | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient                                                                                                                                                                                                                                                                                              | <b>5-1</b><br>5-1                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 5.<br>6.                   | QUA<br>5.1<br>UPDA<br>6.1                                                                  | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions                                                                                                                                                                                                                                  | <b>5-1</b><br>5-1<br><b>6-1</b>                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 5.<br>6.                   | QUA<br>5.1<br>UPDA<br>6.1<br>6.2                                                           | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation                                                                                                                                                                                             | <b>5-1</b><br><b>5-1</b><br><b>6-1</b><br>6-2                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 5.<br>6.                   | QUA<br>5.1<br>UPDA<br>6.1<br>6.2                                                           | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation<br>RONMENTAL INFORMATION MANAGEMENT                                                                                                                                                         | <b>5-1</b><br><b>6-1</b><br>6-2<br><b>6-2</b>                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.             | QUA<br>5.1<br>UPDA<br>6.1<br>6.2<br>ENVI                                                   | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation<br>RONMENTAL INFORMATION MANAGEMENT                                                                                                                                                         | <b>5-1</b><br><b>6-1</b><br>6-1<br>6-2<br><b>7-1</b>                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>UPDA<br>6.1<br>6.2<br>ENVI                                                   | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation<br>RONMENTAL INFORMATION MANAGEMENT<br>NUP LEVELS                                                                                                                                           | <b>5-1</b><br><b>6-1</b><br>6-1<br>6-2<br><b>7-1</b>                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>0PDA<br>6.1<br>6.2<br>ENVI<br>CLEA<br>8.1                                    | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation<br>RONMENTAL INFORMATION MANAGEMENT<br>NUP LEVELS<br>Cleanup Levels                                                                                                                         | <b>5-1</b><br><b>6-1</b><br>6-2<br><b>7-1</b><br><b>8-1</b>                                                                                                          |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>0.1<br>6.2<br>ENVI<br>CLEA<br>8.1<br>8.2                                     | RTERLY GROUNDWATER MONITORING<br>Groundwater Gradient<br>ATED CONCEPTUAL SITE MODEL<br>Subsurface Site Conditions<br>Terrestrial Ecological Evaluation<br>RONMENTAL INFORMATION MANAGEMENT<br>NUP LEVELS<br>Cleanup Levels<br>Point of Compliance                                                                                                  | <b>5-1</b><br><b>6-1</b><br><b>6-1</b><br><b>6-2</b><br><b>7-1</b><br><b>8-1</b><br><b>8-1</b>                                                                       |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>0.1<br>6.2<br>ENVI<br>CLEA<br>8.1<br>8.2                                     | RTERLY GROUNDWATER MONITORING   Groundwater Gradient   ATED CONCEPTUAL SITE MODEL   Subsurface Site Conditions   Terrestrial Ecological Evaluation   RONMENTAL INFORMATION MANAGEMENT   NUP LEVELS   Cleanup Levels   Point of Compliance   MARY, CONCLUSIONS, AND RECOMMENDATIONS                                                                 | <b>5-1</b><br><b>6-1</b><br><b>6-1</b><br><b>6-2</b><br><b>7-1</b><br><b>8-1</b><br><b>8-1</b><br><b>8-1</b>                                                         |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.<br>9. | QUA<br>5.1<br>UPDA<br>6.1<br>6.2<br>ENVI<br>CLEA<br>8.1<br>8.2<br>SUM<br>9.1               | RTERLY GROUNDWATER MONITORING   Groundwater Gradient   ATED CONCEPTUAL SITE MODEL   Subsurface Site Conditions   Terrestrial Ecological Evaluation   RONMENTAL INFORMATION MANAGEMENT   NUP LEVELS   Cleanup Levels   Point of Compliance   MARY, CONCLUSIONS, AND RECOMMENDATIONS   Conclusions                                                   | <b>5-1</b><br><b>6-1</b><br><b>6-1</b><br><b>6-2</b><br><b>7-1</b><br><b>8-1</b><br><b>8-1</b><br><b>8-1</b><br><b>8-1</b><br><b>9-1</b>                             |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>UPDA<br>6.1<br>6.2<br>ENVI<br>CLEA<br>8.1<br>8.2<br>SUM<br>9.1<br>9.2        | RTERLY GROUNDWATER MONITORING   Groundwater Gradient   ATED CONCEPTUAL SITE MODEL   Subsurface Site Conditions   Terrestrial Ecological Evaluation   RONMENTAL INFORMATION MANAGEMENT   NUP LEVELS   Cleanup Levels   Point of Compliance   MARY, CONCLUSIONS, AND RECOMMENDATIONS   Conclusions   Recommendations                                 | <b>5-1</b><br><b>6-1</b><br><b>6-1</b><br><b>6-1</b><br><b>7-1</b><br><b>8-1</b><br><b>8-1</b><br><b>8-1</b><br><b>9-1</b><br><b>9-1</b>                             |  |  |  |  |  |  |  |  |  |
| 5.<br>6.<br>7.<br>8.       | QUA<br>5.1<br>UPDA<br>6.1<br>6.2<br>ENVI<br>CLEA<br>8.1<br>8.2<br>SUM<br>9.1<br>9.2<br>9.3 | RTERLY GROUNDWATER MONITORING   Groundwater Gradient   ATED CONCEPTUAL SITE MODEL   Subsurface Site Conditions   Terrestrial Ecological Evaluation   RONMENTAL INFORMATION MANAGEMENT   NUP LEVELS   Cleanup Levels   Point of Compliance   MARY, CONCLUSIONS, AND RECOMMENDATIONS   Conclusions   Recommendations   Request for No Further Action | <b>5-1</b><br><b>5-1</b><br><b>6-1</b><br><b>6-1</b><br><b>6-2</b><br><b>7-1</b><br><b>8-1</b><br><b>8-1</b><br><b>8-1</b><br><b>9-1</b><br><b>9-1</b><br><b>9-1</b> |  |  |  |  |  |  |  |  |  |

# TABLE OF CONTENTS (CONTINUED)

#### **LIST OF FIGURES**

- Figure 1 Site Location Map
- Figure 2 Historical and Current Monitoring Locations
- Figure 3 Potentiometric Surface Map February 22 and 23, 2022
- Figure 4 Potentiometric Surface Map May 10, 2022
- Figure 5 Potentiometric Surface Map August 25, 2022
- Figure 6 Potentiometric Surface Map November 1, 2022
- Figure 7 Cross Section A-A'
- Figure 8 Cross Section B-B'

#### LIST OF TABLES

- Table 1 Groundwater Elevations
- Table 2 Summary of Groundwater Analytical Results

#### **APPENDICES**

- A Parametrix RI/FS Summary Report for Voluntary Cleanup Program Application
- B HWA Well Installation Memorandum
- C Parametrix Well Survey
- D HWA 2022 Quarterly Groundwater Sampling Event Memoranda
- E Boring & Monitoring Well Logs
- F TEE Form

## **ACRONYMS AND ABBREVIATIONS**

| bgs                    | below ground surface                                         |
|------------------------|--------------------------------------------------------------|
| BTEX                   | Benzene, Toluene, Ethylbenzene, Xylenes                      |
| COPCs                  | Contaminants of Potential Concern                            |
| сРАН                   | Carcinogenic Polycyclic Aromatic Hydrocarbons                |
| CSM                    | Conceptual Site Model                                        |
| CUL                    | Cleanup Level                                                |
| Ecology                | Washington State Department of Ecology                       |
| EPA                    | Environmental Protection Agency                              |
| FS                     | Feasibility Study                                            |
| HWA                    | HWA Geosciences, Inc.                                        |
| mg/kg                  | Milligram per kilogram                                       |
| MTCA                   | Model Toxics Control Act                                     |
| NAVD 88                | North American Vertical Datum of 1988                        |
| РСВ                    | Polychlorinated Biphenyl                                     |
| POC                    | Point of Compliance                                          |
| Property               | King County Metro Transit's South Facilities and South Annex |
| Qal                    | Quaternary Alluvium                                          |
| Qp                     | Quaternary Peat                                              |
| Qyal                   | Quaternary Younger Alluvium                                  |
| RI                     | Remedial Investigation                                       |
| Site                   | King County Metro Transit's South Facility                   |
| Site Hazard Assessment | SHA                                                          |
| TEE                    | Terrestrial Ecological Evaluation                            |
| ТРН                    | Total Petroleum Hydrocarbons                                 |
| TPH-D                  | Diesel-Range Total Petroleum Hydrocarbons                    |
| TPH-G                  | Gasoline-Range Total Petroleum Hydrocarbons                  |
| ТРН-О                  | Oil-Range Total Petroleum Hydrocarbons                       |
| μg/L                   | Micrograms per liter                                         |
| UST                    | Underground Storage Tank                                     |
| VCP                    | Voluntary Cleanup Program                                    |
| WAC                    | Washington Administrative Code                               |

## 1. INTRODUCTION

This Draft Remedial Investigation (RI) Addendum has been developed to address recommendations included in the 2020 *RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex* (RI/FS Summary Report; Parametrix 2020b; provided in Appendix A), conducted at King County Metro's South Facilities/South Annex, located at 11911 E Marginal Way S, Tukwila, WA to support Metro's Voluntary Cleanup Program (VCP) application to the Washington State Department of Ecology (Ecology). The 2020 RI/FS recommendations, summarized in Section 1.6 of this report, are limited to the South Facilities portion of the Property. Therefore, for the purposes of this addendum, South Facilities is considered the Site, and South Facilities and South Annex together are considered the Property. Parametrix' services were performed under Work Order No. 31 to Contract No. E0035E19.

### 1.1 General Property Information

The Property encompasses King County Assessor's Parcel No 1023049066, located between State Route 599 and East Marginal Way South, approximately 1/4 mile south of the Duwamish River in Tukwila, Washington (see Figure 1). The parcel is 16.93 acres in size. The Property is zoned by the City of Tukwila as Manufacturing Industrial Center/Heavy. The Property is west-northwest of Metro Transit's existing South Base, located at 12200 East Marginal Way South.

King County Metro has been the occupant of the Property since 1987. The Property includes two separate facilities. The smaller western portion is referred to as South Facilities (Site), which houses Metro's approximately 35,000 square foot Facilities Operations Building. The larger eastern portion is referred to as the South Annex and operates as the Training and Safety Facility which currently contains several structures, parking lots, open storage, and a training yard (Figure 1). The South Annex is not considered a part of the Site for the purposes of this addendum report.

#### 1.2 Physical Setting

The elevation of the Property is approximately 15-feet above mean sea level. Topographically the Property is generally flat, with a slight slope to the west within the South Facilities portion of the Property, with overall slope toward the north (King County GIS iMap Application 2020; USGS 2017). The Property is located in the Duwamish River valley south of the Duwamish River (Figure 1).

#### 1.2.1 Surface Water

The Property lies on a flat area within the river plain of the Duwamish River, which bends around the Property approximately 1,100 feet to the north and 1,400 feet to the east. A perennial drainage (Riverton Creek) runs through and along the north boundary of the Property and discharges to the Duwamish River (see Figure 1). The portions of the creek that run through the Property are referred to as the West and East branches of Riverton Creek and are partially piped; the remaining channelized flow is within concrete lined ditches. The West Branch of Riverton Creek divides the South Facilities and South Annex portions of the Property (Figures 1 and 2).

#### 1.2.2 Soil

Soils at the Property are classified as Urban Land by the National Resources Conservation Service (NRCS, 2020). The natural soil profile below the Property was buried during redevelopment of the Property in the 1980s. Up to 12 feet of sand and gravel fill, which includes utility trench backfill, underly the pavement of the Property.

#### 1.2.3 Geology

Native soils below the Property contain a substantial component of organic material. Organic soils have been observed during excavations (Converse Consultants 1984; Parametrix 2020, PBS 2020b). The *Geologic Map of Seattle – a Progress Report* (Troost et al. 2005) maps the surface geology of the Property as Quaternary peat (Qp) deposits. Quaternary alluvium (Qal) and Quaternary younger alluvium (Qyal) are mapped adjacent north of the Property. An outcrop of Tertiary bedrock is mapped southeast of the Property underlying the neighboring King County Metro South Base property.

Converse Consultants performed a geotechnical investigation of the Property prior to development in 1984. The borehole logs from the geotechnical investigation identified up to 7 feet of peat and clayey silt prior to encountering black alluvial sands. The sands intermixed with silty layers and clayey silt down to a depth of at least 90 feet below ground surface (bgs).

Borehole and well logs completed during site investigations (discussed below and provided in Appendix E) have encountered shallow fill (0-8.5 feet bgs) below the Site, including pea gravel/utility backfill in places, followed by layered silty peat and organics (5-13 ft bgs), followed by black alluvial sands (below 13 ft bgs).

The subsurface geology observed at the Property is consistent with the geologic mapping of the area.

#### 1.2.4 Groundwater

Groundwater is shallow and occurs at depths ranging from approximately 2.5 to 6.5 feet bgs across the Site throughout the year. The direction of shallow unconfined groundwater was previously inferred to flow toward the northwest based on topography, and west-northwest by historical reports (Woodward-Clyde 1995; AGI 1997); however, more recent groundwater elevations measured in 2019 through 2022 (see Table 1) indicate a general northeasterly flow direction (HWA 2022b through 2022d). Interpreted groundwater potentiometric surface contours from February, May, August, and November 2022 measurements are included as Figures 3 through 6. The water table below the Site may be tidally influenced due to the proximity to the Duwamish River. Preliminary vibrating wire piezometer data for the South Annex portion of the Property provided by Jacobs suggests there may be multiple confined aquifers at depths ranging from 25 to 85 feet bgs (Jacobs 2022).

#### 1.3 Site History and Use

#### 1.3.1 South Facilities

Prior to development of the Site, the area was predominantly low-lying farmland. Aerial photographs dating to 1936 (King County GIS iMap Application 2020) show the Property as farmland with the West Branch of Riverton Creek diverted into an irrigation canal routed north-south across the Site. A copy of the aerial is provided in Attachment A. The current configuration of the West Branch of Riverton Creek (Figures 1 and 2) was completed during grading and filling of the Site in 1985 and flows through the Site

within pipes and a concrete lined ditch that is located just east of the historical irrigation canal alignment. Surface water at the Property is further discussed in Section 3.3.1.

The Property is on Ecology's Confirmed and Suspected Contaminated Sites List and is identified by Facility Site ID 8422289 and Cleanup Site ID 7790. Three underground storage tanks (USTs; one 550-gallon engine oil UST, one 10,000-gallon unleaded gasoline UST, and one 10,000-gallon UST partitioned for gasoline and diesel) in the southwest South Facilities portion of the Property were removed in 1997 and were replaced with one 6,000-gallon UST (Ecology UST Site ID 10103) containing unleaded gasoline.

The South Annex portion of the Property is in the process of being redeveloped. In order to support its new approximately 250-bus fleet, South Annex will include vehicle maintenance bays, steam bays, inspection bays, bus wash bays, bus fueling, full electric charging infrastructure, and approximately 8,400 square feet of maintenance offices and spaces. The project will include probable daylighting of both branches of Riverton Creek and culvert replacements beneath South 120th Place and beneath the internal access driveway and parking lot on the Site (i.e., South Facilities).

#### 1.3.2 Surrounding Area

The area surrounding the Property is primarily developed for transportation and industrial land use. The neighboring site to the west was developed as highway infrastructure in the mid-1960s when the West Marginal Way ramp was constructed (Kennedy Jenks 2015). At that time surface water was routed through a culvert beneath West Marginal Way easterly towards the historical West Branch of Riverton Creek. A stormwater ditch was also constructed on the east side of West Marginal Way along the west side of the Site carrying roadway runoff north towards the Duwamish (see Attachment A in Appendix A).

Highway 599, north of the Property, was developed in the mid-1960s and has remained largely unchanged through the present. The area further north of Highway 599 was developed into an industrial park in the 1990s (King County iMap 2020). Neighboring properties to the south were developed into industrial warehouse buildings in 1986 (King County iMap 2020) during a similar timeframe as development of the Property. The neighboring property southeast was developed into the South Base in 1980. The Property and surrounding properties were annexed by the City of Tukwila in 1989 (Tukwila 2020a).

## 2. PREVIOUS INVESTIGATIONS

#### 2.1 South Annex

In 1993, a total of 4,000 cubic yards of soil was reportedly excavated from the neighboring South Annex during removal of USTs and remediated via thin spread over an asphalt surface in the southcentral area of the South Annex portion of the Property (Enviros 1994; Black and Veach 1995). After 1 year the soil was re-sampled and all concentrations were reportedly below the Model Toxics Control Act (MTCA; Washington Administrative Code [WAC] 173-340) Method A cleanup levels (CULs). The 'clean' soil was used as fill on the South Annex portion of the Property and the remaining contaminated material was reportedly transferred off the Property.

In April 2020, a Phase II ESA was conducted by PBS (PBS 2020b). Borings E-1 and E-2 were placed near the western boundary of the South Annex adjacent to the South Facilities in order to identify any potential migration of soil and groundwater contamination from the former UST area. Borings E-3 through E-6 were located throughout the vehicle storage yards and within the presumed 1994 remediation area to assess any existing impacts to soil and groundwater from those historical uses. A total of twelve soil samples and six grab groundwater samples were analyzed for diesel and oil-range total petroleum hydrocarbons (TPH-D and TPH-O, respectively) by Environmental Protection Agency (EPA) Method NWTPH-Dx, gasoline-range TPH (TPH-G) by EPA Method NWTPH-Gx, and benzene, Toluene, ethylbenzene, and Xylenes (BTEX) by EPA test method 8021B. No soil contamination was identified in any of the borings. Groundwater contamination of TPH-D was identified at location E-1 on the northwest corner of the South Annex. The exceedances were removed by silica gel cleanup indicating the detected TPH-D were either naturally decaying organic material or highly weathered.

#### 2.2 South Facilities

Two site assessments were conducted at the Site (i.e., South Facilities portion of the Property) in the 1990s: Woodward-Clyde (1995) conducted a pre-construction UST site assessment study in 1994 related to upgrading the USTs. The site assessment found soil contamination of undifferentiated TPH up to 8,710 milligram per kilogram (mg/kg) at location SB-2 at depth of approximately 7.5 to 9 feet bgs, and groundwater contamination up to 0.723 milligrams per liter (mg/L) of TPH-D and TPH-O at location SB-7.

AGI Technologies (1997) conducted a site assessment during removal of three USTs. No soil contamination was found above MTCA Method A CULs; however, one groundwater sample from well DW-4 was found to contain benzene up to 9.5 micrograms per liter ( $\mu$ g/L).

In 2015, Ecology conducted a Site Hazard Assessment (SHA) and assigned a ranking of 1 (highest priority) related to these two historical documented releases on the Site (Ecology, 2015). Parametrix was retained to assist with sampling of four wells at the Site including DW-3, DW-4, SB-7, and SB-8. The sampling found TPH constituents were below laboratory detection limits in the groundwater samples except for well SB-8 where TPH-D and TPH-O were detected at 0.47 mg/L and 0.67 mg/L, respectively, above the MTCA Method A CUL of 0.500 mg/L for combined TPH-D and TPH-O (Parametrix 2019).

Based on the results, PBS was contracted to conduct well redevelopment and resampling of these four wells. The results showed that TPH-O was detected in sample SB-8 at a concentration of 0.399 mg/L, below (i.e., compliant with) the MTCA Method A CUL (0.500 mg/L). No analytes were detected above the laboratory reporting limits in the other samples (PBS 2020a).

In 2020, Parametrix conducted a push probe investigation at the Site with sampling of soil and groundwater at nine locations (20B1 through 20B9). TPH-D and TPH-O were found in seven of the nine groundwater samples, with four of the samples located in the northeastern portion of the Site having concentrations greater than the MTCA Method A CUL of 0.500 mg/L. However, the TPH detected in groundwater was believed to primarily reflect biogenic interference as it was removed by silica gel/acid cleanup. This interpretation was consistent with the geologic mapping as peat (Troost et al. 2005) in the areas of TPH detections greater than CULs, and the observations of organic soil during the 2020 and previous investigations (Parametrix 2020a)

#### 2.3 RI and VCP Opinion

Based on the results of the Phase II ESA, King County Metro applied to the Ecology's VCP. Parametrix summarized the conceptual site model, results of previous investigations, and tabulated historical and recent analytical data from the Property in the RI/FS Summary Report (Parametrix 2020b). Two primary exposure pathways were identified: 1) shallow groundwater contamination via contact with residual contaminated soils and discharge to surface water, and 2) vapor contamination via releases from residual soil and groundwater. The soil exposure pathway was determined to not be an exposure route as all soils below the Site are below paved areas. The RI/FS Summary Report contained recommendations for additional work necessary to confirm the environmental status of the Site. Some of the additional work included:

- Conduct an additional push probe investigation at the Site to investigate the status of undifferentiated TPH located near SB-2 and to collect groundwater samples west and northwest of the building downgradient from the former USTs and along the northern border, the recommended point of compliance (POC), to confirm the absence of contaminants.
- Convert two of the proposed push probes to monitoring wells.
- Conduct four quarters of sampling of the two new and four existing monitoring wells and analyze samples for TPH-D, TPH-O, TPH-G, BTEX, and naphthalene to determine seasonality, and further refine the relationship of the peat biogenic interference with the TPH analysis and address the groundwater to vapor pathway.
- Survey the two new wells and conduct four quarters of water level monitoring at the six wells.
- Analyze water level data from the South Annex study along with water levels from the South Facilities to evaluate seasonal groundwater flow directions.

Ecology provided a letter of opinion dated May 7, 2021 (Ecology 2021a) with the following items recommended:

- Investigate the status of the elevated historical TPH concentrations in boring SB-2, directly west of the former USTs, using push probes.
- Conduct four consecutive quarters of groundwater level measurements and sampling of the two proposed and four existing monitoring wells.
- Analyze water level data from the quarterly monitoring events, and from an ongoing groundwater study on the South Annex part of the Property, to evaluate seasonal changes in groundwater flow directions, gradients, and potential interaction of groundwater with Riverton Creek.
- Survey monitoring well elevations and elevations of the Riverton Creek channel relative to the North American Vertical Datum of 1988 (NAVD 88).
- Preparation and submittal of a RI Report addendum.

### **3.** DECEMBER 2021 EXPLORATION AND WELL INSTALLATION

On December 20, 2021, HWA field staff observed the drilling at four locations at the Site completed by direct-push drilling techniques. A brief summary of these activities is included below. Further details are provided in the Well Installation Memorandum attached in Appendix B. All four drilling locations were continuously logged in 5-foot intervals and were completed to depths of approximately 15 feet bgs. Temporary wells were constructed in borings 21B1 and 21B2, while permanent wells were constructed at locations 21MW-1 and 21MW-2. Reconnaissance groundwater samples were collected from the temporary wells, and on January 5, 2022, HWA returned to the site to collect groundwater samples from the newly installed permanent wells 21MW-1 and 21MW-2. Soil and groundwater samples were analyzed by Friedman & Bruya, Inc. in Seattle, Washington for TPH-G, TPH-D and TPH-O (both with and without silica gel cleanup); BTEX, and naphthalene. One soil sample and one groundwater sample were additionally analyzed for polychlorinated biphenyls (PCBs) and carcinogenic polycyclic aromatic hydrocarbons (CPAHs).

Analytical results for the December 2021 drilling and January 2022 sampling events are summarized in Table 2 and discussed in the Well Installation Memorandum provided in Appendix B. Analytical results indicated that no contaminants of potential concern (COPCs) were detected above laboratory reporting limits in reconnaissance soil samples, including a soil sample collected at boring 21B1, less than 8 lineal feet from historical location SB-2, the location of the residual soil contamination detected in 1994 (see Section 1.5 for details). TPH-D was detected in the reconnaissance groundwater samples collected from boring 21B1 at a concentration of 0.072 mg/L, and monitoring well 21MW-2 at a concentration of 0.096 mg/L, both below the MCTA Method A CUL of 0.500 mg/L. However, these samples were both x-flagged by the laboratory indicating that the diesel results did not match the fuel standard. These samples were also analyzed using silica gel cleanup treatment, which removes polar compounds and resulted in no TPH-D detections in either sample. No other COPCs were detected in reconnaissance groundwater samples.

Encountered stratigraphy was generally consistent with the findings of previous studies at South Facilities and South Annex (Converse Consultants 1984; Parametrix 2020, PBS 2020b), as well as surface geology maps (Troost et al. 2005).

### 4. SURVEY

The location of wells 21MW-1, 21MW-2, DW-3R, DW-4R, SB-7, SB-8, and the West Branch of Riverton Creek were surveyed by Parametrix licensed surveyors. The resulting well survey report is provided in Appendix C. Monitoring well elevation data were measured at the ground surface, as well as top of casing referenced to the North American Vertical Datum 1988 (NAVD 88). Elevation survey data for B-25 was provided by Jacobs Engineering, referenced to NAVD 88 (no formal report provided).

### 5. QUARTERLY GROUNDWATER MONITORING

Four rounds of quarterly groundwater monitoring were conducted as part of the RI Addendum. The results were presented in quarterly technical memoranda presented in Appendix D. An overall summary is presented below.

As part of each monitoring event groundwater levels were measured and samples were collected from monitoring wells 21MW-1, 21MW-2, DW-3R, DW-4R, SB-7, and SB-8, all located on the Site (i.e., South Facilities portion of the Property). Additionally, depth to water was measured at a surveyed location of Riverton Creek and well B-25 (located on the South Annex portion of the Property), A blind field duplicate sample was also collected and identified as '21MW-3'.

Groundwater samples were analyzed by Friedman & Bruya, Inc. in Seattle, Washington for TPH-G, TPH-D and TPH-O (both with and without silica gel cleanup), BTEX, and naphthalene. Analytical results are summarized in Table 2 and copies of the final laboratory reports are included in the quarterly event memoranda provided in Appendix D.

Analytical results from quarterly monitoring detected TPH-D in samples from 21MW-1, 21MW-2, DW-3R, DW-4R, SB-7, and SB-8 (all wells) and TPH-O in 21MW-2, SB-8, and a duplicate sample associated with SB-8. However, all of the TPH-D and TPH-O detections were x-flagged by the laboratory indicating that the diesel results did not match the fuel standard. These samples were also analyzed using silica gel cleanup, which resulted in only one TPH-D detection at a concentration of 0.12 mg/L in SB-8 and one detection of TPH-O at a concentration of 0.27 mg/L, below the MTCA Method A CUL. TPH-O was not detected in the duplicate of SB-8. No other COPCs were detected above laboratory reporting limits during the four quarters of monitoring.

#### 5.1 Groundwater Gradient

Quarterly groundwater elevations are presented in Table 1 along with data from the previous events dating back to 2019. Interpreted potentiometric surface maps, for each quarterly monitoring event are referenced to NAVD 88 vertical datum and provided as Figures 3 through 6.

Groundwater measurements and interpreted potentiometric surfaces indicate a northeasterly gradient. Seasonal variation in groundwater elevations of individual wells ranged from 0.51 to 0.98 feet and the West Branch of Riverton Creek was observed to vary approximately 2.8 feet seasonally. Groundwater measurements and potentiometric surfaces also suggest that the creek, which is concrete lined across the majority of the site, is not immediately hydraulically connected to groundwater beneath the Site.

At the time of this RI Addendum, Jacobs Engineering is currently conducting a vibrating wire piezometer study at South Annex portion of the Property. Preliminary vibrating wire piezometer data for South Annex provided by Jacobs suggests there may be multiple confined aquifers underneath the Site with differing gradients than those interpreted for the shallow subsurface as presented in this study.

### 6. UPDATED CONCEPTUAL SITE MODEL

The 2020 RI/FS Summary Report provided a conceptual site model (CSM) that identified the known source of hazardous substances at the Property as residual TPH-impacted soils present in the vicinity of the former USTs that were removed from the southwestern corner of the Site in 1994. The 2020 CSM noted potentially contaminated media as soil, groundwater, surface water, and air. Potential exposure pathways were thought to consist of shallow groundwater contamination via contact with residual contaminated soils and discharge to surface water, and vapor contamination via release from residual soil and groundwater impacts.

No COPCs were detected in the additional soil samples analyzed as part of this RI Addendum. When analyzed with silica gel cleanup, reconnaissance groundwater samples from the drilling event and subsequent groundwater monitoring event samples had only one detection of TPH-D at a concentration of 0.12 mg/L and TPH-O at a concentration of 0.27 mg/L, below the MTCA Method A CUL, in a sample analyzed from SB-8. No other CPOCs were detected in any of the groundwater samples analyzed except for some additional low-level x-flagged results.

No soil or groundwater plumes were identified by this study. The historical area of SB-2 was found to no longer have TPH concentrations with potential for exposure hazards. The results of the additional RI show exposure pathways at the Site are limited to nonexistent. Peat and organics found in the shallow soils below the site contribute to the concentrations of dissolved TPH-D and TPH-O in the form of natural interference. Concentrations of TPH-D and TPH-O are present below MTCA Method A cleanup levels, but all concentrations of groundwater at the Site in recent monitoring have been identified well below the risk-based concentrations (3 mg/L for weathered diesel) protective of freshwater (Ecology 2021b).

Groundwater measurements and potentiometric surfaces obtained from the additional monitoring events also indicate that Riverton Creek is not immediately hydraulically connected to the groundwater below the Site. Based on this additional information and the data indicating lack of groundwater contamination, the potential exposure pathway the groundwater migration pathway to drinking water and discharge to surface water does not appear complete.

In addition, TPH-G, BTEX and other COPCs were not identified within soil or groundwater within 30 feet of occupied building. These results confirm that the vapor intrusion pathway does not appear complete.

#### 6.1 Subsurface Site Conditions

Subsurface information from prior to site development through the recent monitoring well installations and explorational borings were compiled to develop simplified hydrogeologic cross sections of the Site. Figure 2 displays the locations of the cross sections. Cross section A-A' (Figure 6) is predominantly southwest to northeast, crossing the existing UST and South Facilities Operations Building. Cross section B-B' (Figure 7) is predominantly west to east across the southern portion of the Site, crossing the UST area and West Branch of Riverton Creek.

The well and borehole logs indicate that the stratigraphy across the Site is relatively uniform with five primary layers:

• **Concrete:** Concrete panels approximately 8 to 12 inches thick, which cover the majority of the Site and generally serve as a cap preventing direct contact with or infiltration into the subsurface.

- **Gravel Fill:** Coarse-grained gravel fill, consistent with pea gravel. Limited to the areas near utilities. Approximately 4 to 10 feet of gravel fill around underground utilities, observed primarily in the southwest portion of the Site.
- Pea Gravel Fill: Very coarse-grained pea gravel surrounding the USTs
- Sandy and Silty Gravel Fill: Fine-grained sandy and silty gravel fill, located throughout the Site and ranging from 3 to 10 feet thick. Gray to olive brown-gray colored.
- **Clayey Silt with Sand Layers:** Gray to brown silt and some clay with organics and sand layers that are approximately 0 to 12 feet thick and present below the fill layers. Peat common in central and eastern portions of the Site. These deposits appear to correlate with historical surface soils of the Site prior to development. Sand layers and lenses are predominantly at the base of the unit indicating a transition from a near-fluvial environment to a wetland/lowland environment.
- Sand: Grey to black alluvial sand located below the clayey silt with sand layers and containing fine and medium-grained facies. The sand extends beyond the total depth of recent explorations; however, previous deeper explorations (e.g., B-5) indicate the sand can be up to approximately 35 feet thick, and is underlain by thick sequences of silts, clays, and other sands. The sand likely correlates with alluvium and outwash deposits.

As shown in the cross sections, several feet of fill have been placed across the site to bring the Property to the current grade. The depth of the fill varies across the Site prior to encountering the native clayey silt and sand layers that were the original surface deposits of the site. The clayey silt and sand layers contain peat and are consistent with flood and over bank deposits of the Green-Duwamish River. These are deposited directly above and slightly intermingled with the alluvial sands below. The alluvial deposits are consistent with historical channel depositions of the Green-Duwamish River. The sands are predominantly dark gray to black in color and contain andesitic volcanic facies.

Groundwater conditions were assessed utilizing subsurface information from prior to development of the Site through the recent monitoring well installations and are shown on the hydrogeologic cross sections. Shallow groundwater was measured below the Site during this RI Addendum investigation at elevations ranging from approximately 4 to 7 feet bgs and predominantly flowing to the northeast. The West Branch of Riverton Creek runs north along the eastern boundary of the Site and was measured at depths ranging from approximately 7 to 10 feet (NAVD 88). While the elevations may appear consistent with groundwater, the West Riverton Creek was observed as higher than both upgradient and downgradient wells during the first quarter, and lower than both upgradient and downgradient wells during the first quarter, and lower than both upgradient and downgradient wells during the creek. The UST excavation area appears to have a small, localized mound, evidenced by consistently lower elevations in SB-7 and DW-3R, relative to the downgradient DW-4R (see Figures 3 through 6). However, this mound, if present, is minimal, may be influenced by local fill and utilities, and likely has minimal impact on fate and transport at the Site. Overall, groundwater beneath the Site discharges northerly towards the Duwamish River and may be in hydraulic connection with Riverton Creek outside of areas identified by this study.

#### 6.2 Terrestrial Ecological Evaluation

As part of the 2020 RI/FS Summary Report, Parametrix completed a Terrestrial Ecological Evaluation (TEE) form to document the results of the TEE described in the 2020 Summary Report, including any supporting data and maps.

Based on the additional data obtained during the 2021/2022 subsurface investigation, there are no areas of soil contamination and the Site qualifies for a simplified evaluation. The TEE form has been updated and is included as Appendix E.

### 7. ENVIRONMENTAL INFORMATION MANAGEMENT

The Consultant performed quality assurance/quality control on the environmental data collected for the project and submitted the data to Ecology's Environmental Information Management (EIM) database. This includes the sample results of the probe and well drilling and quarterly monitoring.

### 8. CLEANUP LEVELS

#### 8.1 Cleanup Levels

Considering the current land use and potential future land use, MTCA level A CULs (WAC 173-340-720(3) for groundwater and WAC 173-340-730(2) for soil) are the adopted criteria for site cleanup levels. Method A may be used to establish CULs at sites that have few hazardous substances and that meet one of the following criteria:(a) Sites undergoing a routine cleanup action as defined in WAC 173-340-200; or(b) Sites where numerical standards are available in this chapter or applicable state and federal laws for all indicator hazardous substances in the media for which the Method A CUL is being used. Additionally, MTCA Method A cleanup levels for groundwater are more stringent than risk-based surface water screening levels (Ecology 2021b) and are therefore more appropriate for the site.

Soils at the Property contain a substantial component of organic material. As per the guidance on contaminated site assessments (Ecology 2016a), when analyzing for NWTPH-Dx it is permissible to use silica gel cleanup methods if the waters contain a significant amount of naturally occurring non-petroleum organics which may contribute to biogenic interferences. Organic soils have consistently been observed during Property excavations (Converse Consultants 1984; Parametrix 2020, PBS 2020b, HWA 2022a). Published geologic mapping shows soils along the northern portion of the Property as peat (Troost et al. 2005). The native soils and dissolved organics from the soils can and do impact groundwater analysis for TPH-D and TPH-O compliance. Concentrations of TPH-D and TPH-O have been observed at the Site including in areas where there is no suspected contamination. The physical setting and laboratory results confirm that biogenic interference occurs at the Site and complicates the compliance analysis with regard to weathered diesel and oil concentrations in groundwater.

As part of the November 2020 RI/FS Summary Report, vapor intrusion risk to the on-site building from historical contamination was examined and the pathway did not appear to be complete based upon vapor intrusion screening levels, but did not include analysis of naphthalene. As part of the current study, soil samples and reconnaissance groundwater samples from the push probe investigation and four quarters of groundwater samples included naphthalene analysis with no naphthalene detected in any of the samples analyzed. Similarly, no benzene was identified in soil or groundwater below the Site during the analysis. Based on the absence of benzene and naphthalene in soil and groundwater at the Site, the assumptions of the 2020 vapor intrusion assessment are confirmed, and the vapor intrusion pathway is not complete.

#### 8.2 Point of Compliance

In accordance with WAC 173-340-200, POC means the point or points where CULs established in accordance with WAC 173-340-720 through 173-340-760 shall be attained. The 2020 RI/FS Summary Report recommended that the POC be established at the northern boundary of the Property. Based on the groundwater measurements and potentiometric surfaces indicating that Riverton Creek is not hydraulically connected to the groundwater from the Site, the northern boundary of the Property is considered an appropriate POC.

#### 9. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

#### 9.1 Conclusions

Soil and groundwater samples collected from boring 21B1 near previous boring SB-2 did not detect any TPH above laboratory detection limits with or without silica gel treatment. Quarterly groundwater monitoring detected TPH-D in samples collected from all the wells, and TPH-O in northern wells 21MW-2 and SB-8. However, all the TPH-D and TPH-O detections were x-flagged by the laboratory indicating that the diesel and oil results did not match the fuel standard since the diesel-range hydrocarbon fingerprint appears slightly shifted toward the right (longer retention) and overlapping with the heavier oil-range hydrocarbons. This is consistent with potential biogenic interference related to the natural content of peat and organics below the Site. These samples were also analyzed using silica gel cleanup, which resulted in only one TPH-D detection and one TPH-O detection of in a sample from SB-8 at a concentration of 0.12 mg/L and 0.27 mg/L, respectively, below the MTCA Method A CUL for TPH-D and TPH-O.

The prevalence of x-flags, combined with the occurrence of organic silts and/or peat in explorations throughout the Site suggest biogenic interference is likely responsible for a great portion of TPH detections in the present, and possibly in the past. No other COPCs were detected above laboratory reporting limits during the reconnaissance soil and groundwater sampling or four quarterly groundwater monitoring events including no detections of benzene or naphthalene in soil or groundwater.

Quarterly monitoring of groundwater levels indicates northeasterly groundwater flow and suggest that the West Branch of Riverton Creek is not hydraulically connected with groundwater immediately below the Site. Preliminary vibrating wire piezometer data for the South Annex portion of the Property provided by Jacobs suggest there may be multiple confined aquifers, at depths ranging from 25 to 85 feet bgs that do not appear consistent with the shallow hydrogeologic flow observed for this study.

Based on this additional information, the potential exposure pathway via direct contact with contaminated soils, groundwater and soil to vapor, groundwater to drinking water, and groundwater to surface water pathways do not appear complete.

#### 9.2 Recommendations

The results of the RI Addendum are consistent with the previous investigation and no additional investigation is recommended.

#### 9.3 Request for No Further Action

Based on the historical cleanup actions performed at the Property and the recent 2019 to 2022 observations, residual soil and groundwater impacts at the Property are minimal and below the MTCA Method A CULs. Based on the results of this investigation and previous work, we recommend seeking a formal opinion from the Washington State Department of Ecology as the interpretation of results appear consistent with no further actions.

## **10.** REFERENCES

- AGI Technologies. 1997. Underground Storage Tank Closure Assessment Report, Facilities Maintenance South UST Project. Prepared for King County Water Pollution Control Division, Design and Construction Services, Seattle, Washington. June 18.
- Black and Veach. 1995. Final South Base Treatment Area Closure Report. Prepared for King County Department of Metropolitan Services. June 1995.
- Converse Consultants. 1984. Report on Geotechnical Investigation, Proposed Metro Transit South Operating Base Annex, King County, Washington. Prepared for Arthur M. James, - Engineers, Inc., Portland, Oregon. April 27.
- Ecology (Washington State Department of Ecology). 2009. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication no 09-09-047. Review Draft October 2009. Revised February 2016 and April 2018.
- Ecology. 2015. Site Hazard Assessment. King County Metro Transit S Annex, 11911 East Marginal Way S, Seattle, King County, WA 98169. August 19.
- Ecology. 2016a. Guidance for Remediation of Petroleum Contaminated Subject Sites. Toxics Cleanup Program. Publication 10-09-057. Revised 2016.
- Ecology. 2016b. Implementation Memorandum No. 14, Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion. Publication No. 16-09-046. March.
- Ecology 2016c. Model Remedies for Sites with Petroleum Impacts to Groundwater. Toxics Cleanup Program. Publication No. 15-09-057. Revised December 2017.
- Ecology. 2018. Implementation Memorandum No. 18, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings. Publication No. 17-09-043. January 10.
- Ecology, 2020a. Cleanup Levels and Risk Calculations (CLARC). Updated August 2020.
- Ecology. 2020b. Environmental Effects-Based Concentrations for Weathered Diesel-Range Organics, Toxicity in Marine Water and Freshwater. Publication 20-03-008. June.
- Ecology. 2021a. Opinion Pursuant to WAC 173-340-515(5) on Remedial Action for the Following Hazardous Waste Site: King County Metro Transit S Annex. May 2021.
- Ecology 2021b. Concentrations of Gasoline and Diesel Range Organics Predicted to be Protective of Aquatic Receptors in Surface Waters, Implementation Memorandum No. 23
- Enviros, Inc. 1994. Environmental Site Assessment for the UST Replacement Project at Metro South Base, Tukwila, Washington. Prepared for Municipality of Metropolitan Seattle. August 22.

- EPA (U.S. Environmental Protection Agency). 2015. Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites. EPA 510-R-15-001. June.
- HWA GeoSciences, inc. (HWA). 2022a. Well Installation Memorandum, King County Metro Transit South Base Facilities, Tukwila, Washington. February 2022.
- HWA. 2022b. 2022 Quarter 1 & Quarter 2 Groundwater Sampling Event Memorandum, King County Metro Transit South Facilities, Tukwila, Washington. July 2022.
- HWA. 2022c. 2022 Quarter 3 Groundwater Sampling Event Memorandum, King County Metro Transit South Facilities, Tukwila, Washington. September 2022.
- HWA. 2022d. 2022 Quarter 4 Groundwater Sampling Event Memorandum, King County Metro Transit South Facilities, Tukwila, Washington. December 2022.
- Jacobs. 2022. Q3-2022 Groundwater Monitoring Report Phase A and B. Prepared for King County Metro Transit Department. October 2022.
- Kennedy Jenks. 2015. Draft Technical Memorandum, Duwamish Fill Site (CSID 77) Site Status and Historical Review Summary. https://apps.ecology.wa.gov/gsp/CleanupSiteDocuments.aspx?csid=77.
- King County GIS Center iMAP application. 2020. Property Information, Groundwater Program, and Sensitive Areas map sets. <u>http://www.kingcounty.gov/operations/GIS/Maps/iMAP.aspx</u> Accessed September to November 2020.
- National Resources Conservation Service (NRCS). 2020. Property Information, Soil Conditions. https://www.nrcs.usda.gov/ Accessed September to November 2020.
- Parametrix, Inc. 2019. South Base Facilities Annex Status Update, East Marginal Way South, Tukwila, WA. Prepared for King County Transit Division Design & Construction Section. October 22.
- Parametrix, Inc. 2020. Monitoring Well Survey. South Base Facilities Annex Status Update, East Marginal Way South, Tukwila, WA. Prepared for King County Transit Division Design & Construction Section. January 9.
- Parametrix. 2020a. South Facilities Push Probe Investigation Results, East Marginal Way South, Tukwila, Washington. Prepared for King County Transit Division Design & Construction Section. April 2020.
- Parametrix. 2020b. RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex. Prepared for King County Metro Transit. November 2020.
- PBS, Inc. 2020a. Groundwater Sampling at King County Metro South Base Facilities, 11911 E. Marginal Way S., Seattle WA 98168. Prepared for King County Metro Transit. January 10.
- PBS, Inc. 2020b. Phase II Environmental Site Assessment, King County Metro South Annex Base, 11911 E. Marginal Way South, King County Parcel No. 102304-9066 Tukwila, Washington 98168. Prepared for King County Metro Transit Department. May 21.

- Troost, Booth, Wisher, and Shimel. 2005. Geologic Map of Seattle a Progress Report, U.S. Geologic Survey Open File Report 2005-1252, Prepared in cooperation with the City of Seattle and the Pacific Northwest Center for Geologic Mapping Studies at the Department of Earth and Space Sciences, University of Washington.
- Tukwila, City of. 2020a. City of Tukwila Annexation History Map, <u>https://www.tukwilawa.gov/wp-content/uploads/2015/11/annex-history-map.pdf</u>, accessed November 2020.
- Tukwila, City of. 2020b. Tukwila iMap,
  - https://www.arcgis.com/apps/webappviewer/index.html?id=7ca122cdae08429e974f57c148ad887e , accessed November 2020.
- U.S. Geological Survey (USGS). 2017. Des Moines Quadrangle, Washington-King County, 7.5-minute series topographic map.
- Woodward-Clyde. 1995. Pre-Construction Site Assessment Report, South Operating Base Facility Annex. Prepared for King County Department of Metropolitan Services, Seattle, Washington. January.

# Figures



#### Parametrix Source: King County

Project Location

- Stream

Site Location Map King County Metro Transit South Base Facility Annex

















# Tables

Table 1. Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA.

|             |           | September 23, 2019                |                                                 | December 17, 2019                 |                                                 | April 1, 2020                     |                                                 | February 22 and 23,<br>2022            |                                                | May 10, 2022                        |                                                   | August 25                                    | , 2022                                                  | November 1, 2022                             |                                                         |  |
|-------------|-----------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|--|
| Well        | Reference | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water**<br>(ft) | Ground-<br>water<br>Elevation**<br>(ft NAVD88) | Depth to<br>Ground-<br>water** (ft) | Ground-<br>water<br>Elevation**<br>(ft<br>NAVD88) | Depth to<br>Groundwater (ft)<br>(time-synch) | Groundwater<br>Elevation<br>(ft NAVD88)<br>(time-synch) | Depth to<br>Groundwater (ft)<br>(time-synch) | Groundwater<br>Elevation<br>(ft NAVD88)<br>(time-synch) |  |
| DW-3R*      | 13.63     | 5.21                              | 8.42                                            | 4.84                              | 8.79                                            | 4.48                              | 9.15                                            | 4.85                                   | 8.78                                           | 4.56                                | 9.07                                              | 4.52                                         | 9.11                                                    | 5.07                                         | 8.56                                                    |  |
| DW-4R       | 14.00     | 5.58                              | 8.42                                            | 5.15                              | 8.85                                            | 4.82                              | 9.18                                            | 5.19                                   | 8.81                                           | 4.91                                | 9.09                                              | 4.89                                         | 9.11                                                    | 5.40                                         | 8.60                                                    |  |
| SB-7        | 14.05     | 5.66                              | 8.39                                            | 5.23                              | 8.82                                            | 4.86                              | 9.19                                            | 5.30                                   | 8.75                                           | 5.02                                | 9.03                                              | 5                                            | 9.05                                                    | 5.55                                         | 8.50                                                    |  |
| SB-8        | 14.19     | 6.28                              | 7.91                                            | 5.80                              | 8.39                                            | 5.33                              | 8.86                                            | 5.82                                   | 8.37                                           | 5.71                                | 8.48                                              | 5.35                                         | 8.84                                                    | 6.33                                         | 7.86                                                    |  |
| B-25        | 14.12     |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.66                                   | 8.46                                           | 5.41                                | 8.71                                              | 5.41                                         | 8.71                                                    | 5.97                                         | 8.15                                                    |  |
| Staff Gauge | 15.94     |                                   |                                                 |                                   |                                                 |                                   |                                                 | 6.05                                   | 9.89                                           | 8.85                                | 7.09                                              | 8.85                                         | 7.09                                                    | 8.77                                         | 7.17                                                    |  |
| 21MW-1      | 13.44     |                                   |                                                 |                                   |                                                 |                                   |                                                 | 4.10                                   | 9.34                                           | 4.05                                | 9.39                                              | 4.41                                         | 9.03                                                    | 4.70                                         | 8.74                                                    |  |
| 21MW-2      | 13.72     |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.10                                   | 8.62                                           | 5.00                                | 8.72                                              | 5.11                                         | 8.61                                                    | 5.67                                         | 8.05                                                    |  |

Notes:

 $^1$  N rim PVC (wells) or marked measurement reference point (stream gauge), in ft NAVD88\*\*

\*Well has been damaged and casing is not vertical

\*\* Groundwater elevation measurement collected at time of sampling. Other groundwater elevation measurements are synchronous.

-- Not measured.

Table 2. Summary of Groundwater Analytical Results, King County Metro South Facilities Groundwater Monitoring Tukwila, Washington

|                    | Sampled                 | Cleanup Level <sup>a</sup> | DW-1 | DW-2 | DW-3 | DW-3R        | DW-4 | DW-4 Dup | DW-4R        | DW-4R Dup | SB-5 | SB-6 | SB-7         | SB-8          | SB-8 Dup      | 21MW-1       | 21MW-1 Dup | 21MW-2 2     | 1MW-2 Dup |
|--------------------|-------------------------|----------------------------|------|------|------|--------------|------|----------|--------------|-----------|------|------|--------------|---------------|---------------|--------------|------------|--------------|-----------|
| NWTPH-Gx (µg/L)    | 40/44/4004              | ana ti ana b               |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
| Gasoline           | 10/11/1994              | 800/1,000                  |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997               |                            |      |      |      |              | <100 |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 9/23/2019               |                            |      |      |      | <100         |      |          | <100         |           |      |      | <100         | <400          |               |              |            |              |           |
|                    | 1/5/2022                |                            |      |      |      |              |      |          |              |           |      |      |              |               |               | <100         |            | <100         |           |
|                    | 2/22/2022               |                            |      |      |      | <100         |      |          | <100         |           |      |      | <100         | <500          |               | <100         |            | <100         | <100      |
|                    | 5/10/2022<br>8/25/2022  |                            |      |      |      | <100<br><100 |      |          | <100<br><100 | <br><100  |      |      | <100<br><100 | <100<br><100  |               | <100<br><100 | <100       | <100<br><100 |           |
|                    | 11/1/2022               |                            |      |      |      | <100         |      |          | <100         |           |      |      | <100         | <100          | <100          | <100         |            | <100         |           |
| NWTPH-Dx (mg/L)    | 10/11/1004              | 0.5                        |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
| Diesei             | 12/19/1994              | 0.5                        |      |      |      |              |      |          |              |           | <0.2 | <0.2 | 0.55         | 0.495         |               |              |            |              |           |
|                    | 4/23/1997               |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 9/23/2019               |                            |      |      |      | <0.26        |      |          | <0.27        |           |      |      | <0.28        | 0.47          |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <0.0499      |      |          | <0.0497      |           |      |      | <0.0498      | <0.0498       |               |              |            | <br>0.006 x  |           |
|                    | 2/22/2022               |                            |      |      |      | <0.05        |      |          | 0.058 x      |           |      |      | 0.059 x      | 0.35 x        |               | 0.15 x       |            | 0.090 x      | 0.25 x    |
|                    | 5/10/2022               |                            |      |      |      | 0.13 x       |      |          | 0.080 x      |           |      |      | 0.071 x      | 0.15 x        |               | 0.16 x       | 0.14 x     | 0.18 x       |           |
|                    | 8/25/2022               |                            |      |      |      | 0.10 x       |      |          | 0.053 x      | 0.063 x   |      |      | <0.050       | 0.44 x        |               | 0.14 x       |            | 0.24 x       |           |
|                    | 11/1/2022               |                            |      |      |      | <0.10        |      |          | 0.10 x       |           |      |      | <0.100       | 0.44 x        | 0.49 x        | 0.19 x       |            | 0.30 x       |           |
| Diesel w/ SGC      | 1/5/2022                | 0.5                        |      |      |      |              |      |          |              |           |      |      |              |               |               | <0.050       |            | <0.050       |           |
|                    | 5/10/2022               |                            |      |      |      | <0.050       |      |          | <0.050       |           |      |      | <0.050       | <0.050        |               | <0.050       | <0.050     | <0.050       | <0.050    |
|                    | 8/25/2022               |                            |      |      |      | <0.050       |      |          | <0.050       | <0.050    |      |      | <0.050       | <0.050        |               | <0.050       |            | 0.065 x      |           |
|                    | 11/1/2022               |                            |      |      |      | <0.10        |      |          | <0.10        |           |      |      | <0.10        | 0.12          | 0.12          | <0.10        |            | <0.10        |           |
| Lube Oil           | 10/11/1994              | 0.5                        | <0.2 | <0.2 | <0.2 |              | <0.2 | <0.2     |              |           |      |      | <br>0 723    |               |               |              |            |              |           |
|                    | 4/23/1997               |                            |      |      |      |              | <0.5 |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 9/23/2019               |                            |      |      |      | <0.41        |      |          | <0.43        |           |      |      | <0.44        | 0.67          |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <0.0998      |      |          | <0.0994      |           |      |      | <0.0997      | 0.399         |               |              |            |              |           |
|                    | 1/5/2022                |                            |      |      |      |              |      |          |              |           |      |      |              | <br>0.21 v    |               | <0.25        |            | <0.25        |           |
|                    | 5/10/2022               |                            |      |      |      | <0.25        |      |          | <0.25        |           |      |      | <0.25        | <0.25         |               | <0.25        | <0.25      | <0.25        | <0.25     |
|                    | 8/25/2022               |                            |      |      |      | <0.25        |      |          | <0.25        | <0.25     |      |      | <0.25        | 0.49 x        |               | <0.25        |            | <0.25        |           |
|                    | 11/1/2022               |                            |      |      |      | <0.25        |      |          | <0.25        |           |      |      | <0.25        | <b>0.67</b> x | <b>0.61</b> x | <0.25        |            | 0.29 x       |           |
| Lube Oil w/ SGC    | 1/5/2022                | 0.5                        |      |      |      |              |      |          |              |           |      |      |              |               |               | <0.25        |            | <0.25        |           |
|                    | 2/22/2022               |                            |      |      |      | <0.25        |      |          | <0.25        |           |      |      | <0.25        | <0.25         |               | <0.25        |            | <0.25        | <0.25     |
|                    | 8/25/2022               |                            |      |      |      | <0.25        |      |          | <0.25        | <0.25     |      |      | <0.25        | <0.25         |               | <0.25        |            | <0.25        |           |
|                    | 11/1/2022               |                            |      |      |      | <0.25        |      |          | <0.25        |           |      |      | <0.25        | 0.27          | <0.25         | <0.25        |            | <0.25        |           |
| BTEX (µg/L)        | 10/11/1004              | F                          |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
| Delizerie          | 12/19/1994              | 5                          |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997               |                            |      |      |      |              | 9.5  |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 9/23/2019               |                            |      |      |      | <1<br><1     |      |          | <1<br><1     |           |      |      | <1<br><1     | <4<br><1      |               |              |            |              |           |
|                    | 1/5/2022                |                            |      |      |      |              |      |          |              |           |      |      |              |               |               | <0.35        |            | <0.35        |           |
|                    | 2/22/2022 5/10/2022     |                            |      |      |      | <0.35        |      |          | <0.35        |           |      |      | <0.35        | <0.35         |               | <0.35        | <br><0.35  | <0.35        | <0.35     |
|                    | 8/25/2022               |                            |      |      |      | <0.35        |      |          | <0.35        | <0.35     |      |      | <0.35        | <0.35         |               | <0.35        |            | <0.35        |           |
| Taluana            | 11/1/2022               | 1.000                      |      |      |      | <0.35        |      |          | <0.35        |           |      |      | <0.35        | <0.35         | <0.35         | < 0.35       |            | <0.35        |           |
| Toluelle           | 12/19/1994              | 1,000                      |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997               |                            |      |      |      |              | 2.3  |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <1<br><1     |      |          | <1           |           |      |      | <1           | <4<br><1      |               |              |            |              |           |
|                    | 1/5/2022                |                            |      |      |      |              |      |          |              |           |      |      |              |               |               | <1           |            | <1           |           |
|                    | 2/22/2022<br>5/10/2022  |                            |      |      |      | <1<br><1     |      |          | <1<br><1     |           |      |      | <1<br><1     | <1<br><1      |               | <1<br><1     | <br><1     | <1<br><1     | <1<br>    |
|                    | 8/25/2022               |                            |      |      |      | <1           |      |          | <1           | <1        |      |      | <1           | <1            |               | <1           |            | <1           |           |
| Ethylbenzene       | 11/1/2022               | 700                        |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            | <1            | <1           |            | <1           |           |
| Laryibonizono      | 12/19/1994              | 100                        |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997<br>9/23/2019  |                            |      |      |      |              | <1   |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               |              |            |              |           |
|                    | 1/5/2022                |                            |      |      |      |              |      |          |              |           |      |      |              |               |               | <1           |            | <1           |           |
|                    | 5/10/2022               |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               | <1           | <1         | <1           |           |
|                    | 8/25/2022               |                            |      |      |      | <1           |      |          | <1           | <1        |      |      | <1           | <1            |               | <1           |            | <1           |           |
| m,p-Xylene         | 10/11/1994              | 1,000                      |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 12/19/1994              |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997<br>9/23/2019  |                            |      |      |      | <br><1       | <1   |          | <br><1       |           |      |      | <1           | <4            |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               |              |            |              |           |
|                    | 1/5/2022<br>2/22/2022   |                            |      |      |      |              |      |          |              |           |      |      | 2            | <br><2        |               | <2           |            | <2<br><2     | <br><2    |
|                    | 5/10/2022               |                            |      |      |      | <2           |      |          | <2           |           |      |      | <2           | <2            |               | <2           | <2         | <2           |           |
|                    | 8/25/2022               |                            |      |      |      | <2           |      |          | <2           | <2        |      |      | <2           | <2            |               | <2           |            | <2           |           |
| o-xylene           | 10/11/1994              | 1,000                      |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            | -            |           |
|                    | 12/19/1994              |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 9/23/2019               |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <4            |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               |              |            |              |           |
|                    | 2/22/2022               |                            |      |      |      | <br><1       |      |          | <br><1       |           |      |      | <1           | <br><1        |               | <1<br><1     |            | <1           | <br><1    |
|                    | 5/10/2022               |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               | <1           | <1         | <1           |           |
|                    | 8/25/2022<br>11/1/2022  |                            |      |      |      | <1<br><1     |      |          | <1<br><1     | <1<br>    |      |      | <1<br><1     | <1<br><1      | <br><1        | <1<br><1     |            | <1<br><1     |           |
| Naphthalene (µg/L) | 10/11/1994              | 160                        |      |      |      |              |      |          |              |           |      |      |              | · · · ·       |               | . <u></u>    |            |              |           |
|                    | 12/19/1994              |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 4/23/1997<br>9/23/2019  |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 12/17/2019              |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |
|                    | 1/5/2022<br>2/22/2022   |                            |      |      |      | <br><1       |      |          | <br><1       |           |      |      | <br><1       | <br><1        |               | <1<br><1     |            | <1<br><1     | <br>~1    |
|                    | 5/10/2022               |                            |      |      |      | <1           |      |          | <1           |           |      |      | <1           | <1            |               | <1           | <1         | <1           |           |
|                    | 8/25/2022               |                            |      |      |      | <1           |      |          | <1<br>~1     | <1        |      |      | <1           | <1            |               | <1           |            | <1<br>~1     |           |
| Lead (µg/L)        | 1 11 11 2022            |                            |      |      |      | ~1           |      |          | ~ 1          |           |      |      |              | ~ ~ ~         | <u> </u>      | ~ 1          |            |              |           |
| Lead               | 10/11/1994              | 15                         | <3   | <3   | <3   |              | <3   | <3       |              |           |      |      |              |               |               |              |            |              |           |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |              |      |          |              |           |      |      |              |               |               |              |            |              |           |

|                                                                                                                                                                                                                                                                           | 9/23/2019                                                                                                                                                                             |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> | l |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|----------------|----------------------|-------------|-------------------|-------------|---------------|------|------|------|---|--|
|                                                                                                                                                                                                                                                                           | 12/17/2019                                                                                                                                                                            |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> | l |  |
|                                                                                                                                                                                                                                                                           | 1/5/2022                                                                                                                                                                              |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> | 1 |  |
|                                                                                                                                                                                                                                                                           | 2/22/2022                                                                                                                                                                             |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> |   |  |
|                                                                                                                                                                                                                                                                           | 5/10/2022                                                                                                                                                                             |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> |   |  |
|                                                                                                                                                                                                                                                                           | 8/25/2022                                                                                                                                                                             |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> | 1 |  |
|                                                                                                                                                                                                                                                                           | 11/1/2022                                                                                                                                                                             |                                                                                                                  |                                                                           |                                                  |                |                      |             |                   |             |               | <br> | <br> | <br> |   |  |
| Notes:<br>Bold values exceed MT(<br><sup>a</sup> Washington Administr<br><sup>b</sup> 800 µg/L if benzene is<br>mg/L - milligrams per litt<br>µg/L - micrograms per li<br>SGC - silica gel cleanup<br>x - The sample chromat<br>not analyzed.<br>< - analyte not detected | CA Method A cleanup levels.<br>rative Code Chapter 173-340,<br>s present in groundwater; 1,0<br>er.<br>ter.<br>o<br>lographic pattern does not res<br>at or greater than the listed o | , Model Toxics Control A<br>00 μg/L if no detectable I<br>semble the fuel standard<br>concentration (practical q | ct (MTCA) Clea<br>penzene in grou<br>used for quanti<br>uantitation limit | nup Regulatior<br>indwater.<br>tation<br>[PQL]). | n, Method A su | iggested soil cleant | ıp level fo | r groundwater; up | odated Augu | ist 15, 2001. |      |      |      |   |  |

Date
# Appendix A

Parametrix RI/FS Summary Report for Voluntary Cleanup Program Application

# RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex

Prepared for King County Metro Transit



November 2020

Prepared by Parametrix

# RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex

Prepared for

King County Metro Transit 201 S. Jackson St. Seattle, WA 98104

Prepared by

**Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

November 2020 | 553-1521-242

## CITATION

Parametrix. 2020. RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex. Prepared by Parametrix, Seattle, WA. November 2020.

## CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.



Prepared by Lisa Gilbert



Reviewed by Mike Brady

## TABLE OF CONTENTS

| 1.  | INTRODU                         | ICTION1-1                                                                 |  |  |  |  |  |  |  |  |
|-----|---------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1.1 | General Property Information1-1 |                                                                           |  |  |  |  |  |  |  |  |
| 1.2 | Physical S                      | Setting1-1                                                                |  |  |  |  |  |  |  |  |
|     | 1.2.1                           | Surface Water 1-1                                                         |  |  |  |  |  |  |  |  |
|     | 1.2.2                           | Soil                                                                      |  |  |  |  |  |  |  |  |
|     | 1.2.3                           | Geology1-2                                                                |  |  |  |  |  |  |  |  |
|     | 1.2.4                           | Groundwater1-2                                                            |  |  |  |  |  |  |  |  |
| 1.3 | Property                        | History and Use                                                           |  |  |  |  |  |  |  |  |
| 1.4 | Surround                        | ing Area History and Use1-3                                               |  |  |  |  |  |  |  |  |
| 2.  | FIELD IN                        | /ESTIGATIONS                                                              |  |  |  |  |  |  |  |  |
| 2.1 | Pre-Cons                        | truction Site Assessment, South Facilities (Woodward-Clyde 1995)          |  |  |  |  |  |  |  |  |
| 2.2 | Undergro                        | und Storage Tank Closure Assessment Report, South Facilities (AGI         |  |  |  |  |  |  |  |  |
|     | Technolo                        | gies 1997)2-2                                                             |  |  |  |  |  |  |  |  |
| 2.3 | Septemb                         | er 2019 Groundwater Sampling, South Facilities (Parametrix 2019)2-2       |  |  |  |  |  |  |  |  |
| 2.4 | Decembe<br>2020a)               | r 2019 Well Redevelopment and Groundwater Sampling, South Facilities (PBS |  |  |  |  |  |  |  |  |
| 2.5 | 2020 Pus                        | h Probe Study (Parametrix 2020), South Facilities2-2                      |  |  |  |  |  |  |  |  |
| 2.6 | 2020 Pha                        | se II Environmental Site Assessment, South Annex (PBS 2020b)              |  |  |  |  |  |  |  |  |
| 2.7 | Water Le                        | vel Study, South Facilities (PBS, ongoing)2-3                             |  |  |  |  |  |  |  |  |
| 3.  | CONCEPT                         | UAL SITE MODEL                                                            |  |  |  |  |  |  |  |  |
| 3.1 | Sources a                       | nd Types of Hazardous Substances                                          |  |  |  |  |  |  |  |  |
| 3.2 | Potential                       | ly Contaminated Media                                                     |  |  |  |  |  |  |  |  |
| 3.3 | Exposure                        | Pathways and Receptors                                                    |  |  |  |  |  |  |  |  |
|     | 3.3.1                           | Groundwater and Surface Water                                             |  |  |  |  |  |  |  |  |
|     | 3.3.2                           | Vapor Intrusion                                                           |  |  |  |  |  |  |  |  |
| 3.4 | Terrestria                      | al Ecological Evaluation                                                  |  |  |  |  |  |  |  |  |
| 4.  | CLEANUP                         | 9 LEVELS                                                                  |  |  |  |  |  |  |  |  |
| 4.1 | Cleanup I                       | _evels                                                                    |  |  |  |  |  |  |  |  |
| 4.2 | Point of (                      | Compliance                                                                |  |  |  |  |  |  |  |  |
| 5.  | SUMMAI                          | RY, CONCLUSIONS AND RECOMMENDATIONS                                       |  |  |  |  |  |  |  |  |
| 5.1 | Conclusio                       | ons                                                                       |  |  |  |  |  |  |  |  |
| 5.2 | Recomm                          | endations                                                                 |  |  |  |  |  |  |  |  |
| 5.3 | VCP Opin                        | ion Request                                                               |  |  |  |  |  |  |  |  |
| 6.  | REFEREN                         | CES 6-1                                                                   |  |  |  |  |  |  |  |  |

RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex King County Metro Transit

## TABLE OF CONTENTS (CONTINUED)

#### FIGURES

- 1 Site Location Map
- 2 Monitoring Well and Boring Locations
- 3 South Facilities Detail
- 4 Proposed Borehole and Monitoring Well Locations

#### TABLES

- 1 Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 2 Groundwater Analytical Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 3 Soil Analytical Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 4 Push Probe Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

#### ATTACHMENTS

- A Stream Mapping
- B 2015 Ecology Site Hazardous Assessment
- C South Annex Data Table

## ACRONYMS AND ABBREVIATIONS

| BTEX    | benzene, toluene, ethylbenzene, xylenes         |
|---------|-------------------------------------------------|
| CSCSL   | confirmed and suspected contaminated sites list |
| CSM     | conceptual site model                           |
| CUL     | cleanup level                                   |
| Ecology | Washington State Department of Ecology          |
| MTCA    | Model Toxics Control Act                        |
| NFA     | no further action                               |
| NOEC    | No Observed Effects Concentration               |
| POC     | point of compliance                             |
| TEE     | terrestrial ecological evaluation               |
| ТРН     | total petroleum hydrocarbons                    |
| USGS    | U.S. Geological Survey                          |
| UST     | underground storage tank                        |
| VCP     | voluntary cleanup program                       |
| WDFW    | Washington Department of Fish and Wildlife      |

## 1. INTRODUCTION

This report provides a summary of site characterization and cleanup activities that have been conducted at King County Metro's South Facilities/South Annex, located at 11911 E Marginal Way S, Tukwila, WA 98168 (the Property) to support Metro's Voluntary Cleanup Program (VCP) application to the Washington State Department of Ecology (Ecology). The VCP application seeks a No Further Action (NFA) determination by Ecology. Parametrix' services were performed under Work Order No. 13 to Contract No. E00635E19.

#### 1.1 General Property Information

The Property encompasses King County Assessor's Parcel No 1023049066, located between State Route 599 and East Marginal Way South, approximately 1/4 mile south of the Duwamish River in the city of Tukwila (see Figure 1). The parcel is 16.93 acres in size. The property is zoned by the City of Tukwila as Manufacturing Industrial Center/Heavy (MIC/H). The Property is west-northwest of Metro Transit's existing South Base, located at 12200 East Marginal Way South.

King County Metro has been the occupant of the Property since 1987. The Property includes two separate facilities. The smaller western portion is referred to as the South Facilities and houses Metro's approximately 35,000 square foot Facilities Operations building. The larger eastern portion is referred to as the South Annex and operates as the Training and Safety Facility which currently contains several structures, parking lots, open storage, and a training yard (Figure 2).

#### 1.2 Physical Setting

The elevation of the Property is approximately 15-feet above mean sea level. Topographically the Property is generally flat, with a slight slope to the west in the westernmost edge of the Property with overall slope toward the north (King County GIS; USGS 2017). The Property is located in the Duwamish River valley south of the Duwamish River (Figure 1).

#### 1.2.1 Surface Water

The Property lies on a flat area within the river plain of the Duwamish River, which bends around the property approximately 1,100 feet to the north and 1,400 feet to the east. An intermittent drainage (Riverton Creek) runs through and along the north boundary of the Property and discharges to the Duwamish River (see Figure 1). The portions of the creek that run through the Property are referred to as the West and East branches of Riverton Creek and are partially piped; the remaining channelized flow is within concrete lined ditches (Figure 2).

#### 1.2.2 Soil

Soils at the Property are classified as Urban Land by the National Resources Conservation Service (NRCS, 2020). The natural soil profile below the Property was buried during redevelopment of the Property in the 1980's. Up to five feet of sand and gravel fill underly the pavement of the Property.

RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex King County Metro Transit

#### 1.2.3 Geology

Native soils below the Property contain a substantial component of organic material. Organic soils have been observed during excavations (Converse Consultants 1984; Parametrix 2020, PBS 2020b). Troost et al (2005) maps the surface geology of the Property as Quaternary peat (Qp) deposits. Quaternary alluvium (Qal) and Quaternary younger alluvium (Qyal) are mapped adjacent north of the Property. An outcrop of Tertiary bedrock is mapped southeast of the Property underlying the neighboring King County Metro South Base property.

Converse Consultants performed a geotechnical investigation of the South Base Annex prior to development in 1984. The borehole logs from the geotechnical investigation identified up to seven feet of peat and clayey silt prior to encountering black alluvial sands. The sands intermixed with silty layers and clayey silt down to a depth of at least 90 feet below ground surface.

Borehole and well logs completed during site investigations (discussed below) have encountered shallow fill (0-5 feet bgs) below the Property followed by layered silty peat and organics (5-13 ft bgs), followed by black alluvial sands (below 13 ft bgs).

The subsurface geology observed at the Property is consistent with the geologic mapping of the area.

#### 1.2.4 Groundwater

Groundwater is shallow and occurs at a depth of approximately 5 ft below ground surface. The direction of shallow unconfined groundwater flow is inferred to be toward the north-northwest based on topography. Although historical reports (Woodward-Clyde 1995; AGI 1997) indicated the groundwater gradient was in a west-northwest direction, more recent groundwater elevations measured in 2019 (see Table 1) indicate a general northerly flow direction (Parametrix 2020). The water table below the Property may be tidally influenced due to the proximity to the Duwamish River. As discussed in Section 2.7 below, a water level study is underway to evaluate the seasonal gradient below the Property.

#### 1.3 Property History and Use

Prior to development of the Property, the area was predominantly low-lying farmland. Aerial photographs dating to 1936 (King County iMAP 2020a) show the Property as farmland with the West Branch of Riverton Creek diverted into an irrigation canal routed north-south across the Property. A copy of the aerial is provided in Attachment A. The current West Branch of Riverton Creek (Figure 2) was completed during grading and filling of the Property in 1985 and flows through the Property within pipes and a concrete lined ditch that is located just east of the historical irrigation canal alignment. Surface water at the Property is further discussed in Section 3.3.1.

The Property is on Ecology's Confirmed and Suspected Contaminated Sites List (CSCSL) and is identified by Facility Site ID 8422289 and Cleanup Site Property ID 7790. Three USTs (one 550-gallon engine oil UST, one 10,000-gallon unleaded gasoline UST, and one 10,000-gallon UST partitioned for gasoline and diesel) in the South Facilities portion of the Property were removed in 1997 and were replaced with one 6,000-gallon UST (Site No 10103) containing unleaded gasoline.

The South Annex portion of the Property is in the process of being redeveloped. In order to support its new 250-bus (approximately) fleet, South Annex Base will include vehicle maintenance bays, steam bays, inspection bays, bus wash bays, bus fueling, full electric charging infrastructure, and approximately 8,400 square feet of maintenance offices and spaces. The project will include probable daylighting of

Riverton Creek and culvert replacements beneath South 120th Place and beneath the internal access driveway and parking lot on the South Facilities.

#### 1.4 Surrounding Area History and Use

The area surrounding the Property is primarily developed for transportation and industrial land use. The neighboring site to the west was developed as Highway infrastructure in the mid-1960's when the West Marginal Way ramp was constructed (Kennedy Jenks 2015). At that time surface water was routed through a culvert beneath West Marginal Way easterly towards the historical West Branch of Riverton Creek. A stormwater ditch was also constructed on the east side of West Marginal Way along the west side of the Metro property carrying roadway runoff north towards the Duwamish (see Attachment A).

Highway 599 north of the Property was developed in the mid-1960's and has remained largely unchanged through the present. The area further north of Highway 599 was developed into an industrial park in the 1990's (King County Assessors records 2020). Neighboring properties to the south were developed into industrial warehouse buildings in 1986 (King County Assessors records 2020) during a similar timeframe as development of the Property. The neighboring property southeast was developed into the South Base in 1980. The Property and surrounding properties were annexed by the City of Tukwila in 1989 (Tukwila 2020a).

## 2. FIELD INVESTIGATIONS

In 1993, a total of 4,000 cubic yards of soil was reportedly excavated from the neighboring South Base during removal of USTs and remediated via thin spread over an asphalt surface in the southcentral area of the South Annex portion of the Property (Enviros 1994; Black and Veach 1995). After one year the soil was re-sampled and all concentrations were reportedly below the Model Toxics Control Act (MTCA; WAC 173-340) Method A cleanup levels (CULs). The 'clean' soil was used as fill on the South Annex portion of the Property and the remaining contaminated material was reportedly transferred off the Property.

Two site assessments were conducted in the South Facilities portion of the Property in the 1990s: Woodward-Clyde (1995), a pre-construction site assessment study conducted in 1994 related to upgrade of the USTs; and AGI Technologies (1997) documenting site assessment actions performed in April 1997 during removal of three underground storage tanks (USTs). During the site investigations, TPH was detected in soil and groundwater and benzene was detected above the MTCA Method A CUL in one monitoring well. The data are summarized in Tables 2 and 3.

In 2015, Ecology conducted a Site Hazard Assessment (SHA) and assigned a ranking of 1 (highest priority). Ecology's SHA is provided in Attachment B. The SHA findings were based on the results of the site assessment studies conducted in the 1990's at the South Facility portion of the Property in the vicinity of the former USTs, including concentrations of benzene above the MTCA Method A CUL.

More recent investigations were conducted in 2019 and 2020. In the South Facilities portion of the Property, the investigations consisted of an initial resampling of four wells (DW-3, DW-4, SB-7 and SB-8) in September 2019 (Parametrix 2019), redevelopment and resampling of the wells in December 2019 (PBS 2020a), and a push probe investigation in April 2020 (Parametrix 2020). In the South Annex portion of the Property, a Phase II Environmental Site Assessment was conducted in 2020 (PBS 2020b) and a water level study is ongoing.

Key findings from each of these investigations are summarized in the sections below. The locations of site explorations are shown on Figures 2 and 3.

#### 2.1 Pre-Construction Site Assessment, South Facilities (Woodward-Clyde 1995)

Soil and groundwater contamination were discovered during a pre-construction site assessment conducted in the vicinity of the former USTs prior to tank replacement.

In October 1994, soil was sampled from four borings (SB-1 through SB-4) and groundwater samples were collected from four dewatering wells (DW-1 through DW-4) installed within the original UST excavation. Soil samples were tested for gasoline-range total petroleum hydrocarbons (TPH-G), except for SB-2 which was tested for TPH using Method 418.1. Groundwater samples were tested for TPH diesel-range extended (TPH-Dx). All soil results were <5 mg/kg with the exception of the undifferentiated TPH was detected in soil at SB-2 (8,710 mg/kg) near the former oil tank, above the MTCA Method A CUL of 2,000 mg/kg. All groundwater results were <200 mg/L for heavy oil range (TPH-O; >C24), with no evidence of gasoline components noted.

In December 1994, one additional soil boring (SB-6) and three groundwater monitoring wells (SB-5, -7, and -8) were installed and soil and groundwater samples were tested for TPH-Dx. TPH-D

RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex King County Metro Transit

and TPH-O concentrations were detected in groundwater at SB-7 (550 ug/L and 723 ug/L, respectively) above the MTCA Method A CUL (500 ug/L).

#### 2.2 Underground Storage Tank Closure Assessment Report, South Facilities (AGI Technologies 1997)

The three USTs were removed in 1997. Ten confirmation soil samples (S-1 through S-10) were collected and tested for TPH-G/BTEX (benzene, toluene, ethylbenzene, and xylenes) and TPH-Dx. All soil results were less than MTCA Method A CULs. A groundwater sample was collected from well DW-4, within the tank area, and tested for TPH-G/BTEX and TPH-Dx. The benzene concentration (9.5 ug/L) was above the MTCA Method A CUL (5 ug/L).

#### 2.3 September 2019 Groundwater Sampling, South Facilities (Parametrix 2019)

On September 23, 2019, the four existing monitoring wells at the South Facilities (DW-4R [replacement for well DW-4], DW-3R [replacement for well DW-3], SB-7, and SB-8) were sampled on September 23, 2019. Samples were analyzed for TPH-G and BTEX by Method NWTPH Gx/EPA 8021B, and for TPH-D and TPH-O by Method NWTPH-Dx. The results showed that TPH constituents were below laboratory detection limits in the groundwater samples except for well SB 8 where TPH-D and TPH-O were detected at 470 ug/L and 670 ug/L, respectively, slightly above the MTCA Method A CUL (500 ug/L).

# 2.4 December 2019 Well Redevelopment and Groundwater Sampling, South Facilities (PBS 2020a)

On December 6, 2019, the four monitoring wells at the South Facilities (DW-4R, DW-3R, SB-7, and SB-8) were redeveloped and resampled. Samples were analyzed for TPH-G and BTEX by Method NWTPH Gx/EPA 8021B, and for TPH-D and TPH-O by Method NWTPH-Dx. The results showed that TPH-O was detected in sample SB-8 at a concentration of 399  $\mu$ g/L, below (i.e. compliant with) the MTCA Method A CUL (500  $\mu$ g/L). No analytes were detected above the laboratory reporting limits in the other samples.

#### 2.5 2020 Push Probe Study (Parametrix 2020), South Facilities

On April 1, 2020, a push probe investigation was conducted at the South Facilities, consisting of sampling soil and groundwater at nine boring locations (20B1 through 20B9) shown on Figures 2 and 3. One groundwater sample from each location (20B1-W through 20B9-W) was analyzed for TPH-G and BTEX by Method NWTPH Gx/EPA 8021B, and for TPH-D and TPH-O by Method NWTPH-Dx. Six soil samples were collected, and four of the samples (20B1-5, 20B2-3.5, 20B3-4.5, and 20B4-4.5) were tested for TPH-D and TPH-O by Method NWTPH-Dx. The data are summarized in Table 4.

The findings of the push probe study were as follows:

• Diesel and oil-range hydrocarbons were present in groundwater in seven of the nine groundwater samples, and four of the samples, located in the northeastern portion of the Property, had concentrations greater than MTCA Method A CULs.

- No downgradient contamination above MTCA Method A CULs was observed in the one boring downgradient from the former UST area (20B8).
- The TPH detected in groundwater is believed to primarily reflect biogenic interference because it was removed by silica gel/acid cleanup. This interpretation is consistent with the geologic mapping as peat (Troost et al 2005) in the areas of TPH detections greater than CULs, and the observations of organic soil during this and previous investigations (Converse Consultants 1984).
- If highly organic soils (peat) were not present at the Property, the results from the investigation likely would be below MTCA Method A CULs since the magnitudes of the exceedances are less than the values expected to be attributable to biogenic interference.
- The biogenic interference from peat in the TPH-D and TPH-O groundwater analysis was consistent across the property and in areas of no suspected historical contamination.

# 2.6 2020 Phase II Environmental Site Assessment, South Annex (PBS 2020b)

In April 2020, a Phase II ESA was conducted at the South Annex portion of the Property. Borings E-1 and E-2 were placed near the western boundary of the Property adjacent to the South Facilities in order to identify any potential migration of soil and groundwater contamination from the former UST area. Borings E-3 through E-6 were located throughout the vehicle storage yards and within the presumed 1994 remediation area to assess any existing impacts to soil and groundwater from those historical uses. A total of twelve soil samples and six grab groundwater samples were analyzed for TPH-D by EPA Method NWTPH-Dx, TPH-G by EPA Method NWTPH-Gx, and BTEX.

The data are summarized in Attachment C and a summary of the pertinent findings of the Phase II Environmental Site Assessment are presented below:

- All contaminant concentrations in soil were below the laboratory method detection limit and/or MTCA CULs.
- TPH-D concentrations in groundwater exceeded the MTCA CUL in one location (E-1) in the northwest corner of the South Annex. The detections of diesel range TPH in groundwater in boring E-1 may be the results of migration of contaminants from the former UST system. However, analysis of sample E-1-W by Method NWTPH-Dx with silica gel cleanup did not detect diesel or heavy oil range TPH above laboratory reporting limits. The lack of diesel detections after silica gel cleanup suggests that the detected hydrocarbons are either naturally decaying organic material or a highly weathered or degraded petroleum product. This conclusion is further supported by the observance of organic rich silty soils in the 5 to 10-foot depth range in environmental and geotechnical soil borings across the Property, and peat mapped in the vicinity of boring E-1.

#### 2.7 Water Level Study, South Facilities (PBS, ongoing)

A water level study is currently being conducted at the South Annex portion of the Property. These data are expected to be available in early 2021.

## **3.** CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a conceptual understanding of a site that identifies potential or suspected sources of hazardous substances, types and concentrations of hazardous substances, potentially contaminated media, and actual and potential exposure pathways and receptors. The media evaluated are groundwater, surface water, soil, and air.

#### 3.1 Sources and Types of Hazardous Substances

The known source of hazardous substances is petroleum released from the former USTs that were removed in 1994 located in southwestern corner of the Property. An additional potential source of hazardous substances is the 1994 soils remediation area in the South Annex portion of the Property.

#### 3.2 Potentially Contaminated Media

Potentially contaminated media include soil, groundwater, surface water, and air.

Although primary remediation of TPH-contaminated soils was conducted by excavation at the time of the UST removal, information presented in Section 2 indicates that minor residual TPH may still be present in the soils. Residual TPH in soil may be continuing to impact groundwater which is believed to discharge to Riverton Creek along the northern border of the Property and ultimately to the Duwamish River.

#### 3.3 Exposure Pathways and Receptors

Potential exposure pathways consist of shallow groundwater contamination via contact with residual contaminated soils and discharge to surface water, and vapor contamination via releases from residual soil and groundwater.

#### 3.3.1 Groundwater and Surface Water

Groundwater exposure could occur in downgradient drinking water wells and surface water exposure could occur in Riverton Creek and the Duwamish River. The East and West branches of Riverton Creek flow through the Property and discharge northward into Riverton Creek (Figure 2) which flows westward along the northern border of the Property and discharges into the Duwamish River. Flow through the Property is piped except for a portion of the West Branch which is channelized within a concrete lined ditch. The ability of salmon to access the Duwamish River downstream from the Property is uncertain. Groundwater flows in a northerly direction beneath the Property and discharges into Riverton Creek.

The SHA showed a Class 3 (seasonal or intermittent) stream along the west side of the Property and a Class 2 Salmonid stream traversing the east portion of the South Facilities. The Priority Habitats and Species (PHS) database maintained by the Washington Department of Fish and Wildlife (WDFW 2019) shows a fish-bearing stream on the west side, although fish passage south of the Property is shown as blocked (see map in Attachment A). King County defines Class 3 streams as those that are intermittent or ephemeral during years of normal rainfall and are not used by salmonids (King County, 2020). The Class 3 stream mapped along the west side of the Property appears to correlate with a stormwater ditch constructed in 1966 during roadway improvements. This Class 3 stormwater conveyance is likely not in hydraulic continuity with the local groundwater.

The location of the Class 2 salmonid stream in the SHA appears to have been mis-located but generally corresponds to the West Branch of Riverton Creek which now traverses the Property as displayed on Figure 2. City of Tukwila maps (Tukwila 2020b; Attachment A) display the East and West branches of Riverton Creek which correlate with the current stream locations presented on Figure 2.

Potential receptors include humans and aquatic organisms. However, concentrations of TPH in groundwater at the Property have been shown to be below MTCA Method A CULs and lower than the 3.04 mg/L no observed effects concentrations (NOECs) determined for weathered NWTPH-Dx in surface waters (Ecology 2020b).

#### 3.3.2 Vapor Intrusion

Vapor intrusion could impact the Facilities Operation building. For petroleum releases, the measured benzene and TPH concentrations in soil and groundwater can be used to initially assess the vapor intrusion pathway (Ecology 2009, 2016b, 2018; EPA 2015). The Property is zoned as Industrial under WAC 173-340-745.

Current groundwater concentrations of BTEX are low, with recent benzene concentrations non-detect at less than 1 ug/L (below the minimum MTCA Method B residential screening level for vapor intrusion of 2.4 ug/L) and the highest historical benzene concentration measured in groundwater (9.5 ug/L) below the minimum MTCA Method C (industrial land use) groundwater screening level for vapor intrusion of 24 ug/L (Ecology 2020a). Although naphthalene concentrations have not been assessed per Ecology guidance (Ecology 2018), naphthalene concentrations are not expected to be above screening levels based on measured TPH concentrations. However, confirmation of naphthalene concentrations in groundwater should be completed during additional studies to compare with the MTCA Method C (89 ug/L) screening levels for the groundwater to vapor pathway.

In addition to the measured groundwater concentrations below MTCA Method C screening levels, the residual undifferentiated TPH near SB-2 occurs below the water table and is located approximately 40 ft from the adjacent building, greater than the 30 ft applicable separation distance. Therefore, the vapor intrusion pathway is minor and not considered complete based on screening criteria.

#### 3.4 Terrestrial Ecological Evaluation

The Property qualifies for a Simplified Terrestrial Ecological Evaluation (TEE) in accordance with WAC 173-3407492(2)(i) since the total area that may still contain undifferentiated TPH above MTCA A CULs (see Figure 3) is not expected to be more than 350 square feet.

The Property is fully paved, preventing contact of terrestrial organisms to contaminated soil or groundwater. The West Branch of Riverton Creek traverses the South Facilities portion of the Property within a pipe and concrete lined channel. Therefore, there is no direct groundwater-surface water interaction in the area near the historical release. As noted above, the levels of TPH-D and TPH-O are below the NOECs, suggesting a restrictive covenant may be appropriate if residual soil contamination is found surrounding SB-2.

### 4. CLEANUP LEVELS

#### 4.1 Cleanup Levels

Considering the current land use and potential future land use, MTCA level A CULs (WAC 173-340-720(3) for groundwater and WAC 173-340-730(2) for soil are the adopted criteria for screening levels. Method A may be used to establish CULs at sites that have few hazardous substances and that meet one of the following criteria:(a) Sites undergoing a routine cleanup action as defined in WAC 173-340-200; or(b) Sites where numerical standards are available in this chapter or applicable state and federal laws for all indicator hazardous sub-stances in the media for which the Method A CUL is being used.

Soils at the Property contain a substantial component of organic material. As per the guidance on contaminated site assessments (Ecology 2016), when analyzing for NWTPH-Dx it is permissible to use silica gel cleanup methods if the waters contain a significant amount of naturally occurring non-petroleum organics which may contribute to biogenic interferences. Organic soils have consistently been observed during Property excavations (Converse Consultants 1984; Parametrix 2020, PBS 2020b). Published geologic mapping shows soils along the northern portion of the Property in the area of TPH detections great than CULs as peat (Troost et al 2005).

Since the Property is zoned Industrial, MTCA Method C groundwater screening levels for vapor intrusion are appropriate.

#### 4.2 Point of Compliance

In accordance with WAC 173-340-200, Point of compliance (POC) means the point or points where CULs established in accordance with WAC 173-340-720 through 173-340-760 shall be attained. It is recommended that the POC be established at the northern boundary of the Property.

#### 5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

#### 5.1 Conclusions

The following conclusions can be drawn based on the site investigations conducted:

- The SHA ranking of 1 was based largely on the Woodward Clyde (1995) and AGI (1997) reports addressing the UST removal area in the South Facilities portion of the Property that found benzene in groundwater at a concentration above the CUL. More recent data have shown that the groundwater concentrations used to prepare the SHA have been attenuated. Subsequent site characterization activities in 2019 and 2020 did not detect benzene in groundwater in wells (DW-3R, DW-4R, SB-7, SB-8) or in temporary borings.
- The SHA noted the presence of a Class 3 stream west of and adjacent to the Property and a Class 2 salmon-bearing stream traversing the South Facilities portion of the property. Some of the SHA's assumptions regarding the Property's environmental setting have been further clarified. Class 3 streams are not fish-bearing and the Class 3 stream mapped is actually a manmade stormwater ditch constructed in 1966 that is likely not in hydraulic continuity with the groundwater. The SHA referenced a northwesterly groundwater flow direction toward this Class 3 stream. The groundwater flow direction observed in 2019 and 2020 is primarily more northerly than previously reported. The Class 2 salmon-bearing stream identified in the SHA appears to align with the West Branch of Riverton Creek which is either piped or conveyed in a concrete-lined ditch through the Property and is therefore never in connection with contaminated soil or groundwater. The ability of salmon to access the Duwamish River from Riverton Creek downstream from the Property is also uncertain.
- In the South Facilities portion of the Property, remaining groundwater concentrations above MTCA Method A CULs include TPH-D and TPH-O in the vicinity of well SB-8. However, in 2020, samples were collected both upgradient and downgradient of SB-8. TPH-D and TPH-O were found in several samples slightly above MTCA Method A CULs. The samples were also analyzed for TPH-D and TPH-O using silica gel cleanup which indicated biogenic interference because the samples were non-detect following the use of silica gel. This interpretation is consistent with observed organic soils and geologic mapping as peat and occurring in areas where no suspected contamination is present. Some undifferentiated TPH may also still be present in saturated soils near SB-2 where the 1994 soil sample result for undifferentiated TPH (8,710 mg/kg using Method 418.1 without silica gel cleanup) was above the MTCA A CUL and has an estimated area of approximately 200 sq ft. However, this sample was collected below the water table and was likely similarly affected by biogenic interference.
- In the South Annex portion of the Property, no TPH or benzene above MTCA Method A CULs have been detected other than one soil sample (E-1). E-1 reported concentrations of TPH-D and TPH-O in groundwater that was likely influenced by biogenic interference, and benzene was not detected. Following silica gel treatment sample E-1 was non-detect for TPH-D and TPH-O.
- Current groundwater concentrations at both the South Facilities and South Annex properties for TPH-D and TPH-O prior to silica gel treatment are below the 3.04 mg/L NOECs related to weathered TPH-D and TPH-O for freshwater aquatic life, with no detections of benzene. This indicates the groundwater to surface water pathway is not complete.

RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex King County Metro Transit

- The vapor intrusion risk to the on-site building from historical contamination was examined and the pathway does not appear to be complete based upon vapor intrusion screening levels. However, further analysis of naphthalene should be completed to completely eliminate the pathway.
- The Property has met the eligibility criteria and individual provisions for Model Remedy 1 (Ecology 2016c), and therefore it is not necessary to conduct a Feasibility Study or Disproportionate Cost Analysis.

#### 5.2 Recommendations

The following additional activities are recommended to confirm the environmental status of the Property:

- Conduct an additional push probe investigation at the South Facilities to investigate the status of the undifferentiated TPH located near SB-2 and to collect groundwater samples west and northwest of the building downgradient from the former USTs and along the POC to confirm the absence of contaminants. Convert two of the push probes to monitoring wells. Figure 4 displays the approximate location of the planned boreholes and wells.
- If soil contamination remains near SB-2, develop a restrictive covenant to enable a NFA determination from Ecology.
- Conduct four quarters of sampling of the two new and four existing monitoring wells and analyze samples for TPH-Dx, TPH-G, BTEX, and naphthalene determine seasonality, and further refine the relationship of the peat biogenic interference with the TPH analysis and address the groundwater to vapor pathway.
- Survey the two new wells and conduct four quarters of water level monitoring at the six wells.
- Analyze water level data from the South Annex study along with water levels from the South Facilities to evaluate seasonal groundwater flow directions.

#### 5.3 VCP Opinion Request

Parametrix on behalf of our client, King County Metro, is seeking a VCP opinion on the historical cleanup actions performed at the Property, the recent observations, and the planned future investigation of the Property required to achieve a NFA determination from Ecology.

### 6. REFERENCES

- AGI Technologies. 1997. Underground Storage Tank Closure Assessment Report, Facilities Maintenance South UST Project. Prepared for King County Water Pollution Control Division, Design and Construction Services, Seattle, Washington. June 18.
- Black and Veach. 1995. Final South Base Treatment Area Closure Report. Prepared for King County Department of Metropolitan Services. June 1995.
- Converse Consultants. 1984. Report on Geotechnical Investigation, Proposed Metro Transit South Operating Base Annex, King County, Washington. Prepared for Arthur M. James, - Engineers, Inc., Portland, Oregon. April 27.
- Ecology (Washington State Department of Ecology). 2009. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication no 09-09-047. Review Draft October 2009. Revised February 2016 and April 2018.
- Ecology. 2015. Site Hazard Assessment. King County Metro Transit S Annex, 11911 East Marginal Way S, Seattle, King County, WA 98169. August 19.
- Ecology. 2016a. Guidance for Remediation of Petroleum Contaminated Subject Sites. Toxics Cleanup Program. Publication 10-09-057. Revised 2016.
- Ecology. 2016b. Implementation Memorandum No. 14, Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion. Publication No. 16-09-046. March.
- Ecology 2016c. Model Remedies for Sites with Petroleum Impacts to Groundwater. Toxics Cleanup Program. Publication No. 15-09-057. Revised December 2017.
- Ecology. 2018. Implementation Memorandum No. 18, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings. Publication No. 17-09-043. January 10.
- Ecology, 2020a. Cleanup Levels and Risk Calculations (CLARC). Updated August 2020.
- Ecology. 2020b. Environmental Effects-Based Concentrations for Weathered Diesel-Range Organics, Toxicity in Marine Water and Freshwater. Publication 20-03-008. June.
- Enviros, Inc. 1994. Environmental Site Assessment for the UST Replacement Project at Metro South Base, Tukwila, Washington. Prepared for Municipality of Metropolitan Seattle. August 22.
- EPA (U.S. Environmental Protection Agency). 2015. Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites. EPA 510-R-15-001. June.
- Kennedy Jenks. 2015. Draft Technical Memorandum, Duwamish Fill Site (CSID 77) Site Status and Historical Review Summary. https://apps.ecology.wa.gov/gsp/CleanupSiteDocuments.aspx?csid=77.

RI/FS Summary Report for Voluntary Cleanup Program Application, South Facilities, South Annex King County Metro Transit

- King County GIS Center iMAP application. 2020. Property Information, Groundwater Program, and Sensitive Areas map sets. <u>http://www.kingcounty.gov/operations/GIS/Maps/iMAP.aspx</u> Accessed September to November 2020.
- Parametrix, Inc. 2019. South Base Facilities Annex Status Update, East Marginal Way South, Tukwila, WA. Prepared for King County Transit Division Design & Construction Section. October 22.
- Parametrix, Inc. 2020. Monitoring Well Survey. South Base Facilities Annex Status Update, East Marginal Way South, Tukwila, WA. Prepared for King County Transit Division Design & Construction Section. January 9.
- PBS, Inc. 2020a. Groundwater Sampling at King County Metro South Base Facilities, 11911 E. Marginal Way S., Seattle WA 98168. Prepared for King County Metro Transit. January 10.
- PBS, Inc. 2020b. Phase II Environmental Site Assessment, King County Metro South Annex Base, 11911 E. Marginal Way South, King County Parcel No. 102304-9066 Tukwila, Washington 98168. Prepared for King County Metro Transit Department. May 21.
- Troost, Booth, Wisher, and Shimel. 2005. Geologic Map of Seattle a Progress Report, U.S. Geologic Survey Open File Report 2005-1252, Prepared in cooperation with the City of Seattle and the Pacific Northwest Center for Geologic Mapping Studies at the Department of Earth and Space Sciences, University of Washington.
- Tukwila, City of. 2020a. City of Tukwila Annexation History Map, <u>https://www.tukwilawa.gov/wp-content/uploads/2015/11/annex-history-map.pdf</u>, accessed November 2020.
- Tukwila, City of. 2020b. Tukwila iMap, <u>https://www.arcgis.com/apps/webappviewer/index.html?id=7ca122cdae08429e974f57c148ad887e</u> , accessed November 2020.
- U.S. Geological Survey (USGS). 2017. Des Moines Quadrangle, Washington-King County, 7.5-minute series topographic map.
- WDFW (Washington Department of Fish and Wildlife). 2019. http://wdfw.wa.gov/mapping/salmonscape. Accessed September 2019.
- Woodward-Clyde. 1995. Pre-Construction Site Assessment Report, South Operating Base Facility Annex. Prepared for King County Department of Metropolitan Services, Seattle, Washington. January.

#### FIGURES

- 1 Site Location Map
- 2 Monitoring Well and Boring Locations
- 3 South Facilities Detail
- 4 Proposed Borehole and Monitoring Well Locations

#### TABLES

- 1 Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 2 Groundwater Analytical Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 3 Soil Analytical Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA
- 4 Push Probe Results, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

#### ATTACHMENTS

- A Stream Mapping
- B 2015 Ecology Site Hazardous Assessment
- C South Annex Data Table

# Figures



Parametrix Source: King County

Project Location

— Stream

**Figure 1** Site Map King County Metro Transit S Facilities/S Annex



Source: King County

 $\overline{\mathbf{N}}$ 

35

70

140

Feet

Project Location Stream BoreholeSoil Sample

Monitoring Well (Existing)
Monitoring Well (Historical)

**Figure 2** Monitoring Well and Soil Sample Locations King County Metro Transit S Facilities/S Annex



water table (approximate)

Feet

Tukwila, WA



 $\overline{\mathbf{N}}$ 70 140 35 Feet Project Location Stream

Borehole • Soil Sample •  $\bullet$ 

Proposed Borehole

Monitoring Well (Existing) • Monitoring Well (Historical) Proposed Well

Proposed Borehole and Monitoring Well Locations King County Metro Transit S Facilities/S Annex

# Tables

|        |                                     | September                    | r 23, 2019                              | December                     | 17, 2019                                | April 1, 2020                |                                         |  |
|--------|-------------------------------------|------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|--|
| Well   | Reference<br>Elevation <sup>1</sup> | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation (ft<br>NAVD88) | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation (ft<br>NAVD88) | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation (ft<br>NAVD88) |  |
| DW-3R* | 13.63                               | 5.21                         | 8.42                                    | 4.84                         | 8.79                                    | 4.48                         | 9.15                                    |  |
| DW-4R  | 14.00                               | 5.58                         | 8.42                                    | 5.15                         | 8.85                                    | 4.82                         | 9.18                                    |  |
| SB-7   | 14.05                               | 5.66                         | 8.39                                    | 5.23                         | 8.82                                    | 4.86                         | 9.19                                    |  |
| SB-8   | 14.19                               | 6.28                         | 7.91                                    | 5.80                         | 8.39                                    | 5.33                         | 8.86                                    |  |

Table 1. Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

Notes:

<sup>1</sup> N rim PVC in ft NAVD88\*\*

\*Well has been damaged and casing is not vertical

| Well ID            | Date<br>Sampled | рН   | Conductivity<br>μmhos/cm | Temperature<br>deg C | Diesel<br>Range<br>Organics<br>mg/L | Heavy Oil<br>Range<br>Organics<br>mg/L | Gasoline<br>Range<br>Organics<br>µg/L | Lead,<br>Total<br>mg/L | Benzene<br>µg/L | Toluene<br>μg/L | Ethylbenzene<br>μg/L | m, p-<br>Xylene<br>μg/L | o-Xylene<br>µg/L |
|--------------------|-----------------|------|--------------------------|----------------------|-------------------------------------|----------------------------------------|---------------------------------------|------------------------|-----------------|-----------------|----------------------|-------------------------|------------------|
|                    |                 |      |                          |                      |                                     |                                        |                                       |                        |                 |                 |                      |                         |                  |
| Cleanu             | ip Level        |      |                          |                      | 0.5                                 | 0.5                                    | 1000                                  | 0.015                  | 5               | 1000            | 700                  | 1000                    | 1000             |
| 514.4              | 10/11/04        | 6.04 | 40.4                     | 10.6                 |                                     | 0.2.11                                 |                                       | 0.000.11               |                 |                 |                      |                         |                  |
| DW-1               | 10/11/94        | 6.81 | 484                      | 18.6                 |                                     | 0.2 U                                  |                                       | 0.003 U                |                 |                 |                      |                         |                  |
| DW-2               | 10/11/94        | 6.46 | 449                      | 18.9                 |                                     | 0.2 U                                  |                                       | 0.003 U                |                 |                 |                      |                         |                  |
| DW-3               | 10/11/94        | 6.60 | 474                      | 19.2                 |                                     | 0.2 U                                  |                                       | 0.003 U                |                 |                 |                      |                         |                  |
| DW-4               | 10/11/94        | 6.61 | 501                      | 19.6                 |                                     | 0.2 U                                  |                                       | 0.003 U                |                 |                 |                      |                         |                  |
| DW-4 Dup<br>(MW-5) | 10/11/0/        |      |                          |                      |                                     | 0.2.11                                 |                                       | 0 003 11               |                 |                 |                      |                         |                  |
|                    | 04/22/07        |      |                          |                      | 0 5 11                              | 0.2 0                                  | 100 11                                | 0.003 0                | 0.5             |                 | 1.11                 |                         |                  |
| DW-4               | 04/23/97        |      |                          |                      | 0.5 0                               |                                        | 100 0                                 |                        | 9.5             | 2.3             | 10                   | 10                      | 10               |
| DW-3R              | 09/23/19        |      |                          |                      | 0.26 U                              | 0.41 U                                 | 100 U                                 |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| DW-3R              | 12/17/19        |      |                          |                      | 0.0499 U                            | 0.0998 U                               | 50 U                                  |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| DW-4R              | 09/23/19        |      |                          |                      | 0.27 U                              | 0.43 U                                 | 100 U                                 |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| DW-4R              | 12/17/19        |      |                          |                      | 0.0497 U                            | 0.0994 U                               | 50 U                                  |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| SB-5               | 12/19/94        | 6.45 | 541                      | 14.0                 | 0.2 U                               | 0.2 U                                  |                                       |                        |                 |                 |                      |                         |                  |
| SB-6               | 12/19/94        |      |                          |                      | 0.2 U                               | 0.236                                  |                                       |                        |                 |                 |                      |                         |                  |
| SB-7               | 12/19/94        | 6.29 | 498                      | 10.8                 | 0.55                                | 0.723                                  |                                       |                        |                 |                 |                      |                         |                  |
| SB-7               | 09/23/19        |      |                          |                      | 0.28 U                              | 0.44 U                                 | 100 U                                 |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| SB-7               | 12/17/19        |      |                          |                      | 0.0498 U                            | 0.0997 U                               | 50 U                                  |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |
| SB-8               | 12/19/94        | 6.15 | 700                      | 14.3                 | 0.495                               | 0.326                                  |                                       |                        |                 |                 |                      |                         |                  |
| SB-8               | 09/23/19        |      |                          |                      | 0.47                                | 0.67                                   | 400 U                                 |                        | 4.0 U           | 4.0 U           | 4.0 U                | 4.0 U                   | 4.0 U            |
| SB-8               | 12/17/19        |      |                          |                      | 0.0498 U                            | 0.399                                  | 50 U                                  |                        | 1.0 U           | 1.0 U           | 1.0 U                | 1.0 U                   | 1.0 U            |

Table 2. Groundwater Analytical Data, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

concentration is above Model Toxics Control Act WAC 173-340 (MTCA) Method A Cleanup Level

- - = not analyzed

Gasoline cleanup level is presented for the circumstance in which benzene is not detected

#### Table 3. Soil Analytical Data, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

| Well ID           | Date<br>Sampled | Sample<br>Depth<br>ft | Lead,<br>Total<br>mg/Kg | Diesel Range<br>Organics<br>mg/Kg | Heavy Oil<br>Range Organics<br>mg/Kg | Gasoline<br>Range<br>Organics<br>mg/Kg | Total Petroleum<br>Hydrocarbons<br>mg/Kg | Benzene<br>mg/Kg | Ethylbenzene<br>mg/Kg | Toluene<br>mg/Kg | m, p-<br>Xylene<br>mg/Kg | o-Xylene<br>mg/Kg |
|-------------------|-----------------|-----------------------|-------------------------|-----------------------------------|--------------------------------------|----------------------------------------|------------------------------------------|------------------|-----------------------|------------------|--------------------------|-------------------|
| Cleanup Level     |                 | 250                   | 2000                    | 2000                              | 100                                  | 2000                                   | 0.03                                     | 6                | 7                     | 9                | 9                        |                   |
| SB-1              | 10/11/94        | 10-11.5               | 1.2 J                   |                                   |                                      | 5 U                                    |                                          |                  |                       |                  |                          |                   |
| SB-2              | 10/11/94        | 7.5-9                 |                         |                                   |                                      |                                        | 8710                                     |                  |                       |                  |                          |                   |
| SB-3              | 10/11/94        | 7.5-9                 |                         |                                   |                                      | 5 U                                    |                                          |                  |                       |                  |                          |                   |
| SB-4              | 10/11/94        | 7.5-9                 |                         |                                   |                                      | 5 U                                    |                                          |                  |                       |                  |                          |                   |
| SB-4 Dup          |                 |                       |                         |                                   |                                      |                                        |                                          |                  |                       |                  |                          |                   |
| (SB-5)            | 10/11/94        | 7.5-9                 |                         |                                   |                                      | 5 U                                    |                                          |                  |                       |                  |                          |                   |
| SB-5              | 12/12/94        | 5-6.5                 |                         | 25 U                              | 54.7                                 |                                        |                                          |                  |                       |                  |                          |                   |
| SB-6              | 12/12/94        | 7-9                   |                         | 25 U                              | 25 U                                 |                                        |                                          |                  |                       |                  |                          |                   |
| SB-7              | 12/12/94        | 5-6.5                 |                         | 25 U                              | 25 U                                 |                                        |                                          |                  |                       |                  |                          |                   |
| SB-8              | 12/12/94        | 10-11.5               |                         | 25 U                              | 25.5                                 |                                        |                                          |                  |                       |                  |                          |                   |
| SB-8 Dup          | 12/12/04        | 10 11 5               |                         |                                   |                                      |                                        |                                          |                  |                       |                  |                          |                   |
| (30-9)            | 12/12/94        | 10-11.5               |                         | 25 U                              | 25 U                                 |                                        |                                          |                  |                       |                  |                          |                   |
| 2-1               | 04/23/97        | 5                     |                         | 27 0                              | 55 U                                 | 5.5 U                                  |                                          | 0.055 0          | 0.055 0               | 0.055 0          | 0.055 0                  | 0.055 0           |
| <u></u>           | 04/23/97        | 7                     |                         | 20 0                              | 53 11                                | 5.5 0                                  |                                          | 0.055 0          | 0.055 0               | 0.035 0          | 0.035 0                  | 0.033 0           |
| <u>5-</u><br>5-5  | 04/23/97        | ,<br>Д                |                         | 20 0                              | 56 []                                | 5.0 0                                  |                                          | 0.050 0          | 0.050 0               | 0.15             | 0.052 11                 | 0.02              |
| <u>5-5</u><br>S-6 | 04/23/97        | 3                     |                         | 26 0                              | 52 11                                | 5.2.0                                  |                                          | 0.052 0          | 0.052 0               | 0.052 0          | 0.052 0                  | 0.052 0           |
| <u>5</u> -7       | 04/23/97        | 7                     |                         | 26 U                              | 52 U                                 | 52 U                                   |                                          | 0.051 U          | 0.051.0               | 0.051 U          | 0.052 U                  | 0.052 U           |
| <u>S-8</u>        | 04/23/97        | 6                     |                         | 26 U                              | 52 U                                 | 5.4 U                                  |                                          | 0.054 U          | 0.054 U               | 0.054 U          | 0.054 U                  | 0.054 U           |
| <u>S-9</u>        | 04/28/97        | 13                    |                         | 35 U                              | 70 U                                 | 7 U                                    |                                          | 0.07 U           | 0.07 U                | 0.07 U           | 0.07 U                   | 0.07 U            |
| S-10              | 04/28/97        | 13                    |                         | 33 U                              | 67 U                                 | 6.7 U                                  |                                          | 0.067 U          | 0.067 U               | 0.067 U          | 0.067 U                  | 0.067 U           |

concentration is above Model Toxics Control Act WAC 173-340 (MTCA) Method A Cleanup Level

- - = not analyzed

| Sample ID    |           | TPH-Diesel | TPH-Heavy Oil | <b>TPH-Gasoline</b> | Benzene | Toluene | Ethylbenzene | m,p-Xylene | o-Xylene |
|--------------|-----------|------------|---------------|---------------------|---------|---------|--------------|------------|----------|
| Groundwater  |           |            |               |                     |         |         |              |            |          |
| MTCA         | Method A  |            |               |                     |         |         |              |            |          |
| Cleanu       | ıp Level  | 0.5        | 0.5           | 1000                | 5       | 1000    | 700          | 1000       | 1000     |
|              | Units     | mg/L       | mg/L          | μg/L                | μg/L    | μg/L    | μg/L         | μg/L       | μg/L     |
| 20E          | 31-W      | <0.23      | 0.52          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.22      | <0.22         |                     |         |         |              |            |          |
| 20E          | 32-W      | 0.24       | 0.27          | 140                 | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.22      | <0.22         |                     |         |         |              |            |          |
| 20E          | 33-W      | <0.23      | 0.57          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.23      | <0.23         |                     |         |         |              |            |          |
| 20E          | 34-W      | <0.25      | 0.53          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.25      | <0.25         |                     |         |         |              |            |          |
| 20E          | 35-W      | <0.24      | 0.25          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.24      | <0.24         |                     |         |         |              |            |          |
| 208          | 36-W      | <0.24      | <0.24         | <100                | <1      | <1      | <1           | <1         | <1       |
| 20E          | 37-W      | < 0.22     | 0.49          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | < 0.22     | <0.22         |                     |         |         |              |            |          |
| 20E          | 38-W      | <0.24      | 0.43          | <100                | <1      | <1      | <1           | <1         | <1       |
| re           | analysis* | <0.24      | <0.24         |                     |         |         |              |            |          |
| 20E          | 39-W      | <0.24      | <0.24         | <100                | <1      | <1      | <1           | <1         | <1       |
| Soil (mg/kg) |           |            |               |                     |         |         |              |            |          |
| MTCA         | Method A  |            |               |                     |         |         |              |            |          |
| Cleanu       | ıp Level  | 2000       | 2000          |                     |         |         |              |            |          |
|              | Units     | mg/kg      | mg/kg         |                     |         |         |              |            |          |
| 208          | 31-5      | <32        | 68            |                     |         |         |              |            |          |
| 208          | 32-3.5    | <43        | <86           |                     |         |         |              |            |          |
| 208          | 33-4.5    | <32        | <64           |                     |         |         |              |            |          |
| 20E          | 34-4.5    | <31        | <62           |                     |         |         |              |            |          |

Table 4. Push Probe Investigation Results, April 1, 2020, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA

concentration is above Model Toxics Control Act WAC 173-340 (MTCA) Method A Cleanup Level

Gasoline cleanup level is presented for the circumstance in which benzene is not detected

\*Reanalysis after silica gel/acid cleanup

- - = not analyzed

# Attachment A

Stream Mapping



Date: 11/11/2020

Notes:











- All SalmonScape Species
- **Culverts** 
  - ÷ Total Blockage
  - ÷ Total Blockage, Fishway Present
- Partial Blockage

÷

- Partial Blockage, Fishway Present
- ÷ Unknown Blockage
  - Unknown Blockage, Fishway Present

US GS/NHD Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esi Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

0.5

1 km

0.25

0
# Tukwila iMap



11/2/2020, 12:54:10 PM





Streams

1:4,514 0 0.03 0.05 0.1 mi ├ + + + / / / / 0 0.04 0.08 0.16 km

Pictometry International Corp., Tukwila Technology Services

# Attachment B

2015 Ecology Site Hazardous Assessment

| SITE INFORM       | IATION:            | C             | leanup Site ID:  | 7790    |
|-------------------|--------------------|---------------|------------------|---------|
| King County Metr  | ro Transit S Annex | F             | acility/Site ID: | 8422289 |
| 11911 East Marg   | inal Way S         |               |                  |         |
| Seattle, King Cou | unty, WA 98168     |               |                  |         |
| Section:          | 10                 | Latitude:     | 47.49588         |         |
| Township:         | 23N                | Longitude:    | -122.28676       |         |
| Range:            | 4E                 | Tax/Parcel ID | : 1023049066     |         |

Site scored/ranked for the Hazardous Sites List Publication: August 2015

# SITE DESCRIPTION:

The King County Metro Transit S Annex site (Site) is a former Metro bus parking, fueling, and maintenance garage facility located in Seattle, King County, Washington. The 16.15-acre property is located approximately 1,350 feet from the Lower Duwamish Waterway (LDW), and zoned for Manufacturing Industrial Center/Heavy Industrial (MIC/H) use.

Two streams that discharge to the LDW are located near the area where hazardous substances were released (see the Site Overview Map), including a Class 3 stream located approximately 50 feet west of the Site, and a Class 2 stream located under the Site (presumably in a culvert).

Adjacent properties include: The main Metro South Base site to the southeast [Site Identification (CSID) 7077] across East Marginal Way; general manufacturing/industrial and warehouse facilities to the north and south (properties to the north are located on the opposite side of Highway 599 from the Site); and greenbelt space and highway interchange to the west.

The Site is currently operated as a Metro bus parking, fueling, and maintenance facility by King County Transit.

Current activities performed at the property generally include: Bus parking, fueling, and maintenance; facilities maintenance; general materials storage and vehicle parking; and administration.

Parking and storage areas are generally located in the central and northern portions of the property, administrative offices are located in the southeastern portion of the property, and maintenance facilities are located in the western portion of the property.

The property area where hazardous substances associated with CSID 7790 were released (i.e., the "Site"; discussed in the following sections) is located near the southwestern portion of the maintenance building in the western portion of the property, as shown on the attached Site Overview Map.

# SITE BACKGROUND:

A summary of prior operations/tenants at the subject property is presented below.

| <u>From</u> | <u>To</u> | <u>Operator/Tenant</u> | <u>Activity</u>                         |
|-------------|-----------|------------------------|-----------------------------------------|
| 1994        | 2015      | King County Transit    | Metro maintenance and<br>administration |

# SITE CONTAMINATION:

In 1995 the King County Metro Transit S Annex site was reported to Washington State Department of Ecology (Ecology) and placed on the Leaking Underground Storage Tank (LUST) list.

Four soil borings (SB-1 through SB-4) were advanced, and soil samples collected, in the vicinity of three underground storage tanks (USTs) in October 1994 (Woodward Clyde, 1995). The three USTs included one 550-gallon engine oil UST, one 10,000-gallon unleaded gasoline UST, and one 10,000-gallon UST (partitioned for gasoline and diesel), and were located south of the southwestern portion of the facility stores and

maintenance building. AGI Technologies (1997) indicated that the USTs were installed in 1986 and were constructed of fiberglass. Groundwater samples were collected in October 1994 from four existing de-watering wells located in the UST cavity (reportedly installed at the same time as the USTs).

Soil samples from three borings (SB-1, -3, and -4) were submitted for laboratory analysis of gasoline-range total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and xylenes (BTEX), and lead (SB-1 only). The soil sample from boring SB-2 was submitted for analysis of undifferentiated TPH. Four dewatering well samples were submitted for analysis of diesel- and oil-range TPH, and total lead.

Undifferentiated TPH was detected in SB-2 (soil) at a concentration 8,710 mg/kg, above the MTCA Method A soil cleanup level for diesel- and oil- range petroleum hydrocarbons. No other analytes were detected in the October 1994 soil or groundwater samples at concentrations above the laboratory reporting limits.

Four additional soil borings (SB-5 through SB-8) were advanced in December 1994 (Note: SB-8 is located northeast of the facility Sotres and Maintenance Building). Three of the borings (SB-5, -7, and -8) were reportedly completed as groundwater monitoring wells (Woodward Clyde, 1995); however, the maps provided in the report show the locations as soil borings only and it is unclear if these were temporary or permanent wells. Soil and groundwater samples collected from each of the borings, and were analyzed for diesel- and oil-range TPH.

Diesel-range TPH was detected in soil samples from SB-5 and SB-8 at a maximum concentration of 54.7 mg/kg, below the MTCA Method A soil cleanup level. Oil-range TPH was detected in three groundwater samples at concentrations above the laboratory reporting limit [maximum concentration of 723 micrograms per liter (ug/L) at SB-7], and diesel-range TPH in two samples (maximum concentration of 550 ug/L at SB-7). The diesel- and oil-range TPH concentrations detected in groundwater sample SB-7 were above the MTCA Method A groundwater cleanup level.

# PAST REMEDIATION ACTIVITIES:

The three USTs described in the previous section were removed from the Site in April 1997 (AGI Technologies, 1997). Soil samples were collected from the excavation area margins following UST removal and were analyzed for gasoline-, diesel-, and oil-range TPH and BTEX constituents. Ten soil samples were collected from the vicinity of the former 10,000-gallon diesel and gasoline USTs, and three from the vicinity of the former 550-gallon oil UST. No analytes were detected in soil samples at concentrations above the laboratory reporting limits except toluene at a concentration of 0.15 mg/kg, and total xylenes at a concentration of 0.71 mg/kg, both below the MTCA Method A soil cleanup level.

One groundwater sample was collected from dewatering well DW-4 and contained toluene (2.3 ug/L) and benzene (9.5 ug/L) at concentrations above the laboratory reporting limits. The detected benzene concentration was above the MTCA Method A groundwater cleanup level.

No additional information regarding subsequent soil sampling or groundwater monitoring was available in Ecology's Site file.

Following removal of the three USTs in 1997, one new unleaded gasoline UST was installed at the same approximate location as the previous 10,000-gallon USTs, and is listed in Ecology's UST database as "operational" with a capacity of 5,000-9,999 gallons.

# **CURRENT SITE CONDITIONS:**

The most recent sampling data available is for the UST removal performed in April 1997. Confirmational soil samples collected following UST removal contained concentrations of toluene and xylenes above the laboratory reporting limits, but below the MTCA Method A soil cleanup levels. However, a groundwater sample collected down-gradient from the UST area in 1997 contained benzene at a concentration above the MTCA Method A groundwater cleanup level. In addition, groundwater samples collected from borings SB-6, -7, and -8 contained TPH at concentrations above the laboratory reporting limits, including diesel- and oil-range concentrations above the MTCA Method A groundwater cleanup level at SB-7.

Based on the available information, soil with TPH concentrations above MTCA Method A soil cleanup levels was excavated from the immediate vicinity of the USTs during removal, but analytical results for previous samples

collected outside the excavation margins suggest that residual impacts to soil and groundwater remain at the Site.

The King County GIS website depicts two streams in the vicinity of the UST area at the Site. Both are generally oriented north-south and drain to the LDW either directly or via a drainage ditch located north of the site across Highway 599. A stream listed as Class 3 (most likely seasonal or intermittent) is shown adjacent to the western property margin and identified as part of the Duwamish River basin. Sections of the streambed are visible on recent aerial photographs, but it is mostly obscured by vegetation. The Class 3 stream is located down-gradient and within approximately 50 feet of the former UST area, indicating a potential for migration of soil and groundwater contaminants to surface water.

The second stream, located east of the UST area, is listed as a Class 2 Salmonid stream (unnamed) by King County and identified as an SAO (Sensitive Areas Ordinance) stream. This stream is located approximately 150 feet east and northeast of the UST area, but is not visible on recent aerial photographs and is presumably located in a culvert beneath the Site (the areas where the stream is shown are either paved or have a graded gravel surface). The Class 2 stream appears to be located up-gradient from the UST area; however, its proximity to impacted soil and groundwater indicates a potential for migration of soil and groundwater contaminants to surface water, although to a lesser degree than the Class 3 stream west of the Site.

Listings for both of these streams are provided in the Priority Habitats and Species (PHS) database maintained by the Washington Department of Fish and Wildlife. The Class 3 stream located west of the former UST area (i.e., down-gradient) is listed as a priority area for the occurrence and migration of coho and coastal cutthroat salmon, and the Class 2 stream located east of the former UST area (i.e., up-gradient) is listed as a priority area for the occurrence of coho salmon. Both streams are also listed as a priority area for the occurrence of the western pond turtle, which is also listed by the State as an endangered species.

Site contaminants inlcude diesel- and oil-range TPH in soil and groundwater, and benzene in groundwater.

The approximate depth to groundwater is 7 feet below ground surface, with groundwater flowing to the westnorthwest (based on map included in Woodward Clyde, 1995). Subsurface soils are sand, silty sand, and silt (based on boring logs and excavations).

# **SPECIAL CONSIDERATIONS:**

Checked boxes indicate routes applicable for Washington Ranking Method (WARM) scoring

### ✓ Surface Water

A Class 3 stream adjacent to the western property margin dicharges to the LDW. The stream is located approximately 50 feet down-gradient of the former UST area, indicating a potential for contaminant transport via the surface water pathway.

#### 🖌 Air

Volatile compound (benzene) detected in groundwater at a concentration above the MTCA Method A cleanup level indicates a potential for contaminant transport via the air pathway.

#### Groundwater

Concentrations of diesel-range TPH, oil-range TPH, and benzene were detected in groundwater samples above MTCA Method A groundwater cleanup levels.

# **ROUTE SCORES:**

| Surface Water/ Human Health: | 19.5 | Surface Water/ Environment: | 26.4 |
|------------------------------|------|-----------------------------|------|
| Air/ Human Health:           | 23.5 | Air/ Environment:           | 1.5  |
| Groundwater/ Human Health:   | 55.2 |                             |      |

**Overall Rank: 1** 

## **REFERENCES:**

- 1 AGI Technologies, 1997, Underground Storage Tank Closure Assessment Report, Facilities Maintenance South UST Project, June 18th 1997.
- 2 Ecology Water Resources Explorer, accessed June 2015. https://fortress.wa.gov/ecy/waterresources/map/WaterResourcesExplorer.aspx
- 3 King County GIS Center iMAP application, Property Information, Groundwater Program, and Sensitive Areas mapsets. Accessed June 2015. http://www.kingcounty.gov/operations/GIS/Maps/iMAP.aspx
- 4 Missouri Census Data Center, Circular Area Profiles 2010 census data around a point location. http://mcdc.missouri.edu/websas/caps10c.html. Accessed June 2015.
- 5 National Climatic Data Center 2011 Local Climatological Data for Seattle, Seattle Tacoma Airport. http://www1.ncdc.noaa.gov/pub/orders/IPS-90B1F39F-6CFA-4A6B-AA82-5ED1FF897CCC.pdf
- 6 WARM Scoring Manual
- 7 WARM Toxicological Database
- 8 Washington Department of Fish and Wildlife, online Priority Habitats and Species database. Accessed June 2015. http://wdfw.wa.gov/mapping/phs/disclaimer.html
- 9 Washington Department of Transportation 24-hour Isopluvial Maps, January 2006 update. http://www.wsdot.wa.gov/publications/fulltext/Hydraulics/Wa24hrlspoluvials.pdf
- 10 Woodward-Clyde, 1995, Pre-Construction Site Assessment Report, South Operating Base Facility Annex, January 1995.

# SITE HAZARD ASSESSMENT Worksheet 2 Route Documentation

Cleanup Site ID: 7790

Facility/Site ID: 8422289

# **1. SURFACE WATER ROUTE**

#### List those substances to be considered for scoring:

Benzene, diesel (oil not scored as toxicity data is not available in WARM)

#### Explain the basis for choice of substances to be used in scoring:

Confirmed releases to soil and groundwater based on analytical tests; close proximity to surface water (stream drainging to LDW down-gradient of former UST area).

King County Metro Transit S Annex

#### List those management units to be considered for scoring:

Surface water

#### Explain basis for choice of unit to be used in scoring:

Potential for transport of contaminants in soil and groudwater to surface water

# 2. AIR ROUTE

#### List those substances to be considered for scoring:

Benzene

#### Explain the basis for choice of substances to be used in scoring:

Confimed release of volatile compound to groundwater based on analytical tests; potential for transport via the air pathway

#### List those management units to be considered for scoring:

Soil vapor

#### Explain basis for choice of unit to be used in scoring:

Potential for vapor transport

### **3. GROUNDWATER ROUTE**

#### List those substances to be considered for scoring:

Benzene, diesel (oil not scored as toxicity data is not available in WARM)

#### Explain the basis for choice of substances to be used in scoring:

Confirmed release to groundwater based on analytical tests

#### List those management units to be considered for scoring:

Groundwater

#### Explain basis for choice of unit to be used in scoring:

Prior detection of contaminants at concentrations above MTCA cleanup levels

# Worksheet 4 Surface Water Route

**CSID:** 7790

Site Name: King County Metro Transit S Annex

#### **1.0 Substance Characteristics**

#### 1.1 Human Toxicity

|                 | Drinking Water | Acute Toxicity | Chronic Toxicity | Carcinogenicity |
|-----------------|----------------|----------------|------------------|-----------------|
| Substance       | Standard Value | Value          | Value            | Value           |
| benzene         | 8              | 3              | Х                | 5               |
| TPH (as diesel) | 4              | 5              | 3                | Х               |
|                 |                |                |                  |                 |
|                 |                |                |                  |                 |
|                 |                |                |                  |                 |
|                 |                |                |                  |                 |
|                 |                |                |                  | Highast Value   |

Highest Value

**Bonus Points?** 

0 8

8

Human Health Toxicity Value

#### 1.2 Environmental Toxicity

|                 | Acute Water ( | Quality Criteria | Non-human Mamm | alian Acute Toxicity |
|-----------------|---------------|------------------|----------------|----------------------|
| Substance       | ug/L          | Value            | mg/kg          | Value                |
| benzene         | 5,300         | 2                | 3,306          | 3                    |
| TPH (as diesel) | 2,300         | 2                | 490            | 5                    |
|                 |               |                  |                |                      |
|                 |               |                  |                |                      |
|                 |               |                  |                |                      |
|                 |               |                  |                |                      |
|                 | •             |                  | <br>Environr   |                      |

Environmental Toxicity Value 2

#### **1.3 Substance Quantity**

| Amount: approximately 600 square feet                          |                              |    |
|----------------------------------------------------------------|------------------------------|----|
| Basis: estimated aerial extent of soil and groundwater         |                              |    |
| impacts described in available reports                         | Substance Quantity Value     | 5  |
| 2.0 Migration Potential                                        |                              |    |
| 2.1 Containment                                                | Containment Value            | 10 |
| Explain Basis: potential for impacted groundwater discharge to | surface water                |    |
| 2.2 Surface Soil Permeability                                  | Soil Permeability Value      | 3  |
| medium permeability; sand, silty sand, and silt                |                              |    |
| 2.3 Total Annual Precipitation                                 | Total Precipitation Value    | 3  |
| 37 inches                                                      |                              |    |
| 2.4 Max 2-yr/24-hour Precipitation                             | 2YR/24HR Precipitation Value | 3  |
| 2.4 inches                                                     |                              |    |
| 2.5 Floodplain                                                 | Floodplain Value             | 0  |
| not in 100-year or 500-year flood plain                        |                              |    |
| 2.6 Terrain Slope                                              | Slope Value                  | 1  |
| less than 2%                                                   |                              |    |
|                                                                |                              |    |

#### Surface Water Route

**CSID:** 7790

Site Name: King County Metro Transit S Annex

| 3.1 Distance to Surface Water                    | <50 feet       | Surface Water Distance   | Value 10 | ) |
|--------------------------------------------------|----------------|--------------------------|----------|---|
| distance to stream located west of the release a | area           |                          |          |   |
| 3.2 Population Served within 2 miles             |                | Population               | Value 2  | 2 |
| 3 people                                         |                |                          |          |   |
| 3.3 Area Irrigated within 2 miles                |                | Irrigation               | Value 1' | 1 |
| 200 acres                                        |                |                          |          |   |
| 3.4 Distance to Nearest Fishery Resource         | <50 feet       | Fishery                  | Value 12 | 2 |
| stream located along western property margin     |                |                          |          |   |
| 3.5 Distance to and Name of Nearest Sensiti      | ve Environment | Sensitive Environment    | Value 12 | 2 |
|                                                  | <50 feet       |                          |          |   |
| stream located along western property margin     |                |                          | -        |   |
| 4.0 Release                                      |                | Release to Surface Water | Value (  | ) |

Explain basis for scoring a release to surface water

No confirmed release to surface water; potential for groundwater to discharge to surface water

| Pathway Scoring - Surface Water Route, Human Health Pathway                                                                             | r                 |      |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| SW <sub>H</sub> = (SUB <sub>SH</sub> *40/175)*[(MIG <sub>S</sub> *25/24) + REL <sub>S</sub> + (TAR <sub>SH</sub> *30/115)]/24<br>Where: |                   |      |
| SUB <sub>SH</sub> = (Human Toxicity Value + 3)*(Containment + 1) + Substance<br>Quantity                                                | SUB <sub>SH</sub> | 126  |
| + Slope                                                                                                                                 | MIGs              | 10   |
| REL <sub>s</sub> = Release to Surface Water                                                                                             | REL <sub>s</sub>  | 0    |
| TAR <sub>SH</sub> = Distance to Surface Water + Population Served by Surface Water<br>+ Area Irrigated                                  | TAR <sub>SH</sub> | 22.3 |
|                                                                                                                                         | SW <sub>H</sub>   | 19.5 |

| SUB <sub>SE</sub> | 60                                                                             |
|-------------------|--------------------------------------------------------------------------------|
| 140               | 10                                                                             |
| MIG <sub>S</sub>  | 10                                                                             |
| RELs              | 0                                                                              |
|                   |                                                                                |
| TAR <sub>SE</sub> | 34.0                                                                           |
| S/M/              | 26.4                                                                           |
|                   | SUB <sub>SE</sub><br>MIG <sub>S</sub><br>REL <sub>S</sub><br>TAR <sub>SE</sub> |

#### Air Route

#### **CSID:** 7790

Site Name: King County Metro Transit S Annex

#### **1.0 Substance Characteristics**

#### 1.1 Introduction (WARM Scoring Manual) - Please Review before scoring

#### 1.2 Human Toxicity

|           | Ambient Air   | Acute Toxicity | Chronic Toxicity | Carcinogenicity |
|-----------|---------------|----------------|------------------|-----------------|
| Substance | Standard Valu | ie Value       | Value            | Value           |
| benzene   | 10            | 3              | Х                | 5               |
|           |               |                |                  |                 |
|           |               |                |                  |                 |
|           |               |                |                  |                 |
|           |               |                |                  |                 |
|           |               |                |                  |                 |
|           | •             |                | -                | Highest Value   |

#### 10 Bonus Points? 0 **Toxicity Value** 10

#### 1.3 Mobility

| Gaseous Mobility     | Max Value:       | 4 |
|----------------------|------------------|---|
| Particulate Mobility | Soil Type:       |   |
|                      | Erodibility:     |   |
|                      | Climatic Factor: |   |

#### 1.4 Final Human Health Toxicity/Mobility Matrix Value

#### **1.5 Environmental Toxicity/Mobility**

| Non-human Mammalian         | Acute                                                        |                                                                 | Table A-7                                                                      |
|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Inhalation Toxicity (mg/m3) | Value                                                        | Mobility Value                                                  | Matrix Value                                                                   |
| 31,947                      | 3                                                            | 4                                                               | 6                                                                              |
|                             |                                                              |                                                                 |                                                                                |
|                             |                                                              |                                                                 |                                                                                |
|                             |                                                              |                                                                 |                                                                                |
|                             |                                                              |                                                                 |                                                                                |
|                             |                                                              |                                                                 |                                                                                |
|                             | Non-human Mammalian<br>Inhalation Toxicity (mg/m3)<br>31,947 | Non-human MammalianAcuteInhalation Toxicity (mg/m3)Value31,9473 | Non-human MammalianAcuteInhalation Toxicity (mg/m3)ValueMobility Value31,94734 |

6 Env. Final Matrix Value

#### **1.6 Substance Quantity**

Amount: approximately 600 square feet

Basis: Footprint of estimated area of soil impacts from reports

Substance Quantity Value

4

4

20

Mobility Value

HH Final Matrix Value

Air Route

| CSIE                                               | <b>)</b> : 7790                                 | Site Name: King County Metro Transit S A | Innex |
|----------------------------------------------------|-------------------------------------------------|------------------------------------------|-------|
| 2.0 Migration Potential                            |                                                 |                                          |       |
| 2.1 Containment                                    |                                                 | Containment                              | Value |
| Explain Basis                                      | s: Spill/discharge to subsurface                | e only with                              |       |
|                                                    | no vapor collection system                      |                                          |       |
| 3.0 Targets                                        |                                                 |                                          |       |
| 3.1 Nearest Population                             |                                                 | Population Distance                      | Value |
| 300 feet                                           | Workers at adjoining property                   | у                                        |       |
| 3.2 Distance to and name                           | of nearest sensitive environn                   | nents Sensitive Environment              | Value |
| <50 feet                                           | habitat for State Endangered                    | I species (western pond turtle)          |       |
| 3.3 Population within 0.5                          | miles                                           | Population                               | Value |
| 1498                                               | population                                      |                                          |       |
| 4.0 Release                                        |                                                 | Release to Air                           | Value |
| Explain basis for scoring a r                      | elease to air:                                  |                                          |       |
|                                                    | No confirmed release to air                     |                                          |       |
|                                                    |                                                 |                                          |       |
| Pathway Scoring - Air Rou                          | ite, Human Health Pathway                       |                                          |       |
|                                                    |                                                 |                                          |       |
| AIR <sub>H</sub> = (SUB <sub>AH</sub> *60/329)*[RE | EL <sub>A</sub> +(TAR <sub>AH</sub> *35/85)]/24 |                                          |       |
| Where:                                             |                                                 |                                          |       |
|                                                    |                                                 |                                          |       |
| SUB <sub>AH</sub> =(Human toxicity + 5) *          | (Containment + 1) + Substance Qty               | y SUB <sub>AH</sub>                      | 154   |
| REL <sub>A</sub> = Release to Air                  |                                                 | REL <sub>A</sub>                         | 0     |
|                                                    |                                                 |                                          |       |
| TAR <sub>AH</sub> = Nearest Population +           | Population within 1/2 mile                      | TAR <sub>AH</sub>                        | 48.7  |
|                                                    |                                                 |                                          |       |
|                                                    |                                                 | AIR <sub>H</sub>                         | 23.5  |
|                                                    |                                                 |                                          |       |
| Pathway Scoring - Air Rou                          | ite, Environmental Pathway                      |                                          |       |
| -                                                  |                                                 |                                          |       |
| AIR <sub>E</sub> = (SUB <sub>AE</sub> *60/329)*[RE | L <sub>A</sub> +(TAR <sub>AE</sub> *35/85)]/24  |                                          |       |
| Where:                                             |                                                 |                                          |       |
|                                                    |                                                 |                                          |       |

SUB<sub>AE</sub> =(Environmental Toxicity Value +5)\*(Containment + REL<sub>A</sub> = Release to Air TAR<sub>AE</sub> = Nearest Sensitive Environment

| <b></b> ,         |                   |     |
|-------------------|-------------------|-----|
| 1) +Substance Qty | SUB <sub>AE</sub> | 70  |
|                   | REL <sub>A</sub>  | 0   |
|                   | TAR <sub>AE</sub> | 7.0 |
|                   | -                 |     |
|                   | AIRE              | 1.5 |

#### Groundwater Route

Site Name: King County Metro Transit S Annex

#### **1.0 Substance Characteristics**

**CSID:** 7790

# 1.1 Human Toxicity

|                             | Drinking Water           | Acute Toxicity      | Chronic Toxicity | Carcinogenicity     |     |
|-----------------------------|--------------------------|---------------------|------------------|---------------------|-----|
| Substance                   | Standard Value           | Value               | Value            | Value               |     |
| benzene                     | 8                        | 3                   | Х                | 5                   |     |
| TPH (as diesel)             | 4                        | 5                   | 3                | Х                   |     |
|                             |                          |                     |                  |                     |     |
|                             |                          |                     |                  |                     |     |
|                             |                          |                     |                  |                     |     |
|                             |                          |                     |                  |                     |     |
|                             |                          |                     |                  | Highest Value       | 8   |
|                             |                          |                     |                  | Bonus Points?       | 0   |
|                             |                          |                     |                  | Toxicity Value      | 8   |
| 4 0 Makilika                |                          |                     |                  |                     |     |
|                             | May Value                |                     |                  |                     |     |
|                             | Max Value.               | 2                   |                  |                     | 2   |
| Solubility                  | Max value:               | 3                   |                  | Mobility value      | 3   |
| 1.2 Substance Quantity      |                          |                     |                  |                     |     |
|                             | · >10-100 cubic vards    |                     |                  |                     |     |
| Basis                       | : Residual impacted soil | l quantity based or | site reports     |                     |     |
| Buolo                       |                          |                     | Substar          | nce Quantity Value  | 2   |
|                             |                          |                     | 000000           |                     |     |
| 2.0 Migration Potential     |                          |                     |                  |                     |     |
| 2.1 Containment             |                          |                     | (                | Containment Value   | 10  |
| Explain Basis               | : Contaminated soil pres | sent                |                  |                     |     |
| ·                           | ·                        |                     |                  |                     |     |
| 2.2 Net Precipitation       | >10-20                   | inches              | Net I            | 2                   |     |
|                             |                          |                     |                  | •                   |     |
| 2.3 Subsurface Hydraulic C  | Conductivity             |                     |                  | Conductivity Value  | 3   |
|                             | Primarily sand and silt  |                     |                  | -                   |     |
| 2.4 Vertical Depth to Grour | ndwater                  | 7                   | feet             |                     |     |
|                             | Confirmed release:       | Yes                 | Dep              | th to Aquifer Value | 8   |
| 3.0 Targets                 |                          |                     |                  |                     |     |
| 3.1 Groundwater Usage       | Private supply with alte | arnate sources      |                  | Aquifer Llse Value  | 4   |
| 5.1 Gloundwater Usage       | i ilvate supply with all | entale sources      |                  | Aquilei Ose value   | 4   |
| 3.2 Distance to Nearest Dri | inking Water Well        | 4,200               | feet             |                     |     |
|                             | City of Seattle municin  | al well             | W                | ell Distance Value  | 2   |
|                             |                          |                     |                  |                     | 2   |
| 3.3 Population Served with  | nin 2 Miles              |                     | Popula           | ation Served Value  | 100 |
| 10.000                      | people                   |                     | - 1              |                     |     |
| ,                           | • •                      |                     |                  |                     |     |

#### Groundwater Route



| GW <sub>H</sub> = (SUB <sub>GH</sub> *40/208)*[(MIG <sub>G</sub> *25/17)+REL <sub>G</sub> +(TAR <sub>GH</sub> *30/165)]/24<br>Where: |                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|
| SUB <sub>GH</sub> =(Human toxicity + mobility + 3) * (Containment + 1) + Substance Qty                                               | SUB <sub>GH</sub> | 156   |
| MIG <sub>G</sub> =Depth to Aquifer+Net Precip + Hydraulic Conductivity                                                               | MIG <sub>G</sub>  | 13    |
| REL <sub>G</sub> = Release to Groundwater                                                                                            | REL <sub>G</sub>  | 5     |
| TAR <sub>GH</sub> = Aquifer Use + Well Distance + Population Served + Area Irrigated                                                 | TAR <sub>GH</sub> | 110.4 |
|                                                                                                                                      | GW <sub>H</sub>   | 55.2  |

# Washington Ranking Method

#### **Route Scores Summary and Ranking Calculation Sheet**

| Site Name:                                | King County Metro Transit S Annex                 |                                           |          |       |  |                | CSID: |             | 7790      |              |             |                               |
|-------------------------------------------|---------------------------------------------------|-------------------------------------------|----------|-------|--|----------------|-------|-------------|-----------|--------------|-------------|-------------------------------|
| Site Address:                             | 11911 East Mai                                    | rginal Way S, Sea                         | ttle, WA | 98168 |  |                |       | FSID:       |           | 8422289      |             |                               |
| HUMAN HEALTH RO                           | UTE SCORES                                        |                                           |          |       |  |                |       |             |           |              |             |                               |
| Enter Human Health                        | Route Scores for a                                | ll Applicable Route                       | s:       |       |  |                |       |             |           |              | н           | uman Health                   |
| Pathway                                   | Route Score                                       | Quintile Group                            |          |       |  | $H^2$          | +     | 2M          | +         | L            | Priori      | ity Bin Score:                |
| Surface Water                             | 19.5                                              | 3                                         | H=       | 5     |  | 25             |       | 6           | -         | 2            | _           | F                             |
| Air                                       | 23.5                                              | 3                                         | M=       | 3     |  | 25             | т     | U           | т         | 3            | -           | 5                             |
| Groundwater                               | 55.2                                              | 5                                         | L=       | 3     |  |                |       | 8           |           |              | round       | ed up to next                 |
| Enter Environment R Pathway Surface Water | Route Scores for all       Route Score       26.4 | Applicable Routes:<br>Quintile Group<br>3 | :<br>H=  | 3     |  | H <sup>2</sup> | +     | 2L          |           |              | Priori      | Environment<br>ity Bin Score: |
| Air                                       | 1.5                                               | 1                                         | L=       | 1     |  | 9              | +     | 2           |           | =            |             | 2                             |
|                                           |                                                   |                                           | L        |       |  |                | 7     |             |           |              | rounde<br>w | ed up to next<br>hole number  |
| Comments/Notes:                           | <u>.</u>                                          |                                           |          |       |  |                |       |             |           |              |             |                               |
|                                           |                                                   |                                           |          |       |  |                |       | FINAL<br>RA | . M<br>NK | ATRIX<br>ING |             | 1                             |
| FOR REFERENCE:                            |                                                   |                                           |          |       |  |                |       |             |           |              |             |                               |

# Final WARM Bin Ranking Matrix

| Human           |                      |               |   |   |   |     |  |  |  |  |  |  |
|-----------------|----------------------|---------------|---|---|---|-----|--|--|--|--|--|--|
| Health          | Environment Priority |               |   |   |   |     |  |  |  |  |  |  |
| <u>Priority</u> |                      |               |   |   |   |     |  |  |  |  |  |  |
|                 | 5                    | 5 4 3 2 1 N/A |   |   |   |     |  |  |  |  |  |  |
| 5               | 1                    | 1             | 1 | 1 | 1 | 1   |  |  |  |  |  |  |
| 4               | 1                    | 2             | 2 | 2 | 3 | 2   |  |  |  |  |  |  |
| 3               | 1                    | 2             | 3 | 4 | 4 | 3   |  |  |  |  |  |  |
| 2               | 2                    | 3             | 4 | 4 | 5 | 3   |  |  |  |  |  |  |
| 1               | 2                    | 3             | 4 | 5 | 5 | 5   |  |  |  |  |  |  |
| N/A             | 3                    | 4             | 5 | 5 | 5 | NFA |  |  |  |  |  |  |

#### Quintile Values for Route Scores - February 2015 Values

|          |     | F       | lumar |       | Enviro | nmen  | t  |       |    |      |   |      |   |     |
|----------|-----|---------|-------|-------|--------|-------|----|-------|----|------|---|------|---|-----|
|          | Sur | Surface |       |       | Gro    | ound  | Su | rface |    |      |   |      |   |     |
| Quintile | W   | Water   |       | Water |        | Water |    | Air   | W  | ater | W | ater | Å | Air |
| 5        | >=  | 30.7    | >=    | 37.6  | >=     | 51.6  | >= | 50.9  | >= | 29.9 |   |      |   |     |
| 4        | >=  | 23.1    | >=    | 23.8  | >=     | 40.9  | >= | 31.2  | >= | 22.5 |   |      |   |     |
| 3        | >=  | 14.1    | >=    | 15.5  | >=     | 33.2  | >= | 23.6  | >= | 14.0 |   |      |   |     |
| 2        | >=  | 7.0     | >=    | 8.5   | >=     | 23.5  | >= | 11.0  | >= | 1.6  |   |      |   |     |
| 1        | <=  | 6.9     | <=    | 8.4   | <=     | 23.4  | <= | 10.9  | <= | 1.5  |   |      |   |     |

Quintile value associated with each route score entered above



#### Legend:

- Property location (approximate)
- Former underground storage tank (UST) location
- Soil boring location (approximate) for soil and groundwater samples
- UST removal excavation area soil sample location (approximate)
- Dewatering well location (approximate)
- Sample with soil or groundwater concentrations above MTCA
- Approximate estimated area of impacted soil (Woodward-Clyde, 1995)

# Notes:

1. All locations are approximate. Scale is approximate.

KC Metro Transit S Annex 11911 E Marginal Way S Seattle, WA 98168



Ν

# Site Overview Map

CSID 7790 CSID7790.vsd

# Attachment C

South Annex Data Table

# TABLE 1 ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER

King County Metro South Base Annex Phase II Investigation

11911 E Marginal Way, Tukwila, Washington

## PBS Project No. 41484.004

| Result               |                       |          |                  |                                        |                  |                                           |         |         |                   |                  |  |  |  |
|----------------------|-----------------------|----------|------------------|----------------------------------------|------------------|-------------------------------------------|---------|---------|-------------------|------------------|--|--|--|
|                      | ТРН                   |          |                  |                                        | BTEX             |                                           |         |         |                   |                  |  |  |  |
| Location             | Location (feet bgs)   | Gasoline | Diesel           | <b>Diesel</b><br>with SGC <sup>a</sup> | Heavy Oil        | <b>Heavy Oil</b><br>with SGC <sup>a</sup> | Benzene | Toluene | Ethyl-<br>Benzene | Total<br>Xylenes |  |  |  |
| Soil Samples (mg/kg) |                       |          |                  |                                        |                  |                                           |         |         |                   |                  |  |  |  |
| Adopted (            | Criteria <sup>b</sup> | 100      | 2,000            | 2,000                                  | 2,000            | 2,000                                     | 0.03    | 7       | 6                 | 9                |  |  |  |
| F_1                  | 4                     | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| L-1                  | 11                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E O                  | 5                     | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E-2                  | 11                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| ГЭ                   | 6                     | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E-2                  | 12                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| Γ 4                  | 5.5                   | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E-4                  | 12                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| F                    | 5.5                   | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E-2                  | 11                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| ГС                   | 6                     | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
| E-0                  | 12                    | < 5      | < 50             |                                        | < 250            |                                           | < 0.02  | < 0.02  | < 0.02            | < 0.06           |  |  |  |
|                      |                       |          |                  | Groundwater                            | r Grab Samp      | les (µg/L)                                |         |         |                   |                  |  |  |  |
| Adopted (            | Criteria <sup>b</sup> | 1,000    | 500              | 500                                    | 500              | 500                                       | 5       | 1,000   | 700               | 1,000            |  |  |  |
| E-1                  |                       | < 100    | 640 <sup>c</sup> | < 50                                   | 480 <sup>c</sup> | < 250                                     | < 1     | < 1     | < 1               | < 3              |  |  |  |
| E-2                  |                       | < 100    | 140 <sup>c</sup> |                                        | < 250            |                                           | < 1     | < 1     | < 1               | < 3              |  |  |  |
| E-3                  | 6.9 <sup>d</sup>      | < 100    | 86 <sup>c</sup>  |                                        | < 250            |                                           | < 1     | < 1     | < 1               | < 3              |  |  |  |
| E-4                  | 6.6 <sup>d</sup>      | < 100    | 450 <sup>c</sup> |                                        | 440 <sup>c</sup> |                                           | < 1     | < 1     | < 1               | < 3              |  |  |  |
| E-5                  | 7.2 <sup>d</sup>      | < 100    | 310 <sup>c</sup> |                                        | 330 <sup>c</sup> |                                           | < 1     | < 1     | < 1               | < 3              |  |  |  |
| E-6                  | 7.1 <sup>d</sup>      | < 100    | 89 <sup>c</sup>  |                                        | < 250            |                                           | < 1     | < 1     | < 1               | < 3              |  |  |  |

### Notes:

Gasoline range TPH analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx) Diesel and heavy oil range TPH analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx) BTEX analyzed by Environmental Protection Agency Method 8021B

bold indicates concentration exceeds Adopted Criteria

< Analyte not detected at or above the indicated laboratory reporting limit

-- Not Analyzed / Not Measured

### Abbreviations & Acronyms:

BTEX - Benzene, toluene, ethylbenzene and xylenes

mg/kg - milligrams per kilogram

 $\mu g/L$  - microgram per liter

bgs - below ground surface

toc - top of casing

SGC - Silica Gel Cleanup

TPH - total petroleum hydrocarbons

# Footnotes:

- <sup>a</sup> Sample extracts passed through a silica gel column prior to analysis (Silica Gel Cleanup)
- <sup>b</sup> Washington State Department of Ecology Model Toxics Control Act Method A Cleanup Level for Unrestricted Land Use as established in WAC 173-340-900
- <sup>c</sup> The sample chromatographic pattern does not resemble the fuel standard used for quantitation
- <sup>d</sup> Depth to static groundwater from ground surface, measured in temporary well



# Appendix B

HWA Well Installation Memorandum



July 26, 2022 HWA Project No. 2021-062-22

# King County Metro Transit Capital Division

Transit Real Estate and Environmental 201 South Jackson Street, M.S. KSC-TR-0431 Seattle, WA 98104-3856

Attention: John Greene

# Subject: Well Installation Memorandum King County Metro Transit - South Facilities Tukwila, Washington

Dear Mr. Greene,

As approved in the Contract E00635E19 Work Order #31 scope, HWA GeoSciences Inc (HWA) has performed additional site characterization work at the King County Metro Transit - South Facilities (South Facilities) addressed at 11911 East Marginal Way South, Tukwila, Washington. This memorandum includes a brief summary of field explorations and monitoring well installation activities that occurred as part of the additional site characterization work proposed in the Work Order #31 scope. Upon completion of all of the approved site investigation work, a Remedial Investigation (RI) Report Addendum will be provided. This work task was coordinated by HWA as part of HWA's contract with Parametrix for environmental services.

# SUBSURFACE EXPLORATIONS AND WELL INSTALLATION

On December 20, 2021, HWA field staff observed the drilling of four probe borings at the South Facilities in Tukwila, Washington. Drilling and concrete coring was performed by Cascade Drilling (Driller), of Woodinville, Washington. All four borings were continuously logged in 5-foot intervals, and were completed to depths of approximately 15 feet below ground surface (bgs). Soil was screened for contamination using a photoionization detector (PID) and water sheen test. Environmental soil samples were collected from each boring location and temporary wells were constructed in borings 21B1 and 21B2, while permanent wells were constructed in borings 21MW-1 and 21MW-2. Reconnaissance soil and groundwater samples were submitted for analysis at Friedman & Bruya, Inc. (F&B), a third-party Ecology-accredited laboratory under contract with HWA.

Temporary wells were decommissioned in accordance with Chapter 173-160 Washington Administrative Code (WAC). Permanent wells were constructed at 21MW-1 and 21MW-2 following Chapter 173-160 WAC, and were developed by the driller using surge and pump techniques until the groundwater was relatively free of turbidity. Monitoring wells were sampled on January 5, 2022 with samples submitted to F&B for analysis.

Soil cuttings, coring wastewater, and purge and decontamination water were stored in three separate 55-gallon drums, at a location designated by the King County Metro staff.

## SITE CONDITIONS

The results of our subsurface explorations indicate that the project site is underlain by sequences of alluvial, organic-rich silts, which are underlain and often interbedded with alluvial sands. Brief descriptions of the major soil units observed in our explorations are presented below in order of deposition, beginning with the most recently deposited.

- Concrete Concrete thicknesses encountered at the boring locations ranged between approximately 7 to 9 inches.
- Fill/Disturbed Native Undocumented fill and/or disturbed native soils were encountered in all borings, to depths of approximately 4.5 to 6.7 feet bgs. The fill consisted primarily of slightly silty to very silty gravel with small cobbles.
- Pea Gravel Fill Pea gravel was encountered from 4.1 to 9.7 feet bgs at 21B1, which is located adjacent to a mapped water utility line.
- Alluvium Alluvial deposits that consisted of organic-rich silts underlain by, and often interbedded with, fine dark grey/black sands to the termination depth of all borings (approximately 15 feet bgs). Sand sequences first encountered from 10 to 13.8 feet bgs in all borings, and persisted to termination depths.

Depth to groundwater was noted while drilling, with groundwater elevations recorded at time of drilling that varied from 4.7 to 9.5 feet bgs.

# **RECONNAISSANCE SOIL AND GROUNDWATER SAMPLING**

Encountered soils exhibited few-to-no indications of contamination. No visual indications (e.g., sheen) of contamination were observed, and only one sampled interval exhibited a PID reading above 0 (reading of 0.1 ppm from 7.1 to 9.50 feet bgs at 21MW-1). No clear olfactory indications of contamination were observed; although several intervals exhibited an organic-like smell. Soil samples were collected at the perceived capillary fringe of all borings, as well as intervals exhibiting indications of potential contamination (e.g., PID reading, suspect odors). Following purging of the temporary wells 21B1 and 21B2 until relatively free of turbidity, reconnaissance groundwater samples were collected using low flow sampling methods with a peristaltic pump and new polyethylene and silicone tubing. Groundwater from 21B1 exhibited a faint petroleum odor, and sheen-like discoloration; groundwater from 21B2 was free of any odors or sheen.

Soil and groundwater samples were collected in analysis-appropriate, clean, laboratory supplied containers, and placed in a cooler with ice. Samples were kept in a cooler with ice and held at temperatures below four degrees Celsius until submittal to the laboratory for analysis with standard turnaround time. Analytical results are summarized in Tables 1 & 2, and copies of the final laboratory reports including chain-of custody documents are included in Appendix C.

July 26, 2022 HWA Project No. 2062-062-22

#### **GROUNDWATER MONITORING WELL SAMPLING**

On January 5, 2022, HWA returned to the site to collect groundwater samples from permanent wells 21MW-1 and 21MW-2 using low-flow sampling techniques with a peristaltic pump and new polyethylene and silicone tubing. Prior to the start of low flow purging, depth to groundwater was measured at 2.54 feet bgs in 21MW-1 and 4.7 feet bgs in 21MW-2. During purging, field parameters pH, specific conductance, oxidation-reduction potential, dissolved oxygen and temperature were measured until stabilization was achieved. Field indications of contamination including odor, discoloration, and sheen were observed and documented. Groundwater purged and sampled from 21MW-1 was clear and free of odor and sheen. At 21MW-2 a vibrant orange sludge was observed at the surface of groundwater in the well, and purged water was turbid with a yellow-brown hue and sulfur/hydrocarbon odor. Groundwater samples were collected in analysis-appropriate, clean, laboratory supplied containers and placed in a cooler with ice. Samples were kept in a cooler with ice and held at temperatures below four degrees Celsius until submittal to the laboratory for analysis with standard turnaround time. Analytical results are summarized in Tables 1 & 2, and copies of the final laboratory reports including chain-of custody documents are included in Appendix C.

#### FUTURE GROUNDWATER MONITORING

Four consecutive quarters of groundwater level measurements, and sampling of newly installed wells 21MW-1, 21MW-2, and the four existing wells (SB-7, SB-8, DW-3R, and DW-4R) are planned as part of the additional site characterization activities. Upon completion of all additional site characterization activities, an RI Report Addendum will be provided.

\_\_\_\_\_\_O • o\_\_\_\_\_\_

We appreciate the opportunity to provide environmental services on this project. Should you have any questions or comments, or if we may be of further service, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

HWA GEOSCIENCES INC.

Chris VS

Chris Bourgeois Staff Geologist

Nale Kapin

Nicole Kapise Senior Environmental Geologist

July 26, 2022 HWA Project No. 2062-062-22

## **FIGURES (Following Text)**

| Figure 1 | Site Map                                      |
|----------|-----------------------------------------------|
| Figure 2 | Monitoring Well and Soil Sample Locations Map |

# TABLES (Following Text)

| Table 1 | Soil Sampling Results        |
|---------|------------------------------|
| Table 2 | Groundwater Sampling Results |

# Appendix A:

Site Exploration Boring and Well Logs

## Appendix B:

Field Data Sheets

# Appendix C:

Laboratory Reports



Parametrix Source: King County

Project Location –

— Stream

**Figure 1** Site Map King County Metro Transit S Facilities/S Annex









Monitoring Well (Existing) ↔ Monitoring Well (Historical)

Monitoring Well and Soil Sample Locations King County Metro Transit S Facilities/S Annex (adapted 2/3/2022)

| King County Metro South Facilities 200.01     |                                |            |            |            |            |                                         |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------|------------|------------|------------|------------|-----------------------------------------|--|--|--|--|--|--|
| Table 1- Soil Sampling Results                |                                |            |            |            |            |                                         |  |  |  |  |  |  |
| All values in milligrams per kilogram (mg/kg) |                                |            |            |            |            |                                         |  |  |  |  |  |  |
|                                               | Boring                         | 21B1       | 21B2       | 21MW-1     | 21MW-2     | MTCA<br>Method A/B<br>Cleanup<br>Levels |  |  |  |  |  |  |
|                                               | Date Sampled                   | 12/20/2021 | 12/20/2021 | 12/20/2021 | 12/20/2021 |                                         |  |  |  |  |  |  |
|                                               | Sample interval, ft bgs        | 9.8        | 4.0        | 6.5        | 4.5        |                                         |  |  |  |  |  |  |
|                                               | Gasoline Range                 | <5         | <5         | <5         | <5         | 100/30 <sup>1</sup>                     |  |  |  |  |  |  |
| Detroloum                                     | Diesel Range                   | <50        | <50        | <50        | <50        | 2,000                                   |  |  |  |  |  |  |
| Petroleum                                     | Diesel Range w/ SGC            | <50        | <50        | <50        | <50        | 2,000                                   |  |  |  |  |  |  |
| Hydrocarbons                                  | Lube Oil Range                 | <250       | <250       | <250       | <250       | 2,000                                   |  |  |  |  |  |  |
|                                               | Lube Oil Range w/ SGC          | <250       | <250       | <250       | <250       | 2,000                                   |  |  |  |  |  |  |
|                                               | Benzene                        | <0.03      | < 0.03     | < 0.03     | < 0.03     | 0.03                                    |  |  |  |  |  |  |
| DTEV I                                        | Toluene                        | <0.05      | <0.05      | <0.05      | <0.05      | 7                                       |  |  |  |  |  |  |
| Naphthalene                                   | Ethylbenzene                   | <0.05      | <0.05      | <0.05      | <0.05      | 6                                       |  |  |  |  |  |  |
|                                               | Xylenes                        | <0.1       | <0.1       | <0.1       | <0.1       | 9                                       |  |  |  |  |  |  |
|                                               | Naphthalene                    | <0.05      | <0.05      | <0.05      | <0.05      | 5                                       |  |  |  |  |  |  |
| CPAHs                                         | Multiple Analytes <sup>2</sup> | ND         |            |            |            | 0.1 <sup>3</sup>                        |  |  |  |  |  |  |
| PCBs                                          | Multiple Analytes <sup>2</sup> | <0.02      |            |            |            | 1                                       |  |  |  |  |  |  |

#### Notes:

MTCA A / B – Ecology MTCA Method A / B soil cleanup levels, Chapter 173-340 WAC, shown for reference only. These cleanup apply at the Site, and are provided as a screening level indication of the environmental quality of the Site only.

1 - The Method A soil cleanup levels for gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylenes a the gasoline mixture is 100 mg/kg; all other mixtures are 30 mg/kg.

2 - See laboratory report for full list of CPAH and PCB analytes.

3 - Toxicity Equivalency Factor (TEF) method evaluates the toxicity of a mixture of structurally related chemicals with common me

A TEF is an estimate of the relative toxicity of a chemical compared to a reference chemical. A Toxic Equivalence (TEQ) is a sin from the product of concentration of the individual TEFs. For mixtures of cPAHs, the established reference chemical is benzo(a)<sup>µ</sup> MTCA Method A soil cleanup level of 0.1 mg/kg. Therefore, the calculated total cPAHs TEQ is compared to MTCA Method A soi benzo(a)<sup>µ</sup> benzo(a)<sup>µ</sup> pyrene of 0.1 mg/kg.

ND – None of the selected analytes detected.

< - Analyte not detected at listed reporting limit

Bold - Analyte Detected

| King County Metro South Facilities Task 200.01 |                                 |            |            |          |          |                                         |  |  |  |  |  |
|------------------------------------------------|---------------------------------|------------|------------|----------|----------|-----------------------------------------|--|--|--|--|--|
| Table 2- Groundwater Sampling Results          |                                 |            |            |          |          |                                         |  |  |  |  |  |
| All values in in micrograms per liter (ug/L)   |                                 |            |            |          |          |                                         |  |  |  |  |  |
|                                                | Boring                          | 21B1       | 21B2       | 21MW-1   | 21MW-2   | MTCA<br>Method A/B<br>Cleanup<br>Levels |  |  |  |  |  |
|                                                | Date Sampled                    | 12/20/2021 | 12/20/2021 | 1/5/2022 | 1/5/2022 |                                         |  |  |  |  |  |
| Approximate                                    | Depth to Groundwater (feet bgs) | 9.5        | 10.0       | 2.5      | 3.7      |                                         |  |  |  |  |  |
|                                                | Gasoline Range                  | <100       | <100       | <100     | <100     | 800/1,000 <sup>1</sup>                  |  |  |  |  |  |
| Potroloum                                      | Diesel Range                    | <50        | 72         | <50      | 96       | 500                                     |  |  |  |  |  |
| Hudroserbone                                   | Diesel Range w/ SGC             | <50        | <50        | <50      | <50      | 500                                     |  |  |  |  |  |
| Hydrocarbons                                   | Lube Oil Range                  | <250       | <250       | <250     | <250     | 500                                     |  |  |  |  |  |
|                                                | Lube Oil Range w/ SGC           | <250       | <250       | <250     | <250     | 500                                     |  |  |  |  |  |
|                                                | Benzene                         | <0.35      | <0.35      | <0.35    | <0.35    | 5                                       |  |  |  |  |  |
|                                                | Toluene                         | <1         | <1         | <1       | <1       | 1,000                                   |  |  |  |  |  |
| DIEA T<br>Naphthalana                          | Ethylbenzene                    | <1         | <1         | <1       | <1       | 700                                     |  |  |  |  |  |
| Naphthalene                                    | Xylenes                         | <2         | <2         | <2       | <2       | 1,000                                   |  |  |  |  |  |
|                                                | Naphthalene                     | <1         | <1         | <1       | <1       | 160                                     |  |  |  |  |  |
| CPAHs                                          | Multiple Analytes <sup>2</sup>  | ND         |            |          |          | 0.1 <sup>3</sup>                        |  |  |  |  |  |
| PCBs                                           | Multiple Analytes <sup>2</sup>  | <0.1       |            |          |          | 0.1                                     |  |  |  |  |  |

#### Notes:

MTCA A / B – Ecology MTCA Method A / B groundwater cleanup levels, Chapter 173-340 WAC, shown for reference only. These cleanup levels may not apply at the Site, and are provided as a screening level indication of the environmental quality of the Site only.

1 - The Method A Groundwater cleanup level for gasoline mixtures with benzene present is 800 ug/L, and without benzene is 1,000 ug/L.

2 - See laboratory report for full list of CPAH and PCB analytes.

3 - Toxicity Equivalency Factor (TEF) method evaluates the toxicity of a mixture of structurally related chemicals with common mechanism of action. A TEF is an estimate of the relative toxicity of a chemical compared to a reference chemical. A Toxic Equivalence (TEQ) is a single value resulting from the product of concentration of the individual TEFs. For mixtures of cPAHs, the established reference chemical is benzo(a)pyrene, which has a MTCA Method A groundwater cleanup level of 0.1 mg/kg. Therefore, the calculated total cPAHs TEQ is compared to MTCA Method A groundwater table value for benzo(a)pyrene of

0.1 mg/kg.

ND – None of the selected analytes detected. < - Analyte not detected at listed reporting limit **Bold** – Analyte Detected

# **APPENDIX A:**

# SITE EXPLORATION BORING AND WELL LOGS

| DRILLING COMPA<br>DRILLING METHO<br>SAMPLING METHO<br>LOCATION: See F | NY: Cascade Drilling, Inc.<br>D: Geoprobe Track Mounted Rig<br>DD: Direct Push<br>ïgure 2                                                                                                                                                                                                                                                                                                                                                          |                              |                                     |             |                              | DATE STARTED: 12/20/20<br>DATE COMPLETED: 12/20/<br>LOGGED BY: C. Bourgeois | 21<br>/2021                                               |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------|------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|
| DEPTH<br>(feet)<br>SYMBOL<br>USCS SOIL CLASS                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE TYPE<br>SAMPLE NUMBER | PEN. RESISTANCE<br>(blows/6 inches) | OTHER TESTS | WELL COMPLETION<br>SCHEMATIC | NOTES                                                                       | DEPTH                                                     |
|                                                                       | Concrete pavement, 9 inches thick.<br>(PORTLAND CEMENT CONCRETE)                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                     |             |                              |                                                                             |                                                           |
| -                                                                     | No recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                     |             |                              |                                                                             | -                                                         |
|                                                                       | Olive brown, very silty angular GRAVEL, moist.<br>(FILL)         Becomes less silty, crushed cobbles observed.         Pea gravel, moist. Clean.         Pea gravel, moist. Clean.         Pea gravel, moist. Clean.         GRAVEL with rust brown silt, moist.         Dark olive gray SILT. Petroleum odor noted, wet.<br>(NATIVE ALLUVIUM)         Low recovery.         Dark gray/black silty fine SAND, wet.         Olive gray SILT, moist. | ◆ 21B1-9.8                   |                                     | 0.          | 0                            | ₽                                                                           | -<br>-<br>-<br>5<br>-<br>-<br>-<br>-<br>-<br>-<br>10<br>- |
| _ SM                                                                  | Dark gray/black silty fine SAND, moist.                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                     |             |                              |                                                                             | -                                                         |
| 15                                                                    | Dark gray/black silty fine SAND, moist.<br>21B1 completed to 15 feet below ground surface (bgs).<br>Temporary well constructed for reconnaissance groundwater<br>samples. Temporary well removed and borehole backfilled<br>12/20/2021.                                                                                                                                                                                                            |                              |                                     |             |                              |                                                                             |                                                           |
| _                                                                     | Slight petroleum odor noted in groundwater.<br>No PID readings >0.0, odor, or sheen unless noted in<br>description.                                                                                                                                                                                                                                                                                                                                |                              |                                     |             |                              |                                                                             |                                                           |
| NOTE: This log of and therefore                                       | subsurface conditions applies only at the specified location and on<br>ore may not necessarily be indicative of other times and/or location                                                                                                                                                                                                                                                                                                        | the date indica<br>s.        | ied                                 |             |                              |                                                                             |                                                           |
| HW                                                                    | King County Metro Sou<br>Tukwila. WA                                                                                                                                                                                                                                                                                                                                                                                                               | ith Faciliti                 | es                                  |             | TEMP                         | ORARY WELL/BOF<br>21B1                                                      | RING                                                      |

GEOSCIENCES INC. MWELL 2021-062-WO31.GPJ 7/13/22

PROJECT NO.: 2021-062-WO31

| RILLING (<br>RILLING I<br>MPLING<br>(CATION | CO<br>ME<br>6 M<br>I: 5 | OMPA<br>THO<br>IETHO<br>See F | NY: Cascade Drilling, Inc.<br>D: Geoprobe Track Mounted Rig<br>DD: Direct Push<br>igure 2                                                                                         |                 |               |                                     |             |           |                              | DATE STARTED: 1<br>DATE COMPLETED<br>LOGGED BY: C. Bo | 2/20/2021<br>: 12/20/2021<br>ourgeois |
|---------------------------------------------|-------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------------------------|-------------|-----------|------------------------------|-------------------------------------------------------|---------------------------------------|
| (feet)<br>SYMBOL                            | _                       | USCS SOIL CLASS               | DESCRIPTION                                                                                                                                                                       | SAMPLE TYPE     | SAMPLE NUMBER | PEN. RESISTANCE<br>(blows/6 inches) | OTHER TESTS | PID (ppm) | WELL COMPLETION<br>SCHEMATIC | NOTES                                                 | ) DEPTH                               |
|                                             |                         |                               | Concrete pavement, 8 inches thick.<br>(PORTLAND CEMENT CONCRETE)<br>No recovery                                                                                                   |                 |               |                                     |             |           |                              |                                                       |                                       |
|                                             | 000                     | GM                            | Silty GRAVEL (FILL)                                                                                                                                                               |                 |               |                                     |             |           |                              |                                                       | -                                     |
|                                             | AIXICO V                |                               |                                                                                                                                                                                   | <sup>♥</sup> 21 | B2-4          |                                     |             | 0.0       |                              | Σ                                                     | -5                                    |
|                                             |                         | ML                            | Chocolate brown SILT with long roots, moist, wet at surface.<br>(NATIVE ALLUVIUM)                                                                                                 |                 |               |                                     |             |           |                              |                                                       |                                       |
|                                             |                         | ML                            | Olive brown/gray SILT with roots, moist                                                                                                                                           |                 |               |                                     |             |           |                              |                                                       | -                                     |
|                                             |                         |                               |                                                                                                                                                                                   |                 |               |                                     |             |           |                              |                                                       | 10                                    |
| -                                           |                         |                               | Olive brown slightly sandy SILT with some organics, moist.                                                                                                                        |                 |               |                                     |             |           |                              |                                                       |                                       |
|                                             |                         | SM                            | Dark gray/black silty SAND with some organics, moist.                                                                                                                             | 1               |               |                                     |             |           |                              |                                                       |                                       |
|                                             |                         |                               | Olive brown slightly sandy SILT with some organics, moist.                                                                                                                        |                 |               |                                     |             |           |                              |                                                       |                                       |
|                                             | *                       | SW                            | Dark gray/black SAND with some organics, moist.                                                                                                                                   |                 |               |                                     |             |           |                              |                                                       |                                       |
|                                             |                         |                               | No recovery.                                                                                                                                                                      |                 |               |                                     |             |           |                              |                                                       |                                       |
| ]                                           |                         |                               | 21B2 completed to 15 feet below ground surface (bgs).<br>Temporary well constructed for reconnaissance groundwater.<br>Temporary well removed and borehole backfilled 12/20/2021. |                 |               |                                     |             |           |                              |                                                       |                                       |
| _                                           |                         |                               | No PID readings >0.0, odor, or sheen unless noted in<br>description.<br>Groundwater measured at approximately 4.5 feet bgs after<br>temp well installed.                          |                 |               |                                     |             |           |                              |                                                       | _                                     |
| 1                                           |                         |                               |                                                                                                                                                                                   |                 |               |                                     |             |           |                              |                                                       | F                                     |
|                                             |                         |                               |                                                                                                                                                                                   |                 |               |                                     |             |           |                              |                                                       |                                       |
| TE: Thi<br>and                              | is lo<br>d tł           | og of<br>herefo               | subsurface conditions applies only at the specified location and on<br>ore may not necessarily be indicative of other times and/or locations                                      | the date<br>s.  | e indica      | ted                                 |             |           |                              |                                                       |                                       |
| F                                           |                         |                               | King County Metro Sout                                                                                                                                                            | h Fa            | cilitie       | es                                  |             | 7         | [EMP(                        | ORARY WELL<br>21B2                                    | /BORING                               |
|                                             |                         |                               | Tukwila, WA                                                                                                                                                                       |                 |               |                                     |             |           |                              |                                                       |                                       |

GEOSCIENCES INC. MWELL 2021-062-WO31.GPJ 7/13/22

PROJECT NO.: 2021-062-WO31



MWELL 2021-062-WO31.GPJ 7/13/22

2021-062-WO31 PROJECT NO .:



MWELL 2021-062-WO31.GPJ 7/13/22

2021-062-WO31 PROJECT NO .:

# APPENDIX B: FIELD DATA SHEETS

# **GROUNDWATER SAMPLE COLLECTION FORM**

| Project No.                                                                                                                                                                                                                                                                             | : 553-1521-242                                                                                                                                                                                                                                           | 2 WO31 Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sk 200.1      |                        | Date                                                                                                 | e: 1/5/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                       | Wel                                     | 1 ID: 2                                                                                                     | 1MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Project Nar<br>Sampling O                                                                                                                                                                                                                                                               | Project Name:       King County METRO South Facilities South Annex       Project Address:       11911 E Marginal Way S, Tukwila, WA         Sampling Organization:       Parametrix in Assoc. with HWA Geosciences       Samplers:       Chris Bourgeois |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                        |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Purge Data                                                                                                                                                                                                                                                                              | Purge Data                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                        |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Purge Equipment:       Peristaltic pump       Depth of Well (ft below TOC):       15.0         Pump Intake Depth (ft below TOC):       1.5       Well Casing/Diameter:       2"         Initial Depth to Water (ft below TOC):       2.54       Purge Time (from/to):       1045 -)[[8] |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                        |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Time                                                                                                                                                                                                                                                                                    | Depth to<br>Water<br>(ft below TOC)                                                                                                                                                                                                                      | Pump<br>Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge<br>Rate | Cum.<br>Vol.<br>Purged | Temp<br>(°C)                                                                                         | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specific<br>Conductance<br>(mg/cm)                                                                       | pH<br>(units)                           | ORP<br>(mv)                                                                                                 | Turbidity<br>(visual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments  |
| 1045<br>1045<br>1048<br>1048<br>1051<br>1051<br>1051<br>1100<br>1103<br>1103<br>1109<br>1112                                                                                                                                                                                            | 2.74<br>3.01<br>3.04<br>3.04<br>3.04<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.07<br>3.08<br>3.10<br>3.10                                                                                                             | 3<br>v 11<br>v 1 | 280<br>3      |                        | 6.06<br>6.08<br>6.04<br>5.92<br>5.93<br>5.88<br>5.88<br>5.88<br>5.88<br>5.85<br>5.85<br>5.67<br>5.67 | 2.77<br>1.83<br>1.58<br>1.94<br>1.19<br>1.19<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.07<br>1.07<br>1.07<br>1.07<br>1.83<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.59<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1 | 0.689<br>0.678<br>0.606<br>0.666<br>0.675<br>0.675<br>0.675<br>0.673<br>0.677<br>0.671<br>0.671<br>0.670 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 176.0<br>176.0<br>130.0<br>120.8<br>112.8<br>107.5<br>104.3<br>94.9<br>94.9<br>94.0<br>74.0<br>74.0<br>71.7 | Clear<br>Clear<br>Clear<br>d 11<br>d 1 |           |
| 1118                                                                                                                                                                                                                                                                                    | 1 4                                                                                                                                                                                                                                                      | <u>a</u> 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q 73          | ~Y gau                 | 5.72                                                                                                 | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.060                                                                                                    | 5.95                                    | 90.3                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No<br>odo |

1

Sampling Data

Sample ID:

Sample Analyses:

21MW-1

Sample Description (Color, Turbidity, Odor, Other):

| Laboratory:    | Friedman & Bruya  | Lab Dropoff Method: | in-person Lab Dropoff Date: 1/5/2021 |  |  |  |  |  |  |  |
|----------------|-------------------|---------------------|--------------------------------------|--|--|--|--|--|--|--|
| Additional Inf | ormation/Comments |                     |                                      |  |  |  |  |  |  |  |
| ir             | on bacteria in    | monment,            | Non observed in well in sample       |  |  |  |  |  |  |  |
|                | evged water       |                     |                                      |  |  |  |  |  |  |  |

1130

10%, or 3

<0.5

odorless

3%

**Stabilization Criteria** 

Time Collected:

ilear, NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene; PCBs, cPAHs (HOLD)

3%

# Parametrix

Vo

-SA

overcast

± 10 mv

38°F

± 0.1

Weather:

# **GROUNDWATER SAMPLE COLLECTION FORM**

| Project No  | .: 553-1521-24                      | 2 WO31 Ta       | sk 200.1        |                        | Da            | te: 1/5/2         | 022                                | We             | l <b>i ID:</b> 2 | 1MW-2                 |            |
|-------------|-------------------------------------|-----------------|-----------------|------------------------|---------------|-------------------|------------------------------------|----------------|------------------|-----------------------|------------|
| Project Na  | me: King County                     | METRO Sou       | th Facilities S | outh Anne>             | < Pro         | oject Address     | s: 11911 E M                       | arginal Wa     | y S, Tukwila     | a, WA                 |            |
| Sampling C  | Organization: Par                   | ametrix in A    | ssoc. with HV   | VA Geoscie             | nces Sai      | nplers:Ch         | ris Bourgeois                      |                |                  |                       |            |
| Purge Data  | 3                                   |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
| Purge Equ   | ipment: Peristal                    | ltic pump       |                 |                        |               | Dep               | th of Well (ft be                  | elow TOC):     | 15.0             |                       |            |
| Pump Inta   | ake Depth (ft below                 | v TOC):         | 8.0             |                        |               | Wel               | l Casing/Diamet                    | ter: <u>2"</u> |                  |                       |            |
| Initial Dep | oth to Water (ft bel                | ow TOC):        | 3.7             |                        |               | Purg              | ge Time (from/t                    | o):            | 222              | - 124                 | 6          |
| Time        | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate   | Cum.<br>Vol.<br>Purged | Temp<br>(°C)  | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units)  | ORP<br>(my)      | Turbidity<br>(visual) | Comments   |
| 1222        | 3.90                                | 2.5             | 260             |                        | 9.41          | 2-14              | 1.1778                             | 6.11           | 7.2              | Slight                | 5          |
| 1225        | 3.91                                |                 | 6.5             |                        | 9.90          | 1.12              | 1.175                              | 6.14           | -13.9            | )                     | J 1        |
| 228         | 3.91                                |                 | <u><u></u></u>  |                        | 10.01         | 0.94              | 1.174                              | 6.19 -         | -33.7            | pole ye               | Mon SI     |
| 201         | 201                                 |                 | <u><u></u></u>  |                        | 10-LO<br>m 33 | 0.18              | 1.172                              | 6.20           | 45.3             | <u> </u>              | 1 esi      |
| 1237        | 3.91                                |                 |                 |                        | 10.55         | ArlaG             | 1.167                              | 6.13.          | -100.4           |                       |            |
| 1240        | 3.91                                |                 | 266             |                        | 10.57         | 0.66              | 1.164                              | 6.13           | -67.7            | cleare                | · Less edi |
| 1243        | 3.91                                |                 | <u>ର</u>        |                        | 10.60         | 0.66              | 1,161                              | 6.24           | -72.3            |                       |            |
| 1246        | 3.91                                |                 | 6,6             |                        | 10(           | 0.21              | 1-153                              | 6.25           | -26,2            | - Clear               |            |
|             |                                     |                 |                 | ~ S gall               | ovs           |                   |                                    | ·              |                  | '=                    |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    | s              |                  |                       |            |
|             |                                     |                 |                 |                        |               | <u>_</u>          |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    | ·              |                  | (*=                   |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     | <u> </u>        |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
|             |                                     |                 | Stabilizatio    | on Criteria            | 3%            | 10%, or 3<br><0.5 | 3%                                 | ± 0,1          | ± 10 mv          |                       |            |
| Sampling D  | ata                                 |                 |                 |                        |               |                   |                                    |                |                  |                       |            |
| Sample ID   | : 21MW-2                            |                 | Tir             | ne Collecte            | ed:           | 1250              |                                    | Weather:       | 38"              | Forg                  | Remot      |
| Sample De   | escription (Color, Ti               | urbidity, Odd   | or, Other):     | ye                     | lliur         | broch             | - color                            | 300            | fi               | vit gal               | Lin purse  |
| Sample An   | alyses: NWTPH                       | I-Dx (w/ & w    | /o SGC), NW     | TPH-Gx, BT             | EX w/ Nap     | hthalene; PC      | Bs, cPAHs (HOL                     | .D)            | × .              | 0                     | V /        |
| Laborator   | y: Friedman & Br                    | ruya            | Lal             | b Dropoff N            | /lethod:      | Th-per            | vson                               | Lab Dropo      | off Date:        | 115/                  | 2021       |
| Additional  | Information/Com                     | ments           |                 |                        |               |                   |                                    |                |                  |                       |            |
| Sam         | yee ha                              | 9 51            | me              | Ovan                   | ge 1          | lakes             | + Shinh                            | n U            | enou             | 1 hug                 |            |
| She         | n in p                              | 0140            | buck            | est.                   | inh           | le                | Samp                               | iner           |                  |                       |            |
|             | •                                   | CIVO            | n bac           | berier                 | )             |                   |                                    |                |                  |                       |            |

**Parametrix** 

# **Field Report/Well Data**

|              | DATE                                       |                        | JOB NO.                      |    |  |  |
|--------------|--------------------------------------------|------------------------|------------------------------|----|--|--|
|              | 1/5/2021                                   |                        | 553-1521-242 WO31 Task 200.1 |    |  |  |
| TO:          | PROJECT                                    |                        |                              |    |  |  |
|              | King County METRO South                    | 1 Facilities           | South Annex                  |    |  |  |
| Lisa Gilbert | LOCATION                                   |                        |                              |    |  |  |
|              | 11911 E Marginal Way S, T                  | <sup>°</sup> ukwila, V | /A                           |    |  |  |
| Mike Brady   | CONTRACTOR                                 |                        | OWNER                        |    |  |  |
|              | Parametrix in Assoc. with H<br>Geosciences | IWA                    | King County METRO            |    |  |  |
| John Greene  | WEATHER                                    | TEMP                   | ° at                         | AM |  |  |
|              | 38° overeg                                 |                        | ° at                         | РМ |  |  |
|              | PRESENT AT SITE                            |                        |                              |    |  |  |
|              | Chris Bourgeois                            |                        |                              |    |  |  |
|              | Cierra Wilson                              |                        |                              |    |  |  |
|              | Al Thatcher                                |                        |                              |    |  |  |

#### THE FOLLOWING WAS NOTED:

| WN<br>(WELL<br>NUMBER) | Time | DTW<br>(DEPTH TO<br>WATER) | MP<br>(MÉASURE<br>POINT) | SU<br>(STICK UP OF<br>WELL CASING) | TD<br>(TOTAL DEPTH<br>OF WELL) | WD<br>(WELL<br>DIAMETER) | ]     |
|------------------------|------|----------------------------|--------------------------|------------------------------------|--------------------------------|--------------------------|-------|
| 21MW-1                 | 1017 | 2.54                       | PUC                      |                                    |                                | 2"                       |       |
| 21MW-2                 | 1220 | 3.70'                      | Ĩ                        |                                    |                                | 2"                       | 1     |
| SB-7                   | 928  | 3.43'                      |                          | ~D.01.'                            | 11.641                         | 2"                       | GDOR  |
| SB-8                   | 0843 | 4.291                      |                          |                                    |                                |                          |       |
| DW-3R                  | 940  | 3.12'                      |                          | -0.45 "                            | 879'                           | an 0,9                   | ID AV |
| DW-4R                  | 948  | 3.45'                      |                          | -0.39'                             |                                | 0,65 1                   | C     |
| E-1                    | VUV  |                            |                          |                                    | <i>.</i>                       |                          |       |
| E-2                    | 905  | 3,90'                      |                          | -4.6"                              | 15.76'                         | で                        |       |
| Stream E.              | 0859 | 6.581                      | 3                        |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |
|                        |      |                            |                          |                                    |                                |                          |       |

TOC (Top of Locking Casing) TOW (Top of Well Casing)

COPIES

# APPENDIX C: LABORATORY REPORTS
#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Ms Kapise:

Included is the amended report from the testing of material submitted on December 21, 2021 from the King County Metro South Facilities W031 2021-062-W021, F&BI 112414 project. Per your request, the project name has been updated.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (Parametrix), Lisa Gilbert (Parametrix) HWA0104R.DOC

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 4, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Ms Kapise:

Included are the results from the testing of material submitted on December 21, 2021 from the King County Metro South Facilities W031 2021-062-W021, F&BI 112414 project. There are 39 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (Parametrix), Lisa Gilbert (Parametrix) HWA0104R.DOC

#### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2020 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities W031 2021-062-W021, F&BI 112414 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | HWA Geosciences, Inc |
|----------------------|----------------------|
| 112414 -01           | 21B1                 |
| 112414 -02           | 21B2                 |
| 112414 -03           | 21B1-9.8             |
| 112414 -04           | 21MW-1-9.5           |
| 112414 -05           | 21MW-2-10            |
| 112414 -06           | 21B2-4               |
| 112414 -07           | 21MW-1-6.5           |
| 112414 -08           | 21MW-2-4.5           |
|                      |                      |

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/23/21 Date Analyzed: 12/23/21

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery</u> )<br>(Limit 50-150) |
|-----------------------------------|-----------------------|------------------------------------------------------|
| <b>21B1-9.8</b><br>112414-03      | <5                    | 88                                                   |
| 21B2-4<br>112414-06               | <5                    | 87                                                   |
| 21MW-1-6.5<br>112414-07           | <5                    | 75                                                   |
| 21MW-2-4.5<br>112414-08           | <5                    | 88                                                   |
| Method Blank<br>01-2680 MB        | <5                    | 135                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/23/21 Date Analyzed: 12/23/21

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Gasoline Range | Surrogate<br>( <u>% Recovery)</u><br>(Limit 51-134) |
|-----------------------------------|----------------|-----------------------------------------------------|
| <b>21B1</b><br>112414-01          | <100           | 83                                                  |
| 21B2<br>112414-02                 | <100           | 83                                                  |
| Method Blank<br>01-2681 MB        | <100           | 81                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/22/21 Date Analyzed: 12/22/21

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID          | Diesel Range<br>(C10-C25) | <u>Motor Oil Range</u><br>(C <sub>25</sub> -C <sub>36</sub> ) | Surrogate<br><u>(% Recovery)</u><br>(Limit 48-168) |
|--------------------------------------------|---------------------------|---------------------------------------------------------------|----------------------------------------------------|
| 21B1-9.8<br>112414-03                      | <50                       | <250                                                          | 105                                                |
| 21B2-4<br>112414-06                        | <50                       | <250                                                          | 100                                                |
| $\underset{112414-07}{21 \text{MW-1-6.5}}$ | <50                       | <250                                                          | 97                                                 |
| 21MW-2-4.5<br>112414-08                    | <50                       | <250                                                          | 100                                                |
| Method Blank                               | <50                       | <250                                                          | 103                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/22/21 Date Analyzed: 12/22/21

### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 56-165) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21B1-9.8<br>112414-03             | <50                       | <250                         | 108                                                |
| 21B2-4<br>112414-06               | <50                       | <250                         | 104                                                |
| 21MW-1-6.5<br>112414-07           | <50                       | <250                         | 109                                                |
| 21MW-2-4.5<br>112414-08           | <50                       | <250                         | 107                                                |
| Method Blank<br>01-2914 MB        | <50                       | <250                         | 143                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/22/21 Date Analyzed: 12/22/21

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21B1<br>112414-01                 | <50                       | <250                         | 127                                                |
| 21B2<br>112414-02                 | 72 x                      | <250                         | 127                                                |
| Method Blank<br>01-2912 MB2       | <50                       | <250                         | 108                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414 Date Extracted: 12/22/21 Date Analyzed: 12/22/21

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | <u>Diesel Range</u><br>(C <sub>10</sub> -C <sub>25</sub> ) | <u>Motor Oil Range</u><br>(C <sub>25</sub> -C <sub>36</sub> ) | Surrogate<br><u>(% Recovery)</u><br>(Limit 47-140) |
|-----------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|
| 21B1<br>112414-01                 | <50                                                        | <250                                                          | 111                                                |
| 21B2<br>112414-02                 | <50                                                        | <250                                                          | 129                                                |
| Method Blank<br>01-2912 MB2       | <50                                                        | <250                                                          | 113                                                |

# ENVIRONMENTAL CHEMISTS

| 21B1-9.8<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm) | Dry Weight                                                                       | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-03<br>122245.D<br>GCMS4<br>WE                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                  | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                     | % Recovery:                                                                      | Limit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d4                                                                  | 101                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                     | 99                                                                               | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ene                                                                 | 100                                                                              | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (                                                                   | Concentration                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | mg/kg (ppm)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.03                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.05                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.05                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.05                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | < 0.05                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | 21B1-9.8<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm)<br>d4<br>ene | $\begin{array}{c} 21B1-9.8 \\ 12/21/21 \\ 12/22/21 \\ 12/23/21 \\ Soil \\ mg/kg (ppm) Dry Weight \\ \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | $\begin{array}{cccccc} 21B1-9.8 & & Client: \\ 12/21/21 & & Project: \\ 12/22/21 & & Lab ID: \\ 12/23/21 & & Data File: \\ Soil & & Instrument: \\ mg/kg (ppm) Dry Weight & Operator: \\ & & Lower \\ & & & Mecovery: \\ d4 & 101 & 90 \\ & 99 & 89 \\ ene & 100 & 84 \\ \hline & & Concentration \\ & & mg/kg (ppm) \\ & < 0.03 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & \\ \end{array}$ |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:2Date Received:1Date Extracted:1Date Analyzed:1Matrix:SUnits:n | 21B2-4<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>ng/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-06<br>122246.D<br>GCMS4<br>WE |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                              | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                     | % Recovery:                                                                  | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane-da                                                           | 4 101                                                                        | 90                                                                       | 109                                                                                                |
| Toluene-d8                                                                      | 103                                                                          | 89                                                                       | 112                                                                                                |
| 4-Bromofluorobenzen                                                             | e 101                                                                        | 84                                                                       | 115                                                                                                |
|                                                                                 | Concentration                                                                |                                                                          |                                                                                                    |
| Compounds:                                                                      | mg/kg (ppm)                                                                  |                                                                          |                                                                                                    |
| Benzene                                                                         | < 0.03                                                                       |                                                                          |                                                                                                    |
| Toluene                                                                         | < 0.05                                                                       |                                                                          |                                                                                                    |
| Ethylbenzene                                                                    | < 0.05                                                                       |                                                                          |                                                                                                    |
| m,p-Xylene                                                                      | < 0.1                                                                        |                                                                          |                                                                                                    |
| o-Xylene                                                                        | < 0.05                                                                       |                                                                          |                                                                                                    |
| Naphthalene                                                                     | < 0.05                                                                       |                                                                          |                                                                                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-1-6.5<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm) | Dry Weight    | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-07<br>122247.D<br>GCMS4<br>WE |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                       |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                       | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane-                                                                           | d4                                                                    | 93            | 90                                                                       | 109                                                                                                |
| Toluene-d8                                                                                    |                                                                       | 99            | 89                                                                       | 112                                                                                                |
| 4-Bromofluorobenze                                                                            | ne                                                                    | 99            | 84                                                                       | 115                                                                                                |
|                                                                                               | (                                                                     | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                       | mg/kg (ppm)   |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                       | < 0.03        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                       | < 0.05        |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                       | < 0.05        |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                       | < 0.1         |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                       | < 0.05        |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                       | < 0.05        |                                                                          |                                                                                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-2-4.5<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm) | Dry Weight   | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-08<br>122248.D<br>GCMS4<br>WE |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                       |              | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                       | % Recovery:  | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane-                                                                           | d4                                                                    | 104          | 90                                                                       | 109                                                                                                |
| Toluene-d8                                                                                    |                                                                       | 100          | 89                                                                       | 112                                                                                                |
| 4-Bromofluorobenze                                                                            | ne                                                                    | 98           | 84                                                                       | 115                                                                                                |
|                                                                                               | C                                                                     | oncentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    | :                                                                     | mg/kg (ppm)  |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                       | < 0.03       |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                       | < 0.05       |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                       | < 0.05       |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                       | < 0.1        |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                       | < 0.05       |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                       | < 0.05       |                                                                          |                                                                                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:   | Method Blanl  | x             | Client:     | HWA Geosciences, Inc               |
|---------------------|---------------|---------------|-------------|------------------------------------|
| Date Received:      | Not Applicabl | le            | Project:    | King County Metro South Facilities |
| Date Extracted:     | 12/22/21      |               | Lab ID:     | 01-2847 mb                         |
| Date Analyzed:      | 12/22/21      |               | Data File:  | 122239.D                           |
| Matrix:             | Soil          |               | Instrument: | GCMS4                              |
| Units:              | mg/kg (ppm)   | Dry Weight    | Operator:   | WE                                 |
|                     |               |               | Lower       | Upper                              |
| Surrogates:         |               | % Recovery:   | Limit:      | Limit:                             |
| 1,2-Dichloroethane- | d4            | 101           | 90          | 109                                |
| Toluene-d8          |               | 100           | 89          | 112                                |
| 4-Bromofluorobenze  | ene           | 102           | 84          | 115                                |
|                     | C             | Concentration |             |                                    |
| Compounds:          | :             | mg/kg (ppm)   |             |                                    |
| Benzene             |               | < 0.03        |             |                                    |
| Toluene             |               | < 0.05        |             |                                    |
| Ethylbenzene        |               | < 0.05        |             |                                    |
| m,p-Xylene          |               | < 0.1         |             |                                    |
| o-Xylene            |               | < 0.05        |             |                                    |
| Naphthalene         |               | < 0.05        |             |                                    |

# ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21B1<br>12/21/21<br>12/22/21<br>12/23/21<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-01<br>122325.D<br>GCMS13<br>WE |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                               |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                              |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 107           | 85                                                                       | 117                                                                                                 |
| Toluene-d8                                                                                    |                                                                 | 94            | 88                                                                       | 112                                                                                                 |
| 4-Bromofluorobenz                                                                             | ene                                                             | 103           | 90                                                                       | 111                                                                                                 |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                     |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                     |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                     |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                     |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                     |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                     |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                     |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                     |

# ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21B2<br>12/21/21<br>12/22/21<br>12/23/21<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-02<br>122326.D<br>GCMS13<br>WE |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                               |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                              |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 111           | 85                                                                       | 117                                                                                                 |
| Toluene-d8                                                                                    |                                                                 | 98            | 88                                                                       | 112                                                                                                 |
| 4-Bromofluorobenze                                                                            | ene                                                             | 100           | 90                                                                       | 111                                                                                                 |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                     |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                     |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                     |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                     |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                     |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                     |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                     |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                     |

# ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Bla<br>Not Applica<br>12/22/21<br>12/22/21<br>Water | nk<br>able    | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>01-2848 mb<br>122207.D<br>GCMS13<br>WF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Onits.                                                                                        | ug/11 (ppb)                                                |               | operator.                                                                |                                                                                                      |
|                                                                                               |                                                            |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                            | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | e-d4                                                       | 108           | 85                                                                       | 117                                                                                                  |
| Toluene-d8                                                                                    |                                                            | 95            | 88                                                                       | 112                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                        | 102           | 90                                                                       | 111                                                                                                  |
|                                                                                               |                                                            | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                            | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                            | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                            | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                            | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                            | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                            | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                            | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

| 21B1-9.8<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm) | ) Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-03 1/5<br>122317.D<br>GCMS9<br>VM |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ol                                                                  | $\% \ { m Recovery:} \ 75 \ 84 \ 94 \ 83 \ 84 \ 95 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower<br>Limit:<br>24<br>37<br>38<br>45<br>11<br>50                      | Upper<br>Limit:<br>111<br>116<br>117<br>117<br>158<br>124                                              |
|                                                                     | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                        |
| ne<br>ne<br>ne<br>ene<br>ene                                        | <pre>&lt;0.01 &lt;0.01 &lt;</pre> |                                                                          |                                                                                                        |
| 9<br>5116                                                           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                                                                        |
|                                                                     | 21B1-9.8<br>12/21/21<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm)<br>ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                                          | Method Blank<br>Not Applicable<br>12/22/21<br>12/23/21<br>Soil<br>mg/kg (ppm) Dry Weight                                                                                                                   | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>01-2920 mb 1/5<br>122308.D<br>GCMS12<br>VM |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromopheny<br>Terphenyl-d14                                                                                                                                                              | % Recovery:<br>77<br>88<br>85<br>89<br>ol 89<br>102                                                                                                                                                        |                                                                          | Upper<br>Limit:<br>103<br>109<br>138<br>150<br>127<br>150                                                |
| Compounds:                                                                                                                                                                                                                                                                             | Concentration<br>mg/kg (ppm)                                                                                                                                                                               |                                                                          |                                                                                                          |
| Naphthalene<br>2-Methylnaphthaler<br>1-Methylnaphthaler<br>Acenaphthylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene<br>Anthracene<br>Fluoranthene<br>Pyrene<br>Benz(a)anthracene<br>Chrysene<br>Benzo(a)pyrene<br>Benzo(b)fluoranther<br>Benzo(k)fluoranther<br>Indeno(1,2,3-cd)pyre | $\begin{array}{cccc} <0.01\\ \text{ne} & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & <0.01\\ & \\ & ene & <0.01\\ \end{array}$ |                                                                          |                                                                                                          |
| Dibenz(a,h)anthrace<br>Benzo(g,h.i)pervlene                                                                                                                                                                                                                                            | ene <0.01<br>e <0.01                                                                                                                                                                                       |                                                                          |                                                                                                          |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                  | 21B1<br>12/21/21<br>12/22/21<br>12/23/21<br>Water<br>ug/L (ppb) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-01 1/2<br>122313.D<br>GCMS9<br>VM |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen<br>Terphenyl-d14                                                                                                                                       | ol                                                              | % Recovery:<br>41<br>31<br>112<br>89<br>98<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lower<br>Limit:<br>10<br>10<br>15<br>25<br>10<br>41                      | Upper<br>Limit:<br>60<br>49<br>144<br>128<br>142<br>138                                                |
| Compounds:                                                                                                                                                                                                                                                     |                                                                 | Concentration<br>ug/L (ppb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                        |
| Naphthalene<br>2-Methylnaphthalen<br>1-Methylnaphthalen<br>Acenaphthylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene<br>Anthracene<br>Fluoranthene<br>Pyrene<br>Benz(a)anthracene<br>Chrysene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthen<br>Benzo(k)fluoranthen | ne<br>ne<br>ne                                                  | $<0.4 \\<0.4 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\\\0.04 \\<0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0.04 \\\\0$ |                                                                          |                                                                                                        |
| Benzo(k)fluoranthe<br>Indeno(1,2,3-cd)pyr<br>Dibenz(a,h)anthrac<br>Benzo(g,h,i)perylen                                                                                                                                                                         | ne<br>ene<br>ene<br>e                                           | <0.04<br><0.04<br><0.04<br><0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                                                        |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                                                                | Method Blar<br>Not Applical<br>12/22/21<br>12/23/21<br>Water<br>ug/L (ppb) | nk<br>ble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                       | HWA Geosciences, Inc<br>King County Metro South Facilities<br>01-2918 mb<br>122309.D<br>GCMS9<br>VM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen<br>Terphenyl-d14                                                                                                                                                                                     | ol                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 10 \\ 10 \\ 15 \\ 25 \\ 10 \\ 41 \end{array}$ | Upper<br>Limit:<br>60<br>49<br>144<br>128<br>142<br>138                                             |
| Compounds:                                                                                                                                                                                                                                                                                                   |                                                                            | Concentration<br>ug/L (ppb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                                                                                                     |
| Naphthalene<br>2-Methylnaphthalen<br>1-Methylnaphthalen<br>Acenaphthylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene<br>Anthracene<br>Fluoranthene<br>Pyrene<br>Benz(a)anthracene<br>Chrysene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthen<br>Benzo(k)fluoranthen<br>Indeno(1,2,3-cd)pyr<br>Dibenz(a,h)anthrace | ne<br>ne<br>ne<br>ene<br>ene                                               | <0.2 < 0.2 < 0.2 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0. |                                                                                                |                                                                                                     |
| Benzo(g,h,i)perylen                                                                                                                                                                                                                                                                                          | e                                                                          | < 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                |                                                                                                     |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21B1-9.8<br>12/21/21<br>12/28/21<br>12/29/21<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-03 1/6<br>122906.D<br>GC9<br>VM |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Surrogates:<br>TCMX                                                                           | % Recovery:<br>85                                                              | Lower<br>Limit:<br>23                                                    | Upper<br>Limit:<br>120                                                                               |
| Compounds:                                                                                    | Concentration<br>mg/kg (ppm)                                                   |                                                                          |                                                                                                      |
| Aroclor 1221                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1232                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1016                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1242                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1248                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1254                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1260                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1262                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |
| Aroclor 1268                                                                                  | < 0.02                                                                         |                                                                          |                                                                                                      |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:   | Method Blank           | Client:               | HWA Geosciences, Inc               |
|---------------------|------------------------|-----------------------|------------------------------------|
| Date Received:      | Not Applicable         | Project:              | King County Metro South Facilities |
| Date Extracted:     | 12/28/21               | Lab ID:               | 01-2940 mb 1/6                     |
| Date Analyzed:      | 12/29/21               | Data File:            | 122904.D                           |
| Matrix:             | Soil                   | Instrument:           | GC9                                |
| Units:              | mg/kg (ppm) Dry Weight | Operator:             | VM                                 |
| Surrogates:<br>TCMX | % Recovery:<br>104     | Lower<br>Limit:<br>23 | Upper<br>Limit:<br>120             |
|                     | Concentration          |                       |                                    |
| Compounds:          | mg/kg (ppm)            |                       |                                    |
| Aroclor 1221        | < 0.02                 |                       |                                    |
| Aroclor 1232        | < 0.02                 |                       |                                    |
| Aroclor 1016        | < 0.02                 |                       |                                    |
| Aroclor 1242        | < 0.02                 |                       |                                    |
| Aroclor 1248        | < 0.02                 |                       |                                    |
| Aroclor 1254        | < 0.02                 |                       |                                    |
| Aroclor 1260        | < 0.02                 |                       |                                    |
| Aroclor 1262        | < 0.02                 |                       |                                    |
| Aroclor 1268        | < 0.02                 |                       |                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21B1<br>12/21/21<br>12/22/21<br>12/22/21<br>Water<br>ug/L (ppb) |                   | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>112414-01<br>122231.D<br>GC9<br>VM |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Surrogates:<br>TCMX                                                                           |                                                                 | % Recovery:<br>42 | Lower<br>Limit:<br>25                                                    | Upper<br>Limit:<br>160                                                                           |
|                                                                                               |                                                                 | Concentration     |                                                                          |                                                                                                  |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)        |                                                                          |                                                                                                  |
| Aroclor 1221                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1232                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1016                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1242                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1248                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1254                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1260                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1262                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |
| Aroclor 1268                                                                                  |                                                                 | < 0.1             |                                                                          |                                                                                                  |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:   | Method Blank      | Client:               | HWA Geosciences, Inc               |
|---------------------|-------------------|-----------------------|------------------------------------|
| Date Received:      | Not Applicable    | Project:              | King County Metro South Facilities |
| Date Extracted:     | 12/22/21          | Lab ID:               | 01-2917 mb2                        |
| Date Analyzed:      | 12/22/21          | Data File:            | 122225.D                           |
| Matrix:             | Water             | Instrument:           | GC9                                |
| Units:              | ug/L (ppb)        | Operator:             | VM                                 |
| Surrogates:<br>TCMX | % Recovery:<br>57 | Lower<br>Limit:<br>25 | Upper<br>Limit:<br>160             |
|                     | Concentration     |                       |                                    |
| Compounds:          | ug/L (ppb)        |                       |                                    |
| Aroclor 1221        | < 0.1             |                       |                                    |
| Aroclor 1232        | < 0.1             |                       |                                    |
| Aroclor 1016        | < 0.1             |                       |                                    |
| Aroclor 1242        | < 0.1             |                       |                                    |
| Aroclor 1248        | < 0.1             |                       |                                    |
| Aroclor 1254        | < 0.1             |                       |                                    |
| Aroclor 1260        | < 0.1             |                       |                                    |
| Aroclor 1262        | <0.1              |                       |                                    |
| Aroclor 1268        | < 0.1             |                       |                                    |

### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 1 | 12423-01 (Duplic | eate)           |         |              |            |
|--------------------|------------------|-----------------|---------|--------------|------------|
|                    |                  | Samp            | ole D   | uplicate     |            |
|                    | Reporting        | Resu            | lt      | Result       | RPD        |
| Analyte            | Units            | (Wet V          | Nt) (   | Wet Wt)      | (Limit 20) |
| Gasoline           | mg/kg (ppm)      | <5              |         | <5           | nm         |
| Laboratory Code: L | aboratory Contro | ol Sample       | e       |              |            |
|                    |                  |                 | Percent | ,            |            |
|                    | Reporting        | Spike           | Recover | y Acceptance | Э          |
| Analyte            | Units            | Level           | LCS     | Criteria     |            |
| Gasoline           | mg/kg (ppm)      | $\overline{20}$ | 95      | 71-131       |            |

### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 112 | 2410-01 (Duplie | cate)     |          |            |            |
|----------------------|-----------------|-----------|----------|------------|------------|
|                      | Reporting       | Samp      | le Duj   | olicate    | RPD        |
| Analyte              | Units           | Resul     | t Re     | esult      | (Limit 20) |
| Gasoline             | ug/L (ppb)      | <100      | ) <      | :100       | nm         |
| Laboratory Code: La  | boratory Contr  | ol Sample | _        |            |            |
|                      |                 |           | Percent  |            |            |
|                      | Reporting       | Spike     | Recovery | Acceptance |            |
| Analyte              | Units           | Level     | LCS      | Criteria   | _          |
| Gasoline             | ug/L (ppb)      | 1,000     | 86       | 69-134     | _          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 112414-03 (Matrix Spike) Sample Percent Percent Reporting Result Spike Recovery Recovery Acceptance RPD Analyte Units Level (Wet Wt) MSMSD Criteria (Limit 20) **Diesel Extended** mg/kg (ppm) 5,000 <50 108 10273-135 6 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 5,000 74-139 mg/kg (ppm) 100

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: | 112414-03 (Matri | x Spike)  |            |          |          |            |            |
|------------------|------------------|-----------|------------|----------|----------|------------|------------|
|                  |                  |           | Sample     | Percent  | Percent  |            |            |
|                  | Reporting        | Spike     | Result     | Recovery | Recovery | Acceptance | RPD        |
| Analyte          | Units            | Level     | (Wet Wt)   | MS       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended  | mg/kg (ppm)      | 5,000     | <50        | 110      | 112      | 63-146     | 2          |
| Laboratory Code: | Laboratory Contr | ol Silica | Gel Sample | e        |          |            |            |
|                  |                  |           | Percent    | t        |          |            |            |
|                  | Reporting        | Spike     | Recover    | y Accep  | tance    |            |            |
| Analyte          | Units            | Level     | LCS        | Crit     | eria     |            |            |
| Diesel Extended  | mg/kg (ppm)      | 5,000     | 102        | 79-1     | 144      |            |            |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: Laboratory Control Silica Gel Sample |            |       |          |          |            |            |  |  |  |
|-------------------------------------------------------|------------|-------|----------|----------|------------|------------|--|--|--|
| Percent Percent                                       |            |       |          |          |            |            |  |  |  |
|                                                       | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |  |  |  |
| Analyte                                               | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |  |  |  |
| Diesel Extended                                       | ug/L (ppb) | 2,500 | 128      | 120      | 61-133     | 8          |  |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  | Percent  |            |                      |
|-----------------|------------|-------|----------|----------|------------|----------------------|
|                 | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte         | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Diesel Extended | ug/L (ppb) | 2,500 | 108      | 104      | 63-142     | 4                    |

### ENVIRONMENTAL CHEMISTS

### Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 112396-01 (Matrix Spike)

| Basoratory coact | ri=ooo or (inderin opino) |       |          |          |          |            |                      |
|------------------|---------------------------|-------|----------|----------|----------|------------|----------------------|
|                  |                           |       | Sample   | Percent  | Percent  |            |                      |
|                  | Reporting                 | Spike | Result   | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte          | Units                     | Level | (Wet wt) | MS       | MSD      | Criteria   | (Limit 20)           |
| Benzene          | mg/kg (ppm)               | 1     | < 0.03   | 90       | 85       | 29-129     | 6                    |
| Toluene          | mg/kg (ppm)               | 1     | < 0.05   | 92       | 85       | 35 - 130   | 8                    |
| Ethylbenzene     | mg/kg (ppm)               | 1     | < 0.05   | 94       | 88       | 32 - 137   | 7                    |
| m,p-Xylene       | mg/kg (ppm)               | 2     | < 0.1    | 96       | 88       | 34 - 136   | 9                    |
| o-Xylene         | mg/kg (ppm)               | 1     | < 0.05   | 95       | 90       | 33 - 134   | <b>5</b>             |
| Naphthalene      | mg/kg (ppm)               | 1     | < 0.05   | 94       | 87       | 14 - 157   | 8                    |

### ENVIRONMENTAL CHEMISTS

### Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

|              | I I I I I I I I I | Percent |          |            |  |  |  |  |
|--------------|-------------------|---------|----------|------------|--|--|--|--|
|              | Reporting         | Spike   | Recovery | Acceptance |  |  |  |  |
| Analyte      | Units             | Level   | LCS      | Criteria   |  |  |  |  |
| Benzene      | mg/kg (ppm)       | 1       | 94       | 71-118     |  |  |  |  |
| Toluene      | mg/kg (ppm)       | 1       | 97       | 66-126     |  |  |  |  |
| Ethylbenzene | mg/kg (ppm)       | 1       | 97       | 64-123     |  |  |  |  |
| m,p-Xylene   | mg/kg (ppm)       | 2       | 96       | 78 - 122   |  |  |  |  |
| o-Xylene     | mg/kg (ppm)       | 1       | 97       | 77 - 124   |  |  |  |  |
| Naphthalene  | mg/kg (ppm)       | 1       | 97       | 63-140     |  |  |  |  |

### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 112409-01 (Matrix Spike)

| -            |            |       |        | Percent  |            |
|--------------|------------|-------|--------|----------|------------|
|              | Reporting  | Spike | Sample | Recovery | Acceptance |
| Analyte      | Units      | Level | Result | MS       | Criteria   |
| Benzene      | ug/L (ppb) | 10    | < 0.35 | 98       | 50 - 150   |
| Toluene      | ug/L (ppb) | 10    | <1     | 100      | 50 - 150   |
| Ethylbenzene | ug/L (ppb) | 10    | <1     | 101      | 50 - 150   |
| m,p-Xylene   | ug/L (ppb) | 20    | <2     | 104      | 50 - 150   |
| o-Xylene     | ug/L (ppb) | 10    | <1     | 101      | 50 - 150   |
| Naphthalene  | ug/L (ppb) | 10    | <1     | 93       | 50 - 150   |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

|              | control Sample |       | Percent  | Percent  |            |            |
|--------------|----------------|-------|----------|----------|------------|------------|
|              | Reporting      | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte      | Units          | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Benzene      | ug/L (ppb)     | 10    | 95       | 97       | 70-130     | 2          |
| Toluene      | ug/L (ppb)     | 10    | 96       | 100      | 70-130     | 4          |
| Ethylbenzene | ug/L (ppb)     | 10    | 99       | 102      | 70-130     | 3          |
| m,p-Xylene   | ug/L (ppb)     | 20    | 102      | 104      | 70-130     | 2          |
| o-Xylene     | ug/L (ppb)     | 10    | 98       | 102      | 70-130     | 4          |
| Naphthalene  | ug/L (ppb)     | 10    | 91       | 96       | 70-130     | <b>5</b>   |

### ENVIRONMENTAL CHEMISTS

### Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 112423-01 1/5 (Matrix Spike)

| aboratory Code: 112423-01 1/5 (Matrix Spike) |             |       |                         |          |          |            |                      |  |
|----------------------------------------------|-------------|-------|-------------------------|----------|----------|------------|----------------------|--|
| 0                                            | ,           | 1     | Sample                  | Percent  | Percent  |            |                      |  |
|                                              | Reporting   | Spike | $\operatorname{Result}$ | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |  |
| Analyte                                      | Únits Ö     | Level | (Wet wt)                | MS       | MSD      | Criteria   | (Limit 20)           |  |
| Naphthalene                                  | mg/kg (ppm) | 0.83  | < 0.01                  | 75       | 73       | 50 - 150   | 3                    |  |
| 2-Methylnaphthalene                          | mg/kg (ppm) | 0.83  | < 0.01                  | 79       | 77       | 50 - 150   | 3                    |  |
| 1-Methylnaphthalene                          | mg/kg (ppm) | 0.83  | < 0.01                  | 77       | 76       | 50 - 150   | 1                    |  |
| Acenaphthylene                               | mg/kg (ppm) | 0.83  | < 0.01                  | 82       | 81       | 50 - 150   | 1                    |  |
| Acenaphthene                                 | mg/kg (ppm) | 0.83  | < 0.01                  | 79       | 79       | 50 - 150   | 0                    |  |
| Fluorene                                     | mg/kg (ppm) | 0.83  | < 0.01                  | 83       | 82       | 50 - 150   | 1                    |  |
| Phenanthrene                                 | mg/kg (ppm) | 0.83  | < 0.01                  | 82       | 83       | 50 - 150   | 1                    |  |
| Anthracene                                   | mg/kg (ppm) | 0.83  | < 0.01                  | 81       | 83       | 50 - 150   | 2                    |  |
| Fluoranthene                                 | mg/kg (ppm) | 0.83  | < 0.01                  | 85       | 82       | 50 - 150   | 4                    |  |
| Pyrene                                       | mg/kg (ppm) | 0.83  | < 0.01                  | 92       | 86       | 50 - 150   | 7                    |  |
| Benz(a)anthracene                            | mg/kg (ppm) | 0.83  | < 0.01                  | 85       | 87       | 50 - 150   | 2                    |  |
| Chrysene                                     | mg/kg (ppm) | 0.83  | < 0.01                  | 87       | 87       | 50 - 150   | 0                    |  |
| Benzo(a)pyrene                               | mg/kg (ppm) | 0.83  | < 0.01                  | 89       | 90       | 50 - 150   | 1                    |  |
| Benzo(b)fluoranthene                         | mg/kg (ppm) | 0.83  | < 0.01                  | 88       | 86       | 50 - 150   | 2                    |  |
| Benzo(k)fluoranthene                         | mg/kg (ppm) | 0.83  | < 0.01                  | 85       | 86       | 50 - 150   | 1                    |  |
| Indeno(1,2,3-cd)pyrene                       | mg/kg (ppm) | 0.83  | < 0.01                  | 97       | 97       | 50 - 150   | 0                    |  |
| Dibenz(a,h)anthracene                        | mg/kg (ppm) | 0.83  | < 0.01                  | 95       | 96       | 50 - 150   | 1                    |  |
| Benzo(g,h,i)perylene                         | mg/kg (ppm) | 0.83  | < 0.01                  | 95       | 96       | 50-150     | 1                    |  |
## ENVIRONMENTAL CHEMISTS

## Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

| Basoratory coat. Basoratory | control pair       | 101010         | -                          |                        |
|-----------------------------|--------------------|----------------|----------------------------|------------------------|
| Analyte                     | Reporting<br>Units | Spike<br>Level | Percent<br>Recovery<br>LCS | Acceptance<br>Criteria |
| Naphthalene                 | mg/kg (ppm)        | 0.83           | 83                         | 61-102                 |
| 2-Methylnaphthalene         | mg/kg (ppm)        | 0.83           | 84                         | 62-108                 |
| 1-Methylnaphthalene         | mg/kg (ppm)        | 0.83           | 83                         | 62-108                 |
| Acenaphthylene              | mg/kg (ppm)        | 0.83           | 92                         | 61-111                 |
| Acenaphthene                | mg/kg (ppm)        | 0.83           | 90                         | 61-110                 |
| Fluorene                    | mg/kg (ppm)        | 0.83           | 91                         | 62-114                 |
| Phenanthrene                | mg/kg (ppm)        | 0.83           | 90                         | 64-112                 |
| Anthracene                  | mg/kg (ppm)        | 0.83           | 90                         | 63-111                 |
| Fluoranthene                | mg/kg (ppm)        | 0.83           | 90                         | 66-115                 |
| Pyrene                      | mg/kg (ppm)        | 0.83           | 100                        | 65-112                 |
| Benz(a)anthracene           | mg/kg (ppm)        | 0.83           | 94                         | 64-116                 |
| Chrysene                    | mg/kg (ppm)        | 0.83           | 95                         | 66-119                 |
| Benzo(a)pyrene              | mg/kg (ppm)        | 0.83           | 97                         | 62-116                 |
| Benzo(b)fluoranthene        | mg/kg (ppm)        | 0.83           | 100                        | 61-118                 |
| Benzo(k)fluoranthene        | mg/kg (ppm)        | 0.83           | 92                         | 65-119                 |
| Indeno(1,2,3-cd)pyrene      | mg/kg (ppm)        | 0.83           | 102                        | 64-130                 |
| Dibenz(a,h)anthracene       | mg/kg (ppm)        | 0.83           | 102                        | 67-131                 |
| Benzo(g,h,i)perylene        | mg/kg (ppm)        | 0.83           | 102                        | 67-126                 |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

ъ

Laboratory Code: Laboratory Control Sample

| Laboratory Coue. Laboratory Co | meror Sampi        | .c             |                            |                             |                        |                   |
|--------------------------------|--------------------|----------------|----------------------------|-----------------------------|------------------------|-------------------|
| Analyte                        | Reporting<br>Units | Spike<br>Level | Percent<br>Recovery<br>LCS | Percent<br>Recovery<br>LCSD | Acceptance<br>Criteria | RPD<br>(Limit 20) |
| Naphthalene                    | ug/L (ppb)         | 5              | 86                         | 85                          | 66-94                  | 1                 |
| 2-Methylnaphthalene            | ug/L (ppb)         | 5              | 85                         | 87                          | 68-98                  | 2                 |
| 1-Methylnaphthalene            | ug/L (ppb)         | 5              | 84                         | 87                          | 67-97                  | 4                 |
| Acenaphthylene                 | ug/L (ppb)         | 5              | 95                         | 96                          | 70-130                 | 1                 |
| Acenaphthene                   | ug/L (ppb)         | 5              | 90                         | 90                          | 70-130                 | 0                 |
| Fluorene                       | ug/L (ppb)         | 5              | 92                         | 93                          | 70-130                 | 1                 |
| Phenanthrene                   | ug/L (ppb)         | 5              | 92                         | 90                          | 70-130                 | 2                 |
| Anthracene                     | ug/L (ppb)         | 5              | 97                         | 94                          | 70-130                 | 3                 |
| Fluoranthene                   | ug/L (ppb)         | 5              | 98                         | 98                          | 70-130                 | 0                 |
| Pyrene                         | ug/L (ppb)         | 5              | 98                         | 98                          | 70-130                 | 0                 |
| Benz(a)anthracene              | ug/L (ppb)         | 5              | 95                         | 95                          | 70-130                 | 0                 |
| Chrysene                       | ug/L (ppb)         | 5              | 98                         | 97                          | 70-130                 | 1                 |
| Benzo(a)pyrene                 | ug/L (ppb)         | 5              | 103                        | 103                         | 70-130                 | 0                 |
| Benzo(b)fluoranthene           | ug/L (ppb)         | 5              | 97                         | 98                          | 62-130                 | 1                 |
| Benzo(k)fluoranthene           | ug/L (ppb)         | 5              | 104                        | 104                         | 70-130                 | 0                 |
| Indeno(1,2,3-cd)pyrene         | ug/L (ppb)         | 5              | 110                        | 108                         | 70-130                 | 2                 |
| Dibenz(a,h)anthracene          | ug/L (ppb)         | 5              | 113                        | 110                         | 70-130                 | 3                 |
| Benzo(g,h,i)perylene           | ug/L (ppb)         | 5              | 111                        | 108                         | 70-130                 | 3                 |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 112423-01 1/6 (Matrix Spike) 1/6

|              |             |       | Sample   | Percent  | Percent  |          |                      |
|--------------|-------------|-------|----------|----------|----------|----------|----------------------|
|              | Reporting   | Spike | Result   | Recovery | Recovery | Control  | $\operatorname{RPD}$ |
| Analyte      | Units       | Level | (Wet Wt) | MS       | MSD      | Limits   | (Limit 20)           |
| Aroclor 1016 | mg/kg (ppm) | 0.25  | < 0.02   | 95       | 88       | 44-107   | 8                    |
| Aroclor 1260 | mg/kg (ppm) | 0.25  | < 0.02   | 96       | 90       | 38 - 124 | 6                    |

Laboratory Code: Laboratory Control Sample 1/6

|              |             |       | Percent  |            |
|--------------|-------------|-------|----------|------------|
|              | Reporting   | Spike | Recovery | Acceptance |
| Analyte      | Units       | Level | LCS      | Criteria   |
| Aroclor 1016 | mg/kg (ppm) | 0.25  | 96       | 47 - 158   |
| Aroclor 1260 | mg/kg (ppm) | 0.25  | 100      | 69 - 147   |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/22 Date Received: 12/21/21 Project: King County Metro South Facilities W031 2021-062-W021, F&BI 112414

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample 1/0.5

|              |            |       | Percent  | Percent  |            |                      |
|--------------|------------|-------|----------|----------|------------|----------------------|
|              | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte      | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Aroclor 1016 | ug/L (ppb) | 0.13  | 60       | 68       | 25 - 165   | 12                   |
| Aroclor 1260 | ug/L (ppb) | 0.13  | 60       | 68       | 25 - 163   | 12                   |

## ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

|                    |                        |                       |                        |         | p      |   |             | ,<br>,      |          |            |            |                         |        |                         | MBrady o           | 5 #   | ) ana                  | inc                      | <b>\$</b> wiy     | ( -CN9            | n Chil                        |
|--------------------|------------------------|-----------------------|------------------------|---------|--------|---|-------------|-------------|----------|------------|------------|-------------------------|--------|-------------------------|--------------------|-------|------------------------|--------------------------|-------------------|-------------------|-------------------------------|
| Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruya, Inc. |         |        |   | 21 MW-2-4.5 | 21 MW-1-6.5 | 2132 - 4 | 21 MW-2-10 | 21MW-1-9.5 | 2181-9.8                | 2182   | 2181                    | Sample ID          |       | Phone 286 794 3145 Em. | City, State, ZIP Bothell | Address 21512 30T | Company Hint (Res | 112414<br>Report To Chris Bou |
| leceived by:       | telinquisted by:       | leceived by:          | telinquíshed by:       | SI      |        |   | R. L.       | 3-4-TO      | 96 A-P   | 05 A-E     | 1 ha       | BAFF                    | 62 A-4 | 01A-I                   | Lab ID             |       | ail change             | , W.A 980                | Prive Se          | sciences          | v scols                       |
|                    | X                      | DEA                   | CUVY                   | GNATURE |        |   | 4           |             |          |            |            |                         |        | 12/20/21                | Date<br>Sampled    |       | is a humpe             | r                        |                   |                   |                               |
|                    |                        |                       |                        |         |        |   | 1510        | 1330        | . 1625   | 1515       | 1320       | 1105                    | 1635   | 1120                    | Tìme<br>Sampled    |       | Project s              | - 2*5 A                  | avvia<br>m        | King              | SAMPLE                        |
|                    | 17-11                  |                       | Chuis                  |         |        |   | 5011        | 5011        | 1:05     | soil       | 5021       | 5071                    | Unter  | water                   | Sample<br>Type     |       | pecific RLs            | inte for                 |                   | County M          | ) CHAIN<br>ERS (signa         |
|                    | NEW R                  |                       | 3.                     | PRII    |        |   | m           | 5           | 6        | 5)         | 5          | r                       | -41    | . هـ                    | # of<br>Jars       |       | ne y                   | ×                        |                   | I cited           | OF<br>ture)                   |
|                    | A.                     | ?<br>\ c              | いろん                    | NTN     |        |   | X           | $\times$    | ×.       | ★.         | X          | $\times$                | X      | ×                       | NWTPH-Dx           |       | es /                   | ،<br>۲                   |                   |                   | Cus                           |
|                    |                        | P                     | 5                      | AME     |        |   | ×           | $\times$    | X,       | X          | X          | X                       | X      | <u>×</u>                | NWTPH-Gx           |       | No                     | F                        |                   | ڊ.<br>-           | OF                            |
|                    | 2-2                    |                       |                        |         |        | ļ |             |             |          |            |            |                         | -      | <br>                    | BTEX EPA 8021      |       |                        |                          |                   | 2                 | N N                           |
|                    |                        |                       |                        |         |        |   |             |             | <u> </u> |            | 545        | 1                       |        |                         | NWTPH-HCID         | AN    | TE                     |                          |                   | 510               |                               |
|                    |                        |                       |                        |         |        |   |             |             |          | -          | N.         | $\overline{\mathbf{x}}$ |        | $\overline{\mathbf{x}}$ | PAHs EPA 8270      | ALYS  | ≯                      | , ç                      |                   | 6 F<br>1 (        |                               |
| San                | 4                      | 1                     | Ŧ                      |         | ****** |   |             |             |          | +          | St.        | X                       |        | X                       | PCBs EPA 8082      | ES R  |                        | C<br>L                   | 3                 | Ę                 |                               |
| nples              |                        | ĴР<br>Г               | Þ                      | COM     |        |   | X           | X           | X        | X          | X          | X                       | X      | X                       | BTKEX + Walphthile | U O B |                        |                          |                   | ~                 | 2                             |
| rec                |                        |                       |                        | PAN     |        |   |             |             |          |            |            |                         |        |                         |                    | ESILE | L                      |                          |                   | ងកេះ              |                               |
| eive               |                        |                       |                        | Y       |        |   | W           | X           |          | X          | X          |                         |        |                         | HOLD               | 99    | )efau                  | Arch                     |                   | RUS Lush c        | P P                           |
| d at               |                        |                       |                        |         |        |   |             | Z           |          |            |            |                         |        |                         |                    |       | It: Di                 | uve sa                   | AME               | H                 |                               |
| k<br>å             |                        | 1421/21               | 2/21/26                | DATE    |        |   | 21          | 4           | 11       | 5          | 11         | 5                       | ***    | Dr both w               | Note               |       | spose after :          | imples                   | TE DISPOS         | s authorized      | AROUND TIN                    |
|                    |                        | 1344                  | 1344                   | TIME    |        |   |             |             |          |            |            |                         |        | Serme )                 | Ø                  |       | 30 days                | 1                        |                   | by:               |                               |

I couse also merinisment interestion and another and anot





































#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr. Bourgeois:

Included is the amended report from the testing of material submitted on January 5, 2022 from the King County Metro South Facilities W031, 2021-062 W031, F&BI 201038 project. Per your request, the project name has been updated.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Lisa Gilbert (Parametrix), Mike Brady (Parametrix) HWA0111R.DOC

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 11, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr. Bourgeois:

Included are the results from the testing of material submitted on January 5, 2022 from the King County Metro South Facilities W031, 2021-062 W031, F&BI 201038 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Lisa Gilbert (Parametrix), Mike Brady (Parametrix) HWA0111R.DOC

### ENVIRONMENTAL CHEMISTS

## CASE NARRATIVE

This case narrative encompasses samples received on January 5, 2022 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities WO31 2021-062 W031, F&BI 201038 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <u>HWA Geosciences, Inc</u> |
|----------------------|-----------------------------|
| 201038 -01           | 21 MW-1                     |
| 201038 -02           | 21 MW-2                     |
| 201038 -03           | Trip Blanks                 |

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038 Date Extracted: 01/07/22 Date Analyzed: 01/07/22

## RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery)</u><br>(Limit 51-134) |
|-----------------------------------|-----------------------|-----------------------------------------------------|
| 21 MW-1<br><sup>201038-01</sup>   | <100                  | 81                                                  |
| 21 MW-2<br>201038-02              | <100                  | 82                                                  |
| Method Blank<br>02-044 MB         | <100                  | 79                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038 Date Extracted: 01/06/22 Date Analyzed: 01/07/22

## RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C <sub>10</sub> -C <sub>25</sub> ) | <u>Motor Oil Range</u><br>(C <sub>25</sub> -C <sub>36</sub> ) | Surrogate<br><u>(% Recovery)</u><br>(Limit 47-140) |
|-----------------------------------|-----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|
| 21 MW-1<br><sup>201038-01</sup>   | <50                                                 | <250                                                          | 122                                                |
| 21 MW-2<br>201038-02              | <50                                                 | <250                                                          | 111                                                |
| Method Blank<br>02-078 MB         | <50                                                 | <250                                                          | 109                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038 Date Extracted: 01/06/22 Date Analyzed: 01/06/22

## RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21 MW-1<br><sup>201038-01</sup>   | <50                       | <250                         | 120                                                |
| 21 MW-2<br>201038-02              | 96 x                      | <250                         | 105                                                |
| Method Blank<br>02-078 MB         | <50                       | <250                         | 72                                                 |

# ENVIRONMENTAL CHEMISTS

## Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21 MW-1<br>01/05/22<br>01/06/22<br>01/06/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>2021-062 W031, F&BI 201038<br>201038-01<br>010609.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                    |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                    | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                                | 101           | 85                                                                       | 117                                                                                         |
| Toluene-d8                                                                                    |                                                                    | 90            | 88                                                                       | 112                                                                                         |
| 4-Bromofluorobenz                                                                             | ene                                                                | 105           | 90                                                                       | 111                                                                                         |
|                                                                                               |                                                                    | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                    | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                    | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                    | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                    | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                    | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                    | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                    | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

## Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21 MW-2<br>01/05/22<br>01/06/22<br>01/06/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>2021-062 W031, F&BI 201038<br>201038-02<br>010610.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                    |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                    | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                                | 98            | 85                                                                       | 117                                                                                         |
| Toluene-d8                                                                                    |                                                                    | 97            | 88                                                                       | 112                                                                                         |
| 4-Bromofluorobenz                                                                             | ene                                                                | 106           | 90                                                                       | 111                                                                                         |
|                                                                                               |                                                                    | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                    | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                    | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                    | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                    | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                    | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                    | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                    | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

## Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Blan<br>Not Applical<br>01/06/22<br>01/06/22<br>Water<br>ug/L (ppb) | ık<br>ble     | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>2021-062 W031, F&BI 201038<br>02-053 mb<br>010607.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                            |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                            | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane-                                                                           | d4                                                                         | 91            | 85                                                                       | 117                                                                                         |
| Toluene-d8                                                                                    |                                                                            | 96            | 88                                                                       | 112                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                                        | 101           | 90                                                                       | 111                                                                                         |
|                                                                                               |                                                                            | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                            | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                            | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                            | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                            | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                            | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                            | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                            | <1            |                                                                          |                                                                                             |

### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 201 | 1038-01 (Duplie | cate)     |          |            |            |  |  |
|----------------------|-----------------|-----------|----------|------------|------------|--|--|
|                      | Reporting       | Sampl     | e Duj    | plicate    | RPD        |  |  |
| Analyte              | Units           | Resul     | t R      | esult      | (Limit 20) |  |  |
| Gasoline             | ug/L (ppb)      | <10       |          | <10        | nm         |  |  |
| Laboratory Code: La  | boratory Contr  | ol Sample |          |            |            |  |  |
|                      | Percent         |           |          |            |            |  |  |
|                      | Reporting       | Spike     | Recovery | Acceptance |            |  |  |
| Analyte              | Units           | Level     | LCS      | Criteria   | _          |  |  |
| Gasoline             | ug/L (ppb)      | 1,000     | 86       | 69-134     | _          |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: Laboratory Control Sample Silica Gel |            |       |          |          |            |                      |
|-------------------------------------------------------|------------|-------|----------|----------|------------|----------------------|
|                                                       |            |       | Percent  | Percent  |            |                      |
|                                                       | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte                                               | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Diesel Extended                                       | ug/L (ppb) | 2,500 | 120      | 120      | 61-133     | 0                    |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  | Percent  |            |                      |
|-----------------|------------|-------|----------|----------|------------|----------------------|
|                 | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte         | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Diesel Extended | ug/L (ppb) | 2,500 | 96       | 104      | 63-142     | 8                    |
### ENVIRONMENTAL CHEMISTS

Date of Report: 01/11/22 Date Received: 01/05/22 Project: King County Metro South Facilities W031, 2021-062 W031, F&BI 201038

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201038-01 (Matrix Spike)

| -            |            |       |        | Percent       |            |
|--------------|------------|-------|--------|---------------|------------|
|              | Reporting  | Spike | Sample | Recovery      | Acceptance |
| Analyte      | Units      | Level | Result | $\mathbf{MS}$ | Criteria   |
| Benzene      | ug/L (ppb) | 10    | < 0.35 | 97            | 50 - 150   |
| Toluene      | ug/L (ppb) | 10    | <1     | 100           | 50 - 150   |
| Ethylbenzene | ug/L (ppb) | 10    | <1     | 104           | 50 - 150   |
| m,p-Xylene   | ug/L (ppb) | 20    | <2     | 106           | 50 - 150   |
| o-Xylene     | ug/L (ppb) | 10    | <1     | 104           | 50 - 150   |
| Naphthalene  | ug/L (ppb) | 10    | <1     | 104           | 50 - 150   |

Laboratory Code: Laboratory Control Sample

|              | <b>I</b>   |       | Percent  | Percent  |            |                      |
|--------------|------------|-------|----------|----------|------------|----------------------|
|              | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte      | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Benzene      | ug/L (ppb) | 10    | 98       | 96       | 70-130     | 2                    |
| Toluene      | ug/L (ppb) | 10    | 102      | 97       | 70-130     | 5                    |
| Ethylbenzene | ug/L (ppb) | 10    | 105      | 101      | 70-130     | 4                    |
| m,p-Xylene   | ug/L (ppb) | 20    | 111      | 105      | 70-130     | 6                    |
| o-Xylene     | ug/L (ppb) | 10    | 107      | 102      | 70-130     | 5                    |
| Naphthalene  | ug/L (ppb) | 10    | 98       | 98       | 70-130     | 0                    |

### ENVIRONMENTAL CHEMISTS

# **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| SAMPLE CHAIN OF CUSTODY 0[-(572. COl] Wi<br>sets 1. Educat 1.1.8.4<br>SAMPLEES Génetare?<br>Strop Sector MARE<br>Strop Sector MARE<br>S                                                                                                                                                                                                                                                                                                                                                        | Ph. (206) 285-8282 | Seattle, WA 98119-2029 Re | 3012 16 <sup>th</sup> Avenue West Re | Friedman & Bruya, Inc. Re | <u><u> </u></u> |  |   |          |       | Trip Blanks | 21 11-2   | 21 MW-1         | Sample ID         |          | Phone 286-471-3145 Ema | Oley, Oscive, Alt. | Nitor State 710 Bothell | Address 21312 30th 1 | Company HWA Creosci | Report To Chivis Bourg | 20163 B.  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|--------------------------------------|---------------------------|-----------------|--|---|----------|-------|-------------|-----------|-----------------|-------------------|----------|------------------------|--------------------|-------------------------|----------------------|---------------------|------------------------|-----------|
| SAMPLE CHAIN OF CUSTODY 01-05-72 COLUMN<br>SAMPLES (signature)<br>Protect specific RL2 - Ves 1 No<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled<br>Sampled                                                                                                                    | ceived by:         | dinquished by:            | ceived by:                           | linquished by: (          | SIC             |  |   |          |       | CAS         | 24        | 101AJ           | Lab ID            | <b>.</b> | 11 chebrades           |                    | WA 980                  | nive se              | entes & Pa          | enis + L. GJ           |           |
| SAMPLE CHAIN OF CUSTODY $O(-05 - DL)$ $Page # 1 - of the sample of$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                           | ( Me                                 | Perry V                   | NATURE          |  |   |          |       |             | 115121    | 1215/1          | Date<br>Sampled   |          | d hund ite . Co        |                    | 4                       |                      | N Sactsix           | bert + M.Br            |           |
| CHAIN OF CUSTODY $01 - 05 - 72$ COUNNE TIME         PRIME File       Prime file       COUNNE TIME         PO#       PO#       COUNNE TIME         TOTINAROUND TIME         PO#       PO#       Prime file       Prime file       Sample       Sample       COUNT TIME         TOTINAROUND TIME         NUT INVOICE TO       Content answering         SAMPLE DISPOSAL         ANALYSES REQUESTED         ANALYSES REQUESTED         ANALYSES REQUESTED         ANALYSES REQUESTED         Sample       Samples         Type       ANALYSES REQUESTED         ANALYSES REQUESTED         ANALYSES REQUESTED         NWTPH-Dx       X         ANALYSES REQUESTED         Network       Notes         Total State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           |                                      |                           |                 |  |   |          | -     | -           | 1250      | 1136            | Time<br>Sampled   |          | Project s              | Slice              | REMAR                   | 5004                 | PROJEC              | SAMPL)                 | SAMPLE    |
| OF CUSTODY $OI - 0S - DL$ EOU       iure)     PO #     PO # $uo31$ INVOICE TO     TURNABOUND TIME $uo31$ INVOICE TO     Rishard turnaround $uva31$ HuwA     Default $uva31$ ANALYSES REQUESTED     Default $uva31$ NWTPH-Gx     Dofter $uva31$ NWTPH-Gx     Default $uva31$ NWTPH-Gx     Dofter $uva31$ NWTPH-Gx     Dofter $uva31$ NWTPH-Gx     Dofter $uva31$ NWTPH-Gx     Dofter $uva31$ Nuva31     Nuva31 <td< td=""><td></td><td></td><td>×</td><td>chny Bo</td><td></td><td></td><td></td><td></td><td></td><td>Later</td><td>Cater</td><td>Water</td><td>Sample<br/>Type</td><td></td><td>pecific RLs</td><td>)el clean</td><td>KS PX 6</td><td>Part and</td><td>TNAME</td><td>SKS (signa</td><td>CHAIN</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                           | ×                                    | chny Bo                   |                 |  |   |          |       | Later       | Cater     | Water           | Sample<br>Type    |          | pecific RLs            | )el clean          | KS PX 6                 | Part and             | TNAME               | SKS (signa             | CHAIN     |
| CUSTODY     COUSTODY     COUSTODY     COUSTODY       Pote Figure 1       Pote Figure 1       Pote Figure 1       Pote Figure 1       No       Pote Figure 1       NWTPH-Dx       NWTPH-Dx       NWTPH-Dx       NWTPH-Dx       NWTPH-Dx       ANALYSES REQUISED       ANALYSES REQUISESTED       ANALYSES REQUISESTED       ANALYSES REQUISESTED       Notes       NOTE PARSON       Notes       NUTON       ANALYSES REQUISESTED       ANALYSES REQUISESTED       Notes       Notes       NMWTPH-DX       X       X       X       Notes       Potes       Potes       Notes       Notes       Notes       Notes       Notes       Notes       Notes       Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           | hoi                                  | 2226                      | PRIN            |  |   |          |       | 6           | هـ ا      | 4               | # of<br>Jars      |          | ? - Y                  | í                  | 5                       | 50                   | letro               | ture)                  | OF        |
| STODY     OI-OS-DD     Eoy     Eoy       INTO     INVOICE TO     INVOICE TO     INVOICE TO     INVOICE TO       ANALYSES REQUESTED     ANALYSES REQUESTED     Cother     Dateshive samples       INVOICE TO     ANALYSES REQUESTED     Default: Dispose after: 30 da       ANALYSES REQUESTED     PCBs EPA 8082     Default: Dispose after: 30 da       AME     Y     Y     H**L D       INVOICE TO     INVOICE TO     Invoice by:       ANALYSES REQUESTED     Default: Dispose after: 30 da       Invoice     Y     Y       Y     Y     H**L D       Invoice     Y     Y       In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                           |                                      | 1015                      | TN.             |  |   |          |       |             | ×         | ×               | NWTPH-Dx          | $\Box$   | / 26                   |                    | C >                     | -                    | <u> </u>            | -                      | Sno       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                           |                                      |                           | AMT             |  | - | ļ        |       |             | $ \times$ | ×               | NWTPH-Gx          |          | No                     |                    | Ů                       |                      | T à                 |                        | TO        |
| NWTPH-HCID     Page #     COLL       INVOICE TO     HL&A     Poff     EStandard turnaround       HL&A     PAHs EPA 8260     Chenre     SAMPLE DISPOSAL       HL&A     PCBs EPA 8082     Cother     Cother       PCBs EPA 8082     Default: Dispose after 30 da     Default: Dispose after 30 da       PCBs EPA 8082     Dother     Notes       PCBs EPA 8082     Notes     Notes       PCBs EPA 8082     Notes     1       PCBs EPA 8082     Notes     1       PCBs EPA 8082     Notes     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 0                         | 5                                    |                           |                 |  |   |          |       |             |           |                 | BTEX EPA 8021     |          |                        |                    |                         |                      | н.<br>#             |                        | Ŋ         |
| OI-05-21     Fage #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                           | ß                                    |                           |                 |  |   | <u> </u> |       |             | _         |                 | NWTPH-HCID        | Ъ        |                        |                    | II                      |                      | 2                   |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                           | ļ                                    | ļ                         |                 |  |   |          |       | <br>        |           |                 | VOCs EPA 8260     | NAI      |                        | £                  | <b>WO</b>               |                      | ġ<br>r y            |                        | 1         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                           |                                      | T                         |                 |  |   |          |       | <br>        |           |                 | PAHs EPA 8270     | ASK'     |                        | ≯                  | ICE                     |                      | 4 ¢                 |                        | 2         |
| $\begin{array}{c c} 122 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                  |                           |                                      | S                         |                 |  |   | <u> </u> |       |             | _         |                 | PCBs EPA 8082     | SRI      |                        |                    | OL                      |                      | δ                   |                        | 8         |
| Page # COULVW<br>Page # COULVW<br>of<br>TURNAAROUND TIME<br>ESTEN<br>BSTED<br>BSTED<br>SAMPLE DISPOSAL<br>Cother<br>Default: Dispose after 30 da<br>STEX + Naght<br>STEX + Naght<br>Rush charges authorized by:<br>Default: Dispose after 30 da<br>Notes<br>X BT H<br>X DATE TIM<br>PANY DATE TIM<br>PANY DATE TIM<br>PANY DATE TIM<br>PANY DATE TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | am)                |                           |                                      |                           | OM              |  |   |          |       |             |           |                 | BEEK + Mupieta    | QU       | }                      |                    | -                       |                      |                     |                        |           |
| Page # $CO''_VW'_$<br>TURNAROUND TIME<br>TURNAROUND TIME<br>Standard turnaround<br>RUSH<br>Archive samples<br>O other<br>O offault: Dispose after 30 da<br>SD<br>V<br>V<br>V<br>V<br>DATE<br>V<br>V<br>V<br>DATE<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ples               |                           | 3                                    | ***                       | AN              |  |   |          |       |             | X         | ×               | BTEX + North Halo | U.S.     |                        | 1-21               | -                       | [                    |                     |                        | 4         |
| Page # $1 \text{ or } 1$<br>TURNAROUND TIME<br>radard turnaround<br>SH<br>charges authorized by:<br>ner<br>ner<br>DATE DISPOSAL<br>hive samples<br>Notes<br>DATE TIM<br>1/5/22 $151/5/22$ $15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rec                |                           |                                      |                           | Y               |  |   |          |       | X           |           | -               | HULD              | ାଧ       | Defa                   |                    |                         | Rush                 | URU<br>Sta          |                        | <b>\$</b> |
| $\frac{\mathcal{E}_{O}   VW  }{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}}}}}}}}}}$ | eive               |                           |                                      |                           |                 |  |   |          | ***** |             |           |                 |                   |          | ult:                   | ner                | SA                      | char                 | HSH                 | TUP                    | 5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hat 4-00           |                           | 1/5/22 15                            | 1/5/2024 1511             | DATE TIM        |  |   |          |       |             |           | Dx w/ \$ w/o -s | Notes             |          | Dispose after 30 da    | samhas             | VIPLE DISPOSAL          | rges authorized by:  | rd turnaround       | WAROUND TIME           | Four      |















# Appendix C

Parametrix Well Survey





HORIZONTAL DATUM HORIZONTAL DATUM FOR THIS SURVEY IS NAD 83(11), WASHINGTON STATE PLANE, NORTH ZONE, U.S. SURVEY FEET, BASED ON THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

<u>VERTICAL DATUM</u> NAVD 88' REF: WSDOT BENCHMARK BM17099-72 ELEV.=27.42

LEGEND ● MONITORING WELL LOCATION

# **Parametrix**

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

| C | SURVEYED<br>12/11              | 0 1                                                  |               |
|---|--------------------------------|------------------------------------------------------|---------------|
|   | DRAWN<br>12/20                 | ONE INCHES AT FULL SCALE<br>IF NOT SCALE ACCORDINGLY | NO            |
|   | PROJECT NUMBER<br>554-1521-214 | scale<br>1 <b>"=40'</b>                              | SHEET<br>1 OF |
|   |                                | <sup>DATE</sup> 12/20/19                             |               |

King County Metro South Base Facilities monitoring wells

Project #554-1521-214

#### VERTICAL DATUM NAVD 88'

REF: WSDOT BENCHMARK: BM17099-72

ELEV.=27.415

### DW-3

MW DW-3 N. RIM=14.09' N. PVC=13.63' GND ON CONC.=14.03' N 184352.09' E 1279804.97'

### SB-7

MW SB-7 N. RIM=14.42' N. PVC=14.05' GND ON CONC.=14.36' N 184319.13' E 1279801.71'

### DW-4

MW DW-4 N. RIM=14.37' N. PVC=14.00' GND ON CONC.=14.35' N 184350.16' E 1279837.43'

### SB-8

MW SB-8 N. RIM=14.36' N. PVC=14.19' GND ON CONC.=14.34' N 184650.89' E 1280054.85'





HORIZONTAL DATUM HORIZONTAL DATUM FOR THIS SURVEY IS NAD 83(11), WASHINGTON STATE PLANE, NORTH ZONE, U.S. SURVEY FEET, BASED ON THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

VERTICAL DATUM NAVD 88' REF: WSDOT BENCHMARK BM17099-72 ELEV.=27.42

LEGEND ● MONITORING WELL LOCATION

# **Parametrix**

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

| SURVEYED<br>01/05/2022 | 0               | 1          |     |
|------------------------|-----------------|------------|-----|
| DRAWN<br>JMM           | ONE INCHES AT   | FULL SCALE | Ň.  |
| PROJECT NUMBER         | SCALE           |            | ШБ  |
| 554-1521-214           | 1"=40'          |            | 3HE |
|                        | DATE 01/31/2022 | 2          |     |

King County Metro South Base Facilities monitoring wells

Project #554-1521-242

### VERTICAL DATUM NAVD 88'

REF: WSDOT BENCHMARK: BM17099-72

ELEV.=27.415

### 20MW-01

N. RIM=13.69' N. PVC=13.44' GND ON CONC.=13.65' N 184424.99' E 1279762.43'

### STREAM GAUGE

SCRIBED "X" ON CONC. WALL ELEV.=15.94' N 184399.15' E 1280083.38' 20MW-02

N. RIM=14.02' N. PVC=13.72' GND ON CONC.=14.02' N 184603.05' E 1279824.65'

# Appendix D

HWA 2022 Quarterly Groundwater Sampling Event Memoranda



July 26, 2022 HWA Project No. 2021-062-22

# King County Metro Transit Capital Division

Transit Real Estate and Environmental 201 South Jackson Street, M.S. KSC-TR-0431 Seattle, WA 98104-3856

Attention: John Greene

Subject: 2022 Quarter 1 & Quarter 2 Groundwater Sampling Event Memorandum King County Metro Transit - South Facilities Tukwila, Washington

Dear Mr. Greene,

As approved in the Contract E00635E19 Work Order #31 scope, HWA GeoSciences Inc (HWA) has completed the first and second 2022 quarterly monitoring events at the King County Metro Transit - South Facilities / Annex (South Facilities) addressed at 11911 East Marginal Way South, Tukwila, Washington (as shown on Figure 1). The site is known as Washington State Department of Ecology (Ecology) Cleanup Site Identification number 7790 and Voluntary Cleanup Program (VCP) number NW3301. This memorandum includes a brief summary of quarterly groundwater monitoring completed as part of the Work Order #31 scope. This work task was coordinated by HWA as part of HWA's contract with Parametrix for environmental services.

### **GROUNDWATER MONITORING WELL SAMPLING**

HWA collected groundwater samples from monitoring wells DW-3R, DW-4R, SB-7, SB-8, 21MW-1, and 21MW-2, in two separate quarterly events; on February 22 & 23, and May 10, 2022. Well locations are shown on Figure 2.

Prior to the start of low-flow purging, depth to groundwater was measured and recorded at each of the above wells, as well as at the stream gauge and well B-25. Depth to groundwater measurements are presented on the field data sheets included in Appendices A and B (February and May events, respectively). Groundwater elevations are presented in Table 1 along with data from previous events. Interpreted potentiometric surface maps for the sampling events are provided in Figures 3 and 4.

July 26, 2022 HWA Project No. 2062-062-22

Groundwater samples were collected using low-flow purging and sampling techniques with a peristaltic pump and new polyethylene tube. During purging, field parameters of pH, specific conductance, oxidation-reduction potential, dissolved oxygen and temperature were measured until stabilization was achieved. Field sampling sheets are included in Appendices A and B. No indications of contamination including odor, discoloration, or sheen were observed. Groundwater samples were collected in analysis-appropriate, clean, laboratory supplied containers and placed in a cooler with ice. Samples were kept in a cooler with ice and held at temperatures below 6 degrees Celsius until submittal to the laboratory for analysis with standard turnaround time. Analytical results are summarized in Table 2, and copies of the final laboratory reports including chain-of custody documents are included in Appendices A and B.

Samples were analyzed by Friedman & Bruya, Inc. in Seattle, Washington for gasoline range total petroleum hydrocarbons (TPH) by Method NWTPH-G; diesel and oil-range TPH by Method NWTPH-Dx (both with and without silica gel cleanup); and benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) by EPA Method 8260D. All samples were analyzed within method specific holding times.

### RESULTS

Results from both monitoring events, along with data from previous events are summarized in Table 2, and laboratory reports can be found in Appendices A and B. Analytical results indicate that diesel and/or oil-range TPH were detected below MTCA cleanup levels in wells DW-3R, DW-4R, SB-7, SB-8, 21MW-1, and 21MW-2. However, these samples were all X-flagged by the laboratory indicating that the diesel and oil results did not match the fuel standard. Based on the data presented in previous reports, the x-flags are likely related to biogenic interference from the natural peat deposits in the area. These samples were also analyzed using silica gel cleanup treatment, which removes polar compounds and resulted in no diesel or oil-range TPH detections in these samples. This is consistent with interference from the natural peat deposits.

July 26, 2022 HWA Project No. 2062-062-22

### FUTURE GROUNDWATER MONITORING

Two additional quarters of groundwater level measurements and sampling of these wells are planned as part of the additional site characterization activities. Upon completion of all additional site characterization activities, an RI Report Addendum will be provided.

\_\_\_\_o • o\_\_\_\_\_

We appreciate the opportunity to provide environmental services on this project. Should you have any questions or comments, or if we may be of further service, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

### HWA GeoSciences Inc.

Chris VS

Chris Bourgeois Staff Geologist

-Si Vapi

Nicole Kapise Senior Environmental Geologist

### **FIGURES (Following Text)**

Figure 1 Figure 2 Figure 3 Figure 4 Site Map Locations Map February 22 and 23, 2022 Potentiometric Surface Map May 10, 2022 Potentiometric Surface Map

### **TABLES (Following Text)**

Table 1

Table 2

Groundwater Elevation Data Groundwater Sampling Results

### Appendix A:

February 2022 Field Data Sheets

February 2022 Lab Reports

### **Appendix B:**

May 2022 Field Data Sheets

May 2022 Laboratory Reports



Parametrix Source: King County

Project Location –

— Stream

**Figure 1** Site Map King County Metro Transit S Facilities/S Annex









Monitoring Well (Existing) ↔ Monitoring Well (Historical)

Monitoring Well and Soil Sample Locations King County Metro Transit S Facilities/S Annex (adapted 2/3/2022)





| Table 1. | Groundwater Elevations. | King County Me | tro South Facilities. | 11911 E Marginal W | av S. Tukwila, WA. |
|----------|-------------------------|----------------|-----------------------|--------------------|--------------------|
|          | ereananater Ereranene,  |                |                       |                    | ay e, . a          |

| Reference           Well         Elevation           DW-3R*         13.63           DW-4R         14.00           SB-7         14.05           SB-8         14.10 |                                     | September                    | 23, 2019                                | December                     | December 17, 2019                       |                              | 2020                                    | February 22 a                  | ind 23, 2022                              | May 10, 2022                   |                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|--------------------------------|-------------------------------------------|--------------------------------|-------------------------------------------|--|
| Well                                                                                                                                                              | Reference<br>Elevation <sup>1</sup> | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation<br>(ft NAVD88) | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation<br>(ft NAVD88) | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation<br>(ft NAVD88) | Depth to<br>Groundwater** (ft) | Groundwater<br>Elevation**<br>(ft NAVD88) | Depth to<br>Groundwater** (ft) | Groundwater<br>Elevation**<br>(ft NAVD88) |  |
| DW-3R*                                                                                                                                                            | 13.63                               | 5.21                         | 8.42                                    | 4.84                         | 8.79                                    | 4.48                         | 9.15                                    | 4.85                           | 8.78                                      | 4.56                           | 9.07                                      |  |
| DW-4R                                                                                                                                                             | 14.00                               | 5.58                         | 8.42                                    | 5.15                         | 8.85                                    | 4.82                         | 9.18                                    | 5.19                           | 8.81                                      | 4.91                           | 9.09                                      |  |
| SB-7                                                                                                                                                              | 14.05                               | 5.66                         | 8.39                                    | 5.23                         | 8.82                                    | 4.86                         | 9.19                                    | 5.30                           | 8.75                                      | 5.02                           | 9.03                                      |  |
| SB-8                                                                                                                                                              | 14.19                               | 6.28                         | 7.91                                    | 5.80                         | 8.39                                    | 5.33                         | 8.86                                    | 5.82                           | 8.37                                      | 5.71                           | 8.48                                      |  |
| B-25                                                                                                                                                              | 14.12                               |                              |                                         |                              |                                         |                              |                                         | 5.66                           | 8.46                                      | 5.41                           | 8.71                                      |  |
| Staff Gauge                                                                                                                                                       | 15.94                               |                              |                                         |                              |                                         |                              |                                         | 6.05                           | 9.89                                      | 8.85                           | 7.09                                      |  |
| 21MW-1                                                                                                                                                            | 13.44                               |                              |                                         |                              |                                         |                              |                                         | 4.10                           | 9.34                                      | 4.05                           | 9.39                                      |  |
| 21MW-2                                                                                                                                                            | 13.72                               |                              |                                         |                              |                                         |                              |                                         | 5.10                           | 8.62                                      | 5.00                           | 8.72                                      |  |

Notes:

<sup>1</sup> N rim PVC (wells), marked measurement reference point (stream gauge), or ground surface (vibrating wire piezometers) in ft NAVD88\*\* \*Well has been damaged and casing is not vertical \*\* Groundwater elevation measurement collected at time of sampling.

-- Not measured.

| Table 2. Summary of Groundwater Ana | lvtical Results. King County Me       | etro South Facilities Groundwater I | Monitoring Tukwila. Washington |
|-------------------------------------|---------------------------------------|-------------------------------------|--------------------------------|
|                                     | · · · · · · · · · · · · · · · · · · · |                                     |                                |

|                    | Date                    | Method A                   |      |      |      |          |        |          |         | Sample I.D. |      |          |          |          |            |          |            |
|--------------------|-------------------------|----------------------------|------|------|------|----------|--------|----------|---------|-------------|------|----------|----------|----------|------------|----------|------------|
|                    | Sampled                 | Cleanup Level <sup>a</sup> | DW-1 | DW-2 | DW-3 | DW-3R    | DW-4   | DW-4 Dup | DW-4R   | SB-5        | SB-6 | SB-7     | SB-8     | 21MW-1   | 21MW-1 Dup | 21MW-2   | 21MW-2 Dup |
| NWIPH-GX (µg/L)    | 40/44/4004              | 800/4 000 b                |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
| Gasoline           | 12/19/1994              | 800/1,000                  |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          | <100   |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <100     |        |          | <100    |             |      | <100     | <400     |          |            |          |            |
|                    | 1/5/2022                |                            |      |      |      |          |        |          |         |             |      |          |          | <100     |            | <100     |            |
|                    | 2/22/2022               |                            |      |      |      | <100     |        |          | <100    |             |      | <100     | <500     | <100     |            | <100     | <100       |
| NWTPH-Dx (mg/L)    | 5/10/2022               |                            |      |      |      | <100     |        |          | <100    |             |      | <100     | <100     | <100     | <100       | <100     |            |
| Diesel             | 10/11/1994              | 0.5                        |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994              |                            |      |      |      |          |        |          |         | <0.2        | <0.2 | 0.55     | 0.495    |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          |        |          |         |             |      | 0.00     | 0.47     |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <0.26    |        |          | <0.27   |             |      | <0.28    | 0.47     |          |            |          |            |
|                    | 1/5/2022                |                            |      |      |      |          |        |          |         |             |      |          |          | <0.05    |            | 0.096 x  |            |
|                    | 2/22/2022               |                            |      |      |      | <0.05    |        |          | 0.058 x |             |      | 0.059 x  | 0.350 x  | 0.150 x  |            | 0.270 x  | 0.250 x    |
|                    | 5/10/2022               |                            |      |      |      | 0.130 x  | -      | -        | 0.080 x |             |      | 0.071 x  | 0.150 x  | 0.160 x  | 0.140 x    | 0.180 x  | -          |
| Diesel w/ SGC      | 1/5/2022                | 0.5                        |      |      |      |          |        |          |         |             |      |          |          | < 0.05   |            | < 0.05   |            |
|                    | 2/3/2022                |                            |      |      |      | < 0.05   |        |          | <0.05   |             |      | <0.05    | <0.05    | < 0.05   |            | <0.05    | <0.05      |
| Lube Oil           | 10/11/1994              | 0.5                        | <0.2 | <0.2 | <0.2 |          | <0.2   | <0.2     |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994              |                            |      |      |      |          |        |          |         | <0.2        | 0    | 0.723    | 0.326    |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          | <0.5   |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <0.41    |        |          | <0.43   |             |      | <0.44    | 0.80     |          |            |          |            |
|                    | 1/5/2022                |                            |      |      |      | <0.0330  |        |          | <0.0334 |             |      |          | 0.555    | <0.25    |            | <0.25    |            |
|                    | 2/22/2022               |                            |      |      |      | <0.25    |        |          | <0.25   |             |      | <0.25    | 0.310 x  | <0.25    |            | <0.25    | <0.25      |
|                    | 05/10/22                |                            |      |      |      | <0.25    |        |          | <0.25   |             |      | <0.25    | 0.25     | <0.25    | <0.25      | <0.25    |            |
| Lube Oil w/ SGC    | 1/5/2022                | 0.5                        |      |      |      |          |        |          |         |             |      |          |          | <0.25    |            | <0.25    |            |
|                    | 2/22/2022               |                            |      |      |      | <0.25    |        |          | <0.25   |             |      | <0.25    | <0.25    | <0.25    |            | <0.25    | <0.25      |
| BTEX (µg/L)        | 03/10/22                |                            |      |      |      | <0.25    |        |          | <0.25   |             |      | <0.25    | <0.25    | <0.25    | <0.25      | <0.25    |            |
| Benzene            | 10/11/1994              | 5                          |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994              |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <4       |          |            |          |            |
|                    | 12/17/2019              |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       |          |            |          |            |
|                    | 2/22/2022               |                            |      |      |      | < 0.35   |        |          | < 0.35  |             |      | < 0.35   | < 0.35   | < 0.35   |            | <0.35    | < 0.35     |
|                    | 5/10/2022               |                            |      |      |      | < 0.35   |        |          | <0.35   |             |      | < 0.35   | < 0.35   | < 0.35   | <0.35      | < 0.35   |            |
| Toluene            | 10/11/1994              | 1,000                      |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          | 2.3    |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <4       |          |            |          |            |
|                    | 12/17/2019              |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       |          |            |          |            |
|                    | 2/22/2022               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       |            | <1       | <1         |
| F.0                | 5/10/2022               | 700                        |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       | <1         | <1       |            |
| Ethylbenzene       | 12/19/1994              | 700                        |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          | <1     |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019<br>12/17/2019 |                            |      |      |      | <1<br><1 |        |          | <1      |             |      | <1<br><1 | <4<br><1 |          |            |          |            |
|                    | 1/5/2022                |                            |      |      |      |          |        |          |         |             |      |          |          | <1       |            | <1       |            |
|                    | 2/22/2022               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       |            | <1       | <1         |
| m,p-Xylene         | 10/11/1994              | 1,000                      |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994              |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 4/23/1997<br>9/23/2019  |                            |      |      |      |          | <1     |          |         |             |      |          |          |          |            |          |            |
|                    | 12/17/2019              |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       |          |            |          |            |
|                    | 1/5/2022                |                            |      |      |      |          |        |          |         |             |      |          |          | <2       |            | <2       |            |
|                    | 05/10/22                |                            |      |      |      | <2       |        |          | <2      |             |      | <2       | <2       | <2       | <2         | <2       | <2<br>     |
| o-xylene           | 10/11/1994              | 1,000                      |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |          | <br><1 |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <4       |          |            |          |            |
|                    | 12/17/2019              |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       |          |            |          |            |
|                    | 2/22/2022               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       |            | <1       | <1         |
|                    | 5/10/2022               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       | <1         | <1       |            |
| Naphthalene (µg/L) | 10/11/1994              | 160                        |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/17/2019              |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 2/22/2022               |                            |      |      |      | <br><1   |        |          | <1      |             |      | <1       | <br><1   | <1<br><1 |            | <1<br><1 | <br><1     |
|                    | 5/10/2022               |                            |      |      |      | <1       |        |          | <1      |             |      | <1       | <1       | <1       | <1         | <1       |            |
| Lead (µg/L)        |                         |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
| Lead               | 10/11/1994              | 15                         | <3   | <3   | <3   |          | <3     | <3       |         |             |      |          |          |          |            |          |            |
|                    | 4/23/1997               |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 9/23/2019               |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 12/1//2019<br>1/5/2022  |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 2/22/2022               |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |
|                    | 5/10/2022               |                            |      |      |      |          |        |          |         |             |      |          |          |          |            |          |            |

 Notes:

 Bold values exceed MTCA Method A cleanup levels.

 <sup>a</sup> Washington Administrative Code Chapter 173-340, Model Toxics Control Act (MTCA) Cleanup Regulation, Method A suggested soil cleanup level for groundwater; updated August 15, 2001.

 <sup>b</sup> 800 µg/L if benzene is present in groundwater; 1,000 µg/L if no detectable benzene in groundwater.

 mg/L - militigrams per liter.

 SGC - silica gel cleanup

 × The sample chromatographic pattern does not resemble the fuel standard used for quantitation

 - not analyzed.

 < - analyte not detected at or greater than the listed concentration (practical quantitation limit [PQL]).</td>

# **APPENDIX A:**

# FEBRUARY 2022 FIELD DATA SHEETS & LABORATORY REPORTS

### PARAMETRIX

# Field Report/Well Data

TO:

Lisa Gilbert

Mike Brady

John Greene

| DATE                                       |              | JOB NO.                       |      |         |    |  |  |
|--------------------------------------------|--------------|-------------------------------|------|---------|----|--|--|
| 2/22/2022                                  |              | 553-1521-242 WO31 Task 200.02 |      |         |    |  |  |
| PROJECT                                    |              |                               |      |         |    |  |  |
| King County METRO South                    | n Facilities | s South Anne>                 | (    |         |    |  |  |
| LOCATION                                   |              |                               |      |         |    |  |  |
| 11911 E Marginal Way S, 1                  | Fukwila, V   | VA                            |      |         |    |  |  |
| CONTRACTOR                                 |              | OWNER                         |      |         |    |  |  |
| Parametrix in Assoc. with H<br>Geosciences | IWA          | King County METRO             |      |         |    |  |  |
| WEATHER                                    | TEMP         | 32                            | ° at | 0820 AI | N  |  |  |
| SNOW                                       |              |                               | ° at | PI      | VI |  |  |
| PRESENT AT SITE                            |              |                               |      |         |    |  |  |
| Cierra Wilson                              |              |                               |      |         |    |  |  |
|                                            |              |                               |      |         |    |  |  |
|                                            |              |                               |      |         |    |  |  |

### THE FOLLOWING WAS NOTED:

| WN<br>(WELL<br>NUMBER) | Time | DTW  | MP<br>(MEASURE<br>POINT) | SU M<br>(STICK UP OF<br>WELL CASING) | TD /+<br>(TOTAL DEPTH<br>OF WELL) | WD<br>(WELL<br>DIAMETER) |         |
|------------------------|------|------|--------------------------|--------------------------------------|-----------------------------------|--------------------------|---------|
| 21MW-1                 | 0914 | 3.70 | TOC                      | 3.59                                 | 14.56                             | 2"                       | 14.85   |
| 21MW-2                 | 0927 | 5.05 | TOC                      | 3.14                                 | 14.90                             | 2.11                     | 15-14   |
| SB-7                   | 0903 | 5.21 | TOC                      | 5.0_                                 | 11.56                             | 2"                       | 11.5 6  |
| SB-8                   | 0945 | 5.82 | TOC                      | 2.94                                 | 13.70                             | 2"                       | 13,64   |
| DW-3R                  | 0857 | 4.75 | TOC                      | 62560                                | 8.75                              | 7.75                     | ÔROOÌCE |
| DW-4R                  | 0849 | 5.10 | TOC                      | 4.79                                 | 9.21                              | 7.75"                    | 1       |
| Staff<br>Gauge         | 0937 | 6.05 | Emerite                  | 0.30                                 | RIA                               | WA"                      | 7.35    |
| ER                     | 0838 | 5.66 | TOC                      | 5-5                                  | 15.9                              | 2*                       |         |
| 2                      |      |      |                          |                                      |                                   |                          |         |
|                        |      |      |                          | 100                                  |                                   |                          | -       |
|                        |      |      |                          | 1                                    |                                   |                          |         |
|                        |      |      |                          | my .                                 |                                   |                          | ×       |
| · · · · ·              |      |      |                          | é                                    |                                   |                          |         |
| -                      |      |      |                          | 12 C                                 |                                   |                          |         |
|                        |      |      |                          | 8                                    |                                   |                          |         |

TOC (Top of Locking Casing) TOW (Top of Well Casing)

COPIES

SIGNED Linal

J

| Project No.: | 553-1521 | -242 WO31 | Task 200.02 |
|--------------|----------|-----------|-------------|
|--------------|----------|-----------|-------------|

Project Name: King County METRO South Facilities South Annex

2 22 22 Well ID: 21MW-1 Date:

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Cierra Wilson

Project Address: 11911 E Marginal Way S, Tukwila, WA

| Purge    | Data |
|----------|------|
| 1 01 2 - |      |

| Purge Equipment: Perista                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ltic pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                                                                                                                | Dep                                                                                                                                  | oth of Well (ft b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elow TOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0                                                    |                               |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|--------------------------------|
| Pump Intake Depth (ft below                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w TOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.0 /r                                                                                                                                                                                                                 |                                                                                                                                                | We                                                                                                                                   | ll Casing/Diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ter: <u>2"</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                               |                                |
| Initial Depth to Water (ft be                                                                                                                                                                                                                                                                                                                                                                                                                                                     | low TOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.10                                                                                                                                                                                                                   |                                                                                                                                                | Pur                                                                                                                                  | ge Time (from/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to): <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +02-                                                    | -145C                         | $\rangle$                      |
| Depth to Water (ft below TOC)         Time       (ft below TOC) $1405$ $4.40$ $1408$ $5.0$ $1411$ $5.05$ $1411$ $5.09$ $1414$ $5.09$ $1420$ $5.0$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $5.10$ $1420$ $7.7$ $1420$ $7.7$ $1420$ $7.7$ $1420$ $7.7$ $1420$ $7.7$ $1420$ $7.7$ $1420$ $7.7$ $1438$ $7.7$ $14450$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ $1447$ $7.7$ | Pump         Setting         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5 <tr td=""></tr> | $\begin{array}{c c} + & 1 \\ \hline \\ \hline \\ Purge \\ Rate \\ \hline \\ 240 \\ \hline \\ 240 \\ \hline \\ \hline \\ 240 \\ \hline \\ \hline \\ \hline \\ \hline \\ 11 \\ \hline \\ \hline \\ \hline \\ \hline \\ $ | Temp<br>(°C)<br>8.67<br>9.10<br>9.30<br>9.46<br>9.46<br>9.46<br>9.46<br>9.72<br>9.92<br>9.92<br>9.93<br>9.97<br>9.93<br>9.93<br>10.08<br>10.08 | Pur<br>DO<br>(mg/L)<br>7.32<br>3.7 9<br>2.62<br>1.99<br>1.74<br>1.40<br>1.21<br>0.99<br>0.72<br>0.65<br>0.59<br>0.59<br>0.57<br>0.54 | ge Time (from/f<br>Specific //<br>Conductance<br>(mg/cm)<br>0.57 9<br>0.58 1<br>0.58 1<br>0.58 4<br>0.58 3<br>0.58 2<br>0.57 9<br>0.57 1<br>0.57 1<br>0. | to): $P$<br>S/CPPH<br>(units)<br>6.73<br>6.73<br>6.73<br>6.73<br>6.70<br>6.68<br>6.68<br>6.65<br>6.64<br>6.64<br>6.64<br>6.64<br>6.64<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.63<br>6.73<br>6.75<br>6.75<br>6.75<br>6.75 | ORP<br>(mv)<br>-44-7-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | Turbidity<br>(visual)<br>hone | Comments<br>Slightlyy<br>Chean |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stabilization Criteria                                                                                                                                                                                                 | 3%                                                                                                                                             | 10%, or 3<br><0.5                                                                                                                    | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 10 mv                                                 |                               | <u></u>                        |
| Sampling Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                               |                                |
| Sample ID: 21MW-1<br>Sample Description (Color, T<br>Sample Analyses: NWTPH<br>Laboratory: Friedman & B                                                                                                                                                                                                                                                                                                                                                                           | urbidity, Odo<br>H-Dx (w/ & w<br>ruya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Collect<br>or, Other): <u>tiqut</u><br>ı/o SGC), NWTPH-Gx, B<br>Lab Dropoff                                                                                                                                       | ed: <u>145</u><br>7000<br>TEX w/ Nap<br>Method:                                                                                                | hthalene<br>in per                                                                                                                   | faint- pe<br>son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>50</u><br>M Od ov<br>off Date:                       | s CLO<br>_2/23                | 122                            |
| Additional Information/Com                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                               |                                |

### Project No.: 553-1521-242 WO31 Task 200.02

Project Name: King County METRO South Facilities South Annex

2 22 Date:

22 Well ID: 21MW-2

**Parametrix** 

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Cierra Wilson

Project Address: 11911 E Marginal Way S, Tukwila, WA

| • |
|---|
|   |

| Purge Equ                                                                    | uipment: Perista                                                                     | altic pump                             |                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dep                                                                  | th of Well (ft be                                                                                                          | low TOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.0                                                                                                           |                                                        |                                       |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|
| Pump Inta                                                                    | ake Depth (ft belo                                                                   | w TOC):                                | 6.5                                                                                                                                                                                                                                                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wel                                                                  | l Casing/Diamet                                                                                                            | er: 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                        |                                       |
| Initial Dep                                                                  | pth to Water (ft be                                                                  | elow TOC):                             | 5.10                                                                                                                                                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purg                                                                 | ge Time (from/to                                                                                                           | o): 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-                                                                                                             | 1240                                                   |                                       |
| Time<br>153<br>159<br>159<br>1502<br>205                                     | Depth to<br>Water<br>(ft below TOC)<br>5.30<br>"" "<br>c\ 14<br>c\ 14<br>c\ 14       | Pump<br><u>Setting</u><br>2.75<br>     | Purge<br>Rate<br>24-0<br>                                                                                                                                                                                                                                             | Cum.<br>Vol.<br>Purged | Temp<br>(°C)<br>[0.62<br>[1.09<br>[].37<br>[].50<br>[].62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DO<br>(mg/L)<br>4.44<br>3.08<br>2.10<br>1.60<br>1.22                 | Specificm S<br>Conductance<br>(mg/sm)<br>(). \83()<br>(). \827<br>(). \827<br>(). \829<br>(). \829<br>(). \829<br>(). \829 | $ \begin{array}{c}         (m^{c} \\ pH \\         (units) \\         (.39 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\         (.38 \\    $ | ORP<br>(mv)<br>-44.3<br>-45.4<br>-49.9<br>-57.6<br>-50.9                                                       | Turbidity<br>(visual)<br><u>none</u><br>""""<br>Orange | Comments<br>light yellon<br>debris (1 |
| 1208<br>1211<br>1214<br>1217<br>1220<br>1223<br>1229<br>1229<br>1229<br>1229 |                                                                                      |                                        | (1)     h       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (1)     (1)       (2)     (1)       (2)     (1) | 3yal                   | 11.55<br>11.88<br>12.04<br>12.06<br>12.18<br>12.26<br>12.26<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12 | 1.10<br>0.93<br>0.17<br>0.64<br>0.57<br>0.56<br>0.48<br>0.48<br>0.42 | 0.832<br>0.828<br>0.829<br>0.829<br>0.829<br>0.829<br>0.827<br>0.828<br>0.829<br>0.828                                     | 6.38<br>6.38<br>6.38<br>6.38<br>6.38<br>6.38<br>6.38<br>6.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.5<br>59.3<br>59.3<br>-59.9<br>-61.3<br>-61.3<br>-61.3<br>-61.3<br>-61.3<br>-61.3<br>-61.3<br>-61.3<br>-61.3 |                                                        |                                       |
|                                                                              |                                                                                      |                                        | Stabilizatio                                                                                                                                                                                                                                                          | n Criteria             | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10%, or 3<br><0.5                                                    | 3%                                                                                                                         | ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 10 mv                                                                                                        |                                                        |                                       |
| Sampling E                                                                   | Data                                                                                 |                                        |                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                              |                                                        |                                       |
| Sample ID<br>Sample De<br>Sample Ar<br>Laborator                             | 21MW-2<br>escription (Color, <sup>-</sup><br>nalyses: <u>NWTP</u><br>y: Friedman & E | Turbidity, Od<br>H-Dx (w/ & v<br>Bruya | Tin<br>or, Other):<br>w/o SGC), NW<br>Lak                                                                                                                                                                                                                             | ne Collecte            | d: 12<br>ICICN<br>EX W/ Nap<br>Nethod:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>Color<br>Inthalene                                             | , Small                                                                                                                    | Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>305</u>                                                                                                     | cco<br>uteria<br>2/23                                  | 1, slight                             |
|                                                                              |                                                                                      |                                        |                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                        | 1                                     |
| Additional                                                                   | Information/Com<br>— petrol                                                          | evm                                    | OLOY                                                                                                                                                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                        |                                       |
|                                                                              |                                                                                      |                                        |                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      | <                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                        |                                       |

### Project No.: 553-1521-242 WO31 Task 200.02

Purge Data

223/22 Date:

Well ID: DW-3R

Project Name: King County METRO South Facilities South Annex Sampling Organization: Parametrix in Assoc. with HWA Geosciences

Project Address: 11911 E Marginal Way S, Tukwila, WA

Samp

| olers: | Cierra Wilson |  |
|--------|---------------|--|

| Purge Equ                             | uipment: Perista                                                                                       | ltic pump                   |                                         |                        |                                              | Dep                                          | oth of Well (ft be                                                                   | low TOC):                                      | 8.80                                     |                       |      |             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------|------|-------------|
| Pump Inta                             | ake Depth (ft belov                                                                                    | w TOC):                     | 6.0 ft                                  |                        |                                              | We                                           | ll Casing/Diamet                                                                     | ter: 0.9'                                      |                                          |                       |      |             |
| Initial Dep                           | oth to Water (ft be                                                                                    | low TOC):                   | 4.85                                    |                        |                                              | Pur                                          | ge Time (from/t                                                                      | o): <u>///</u>                                 | 5-11                                     | 50                    |      |             |
| Time<br>1119<br>1122<br>1125<br>1128  | Depth to<br>Water<br>(ft below TOC)<br>4.85<br>- 11<br>- 11<br>- 11                                    | Pump<br>Setting<br>2.75<br> | mt/min<br>Purge<br>Rate<br>260<br>CL // | Cum.<br>Vol.<br>Purged | Temp<br>(°C)<br>9.23<br>9.53<br>9.57<br>9.66 | DO<br>(mg/L)<br>3.59<br>3.20<br>3.02<br>2.68 | Specific <sup>MS</sup><br>Conductance<br>(mg/cm)<br>0.630<br>0.631<br>0.636<br>0.637 | pH<br>(units)<br>(.85<br>(.84<br>(.82<br>(.82) | ORP<br>(mv)<br>6.6<br>7.5<br>9.5<br>10.9 | Turbidity<br>(visual) | Comm | ents<br>Spe |
| 1134<br>1134<br>1137<br>1140<br>1143  | $\begin{array}{c c} & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline \\ \hline \\ \hline \\ \hline$ |                             |                                         | 2 gals                 | 9.55<br>9.57<br>9.53<br>9.53<br>9.52         | 2.54<br>2.25<br>2.16<br>2.18<br>2.16         | 0.637<br>0.636<br>0.636<br>0.636<br>0.635                                            | 6.80<br>6.80<br>6.79<br>6.79<br>6.79           | 12.9<br>15.2<br>17.1<br>19.2<br>21.1     |                       |      |             |
| · · · · · · · · · · · · · · · · · · · |                                                                                                        |                             |                                         |                        |                                              |                                              |                                                                                      |                                                |                                          |                       |      |             |
|                                       |                                                                                                        |                             |                                         |                        |                                              | 10%, or 3                                    |                                                                                      |                                                |                                          |                       |      |             |
|                                       | -                                                                                                      |                             | Stabilization                           | 1 Criteria             | 3%                                           | <0.5                                         | 3%                                                                                   | ± 0.1                                          | ± 10 mv                                  | <u></u>               |      |             |
| Sampling D                            | 7919                                                                                                   |                             |                                         |                        |                                              |                                              |                                                                                      |                                                |                                          |                       |      |             |
| Sample ID<br>Sample De                | escription (Color, T                                                                                   | urbidity, Oc                | Tim<br>or, Other):                      | e Collecter            | d:<br>                                       | 50<br>Lecks                                  | , no ac                                                                              | Weather:                                       | 30                                       | s UE                  | AR   |             |
| Laborator                             | y: Friedman & B                                                                                        | ruya                        | Lab                                     | Dropoff N              | lethod:                                      | in per                                       | son                                                                                  | Lab Drope                                      | off Date:                                | 2 23                  | 22   |             |
| Additional                            | Information/Com                                                                                        | ments                       |                                         |                        |                                              |                                              |                                                                                      |                                                |                                          |                       | -f   | _           |
|                                       |                                                                                                        |                             |                                         |                        |                                              |                                              |                                                                                      |                                                |                                          |                       |      |             |
|                                       |                                                                                                        |                             |                                         |                        |                                              |                                              |                                                                                      |                                                |                                          |                       |      |             |

### Project No.: 553-1521-242 WO31 Task 200.02

| Date: | 2 | 23 | 22 | Well ID: |
|-------|---|----|----|----------|
|       | 1 | 1  |    |          |

DW-4R 1

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samp

Project Address: 11911 E Marginal Way S, Tukwila, WA

Project Name: King County METRO South Facilities South Annex

| olers: | Cierra | Wilson |  |
|--------|--------|--------|--|
|        |        |        |  |

#### Purge Data

| Purge Equipment: Peristaltic pu                        | ітр                                                   | Dep                                                                                 | th of Well (ft below TOC)                             | : 9.21                                                                                                               |          |
|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| Pump Intake Depth (ft below TOC                        | ): 6.5 +                                              | Wel                                                                                 | Il Casing/Diameter: 0.6                               | 5′                                                                                                                   |          |
| Initial Depth to Water (ft below T                     | oc): 5.19                                             | Purg                                                                                | ge Time (from/to):                                    | 222-128                                                                                                              | 50       |
| Depth to<br>Water Pu<br>Time (ft below TOC) Set        | Imp Purge Vol.<br>tting Rate Purged                   | Temp DO<br>(°C) (mg/L)                                                              | Specific<br>Conductance pH<br>(mg/cm) (units)         | ORP Turbidity<br>(mv) (visual)                                                                                       | Comments |
| $   \begin{array}{ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.74 $6.4711.00$ $5.7811.25$ $5.2711.25$ $5.1511.30$ $4.9211.36$ $4.8411.36$ $4.71$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} \frac{ 5.3}{18.1} \\ \frac{20.5}{21.9} \\ \frac{21.9}{23.1} \\ \frac{23.1}{23.4} \\ \end{array} $ |          |
| Sampling Data                                          | Stabilization Criteria                                | 10%, or 3<br>3% <0.5                                                                | 3% ± 0.1                                              | ± 10 mv                                                                                                              |          |
| Campia ID: Dill 4D                                     | Time Calleste                                         | 4 1750                                                                              | \Alask                                                | - The 11                                                                                                             |          |
|                                                        |                                                       | a. 1200                                                                             | weather                                               | 303 00                                                                                                               | OHK      |
| Sample Description (Color, Turbid                      | ity, Odor, Other):                                    | no odo                                                                              | F black                                               | Specier                                                                                                              |          |
| Sample Analyses: NWTPH-Dx (                            | w/ & w/o SGC), NWTPH-Gx, BT                           | EX w/ Naphthalene                                                                   |                                                       |                                                                                                                      |          |
| Laboratory: Friedman & Bruya                           | Lab Dropoff N                                         | Aethod: IN per                                                                      | Son Lab Droj                                          | ooff Date: 223                                                                                                       | 22       |
| Additional Information/Comments                        | S                                                     |                                                                                     |                                                       | · · ·                                                                                                                |          |
| - black spec                                           | es visible u                                          | yon San                                                                             | upling                                                |                                                                                                                      |          |

### Project No.: 553-1521-242 WO31 Task 200.02

Project Name: King County METRO South Facilities South Annex

23 2 -22 Well ID: SB-7 Date: Project Address: 11911 E Marginal Way S, Tukwila, WA

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Cierra Wilson

#### **Purge Data**

| Purge Equ   | uipment: Perista     | ltic pump    |                                         |            |           | Dep      | oth of Well (ft be | low TOC):       | 11.64          |           |          |
|-------------|----------------------|--------------|-----------------------------------------|------------|-----------|----------|--------------------|-----------------|----------------|-----------|----------|
| Pump Inta   | ake Depth (ft belov  | v TOC):      | 8.0 1.                                  | +          |           | We       | ll Casing/Diamet   | ter: <u>2</u> " |                |           |          |
| Initial Dep | oth to Water (ft be  | low TOC):    | 5.30                                    |            |           | Pur      | ge Time (from/t    | o): 0           | 130 -          | 1020      |          |
|             | Depth to             |              | mL/min                                  | Cum.       |           |          | Specific 🚧         | is cm           |                |           |          |
|             | Water                | Pump         | Purge                                   | Vol.       | Temp      | DO       | Conductance        | pH              | ORP            | Turbidity |          |
| Time        | (ft below TOC)       | Setting      | Rate                                    | Purged     | (°C)      | (mg/L)   | (mg/cm)            | (units)         | (mv)           | (visual)  | Comments |
| 0134        | 5.32                 | 2.75         | 240                                     |            | 7.51      | 6.80     | 0.44-7             | 6.66            | -57.5          | t low     |          |
| 0451        | 5:35                 | 2.15         | 2100                                    |            | 7.65      | 4.19     | 0.450              | 6.64            | -60.2          |           |          |
| 0740        |                      |              |                                         |            | 7.11      | 2.75     | 0.449              | 6.62            | -63.7          | =         |          |
| 094-3       |                      |              |                                         |            | 8.07      | 1.93     | 0.449              | 6.62            | -67.5          |           |          |
| 0946        |                      |              |                                         |            | 8.01      | 1.55     | 0.450              | 6.61            | -68.9          |           |          |
| 0949        |                      |              |                                         |            | 8.12      | 1.38     | 0.450              | 6.61            | -70.1          |           |          |
| 0952        |                      |              |                                         |            | 8.10      | 1.16     | 0.457              | 6.61            | -71.]          |           |          |
| 0155        |                      | <u> </u>     | 4 //                                    |            | 8.13      | 1.02     | 0.451              | 6.60            | -72.2          |           |          |
| 0958        |                      |              |                                         |            | 8.11      | 0.89     | 0.453              | 6.60            | - <u>72</u> .5 |           |          |
| 1001        |                      |              |                                         |            | 8.14      | 0.87     | 0.453              | 6.60            | -73 -1         |           |          |
| 1004        |                      |              |                                         |            | 8.15      | 0.78     | 0.453              | 6.60            | -73.0          |           |          |
| 100 1       |                      |              |                                         |            | 8.20      | 0.77     | 0.454              | 6.59            | -71.7          | Clear     |          |
| 1010        |                      |              |                                         |            | 8.2.2     | 0.67     | 0.454              | 6.59            | -70:7          |           |          |
| 1013        |                      |              | 4 //                                    |            | 8.21      | 0.66     | 0.455              | 6.58            | -70.3          |           |          |
| 1016        |                      |              | ы — — — — — — — — — — — — — — — — — — — | 2.5%       | 8.21      | 0.62     | 0.456              | 6.58            | -69.8          |           |          |
|             |                      |              |                                         | V          |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
| <u> </u>    |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         | <u> </u>   |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            | <u></u>   |          |                    | ·               |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           | 10% or 3 |                    |                 |                |           |          |
|             |                      |              | Stabilization                           | n Criteria | 3%        | <0.5     | 3%                 | ± 0.1           | ± 10 mv        |           |          |
| Sampling D  | Data                 |              |                                         | _          |           |          |                    |                 |                |           |          |
|             |                      |              | _                                       | - K        | . 8       |          |                    |                 |                |           |          |
| Sample ID   | : SB-7               | 1            | Tim                                     | e Collecte | d: 107    | LO LO    |                    | Weather:        | 303            | 5 GL      | 5AR      |
| Sample De   | escription (Color, T | urbidity, Od | or, Other):                             | Clea       | UL, I     | noud     | or                 |                 |                |           |          |
| Sample Ar   | nalyses: NWTPH       | I-Dx (w/ & v | v/o SGC), NWT                           | PH-Gx, BT  | EX w/ Nap | hthalene |                    |                 |                |           |          |
| Laborator   | v: Friedman & Bu     | ruva         | Lah                                     |            | lethod:   | in all   | Con                | Lab Drop        | off Date:      | 2/22      | 72       |
| Eaborator   | y. Theuman of bi     | uya          |                                         |            | lethou.   | In here  | 40 I)              | Lab prope       | on Date.       | _L 23     | 0 -      |
| Additional  | Information/Com      | ments        |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |
|             |                      |              |                                         |            |           |          |                    |                 |                |           |          |

**Parametrix** 

# Project No.: 553-1521-242 WO31 Task 200.02

Project Name: King County METRO South Facilities South Annex

2 22 22 Date:

Well ID: SB-8

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Cierra Wilson

| Project Address: | 11911 E Marginal Way S, Tukwila, WA |
|------------------|-------------------------------------|
| Consul of        |                                     |

| Tuige Data |
|------------|
|------------|

-

| Purge Equinment: Peristaltic pum              | p                      |                                               | D 11 5111 11 11 11 1  | _               | 12 70              |          | _           |  |
|-----------------------------------------------|------------------------|-----------------------------------------------|-----------------------|-----------------|--------------------|----------|-------------|--|
| Pump Intake Depth (ft below TOC):             | -7.0A 12 r             | 0                                             | Depth of Well (ft bel | low TOC):       | 10.10              | )        |             |  |
| Initial Depth to Water (ft below TOC).        | 5.97                   | , <u>, , , , , , , , , , , , , , , , , , </u> | Well Casing/Diamete   | er: <u>2"</u>   | A                  |          |             |  |
| Donth to                                      | 1                      |                                               | Purge Time (from/to   | »): <u>101</u>  | 0 - 105            | 5, 15    | 35-155      |  |
| Water Pum                                     | Cum.<br>D Purge Vol    | Tomp DC                                       | Specific              |                 | 1.                 |          | 2/22/       |  |
| Time (ft below TOC) Settin                    | ng Rate Purged         | (°C) (mg                                      | L) (mg/cm)            | pH<br>(units)   | ORP Tu             | urbidity |             |  |
| 1015 7.45 2.5                                 | 260                    | 11.910 6.8                                    | A.932                 | and -           | 977                | visual)  | Comments    |  |
| 41020 8.10 2.5                                | - 260                  | 12.12                                         | 1935                  | 1. 19 -         | 1612 1             | none     | yenow       |  |
| 1030 9.10 2.25                                | 5 240                  | 17 19 3.04                                    | A 905                 | <u>v.v-</u>     | 16.2               | 4        | U           |  |
| 033                                           |                        | 12.34 7.3                                     | 1920                  | 6.17 ·          | $\frac{1}{\kappa}$ |          | strong ode  |  |
| 1036 9.45                                     |                        | 12.16 2.85                                    | 0.920                 | 1.12            | <u>0.88</u>        |          |             |  |
| 1039                                          |                        | 11.95 3.14                                    | 1 0.929               | (15 -           | 06.0               | -        |             |  |
| 1046                                          |                        | 11.5Z 2.5T                                    | 2 1.915               | 625             | 557                |          | pumpi       |  |
| 1049 11.5                                     |                        | 12.24 1.10                                    | 0 0.923               | 1.77 -          | 50.5               |          |             |  |
| 1052 11.5                                     |                        | 12.70 1.20                                    | L (). 927             | 6.00            | 102.4              |          |             |  |
| 1055 1285 V                                   | ¥ 1.59a                | 13.01 1.94                                    | A 920                 | 1.13 -          | 879                | chan     | od non      |  |
| 1535 8.40 2.75                                | - 240                  | 11187 3.25                                    | 5 0.557               | 6.78 -          | 27.9               | stopp    | ca pump     |  |
| 1538 8.81 - "                                 | 11 0 1                 | 11:08 2.8                                     | 0.850                 | 6.77 -          | 30.1               |          |             |  |
| 1541 9.60                                     |                        | 11.48 2.3                                     | 0.82                  | 10.75 -         | 79.U               |          |             |  |
| 1544 10.35                                    | 1 11 11                | 11.75 2.2                                     | 8 1.842               | 10.77 -         |                    |          |             |  |
| 1547 " " "                                    | 11 4 11                | 11.90 1.92                                    | - 1.857               | 1077 J          | 10.T -             |          |             |  |
| 1550 "11.65" "                                |                        | 12.310 1.15                                   | - 0.811               | 6.77 -5         | 7.10               |          |             |  |
| 1553 12.42 "                                  | 1 11 11                | 12.54 1.02                                    | 0.881                 | 6.77            | -52 9              |          |             |  |
| 1556 13.20 11                                 | N 11                   | 12.73 1.15                                    | 1.898                 | 1.77 -          | <u>5011</u>        | +        |             |  |
| 1559                                          | 1.5 gert               | 1.27                                          | (1. 970)              | 10.77 -         | 75.0               | Stand R  | 1 albenta'i |  |
|                                               |                        |                                               |                       | <u><u> </u></u> |                    | Supple   | puripin     |  |
|                                               |                        |                                               |                       |                 |                    |          |             |  |
|                                               |                        |                                               |                       |                 |                    |          |             |  |
|                                               |                        |                                               |                       |                 |                    |          |             |  |
|                                               |                        | 100/                                          |                       |                 |                    |          |             |  |
|                                               | Stabilization Criteria | 3% <0.5                                       | 3                     | +01 +           | 10                 |          |             |  |
| Sampling Data                                 |                        |                                               | 370                   | 10.1 1          | 10 mv              | _        |             |  |
|                                               |                        |                                               |                       |                 |                    |          |             |  |
| Sample ID: SB-8                               | Time Collected         | 0830                                          | 123/22 W              | Veather:        | 30's               | Sout     |             |  |
| Sample Description (Color, Turbidity, (       | Ddor, Other):          | white so                                      | ones calles           | 1100 0          | _005               | 0        |             |  |
| Sample Analyses: NIMITEL Dy (m/ s             |                        | i wanter sp                                   | corpi sultur.         | 1146 8          | Men                |          |             |  |
| Sample Analyses. NWTPH-DX (W/ 8               | W/O SGC), NWTPH-Gx, BT | EX w/ Naphthalene                             | u                     |                 |                    |          |             |  |
| Laboratory: Friedman & Bruya                  | Lab Dropoff M          | ethod: in P                                   | erson La              | ab Dropoff      | Date: 👮            | 2/23/    |             |  |
| Additional Information/Comments               |                        |                                               |                       |                 |                    | 1031     |             |  |
| I mimmin a med as                             | air come               | Date 1                                        |                       |                 |                    |          |             |  |
| replaced at 12/t.L.                           |                        |                                               |                       |                 |                    |          |             |  |
| TShrin an marter Samples taken 2123 w/o purge |                        |                                               |                       |                 |                    |          |             |  |
| - stopping agitated - magnet blass            |                        |                                               |                       |                 |                    |          |             |  |
| (1.28 - M                                     | DUbbles                | present                                       | (ral)                 |                 |                    |          |             |  |
| the current of standin                        | g un eleva             | 1 of 1                                        | メドト                   |                 |                    | Par      | ametrix     |  |

### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr Bourgeois:

Included is the amended report from the testing of material submitted on February 23, 2022 from the King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 project. Per your request, the project name has been updated.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (PMX), Lisa Gilbert (PMX) HWA0303R.DOC

### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr Bourgeois:

Included are the results from the testing of material submitted on February 23, 2022 from the King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (PMX), Lisa Gilbert (PMX) HWA0303R.DOC

### ENVIRONMENTAL CHEMISTS

## CASE NARRATIVE

This case narrative encompasses samples received on February 23, 2022 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | HWA Geosciences, Inc |
|----------------------|----------------------|
| 202432-01            | DW-3R                |
| 202432-02            | DW-4R                |
| 202432-03            | SB-7                 |
| 202432-04            | SB-8                 |
| 202432-05            | 21MW-1               |
| 202432-06            | 21MW-2               |
| 202432-07            | 21MW-3               |
| 202432-08            | Trip Blanks          |

All quality control requirements were acceptable.
#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 Date Extracted: 02/28/22 Date Analyzed: 02/28/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery)</u><br>(Limit 51-134) |
|-----------------------------------|-----------------------|-----------------------------------------------------|
| DW-3R<br>202432-01                | <100                  | 79                                                  |
| DW-4R<br>202432-02                | <100                  | 82                                                  |
| SB-7<br>202432-03                 | <100                  | 81                                                  |
| SB-8<br>202432-04 1/5             | <500                  | 78                                                  |
| 21MW-1<br>202432-05               | <100                  | 79                                                  |
| 21MW-2<br>202432-06               | <100                  | 80                                                  |
| 21MW-3<br><sup>202432-07</sup>    | <100                  | 80                                                  |
| Trip Blanks<br>202432-08          | <100                  | 79                                                  |
| Method Blank<br>02-344 MB         | <100                  | 79                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 Date Extracted: 02/25/22 Date Analyzed: 02/25/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate (% Recovery) Sample ID Diesel Range Motor Oil Range Laboratory ID  $(C_{10}-C_{25})$  $(C_{25}-C_{36})$ (Limit 41-152) DW-3R <50 <250 126202432-01 DW-4R <50 <250 128202432-02 SB-7<50 <250 129202432-03 **SB-8**  $<\!\!50$ <250 85 202432-04 21MW-1 <50 <250 132202432-05 21MW-2 124 $<\!\!50$ <250 202432-06 21MW-3 <50 <250 113 202432-07 Method Blank <50 <250 111 02-515 MB

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432 Date Extracted: 02/24/22 Date Analyzed: 02/24/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | <u>Motor Oil Range</u><br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|-------------------------------------|----------------------------------------------------|
| DW-3R<br>202432-01                | <50                       | <250                                | 125                                                |
| DW-4R<br>202432-02                | 58 x                      | <250                                | 124                                                |
| SB-7<br>202432-03                 | 59 x                      | <250                                | 121                                                |
| SB-8<br>202432-04                 | 350 x                     | 310 x                               | 84                                                 |
| 21MW-1<br>202432-05               | 150 x                     | <250                                | 136                                                |
| 21MW-2<br>202432-06               | 270 x                     | <250                                | 125                                                |
| 21MW-3<br>202432-07               | 250 x                     | <250                                | 126                                                |
| Method Blank<br>02-515 MB         | <50                       | <250                                | 111                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-3R<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-01<br>030112.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 116           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                  | 99            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                              | 93            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-4R<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-02<br>030113.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 111           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                  | 99            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                              | 91            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-7<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-03<br>030114.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 111           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                 | 98            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                             | 93            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-8<br>02/23/22<br>03/01/22<br>03/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-04<br>030210.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 105           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                 | 96            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                             | 93            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-1<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-05<br>030115.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 104           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                   | 98            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                               | 89            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-2<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-06<br>030116.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 109           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                   | 98            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                               | 91            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-3<br>02/23/22<br>03/01/22<br>03/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-07<br>030211.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 112           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                   | 98            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                               | 89            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Trip Blanks<br>02/23/22<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>202432-08<br>030111.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                        |               | Lower                                                                    | Upper                                                                                          |
| Surrogates:                                                                                   |                                                                        | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane-                                                                           | -d4                                                                    | 109           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                        | 100           | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenze                                                                            | ene                                                                    | 89            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                        | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                        | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                        | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                        | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                        | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                        | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                        | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                        | <1            |                                                                          |                                                                                                |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Bla<br>Not Applica<br>03/01/22<br>03/01/22<br>Water<br>ug/L (ppb) | nk<br>ble     | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>W031 Task 200.02, F&BI 202432<br>02-479 mb<br>030107.D<br>GCMS11<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                               | 0 11 /                                                                   |               | Lower                                                                    | Unner                                                                                          |
| Surrogates:                                                                                   |                                                                          | % Recovery:   | Limit:                                                                   | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                            | -d4                                                                      | 113           | 78                                                                       | 126                                                                                            |
| Toluene-d8                                                                                    |                                                                          | 98            | 84                                                                       | 115                                                                                            |
| 4-Bromofluorobenz                                                                             | ene                                                                      | 94            | 72                                                                       | 130                                                                                            |
|                                                                                               |                                                                          | Concentration |                                                                          |                                                                                                |
| Compounds:                                                                                    |                                                                          | ug/L (ppb)    |                                                                          |                                                                                                |
| Benzene                                                                                       |                                                                          | < 0.35        |                                                                          |                                                                                                |
| Toluene                                                                                       |                                                                          | <1            |                                                                          |                                                                                                |
| Ethylbenzene                                                                                  |                                                                          | <1            |                                                                          |                                                                                                |
| m,p-Xylene                                                                                    |                                                                          | <2            |                                                                          |                                                                                                |
| o-Xylene                                                                                      |                                                                          | <1            |                                                                          |                                                                                                |
| Naphthalene                                                                                   |                                                                          | <1            |                                                                          |                                                                                                |

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 202432-01 (Duplicate)     |            |        |           |            |  |  |  |
|--------------------------------------------|------------|--------|-----------|------------|--|--|--|
|                                            | Reporting  | Sample | Duplicate | RPD        |  |  |  |
| Analyte                                    | Units      | Result | Result    | (Limit 20) |  |  |  |
| Gasoline                                   | ug/L (ppb) | <100   | <100      | nm         |  |  |  |
| Laboratory Code: Laboratory Control Sample |            |        |           |            |  |  |  |

|          |            |       | Percent  |            |   |
|----------|------------|-------|----------|------------|---|
|          | Reporting  | Spike | Recovery | Acceptance |   |
| Analyte  | Units      | Level | LCS      | Criteria   |   |
| Gasoline | ug/L (ppb) | 1,000 | 110      | 69-134     | • |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: L | aboratory Contr | ol Sample | e Silica Gel |          |            |            |
|--------------------|-----------------|-----------|--------------|----------|------------|------------|
|                    |                 |           | Percent      | Percent  |            |            |
|                    | Reporting       | Spike     | Recovery     | Recovery | Acceptance | RPD        |
| Analyte            | Units           | Level     | LCS          | LCSD     | Criteria   | (Limit 20) |
| Diesel Extended    | ug/L (ppb)      | 2,500     | 128          | 120      | 61-133     | 6          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  | Percent  |            |            |
|-----------------|------------|-------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | 132      | 132      | 63-142     | 0          |

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 03/03/22 Date Received: 02/23/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 202432

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 202427-01 (Matrix Spike)

| , v          | 1 /        |       |        | Percent  |            |
|--------------|------------|-------|--------|----------|------------|
|              | Reporting  | Spike | Sample | Recovery | Acceptance |
| Analyte      | Units      | Level | Result | MS       | Criteria   |
| Benzene      | ug/L (ppb) | 10    | < 0.35 | 92       | 50-150     |
| Toluene      | ug/L (ppb) | 10    | <1     | 103      | 50 - 150   |
| Ethylbenzene | ug/L (ppb) | 10    | <1     | 94       | 50 - 150   |
| m,p-Xylene   | ug/L (ppb) | 20    | <2     | 99       | 50 - 150   |
| o-Xylene     | ug/L (ppb) | 10    | <1     | 95       | 50 - 150   |
| Naphthalene  | ug/L (ppb) | 10    | <1     | 87       | 50 - 150   |

#### Laboratory Code: Laboratory Control Sample

|              | Reporting  | Spike | Percent<br>Recovery | Percent<br>Recovery | Acceptance | RPD        |
|--------------|------------|-------|---------------------|---------------------|------------|------------|
| Analyte      | Units      | Level | LCS                 | LCSD                | Criteria   | (Limit 20) |
| Benzene      | ug/L (ppb) | 10    | 94                  | 95                  | 70-130     | 1          |
| Toluene      | ug/L (ppb) | 10    | 102                 | 104                 | 70-130     | 2          |
| Ethylbenzene | ug/L (ppb) | 10    | 96                  | 98                  | 70-130     | 2          |
| m,p-Xylene   | ug/L (ppb) | 20    | 101                 | 103                 | 70-130     | 2          |
| o-Xylene     | ug/L (ppb) | 10    | 96                  | 98                  | 70-130     | 2          |
| Naphthalene  | ug/L (ppb) | 10    | 88                  | 93                  | 70-130     | 6          |

### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                        |               |               |               |                       |                         |        |                  | tani ya na |                 |            | Received by:                              | 206) 285-8282       | Ph. (2      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|---------------|---------------|---------------|-----------------------|-------------------------|--------|------------------|------------------------------------------------|-----------------|------------|-------------------------------------------|---------------------|-------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | annie incoived at 200              | 8                                      |               | -             |               | 1                     |                         |        |                  |                                                |                 | l by:      | Relinquished                              | le, WA 98119-2029   | Seatt       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02-23.22 14.26                     | 10                                     | T             | 2<br>F        | Ste           | 5                     | 2                       | 6      | <u>o</u>         | <b>,</b>                                       | haller (        | 4          | Received by:                              | 16th Avenue West    | 3012        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/23 22 1420                       | NA                                     | 4             |               | 20            | NIS.                  | 2                       | Nr.    | Cie              | À.                                             | M Mary          | I by       | Relinquished                              | man & Bruya, Inc.   | Fried       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE TIME                          | COMPANY                                |               |               | B             | NAM                   | RINT                    | P      |                  |                                                | NATURE          | <b>QIS</b> |                                           |                     |             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                        |               |               |               |                       | No.                     | 22     |                  |                                                |                 |            |                                           |                     |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                        |               | <u> </u>      |               | $\ge$                 |                         | 12     | S Z              |                                                |                 | 1-0        | 180                                       | Banks               | 1.1         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                        |               | -             |               | $\ge$                 |                         | _      | GN               | 505                                            | 2/22/22 1       | 5-6        | 110                                       | NW-3                | 211         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | <                                      |               |               |               |                       |                         | -      |                  |                                                |                 |            |                                           | 4                   | 7           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | ×                                      |               |               |               | X                     | 77                      | ĺ      | 92               | 245                                            | 2/22/22         |            | 00                                        | 1W-2                | 2110        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                        |               |               |               | ĬZ.                   |                         |        | G W              | 455                                            | 2/22/22         |            | 50                                        | 1W                  | 211         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                        |               | +             | ,<br>         | $\ge$                 |                         |        | 50               | 0830                                           | 2/23/22         |            | 104                                       | 8                   | SB          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | ×                                      |               |               |               |                       |                         |        | 52               | 1020 .                                         | 2/23/22         |            | 50                                        |                     | SB-         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | ×                                      |               | +             |               | ×                     |                         |        | SD               | 250                                            | 2/23/22         |            | 02                                        | -42                 | 202         |
| Z @ Z.432 LM. Bradyt SAMPLE CHAIN OF CUSTODY 02.73.72 Page# of Intervention Polytective Polytective Intervention Polytective Intervention Polytective Intervention Polytective Intervention Polytective Intervention Polytective Polytective Polytective Intervention Polytective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 255. 0 1 + m × C                   | X                                      |               |               |               | $\left \times\right $ | $\overline{\mathbf{x}}$ |        | GN               | 1150                                           | 2/23/22         | 5          | 10                                        | )-3P                | 3           |
| ZOZLIZL LM. Brady SAMPLE CHAIN OF CUSTODY 02.23.22 Page # 1 of   Report To C. Bourge of STL. Gilbert SAMPLERS (signature) MPL PROJECT NAME PO# TURNAROUND TIME   Company HWH Geosci ences * PMX SAMPLERS (signature) MPL PO# Standard burnaround   Address ZI 3 IZ SO** Dr SC. South Bort Bort Borne 202 1-062 WO31 Rush charges authorized by:   City, State, ZIP Borne SOURgeoi SQ Inwaqto. REMARKS Project specific RLs? - Yes / No HWH Base fler 30 days   Phone 20 b-794-3145 Email Courspect SQ Invactor Company Com Project specific RLs? - Yes / No HWH Default: Dispose after 30 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                              | PCBs EPA 8082<br>STEX +<br>Naphthalene | PAHs EPA 8270 | VOCs EPA 8260 | BTEX EPA 8021 | NWTPH-Gx              | 5 S,<br>NWTPH-Dx        | Ja #   | Sample<br>Type   | Time<br>Sampled                                | Date<br>Sampled | B          | Lab                                       | Sample ID           |             |
| ZOZ432 LM. Brady SAMPLE CHAIN OF CUSTODY 02.23.22 Page #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | REQUESTED                              | LYSES         | ANA           |               |                       | $\left  \right $        |        |                  |                                                |                 |            |                                           |                     |             |
| 202432 LM. Brady SAMPLE CHAIN OF CUSTODY 02.23.22 Page # of<br>Report To C. Bourge aist L. Gilbert SAMPLERS (signature) PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PO # Standard turnaround Address 21312 30' Dr SC. South Borse Fiilds Task 200.02 SAMPLE DISPOSAL REMARKS Produce To City, State, ZIP Bothom, WH, 98021 REMARKS Produce Units Involce To City State, ZIP Bothom, WH, 98021 REMARKS Produce Units Involce To City State, ZIP Bothom, WH, 98021 REMARKS Produce City State, ZIP Bothom, 2002 REMARKS Produce | runer                              | De                                     | T             | NF            | 4             | <u>s</u> 1            | Yes /                   | Ls? -  | <u>oecific R</u> | Project                                        | @ mua.aco.      | geoi si    | nail Cbour                                | e 20 10-794-3145 En | Phon        |
| 202432 IM. Brady SAMPLE CHAIN OF CUSTODY 02.23.22 Page# of Page# o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE DISPOSAL<br>Archive samples |                                        | TCE T         | INVO          | •             | ,F                    | ĘÈ                      | þ      | S                | REMARI                                         | 21              | 980        | N M                                       | State, ZIP BOTNEN   | City,       |
| Report To C. Bourge of STL. Gilbert<br>Report To C. Bourge of STL. Gilbert<br>PROJECT NAME<br>PROJECT NAME<br>PROJECT NAME<br>PO#<br>PO#<br>PO#<br>PO#<br>PO<br>RUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sh charges authorized by:          | NO31 Rus                               | 2001          | NO -          | 7202          |                       | K. T                    | 50     | Revery           | King (                                         |                 | SE         |                                           | 1000 11111 1200     | Comp        |
| Bount To C. Bours of STL. Gilbert SAMPLERS (signature) Mar Mar Page # 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tandard turnaround<br>USH          | <br><br>                               | Ŏ<br>#        |               |               |                       |                         |        | TNAMI            | PROJEC                                         | S.              | 4<br>5     | 1 1 1 100                                 | Line Good           | ndavr       |
| 202432 SAMPLE CHAIN OF CUSTODY 02.23.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TURNAROUND TIME                    |                                        |               | 5             | B             |                       | n Q                     | rature | RS (sign         | SAMPLE                                         | Gilbert         |            | )<br>)<br>)<br>,<br>,<br>,<br>,<br>,<br>, | +m C. Bou           | D<br>m<br>m |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······                             | 10                                     | 5<br>v<br>v   | 02            | DY            | STO                   | E CU                    | IO N   | CHAI             | AMPLE                                          |                 | 5          |                                           | 202432              |             |

















:





· .















...........

.

### **APPENDIX B:**

## MAY 2022 FIELD DATA SHEETS & LABORATORY REPORTS
# **Field Report/Well Data**

#### TO:

Lisa Gilbert

Mike Brady

John Greene

|                                             | _          |             |                 |      |
|---------------------------------------------|------------|-------------|-----------------|------|
| DATE                                        |            | JOB NO.     |                 |      |
| 5/10/2022                                   |            | 553-1521-24 | 12 WO31 Task 20 | 0.02 |
| PROJECT                                     |            |             |                 |      |
| King County METRO South                     | Facilities | South Annex |                 |      |
| LOCATION                                    |            |             |                 | -    |
| 11911 E Marginal Way S, Tu                  | ukwila, V  | VA          |                 |      |
| CONTRACTOR                                  |            | OWNER       |                 |      |
| Parametrix in Assoc. with HV<br>Geosciences | WA         | King County | METRO           |      |
| WEATHER                                     | TEMP       | Nis, cheary | 5° at 7:35      | AM   |
| cherry parting                              | mid        | 5 *'s       | °at 8:40        | PM   |
| PRESENT AT SITE                             | -          |             |                 |      |
| Chris Bourgeois 🔸 A                         | HTH        | hatcher     |                 |      |
|                                             |            |             |                 |      |
|                                             |            |             |                 |      |
|                                             |            |             |                 |      |

#### THE FOLLOWING WAS NOTED:

| WN<br>(WELL<br>NUMBER) | Time | DTW<br>(DEPTH TO<br>WATER) | MP<br>(MEASURE<br>POINT) | SU<br>(STICK UP OF<br>WELL CASING) | TD<br>(TOTAL DEPTH<br>OF WELL) | WD<br>(WELL<br>DIAMETER) |                     |
|------------------------|------|----------------------------|--------------------------|------------------------------------|--------------------------------|--------------------------|---------------------|
| 21MW-1                 | 800  | 4.41'                      | PVC                      |                                    |                                | .W.                      | 1                   |
| 21MW-2                 | 808  | 5.11'                      | pvc                      |                                    |                                |                          | Signific<br>Tron ba |
| SB-7                   | 752  | 5.00'                      | pre                      |                                    |                                |                          | ibind be            |
| SB-8                   | 850  | 5.35'                      | PVL                      |                                    |                                |                          | 3/4" 6              |
| DW-3R                  | 749  | 4.52'                      | PUC charth)              |                                    |                                |                          | Peiro di            |
| DW-4R                  | 745  | 4.89'                      | PVC                      |                                    |                                |                          | Petro               |
| Staff<br>Gauge         | 822  | පි. 85                     | Top of conc.             |                                    |                                |                          | Right               |
| or 825                 | 340  | 5.41'                      | TOC                      |                                    |                                |                          | 518 5               |
|                        | -    |                            |                          |                                    |                                |                          |                     |
|                        |      |                            |                          |                                    |                                |                          |                     |
|                        |      | 1                          |                          |                                    |                                |                          | 1                   |
|                        | _    |                            |                          |                                    |                                |                          |                     |
|                        |      |                            |                          |                                    |                                |                          |                     |
|                        |      |                            | ١                        |                                    |                                |                          |                     |
|                        |      |                            |                          |                                    |                                |                          |                     |

TOC (Top of Locking Casing) TOW (Top of Well Casing)

COPIES 1 SIGNED CCUVZ DW-3R & YR: bilts spin truly. (SB-7, too) AL. NMW-1, 21MM-2; 9/16" bolt.

.....

| Project No                                | o.: <u>553-1521-24</u>              | 12 WO31 T       | ask 200.02        |                        | Da                | ite: 5            | 10/22                              | We            | ell ID: 🔡   | 21MW-1                |            |
|-------------------------------------------|-------------------------------------|-----------------|-------------------|------------------------|-------------------|-------------------|------------------------------------|---------------|-------------|-----------------------|------------|
| Project Na                                | ame: King County                    | y METRO So      | uth Facilities So | outh Annex             | c Pr              | oject Addres      | s: 11911 E Ma                      | arginal Wa    | y S, Tukwil | a, WA                 |            |
| Sampling                                  | Organization: Pa                    | rametrix in A   | Assoc. with HW    | /A Geoscier            | nces Sa           | mplers: _Cl       | nris Bourgeois                     |               |             |                       |            |
| Purge Dat                                 | ta                                  |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
| Purge Eq                                  | uipment: Perista                    | altic pump      |                   |                        |                   | Dep               | oth of Well (ft be                 | low TOC):     | 15.0        |                       |            |
| Pump Int                                  | take Depth (ft below                | w TOC): 6       | .0                |                        |                   | We                | ll Casing/Diamet                   | er: 2"        |             | 14                    |            |
| Initial De                                | pth to Water (ft be                 | low TOC):       | 7.05              |                        |                   | Pur               | ge Time (from/to                   | b): <u>  </u> | 15 -1       | 210                   | *          |
| Time                                      | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate     | Cum.<br>Vol.<br>Purged | Temp<br>(°C)      | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments   |
| 1145                                      | 7.05                                | 2.25            | 265 min           | 0                      | 13.5              | 5,50              | 586.6                              | 6.57          | 11.2        | Slightly              |            |
| 1150                                      | 4.94                                | H               | <u>v</u>          |                        | 12.0              | 0.12              | 583.2                              | 6.43          | 59.1        | · clear /             | petro olo- |
| 1155 5.14 N.6 0.11 572-1 6.44 48.2 yelliw |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
| $\frac{1200}{1205} 5.22 $                 |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
| 1205                                      | <u> </u>                            |                 |                   |                        | 11.5              | 0.08              | 560.9                              | 6.43          | 37.1        |                       |            |
| 1210                                      | <u>(</u>                            |                 |                   | ~1.25                  | 11.6              | 0.07              | 556.0                              | 6.43          | 33.5        | Lars a                | lor        |
|                                           |                                     |                 |                   | gm                     |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           | /                                   |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   | i                      |                   |                   |                                    |               |             |                       |            |
|                                           | ·                                   |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
|                                           |                                     |                 | Stabilizatio      | n Criteria             | 3%                | 10%, or 3<br><0.5 | 3%                                 | ± 0.1         | ± 10 mv     |                       |            |
| Sampling [                                | Data                                |                 |                   |                        |                   |                   |                                    |               |             |                       |            |
| Sample ID                                 | : 21MW-1                            |                 | Tim               | e Collected            | d: 1-             | LI5               |                                    | Weather:      | Sev.        | 1 h                   | ma num     |
| Sample De                                 | escription (Color, T                | urbidity, Od    | or, Other):       | der                    | , mi              | he ve             | or (patro                          | )             |             | ···) '                |            |
| Sample A                                  | nalyses: NWTPH                      | 1-Dx (w/ & v    | v/o SGC), NWT     | PH-Gx, BTE             | EX w/ Nap         | hthalene          |                                    |               |             |                       |            |
| Laborator                                 | y: Friedman & Br                    | ruya            | Lab               | Dropoff M              | ethod:            | in-per            | rson.                              | Lab Dropo     | off Date:   | 5/10/                 | 22         |
| Additional                                | Information/Com                     | ments           |                   |                        |                   |                   |                                    |               |             |                       |            |
| Ē                                         | UP: 5                               | 21 M            | N-3               | collec                 | ctud <sup>-</sup> | 2 12              | -30                                |               |             |                       |            |
|                                           |                                     |                 |                   |                        |                   |                   |                                    |               |             |                       |            |

Project No.: 553-1521-242 WO31 Task 200.02

Date: BAR 5/10/22 Well ID:

: 21MW-2

Project Name: King County METRO South Facilities South Annex

**Purge Data** 

Project Address: \_\_\_\_\_11911 E Marginal Way S, Tukwila, WA

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Sam

| Purge Equ   | uipment: Perista                    | altic pump      |               |                        |              | Dep          | oth of Well (ft be                 | low TOC):     | 15.0        |                       |                 |
|-------------|-------------------------------------|-----------------|---------------|------------------------|--------------|--------------|------------------------------------|---------------|-------------|-----------------------|-----------------|
| Pump Int    | ake Depth (ft belov                 | w TOC): _6.     | 5             |                        |              | We           | ll Casing/Diamet                   | er: 2″        |             |                       |                 |
| Initial Dep | pth to Water (ft be                 | low TOC):       | 5.00          |                        |              | Pur          | ge Time (from/to                   | o): \         | 105 -       | 1040                  |                 |
| Time        | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate | Cum.<br>Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L) | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments        |
| 1005        | 5.00                                | 2.25            | 260 mL        | 6                      | 13.5         | 1.22         | 1088 C.6                           | allon         | 20,9        | 1 Jean Ma             | Jan h w/        |
| 1310        | 5.17                                | <b>L</b>        | **            |                        | 13.4         | 6.38         | 1083                               | 6.07          | - 6.6       | w ,                   | orange flechs.  |
| 1015        | L.                                  | 16              | UL .          |                        | 13.4         | 0.14         | 1069                               | 6.08          | -26.2       |                       | r               |
| 1020        | 21                                  | 11              | v l           |                        | 13.3         | 0.16         | 1020                               | 6,12          | -35.2       |                       | +1              |
| 1025        | w.                                  | 5               | ~ ~ ~         |                        | 13.6         | 0.09         | 989                                | 6.15          | -39.4       | **                    | N N             |
| 1030        | h.                                  | *               | ħ             |                        | 13.5         | 0.12         | 963.                               | 6.16          | - 40.4      | 14                    | 41              |
| 1035        | h                                   |                 | ~             |                        | 13.4         | 0,10         | 943                                | 6.16          | -46,7       | *1                    | 0               |
| 1040        | u.                                  | "               | ~             | ~7.5                   | 13.5         | 0.11         | 931                                | 6.18          | -41.5       | forbido               | 1 color imprive |
|             |                                     |                 |               | gr-                    |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    | ·             |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    | ·             |             |                       |                 |
| <u> </u>    |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    | <u>.</u>      |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
| <u></u>     |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |
|             |                                     |                 |               |                        | ·            |              |                                    |               |             | <u> </u>              |                 |
|             |                                     |                 |               |                        |              | 10%, or 3    |                                    |               |             |                       |                 |
|             |                                     |                 | Stabilization | Criteria               | 3%           | <0.5         | 3%                                 | ± 0.1         | ± 10 mv     |                       |                 |
| Sampling D  | Data                                |                 |               |                        |              |              |                                    |               |             |                       | 6 I.            |
| Sample ID   | : 21MW-2                            |                 | Time          | e Collecte             | d:(          | 545          |                                    | Weather:      | sunn        | y/part                | ly chudy, high  |
| Sample De   | escription (Color, T                | urbidity, Odd   | or, Other):   | orang                  | flec         | les/turb     | ida, li                            | ght a         | annu/       | brance                | 4. m. 50's.     |
| Sample An   | alyses: NWTP                        | H-Dx (w/ & w    | /o SGC), NWTI | PH-Gx, BT              | EX w/ Nap    | hthalene     | <u> </u>                           | 1 0           |             | /                     |                 |
| Laborator   | y: Friedman & B                     | ruya            | Lab           | Dropoff N              | lethod:      | in-per       | son:                               | Lab Dropo     | off Date:   | 5/141-                | 12              |
| Additional  | Information/Com                     | ments           |               |                        |              |              |                                    |               |             |                       |                 |
|             | lots of                             | oran            | pe iton       | bact                   | evia.        | on sou       | noler                              |               |             |                       |                 |
|             |                                     |                 |               |                        |              |              |                                    |               |             |                       |                 |

|            |                         |                 | GROU              | NDWA                 | TER SAN      |                                       | LECTION FO                         | RM            |             |                       |              |
|------------|-------------------------|-----------------|-------------------|----------------------|--------------|---------------------------------------|------------------------------------|---------------|-------------|-----------------------|--------------|
| Project N  | o.: 553-1521-24         | 42 WO31 Ta      | ask 200.02        |                      | Da           | ste: VSV                              | 116/22                             | We            | ell ID:     | SB-7                  |              |
| Project N  | ame: King Count         | v METRO Sou     | uth Facilities Sc | outh Anne            | v Pr         | oiect Addres                          | s• 11911 F M                       | arginal Wa    |             |                       |              |
| Sampling   | Organization: Pa        | rametrix in A   | assoc with HW     | A Geoscie            | nces Sa      | molers. Cl                            | aris Bourgeois                     | arginar vva   | y 5, TUKWI  | Id, WA                |              |
| Purge Da   | ta                      |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
| Durgo Eo   | Vuinmont. Perist:       | altic nump      |                   |                      |              |                                       |                                    |               | 11.64       |                       |              |
| Purge Ed   | take Denth (ft bala     |                 | 0                 |                      |              | Dep                                   | oth of Well (ft be                 | low IOC):     | 11.04       |                       |              |
| Pump in    | take Depth (It belo     |                 | 5.02              |                      |              | we                                    | II Casing/Diamet                   | er: <u>∠</u>  | .55 . 1     | 710                   |              |
| Initial De | eptri to water (it be   | elow TOC):      |                   |                      |              | Pur                                   | ge Time (from/to                   | o):           | 13          | 15 20                 |              |
| Time       | Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate     | Vol.<br>Purged       | Temp<br>(°C) | DO<br>(mg/L)                          | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(my) | Turbidity<br>(visual) | Comments     |
| 1250       | 5.02                    | 2.25            | LEUME             | 6                    | 11.0         | b.28                                  | 122.0                              | 6.43          | 52.6        | Ontenehow             | Slient Betro |
| 1255       | 5.15                    | 6.0             | **                |                      | 10.5         | 0.13                                  | Y67.1                              | 6,37          | 37.4        | ~~~~~                 | "            |
| 1300       | Γı.                     | 1. to           | ~*                |                      | 10.4         | 0.10                                  | 466.9                              | 6.37          | 25.7        |                       | 6            |
| 1705       | 6 K                     | , L             | . <b>v</b>        |                      | 10.7         | 6.08                                  | 766.7                              | 6.36          | 17.7        | ir i                  | 1.           |
| 1310       | 64                      | 6               |                   |                      | 10.4         | 0.97                                  | 467.3                              | 6.37          | 11.2        | e.e.                  | • •          |
| 1315       | v                       | <u>и</u>        | 4.80              |                      | 10.7         | 0.06                                  | 467.2                              | 6.34          | 5.4         | u.                    | L1           |
| 1320       |                         |                 |                   | 7-                   | 10.5         | 6.06                                  | 467.0                              | 6.36          | 1.7         |                       |              |
|            |                         |                 |                   | $\frac{1}{\sqrt{2}}$ |              | · · · · · · · · · · · · · · · · · · · |                                    |               |             |                       |              |
|            |                         |                 | ~ [.              | Light                | 1 000        | death 1                               | A . le ite le                      | le al         |             |                       |              |
|            |                         |                 | V                 | STICEN               | Weighter .   | CV - CO Mart                          | Je acover to a p                   | renet,        |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            | <u>.</u>                |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      | ·            |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 |                   |                      |              |                                       |                                    |               |             |                       |              |
|            |                         |                 | Stabilization     | n Criteria           | 3%           | 10%, or 3<br><0.5                     | 3%                                 | ±0.1          | ± 10 mv     |                       |              |
| Sampling   | Data                    |                 |                   |                      |              |                                       |                                    |               |             |                       |              |

| Sample ID: SB-7                            | Time Collected: 13           | .25          | Weather: Such     | glandy cloudy |
|--------------------------------------------|------------------------------|--------------|-------------------|---------------|
| Sample Description (Color, Turbidity, Odor | r, Other): slight pale       | ynow here,   | milie petro odo.  | / Lool        |
| Sample Analyses: NWTPH-Dx (w/ & w/         | o SGC), NWTPH-Gx, BTEX w/ Na | phthalene    |                   |               |
| Laboratory: Friedman & Bruya               | Lab Dropoff Method:          | in-pervision | Lab Dropoff Date: | 5/10/22       |
| Additional Information/Comments            |                              |              |                   |               |
| buits                                      | spin tracky.                 |              |                   |               |

**1**81

-

| Project N                            | o.: <u>553-1521-24</u>                                | 2 WO31 Ta                               | sk 200.02                              |                | Da                                                                                           | ate: 5        | /10/22             | We            | ell ID: S    | B-8       |            |  |
|--------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------|----------------------------------------------------------------------------------------------|---------------|--------------------|---------------|--------------|-----------|------------|--|
| Project N                            | ame: King County                                      | METRO Sou                               | th Facilities So                       | outh Anne:     | x Pr                                                                                         | oiect Addres  | s: 11911 E Ma      | arginal Wa    | v S. Tukwil; | a. WA     |            |  |
| Sampling                             | Organization: Par                                     | ametrix in A                            | ssoc. with HW                          | A Geoscie      | ences Sa                                                                                     | mplers:       | nris Bourgeois     | 0             | , _,         |           |            |  |
| Purge Dat                            | ta                                                    |                                         |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
| Purge Eq                             | uipment: Perista                                      | ltic pump                               |                                        |                |                                                                                              | Dep           | oth of Well (ft be | low TOC):     | 13.7         | 70        |            |  |
| Pump In                              | take Depth (ft below                                  | v TOC): 7                               | -> 13                                  |                |                                                                                              | We            | ll Casing/Diamet   | er: 2"        |              |           |            |  |
| Initial De                           | pth to Water (ft be                                   | low TOC):                               | dropped f                              | bon 5.3        | 5-5.71                                                                                       | while Pur     | ge Time (from/to   | o):C          | 15 -9        | 46        |            |  |
|                                      | Depth to                                              |                                         |                                        | Cum.           | setter .                                                                                     | r yr          | Specific           |               |              |           |            |  |
| Time                                 | Water<br>(ft below TOC)                               | Pump<br>Setting                         | Purge<br>Rate                          | Vol.<br>Purged | Temp<br>(°C)                                                                                 | DO<br>(mg/l)  | Conductance        | pH<br>(upits) | ORP<br>(mv)  | Turbidity | Commonte   |  |
| 915                                  | 5.71                                                  | 2.5                                     | 290 416                                | 0              | 12.6                                                                                         | D.98          | 963                | 5.57          | 115          | withow/h  | Comments   |  |
| 920                                  | 7.95                                                  | 2.25                                    | 260                                    |                | (3.5                                                                                         | 0.78          | 945                | 5.71          | 29.6         | 1-        | A.         |  |
| 925                                  | 25 9.15 " " 13.6 0.93 941 5.79 4.3 "                  |                                         |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
| 930                                  | 30 9.82 " " 13.7 0.22 949 5.85 -11.6 " Not improving. |                                         |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
| 935                                  | 11.2                                                  | • • · · · · · · · · · · · · · · · · · · | *,                                     |                | 13.8                                                                                         | 0.20          | 145                | 5.88          | - 29.3       | sulfur a  | , dos      |  |
| 940 12.52 1 17.8 0.33 938 5.43 -27.9 |                                                       |                                         |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
| 175                                  | 13.50                                                 |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ Zgd          | .14.1                                                                                        | 0.61          | 933                | 5.97          | -26          |           |            |  |
|                                      |                                                       |                                         |                                        |                | <u>ک</u><br><u>ک</u><br><u>ک</u><br><u>ک</u><br><u>ک</u><br><u>ک</u><br><u>ک</u><br><u>ک</u> | 1 <u>76</u> . | 2 Sampli           | ± 0.1         | ± 10 mv      |           |            |  |
| Sampling                             | Data                                                  |                                         |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
| Sample ID                            | ): SB-8                                               |                                         | Time                                   | e Collecte     | d: 110                                                                                       | G             |                    | Weather:      | sunn         | uy/par    | the cloudy |  |
| Sample D                             | escription (Color, Ti                                 | urbidity, Odd                           | or, Other):                            | day            | -h u                                                                                         | March         | prown 1 for        | roth          |              |           |            |  |
| Sample A                             | nalyses: NWTPH                                        | I-Dx (w/ & w                            | /o SGC). NWT                           | PH-Gx. BT      | EX w/ Nar                                                                                    | ohthalene     |                    | 9             |              |           |            |  |
| Laborator                            | y: Friedman & Br                                      | uya                                     | Lab                                    | Dropoff N      | /lethod:                                                                                     | in-per        | Sin                | Lab Dropo     | off Date:    | 51.1      |            |  |
| Additional                           | Information/Comr                                      | nents                                   |                                        |                |                                                                                              |               |                    |               |              |           |            |  |
|                                      | burered +                                             | uling a                                 | lmist er                               | venti          | int-rug                                                                                      | .1, ~2'       | pri                |               |              |           |            |  |
|                                      | 6 4                                                   |                                         |                                        | oth            | Ner 5-                                                                                       | mh.           |                    |               |              |           |            |  |
|                                      | 1hon redo                                             | x (Shie                                 | minter                                 | rangel         | 6n                                                                                           | swearz        | of pury            | not u         | oater.       |           |            |  |
| . 14                                 | Pure inta                                             | ke a                                    | 13' wh                                 | un s.          | mples                                                                                        | L.            | '                  |               |              |           |            |  |

| 78 | Pump | intake | a | 13' | when | simpled. |
|----|------|--------|---|-----|------|----------|
|    |      |        |   |     |      | 1 of 1   |

ъ

e

| Project No.:  | 553-152    | I-242 WO31 Task 200.02                    | Date:     | 5/10/22                 | Well ID:     | DW-3R    |
|---------------|------------|-------------------------------------------|-----------|-------------------------|--------------|----------|
| Project Name: | King Co    | unty METRO South Facilities South Annex   | Project A | ddress: 11911 E Margina | l Way S, Tuk | wila, WA |
| Sampling Orga | anization: | Parametrix in Assoc. with HWA Geosciences | Samplers  | Chris Bourgeois         |              |          |

| Purge Data  | a                       |                 |               |                |              |                   |                    |               |             |                       |              |
|-------------|-------------------------|-----------------|---------------|----------------|--------------|-------------------|--------------------|---------------|-------------|-----------------------|--------------|
| Purge Equ   | uipment: Perista        | iltic pump      |               |                |              | Dep               | th of Ŵell (ft bel | ow TOC):      | 8.80        |                       |              |
| Pump Inta   | ake Depth (ft belov     | w TOC):         | 6.0           |                |              | Wel               | l Casing/Diamete   | er: 0.9'      |             |                       |              |
| Initial Dep | oth to Water (ft be     | low TOC):       | 4.56          |                |              | Pur               | ge Time (from/to   | ); \          | 370 -       | 1405                  |              |
|             | Depth to Cum. Specific  |                 |               |                |              |                   |                    |               |             |                       |              |
| Time        | Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate | Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)      | Conductance        | pH<br>(units) | ORP<br>(my) | Turbidity<br>(visual) | Comments     |
| 1348        | 4.56                    | 2.25            | 260mL         | 0              | 14.1         | 1.68              | 544.3              | 6.40          | 42 (        | when a laters         | w burd Salat |
| 1345        | ·                       | N .             | LI MARINE     |                | 13.0         | 0.20              | 557.2              | 6.27          | 42.9        | Mes laws              | we edge      |
| 1350        | 11                      | L <sup>1</sup>  | ٤)            |                | 13.8         | 6.12              | 587.5              | 6.24          | 44.0        | V                     | ()           |
| 1355        | u                       | ~               | 14            |                | 13.7         | 0.10              | 549.7              | 6.23          | 44.1        | No men                | - turnsality |
| 1400        | ~                       |                 | ٠.            |                | 13.8         | 0.08              | 605.9              | 6.23          | 44.4        | 11                    |              |
| 1405        | L'                      | 4               |               | ~1.75          | 13.2         | 0.08              | 607.5              | 6.23          | 44.9        | 67m.                  | 53           |
|             |                         |                 |               | gar            |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
| <u> </u>    |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             | A                       | ·               |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               | ·           |                       |              |
|             | . C.S.                  |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              | _                 |                    |               | ·           |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 |               |                |              |                   |                    |               |             | şe                    |              |
|             |                         |                 |               |                |              |                   |                    |               |             |                       |              |
|             |                         |                 | Stabilizatio  | n Criteria     | 3%           | 10%, or 3<br><0.5 | 3%                 | ± 0.1         | ± 10 mv     |                       |              |
| Sampling D  | )ata                    |                 |               |                |              |                   |                    |               |             | -                     |              |

| Sample ID:     | DW-3R                                 | Time Collected:    | 1405         | Weather: 5~       | nny / partly cloudy |
|----------------|---------------------------------------|--------------------|--------------|-------------------|---------------------|
| Sample Desci   | iption (Color, Turbidity, Odor, Other | clear              | w/ mihar     | turbidity         | warm.               |
| Sample Analy   | vses: NWTPH-Dx (w/ & w/o SGC),        | NWTPH-Gx, BTEX w/  | Naphthalene  | 5                 |                     |
| Laboratory:    | Friedman & Bruya                      | Lab Dropoff Method | 1: 1h-Persik | Lab Dropoff Date: | 5/10/22             |
| Additional Inf | ormation/Comments                     |                    |              |                   |                     |
|                | Janple tim                            | and proje          | times are    | uwweet. same      | ind                 |
|                | inmediately a                         | Et 1405            | pavante K    |                   |                     |

-

| Project No.: 553-1521-242 WO31 Task 200.02 Date: |                                     |                 |                  |                        | té: 87       | 10,22             | We                                 | ll ID: [       | DW-4R       |                       |             |
|--------------------------------------------------|-------------------------------------|-----------------|------------------|------------------------|--------------|-------------------|------------------------------------|----------------|-------------|-----------------------|-------------|
| Droject Non                                      | King Country                        |                 |                  |                        |              |                   |                                    |                |             |                       |             |
| Project Nan                                      | ine: King County                    | IVIETRO SOU     | th Facilities Sc | outh Annex             |              | oject Addres      | s: 11911 E Ma                      | irginal Way    | /S, Tukwil  | a, WA                 |             |
| Sampling O                                       | rganization: Par                    | ametrix in A    | ssoc. with HW    | A Geoscier             | nces Sar     | mplers: Ch        | nris Bourgeois                     |                |             |                       |             |
| Purge Data                                       |                                     |                 |                  |                        |              |                   |                                    | 2              |             |                       |             |
| Purge Equi                                       | pment: Perista                      | ltic pump       | 1                |                        | 12           | Dep               | oth of Well (ft be                 | low TOC):      | 9.          | 21 Chotw              | reasured)   |
| Pump Intal                                       | ke Depth (ft below                  | v TOC): 6.      | 5                |                        |              | We                | ll Casing/Diamet                   | er: 0.65'      | ,           | 1                     |             |
| Initial Dept                                     | th to Water (ft bei                 | low TOC):       | M.91             |                        |              | Pur               | ge Time (from/to                   | ): M           | 25          |                       |             |
| Time                                             | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate    | Cum.<br>Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units)  | ORP<br>(mv) | Turbidity<br>(visual) | Comments    |
| 21425                                            | 4.91                                | 2.25            | 260 mil          | 0                      | 14.2         | 1.92              | 639                                | 6.94           | 60.2        | smith bh              | chen blecke |
| 1430                                             | w                                   | UL.             | L.               |                        | 14.0         | 1.32              | 640                                | 6.91           | 61.7        | Un color              | no a lor    |
| 1435                                             | 6                                   | 100             | - ex-            | _                      | 14.0         | 1.31              | 638                                | 6.90           | 60.5        | ~                     | 12          |
| 1440                                             | . Jan-                              | ·~              |                  | ~1.25<br>ogn1          | 17.0         | 1-22              | 636                                | 6 ् <u></u> १० | 59.5        | 11                    | 1)          |
|                                                  |                                     |                 |                  |                        |              |                   |                                    |                |             |                       |             |
|                                                  |                                     |                 |                  |                        |              |                   |                                    |                |             |                       | 3           |
|                                                  |                                     |                 |                  |                        |              |                   |                                    |                |             | 8                     |             |
|                                                  |                                     |                 |                  |                        |              |                   |                                    | ,              |             |                       |             |
|                                                  |                                     |                 |                  |                        |              |                   |                                    |                |             |                       |             |
|                                                  |                                     |                 | Stabilization    | n Criteria             | 3%           | 10%, or 3<br><0.5 | 3%                                 | ± 0.1          | ± 10 mv     |                       |             |
| Sampling Da                                      | ita                                 |                 |                  |                        |              |                   |                                    |                |             |                       |             |
| Sample ID:                                       | DW-4R                               |                 | Tim              | e Collecte             | d: 17        | 45                |                                    | Weather:       | 500         | my w                  | arm.        |
| Sample Des                                       | cription (Color, Tu                 | urbidity, Odo   | or, Other):      | clear                  | -, oday      | fussi             | lots of                            | small          | she         | k Elere               | 4.          |
| Sample Ana                                       | alyses: NWTPH                       | l-Dx (w∕ & w    | /o SGC), NWT     | PH-Gx, BT              | EX w/ Nap    | hthalene          | Y                                  |                |             | - U W W               | ,,          |
| Laboratory                                       | : Frièdman & Br                     | ruya            | Lap              | Dropoff N              | lethod:      | ih-per            | Buy                                | Lab Dropo      | ff Date:    | 5/10,                 | 122         |
| Additional II                                    | nformation/Com                      | nents           |                  |                        |              | - 43              |                                    |                |             |                       |             |
|                                                  | bilts spin Grachy                   |                 |                  |                        |              |                   |                                    |                |             |                       |             |

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 25, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr Bourgeois:

Included are the results from the testing of material submitted on May 10, 2022 from the King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (Parametrix), Lisa Gilbert (Parametrix) HWA0525R.DOC

#### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on May 10, 2022 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | HWA Geosciences, Inc |
|----------------------|----------------------|
| 205170 -01           | 21 MW-1              |
| 205170 -02           | 21 MW-2              |
| 205170 -03           | 21-MW-3              |
| 205170 -04           | DW-3R                |
| 205170 -05           | DW-4R                |
| 205170 -06           | SB-7                 |
| 205170 -07           | SB-8                 |
| 205170 -08           | Trip Blanks          |

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170 Date Extracted: 05/11/22 Date Analyzed: 05/12/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

~

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery)</u><br>(Limit 51-134) |
|-----------------------------------|-----------------------|-----------------------------------------------------|
| 21 MW-1<br>205170-01              | <100                  | 77                                                  |
| 21 MW-2<br>205170-02              | <100                  | 77                                                  |
| 21-MW-3<br>205170-03              | <100                  | 73                                                  |
| DW-3R<br>205170-04                | <100                  | 79                                                  |
| DW-4R<br>205170-05                | <100                  | 73                                                  |
| SB-7<br>205170-06                 | <100                  | 71                                                  |
| SB-8<br>205170-07                 | <100                  | 74                                                  |
| Trip Blanks<br>205170-08          | <100                  | 76                                                  |
| Method Blank                      | <100                  | 69                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170 Date Extracted: 05/12/22 Date Analyzed: 05/12/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21 MW-1<br>205170-01              | 160 x                     | <250                         | 138                                                |
| 21 MW-2<br>205170-02              | 180 x                     | <250                         | 148                                                |
| 21-MW-3<br>205170-03              | 140 x                     | <250                         | 150                                                |
| DW-3R<br>205170-04                | 130 x                     | <250                         | 135                                                |
| DW-4R<br>205170-05                | 80 x                      | <250                         | 135                                                |
| SB-7<br>205170-06                 | 71 x                      | <250                         | 130                                                |
| SB-8<br>205170-07                 | 150 x                     | <250                         | 68                                                 |
| Method Blank<br>02-1183 MB        | <50                       | <250                         | 139                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170 Date Extracted: 05/12/22 Date Analyzed: 05/20/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | $\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-}\text{C}_{36})}$ | <u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|-----------------------------------------------------------------------|---------------------------------------|
| 21 MW-1<br>205170-01              | <50                       | <250                                                                  | 140                                   |
| 21 MW-2<br>205170-02              | <50                       | <250                                                                  | 131                                   |
| 21-MW-3<br>205170-03              | <50                       | <250                                                                  | ip                                    |
| DW-3R<br>205170-04                | <50                       | <250                                                                  | 153                                   |
| DW-4R<br>205170-05                | <50                       | <250                                                                  | 142                                   |
| SB-7<br>205170-06                 | <50                       | <250                                                                  | 134                                   |
| SB-8<br>205170-07                 | <50                       | <250                                                                  | 65                                    |
| Method Blank<br>02-1183 MB        | <50                       | <250                                                                  | 140                                   |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21 MW-1<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-01<br>051814.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                    |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                    | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                                | 95            | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                    | 95            | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                                | 93            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                    | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                    | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                    | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                    | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                    | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                    | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                    | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                    | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21 MW-2<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-02<br>051815.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                    |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                    | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane-                                                                           | -d4                                                                | 107           | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                    | 102           | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                                | 95            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                    | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                    | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                    | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                    | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                    | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                    | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                    | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                    | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21-MW-3<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-03<br>051816.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                    |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                    | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                                | 94            | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                    | 99            | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenz                                                                             | ene                                                                | 96            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                    | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                    | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                    | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                    | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                    | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                    | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                    | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                    | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-3R<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-04<br>051817.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 116           | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                  | 107           | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenz                                                                             | ene                                                              | 94            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-4R<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-05<br>051818.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane-                                                                           | -d4                                                              | 91            | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                  | 104           | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                              | 98            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-7<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-06<br>051819.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane-                                                                           | -d4                                                             | 106           | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                 | 101           | <b>68</b>                                                                | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                             | 89            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-8<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-07<br>051820.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 95            | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                 | 103           | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                             | 94            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Trip Blanks<br>05/10/22<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>205170-08<br>051813.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                               |                                                                        |               | Lower                                                                    | Upper                                                                                       |
| Surrogates:                                                                                   |                                                                        | % Recovery:   | Limit:                                                                   | Limit:                                                                                      |
| 1,2-Dichloroethane                                                                            | -d4                                                                    | 105           | 71                                                                       | 132                                                                                         |
| Toluene-d8                                                                                    |                                                                        | 100           | 68                                                                       | 139                                                                                         |
| 4-Bromofluorobenze                                                                            | ene                                                                    | 90            | 62                                                                       | 136                                                                                         |
|                                                                                               |                                                                        | Concentration |                                                                          |                                                                                             |
| Compounds:                                                                                    |                                                                        | ug/L (ppb)    |                                                                          |                                                                                             |
| Benzene                                                                                       |                                                                        | < 0.35        |                                                                          |                                                                                             |
| Toluene                                                                                       |                                                                        | <1            |                                                                          |                                                                                             |
| Ethylbenzene                                                                                  |                                                                        | <1            |                                                                          |                                                                                             |
| m,p-Xylene                                                                                    |                                                                        | <2            |                                                                          |                                                                                             |
| o-Xylene                                                                                      |                                                                        | <1            |                                                                          |                                                                                             |
| Naphthalene                                                                                   |                                                                        | <1            |                                                                          |                                                                                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Bla:<br>Not Applica<br>05/18/22<br>05/18/22<br>Water<br>ug/L (ppb) | nk<br>ble     | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro 2021-062<br>02-1207 mb<br>051807.D<br>GCMS13<br>RF |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                               | 0 11 /                                                                    |               | T                                                                        | TT                                                                                           |
| ~                                                                                             |                                                                           |               | Lower                                                                    | Upper                                                                                        |
| Surrogates:                                                                                   |                                                                           | % Recovery:   | Limit:                                                                   | Limit:                                                                                       |
| 1,2-Dichloroethane-                                                                           | d4                                                                        | 106           | 71                                                                       | 132                                                                                          |
| Toluene-d8                                                                                    |                                                                           | 100           | 68                                                                       | 139                                                                                          |
| 4-Bromofluorobenze                                                                            | ene                                                                       | 94            | 62                                                                       | 136                                                                                          |
|                                                                                               |                                                                           | Concentration |                                                                          |                                                                                              |
| Compounds:                                                                                    |                                                                           | ug/L (ppb)    |                                                                          |                                                                                              |
| Benzene                                                                                       |                                                                           | < 0.35        |                                                                          |                                                                                              |
| Toluene                                                                                       |                                                                           | <1            |                                                                          |                                                                                              |
| Ethylbenzene                                                                                  |                                                                           | <1            |                                                                          |                                                                                              |
| m,p-Xylene                                                                                    |                                                                           | <2            |                                                                          |                                                                                              |
| o-Xylene                                                                                      |                                                                           | <1            |                                                                          |                                                                                              |
| Naphthalene                                                                                   |                                                                           | <1            |                                                                          |                                                                                              |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 20                        | )5101-01 (Duplie   | cate)          |          |            |            |  |  |  |  |  |  |  |
|--------------------------------------------|--------------------|----------------|----------|------------|------------|--|--|--|--|--|--|--|
|                                            | Reporting          | Sampl          | le Duj   | olicate    | RPD        |  |  |  |  |  |  |  |
| Analyte                                    | Units              | Resul          | t Re     | esult      | (Limit 20) |  |  |  |  |  |  |  |
| Gasoline                                   | ug/L (ppb)         | <100           | <        | 100        | nm         |  |  |  |  |  |  |  |
| Laboratory Code: Laboratory Control Sample |                    |                |          |            |            |  |  |  |  |  |  |  |
| Analyta                                    | Reporting<br>Units | Spike<br>Lovol | Recovery | Acceptance |            |  |  |  |  |  |  |  |
| Gasoline                                   | ug/L (ppb)         | 1,000          | 105      | 69-134     | -          |  |  |  |  |  |  |  |
|                                            |                    |                |          |            |            |  |  |  |  |  |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  | Percent  |            |            |
|-----------------|------------|-------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | 116      | 116      | 63-142     | 0          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: L | aboratory Contro | ol Sample | e Silica Gel |          |            |            |
|--------------------|------------------|-----------|--------------|----------|------------|------------|
|                    |                  |           | Percent      | Percent  |            |            |
|                    | Reporting        | Spike     | Recovery     | Recovery | Acceptance | RPD        |
| Analyte            | Units            | Level     | LCS          | LCSD     | Criteria   | (Limit 20) |
| Diesel Extended    | ug/L (ppb)       | 2,500     | 120          | 116      | 63-142     | 3          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/22 Date Received: 05/10/22 Project: King County Metro South Facilities 2021-062 WO31 Task 200.02, F&BI 205170

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 205111-01 (Matrix Spike)

| -            |            |       |        | Percent  |            |
|--------------|------------|-------|--------|----------|------------|
|              | Reporting  | Spike | Sample | Recovery | Acceptance |
| Analyte      | Units      | Level | Result | MS       | Criteria   |
| Benzene      | ug/L (ppb) | 10    | < 0.35 | 95       | 50 - 150   |
| Toluene      | ug/L (ppb) | 10    | <1     | 94       | 50 - 150   |
| Ethylbenzene | ug/L (ppb) | 10    | <1     | 98       | 50 - 150   |
| m,p-Xylene   | ug/L (ppb) | 20    | <2     | 99       | 50 - 150   |
| o-Xylene     | ug/L (ppb) | 10    | <1     | 100      | 50 - 150   |
| Naphthalene  | ug/L (ppb) | 10    | <1     | 96       | 50 - 150   |

Laboratory Code: Laboratory Control Sample

|              | I I I I    |       | Percent  | Percent  |            |                      |
|--------------|------------|-------|----------|----------|------------|----------------------|
|              | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte      | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Benzene      | ug/L (ppb) | 10    | 95       | 96       | 70-130     | 1                    |
| Toluene      | ug/L (ppb) | 10    | 95       | 94       | 70-130     | 1                    |
| Ethylbenzene | ug/L (ppb) | 10    | 98       | 97       | 70-130     | 1                    |
| m,p-Xylene   | ug/L (ppb) | 20    | 100      | 98       | 70-130     | 2                    |
| o-Xylene     | ug/L (ppb) | 10    | 100      | 99       | 70-130     | 1                    |
| Naphthalene  | ug/L (ppb) | 10    | 95       | 101      | 70-130     | 6                    |

### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

|                |                  | rrieaman & bruya, inc.<br>Ph. (206) 285-8282 | Distance o Dest |     | THIP BLANKS | 8-85          | 58-4 | DW-4K    | DW - 3R | E-MW 12 | 21 MW-2 | ₩ 71 MW-1 | Sample ID                                                |                | Phone 125-794-3145           | City, State, ZIP Both |               | Company HWA Geo    | Report To c. Bourgaois |
|----------------|------------------|----------------------------------------------|-----------------|-----|-------------|---------------|------|----------|---------|---------|---------|-----------|----------------------------------------------------------|----------------|------------------------------|-----------------------|---------------|--------------------|------------------------|
| Received by:   | Relinquished by: |                                              | SIGNAT          |     | 8-A 80      | 1 1 49        | 06   | 05       | 64      | 63      | 02      | 01A6 51   | Lab ID Sai                                               |                | Email chourgeois ahwa        | IL, WA 98021          |               | Sciences & Param   | (HUA) + L. Gilbert     |
|                | ya h             | ~                                            | URE             |     |             | 1105          | 1325 | 1445     | 50 41   | 1230    | 1845    | 0/22 1215 | Date<br>Time<br>mpled<br>Sampled                         |                | .g.a. com Project s          |                       | REMAR         | utrix King         | ( R MX) SAMPLE         |
| -              | HONG W           | Chris Bourgeo                                | PRINT N         | San | て物 个        | <u>۲</u><br>۲ | XH   | X<br>4   | X<br>F  | ×<br>H  | × F     | (iw 4 ×   | Sample<br>Type # of<br>Jars<br>NWTPH-Dx                  |                | pecific RLs? - Yes /         | ł                     |               | County Metho       | TRAME                  |
|                | Guye &           |                                              | AME             |     | ×<br>       | *             | ×    | $\times$ | ×       | ×       | ×       | ×         | NWTPH-Gx<br>BTEX EPA 8021<br>NWTPH-HCID<br>VOCs EPA 8260 | ANALY          | No                           |                       |               | 1220-1201          | En 2 m                 |
| Samples 1      | N.               | オンタ                                          | COMPANY         |     | ×           | ×             | ×    | X        | ×       | ×       | ×       | ×         | PCBs EPA 8082<br>STEX +<br>Naphthalone                   | SES REOTIESTED |                              |                       |               | Rus                | #                      |
| received at 70 | 5/0/22           | 5/10/22                                      | DATE            |     |             | Ŀ.            | q    | -<br>    | ų.      |         | *       | Dx w t u  | No                                                       |                | )ther<br>fault: Dispose afte | uchive samples        | CANDLE DICEDO | Museumaroum<br>MSH | Page #                 |
|                | 130              | (550                                         | TIME            |     |             | 2             | ž)   | 2        | 11      | ť *     | 21      | w/o S &c  | ites                                                     |                | r 30 days                    |                       | C A T         | ed by:             |                        |






























719 2ND AVENUE, SUITE 200 | SEATTLE, WA 98104 | P 206.394.3700

# TRANSMITTAL

| TO: | John Greene                                           | DATE:           | September 22, 2022 |
|-----|-------------------------------------------------------|-----------------|--------------------|
|     | King County Metro Transit<br>201 South Jackson Street | PROJECT NUMBER: | 553-1521-242       |
|     | KSC-TR-0431<br>Seattle, WA 98104                      | PROJECT NAME:   | WO 31              |
|     |                                                       |                 |                    |

| THESE ARE: | PER YOUR REQUEST               | SENT VIA: | U.S. MAIL           | EXPRESS SECOND DAY      |
|------------|--------------------------------|-----------|---------------------|-------------------------|
|            | □ FOR YOUR INFORMATION         |           | ⊠ EMAIL/ELECTRONIC  |                         |
|            | □ FOR YOUR REVIEW AND APPROVAL |           | □ FTP               | □ HAND DELIVERY/PICK UP |
|            | ⊠ FOR YOUR FILES               |           | GROUND SERVICE      | □ INTEROFFICE MAIL      |
|            | □ FOR YOUR ACTION              |           | □ EXPRESS OVERNIGHT |                         |

#### WE ARE TRANSMITTING THE FOLLOWING MATERIALS:

South Facilities 3<sup>rd</sup> Quarter 2022 Groundwater Sampling Event Memorandum

#### COMMENTS/MESSAGE:

Please review and provide comments on the report at your earliest convenience.

Sincerely, Parametrix

Michael Brady



September 21, 2022 HWA Project No. 2021-062-22

### King County Metro Transit Capital Division

Transit Real Estate and Environmental 201 South Jackson Street, M.S. KSC-TR-0431 Seattle, WA 98104-3856

Attention: John Greene

Subject: 2022 Quarter 3 Groundwater Sampling Event Memorandum King County Metro Transit - South Facilities Tukwila, Washington

Dear Mr. Greene,

As approved in the Contract E00635E19 Work Order #31 scope, HWA GeoSciences Inc (HWA) has completed the third 2022 quarterly monitoring event at the King County Metro Transit - South Facilities / Annex (South Facilities) addressed at 11911 East Marginal Way South, Tukwila, Washington (as shown on Figure 1). The site is known as Washington State Department of Ecology (Ecology) Cleanup Site Identification number 7790 and Voluntary Cleanup Program (VCP) number NW3301. This memorandum includes a brief summary of quarterly groundwater monitoring completed as part of the Work Order #31 scope. This work task was coordinated by HWA as part of HWA's contract with Parametrix for environmental services.

#### **GROUNDWATER MONITORING WELL SAMPLING**

On August 25, 2022, HWA collected groundwater samples from monitoring wells DW-3R, DW-4R, SB-7, SB-8, 21MW-1, and 21MW-2. Well locations are shown on Figure 2.

Prior to the start of low-flow purging, depth to groundwater was measured and recorded at each of the above wells, as well as at the stream gauge and well B-25. Depth to groundwater measurements are presented on the field data sheets included in Appendix A. Groundwater elevations are presented in Table 1 along with data from the previous events. An interpreted potentiometric surface map for the monitoring event is provided in Figure 3.

Groundwater samples were collected using low-flow purging and sampling techniques with a peristaltic pump and new polyethylene tubing. During purging, field parameters of pH, specific

September 21, 2022 HWA Project No. 2062-062-22

conductance, oxidation-reduction potential, dissolved oxygen, and temperature were measured until stabilization was achieved. Any field indications of contamination including odor, discoloration, and/or sheen that were observed are documented on the field sampling sheets included in Appendix A. Groundwater samples were collected in analysis-appropriate, clean, laboratory supplied containers and placed in a cooler with ice. Samples were kept in a cooler with ice and held at temperatures below 6 degrees Celsius until submittal to the laboratory for analysis with standard turnaround time. Analytical results are summarized in Table 2, and copies of the final laboratory report including the chain-of custody document and chromatograms are included in Appendix B.

Samples were analyzed by Friedman & Bruya, Inc. in Seattle, Washington for gasoline range total petroleum hydrocarbons (TPH) by Method NWTPH-Gx; diesel and oil-range TPH by Method NWTPH-Dx (both with and without silica gel cleanup); and benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) by EPA Method 8260D. All samples were analyzed within method specific holding times.

#### RESULTS

Analytical results for the third 2022 quarterly monitoring event, along with data from previous events are summarized in Table 2, and the laboratory report with chromatograms can be found in Appendix B. Analytical results indicate that diesel and/or oil-range TPH were detected below MTCA cleanup levels in wells DW-3R, DW-4R, SB-8, 21MW-1, and 21MW-2. However, these samples were all x-flagged by the laboratory indicating that the diesel and oil results did not match the fuel standard since the diesel-range hydrocarbon fingerprint appears slightly shifted toward the right (longer retention) and overlapping with the heavier oil-range hydrocarbons. These samples were also analyzed using silica gel cleanup treatment, which removes polar compounds and resulted in no diesel or oil-range TPH detections except for the sample analyzed from 21MW-2. The 21MW-2 sample analyzed using silica gel cleanup treatment had no oil-range TPH detected and a diesel detection of 0.065 milligrams per liter (mg/L), which was lower than the 0.240 mg/L detection in this sample without the silica gel cleanup treatment. The 0.065 mg/L diesel detection was still x-flagged. Based on the data presented in previous reports, the TPH detected likely reflects biogenic interference from the natural peat deposits in the area or very weathered petroleum hydrocarbons.

#### FUTURE GROUNDWATER MONITORING

One additional quarter of groundwater level measurements and sampling of these wells are planned as part of the additional site characterization activities. Upon completion of all additional site characterization activities, an RI Report Addendum will be provided.

\_\_\_\_o • o\_\_\_\_\_

We appreciate the opportunity to provide environmental services on this project. Should you have any questions or comments, or if we may be of further service, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

#### HWA GeoSciences Inc.

Chris VS

Chris Bourgeois Staff Geologist

SI Vapi

Nicole Kapise Senior Environmental Geologist

Groundwater Elevation Data

**Groundwater Sampling Results** 

#### **FIGURES (Following Text)**

Figure 1 Figure 2 Figure 3

Site Map Locations Map Potentiometric Surface Map, August 25, 2022

### **TABLES (Following Text)**

Table 1

Table 2

# Appendices:

| Appendix A | August 2022 Field Data Sheets |
|------------|-------------------------------|
| Appendix B | August 2022 Lab Report        |



Parametrix Source: King County

Project Location –

— Stream

**Figure 1** Site Map King County Metro Transit S Facilities/S Annex









Monitoring Well (Existing) ↔ Monitoring Well (Historical)

Monitoring Well and Soil Sample Locations King County Metro Transit S Facilities/S Annex (adapted 2/3/2022)



|             |                                     | Septembe                          | er 23, 2019                                     | December 17, 2019                 |                                                 | April 1, 2020                     |                                                 | February 22 and 23,<br>2022            |                                                | May 10, 2022                        |                                                   | August 25, 2022                   |                                                 |
|-------------|-------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------|---------------------------------------------------|-----------------------------------|-------------------------------------------------|
| Well        | Reference<br>Elevation <sup>1</sup> | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water**<br>(ft) | Ground-<br>water<br>Elevation**<br>(ft NAVD88) | Depth to<br>Ground-<br>water** (ft) | Ground-<br>water<br>Elevation**<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) |
| DW-3R*      | 13.63                               | 5.21                              | 8.42                                            | 4.84                              | 8.79                                            | 4.48                              | 9.15                                            | 4.85                                   | 8.78                                           | 4.56                                | 9.07                                              | 5.35                              | 8.28                                            |
| DW-4R       | 14.00                               | 5.58                              | 8.42                                            | 5.15                              | 8.85                                            | 4.82                              | 9.18                                            | 5.19                                   | 8.81                                           | 4.91                                | 9.09                                              | 5.68                              | 8.32                                            |
| SB-7        | 14.05                               | 5.66                              | 8.39                                            | 5.23                              | 8.82                                            | 4.86                              | 9.19                                            | 5.30                                   | 8.75                                           | 5.02                                | 9.03                                              | 5.85                              | 8.20                                            |
| SB-8        | 14.19                               | 6.28                              | 7.91                                            | 5.80                              | 8.39                                            | 5.33                              | 8.86                                            | 5.82                                   | 8.37                                           | 5.71                                | 8.48                                              | 6.38                              | 7.81                                            |
| B-25        | 14.12                               |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.66                                   | 8.46                                           | 5.41                                | 8.71                                              | 6.17                              | 7.95                                            |
| Staff Gauge | 15.94                               |                                   |                                                 |                                   |                                                 |                                   |                                                 | 6.05                                   | 9.89                                           | 8.85                                | 7.09                                              | 8.40                              | 7.54                                            |
| 21MW-1      | 13.44                               |                                   |                                                 |                                   |                                                 |                                   |                                                 | 4.10                                   | 9.34                                           | 4.05                                | 9.39                                              | 4.87                              | 8.57                                            |
| 21MW-2      | 13.72                               |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.10                                   | 8.62                                           | 5.00                                | 8.72                                              | 5.78                              | 7.94                                            |

#### Table 1. Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA.

Notes:

<sup>1</sup> N rim PVC (wells), marked measurement reference point (stream gauge), or ground surface (vibrating wire piezometers) in ft NAVD88\*\*

\*Well has been damaged and casing is not vertical

\*\* Groundwater elevation measurement collected at time of sampling. Other groundwater elevation measurements are synchronous.

-- Not measured.

|                    | Date<br>Sampled          | Cleanup Level <sup>a</sup> | DW-1  | DW-2 | DW-3 | DW-3R        | DW-4 | DW-4 Dup     | DW-4R        | Samp<br>W-4R Dup | ole I.D.<br>SB-5 | SB-6 | SB-7         | SB-8           | 21MW-1 2         | 1MW-1 Dup   | 21MW-2 2       | 1MW-2 Dup   |
|--------------------|--------------------------|----------------------------|-------|------|------|--------------|------|--------------|--------------|------------------|------------------|------|--------------|----------------|------------------|-------------|----------------|-------------|
| NWTPH-Gx (µg/L)    | Gampiou                  | oroundp Eoror              | 511 1 | 5.12 | 2110 | Diroit       | 5114 | 511 - 1 D up |              | an Dup           | 020              | 020  | 02.          | 02.0           |                  | initi i bup | 2              | 2040        |
| Gasoline           | 10/11/1994               | 800/1,000 <sup>b</sup>     |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 12/19/1994<br>4/23/1997  |                            |       |      |      |              | <100 |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019                |                            |       |      |      | <100         |      |              | <100         |                  |                  |      | <100         | <400           |                  |             |                |             |
|                    | 12/17/2019<br>1/5/2022   |                            |       |      |      | <50          |      |              | <50          |                  |                  |      | <50          | <50            | <100             |             | <100           |             |
|                    | 2/22/2022                |                            |       |      |      | <100         |      |              | <100         |                  |                  |      | <100         | <500           | <100             |             | <100           | <100        |
|                    | 5/10/2022<br>8/25/2022   |                            |       |      |      | <100<br><100 |      |              | <100<br><100 | <100             |                  |      | <100<br><100 | <100<br><100   | <100<br><100     | <100        | <100<br><100   |             |
| NWTPH-Dx (mg/L)    | 0/LO/LOLL                |                            |       |      |      | 4100         |      |              | 4100         | 4100             |                  |      | 4100         | 4100           | 4100             |             | 4100           |             |
| Diesel             | 10/11/1994               | 0.5                        |       |      |      |              |      |              |              |                  |                  |      | 0.55         | 0.495          |                  |             |                |             |
|                    | 4/23/1997                |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019                |                            |       |      |      | <0.26        |      |              | <0.27        |                  |                  |      | <0.28        | 0.47           |                  |             |                |             |
|                    | 12/17/2019               |                            |       |      |      | <0.0499      |      |              | <0.0497      |                  |                  |      | <0.0498      | <0.0498        |                  |             |                |             |
|                    | 2/22/2022                |                            |       |      |      | <0.05        |      |              | 0.058        | <br>x            |                  |      | 0.059 x      | <br>0.350 x    | <0.05<br>0.150 x |             | 0.096 X        | <br>0.250 x |
|                    | 5/10/2022                |                            |       |      |      | 0.130 x      |      |              | 0.080        | x                |                  |      | 0.071 x      | 0.150 x        | 0.160 x          | 0.140 x     | 0.180 x        |             |
|                    | 8/25/2022                |                            |       |      |      | 0.100 x      |      |              | 0.053 x      | 0.063 x          | -                |      | <0.05        | 0.440 x        | 0.140 x          |             | 0.240 x        |             |
| Diesel w/ SGC      | 1/5/2022                 | 0.5                        |       |      |      |              |      |              |              |                  |                  |      |              |                | <0.05            |             | < 0.05         |             |
|                    | 2/3/2022                 |                            |       |      |      | <0.05        |      |              | <0.05        |                  | -                | -    | <0.05        | <0.05          | <0.05            | <0.05       | <0.05          | <0.05       |
|                    | 08/25/22                 |                            |       |      |      | <0.05        |      |              | <0.05        | <0.05            |                  |      | <0.05        | <0.05          | <0.05            |             | 0.065 x        |             |
| Lube Oil           | 10/11/1994               | 0.5                        | <0.2  | <0.2 | <0.2 |              | <0.2 | <0.2         |              |                  | 5 1              |      | 0 702        |                |                  |             |                | -           |
|                    | 4/23/1997                |                            |       |      |      |              | <0.5 |              |              |                  | <0.2             |      | 0.725        | 0.320          |                  |             |                |             |
|                    | 9/23/2019                |                            |       |      |      | <0.41        |      |              | <0.43        |                  |                  |      | <0.44        | 0.67           |                  |             |                |             |
|                    | 12/17/2019               |                            |       |      |      | <0.0998      |      |              | <0.0994      |                  |                  |      | <0.0997      | 0.399          |                  |             |                |             |
|                    | 1/5/2022<br>2/22/2022    |                            |       |      |      | <0.25        |      |              | <0.25        |                  | -                |      | <0.25        | 0.310 v        | <0.25            |             | <0.25          | <br>≤0.25   |
|                    | 05/10/22                 |                            |       |      | -    | <0.25        |      |              | <0.25        |                  | -                |      | <0.25        | 0.25           | <0.25            | <0.25       | <0.25          | -0.20       |
|                    | 08/25/22                 |                            |       |      |      | <0.25        |      |              | <0.25        | <0.25            |                  |      | <0.25        | 0.490 x        | <0.25            |             | <0.25          |             |
| Lube Oil w/ SGC    | 1/5/2022                 | 0.5                        |       | -    |      |              |      |              |              |                  |                  | -    |              |                | <0.25            |             | <0.25          |             |
|                    | 2/22/2022                |                            |       |      |      | <0.25        |      |              | <0.25        |                  |                  |      | <0.25        | <0.25          | <0.25            | <0.25       | <0.25          | <0.25       |
|                    | 08/25/22                 |                            |       |      |      | <0.25        |      |              | <0.25        | <0.25            |                  |      | <0.25        | <0.25          | <0.25            |             | <0.25          |             |
| BTEX (µg/L)        | 10/11/1004               | F                          |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
| Derizerie          | 12/19/1994               | 5                          |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                | -           |
|                    | 4/23/1997                |                            |       |      |      |              | 9.5  |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019<br>12/17/2019  |                            |       | -    | -    | <1           |      |              | <1           | -                | -                | -    | <1           | <4<br><1       |                  |             |                | -           |
|                    | 1/5/2022                 |                            |       |      |      |              |      |              |              |                  |                  |      |              |                | < 0.35           |             | < 0.35         |             |
|                    | 2/22/2022<br>5/10/2022   |                            |       |      |      | <0.35        |      |              | <0.35        |                  |                  |      | <0.35        | <0.35<br><0.35 | <0.35            | < 0.35      | <0.35<br><0.35 | <0.35       |
|                    | 8/25/2022                |                            |       |      |      | < 0.35       |      | -            | < 0.35       | <0.35            |                  |      | < 0.35       | <0.35          | < 0.35           | -           | <0.35          | -           |
| I oluene           | 10/11/1994<br>12/19/1994 | 1,000                      |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 4/23/1997                |                            |       |      |      |              | 2.3  |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019<br>12/17/2019  |                            |       |      |      | <1<br><1     |      |              | <1<br><1     |                  |                  |      | <1<br><1     | <4<br><1       |                  |             |                |             |
|                    | 1/5/2022                 |                            |       |      |      |              |      |              |              |                  |                  |      |              |                | <1               |             | <1             |             |
|                    | 2/22/2022 5/10/2022      |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <1<br><1       | <1               |             | <1             | <1          |
|                    | 8/25/2022                |                            |       |      |      | <1           |      |              | <1           | <1               |                  |      | <1           | <1             | <1               |             | <1             |             |
| Ethylbenzene       | 10/11/1994<br>12/19/1994 | 700                        |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 4/23/1997                |                            |       |      |      |              | <1   |              |              |                  |                  |      |              |                |                  |             |                | -           |
|                    | 9/23/2019<br>12/17/2019  |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <4             |                  |             |                |             |
|                    | 1/5/2022                 |                            |       |      |      |              |      |              |              |                  |                  |      |              |                | <1               |             | <1             |             |
|                    | 2/22/2022 5/10/2022      |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <1             | <1               |             | <1             | <1          |
|                    | 8/25/2022                |                            |       |      |      | <1           |      |              | <1           | <1               |                  |      | <1           | <1             | <1               |             | <1             |             |
| m,p-Xylene         | 10/11/1994<br>12/19/1994 | 1,000                      |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 4/23/1997                |                            |       |      |      |              | <1   |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019<br>12/17/2019  |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <4<br><1       |                  |             |                |             |
|                    | 1/5/2022                 |                            |       |      |      |              |      |              |              |                  |                  |      | -            |                | <2               |             | <2             |             |
|                    | 2/22/2022 05/10/22       |                            |       |      |      | <2<br><2     |      |              | <2<br>~2     |                  |                  |      | <2<br><2     | <2<br>-2       | <2<br><2         | <br>-2      | <2<br><2       | <2          |
|                    | 08/25/22                 |                            |       |      | -    | <2           |      |              | <2           | <2               |                  |      | <2           | <2             | <2               |             | <2             |             |
| o-xylene           | 10/11/1994               | 1,000                      |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 4/23/1997                |                            |       |      |      |              | <1   |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019<br>12/17/2010  |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <4             |                  |             |                |             |
|                    | 1/5/2022                 |                            |       |      |      |              |      |              |              |                  |                  |      | -            |                | <1               |             | <1             |             |
|                    | 2/22/2022                |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <1             | <1               |             | <1             | <1          |
|                    | 8/25/2022                |                            |       |      |      | <1           |      |              | <1           | <1               |                  |      | <1           | <1             | <1               |             | <1             |             |
| Naphthalene (µg/L) | 10/11/1994               | 160                        |       |      |      |              |      |              |              | T                |                  |      |              | 7              |                  |             |                |             |
|                    | 12/19/1994<br>4/23/1997  |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 9/23/2019                |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                | -           |
|                    | 12/17/2019<br>1/5/2022   |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 2/22/2022                |                            |       |      |      | <1           |      |              | <1           |                  |                  |      | <1           | <1             | <1               |             | <1             | <1          |
|                    | 5/10/2022<br>8/25/2022   |                            |       | -    |      | <1           |      |              | <1<br><1     |                  |                  |      | <1<br><1     | <1<br><1       | <1<br>~1         | <1          | <1<br>~1       |             |
| Lead (µg/L)        | 012012022                |                            |       |      |      |              |      |              | ~ ~ ~        | ~ '              |                  |      |              |                | ~ 1              |             | 51             |             |
| Lead               | 10/11/1994               | 15                         | <3    | <3   | <3   |              | <3   | <3           |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 12/19/1994<br>4/23/1997  |                            |       |      | -    |              |      |              |              |                  | -                |      |              |                |                  |             |                |             |
|                    | 9/23/2019                |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 12/17/2019<br>1/5/2022   |                            |       | -    | -    |              |      |              |              |                  | -                |      |              |                |                  |             |                |             |
|                    | 2/22/2022                |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |
|                    | 5/10/2022<br>8/25/2022   |                            |       |      |      |              |      |              |              |                  |                  | -    |              |                |                  |             |                |             |
|                    |                          |                            |       |      |      |              |      |              |              |                  |                  |      |              |                |                  |             |                |             |

 OVES/DUZ2
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# APPENDIX A: AUGUST 2022 FIELD DATA SHEETS

|              |                  |                 | Ph. (206) 285-8282 |         |  | TRIP BLANKS | 23.2     | SB-7 | DW-FR    | DW-3P    | 21MW-3   | 21 MW-2  | 21MW-1   | Sample ID              |        | Phone www.lif-SitSE |              | City State ZIP Fully | Company HWA Gree<br>Address 21317 | Report To C. Bour |              |
|--------------|------------------|-----------------|--------------------|---------|--|-------------|----------|------|----------|----------|----------|----------|----------|------------------------|--------|---------------------|--------------|----------------------|-----------------------------------|-------------------|--------------|
| Keceived by: | Kelinquished by: | Received by: 14 | Keinquished by:    | IS      |  |             |          |      | ~        |          |          |          |          | Lab ID                 |        | mail bourgeon       |              |                      | Sciences+                         | rapecis (Hu       |              |
|              |                  | Maddle          | Chink              | GNATURE |  | 4           |          |      |          |          |          |          | 8/25/22  | Date<br>Sampled        |        | ster hiwayeo.       |              | 98021                | Pavametr<br>DE Ste.               | H)L.Gile          | M. Bra       |
|              |                  | XX.             |                    |         |  | ZA          | 1225     | 1330 | 1550     | 1425     | 1610     | 1040     | 1145     | Time<br>Sampled        |        | Project s           |              | REMAR                | PROJE                             | AX SAMPL          | SAMPLE       |
|              |                  | W. M            | Chris              |         |  | <i>←</i>    |          |      |          |          |          |          | SD       | Sample<br>Type         |        | specific RL         |              | KS                   | Sout in                           | ERS (signo        | <b>CHAIN</b> |
|              |                  | 1.6             | 30                 | PRIN    |  | P           | L        | 1    | 1        |          |          |          |          | # of<br>Jars           |        | s? - Y              |              |                      | M                                 | uture)            | IOF          |
|              |                  | Serie .         | -VC                | TT NA   |  |             | $\times$ | X    | X        | $\times$ | $\times$ | $\times$ | ×        | NWTPH-Dx               |        | es /                |              |                      | 14 5                              |                   | CUS          |
|              |                  |                 | C<br>C             | ME      |  | $\times$    | X        | X    | $\times$ | X        | $\ge$    | $\times$ | $\times$ | NWTPH-Gx               |        | No                  | _            |                      |                                   |                   | TO           |
|              |                  |                 | 4                  |         |  |             |          |      |          |          |          |          |          | BTEX EPA 8021          |        |                     |              |                      | 200                               |                   | DY           |
|              |                  |                 |                    |         |  |             |          |      |          |          |          |          |          | NWTPH-HCID             | AN     |                     |              | IN                   | T I                               |                   |              |
|              |                  | 17              |                    |         |  |             |          |      |          |          |          |          |          | PAHs EPA 8270          | ALYS   |                     |              | OIC                  | PO to C                           |                   |              |
|              |                  | + }             | J.H.               |         |  |             |          |      |          |          |          |          |          | PCBs EPA 8082          | SES F  |                     |              | ETO                  | + 4<br>+                          |                   |              |
|              |                  | N.I             | ×.                 | COMP    |  | ×           | $\times$ | X    | X        | X        | $\times$ | $\leq$   | X        | BTEX +<br>Najohthalenu | REQUES |                     |              |                      | 1202                              |                   |              |
|              |                  |                 |                    | YNY     |  |             |          |      |          |          |          |          |          |                        | STED   | Default:            | Archiv Other | SA                   | Stande<br>RUSH<br>Rush cha        | Pag               |              |
|              |                  | 27,25%          | 5/25/12            | DATE    |  |             | 1        | -1   | 1        | 4        | 1.       | 0        | Px w/    | No                     |        | Dispose afte        | e samples    | MPLE DISPC           | ard turnaroun<br>rges authoriz    | RNAROUND          | _            |
|              | N.               | 1717            | 1410               | TIME    |  |             | 2        | 11   | 11       |          | 11       | 11       | + wo     | tes                    |        | r 30 days           |              | SAL                  | d<br>ed by:                       | of I<br>TIME      | -            |

PARAMETRIX

TO:

Lisa Gilbert

Mike Brady

John Greene

Form 07-EN-215/Rev. 02/07

# Field Report/Well Data

| DATE                                                              |              | JOB NO.                       |              |             |                                                                                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------|--------------|-------------------------------|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2/22/2022                                                         |              | 553-1521-242 WO31 Task 200.02 |              |             |                                                                                                                                                                                                                                          |  |  |
| PROJECT                                                           |              | ~                             |              |             |                                                                                                                                                                                                                                          |  |  |
| King County METRO South                                           | h Facilities | South Annex                   |              |             |                                                                                                                                                                                                                                          |  |  |
| LOCATION                                                          |              |                               |              |             |                                                                                                                                                                                                                                          |  |  |
| 11911 E Marginal Way S, 7                                         | Tukwila, V   | ∕A                            |              |             |                                                                                                                                                                                                                                          |  |  |
| CONTRACTOR                                                        |              | OWNER                         |              |             |                                                                                                                                                                                                                                          |  |  |
| Parametrix in Assoc. with H<br>Geosciences                        | łWA          | King County METRO             |              |             |                                                                                                                                                                                                                                          |  |  |
|                                                                   | T            |                               |              | (Co.        |                                                                                                                                                                                                                                          |  |  |
| WEATHER                                                           | TEMP         | 1 * w 20's                    | ° at         | 8:00        | AM                                                                                                                                                                                                                                       |  |  |
| WEATHER<br>Survey, warn                                           | TEMP<br>Mid  | 20'5                          | ° at<br>° at | 8:00        | AM<br>ARM                                                                                                                                                                                                                                |  |  |
| WEATHER<br>Sunny, worm<br>PRESENT AT SITE                         | TEMP         | 20'5                          | ° at<br>° at | 8:00<br>915 | AM<br>Argm                                                                                                                                                                                                                               |  |  |
| WEATHER<br>Survey, warn<br>PRESENT AT SITE<br>Cierra Wilson C. Bo | TEMP<br>mid  | 20'5                          | ° at<br>° at | 8:00        | АМ<br>М.С., М.С., М.С<br>М.С., М.С., М.С |  |  |

#### THE FOLLOWING WAS NOTED:

| WN<br>(WELL<br>NUMBER) | Time | DTW<br>(DEPTH TO<br>WATER) | MP<br>(MEASURE<br>POINT) | SU<br>(STICK UP OF<br>WELL CASING) | TD<br>(TOTAL DEPTH<br>OF WELL) | WD<br>(WELL<br>DIAMETER) |
|------------------------|------|----------------------------|--------------------------|------------------------------------|--------------------------------|--------------------------|
| 21MW-1                 | 857  | 4.87                       | N. PUL                   |                                    |                                | 240                      |
| 21MW-2                 | 911  | 5.78                       | N.PVC                    |                                    |                                |                          |
| SB-¥                   | 915  | 6.38                       | NEVE                     |                                    |                                |                          |
| SB 8-7                 | 853  | 5.85                       | N. PVC                   |                                    |                                |                          |
| DW-3R                  | 851  | 5,35                       | N. PVC                   |                                    |                                |                          |
| DW-4R                  | 846  | 5.68                       | N. PVC.                  |                                    |                                |                          |
| Staff<br>Gauge         | 906  | 8.40                       | X on Care.               |                                    |                                |                          |
| B-25                   | 838  | 6.17.                      | N. PVC                   |                                    |                                |                          |
|                        | ,    |                            |                          |                                    |                                |                          |
|                        |      | 1                          |                          |                                    |                                |                          |
|                        | 1    |                            |                          |                                    |                                |                          |
|                        | 1000 |                            |                          |                                    |                                |                          |
| 13.00                  |      |                            |                          |                                    |                                |                          |
|                        |      |                            |                          |                                    |                                |                          |
|                        |      |                            |                          |                                    |                                |                          |

TOC (Top of Locking Casing) TOW (Top of Well Casing)

all wills/ptugs opened between 8:00 Am and 8:20 Am;

5B-43V

th. eenvy

| Project No.:553-1521-242 WO31 Task 200.02                        | Date: 8/25/2-2 Well ID: 21MW-1                      |
|------------------------------------------------------------------|-----------------------------------------------------|
| Project Name: King County METRO South Facilities South Annex     | Project Address:11911 E Marginal Way S, Tukwila, WA |
| Sampling Organization: Parametrix in Assoc. with HWA Geosciences | Samplers: Cierra Wilson C. ( Suscrete Sis           |
| Purge Data                                                       |                                                     |
| D. E. C. Devieteltie www.                                        |                                                     |

| Purge Eq     | uipment: Perista                                                                     | aitic pump      |               |                  |              | Dep          | oth of Well (ft be     | low TOC):     | 15.0        | _                     |                                        |
|--------------|--------------------------------------------------------------------------------------|-----------------|---------------|------------------|--------------|--------------|------------------------|---------------|-------------|-----------------------|----------------------------------------|
| Pump Int     | take Depth (ft belov                                                                 | w TOC):         | 5.05          |                  |              | We           | ll Casing/Diamet       | er: 2″        |             |                       |                                        |
| Initial De   | pth to Water (ft be                                                                  | low TOC):       | - 9'          |                  |              | Pur          | ge Time (from/to       | o): 11        | 11-1        | 140                   |                                        |
| 5.38         | Depth to                                                                             |                 |               | Cum. 👔           | ~            |              | Specific               |               |             |                       |                                        |
| Time         | Water<br>(ft below TOC)                                                              | Pump<br>Setting | Purge<br>Rate | Vol. ~<br>Purged | Temp<br>(°C) | DO<br>(mg/L) | Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(my) | Turbidity<br>(visual) | Comments                               |
| 115          | 5                                                                                    | 2.5             | 290           | 62               | 20,1         | 1.45         | 6.533                  | 6.61          | -56-1       | clear                 | Sugar acher                            |
| 1120         | 5.26                                                                                 | 2.25            | 250           | 1.25             | 19.2         | 6.43         | 0.530                  | 6.63          | - 73.6      | 1 K                   | - L <sup>1</sup>                       |
| 1125         | 5.86                                                                                 | <u></u>         | - CN          | 3-1              | 17.8         | 0.34         | 0.527                  | 6.64          | .75.8       | ~~                    | 1×                                     |
| 1130         | 5.91                                                                                 | **              | 55            | 4.1              | 17.2         | 0.28         | 0.525                  | 6.65          | -29.2       | n                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 1135         | es.al                                                                                | - 4 K           |               | 5-1              | 16.7         | 0.23         | 0.521                  | 6.66          | - 83.3      | к.У                   | N.                                     |
| 1140         | <u> </u>                                                                             | 14              | <u>.</u> 1    | 6.1              | 16,8         | 0.23         | 0.520                  | 6.66          | -88,9       | t -88                 | .9                                     |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             | ··                    |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              | 0            |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        | <u> </u>      |             | ·                     |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 |               |                  |              | 109/ 2       |                        |               |             |                       |                                        |
|              |                                                                                      |                 | Stabilizatio  | n Criteria       | 3%           | <0.5         | 3%                     | ± 0.1         | ± 10 mv     |                       |                                        |
| Sampling D   | ata                                                                                  |                 |               |                  |              |              |                        |               |             |                       |                                        |
| Sample ID:   | : 21MW-1                                                                             |                 | Tim           | e Collected      | l: <i>l</i>  | 145          |                        | Weather:      | Sec.        |                       | -                                      |
| Sample De    | escription (Color. Tu                                                                | urbidity. Odd   | or, Other):   | 21.              |              | far 1        | a da -                 |               |             | 1, 001                | 17 Ma                                  |
| Sample An    | alyses: NWTPH                                                                        | -Dx (w/ & w     | /o SGC), NWT  | PH-Gx, BTE       | X w/ Napl    | nthalene     |                        |               |             |                       |                                        |
| Laboratory   | Laboratory: Friedman & Bruya Lab Dropoff Method: IN Person Lab Dropoff Date: 8/25/27 |                 |               |                  |              |              |                        |               |             |                       |                                        |
| Additional I | Additional Information/Comments                                                      |                 |               |                  |              |              |                        |               |             |                       |                                        |
| i            | mitsul DTW measured a offer the two the                                              |                 |               |                  |              |              |                        |               |             |                       |                                        |
|              |                                                                                      |                 | -1-4          | - *** 1          | - 1          | 1            |                        | and g         | 1 0001      | nula                  |                                        |

#### Parametrix

| Project No.:553-1521-242 WO31 Task 200.02                        | Date: 2/25/22 Well ID: 21MW-2                        |
|------------------------------------------------------------------|------------------------------------------------------|
| Project Name: King County METRO South Facilities South Annex     | Project Address: 11911 E Marginal Way S, Tukwila, WA |
| Sampling Organization: Parametrix in Assoc. with HWA Geosciences | Samplers: Cierra Wilson C. Bowgeois                  |
| Purge Data                                                       |                                                      |

2

| Purge E            | quipment: Perist                    | altic pump |               |             |             |                                   |                         |         |         | _         |            |
|--------------------|-------------------------------------|------------|---------------|-------------|-------------|-----------------------------------|-------------------------|---------|---------|-----------|------------|
| Pump Ir            | take Depth (ft belo                 |            | 20            | × 11        |             | Depth of well (π below FOC): 15.0 |                         |         |         |           |            |
| Initial D          | enth to Water (ft b                 |            | <br>F         |             | \$2.51      | Well Casing/Diameter: 2"          |                         |         |         |           |            |
|                    | cpen to water (it be                | elow TOC): | 21            | 5           | .80         | Purge Time (from/to): 1012 - 1035 |                         |         |         |           |            |
| Time               | Depth to<br>Water<br>(ft below TOC) | Pump       | Purge         | Cum.        | Temp        | DO                                | Specific<br>Conductance | рН      | ORP     | Turbidity |            |
| 1015               |                                     |            | Rate          | *Purged     | <u>(°C)</u> | (mg/L)                            | (mg/cm)                 | (units) | (mv)    | (visual)  | Comments   |
| 1020               | 2.16                                | 2.73       | 300           | <u>&gt;</u> | (8.2        | 0.90                              | 0.84                    | 6.34    | -39.6   | earth     | odor       |
| 1025               |                                     | 1.20       | 160           |             | 17.9        | 0.41                              | 0-83                    | 6.39    | -57.0   | OVAN      | he turbide |
| 1000               |                                     |            | 51            | 4-5         | 17.3        | 0.29                              | 0.84                    | 6:11    | -61.7   | less to   | rbid       |
| 1030               |                                     |            |               |             | 12.2        | 0.25                              | 0.83                    | 6.40    | -65.7   | no ch     | Ante       |
| 10 5 5             | Kathanga                            | - VV       |               | 9.25        | 17.2        | 0.22                              | 0.82                    | 6-42    | -70.6   |           | Y          |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   | 180                     |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
| -                  |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
|                    |                                     |            |               |             |             |                                   |                         |         |         |           |            |
| <b>a ( i i )</b> = |                                     |            | Stabilization | Criteria    | 3%          | 10%, or 3<br><0.5                 | 3%                      | ±0.1 :  | t 10 mv | •         |            |
| Sampling D         | ata                                 |            |               |             |             |                                   |                         |         |         |           |            |

| Sample ID:                 | 21MW-2                                                             | Time Collected:     | 540         | Weather: Sau      | will have up |
|----------------------------|--------------------------------------------------------------------|---------------------|-------------|-------------------|--------------|
| Sample Desc<br>Sample Anal | ription (Color, Turbidity, Odor, Ot<br>vses: NWTPH-Dx (w/ & w/o se | her): Sparse O      | range trad. |                   | ny, comm     |
| Laboratory:                | Friedman & Bruva                                                   | JUL D KALL N        | aphthalene  |                   |              |
| Additional Inf             | formation/Comments                                                 | Lab Dropoff Method: | M-prison    | Lab Dropoff Date: | 3/25/22      |

| Project No.: 553-1521-242 WO31 Task 200 02                       | Date: 9/25/22 Well ID: DW 200                       |
|------------------------------------------------------------------|-----------------------------------------------------|
| Project Name: King County METRO South Facilities South Annex     | Project Address:11911 E Marginal Way S, Tukwila, WA |
| Sampling Organization: Parametrix in Assoc. with HWA Geosciences | Samplers: Gierra Wilson C. Barracois                |
| Purge Data                                                       |                                                     |

| Purge Equipment: Peristaltic pump |                                     |                 |               | Depth of Well (ft below TOC); 8.80 |              |                   |                                    |               |             |                       |            |  |  |
|-----------------------------------|-------------------------------------|-----------------|---------------|------------------------------------|--------------|-------------------|------------------------------------|---------------|-------------|-----------------------|------------|--|--|
| Pump Int                          | ake Depth (ft belo                  | w TOC):         | Bri           | 7                                  |              | We                | ll Casing/Diamet                   | er: 0.9'      |             |                       |            |  |  |
| Initial De                        | pth to Water (ft be                 | elow TOC):      |               | ユ                                  |              | Pur               | Purge Time (from/to): 1903 - 1921  |               |             |                       |            |  |  |
| Time                              | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | Purge<br>Rate | Cum. )<br>Vol.<br>Purged           | Temp<br>(°C) | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments   |  |  |
| 1405                              | 5.37                                | 2.25            | 250           | 0,25                               | 2.2.1        | 6.12              | 0.66                               | 6.53          | 9.8         | char                  | N. a.lay   |  |  |
| 1710                              | et                                  | v-              | 15            | 1.75                               | 21.3         | 0.36              | 0.67                               | 6.63          | -47.4       | بدا                   | il and     |  |  |
| 1-115                             | <u></u>                             | `a              | N.            | 2.0                                | 21.6         | 6.26              | 0.67                               | 6-67          | -62.        | 2                     | NV.        |  |  |
| 1420                              |                                     | ~               | - NN          | 3.5                                | 21.5         | 6.22              | 0.67                               | 6.63          | 59.2        | <u> (</u> (           | 0          |  |  |
| 1425                              | 6-<br>                              | 14              |               | 14.7                               | 21.7         | 0.19              | 0-67                               | 6.62          | -52.9       | 4.X                   | 11         |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             | · :                   |            |  |  |
|                                   |                                     | <u> </u>        |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
|                                   |                                     |                 | Stabilizatio  | n Criteria                         | 3%           | 10%, or 3<br><0.5 | 3%                                 | ±0.1          | ± 10 mv     |                       |            |  |  |
| Sampling D                        | ata                                 |                 |               |                                    |              |                   |                                    |               |             |                       |            |  |  |
| Sample ID:<br>Sample De           | DW-3R                               | urbidity Ode    | Tim           | e Collected                        | : 1          | 425               | + 1                                | Weather:      | 5.1         | my 1                  | <u>Nt.</u> |  |  |
| Sample An                         | alyses: NWTPH                       | I-Dx (w/ & w    | /o SGC), NWT  | PH-Gx, BTE                         | X w/ Napl    | hthalene          | evv.>va                            | un j          |             |                       |            |  |  |

| Laboratory:    | Friedman & Bruya  |
|----------------|-------------------|
| Additional Inf | ormation/Comments |

8/25/22

Lab Dropoff Date:

Lab Dropoff Method:

Sin - Person

| Project No.:  | 553-152                                        | I-242 WO31 Task 200.02                    | Date:    | 81251        | 122           | Well ID: | DW-4R |   |
|---------------|------------------------------------------------|-------------------------------------------|----------|--------------|---------------|----------|-------|---|
| Project Name: | King County METRO South Facilities South Annex |                                           |          | ddress: 11   | 911 E Margina | wila, WA |       |   |
| Sampling Orga | nization:                                      | Parametrix in Assoc. with HWA Geosciences | Samplers | : Cierra Wil | son C         | Pergeou  |       |   |
| Purge Data    |                                                |                                           |          |              |               |          |       | - |

| Purge Equ   | uipment: Perista                    | ltic pump       |                        |                           |              | Dep               | Depth of Well (ft below TOC):      |               |             |                       |                                    |  |  |
|-------------|-------------------------------------|-----------------|------------------------|---------------------------|--------------|-------------------|------------------------------------|---------------|-------------|-----------------------|------------------------------------|--|--|
| Pump Inta   | ake Depth (ft belov                 | v TOC):         | B                      |                           |              | We                | ll Casing/Diamet                   | er: 0.65      | ,           |                       |                                    |  |  |
| Initial Dep | oth to Water (ft be                 | low TOC):       | 5.70                   |                           |              |                   | Purge Time (from/to): 1516 - 1545  |               |             |                       |                                    |  |  |
| Time        | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | mV(ww<br>Purge<br>Rate | Cum. ()<br>Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments                           |  |  |
| 1520        | 5.70                                | 2-5             | 240                    | ~ 0                       | 21.3         | 0.87              | 0.60                               | 7.05          | -61-3       | ales                  | no udor                            |  |  |
| 1925        | - A                                 | 2.90            | 240                    | 1.8                       | 2.1.2        | 0.35              | 0.60                               | 7.06          | -81.0       |                       | vL                                 |  |  |
| 1530        | 6                                   | L.C.            | 5                      |                           | 21.3         | 0.25              | 0.60                               | 7.07          | -010.0      | . U.                  | X N                                |  |  |
| 1335        | ě.                                  | H.              | <u> </u>               | 3.9                       | 2-1,2        | 0.22              | 12.59                              | 7.04          | -977        | Sparse                | black topid.                       |  |  |
| 1540        | 0                                   | . · · ·         |                        |                           | 21.2         | 0.19              | 0.59                               | 7.04          | -102.0      | it                    | 83                                 |  |  |
| 1545        | CV.                                 | P               |                        | 5.3                       | 21.3         | 0.19              | 0.51                               | 7.07          | ~107.0      |                       | Y*                                 |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              | ·                 |                                    |               |             |                       |                                    |  |  |
|             | ;                                   |                 |                        |                           |              |                   |                                    |               |             |                       | <u> </u>                           |  |  |
|             |                                     |                 | -                      |                           | <u> </u>     |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 |                        |                           |              |                   |                                    |               |             |                       | ·································· |  |  |
|             |                                     | -               |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
|             |                                     |                 | Stabilizatio           | on Criteria               | 3%           | 10%, or 3<br><0.5 | 3%                                 | ± 0.1         | ± 10 mv     |                       |                                    |  |  |
| Sampling D  | Data                                |                 |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
| Sample ID   | : DW-4R                             |                 | Tir                    | ne Collecte               | d:l          | 550%              | 1610                               | Weather:      | SUN         | min                   | hat                                |  |  |
| Sample De   | escription (Color, T                | urbidity, Od    | or, Other):            | cleo                      |              | -1 bla            | ch tarb                            | din.          | Ne 00       | do                    |                                    |  |  |
| Sample Ar   | nalyses: NWTPH                      | H-Dx (w/ & v    | v/o SGC), NW           | TPH-Gx, BT                | EX w/ Nap    | hthalene          |                                    | <u>^</u>      |             |                       |                                    |  |  |
| Laborator   | y: Friedman & B                     | ruya            | Lal                    | b Dropoff N               | Aethod:      | in-pa             | San                                | Lab Dropo     | off Date:   | 8125                  | 122                                |  |  |
| Additional  | Information/Com                     | ments           |                        |                           |              |                   |                                    |               |             |                       |                                    |  |  |
| _           |                                     |                 | P                      | ·p 2                      | . 1 yun.     | -3 2              | 1610                               |               |             |                       |                                    |  |  |

-

| Project No.: 553-152   | 1-242 WO31 Task 200.02                    | Date:     | 212     | 5/22         | Well ID:        | SB-7     |
|------------------------|-------------------------------------------|-----------|---------|--------------|-----------------|----------|
| Project Name: King Co  | unty METRO South Facilities South Annex   | Project A | ddress: | 11911 E Marg | inal Way S, Tuk | wila, WA |
| Sampling Organization: | Parametrix in Assoc. with HWA Geosciences | Sampler   | : Cierr | i Wilson 🤇   | Bourgie         | >:3      |
| Purge Data             |                                           |           |         |              |                 |          |

| Purge Equ   | ipment: Perista                     | ltic pump       |                        |                          |                            | Dep               | Depth of Well (ft below TOC): 11.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |             |                       |              |  |  |
|-------------|-------------------------------------|-----------------|------------------------|--------------------------|----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------------|--------------|--|--|
| Pump Inta   | ake Depth (ft belov                 | w TOC):         | En                     | 9                        |                            | Wel               | l Casing/Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er: 2"        |             |                       |              |  |  |
| Initial Dep | oth to Water (ft be                 | low TOC):       | 5,85                   | Pure                     | ge Time (from/to):300 1325 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
| Time        | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | ml/mm<br>Purge<br>Rate | Cum. 人<br>Vol.<br>Purged | Temp<br>(°C)               | DO<br>(mg/L)      | Specific Spe | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments     |  |  |
| 1305        | 5,90                                | 2.25            | 240 1                  | 2.7                      | 16,8                       | 0.85              | 0.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.57          | -80.4       | ilear                 | Slight andar |  |  |
| 1310        | 5.91                                | <u>a</u>        | <u></u>                | 1.7                      | 16.9                       | 0.50              | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.61          | -95.1       | A                     | 43           |  |  |
| 1315        |                                     | <u> (</u> 1)    | UN                     | 3                        | 12-1                       | 0.40              | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$. 61        | -96.4       | Le 1                  | ~            |  |  |
| 1320        | 25                                  | Α               | <u> </u>               | 4                        | 12.2                       | 0.37              | 0.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.61          | -103.2      | E.E.                  | 18           |  |  |
| 1325        | J.                                  |                 | - CN                   | 5-1                      | 12:3                       | 0.22              | 0.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.58          | -103.2      | 1. C                  | 4            |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             | ·                                   |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            | ÷                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | <u> </u>              |              |  |  |
| ·····       |                                     | -               |                        | <u> </u>                 |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>    |                       |              |  |  |
|             |                                     | -               |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
| <u> </u>    |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | _:          |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>    |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 |                        |                          |                            |                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |             |                       |              |  |  |
|             | - JP                                |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
|             |                                     |                 | Stabilization          | Criteria                 | 3%                         | 10%, or 3<br><0.5 | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 0.1         | ± 10 mv     |                       |              |  |  |
| Sampling D  | ata                                 |                 |                        |                          |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                       |              |  |  |
| Sample ID   | : SB-7                              |                 | Time                   | e Collected              | 4: <b>[</b> ]              | 058               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weather:      | Sui         | m.h                   | it.          |  |  |
| Sample De   | escription (Color, T                | urbidity, Od    | or, Other):            | Store                    | no                         | manya             | 2. bluck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tubi          | dite        | 1                     |              |  |  |

Sample Analyses: NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene

| Laboratory: | Friedman & Bruya | Lab Dropoff Method: |
|-------------|------------------|---------------------|
|             |                  |                     |

Additional Information/Comments

8/25/22

Lab Dropoff Date:

m-parsin

|                                                              | samplers:                                            |
|--------------------------------------------------------------|------------------------------------------------------|
| Project Name: King County METRO South Facilities South Annex | Project Address: 11911 E Marginal Way S, Tukwila, WA |
| Project No.: 553-1521-242 WO31 Task 200.02                   | Date: Well ID: SB-8                                  |
|                                                              | 9/25/22                                              |

| Purge Equ<br>Pump Inta | uipment: Peristal                   | ltic pump<br>v TOC): | White and               | 13                       |              | Dep<br>Wel        | Depth of Well (ft below TOC):      |               |             |                       |               |  |  |
|------------------------|-------------------------------------|----------------------|-------------------------|--------------------------|--------------|-------------------|------------------------------------|---------------|-------------|-----------------------|---------------|--|--|
| Initial Dep            | oth to Water (ft bel                | ow TOC):             | 6.38                    |                          |              | Pur               | ge Time (from/to                   | p): 9         | 28-         | 945                   |               |  |  |
| Time                   | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting      | ML/mw.<br>Purge<br>Rate | Cum. L<br>Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)      | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments      |  |  |
| 930                    | 7.36                                | 2.25                 | 265                     |                          | 17.5         | 0.80              | 0,80                               | 6.09          | - 40.9      | izellor               | L CELON       |  |  |
| 935                    | 9.02                                | 0                    | C 8                     |                          | 17.7         | 0.42              | 0.80                               | 6.04          | -66.6       | no torb               | Hity just e   |  |  |
| 940                    | 10.60                               | UK                   | E                       |                          | 18.1         | 0.31              | 0.78                               | 6.02          | -69.6       | colo.                 | + sweet oder. |  |  |
| 945                    | 12.20                               | - 63                 |                         |                          | 18.6         | 0.28              | 0.78                               | 6.03          | . 22.8      | BINI AN               | 1. Not        |  |  |
|                        |                                     |                      | DR                      | Y                        |              |                   |                                    | ·····         |             | i                     |               |  |  |
|                        |                                     |                      |                         |                          |              |                   |                                    |               |             |                       |               |  |  |
|                        |                                     |                      |                         |                          |              |                   | <u>f</u>                           |               |             |                       |               |  |  |
|                        |                                     |                      |                         |                          |              |                   |                                    |               | <u> </u>    | ;                     |               |  |  |
|                        |                                     |                      |                         |                          |              |                   |                                    |               |             |                       |               |  |  |
|                        |                                     |                      |                         |                          |              |                   |                                    |               |             |                       |               |  |  |
|                        |                                     |                      |                         |                          |              |                   |                                    |               |             |                       |               |  |  |
|                        |                                     |                      | Stabilization           | n Criteria               | 3%           | 10%, or 3<br><0.5 | 3%                                 | ± 0.1         | ± 10 mv     |                       |               |  |  |
| Sampling D             | Data                                |                      |                         | 100                      |              |                   |                                    |               |             |                       |               |  |  |
| Sample ID<br>Sample De | sB-8<br>escription (Color, T        | urbidity, Od         | Tim<br>or, Other):      | e Collected              | 1: <u>†</u>  | silty (           | 225<br>tubid                       | Weather:      | Sun         | ny, va                |               |  |  |
| Sample Ar              | nalyses: NWTPH                      | I-Dx (w/ & w         | r/o SGC), NWT           | PH-Gx, BTI               | EX w/ Nap    | hthalene          |                                    |               |             | Q1-                   | ·····         |  |  |
| Laborator              | y: Friedman & Br                    | ruya                 | Lab                     | Dropoff M                | lethod:      | <u> 199</u>       | V prin                             | Lab Dropo     | off Date:   | 0(2)                  | 2/27.         |  |  |
| Additional             | Information/Com                     | ments                |                         |                          |              |                   |                                    |               |             |                       |               |  |  |
| ×                      | e.P.L. =                            | pump                 | Intak                   | A.V                      |              |                   |                                    |               | _           |                       |               |  |  |

# APPENDIX B: AUGUST 2022 LAB REPORT

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 7, 2022

Chris Bourgeois, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Mr Bourgeois:

Included are the results from the testing of material submitted on August 25, 2022 from the King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Brady (PMX), and Lisa Gilbert (PMX) HWA0907R.DOC

#### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on August 25, 2022 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities 2021-062 W031 Task 200.02 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | HWA Geosciences, Inc |
|----------------------|----------------------|
| 208400 -01           | 21MW-1               |
| 208400 -02           | 21MW-2               |
| 208400 -03           | 21MW-3               |
| 208400 -04           | DW-3R                |
| 208400 -05           | DW-4R                |
| 208400 -06           | SB-7                 |
| 208400 -07           | SB-8                 |
| 208400 -08           | Trip Blanks          |

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400 Date Extracted: 08/31/22 Date Analyzed: 08/31/22 and 09/01/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery</u> )<br>(Limit 51-134) |
|-----------------------------------|-----------------------|------------------------------------------------------|
| 21MW-1<br>208400-01               | <100                  | 97                                                   |
| 21MW-2<br>208400-02               | <100                  | 102                                                  |
| 21MW-3<br>208400-03               | <100                  | 102                                                  |
| DW-3R<br>208400-04                | <100                  | 99                                                   |
| DW-4R<br>208400-05                | <100                  | 102                                                  |
| SB-7<br>208400-06                 | <100                  | 101                                                  |
| SB-8<br>208400-07                 | <100                  | 98                                                   |
| Trip Blanks<br>208400-08          | <100                  | 101                                                  |
| Method Blank                      | <100                  | 100                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400 Date Extracted: 08/26/22 Date Analyzed: 09/01/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | <u>Motor Oil Range</u><br>(C <sub>25</sub> -C <sub>36</sub> ) | <u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|---------------------------------------------------------------|---------------------------------------|
| 21MW-1<br>208400-01               | <50                       | <250                                                          | 83                                    |
| 21MW-2<br>208400-02               | 65 x                      | <250                                                          | 94                                    |
| 21MW-3<br>208400-03               | <50                       | <250                                                          | 93                                    |
| DW-3R<br>208400-04                | <50                       | <250                                                          | 96                                    |
| DW-4R<br>208400-05                | <50                       | <250                                                          | 84                                    |
| SB-7<br>208400-06                 | <50                       | <250                                                          | 91                                    |
| SB-8<br>208400-07                 | <50                       | <250                                                          | 83                                    |
| Method Blank<br>02-2040 MB        | <50                       | <250                                                          | 93                                    |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400 Date Extracted: 08/26/22 Date Analyzed: 08/26/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21MW-1<br>208400-01               | 140 x                     | <250                         | 85                                                 |
| 21MW-2<br>208400-02               | 240 x                     | <250                         | 95                                                 |
| 21MW-3<br>208400-03               | 63 x                      | <250                         | 82                                                 |
| DW-3R<br>208400-04                | 100 x                     | <250                         | 95                                                 |
| DW-4R<br>208400-05                | 53 x                      | <250                         | 90                                                 |
| SB-7<br>208400-06                 | <50                       | <250                         | 92                                                 |
| SB-8<br>208400-07                 | 440 x                     | 490 x                        | 81                                                 |
| Method Blank<br>02-2040 MB        | <50                       | <250                         | 86                                                 |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-1<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-01<br>082710.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 98            | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                   | 93            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                               | 98            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-2<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-02<br>082711.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 97            | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                   | 94            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                               | 98            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-3<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-03<br>082712.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 95            | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                   | 94            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                               | 97            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-3R<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-04<br>082713.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 96            | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                  | 98            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                              | 96            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-4R<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-05<br>082714.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | e-d4                                                             | 101           | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                  | 95            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                              | 100           | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                      |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-7<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-06<br>082715.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 101           | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                 | 95            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                             | 98            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                      |
### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-8<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-07<br>082716.D<br>GCMS11<br>JCM |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                                |  |  |  |  |  |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |  |  |  |  |  |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 96            | 78                                                                       | 126                                                                                                  |  |  |  |  |  |
| Toluene-d8                                                                                    |                                                                 | 91            | 84                                                                       | 115                                                                                                  |  |  |  |  |  |
| 4-Bromofluorobenz                                                                             | ene                                                             | 96            | 72                                                                       | 130                                                                                                  |  |  |  |  |  |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                      |  |  |  |  |  |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                      |  |  |  |  |  |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                      |  |  |  |  |  |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                      |  |  |  |  |  |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                      |  |  |  |  |  |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                      |  |  |  |  |  |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                      |  |  |  |  |  |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                      |  |  |  |  |  |

# ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Trip Blanks<br>08/25/22<br>08/27/22<br>08/27/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>208400-08<br>082717.D<br>GCMS11<br>JCM |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                        |               | Lower                                                                    | Upper                                                                                                |
| Surrogates:                                                                                   |                                                                        | % Recovery:   | Limit:                                                                   | Limit:                                                                                               |
| 1,2-Dichloroethane                                                                            | -d4                                                                    | 96            | 78                                                                       | 126                                                                                                  |
| Toluene-d8                                                                                    |                                                                        | 91            | 84                                                                       | 115                                                                                                  |
| 4-Bromofluorobenz                                                                             | ene                                                                    | 96            | 72                                                                       | 130                                                                                                  |
|                                                                                               |                                                                        | Concentration |                                                                          |                                                                                                      |
| Compounds:                                                                                    |                                                                        | ug/L (ppb)    |                                                                          |                                                                                                      |
| Benzene                                                                                       |                                                                        | < 0.35        |                                                                          |                                                                                                      |
| Toluene                                                                                       |                                                                        | <1            |                                                                          |                                                                                                      |
| Ethylbenzene                                                                                  |                                                                        | <1            |                                                                          |                                                                                                      |
| m,p-Xylene                                                                                    |                                                                        | <2            |                                                                          |                                                                                                      |
| o-Xylene                                                                                      |                                                                        | <1            |                                                                          |                                                                                                      |
| Naphthalene                                                                                   |                                                                        | <1            |                                                                          |                                                                                                      |

# ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:Method BlaDate Received:Not ApplicaDate Extracted:08/27/22Date Analyzed:08/27/22Matrix:WaterUnits:ug/L (ppb) |        | nk<br>able    | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>02-1951 mb<br>082709.D<br>GCMS11<br>JCM |
|-------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                               | 5 UI / |               | Lower                                                                    | Unner                                                                                                 |
| Surrogates:                                                                                                                   |        | % Recovery:   | Limit:                                                                   | Limit:                                                                                                |
| 1.2-Dichloroethane                                                                                                            | e-d4   | 98            | 78                                                                       | 126                                                                                                   |
| Toluene-d8                                                                                                                    |        | 91            | 84                                                                       | 115                                                                                                   |
| 4-Bromofluorobenz                                                                                                             | zene   | 96            | 72                                                                       | 130                                                                                                   |
|                                                                                                                               |        | Concentration |                                                                          |                                                                                                       |
| Compounds:                                                                                                                    |        | ug/L (ppb)    |                                                                          |                                                                                                       |
| Benzene                                                                                                                       |        | < 0.35        |                                                                          |                                                                                                       |
| Toluene                                                                                                                       |        | <1            |                                                                          |                                                                                                       |
| Ethylbenzene                                                                                                                  |        | <1            |                                                                          |                                                                                                       |
| m,p-Xylene                                                                                                                    |        | <2            |                                                                          |                                                                                                       |
| o-Xylene                                                                                                                      |        | <1            |                                                                          |                                                                                                       |
| Naphthalene                                                                                                                   |        | <1            |                                                                          |                                                                                                       |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 208                       | 396-05 Matrix | Spike |          |            |          |            |            |  |  |  |  |  |  |
|--------------------------------------------|---------------|-------|----------|------------|----------|------------|------------|--|--|--|--|--|--|
|                                            |               |       |          | Percent    | Percent  |            |            |  |  |  |  |  |  |
|                                            | Reporting     | Spike | Sample   | Recovery   | Recovery | Acceptance | RPD        |  |  |  |  |  |  |
| Analyte                                    | Units         | Level | Result   | MS         | MSD      | Criteria   | (Limit 20) |  |  |  |  |  |  |
| Gasoline                                   | ug/L (ppb)    | 1,000 | 1,092    | 93         | 94       | 53 - 117   | 1          |  |  |  |  |  |  |
| Laboratory Code: Laboratory Control Sample |               |       |          |            |          |            |            |  |  |  |  |  |  |
|                                            |               |       | Percent  |            |          |            |            |  |  |  |  |  |  |
|                                            | Reporting     | Spike | Recovery | Acceptance | •        |            |            |  |  |  |  |  |  |
| Analyte                                    | Units         | Level | LCS      | Criteria   |          |            |            |  |  |  |  |  |  |
| Gasoline                                   | ug/L (ppb)    | 1,000 | 99       | 69-134     |          |            |            |  |  |  |  |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 208373-02 (Matrix Spike) Silica Gel

|                  |                  |            |            | Percent   | Percent  |            |                      |
|------------------|------------------|------------|------------|-----------|----------|------------|----------------------|
|                  | Reporting        | Spike      | Sample     | Recovery  | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte          | Units            | Level      | Result     | MS        | MSD      | Criteria   | (Limit 20)           |
| Diesel Extended  | ug/L (ppb)       | 2,500      | <50        | 112       | 104      | 50 - 150   | 7                    |
| Laboratory Code: | Laboratory Conti | rol Sample | e Silica G | el        |          |            |                      |
|                  |                  |            | Percen     | t         |          |            |                      |
|                  | Reporting        | Spike      | Recover    | ry Accept | ance     |            |                      |
| Analyte          | Units            | Level      | LCS        | Crite     | ria      |            |                      |
| Diesel Extended  | ug/L (ppb)       | 2,500      | 116        | 63-1      | 42       |            |                      |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code:                           | 208373-02 (Matri | x Spike) |         |          |          |            |                      |  |  |  |  |  |
|--------------------------------------------|------------------|----------|---------|----------|----------|------------|----------------------|--|--|--|--|--|
|                                            |                  |          |         | Percent  | Percent  |            |                      |  |  |  |  |  |
|                                            | Reporting        | Spike    | Sample  | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |  |  |  |  |  |
| Analyte                                    | Units            | Level    | Result  | MS       | MSD      | Criteria   | (Limit 20)           |  |  |  |  |  |
| Diesel Extended                            | ug/L (ppb)       | 2,500    | <50     | 132      | 116      | 50 - 150   | 13                   |  |  |  |  |  |
| Laboratory Code: Laboratory Control Sample |                  |          |         |          |          |            |                      |  |  |  |  |  |
|                                            |                  |          | Percen  | t        |          |            |                      |  |  |  |  |  |
|                                            | Reporting        | Spike    | Recover | y Accept | ance     |            |                      |  |  |  |  |  |
| Analyte                                    | Units            | Level    | LCS     | Crite    | ria      |            |                      |  |  |  |  |  |
| Diesel Extended                            | ug/L (ppb)       | 2,500    | 116     | 63-1-    | 42       |            |                      |  |  |  |  |  |

16

#### ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/22 Date Received: 08/25/22 Project: King County Metro South Facilities 2021-062 W031 Task 200.02, F&BI 208400

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 208400-01 (Matrix Spike)

|              |            |       |        | Percent  |            |
|--------------|------------|-------|--------|----------|------------|
|              | Reporting  | Spike | Sample | Recovery | Acceptance |
| Analyte      | Units      | Level | Result | MS       | Criteria   |
| Benzene      | ug/L (ppb) | 10    | < 0.35 | 107      | 50 - 150   |
| Toluene      | ug/L (ppb) | 10    | <1     | 110      | 50 - 150   |
| Ethylbenzene | ug/L (ppb) | 10    | <1     | 104      | 50 - 150   |
| m,p-Xylene   | ug/L (ppb) | 20    | <2     | 104      | 50 - 150   |
| o-Xylene     | ug/L (ppb) | 10    | <1     | 105      | 50 - 150   |
| Naphthalene  | ug/L (ppb) | 10    | <1     | 99       | 50 - 150   |

Laboratory Code: Laboratory Control Sample

|              | I I I      |       | Percent  | Percent  |            |                      |
|--------------|------------|-------|----------|----------|------------|----------------------|
|              | Reporting  | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte      | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Benzene      | ug/L (ppb) | 10    | 104      | 92       | 70-130     | 12                   |
| Toluene      | ug/L (ppb) | 10    | 109      | 99       | 70-130     | 10                   |
| Ethylbenzene | ug/L (ppb) | 10    | 101      | 92       | 70-130     | 9                    |
| m,p-Xylene   | ug/L (ppb) | 20    | 101      | 92       | 70-130     | 9                    |
| o-Xylene     | ug/L (ppb) | 10    | 103      | 93       | 70-130     | 10                   |
| Naphthalene  | ug/L (ppb) | 10    | 96       | 87       | 70-130     | 10                   |

#### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

|              |                  |                   | Friedman & Bruya, Inc.<br>Ph. (206) 285-8282 |       |   | TRIP BLANKS | 2B-2 | SB-7     | DWIFR       | DW-3R                                   | 21MW-3    | 21 MW-2  | 21MW-1   | Sample ID             |               | Phone 206 . 7 94-3145E    | City, State, ZIP 1304100 | Address 21317 2 | Company HWA Gco | Report To C. Bour | 12/12/1   |
|--------------|------------------|-------------------|----------------------------------------------|-------|---|-------------|------|----------|-------------|-----------------------------------------|-----------|----------|----------|-----------------------|---------------|---------------------------|--------------------------|-----------------|-----------------|-------------------|-----------|
| Received by: | Relinquished by: | Received by: W. M | Relinquished by:                             | SIGN  | 1 | OSA-B       | 57   | 66       | 33          | 04                                      | 54        | oz ,     | D( A-6 8 | Lab ID S              |               | mail <u>cbourgeois@</u> } | 211, WIA 98              | 30th Dr SE      | Sciences + Ta   | geois (HWA)       |           |
|              |                  | adden             | why.                                         | ATURE |   | \$          |      | •        |             |                                         |           |          | 25/22/   | Date                  |               | mageo.cor                 | 120                      | Ste. 1          | ametrix         | 1-Gibert          | M. Brooly |
|              |                  | C                 |                                              |       |   | 27          | 525  | 330      | ち<br>い<br>0 | 425                                     | 610       | 040      | 22       | Time<br>Sampled       |               | <sup>n</sup> Project sp   | REMARK                   | 0.              | PROJEC          | SAMLELE           | AMPLE     |
| ×.           |                  | W. M              | Chris                                        |       |   | <i>←</i>    |      |          | L.          |                                         |           |          | S Z      | Sample<br>Type        | a             | pecific RLs               | S                        | Nach zz         | I NAME          | indis) cy         | CHAIN     |
|              |                  | 1 dol             | 30                                           | PRIN  | 6 | 2           | L    | 1        | L           |                                         |           | 4        |          | # of<br>Jars          |               | ? - Ye                    |                          | ill H           | Me              | ure)              | OF (      |
|              |                  | 14                | 24                                           | TNA   |   |             | X    | $\times$ | X           | $\times$                                | X         | $\times$ | X        | NWTPH-Dx              |               | s / N                     |                          | 25              | to              |                   | SUS       |
|              |                  |                   | 20:5                                         | ME    |   | $\times$    | K.   | $\times$ | $\geq$      | X                                       | $\succeq$ | $\times$ | $\times$ | NWTPH-Gx              |               | No I                      | <b>`</b>                 |                 |                 |                   | TOI       |
|              |                  |                   |                                              |       |   |             |      |          |             |                                         | · ·       |          |          | BTEX EPA 8021         | $\frac{1}{1}$ |                           |                          | ast             | 202             |                   | YC I      |
|              |                  |                   |                                              |       |   |             |      |          |             |                                         |           |          |          | VOCs EPA 8260         | ANA           |                           | INV                      | 11              |                 |                   |           |
|              |                  | Π                 | ۲                                            |       |   |             |      |          |             |                                         |           |          |          | PAHs EPA 8270         | LYS           |                           | OICE                     | 00.             | PO#             |                   | 100       |
|              | Sai              | t                 | 5                                            |       |   |             |      |          |             |                                         |           |          |          | PCBs EPA 8082         | ES R          |                           | TO                       | 0               | 5               |                   | 12t       |
|              | nple             | F                 | ¥                                            | MOX   |   | $\times$    | X    | X        | X           | $\times$                                | $\times$  | Х        | X        | BTEX +<br>Nachthalene | EQU           |                           |                          | N N             | 201             |                   | 122       |
|              | S Te             |                   |                                              | PAN   |   |             |      |          |             |                                         |           |          |          |                       | ESTI          |                           |                          |                 |                 |                   |           |
|              | wise             |                   |                                              | Υ     |   |             |      |          |             |                                         |           |          |          |                       | ŒD            | ⊐ Oth<br>Defa             | ∃ Arc                    | Rush            | d Sta<br>□ RU   |                   |           |
|              | ed a             |                   |                                              |       |   |             |      |          |             |                                         |           |          |          |                       |               | uer<br>ult: T             | SAM<br>hive :            | charg           | ndaro<br>SH     | ruge #            | 5         |
|              | t L              | 87/28             | 5/2                                          | Dź    |   |             | 1    | 2        |             | L                                       | 11        | 0        | Ž        | ÷                     | 1             | ispos                     | PLE                      | ;es au          | l turr          | VARC              | -         |
|              | D°               | 122               | 5/27                                         | TE    |   |             |      |          |             |                                         |           |          | 5        | Z                     |               | se aft                    | DISP<br>les              | thori           | harou           | UND -             | Ð         |
|              | Q                | た / -             |                                              | Ţ     |   |             |      |          |             |                                         | •         |          | +        | otes                  |               | er 30                     | OSAI                     | zed by          | nd              | TIM               | MF        |
|              | 2                | 5                 | 019                                          | ME    |   |             | 2    | 11       | ~           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2         | 1        | to       |                       |               | days                      |                          | л<br>Г          |                 | ·••               | 25        |











-----



























December 9, 2022 HWA Project No. 2021-062-22

### King County Metro Transit Capital Division

Transit Real Estate and Environmental 201 South Jackson Street, M.S. KSC-TR-0431 Seattle, WA 98104-3856

Attention: John Greene

Subject: 2022 Quarter 4 Groundwater Sampling Event Memorandum King County Metro Transit - South Facilities Tukwila, Washington

Dear Mr. Greene,

As approved in the Contract E00635E19 Work Order #31 scope, HWA GeoSciences Inc (HWA) has completed the fourth 2022 quarterly monitoring event at the King County Metro Transit - South Facilities / Annex (South Facilities) addressed at 11911 East Marginal Way South, Tukwila, Washington (as shown on Figure 1). The site is known as Washington State Department of Ecology (Ecology) Cleanup Site Identification number 7790 and Voluntary Cleanup Program (VCP) number NW3301. This memorandum includes a brief summary of quarterly groundwater monitoring completed as part of the Work Order #31 scope. This work task was coordinated by HWA as part of HWA's contract with Parametrix for environmental services.

#### GROUNDWATER MONITORING WELL SAMPLING

On November 1, 2022, HWA collected groundwater samples from monitoring wells DW-3R, DW-4R, SB-7, SB-8, 21MW-1, and 21MW-2. Well locations are shown on Figure 2.

Prior to the start of low-flow purging, depth to groundwater was measured and recorded at each of the above wells, as well as at the stream gauge and well B-25. Depth to groundwater measurements are presented on the field data sheets included in Appendix A. Groundwater elevations are presented in Table 1 along with data from the previous events. An interpreted potentiometric surface map for the monitoring event is provided in Figure 3.

Groundwater samples were collected using low-flow purging and sampling techniques with a peristaltic pump and new polyethylene tubing. During purging, field parameters of pH, specific

December 9, 2022 HWA Project No. 2062-062-22

conductance, oxidation-reduction potential, dissolved oxygen, and temperature were measured until stabilization was achieved. Any field indications of contamination including odor, discoloration, and/or sheen that were observed are documented on the field sampling sheets included in Appendix A. Groundwater samples were collected in analysis-appropriate, clean, laboratory supplied containers and placed in a cooler with ice. Samples were kept in a cooler with ice and held at temperatures below 6 degrees Celsius until submittal to the laboratory for analysis with standard turnaround time. Analytical results are summarized in Table 2, and copies of the final laboratory report including the chain-of custody document and chromatograms are included in Appendix B.

Samples were analyzed by Friedman & Bruya, Inc. in Seattle, Washington for gasoline range total petroleum hydrocarbons (TPH) by Method NWTPH-Gx; diesel and oil-range TPH by Method NWTPH-Dx (both with and without silica gel cleanup); and benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) by EPA Method 8260D. All samples were analyzed within method specific holding times.

#### RESULTS

Analytical results for the fourth 2022 quarterly monitoring event, along with data from previous events are summarized in Table 2, and the laboratory report with chromatograms can be found in Appendix B. Fourth quarter analytical results indicate that diesel- and oil-range TPH were detected below MTCA cleanup levels in wells DW-4R, 21MW-1, and 21MW-2. Concentrations of diesel- and oil-range TPH were above the MTCA cleanup level in well SB-8. However, these samples were all x-flagged by the laboratory indicating that the diesel and oil results did not match the fuel standard since the diesel-range hydrocarbon fingerprint appears slightly shifted toward the right (longer retention) and overlapping with the heavier oil-range hydrocarbons.

These samples were also analyzed using silica gel cleanup treatment, which removes polar compounds and resulted in no diesel or oil-range TPH detections except for the sample analyzed from SB-8 and associated blind duplicate sample identified as 21MW-3. The SB-8 sample analyzed using silica gel cleanup treatment had oil-range TPH detected at 0.27 milligrams per liter (mg/L) and a diesel-range TPH detection of 0.12 mg/L, which were lower than the 0.67 mg/L oil-range detection and 0.44 mg/L diesel-range detections in this sample without the silica gel cleanup treatment. The 21MW-3 sample (duplicate of SB-8) analyzed using silica gel cleanup treatment detected diesel-range TPH at 0.12 mg/L, which was lower than the 0.49 mg/L diesel detection in this sample without the silica gel cleanup treatment. Oil-range TPH was not detected above the reporting limit in the 21MW-3 sample analyzed using silica gel cleanup treatment. Based on the data presented in previous reports, the TPH detected likely reflects biogenic interference from the natural peat deposits in the area in addition to a minor amount of very weathered petroleum hydrocarbons.

December 9, 2022 HWA Project No. 2062-062-22

#### FUTURE GROUNDWATER MONITORING

Recommendations concerning future groundwater monitoring at the site will be provided in the Remedial Investigation Addendum Report.

-0 • 0------

We appreciate the opportunity to provide environmental services on this project. Should you have any questions or comments, or if we may be of further service, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

HWA GeoSciences Inc.

Chris B

Chris Bourgeois Staff Geologist

She Papie

Nicole Kapise Senior Environmental Geologist

#### **FIGURES (Following Text)**

Figure 1 Figure 2 Figure 3 Site Map Locations Map Potentiometric Surface Map, November 1, 2022

#### TABLES (Following Text)

Table 1

Table 2

| Groundwater Elevation Data   |
|------------------------------|
| Groundwater Sampling Results |

#### Appendices:

Appendix A Appendix B November 2022 Field Data Sheets November 2022 Lab Report



Parametrix Source: King County

Project Location –

— Stream

**Figure 1** Site Map King County Metro Transit S Facilities/S Annex









Monitoring Well (Existing) ↔ Monitoring Well (Historical)

Monitoring Well and Soil Sample Locations King County Metro Transit S Facilities/S Annex (adapted 2/3/2022)



Table 1. Groundwater Elevations, King County Metro South Facilities, 11911 E Marginal Way S, Tukwila, WA.

|             | September 23, 2019                           |                                   | er 23, 2019                                     | 19 December 17, 2019              |                                                 | 17, 2019 April 1, 2020            |                                                 | February 22 and 23,<br>2022            |                                                | May 10, 2022                        |                                                   | August 25                                    | , 2022                                                  | November 1, 2022                             |                                                         |  |
|-------------|----------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|--|
| Well        | Reference<br>Elevation <sup>1</sup><br>13.63 | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water (ft) | Ground-<br>water<br>Elevation<br>(ft<br>NAVD88) | Depth to<br>Ground-<br>water**<br>(ft) | Ground-<br>water<br>Elevation**<br>(ft NAVD88) | Depth to<br>Ground-<br>water** (ft) | Ground-<br>water<br>Elevation**<br>(ft<br>NAVD88) | Depth to<br>Groundwater (ft)<br>(time-synch) | Groundwater<br>Elevation<br>(ft NAVD88)<br>(time-synch) | Depth to<br>Groundwater (ft)<br>(time-synch) | Groundwater<br>Elevation<br>(ft NAVD88)<br>(time-synch) |  |
| DW-3R*      | 13.63                                        | 5.21                              | 8.42                                            | 4.84                              | 8.79                                            | 4.48                              | 9.15                                            | 4.85                                   | 8.78                                           | 4.56                                | 9.07                                              | 4.52                                         | 9.11                                                    | 5.07                                         | 8.56                                                    |  |
| DW-4R       | 14.00                                        | 5.58                              | 8.42                                            | 5.15                              | 8.85                                            | 4.82                              | 9.18                                            | 5.19                                   | 8.81                                           | 4.91                                | 9.09                                              | 4.89                                         | 9.11                                                    | 5.40                                         | 8.60                                                    |  |
| SB-7        | 14.05                                        | 5.66                              | 8.39                                            | 5.23                              | 8.82                                            | 4.86                              | 9.19                                            | 5.30                                   | 8.75                                           | 5.02                                | 9.03                                              | 5                                            | 9.05                                                    | 5.55                                         | 8.50                                                    |  |
| SB-8        | 14.19                                        | 6.28                              | 7.91                                            | 5.80                              | 8.39                                            | 5.33                              | 8.86                                            | 5.82                                   | 8.37                                           | 5.71                                | 8.48                                              | 5.35                                         | 8.84                                                    | 6.33                                         | 7.86                                                    |  |
| B-25        | 14.12                                        |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.66                                   | 8.46                                           | 5.41                                | 8.71                                              | 5.41                                         | 8.71                                                    | 5.97                                         | 8.15                                                    |  |
| Staff Gauge | 15.94                                        |                                   |                                                 |                                   |                                                 |                                   |                                                 | 6.05                                   | 9.89                                           | 8.85                                | 7.09                                              | 8.85                                         | 7.09                                                    | 8.77                                         | 7.17                                                    |  |
| 21MW-1      | 13.44                                        |                                   |                                                 |                                   |                                                 |                                   |                                                 | 4.10                                   | 9.34                                           | 4.05                                | 9.39                                              | 4.41                                         | 9.03                                                    | 4.70                                         | 8.74                                                    |  |
| 21MW-2      | 13.72                                        |                                   |                                                 |                                   |                                                 |                                   |                                                 | 5.10                                   | 8.62                                           | 5.00                                | 8.72                                              | 5.11                                         | 8.61                                                    | 5.67                                         | 8.05                                                    |  |

Notes:

 $^1$  N rim PVC (wells) or marked measurement reference point (stream gauge), in ft NAVD88\*\*

\*Well has been damaged and casing is not vertical

\*\* Groundwater elevation measurement collected at time of sampling. Other groundwater elevation measurements are synchronous.

-- Not measured.

Table 2. Summary of Groundwater Analytical Results, King County Metro South Facilities Groundwater Monitoring Tukwila, Washington

|                    | Sampled                 | Cleanup Level <sup>a</sup> | DW-1 | DW-2 | DW-3 | DW-3R        | DW-4   | DW-4 Dup | DW-4R        | DW-4R Dup | SB-5 | SB-6 | SB-7         | SB-8            | SB-8 Dup       | 21MW-1       | 21MW-1 Dup | 21MW-2 2     | 21MW-2 Dup |
|--------------------|-------------------------|----------------------------|------|------|------|--------------|--------|----------|--------------|-----------|------|------|--------------|-----------------|----------------|--------------|------------|--------------|------------|
| NWTPH-Gx (µg/L)    | 10/11/1001              | 000/4 000 <sup>b</sup>     |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
| Gasoline           | 10/11/1994              | 800/1,000                  |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997               |                            |      |      |      |              | <100   |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <100         |        |          | <100         |           |      |      | <100         | <400            |                |              |            |              |            |
|                    | 1/5/2022                |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                | <100         |            | <100         |            |
|                    | 2/22/2022               |                            |      |      |      | <100         |        |          | <100         |           |      |      | <100         | <500            |                | <100         |            | <100         | <100       |
|                    | 5/10/2022<br>8/25/2022  |                            |      |      |      | <100<br><100 |        |          | <100<br><100 | <br><100  |      |      | <100<br><100 | <100<br><100    |                | <100<br><100 | <100       | <100<br><100 |            |
|                    | 11/1/2022               |                            |      |      |      | <100         |        |          | <100         |           |      |      | <100         | <100            | <100           | <100         |            | <100         |            |
| NWTPH-Dx (mg/L)    | 10/11/1004              | 0.5                        |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
| Diesei             | 12/19/1994              | 0.5                        |      |      |      |              |        |          |              |           | <0.2 | <0.2 | 0.55         | 0.495           |                |              |            |              |            |
|                    | 4/23/1997               |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <0.26        |        |          | <0.27        |           |      |      | <0.28        | 0.47            |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <0.0499      |        |          | <0.0497      |           |      |      | <0.0498      | <0.0498         |                |              |            | <br>0.006 x  |            |
|                    | 2/22/2022               |                            |      |      |      | < 0.05       |        |          | 0.058 x      |           |      |      | 0.059 x      | 0.35 x          |                | 0.15 x       |            | 0.030 x      | 0.25 x     |
|                    | 5/10/2022               |                            |      |      |      | 0.13 x       |        |          | 0.080 x      |           |      |      | 0.071 x      | 0.15 x          |                | 0.16 x       | 0.14 x     | 0.18 x       |            |
|                    | 8/25/2022               |                            |      |      |      | 0.10 x       |        |          | 0.053 x      | 0.063 x   |      |      | <0.050       | 0.44 x          |                | 0.14 x       |            | 0.24 x       |            |
|                    | 11/1/2022               |                            |      |      |      | <0.10        |        |          | 0.10 x       |           |      |      | <0.100       | 0.44 x          | 0.49 x         | 0.19 x       |            | 0.30 x       |            |
| Diesel w/ SGC      | 1/5/2022                | 0.5                        |      |      |      |              |        |          |              |           |      |      |              |                 |                | < 0.050      |            | < 0.050      |            |
|                    | 2/3/2022<br>5/10/2022   |                            |      |      |      | <0.050       |        |          | <0.050       |           |      |      | <0.050       | <0.050          |                | <0.050       |            | <0.050       | <0.050     |
|                    | 8/25/2022               |                            |      |      |      | <0.050       |        |          | <0.050       | <0.050    |      |      | <0.050       | <0.050          |                | <0.050       |            | 0.065 x      |            |
|                    | 11/1/2022               |                            |      |      |      | <0.10        |        |          | <0.10        |           |      |      | <0.10        | 0.12            | 0.12           | <0.10        |            | <0.10        |            |
| Lube Oil           | 10/11/1994              | 0.5                        | <0.2 | <0.2 | <0.2 |              | <0.2   | <0.2     |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997               |                            |      |      |      |              | <0.5   |          |              |           | <0.2 |      | 0.723        | 0.320           |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <0.41        |        |          | <0.43        |           |      |      | <0.44        | 0.67            |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <0.0998      |        |          | <0.0994      |           |      |      | <0.0997      | 0.399           |                |              |            |              |            |
|                    | 1/5/2022                |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                | <0.25        |            | <0.25        |            |
|                    | 2/22/2022               |                            |      |      |      | <0.25        |        |          | <0.25        |           |      |      | <0.25        | U.31 X          |                | <0.25        |            | <0.25        | <0.25      |
|                    | 8/25/2022               |                            |      |      |      | <0.25        |        |          | <0.25        | <0.25     |      |      | <0.25        | <0.25<br>0.49 x |                | <0.25        |            | <0.25        |            |
|                    | 11/1/2022               |                            |      |      |      | <0.25        |        |          | <0.25        |           |      |      | <0.25        | 0.67 x          | <b>0.6</b> 1 × | <0.25        |            | 0.29 x       |            |
| Lube Oil w/ SGC    | 1/5/2022                | 0.5                        |      |      |      |              |        |          |              |           |      |      |              |                 |                | <0.25        |            | <0.25        |            |
|                    | 2/22/2022               |                            |      |      |      | <0.25        |        |          | <0.25        |           |      |      | <0.25        | <0.25           |                | <0.25        |            | <0.25        | <0.25      |
|                    | 5/10/2022               |                            |      |      |      | <0.25        |        |          | <0.25        |           |      |      | <0.25        | <0.25           |                | <0.25        | <0.25      | <0.25        |            |
|                    | 8/25/2022               |                            |      |      |      | <0.25        |        |          | <0.25        | <0.25     |      |      | <0.25        | <0.25           | <0.25          | <0.25        |            | <0.25        |            |
| BTEX (µg/L)        | 11/1/2022               |                            |      |      |      | 40120        |        |          | 40.20        |           |      |      | 10.20        | 0.21            | 10.20          | 10.20        |            | 10.20        |            |
| Benzene            | 10/11/1994              | 5                          |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997               |                            |      |      |      |              | 9.5    |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <4              |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <1<br>       |        |          | <1<br>       |           |      |      | <1<br>       | <1              |                | <0.35        |            | <0.35        |            |
|                    | 2/22/2022               |                            |      |      |      | <0.35        |        |          | <0.35        |           |      |      | <0.35        | <0.35           |                | <0.35        |            | <0.35        | <0.35      |
|                    | 5/10/2022               |                            |      |      |      | <0.35        |        |          | < 0.35       |           |      |      | < 0.35       | < 0.35          |                | <0.35        | <0.35      | <0.35        |            |
|                    | 11/1/2022               |                            |      |      |      | <0.35        |        |          | <0.35        | <0.55     |      |      | <0.35        | < 0.35          | <0.35          | <0.35        |            | <0.35        |            |
| Toluene            | 10/11/1994              | 1,000                      |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |              | 23     |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <4              |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                |              |            |              |            |
|                    | 2/22/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           |            | <1           | <1         |
|                    | 5/10/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           | <1         | <1           |            |
|                    | 8/25/2022               |                            |      |      |      | <1<br><1     |        |          | <1<br><1     | <1<br>    |      |      | <1<br><1     | <1<br><1        | <br><1         | <1<br><1     |            | <1<br><1     |            |
| Ethylbenzene       | 10/11/1994              | 700                        |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <4              |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                |              |            |              |            |
|                    | 2/22/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           |            | <1           | <1         |
|                    | 5/10/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           | <1         | <1           |            |
|                    | 8/25/2022               |                            |      |      |      | <1<br><1     |        |          | <1           | <1        |      |      | <1           | <1              | <1             | <1           |            | <1           |            |
| m,p-Xylene         | 10/11/1994              | 1,000                      |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 12/19/1994<br>4/23/1997 |                            |      |      |      |              | <br><1 |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <4              |                |              |            |              |            |
|                    | 12/17/2019<br>1/5/2022  |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | -2           |            |              |            |
|                    | 2/22/2022               |                            |      |      |      | <2           |        |          | <2           |           |      |      | <2           | <2              |                | <2           |            | <2           | <2         |
|                    | 5/10/2022               |                            |      |      |      | <2           |        |          | <2           |           |      |      | <2           | <2              |                | <2           | <2         | <2           |            |
|                    | 11/1/2022               |                            |      |      |      | <2           |        |          | <2           |           |      |      | <2           | <2              | <2             | <2           |            | <2           |            |
| o-xylene           | 10/11/1994              | 1,000                      |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997               |                            |      |      |      |              | <br><1 |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 9/23/2019               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <4              |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                |              |            |              |            |
|                    | 2/22/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           |            | <1           | <1         |
|                    | 5/10/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           | <1         | <1           |            |
|                    | 8/25/2022<br>11/1/2022  |                            |      |      |      | <1<br><1     |        |          | <1<br><1     | <1<br>    |      |      | <1<br><1     | <1<br><1        | <br><1         | <1<br><1     |            | <1<br><1     |            |
| Naphthalene (µg/L) | 10/11/1994              | 160                        |      |      |      |              |        |          |              |           |      |      |              |                 |                | <u></u>      |            |              |            |
|                    | 12/19/1994              |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997<br>9/23/2019  |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 12/17/2019              |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 1/5/2022                |                            |      |      |      |              |        |          |              |           |      |      |              |                 |                | <1           |            | <1           |            |
|                    | 5/10/2022               |                            |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              |                | <1           | <br><1     | <1           | < I<br>    |
|                    | 8/25/2022               |                            |      |      |      | <1           |        |          | <1           | <1        |      |      | <1           | <1              |                | <1           |            | <1           |            |
| Lead (µg/L)        | 11/1/2022               | +                          |      |      |      | <1           |        |          | <1           |           |      |      | <1           | <1              | <1             | <1           |            | <1           |            |
| Lead               | 10/11/1994              | 15                         | <3   | <3   | <3   |              | <3     | <3       |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 12/19/1994              | -                          |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |
|                    | 4/23/1997               | 1                          |      |      |      |              |        |          |              |           |      |      |              |                 |                |              |            |              |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/23/2019  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | l |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|--|--|--|--|--|--|------|---|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/17/2019 |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | l |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/5/2022   |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | 1 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/22/2022  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/10/2022  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8/25/2022  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | 1 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/1/2022  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |   |  |
| Notes:         Bold values exceed MTCA Method A cleanup levels. <sup>a</sup> Washington Administrative Code Chapter 173-340, Model Toxics Control Act (MTCA) Cleanup Regulation, Method A suggested soil cleanup level for groundwater; updated August 15, 2001. <sup>b</sup> 800 µg/L if benzene is present in groundwater; 1,000 µg/L if no detectable benzene in groundwater.         mg/L - milligrams per liter.         µg/L - micrograms per liter.         SGC - silica gel cleanup         x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation         - not analyzed.         < - analyte not detected at or greater than the listed concentration (practical quantitation limit [PQL]). |            |  |  |  |  |  |  |  |  |  |  |  |  |  |      |   |  |

Date

# APPENDIX A: NOVEMBER FIELD DATA SHEETS

| + N. Kapist(HWP), [SAMPLE CHAIN OF CUSTODY | Page # of                            | / TURNAROUND TIME | Standard turnaround<br>RUSH .<br>Rush charges authorized by: | SAMPLE DISPOSAL        | Archive samples        | Default: Dispose after 30 days | TED             | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0× m + m/0  | 4 1 SEG    | 11 11     | · · ·      | 17 H       | : 1        | 11 11      |             | NY DATE TIME | 11/2/22 818        |                  |              |
|--------------------------------------------|--------------------------------------|-------------------|--------------------------------------------------------------|------------------------|------------------------|--------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------|------------|------------|------------|------------|-------------|--------------|--------------------|------------------|--------------|
|                                            |                                      |                   | PO#<br>2021-042 W031<br>TASK 200.02                          | INVOICE TO             |                        |                                | ANALYSES REQUES | BTEX EPA 8021<br>NWTPH-HCID<br>PCBs EPA 8260<br>PCBs EPA 8270<br>PCBs EPA 8270<br>PCBs EPA 8280<br>PCBs EPA 8082<br>PCBs |             |            |           |            |            |            |            |             | COMPAN       | ·AWH 2:            | F9 812           |              |
|                                            | ERS (signature)                      |                   | CT NAME<br>BUNHU MEtro<br>Fracilitics                        | RKS                    | include cgrams         | specific RLs? - Yes / No       | -               | NWTPH-Gx<br>Sample<br>Jars<br>Jars<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X X L MO    | XX L 1     | XXX X9    | XX LAD     | XXL        | XXL        | XXX9       | × Z ×       | PRINT NAME   | Chris Bourgeo      | Michael Erdeh 1  |              |
|                                            | N#1), SAMPI                          |                   | etrix Ring C<br>IIO Sectu                                    | REMAR                  | Realt                  | Wage . Con Project             |                 | Date Time<br>Sampled Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5121 22/1/1 | 11/22 1110 | 1/22 1610 | 11/22 1310 | 00h1 22/1/ | /1/22 1500 | 11/22 1545 | N/A         | ATURE        | d X D              | cart             |              |
|                                            | +N. Kapise(HV)                       | (                 | Dr SE Stal                                                   | LUDE WINI              | mailCbourgeois@h       | mailCbourgeoisen               | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           | n          | N.        | II         | 11         | 11/        | 11.        |             | SIGN/        | boundaried by:     | Relinquished by: | Received by: |
|                                            | C. Bourgeois<br>Report To M. R. + L. |                   | Company HWIA Greek<br>Address 2-1312 30"                     | Citte State TTD Rother | City, State, ZIP UNING | Phone 2016-794-3145 E          |                 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21MM-1      | Z-MM-Z     | 21MW-3    | DW-3R      | DW-4R      | 58-7       | SB-8       | TRIP BLANKS | Turnda - P   | Ph. (206) 285-8282 |                  | -            |

T
PARAMETRIX

Form 07-EN-215/Rev. 02/07

# Field Report/Well Data

| _   | -            |
|-----|--------------|
| - 1 | ( <u>)</u> • |
|     | $\sim$ .     |

Lisa Gilbert

Mike Brady

John Greene

ø

| DATE                                       |             | JOB NO.                       |          |    |  |  |  |  |  |  |
|--------------------------------------------|-------------|-------------------------------|----------|----|--|--|--|--|--|--|
| 11/01/2022                                 |             | 553-1521-242 WO31 Task 200.02 |          |    |  |  |  |  |  |  |
| PROJECT                                    |             |                               | 5        |    |  |  |  |  |  |  |
| King County METRO Sout                     | h Facilitie | s South Anne                  | x        |    |  |  |  |  |  |  |
| LOCATION                                   |             |                               |          |    |  |  |  |  |  |  |
| 11911 E Marginal Way S, Tukwila, WA        |             |                               |          |    |  |  |  |  |  |  |
| CONTRACTOR                                 |             | OWNER                         |          |    |  |  |  |  |  |  |
| Parametrix in Assoc. with I<br>Geosciences | HWA         | King County METRO             |          |    |  |  |  |  |  |  |
| WEATHER                                    | TEMP        | hi 403                        | ° at 815 | AM |  |  |  |  |  |  |
| overcast                                   | Joy.        | 2 50'5                        | ° at 930 | PM |  |  |  |  |  |  |
| PRESENT AT SITE                            |             |                               |          |    |  |  |  |  |  |  |
| Cierra Wilson C. Burgesis                  |             |                               |          |    |  |  |  |  |  |  |
|                                            | 0           |                               |          |    |  |  |  |  |  |  |
|                                            |             |                               |          |    |  |  |  |  |  |  |
|                                            |             |                               |          |    |  |  |  |  |  |  |

opened as

THE FOLLOWING WAS NOTED:

| -               | WN<br>(WELL<br>NUMBER) | Time            | DTW<br>(DEPTH TO<br>WATER) | MP<br>(MEASURE<br>POINT) | SU<br>(STICK UP OF<br>WELL CASING) | TD<br>(TOTAL DEPTH<br>OF WELL) | WD<br>(WELL<br>DIAMETER) |
|-----------------|------------------------|-----------------|----------------------------|--------------------------|------------------------------------|--------------------------------|--------------------------|
| 837             | 21MW-1                 | 853             | 4.70                       | N. TOC                   |                                    |                                |                          |
| 837             | 21MW-2                 | 849             | 5.67'                      | N. TOC                   |                                    |                                |                          |
| 523             | SB-7                   | 856             | 5.55'                      | N. TOC                   |                                    |                                |                          |
| <del>3</del> 73 | SB-8                   | 928             | 6.33                       | N.TOL                    |                                    |                                |                          |
|                 | DW-3R                  | 90Z             | 5.07                       | N.TOL                    |                                    |                                |                          |
|                 | DW-4R                  | 905             | 5.40                       | N. TOL                   |                                    |                                |                          |
|                 | Staff<br>Gauge         | 913             | 8.77                       | "×"                      |                                    |                                |                          |
| 829             | B-25                   | 910             | 5.97                       | NTOC                     |                                    |                                |                          |
|                 |                        |                 |                            |                          |                                    |                                |                          |
|                 |                        |                 |                            |                          |                                    |                                |                          |
|                 |                        |                 |                            |                          |                                    |                                |                          |
| *               |                        |                 |                            |                          |                                    |                                |                          |
|                 |                        | U               |                            |                          |                                    |                                |                          |
|                 |                        |                 |                            |                          |                                    |                                |                          |
|                 |                        |                 |                            |                          |                                    |                                |                          |
|                 | TOC (Top of I          | _ocking Casing) | TOW (Top of Wel            | I Casing)                | 1                                  |                                |                          |

COPIES

SIGNED

Cent

BI

| Project No.: | 553-1521-242 | W031 | Task | 200.02 |
|--------------|--------------|------|------|--------|
|              |              |      |      |        |

11///2022 Date:

Well ID: 21MW-1

Project Name: King County METRO South Facilities South Annex

Project Address: 11911 E Marginal Way S, Tukwila, WA

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Chris Bourgeois

| Purge | Data |
|-------|------|
|-------|------|

| Purge Equ                            | ipment: Perista                                                                                                                                                                                                             | tic pump        |                         |                           | Dep          | Depth of Well (ft below TOC): 15.0 |                                    |               |             |                       |              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------------------------|--------------|------------------------------------|------------------------------------|---------------|-------------|-----------------------|--------------|
| Pump Inta                            | ke Depth (ft below                                                                                                                                                                                                          | / TOC):         | 8 '                     |                           |              | We                                 | Well Casing/Diameter: 2"           |               |             |                       |              |
| Initial Dep                          | th to Water (ft bel                                                                                                                                                                                                         | ow TOC):        | 4.68'                   |                           |              | Pur                                | Purge Time (from/to): 1143-1210    |               |             |                       |              |
| Time                                 | Depth to<br>Water<br>(ft below TOC)                                                                                                                                                                                         | Pump<br>Setting | ML/MV-<br>Purge<br>Rate | Cum. J.<br>Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)                       | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments     |
| 1145                                 | 5.34                                                                                                                                                                                                                        | 2.5             | 260                     |                           | 15.7         | 2.2                                | 596.9                              | 6.20          | 21.6        | clear                 | string earth |
| 1150                                 | 5.61                                                                                                                                                                                                                        | u               | L.L.                    | 2.5                       | 15.9         | 1.3                                | 608                                | 6.30          | 14.2        | r,                    | 1. odov.     |
| PHS 1155                             | 5.69                                                                                                                                                                                                                        | <u> </u>        |                         | 3.9                       | 15.7         | 1.1                                | 602.7                              | 6,30          | 9.9         | 15                    | 11           |
| 1200                                 | 5.73                                                                                                                                                                                                                        | **              |                         | 5.0                       | 15.3         | 0.8                                | 585.5                              | 6.27          | 9.0         | u                     | 41           |
| 1205                                 | 5.74                                                                                                                                                                                                                        |                 | · · ·                   | 6.1                       | 15.0         | 0.8                                | 576.5                              | 6.25          | 9.0         | v                     | 11           |
| 1210                                 | 5.74                                                                                                                                                                                                                        | <u></u>         | кł —                    | 7.5                       | 14.9         | 0.8                                | 575.5                              | 6.24          | 8.8         |                       |              |
|                                      |                                                                                                                                                                                                                             |                 |                         |                           |              |                                    |                                    |               |             |                       |              |
|                                      |                                                                                                                                                                                                                             |                 | Stabilization           | Criteria                  | 3%           | 10%, or 3<br><0.5                  | 3%                                 | ± 0.1         | ± 10 mv     |                       |              |
| Sampling Da                          | ata                                                                                                                                                                                                                         |                 |                         |                           |              |                                    |                                    |               |             |                       |              |
| Sample ID:<br>Sample De<br>Sample An | Sample ID: 21MW-1 Time Collected: 1215 Weather: partly cloudy, cool<br>Sample Description (Color, Turbidity, Odor, Other): Clear, mild earth odor<br>Sample Analyses: NWTPH-Dx (w/& w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene |                 |                         |                           |              |                                    |                                    |               |             |                       |              |
| Laboratory                           | : Friedman & Br                                                                                                                                                                                                             | uya             | Lab (                   | Dropoff M                 | lethod:      | In-per                             | son                                | Lab Dropo     | off Date:   | 11/2/2                | 22           |
| Additional I                         | nformation/Comr                                                                                                                                                                                                             | nents           |                         |                           | 1            |                                    |                                    |               |             |                       |              |
|                                      | Water                                                                                                                                                                                                                       | ih              | monum                   | net                       | up t         | · Toc                              | ac                                 | trally        | just        | tt bei                | ow TOC.      |

| Project No.:  | 553-1521-242 WO31 Task 200.02                  | Date:   | 11/1/    | 2022            | Well ID:     | 21MW     |
|---------------|------------------------------------------------|---------|----------|-----------------|--------------|----------|
| Project Name: | King County METRO South Facilities South Annex | Project | Address: | 11911 E Margina | l Way S, Tuk | wila, WA |

Well ID: 21MW-2

Sampling Organization: Parametrix in Assoc. with HWA Geosciences

۰...

10 h

Samplers: Chris Bourgeois

| Purge Equipment:         Peristatic pump         Depth of Well (ft below TOC):         15.0           Pump Intake Depth (ft below TOC):         5.5 7         Purge Time (ft on/to):         10~13 - (1+5)           Initial Depth to Water (ft below TOC):         5.5 7         Purge Time (ft on/to):         10~13 - (1+5)           Initial Depth to Water (ft below TOC):         5.5 7         Purge Time (ft on/to):         10~13 - (1+5)           Initial Depth to Water (ft below TOC):         5.7 5         10         12.1         12.2         Specific Conductance pH (ft below TOC):         10~13 - (1+5)           IOS5         5.7 5         10         2.1         16.7         2.7         86~1         6.07         17.1         0.7         10         10         10         10         10         10         10         11.2         11.4         12.1         12.2         10.5         12.3         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purge Dat  | a                                   |              |              |                          |            |                   |                         |                |             |                       |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|--------------|--------------|--------------------------|------------|-------------------|-------------------------|----------------|-------------|-----------------------|-----------|
| Pump Intake Depth (ft below TOC):       9'       Well Casing/Diameter:       2"         Initial Depth 16 Water (ft below TOC):       5.5 T       Purge Time (from/to):       10~3 - (1+5)         Time (ft below TOC):       5.5 T       Purge Time (from/to):       10~3 - (1+5)         Time (ft below TOC):       5.5 T       Purge Time (from/to):       10~3 - (1+5)         Time (ft below TOC):       5.5 T       10.1 T       7       00         Time (ft below TOC):       5.7 S       10.1 T       10.1 (b)       00       Conductance (mtr)       pH (mtr)       00map (c)         1055       5.7 S       10.1 (b)       21.1 (b)       2.9 (b)       6.0 (c)       17.3 (c)       10.4 (c)       10.1 (c)       13.0 (c)       10.1 (c)       13.0 (c)       10.1 (c)       13.0 (c)       10.1 (c)       13.0 (c)       10.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purge Eq   | uipment: Peristal                   | tic pump     |              |                          |            | Dep               | oth of Well (ft be      | low TOC):      | 15.0        |                       |           |
| Initial Depth to Water (ft below TOC):       5.57       Purge Time (from/to):       [0~13 - 1165         Water       Purge Time (from/to):       [0~13 - 1165         Time (ft below TOC):       Secting       Rate       Purge Time (from/to):       [0~13 - 1165         Time (ft below TOC):       Secting       Rate       Purge Time (from/to):       [0.11]       Commutation (form)       (ft below TOC):       Secting       Purge Time (from/to):       [0.11]       Commutation (ft below TOC):       Commutation (ft below TOC):       Secting:       Secting:       Secting:       Secting:       Secting:       Conductance pH (ft below TOC):       Conductance pH       ORE       Conductance pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump Int   | ake Depth (ft below                 | TOC):        | 9'           |                          |            | We                | II Casing/Diamet        | er: <u>2"</u>  |             |                       |           |
| Depth to<br>Water         Pump<br>Fill         Purge<br>Purge         Cum, L<br>Vol.         Specific<br>(Conductance<br>(mg/L)         ORP<br>(mg/L)         Turbidity<br>(ms/L)           Time         (f) below TOC<br>(Setting<br>SS         Setting<br>SS         Rate         Purged<br>Purged         (C)<br>(mg/L)         (mg/L)         (mg/L)         (mg/L)         (mg/L)         (ms/L)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial De | pth to Water (ft bel                | ow TOC):     | 5.5          | 7                        |            | Pur               | ge Time (from/t         | o): <u>\</u> C | 73-         | 1105                  |           |
| The set of t | Time       | Depth to<br>Water<br>(ft below TOC) | Pump         | Purge        | Cum. L<br>Vol.<br>Purged | ·Temp      | .DO<br>(mg/L)     | Specific<br>Conductance | pH<br>(units)  | ORP<br>(my) | Turbidity<br>(visual) | Comments  |
| 350       5.75        2.1       16.7       2.9       864       6.08       17.3        + earth, a         1055       5.745         2.1       16.6       2.9       856       6.07       13.2        + earth, a         1055       5.745         7.1       16.7       3.0       856       6.07       13.2        + earth, a         1105       5.75        5.5       16.3       3.1       852       6.07       6.3           1105       5.75        5.5       16.3       3.1       852       6.07       6.3           1105       5.75         5.5       16.3       3.1       852       6.07       6.3           100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 5 42                                | 1.5          | 0.50         | - uigeu                  | 121        | 46                | 859                     | 6.02           | 29.9        | orage El              | conments  |
| 1055       5.355       11       11       10.1       10.0       13.2       11       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1       10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250        | 5.75                                |              |              | 2.1                      | 16.9       | 2.9               | 367                     | 6.68           | 17.3        |                       |           |
| I ( uo       5.75                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1055       | 5.75                                | Li           |              | 21                       | 16.6       | 2.9               | 861                     | 6.07           | 13.2        | 11 +0                 | auth line |
| 1105       5.5       16.3       3.1       852       6.04       6.3          105       5.5       16.3       3.1       852       6.04       6.3          105       5.5       16.3       3.1       852       6.04       6.3          105       5.5       106.3       3.1       106       106       106       106         105       105       0.5       3%       ± 0.1       ± 10 mv       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106 <th>Cont</th> <th>5.25</th> <th></th> <th>11</th> <th>7.1</th> <th>16.7</th> <th>3.0</th> <th>856</th> <th>6.07</th> <th>10.1</th> <th></th> <th>1)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cont       | 5.25                                |              | 11           | 7.1                      | 16.7       | 3.0               | 856                     | 6.07           | 10.1        |                       | 1)        |
| Sampling Data         Sample ID:       21MW-2         Time Collected:       110%, or 3         Sample ID:       21MW-2         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya         Lab Dropoff Date:       11/2/22         Additional Information/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1105       | 5.75                                | ê per        | ٦.           | 5.5                      | 16.3       | 3.1               | 85 z                    | 6.07           | 6.3         |                       | L)        |
| Stabilization Criteria       3%       ± 0.1       ± 10 mv         Stabilization Criteria       3%       ± 0.1       ± 10 mv         Sampling Data       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Grange, Elected       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Method:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Lab Dropoff Date:       Image: Claude, construction (Color, Turbidity, Odor, Other):       Image: Claude, construction (Color, Turbidity, Other):       Image: Claude, construction (Color, Turbidity, Other):       Image: Claude, constructi                                                                                                                                                                                                                                                                                                                                                                                        |            |                                     |              |              |                          |            |                   |                         |                |             |                       | 1         |
| Stabilization Criteria       3%       ± 0.1       ± 10 mv         Sampling Data       3%       ± 0.1       ± 10 mv         Sample ID:       21MW-2       Time Collected:       11 1 C       Weather:       fairth, cloudy, ce         Sample Description (Color, Turbidity, Odor, Other):       Large orange flechs       Sample Analyses:       NWTPH-Dx (w/& w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya       Lab Dropoff Method:       in - prev Son       Lab Dropoff Date:       11 / 2 / 2 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                     |              |              |                          |            |                   |                         |                |             |                       |           |
| Sampling Data         Sample ID:       21MW-2         Time Collected:       1110         Weather:       farth, cloudy, ce         Sample Description (Color, Turbidity, Odor, Other):       Large orange Elected:         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya         Lab Dropoff Method:       in - per Son         Lab Dropoff Date:       11/2/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                     | <u></u>      |              |                          |            |                   |                         |                |             |                       |           |
| Stabilization Criteria       3%       ± 0.1       ± 10 mv         Sampling Data       3%       ± 0.1       ± 10 mv         Sample ID:       21MW-2       Time Collected:       [1] [2]         Sample Description (Color, Turbidity, Odor, Other):       Large orange Electes       Sample Analyses:         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene       Lab Dropoff Date:       [1] / 2 / 2/2         Additional Information/Comments       Lab Dropoff Method:       in - person       Lab Dropoff Date:       [1] / 2 / 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | ·                                   |              |              |                          |            |                   |                         |                |             |                       | No.       |
| Stabilization Criteria       3%       ± 0.1       ± 10 mv         Sampling Data       I0%, or 3       ± 0.1       ± 10 mv         Sample ID:       21MW-2       Time Collected:       11 10       Weather:       for the cloudy, collected;         Sample Description (Color, Turbidity, Odor, Other):       Lorge orange Elected;       Sample Analyses:       NWTPH-Dx (w/& w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya       Lab Dropoff Method:       in - peer Son       Lab Dropoff Date:       11/2/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>,</u>   |                                     |              |              |                          |            |                   |                         |                |             | §                     | Y         |
| Image: Stabilization Criteria       10%, or 3         Stabilization Criteria       3%         stabilization Color, Turbidity, Odor, Other):       Larrage orange fleecks         sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya       Lab Dropoff Method:         Lab Dropoff Date:       11/2/22         Additional Information/Comments       11/2/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                     |              |              |                          |            |                   |                         | ·              |             | · ?                   |           |
| 10%, or 3         Stabilization Criteria         3%         40%, or 3         5         3%         5         3%         40.5         3%         40.5         3%         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                     |              |              |                          |            |                   |                         | i ———          |             |                       |           |
| Stabilization Criteria       3%       10%, or 3         Stabilization Criteria       3%       <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | ·                                   |              |              |                          |            |                   |                         | ·              |             |                       |           |
| 10%, or 3         Stabilization Criteria         3%         Sampling Data         Sample ID: 21MW-2         Time Collected: 1110         Weather: partly cloudy, colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co                                                                                                                                                                                                                                                |            | ·                                   |              |              |                          |            |                   |                         |                |             | S                     |           |
| Stabilization Criteria       3%       10%, or 3       3%       ± 0.1       ± 10 mv         Sampling Data       Sample ID:       21MW-2       Time Collected:       11 10       Weather:       partly cloudy, ce         Sample Description (Color, Turbidity, Odor, Other):       Large orange flecks       Weather:       partly cloudy, ce         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene       Lab Dropoff Date:       11 / 2 / 2 / 2 / 2         Additional Information/Comments       Lab Dropoff Method:       in - partSon       Lab Dropoff Date:       11 / 2 / 2 / 2 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ·                                   |              |              |                          |            |                   |                         |                |             | >                     | -r'<br>9  |
| Sampling Data         Sample ID:       21MW-2         Time Collected:       1110         Weather:       farth cloudy, ce         Sample Description (Color, Turbidity, Odor, Other):       Large orange flechs         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya         Lab Dropoff Method:       in - person         Lab Dropoff Date:       1/2/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                     |              | Stabilizatio | on Criteria              | 3%         | 10%, or 3<br><0.5 | 3%                      | ± 0.1          | ± 10 mv     |                       | ** *      |
| Sample ID:       21MW-2       Time Collected:       1110       Weather:       partly cloudy, ce         Sample Description (Color, Turbidity, Odor, Other):       Large orange flecks       Weather:       partly cloudy, ce         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene       Lab Dropoff Method:       in - person       Lab Dropoff Date:       11/2/22         Additional Information/Comments       Lab Dropoff Method:       in - person       Lab Dropoff Date:       11/2/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling   | Data                                |              |              |                          |            |                   |                         |                |             |                       |           |
| Sample Description (Color, Turbidity, Odor, Other):       Large orange flecks         Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya         Lab Dropoff Method:       in - person         Lab Dropoff Date:       N12122         Additional Information/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample II  | D: 21MW-2                           |              | Tir          | ne Collecte              | d: 11      | 10                |                         | Weather        | part        | the cloud             | ly, cool  |
| Sample Analyses:       NWTPH-Dx (w/ & w/o SGC), NWTPH-Gx, BTEX w/ Naphthalene         Laboratory:       Friedman & Bruya         Lab Dropoff Method:       in - perform         Lab Dropoff Method:       in - perform         Lab Dropoff Method:       in - perform         Additional Information/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample D   | escription (Color, Tu               | urbidity, Od | lor, Other): | her                      | ge o       | range             | flecks                  |                |             | /                     |           |
| Laboratory: Friedman & Bruya Lab Dropoff Method: in - person Lab Dropoff Date: 1/2/22<br>Additional Information/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample A   | nalyses: NWTPH                      | I-Dx (w/ & v | √o SGC), NW  | TPH-Gx, BT               | 'EX w/ Nap | ohthalene         |                         |                |             |                       |           |
| Additional Information/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laborato   | ry: Friedman & Br                   | uya          | La           | b Dropoff N              | /lethod:   | in-pe             | urson                   | Lab Drop       | off Date:   | 11/2                  | 122       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Additional | l Information/Comr                  | nents        |              |                          |            |                   |                         |                |             |                       |           |
| pore water vello - born                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 1                                   | ours.        | water        | Vella.                   | 1 box      |                   |                         |                |             | 3                     |           |

Sampling Organization: Parametrix in Assoc. with HWA Geosciences

11/ 1/ 2022 Date:

Well ID: DW-3R

**Purge Data** 

Project Name: King County METRO South Facilities South Annex

Samplers: Chris Bourgeois

Project Address: 11911 E Marginal Way S, Tukwila, WA

| Purge Equ   | ipment: Perista                     | ltic pump       |                         |                          |                     | De           | pth of Well (ft be                 | low TOC):     | 8.80        |                       |       |         |
|-------------|-------------------------------------|-----------------|-------------------------|--------------------------|---------------------|--------------|------------------------------------|---------------|-------------|-----------------------|-------|---------|
| Pump Inta   | ake Depth (ft belov                 | v TOC):         | 7.0'                    |                          |                     | We           | ll Casing/Diamet                   | er: 0.9'      |             |                       |       |         |
| Initial Dep | oth to Water (ft bel                | low TOC):       | 5.00                    | 7                        |                     | Pur          | ge Time (from/to                   | »):           | 274-        | 1310                  |       |         |
| Time        | Depth to<br>Water<br>(ft below TOC) | Pump<br>Setting | MV/www<br>Purge<br>Rate | Cum. }<br>Vol.<br>Purged | ۲етр<br>(°C)        | DO<br>(mg/L) | Specific<br>Conductance<br>(mg/cm) | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Com   | nments  |
| 1245        | 5.09                                | 2.5             | 250                     |                          | 15.6                | 3.93         | 721.9                              | 6.53          | 67.9        | Small                 | black | fleeles |
| 1250        | 5.09                                | 6.80            | Ne                      |                          | 15.7                | 3.95         | 474.6                              | 6.52          | 52.7        | 760                   | ÷     |         |
| 1255        | 5.0 9                               | 1 K             |                         |                          | 15.8                | 3.73         | 474.2                              | 6.52          | 50,2        | 30                    | ~ ~   |         |
| 1300        | 5.09                                | ++              | £1                      |                          | 15.7                | 3.50         | 478.3                              | 6.50          | <u>SI.M</u> |                       | ••    |         |
| 1305        | 5.09                                | ч,<br>          | ~N                      | 5.5                      | 15.8                | 3.33         | 478.6                              | 6.47          | 53,5        | 2                     | , •   |         |
| 1310        | 5.09                                | 19              |                         | 7.0                      | 15.8                | 3.20         | 480.4                              | 6,45          | Etare S     | 4.8 -                 | 2.5   |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
| ·           |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             | _                     |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             | ·                                   |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
|             |                                     |                 |                         |                          |                     | 600/ 2       |                                    |               |             |                       |       |         |
|             |                                     |                 | Stabilizatio            | n Criteria               | 3%                  | <0.5         | 3%                                 | ± 0.1         | ± 10 mv     |                       |       |         |
| Sampling [  | Data                                |                 |                         |                          |                     |              |                                    |               |             |                       |       |         |
| Sample ID   | ): DW-3R                            |                 | Tim                     | ne Collecte              | ed: l <sup>-1</sup> | 310          |                                    | Weather:      | Dart        | le cle.               | di c  | 001     |
| Sample D    | escription (Color T                 | urbidity. Od    | or. Other):             | 1 a-                     |                     | Lack f       | sleepe                             | ild o         | arth        | 101                   | 7     |         |
| Sample A    |                                     |                 |                         |                          | TEX W/ No           | hthalenc     |                                    | PLEMA AC      |             | and an other as       |       |         |
| Sample A    |                                     |                 |                         | irn-0x, bi               | LA W/ Wa            | Jinnalene    |                                    |               |             |                       |       |         |
| Laborator   | ry: Friedman & B                    | ruya            | Lab                     | Dropoff N                | Method:             | in-p         | erson                              | Lab Drope     | off Date:   | 11/21                 | 22    |         |

**Additional Information/Comments** 

| Y51 | Acces | restauting. | N | due | when | Battery | ir | Filme. |
|-----|-------|-------------|---|-----|------|---------|----|--------|
|     | 0     | )           |   |     | ).   | )       |    |        |

5

| Project No.: | 553-1521-242 WO31 Task 200.02 | Date: | 11///2022 |  |
|--------------|-------------------------------|-------|-----------|--|
|              |                               |       |           |  |

Well ID: DW-4R

Project Name: King County METRO South Facilities South Annex

18

Project Address: 11911 E Marginal Way S, Tukwila, WA

Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Chris Bourgeois

| Pump Inta<br>Initial Dep | ake Depth (ft belov  |              |               |                |           |                   |                  |           |           |           |          |
|--------------------------|----------------------|--------------|---------------|----------------|-----------|-------------------|------------------|-----------|-----------|-----------|----------|
| Initial Dep              |                      |              | 8,0'          |                |           | We                | ll Casing/Diamet | er: 0.65  | ,         |           |          |
|                          | oth to Water (ft bel | ow TOC):     | 5.4           | 6              |           | Pur               | ge Time (from/to | ): T      | 338 -     | 1355      |          |
|                          | Depth to<br>Water    | Pump         | Purge         | Cum. ኦ፡<br>Vol | temn      |                   | Specific         | рН        | ORP       | Turbidity | SN       |
| Time                     | (ft below TOC)       | Setting      | Rate          | Purged         | (°C)      | (mg/L)            | (mg/cm)          | (units)   | (mv)      | (visual)  | Comments |
| 1340                     | \$ 5.40              | 2.5          | 255           |                | 16.2      | 6.82              | 571.4            | 6.55      | 65,2      | clear     |          |
| 345                      | 5.40                 | - \          | 0             |                | 16.3      | 0.17              | 606              | 6.64      | 60.7      |           |          |
| 1350                     | 5.40                 | •*           | w             | 3.6            | 16.2      | 0.13              | 610              | 6.67      | 59.7      |           |          |
| 19785                    | 5,40                 | 4            |               | 7.6            | 16.2      | 0.11              | 611              | 6.63      | 58.8      |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      |              |               |                |           |                   | ·                |           |           |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           | 22       |
|                          | *                    |              |               |                |           |                   | , <u> </u>       |           |           |           | 1996     |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
| )                        |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      |              |               |                |           |                   |                  |           | <u> </u>  |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      | . <u> </u>   |               |                |           |                   |                  |           |           |           |          |
|                          |                      |              |               |                |           |                   |                  |           |           |           |          |
| ;                        |                      |              |               |                |           |                   |                  |           |           |           |          |
|                          |                      | -            |               |                |           |                   | ·                |           |           |           |          |
|                          |                      |              | Stabilizatior | n Criteria     | 3%        | 10%, or 3<br><0.5 | 3%               | ± 0.1     | ± 10 mv   |           |          |
| Sampling D               | ata                  |              |               |                |           |                   |                  |           |           |           |          |
| Sample ID:               | : DW-4R              |              | Tim           | e Collecte     | d: _ [`   | 100               |                  | Weather:  | part      | ty cloud  | 14, 600  |
| Sample De                | escription (Color, T | urbidity, Od | or, Other):   | clea.          | , mi      | Id ea             | rthe sn          | el.l      |           | /         | )        |
| Sample An                | alvses NM/TPH        | -Dr (w/ & w  |               | PH-GY BT       | FX w/ Nan | hthalene          | ,                |           |           |           |          |
| Laboratory               | y: Friedman & Bi     | ruya         | Lab           | Dropoff N      | lethod:   | in-p              | alson            | Lab Dropo | off Date: | 11/2/2    | 12       |
| Additional               | Information/Com      | ments        |               |                |           | 1                 |                  |           | _         |           | _        |
|                          |                      |              | (° 1          |                |           |                   | /                |           |           |           |          |

| Project No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 553-1521-24                                                                                                     | 2 WO31 Ta       | sk 200.02     |                | Dat          | te: 11/           | / 2022                                | We            | ll ID: _S   | B-7                   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------|--------------|-------------------|---------------------------------------|---------------|-------------|-----------------------|-------------|
| Project Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Name: King County METRO South Facilities South Annex Project Address: 11911 E Marginal Way S, Tukwila, WA |                 |               |                |              |                   |                                       |               |             |                       |             |
| Sampling C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampling Organization: Parametrix in Assoc. with HWA Geosciences Samplers: Chris Bourgeois                        |                 |               |                |              |                   |                                       |               |             |                       |             |
| Purge Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
| Purge Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipment: Perista                                                                                                   | ltic pump       |               |                |              | Dep               | th of Well (ft be                     | low TOC):     | 11.64       |                       |             |
| Pump Inta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump Intake Denth (ft below TOC):                                                                                 |                 |               |                |              |                   |                                       |               |             |                       |             |
| Initial Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oth to Water (ft bel                                                                                              | low TOC):       | 5.            | 53             |              | Pure              | re Time (from/to                      | a): 1         | 427         | -145                  | 5           |
| Denth to have been to the second of the seco |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water<br>(ft below TOC)                                                                                           | Pump<br>Setting | Purge<br>Rate | Vol.<br>Purged | Temp<br>(°C) | DO<br>(mg/L)      | Conductance<br>(mg/cm)                | pH<br>(units) | ORP<br>(mv) | Turbidity<br>(visual) | Comments    |
| 1430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.63                                                                                                              | 2.5             | 250           |                | 17.5         | 0.24              | 499.0                                 | 6.22          | 39.2        | minir o               | rane Flechs |
| 1435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.62                                                                                                              | .1              | ٤١            | 2.3            | 14.5         | 6.14              | 798.8                                 | 6.23 .        | 30.1        | Ry w                  |             |
| 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.60                                                                                                              | u               |               | 3.8            | 14:5         | 0.12              | 499.0                                 | 6.23          | 21.6        | tewar                 | flecks      |
| 1445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5kan 5.59                                                                                                         | h.]             | <u>~</u>      | ·<br>· ·       | 14.5         | 0.07              | 500.6                                 | C.23          | 14.9        | no tor                | hidity      |
| 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.59                                                                                                              | <u></u>         |               | 6.0            | 14.5         | 0.07              | 501.5                                 | 6.21          | 10.4        |                       | Earth oda   |
| 1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6Z                                                                                                              | 44              | d             | 2.0            | 14.6         | 0.05              | 500,7                                 | 6.20          | 7.0         | vi.                   | 3*          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               | s              |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               | . ———          |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | ······          |               | c <u> </u>     |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | · · · ·         | <u>.</u>      |                |              |                   |                                       |               |             | ·····                 | - <u></u>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              | ) <u> </u>        | · · · · · · · · · · · · · · · · · · · | -             |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   | )                                     |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 |               | ·              |              |                   |                                       |               |             |                       |             |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                 |               |                |              |                   |                                       | <u></u>       |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                 | Stabilizatio  | on Criteria    | 3%           | 10%, or 3<br><0.5 | 3%                                    | ± 0.1         | ± 10 mv     |                       |             |
| Sampling D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata                                                                                                               |                 |               |                |              |                   |                                       |               |             |                       | 1           |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : SB-7                                                                                                            |                 | Tiı           | me Collecte    | d: 15        | 00                |                                       | Weather:      | New         | +11 ( 1000            | لا خطما     |
| Sample De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Description (Color, Turbidity, Odor, Other): minor early odor, na little-to-ne turbidity                   |                 |               |                |              |                   |                                       |               |             |                       |             |
| Sample Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alyses: NWTPH                                                                                                     | H-Dx (w/ & w    | /o SGC), NW   | TPH-Gx, BT     | EX w/ Nap    | hthalene          |                                       |               |             |                       | )           |
| Laborator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y: Friedman & Bi                                                                                                  | ruya            | La            | b Dropoff N    | 1ethod:      | in-pa             | Son                                   | Lab Dropo     | off Date:   | 11/2/2                | .2          |
| Additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Information/Com                                                                                                   | ments           |               |                |              |                   |                                       |               |             |                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Va                                                                                                                | in par          | rhed o        | var i          | -e11         | (1/2).            | Slight                                | Auto/         | petro       | odor i                | naw.        |

| pt.        |                      |               | GROU             | NDWAT       | ER SAN   | MPLE COLL      | ECTION FO               | RM         |            |             |                |
|------------|----------------------|---------------|------------------|-------------|----------|----------------|-------------------------|------------|------------|-------------|----------------|
|            |                      |               |                  |             |          | her            | 4                       |            |            |             |                |
| Project No | 553-1521-24          | 2 WO31 Ta     | sk 200.02        |             | Da       | ate: 11/       | / 2022                  | We         | ell ID:    | SB-8        |                |
| Project Na | me: King County      | METRO Sou     | th Facilities Sc | uth Annex   | Pr       | oject Address: | 11911 E Ma              | arginal Wa | y S, Tukwi | la, WA      |                |
| ampling    | Organization: Par    | ametrix in A  | ssoc. with HW    | A Geoscier  | nces Sa  | mplers: Chr    | is Bourgeois            |            |            |             |                |
| Purge Dat  | a                    |               |                  |             |          |                |                         |            |            |             |                |
| Purge Eq   | uipment: Perista     | ltic pump     |                  |             |          | Dept           | h of Well (ft be        | low TOC):  |            |             |                |
| Pump Int   | ake Depth (ft belov  | v TOC):       | 12.0             | -13.7       | 15       | Well           | Casing/Diamet           | er: _2"    |            |             |                |
| Initial De | pth to Water (ft be  | low TOC):     | 6.33             | /           |          |                | e Time (from/to         | o):        | 940-       | 1005        |                |
|            | Depth to<br>Water    | Pump          | wil/min<br>Purge | Cum.        | Temp     | DO             | Specific<br>Conductance | pН         | ORP        | Turbidity   |                |
| Time       | (ft below TOC)       | Setting       | Rate             | Purged      | (°C)     | (mg/L)         | (mg/cm)                 | (units)    | (mv)       | (visual)    | Comments       |
| 143        | 7.70                 | 2.5           | 225              |             | 16.7     | 4.2            | 843                     | 5.51       | 115.2      | Browny      | llow sulter on |
| 146        | 8.57                 | 11            |                  | 1.75        | 17.0     | 3.5            | 825                     | 5.65       | 88.9       |             | ٤ ۽            |
| 749        | 9.48                 | L.            | £ 3              | 2           | (降17.    | 2.2            | 816                     | 5.70       | 77.1       | STRON       | 5 ODOR         |
| 752        | 10.66                | <u> </u>      |                  | 3           | 17.3     | 1.7            | 814                     | 5.73       | 70.2       |             | 1)             |
| 155        | 11.34                | 41            | 4                |             | 17.5     | 2.0            | 812                     | 5.74       | 63.8       | 4. X        | h              |
| 58         | 12.15                |               | · ·              |             | 17.5     | 2.7            | 812                     | 5.76       | 57.7       | <b>W</b>    |                |
| 001        | 13.00                |               |                  |             | 17.6     | 2.0            | 812                     | 5.77       | 51.7       |             | J>             |
| 203        | 13.62                |               |                  | 5.3         | 17.5     | 1.9            | 814                     | 5.78       | 48.1       | <u></u> //  |                |
| 006        |                      |               |                  |             |          | <del></del>    |                         |            |            |             |                |
|            |                      |               | 5 01             | }           |          |                |                         |            |            |             |                |
|            |                      | <u> </u>      | DK               |             |          |                |                         |            |            |             |                |
| 152        | 700                  |               |                  |             |          | <u></u>        |                         |            |            |             |                |
| 1 2 2 1    | 1.93                 |               |                  |             |          |                |                         |            |            |             |                |
|            |                      |               |                  |             |          |                |                         |            |            |             |                |
|            |                      | Saine         | Re a             | valiti      | -fe      | 211            | N-3 3                   | SB-8       | Fair       | 1. Roo      |                |
|            |                      | Vat           | bet D            | + ril       | 14.14 P  | der.           | as l th                 | 1. Or. 0   | was        | Haile I.    | <u>A</u>       |
|            |                      | 5.51          | riticant         | San         | e)       | in San         | Mas                     | -          |            |             |                |
|            |                      |               |                  |             | -        |                | <u> </u>                |            |            |             |                |
|            |                      | 21            | MU-3             | Dx          | Sau      | me l           | ikely U                 | ligher     | qua        | lite        | -              |
|            |                      | bac           | age il           | - Cras      | 541      | inded          | with                    | Contin     | -201       | flow.       |                |
|            |                      |               |                  |             |          |                |                         |            |            |             |                |
|            |                      |               |                  |             |          |                |                         |            |            |             |                |
|            |                      |               |                  |             |          | 10% or 3       |                         |            |            | , v         |                |
|            |                      |               | Stabilizatio     | n Criteria  | 3%       | <0.5           | 3%                      | ± 0.1      | ± 10 mv    |             |                |
| ampling    | Data                 |               |                  |             |          |                |                         |            |            |             |                |
|            |                      | .1            |                  |             |          |                |                         |            |            |             |                |
| Sample IL  | D: SB-8              |               | Tim              | ie Collecte | d: 15    | 45             |                         | Weather:   | SUN        | ing cod     |                |
| Sample D   | escription (Color, T | urbidity, Od  | or, Other):      | Pob         | V q.     | saloh, ?       | reliew he               | e (Str     | mal 3      | 10 lach     | Sand           |
| Sample A   | nalyses: NWTP        | -l-Dx (w/ & w | v/o SGC), NW1    | TPH-Gx, BT  | EX w/ Na | phthalene      |                         |            | 1          |             |                |
| laborato   | v: Friedman & B      | ruva          | Lab              |             | lethod.  | The - Me.      | (Sala                   | Lab Drop   | off Date:  | <i>(</i>    | 2 127          |
|            |                      | aya           | Lan              |             | ietiiou. | , n            | . > =>1                 |            | on Date:   | <u></u> /// |                |
| dditional  | Information/Com      | ments         | 22               |             |          |                |                         |            |            |             |                |
|            | odor i               | s at          | pical            | petro/      | 560-5    | ulfor 1 a      | larth si                | mell.      | UL         | n stro      | ne.            |
|            | Iron Ve.             | dox 1 a       | at in p.         | irga 1      | ouche    | t.             |                         |            |            | ·           | -              |
|            |                      |               | •                | /           |          | P.             | 18"21M                  | w-3"       | collec     | til D       | 1610           |
|            |                      | /             | 1                | 1           |          |                | 1                       |            |            |             |                |
|            |                      | meanin        | g abn            | ormal       | l V<br>A | of 1           |                         |            |            | P           | arametrix      |
|            |                      | 1             | /                |             | 1        | 011            |                         |            |            |             |                |

J.

# APPENDIX B: NOVEMBER 2022 LAB REPORT

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 21, 2022

Nicole Kapise, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Ms Kapise:

Included is the amended report from the testing of material submitted on November 2, 2022 from the King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024 project. "x" qualifiers were added to the non silica gel treated NWTPH-Dx results of sample SB-8.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cali

Michael Erdahl Project Manager

Enclosures c: Chris Bourgeois, Mike Brady (PMX), Lisa Gilbert (PMX) HWA1114R.DOC

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 14, 2022

Nicole Kapise, Project Manager HWA Geosciences, Inc 21312 30<sup>th</sup> Dr SE Bothell, WA 98021

Dear Ms Kapise:

Included are the results from the testing of material submitted on November 2, 2022 from the King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Chris Bourgeois, Mike Brady (PMX), Lisa Gilbert (PMX) HWA1114R.DOC

#### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on November 2, 2022 by Friedman & Bruya, Inc. from the HWA Geosciences, Inc King County Metro South Facilities 2021-062-W031 Task 200.02 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | HWA Geosciences, Inc |
|----------------------|----------------------|
| 211024 -01           | 21MW-1               |
| 211024 -02           | 21MW-2               |
| 211024 -03           | 21MW-3               |
| 211024 -04           | DW-3R                |
| 211024 -05           | DW-4R                |
| 211024 -06           | SB-7                 |
| 211024 -07           | SB-8                 |
| 211024 -08           | TRIP BLANKS          |

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024 Date Extracted: 11/02/22 Date Analyzed: 11/02/22

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

~

| <u>Sample ID</u><br>Laboratory ID | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery)</u><br>(Limit 51-134) |
|-----------------------------------|-----------------------|-----------------------------------------------------|
| 21MW-1<br><sup>211024-01</sup>    | <100                  | 88                                                  |
| 21MW-2<br>211024-02               | <100                  | 87                                                  |
| 21MW-3<br><sup>211024-03</sup>    | <100                  | 88                                                  |
| DW-3R<br>211024-04                | <100                  | 88                                                  |
| DW-4R<br>211024-05                | <100                  | 87                                                  |
| SB-7<br>211024-06                 | <100                  | 85                                                  |
| SB-8<br>211024-07                 | <100                  | 88                                                  |
| TRIP BLANKS<br>211024-08          | <100                  | 86                                                  |
| Method Blank<br>02-2579 MB        | <100                  | 88                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024 Date Extracted: 11/09/22 Date Analyzed: 11/09/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | <u>Motor Oil Range</u><br>(C <sub>25</sub> -C <sub>36</sub> ) | <u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|---------------------------------------------------------------|---------------------------------------|
| 21MW-1<br><sup>211024-01</sup>    | <100                      | <250                                                          | 130                                   |
| 21MW-2<br>211024-02               | <100                      | <250                                                          | 120                                   |
| 21MW-3<br><sup>211024-03</sup>    | 120                       | <250                                                          | 82                                    |
| DW-3R<br>211024-04                | <100                      | <250                                                          | 130                                   |
| DW-4R<br>211024-05                | <100                      | <250                                                          | 130                                   |
| SB-7<br>211024-06                 | <100                      | <250                                                          | 140                                   |
| SB-8<br>211024-07                 | 120                       | 270                                                           | 67                                    |
| Method Blank<br>02-2689 MB        | <100                      | <250                                                          | 120                                   |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024 Date Extracted: 11/03/22 Date Analyzed: 11/03/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| <u>Sample ID</u><br>Laboratory ID | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | Surrogate<br><u>(% Recovery)</u><br>(Limit 41-152) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------------------------|
| 21MW-1<br><sup>211024-01</sup>    | 190 x                     | <250                         | 109                                                |
| 21MW-2<br><sup>211024-02</sup>    | 300 x                     | 290 x                        | 128                                                |
| 21MW-3<br><sup>211024-03</sup>    | 490 x                     | 610 x                        | 84                                                 |
| DW-3R<br>211024-04                | <100                      | <250                         | 125                                                |
| DW-4R<br>211024-05                | 100 x                     | <250                         | 121                                                |
| SB-7<br>211024-06                 | <100                      | <250                         | 140                                                |
| SB-8<br>211024-07                 | 440 x                     | 670 x                        | 65                                                 |
| Method Blank<br>02-2689 MB        | <100                      | <250                         | 120                                                |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-1<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-01<br>110216.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 104           | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                   | 97            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenz                                                                             | ene                                                               | 96            | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-2<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-02<br>110217.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 97            | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                   | 96            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenz                                                                             | ene                                                               | 105           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 21MW-3<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-03<br>110218.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                   |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                   | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                               | 99            | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                   | 97            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenze                                                                            | ene                                                               | 106           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                   | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                   | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                   | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                   | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                   | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                   | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                   | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                   | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-3R<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-04<br>110219.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 101           | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                  | 96            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenze                                                                            | ene                                                              | 105           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | DW-4R<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-05<br>110220.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                  |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                  | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                              | 99            | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                  | 95            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenz                                                                             | ene                                                              | 103           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                  | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                  | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                  | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                  | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                  | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                  | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                  | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                  | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-7<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-06<br>110221.D<br>GCMS4<br>LM |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                              |  |  |  |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |  |  |  |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 100           | 86                                                                       | 113                                                                                                |  |  |  |
| Toluene-d8                                                                                    |                                                                 | 96            | 88                                                                       | 114                                                                                                |  |  |  |
| 4-Bromofluorobenz                                                                             | ene                                                             | 106           | 88                                                                       | 112                                                                                                |  |  |  |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                    |  |  |  |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                    |  |  |  |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                    |  |  |  |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                    |  |  |  |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                    |  |  |  |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                    |  |  |  |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                    |  |  |  |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                    |  |  |  |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | SB-8<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) |               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-07<br>110222.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                 |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                 | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                             | 100           | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                 | 97            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenz                                                                             | ene                                                             | 104           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                 | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                 | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                 | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                 | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                 | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                 | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                 | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                 | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TRIP BLAN<br>11/02/22<br>11/02/22<br>11/02/22<br>Water<br>ug/L (ppb) | NKS           | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>211024-08<br>110213.D<br>GCMS4<br>LM |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                      |               | Lower                                                                    | Upper                                                                                              |
| Surrogates:                                                                                   |                                                                      | % Recovery:   | Limit:                                                                   | Limit:                                                                                             |
| 1,2-Dichloroethane                                                                            | -d4                                                                  | 99            | 86                                                                       | 113                                                                                                |
| Toluene-d8                                                                                    |                                                                      | 96            | 88                                                                       | 114                                                                                                |
| 4-Bromofluorobenz                                                                             | ene                                                                  | 106           | 88                                                                       | 112                                                                                                |
|                                                                                               |                                                                      | Concentration |                                                                          |                                                                                                    |
| Compounds:                                                                                    |                                                                      | ug/L (ppb)    |                                                                          |                                                                                                    |
| Benzene                                                                                       |                                                                      | < 0.35        |                                                                          |                                                                                                    |
| Toluene                                                                                       |                                                                      | <1            |                                                                          |                                                                                                    |
| Ethylbenzene                                                                                  |                                                                      | <1            |                                                                          |                                                                                                    |
| m,p-Xylene                                                                                    |                                                                      | <2            |                                                                          |                                                                                                    |
| o-Xylene                                                                                      |                                                                      | <1            |                                                                          |                                                                                                    |
| Naphthalene                                                                                   |                                                                      | <1            |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix: | Method Bla<br>Not Applica<br>11/02/22<br>11/02/22<br>Water | unk<br>able   | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument: | HWA Geosciences, Inc<br>King County Metro South Facilities<br>02-2624 mb<br>110207.D<br>GCMS11 |
|-------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Units:                                                                              | ug/L (ppb)                                                 |               | Operator:                                                   | LM                                                                                             |
|                                                                                     |                                                            |               | Lower                                                       | Upper                                                                                          |
| Surrogates:                                                                         |                                                            | % Recovery:   | Limit:                                                      | Limit:                                                                                         |
| 1,2-Dichloroethane                                                                  | e-d4                                                       | 106           | 78                                                          | 126                                                                                            |
| Toluene-d8                                                                          |                                                            | 103           | 84                                                          | 115                                                                                            |
| 4-Bromofluorobenz                                                                   | zene                                                       | 97            | 72                                                          | 130                                                                                            |
|                                                                                     |                                                            | Concentration |                                                             |                                                                                                |
| Compounds:                                                                          |                                                            | ug/L (ppb)    |                                                             |                                                                                                |
| Benzene                                                                             |                                                            | < 0.35        |                                                             |                                                                                                |
| Toluene                                                                             |                                                            | <1            |                                                             |                                                                                                |
| Ethylbenzene                                                                        |                                                            | <1            |                                                             |                                                                                                |
| m,p-Xylene                                                                          |                                                            | <2            |                                                             |                                                                                                |
| o-Xylene                                                                            |                                                            | <1            |                                                             |                                                                                                |
| Naphthalene                                                                         |                                                            | <1            |                                                             |                                                                                                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 211 | 024-01 (Duplie  | cate)     |          |            |            |
|----------------------|-----------------|-----------|----------|------------|------------|
|                      | Reporting       | Sampl     | le Duj   | plicate    | RPD        |
| Analyte              | Units           | Resul     | t R      | esult      | (Limit 20) |
| Gasoline             | ug/L (ppb)      | <100      | <        | :100       | nm         |
| Laboratory Code: Lab | ooratory Contro | ol Sample | Porcont  |            |            |
|                      | Reporting       | Spike     | Recovery | Acceptance |            |
| Analyte              | Units           | Level     | LCS      | Criteria   |            |
| Gasoline             | ug/L (ppb)      | 1,000     | 104      | 69-134     | -          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: Laboratory Control Sample Silica Gel |            |       |          |          |            |            |  |  |  |  |  |
|-------------------------------------------------------|------------|-------|----------|----------|------------|------------|--|--|--|--|--|
|                                                       |            |       | Percent  | Percent  |            |            |  |  |  |  |  |
|                                                       | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |  |  |  |  |  |
| Analyte                                               | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |  |  |  |  |  |
| Diesel Extended                                       | ug/L (ppb) | 2,500 | 92       | 96       | 70-130     | 4          |  |  |  |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  | Percent  |            |            |
|-----------------|------------|-------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | 80       | 84       | 63-142     | 5          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/14/22 Date Received: 11/02/22 Project: King County Metro South Facilities 2021-062-W031 Task 200.02, F&BI 211024

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

|              | control Sample |       | Percent  | Percent  |            |                      |
|--------------|----------------|-------|----------|----------|------------|----------------------|
|              | Reporting      | Spike | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte      | Units          | Level | LCS      | LCSD     | Criteria   | (Limit 20)           |
| Benzene      | ug/L (ppb)     | 10    | 100      | 91       | 70-130     | 9                    |
| Toluene      | ug/L (ppb)     | 10    | 98       | 87       | 70-130     | 12                   |
| Ethylbenzene | ug/L (ppb)     | 10    | 97       | 86       | 70-130     | 12                   |
| m,p-Xylene   | ug/L (ppb)     | 20    | 97       | 86       | 70-130     | 12                   |
| o-Xylene     | ug/L (ppb)     | 10    | 93       | 80       | 70-130     | 15                   |
| Naphthalene  | ug/L (ppb)     | 10    | 88       | 73       | 70-130     | 19                   |

#### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| Re         | Re             | Re           | Ph (206) 225-2929 |        | TRIP BLANKS | SB-8    | 58-7     | DW-4R   | DW-3R   | 21MW-3    | 21MW-2    | 21MW-1   | Sample ID             |       | Phone 2010 - 194-5145 Emai | City, State, ZIP Bothall | Company HWA Gregity | 211024<br>C. Bourgeoist M<br>Report To M.B. + L.G. |
|------------|----------------|--------------|-------------------|--------|-------------|---------|----------|---------|---------|-----------|-----------|----------|-----------------------|-------|----------------------------|--------------------------|---------------------|----------------------------------------------------|
| ceived by: | linquished by: | ceived by 72 | linquished by:    | SI     | 08 A B      | D7A-F   | 06       | B       | oy A-G  | 03 A-F    | 02 A.G    | 01 A-G   | Lab ID                |       | IC bourgeoise              | WA 9802                  | y- SE St            | J. Kapiselt                                        |
|            |                | LCar         | Charly &          | NATURE |             | 11/1/22 | 11/1/22  | 11/1/22 | 11/1/22 | 11/1/22   | 11/1/22   | 11/1/22  | Date<br>Sampled       |       | ~Mwagco.u                  |                          | netrix<br>110       | HWA).                                              |
|            |                |              | 2                 | N      | NA          | 1545    | 1500     | 1400    | 9151    | 1610      | 1110      | 1215     | Time<br>Sampled       |       | Project s                  | REMARI                   | King Co<br>South    | SAMPLE                                             |
|            |                | Micha        | chri              |        | <br>*       | CA      |          |         | - cry   |           |           | e<br>S   | Sample<br>Type        |       | pecific RLs                | include                  | T NAME              | CHAIN<br>RS (signat                                |
|            |                | ET I         | 2                 | PRIN   | 7           | ×       |          | L       | Ĺ)      | ×         | L         | L        | # of<br>Jars          |       | ? - Ye                     | Car                      | etro                | OF C                                               |
|            |                | 3            | 500               | TNA    |             | $\geq$  | $\geq$   | $\geq$  | $\geq$  | $\times$  | $\geq$    | $\times$ | NWTPH-Dx              |       | s/N                        | ann                      |                     | SUS                                                |
|            |                | 5            | 6                 | ME     | $\frown$    | X       | $\times$ | X.      | $\succ$ | $\succeq$ | $\ge$     | $\times$ | NWTPH-Gx              |       | Jo                         | 5                        | -1 N                | IOI                                                |
|            |                |              | 5                 |        |             |         |          |         |         |           |           |          | NWTPH-HCID            |       |                            |                          | ast                 | YC I                                               |
|            |                |              |                   |        |             |         |          |         |         |           |           |          | VOCs EPA 8260         | ANA   |                            | INVC                     | N                   |                                                    |
|            |                |              |                   |        |             |         |          |         |         |           |           |          | PAHs EPA 8270         | ISAT  | 13                         | FOICE                    | 00.4                |                                                    |
|            | Sar            | 17           | そく                | 0      | <br>        |         |          |         |         | <u> </u>  |           |          | PCBs EPA 8082         | IS RE |                            | TO                       | 24                  | 2-                                                 |
| -          | soldo          | 5            | 8                 | OMP    |             | $\ge$   | $\times$ | X       | $\mid$  | $\succeq$ | $\succeq$ | $\times$ | BTEX +<br>Naphthalene | QUE   |                            |                          | 1501                | 22                                                 |
|            | recei          | Ś            |                   | ANY    |             |         |          |         |         |           |           |          |                       | STED  | De                         |                          | Rung                |                                                    |
|            | ved a          |              |                   |        | <br>        |         |          |         |         |           |           |          |                       |       | fault:                     | SA<br>Archiv<br>Other_   | sh cha              | VW<br>Pag<br>TUI                                   |
|            | 1              | 11           | =                 |        | -           | 1       | 5        | 1       | 1       | 1         | 5         | D        |                       |       | Disp                       | e sam                    | ard tu              | RNAR                                               |
|            | 00             | 2/12         | 12/2              | DATE   |             |         |          |         |         |           |           | x<br>B   | P                     |       | ose af                     | ples                     | uthori              | Q<br>Ψ<br>Ψ                                        |
|            |                | )<br>        | 4                 |        |             |         |          |         |         |           |           | * N      | Votes                 |       | ter 3(                     | USA                      | nd<br>zed b         | of                                                 |
|            |                | 518          | 18                | IME    |             | 2       | . =      | :       | :       | 2         | :         | 20       |                       |       | ) days                     |                          |                     | E                                                  |

File :D:\GC14\GC14\_Data\11-09-22\110916.D Operator : TL Acquired : 09 Nov 2022 01:03 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-01 sg Misc Info : Vial Number: 15

ERR



TT

Time

File :D:\GC14\GC14\_Data\11-09-22\110917.D
Operator : TL
Acquired : 09 Nov 2022 01:15 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-02 sg
Misc Info :
Vial Number: 16

ERR



File :D:\GC14\GC14\_Data\11-09-22\110918.D
Operator : TL
Acquired : 09 Nov 2022 01:27 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-03 sg
Misc Info :
Vial Number: 17

ERR

#### Response\_

Time



File :D:\GC14\GC14\_Data\11-09-22\110919.D
Operator : TL
Acquired : 09 Nov 2022 01:38 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-04 sg
Misc Info :
Vial Number: 18

ERR

#### Response\_



:D:\GC14\GC14\_Data\11-09-22\110920.D File Operator : TL Acquired : 09 Nov 2022 01:50 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-05 sg Misc Info : Vial Number: 19

ERR

7.00



Time

File :D:\GC14\GC14\_Data\11-09-22\110921.D : TL Operator Acquired : 09 Nov 2022 02:02 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-06 sg Misc Info : Vial Number: 20

Time

ERR

-----

7.00

6.50

5.50

6.00

Response\_ Signal: 110921.D\FID1B.ch 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0.50 1.00 1.50 3.00 2.00 2.50 3.50 4.00 4.50 5.00 File :D:\GC14\GC14\_Data\11-09-22\110922.D
Operator : TL
Acquired : 09 Nov 2022 02:13 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-07 sg
Misc Info :
Vial Number: 21

ERR

Response\_


File :D:\GC14\GC14\_Data\11-09-22\110913.D
Operator : TL
Acquired : 09 Nov 2022 12:27 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 02-2689 mb sg
Misc Info :
Vial Number: 12

ERR



File :D:\GC14\GC14\_Data\11-09-22\110903.D Operator : TL Acquired : 09 Nov 2022 09:23 am using AcqMethod DX.M Instrument : GC14 Sample Name: 500 Dx 66-186M Misc Info : Vial Number: 3

ERR



File :D:\GC14\GC14\_Data\11-09-22\110916.D Operator : TL Acquired : 09 Nov 2022 01:03 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-01 sg Misc Info : Vial Number: 15

ERR



TT

Time

File :D:\GC14\GC14\_Data\11-09-22\110917.D
Operator : TL
Acquired : 09 Nov 2022 01:15 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-02 sg
Misc Info :
Vial Number: 16

ERR



File :D:\GC14\GC14\_Data\11-09-22\110918.D
Operator : TL
Acquired : 09 Nov 2022 01:27 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-03 sg
Misc Info :
Vial Number: 17

ERR

#### Response\_

Time



File :D:\GC14\GC14\_Data\11-09-22\110919.D
Operator : TL
Acquired : 09 Nov 2022 01:38 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-04 sg
Misc Info :
Vial Number: 18

ERR



:D:\GC14\GC14\_Data\11-09-22\110920.D File Operator : TL Acquired : 09 Nov 2022 01:50 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-05 sg Misc Info : Vial Number: 19

ERR

7.00



Time

File :D:\GC14\GC14\_Data\11-09-22\110921.D : TL Operator Acquired : 09 Nov 2022 02:02 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 211024-06 sg Misc Info : Vial Number: 20

Time

ERR

-----

7.00

6.50

5.50

6.00

Response\_ Signal: 110921.D\FID1B.ch 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0.50 1.00 1.50 3.00 2.00 2.50 3.50 4.00 4.50 5.00 File :D:\GC14\GC14\_Data\11-09-22\110922.D
Operator : TL
Acquired : 09 Nov 2022 02:13 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 211024-07 sg
Misc Info :
Vial Number: 21

ERR



File :D:\GC14\GC14\_Data\11-09-22\110913.D
Operator : TL
Acquired : 09 Nov 2022 12:27 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 02-2689 mb sg
Misc Info :
Vial Number: 12

ERR



File :D:\GC14\GC14\_Data\11-09-22\110903.D Operator : TL Acquired : 09 Nov 2022 09:23 am using AcqMethod DX.M Instrument : GC14 Sample Name: 500 Dx 66-186M Misc Info : Vial Number: 3

ERR







\_\_\_\_\_









\_\_\_\_\_

\_\_\_\_\_









\_\_\_\_\_

# Appendix E

Boring & Monitoring Well Logs

| DRILLI<br>DRILLI<br>SAMPI<br>LOCAT | NG CO<br>NG MI<br>LING N<br>FION: | OMPAI<br>ETHOI<br>//ETHO<br>See Fi | NY: Cascade Drilling, Inc.<br>D: Geoprobe Track Mounted Rig<br>DD: Direct Push<br>igure 2                                                                                                    |                              |                                     |             |           |                              | DATE STARTED: 12/20/2021<br>DATE COMPLETED: 12/20/2021<br>LOGGED BY: C. Bourgeois | 1       |
|------------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------|-----------|------------------------------|-----------------------------------------------------------------------------------|---------|
| o DEPTH<br>」 (feet)                | SYMBOL                            | USCS SOIL CLASS                    | DESCRIPTION                                                                                                                                                                                  | SAMPLE TYPE<br>SAMPLE NUMBER | PEN. RESISTANCE<br>(blows/6 inches) | OTHER TESTS | PID (ppm) | WELL COMPLETION<br>SCHEMATIC | NOTES                                                                             | 0 DEPTH |
|                                    |                                   |                                    | Concrete pavement, 9 inches thick.<br>(PORTLAND CEMENT CONCRETE)                                                                                                                             |                              |                                     |             |           |                              |                                                                                   | _       |
| _                                  |                                   | GM                                 | Olive brown, very silty angular GRAVEL, moist.                                                                                                                                               |                              |                                     |             |           |                              |                                                                                   | -       |
| _                                  |                                   |                                    | (FILL)<br>Becomes less silty, crushed cobbles observed.                                                                                                                                      |                              |                                     |             |           |                              | -                                                                                 | -       |
| -                                  |                                   | GP                                 | Pea gravel, moist. Clean.                                                                                                                                                                    |                              |                                     |             |           |                              | -                                                                                 | -       |
| 5 —                                |                                   | GP                                 | Pea gravel, moist. Clean.                                                                                                                                                                    |                              |                                     |             |           |                              | -                                                                                 |         |
| -                                  |                                   |                                    |                                                                                                                                                                                              |                              |                                     |             |           |                              | -                                                                                 |         |
|                                    |                                   | GM<br>ML                           | GRAVEL with rust brown silt, moist. Dark olive gray SILT. Petroleum odor noted, wet.                                                                                                         |                              |                                     |             |           |                              | Σ                                                                                 |         |
| _                                  |                                   |                                    | ☐ (NATIVE ALLUVIUM) / <sup>−</sup><br>Low recovery.                                                                                                                                          |                              |                                     |             |           |                              | -                                                                                 | -       |
| 10 —                               |                                   | SM                                 | Dark gray/black silty fine SAND, wet.                                                                                                                                                        | * 21B1-9.8                   |                                     |             | 0.0       |                              |                                                                                   | - 10    |
| _                                  |                                   | ML                                 |                                                                                                                                                                                              |                              |                                     |             |           |                              | -                                                                                 | -       |
| -                                  |                                   | SM                                 | Dark gray/black silty fine SAND, moist.                                                                                                                                                      |                              |                                     |             |           |                              | -                                                                                 | -       |
| _                                  |                                   | ML                                 | Olive gray SILT, moist.                                                                                                                                                                      |                              |                                     |             |           |                              | -                                                                                 | -       |
| 15 —                               |                                   | SM                                 | Dark gray/black silty fine SAND, moist.                                                                                                                                                      |                              |                                     |             |           |                              |                                                                                   | - 15    |
| -                                  |                                   |                                    | 21B1 completed to 15 feet below ground surface (bgs).<br>Temporary well constructed for reconnaissance groundwater<br>samples. Temporary well removed and borehole backfilled<br>12/20/2021. |                              |                                     |             |           |                              | -                                                                                 | -       |
| -                                  |                                   |                                    | Slight petroleum odor noted in groundwater.<br>No PID readings >0.0, odor, or sheen unless noted in<br>description.                                                                          |                              |                                     |             |           |                              | _                                                                                 | -       |
|                                    |                                   |                                    |                                                                                                                                                                                              |                              |                                     |             |           |                              |                                                                                   |         |
|                                    |                                   |                                    |                                                                                                                                                                                              |                              |                                     |             |           |                              |                                                                                   |         |
| NOTE:                              | This<br>and t                     | log of s<br>therefo                | subsurface conditions applies only at the specified location and on<br>re may not necessarily be indicative of other times and/or locations                                                  | the date indica              | ted                                 |             |           |                              |                                                                                   |         |
|                                    |                                   | A                                  | King County Metro Sou                                                                                                                                                                        | th Facilit                   | es                                  |             | Т         | EMPC                         | ORARY WELL/BORIN<br>21B1                                                          | IG      |

GEOSCIENCES INC. MWELL 2021-062-WO31.GPJ 7/13/22

PROJECT NO.: 2021-062-WO31

| RILLING CO<br>RILLING M<br>AMPLING N<br>OCATION: | OMPA<br>ETHO<br>METH<br>See F | NY: Cascade Drilling, Inc.<br>ID: Geoprobe Track Mounted Rig<br>OD: Direct Push<br>Figure 2                                                                                       |                              |                                     |             |           |                                | DATE STARTED: 12<br>DATE COMPLETED:<br>LOGGED BY: C. Bou | /20/2021<br>12/20/2021<br>rgeois |
|--------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------|-----------|--------------------------------|----------------------------------------------------------|----------------------------------|
| (feet) SYMBOL                                    | USCS SOIL CLASS               | DESCRIPTION                                                                                                                                                                       | SAMPLE TYPE<br>SAMPLE NUMBER | PEN. RESISTANCE<br>(blows/6 inches) | OTHER TESTS | PID (ppm) | - WELL COMPLETION<br>SCHEMATIC | NOTES                                                    | 0<br>DEPTH                       |
|                                                  |                               | Concrete pavement, 8 inches thick.<br>(PORTLAND CEMENT CONCRETE)<br>No recovery                                                                                                   |                              |                                     |             |           |                                |                                                          | _                                |
|                                                  | GM                            | Silty GRAVEL (FILL)                                                                                                                                                               | <b>1</b>                     |                                     |             |           |                                |                                                          | -                                |
|                                                  |                               |                                                                                                                                                                                   |                              |                                     |             | 0.0       |                                | ∑<br>I                                                   | 5                                |
|                                                  | ML                            | Chocolate brown SILT with long roots, moist, wet at surface.<br>(NATIVE ALLUVIUM)                                                                                                 | -                            |                                     |             |           |                                |                                                          | -                                |
| _                                                | ML                            | Olive brown/gray SILT with roots, moist                                                                                                                                           |                              |                                     |             |           |                                |                                                          | -                                |
| 0-                                               |                               |                                                                                                                                                                                   | -                            |                                     |             |           |                                |                                                          | - 10                             |
|                                                  |                               | Olive brown slightly sandy SILT with some organics, moist.                                                                                                                        |                              |                                     |             |           |                                |                                                          |                                  |
|                                                  | SM                            | Dark gray/black silty SAND with some organics, moist.                                                                                                                             |                              |                                     |             |           |                                |                                                          |                                  |
|                                                  | ·<br>·<br>·                   | Olive brown slightly sandy SILT with some organics, moist.                                                                                                                        |                              |                                     |             |           |                                |                                                          | -                                |
| -                                                | SW                            | Dark gray/black SAND with some organics, moist.                                                                                                                                   |                              |                                     |             |           |                                |                                                          |                                  |
|                                                  |                               | No recovery.                                                                                                                                                                      |                              |                                     |             |           |                                |                                                          | 1                                |
|                                                  |                               | 21B2 completed to 15 feet below ground surface (bgs).<br>Temporary well constructed for reconnaissance groundwater.<br>Temporary well removed and borehole backfilled 12/20/2021. |                              |                                     |             |           |                                |                                                          | _                                |
| -                                                |                               | No PID readings >0.0, odor, or sheen unless noted in<br>description.<br>Groundwater measured at approximately 4.5 feet bgs after<br>temp well installed.                          |                              |                                     |             |           |                                |                                                          | -                                |
| 1                                                |                               |                                                                                                                                                                                   |                              |                                     |             |           |                                |                                                          | F                                |
|                                                  |                               |                                                                                                                                                                                   |                              |                                     |             |           |                                |                                                          |                                  |
| OTE: This<br>and                                 | log of<br>theref              | subsurface conditions applies only at the specified location and on<br>ore may not necessarily be indicative of other times and/or location                                       | the date indicas.            | ated                                |             |           |                                |                                                          |                                  |
| H                                                |                               | King County Metro Sour                                                                                                                                                            | th Faciliti                  | es                                  |             | ٦         | EMP                            | ORARY WELL/<br>21B2                                      | BORING                           |

GEOSCIENCES INC. MWELL 2021-062-WO31.GPJ 7/13/22

PROJECT NO.: 2021-062-WO31



MWELL 2021-062-WO31.GPJ 7/13/22

2021-062-WO31 PROJECT NO .:



MWELL 2021-062-WO31.GPJ 7/13/22

2021-062-WO31 PROJECT NO .:

| BORING L | .OG SUMMAF    | Y - King County | Metro South F   | acilities,   | April 1, 20   | )20                                               |                                |              |                                                              |                                     |                            |                                            |              |                                       |                                |                                                   |                         |                                |                                    |                |
|----------|---------------|-----------------|-----------------|--------------|---------------|---------------------------------------------------|--------------------------------|--------------|--------------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------|--------------|---------------------------------------|--------------------------------|---------------------------------------------------|-------------------------|--------------------------------|------------------------------------|----------------|
|          |               |                 |                 |              |               |                                                   |                                |              |                                                              | Depth (fe                           | et)                        |                                            |              |                                       |                                |                                                   |                         |                                |                                    |                |
|          |               | 0 0.5           | 1 1.5 2         | 2.5          | 3 3.5         | 4                                                 | 4.5                            | 5 5.5        | 6 6.5                                                        | 7 7.5 8                             | 8.5                        | 9                                          | <b>9.5</b>   | .0 10.5                               | 11 11.5                        | 12 12.5                                           | 13                      | 13.5 14                        | 14.5                               | 15             |
| BORINGID |               |                 |                 |              |               |                                                   |                                |              | Description of                                               | Materials, Samples,                 | and Recov                  | very                                       |              |                                       |                                |                                                   |                         |                                |                                    |                |
| 20B1     | Description   | Concrete        | Gray Sand a     | nd Gravel, F | ill           |                                                   |                                | Black to Bro | own Silt and Claye                                           | ey Silt with organics,              | peat, mois                 | t to wet                                   |              |                                       | Black Fine Sa                  | ind and Gray Silt<br>rec                          | , water-bea<br>covery)  | aring (interpre                | tted, no                           | Bottom @ 15 ft |
|          | Recovery (ft) |                 |                 | 50%          |               |                                                   |                                |              |                                                              | 80%                                 |                            |                                            |              |                                       |                                | 0%                                                |                         |                                |                                    |                |
|          | Sample ID     |                 |                 |              |               |                                                   | 20B1-5                         |              |                                                              |                                     |                            |                                            |              |                                       | 20B1-W                         |                                                   |                         |                                |                                    | -              |
| 20B2     | Description   | Concrete        | GrBr. Sand and  | Gravel, Fill | Black Si      | lt, moist to                                      | ) wet                          | Gray San     | dy Silt, wet                                                 | Brown Silt, Clayey S<br>peat, moist | ilt, Black<br>Sand<br>W.B. | Brown<br>Silt,<br>Clayey<br>Silt,<br>moist | Black        | ine to Mediur<br>bearing (V           | m Sand, water-<br>V.B.)        | Gray Sandy Sil<br>wet                             | t, Black I              | Fine to Mediur<br>water-bearin | m Sand,<br>g                       | Bottom @ 15 ft |
|          | Recovery (ft) |                 | -               | 40%          | -             |                                                   |                                |              |                                                              | 100%                                | -                          | -                                          |              |                                       |                                | 100%                                              | -                       |                                |                                    |                |
|          | Sample ID     |                 |                 |              |               |                                                   |                                |              |                                                              |                                     | 20B2-                      | W                                          | ············ |                                       |                                |                                                   |                         |                                |                                    | 4              |
|          |               | 0 0.5           | 1 1.5 2         | 2.5          | 3 3.5         | 4                                                 | 4.5                            | 5 5.5        | 6 6.5                                                        | 7 7.5 8                             | 8.5                        | 9                                          | 9.5          | .0 10.5                               | 11 11.5                        | 12 12.5                                           | 13                      | 13.5 14                        | 14.5                               | 15             |
| 20B3     | Description   | Concrete        | Gray Sand a     | nd Gravel, F | Blad<br>orga  | ck to Brown<br>Clayey Silt<br>anics, peat,<br>wet | n Silt and<br>with<br>moist to | Gray Sand    | dy Silt, wet                                                 | Brown Silt, (                       | Clayey Silt,               | peat, moist                                | :            | Gray Silty Sand<br>and Gravel,<br>wet | Brown Silt with organics, mois | h Gray Fine S<br>st Sandy Silt,                   | and gradin<br>water-bea | ng to<br>ring<br>wate          | r Fine to<br>um Sand,<br>r-bearing | Bottom @ 15 ft |
|          | Recovery (ft) |                 |                 | 50%          |               |                                                   |                                |              |                                                              | 95%                                 |                            |                                            |              |                                       |                                | 100%                                              |                         |                                |                                    |                |
| -        | Sample ID     |                 |                 |              |               |                                                   | 20B3-4.                        | 5 20B3-V     | V                                                            |                                     |                            |                                            |              |                                       |                                |                                                   |                         |                                |                                    | 1              |
| 20B4     | Description   | Concrete        | Gray Sand and G | iravel, Fill | Brown-Gray    | / Silt, moist                                     | t                              | Black Fine   | Sand, water-bea                                              | ring                                | lack-Brow<br>peat, r       | n Silt, Claye<br>noist to we               | y Silt,<br>t | Bottom @ 10 ft                        |                                |                                                   |                         |                                |                                    |                |
|          | Recovery (ft) |                 |                 | 60%          |               |                                                   |                                |              |                                                              | 100%                                |                            |                                            |              |                                       |                                |                                                   |                         |                                |                                    |                |
|          | Sample ID     |                 |                 |              |               | 20B4-4                                            | 4.5                            | 20B4-W       |                                                              |                                     |                            |                                            |              |                                       |                                |                                                   |                         |                                |                                    | 1              |
|          |               | 0 0.5           | 1 1.5 2         | 2.5          | 3 3.5         | 4                                                 | 4.5                            | 5 5.5        | 6 6.5                                                        | 7 7.5 8                             | 8.5                        | 9                                          | <b>9.5</b>   | 10.5                                  | 11 11.5                        | 12 12.5                                           | 13                      | 13.5 14                        | 14.5                               | 15<br>+-       |
| 2085     | Description   | Concrete        |                 | Brown-       | Gray Sand and | d Gravel, Fi                                      | ill                            |              | Brown Silt,<br>Clayey Silt,<br>with organics,<br>peat, moist | Gray Silt and Sa                    | ndy Silt, oo<br>noist/wet  | ccassional c                               | lay,         | Gray Silt, som                        | e Sandy Silt, wet              | Black Fine San<br>to Silty Sand,<br>water-bearing | d Gray Si               | lt, some Sandy<br>Silt, wet    | Black<br>Fine<br>Sand,<br>W.B.     | Bottom @ 15 f  |
|          | Recovery (ft) |                 |                 | 60%          |               |                                                   |                                |              |                                                              | 100%                                |                            |                                            |              |                                       |                                | 100%                                              |                         |                                |                                    |                |
|          | Sample ID     |                 |                 |              |               |                                                   |                                |              |                                                              |                                     |                            |                                            | :            | 20B5-W                                |                                |                                                   |                         |                                |                                    |                |
| B20B6    | Description   | Concrete        |                 |              | Gray San      | d and Grav                                        | el, Fill                       |              |                                                              | Black-Gra                           | y Silt, moi                | st to wet                                  |              | Gray Silty Sand<br>and Gravel,<br>wet | d Brown Silt, Cla<br>peat, w   | Black<br>ayey Silt, F M<br>ret Sand<br>W.B.       | l. Gray Sar<br>, we     | ndy Silt,<br>et<br>water       | < Fine to<br>um Sand,<br>r-bearing | Bottom @ 15 ft |
| -        | Recovery (ft) |                 |                 | 50%          |               |                                                   |                                |              |                                                              | 70%                                 |                            |                                            |              |                                       |                                | 80%                                               |                         |                                |                                    | J              |
|          | Sample ID     |                 |                 |              |               |                                                   |                                |              |                                                              | 20B6-7                              |                            |                                            |              | 20B6-W                                |                                |                                                   |                         |                                |                                    |                |

| BORING    | LOG SUMMA     | RY - | King Count | ty Me | etro Sou | uth Fa   | cilities  | , Apri     | l 1, 202  | 20       |             |         |        |    |           |            |             |          |            |        |
|-----------|---------------|------|------------|-------|----------|----------|-----------|------------|-----------|----------|-------------|---------|--------|----|-----------|------------|-------------|----------|------------|--------|
|           |               |      |            |       |          |          |           |            |           |          |             |         |        |    |           |            | De          | pth (fee | et)        |        |
|           |               | 0    | 0.5        | 1     | 1.5      | 2        | 2.5       | 3          | 3.5       | 4        | 4.5         | 5       | 5.5    | 6  | 6.5       | 7          | 7.5         | 8        | 8.5        | 9      |
| BORING ID |               |      |            |       |          |          |           |            |           |          |             |         |        | De | scription | of Mate    | erials, Sa  | mples,   | and Reco   | very   |
| 20B7      | Description   |      | Concrete   |       |          |          |           | G          | iray Sand | and G    | ravel, Fill |         |        |    |           | C          | Gray Silt,  | moist (i | nterpret   | ted, r |
|           | Recovery (ft) |      |            |       |          | 50       | )%        |            |           |          |             |         |        |    |           |            | 0%          |          |            |        |
|           | Sample ID     | _    |            |       |          |          |           |            |           |          |             |         |        | -  |           |            |             |          |            |        |
| 20B8      | Description   |      | Concrete   |       | G        | ray Sanc | d and Gra | avel, Fill |           |          | Gray Silt   | , moist | to wet |    | Brown S   | ilt, Claye | ey Silt, wi | th orga  | nics,peat  | :, mc  |
|           | Recovery (ft) |      |            |       |          | 60       | )%        |            |           |          |             |         |        | ł  |           |            | 90%         |          |            |        |
|           | Sample ID     |      |            |       |          |          |           |            |           | 20B      | 8-4         |         |        |    |           |            |             |          |            |        |
|           |               | 0    | 0.5        | 1     | 1.5      | 2        | 2.5       | 3          | 3.5       | 4        | 4.5         | 5       | 5.5    | 6  | 6.5       | 7          | 7.5         | 8        | 8.5        | 9      |
| 20B9      | Description   |      | Concrete   |       |          |          | G         | ray Sanc   | d and Gra | vel, Fil | I           |         |        |    |           |            | Browr       | i-Gray S | ilt, Claye | y Silt |
|           | Recovery (ft) |      |            | ·     |          | 60       | )%        |            |           |          |             |         |        |    |           |            | 100%        |          | <u>.</u>   |        |
|           | Sample ID     |      |            |       |          |          |           |            |           |          |             | •       |        |    |           |            |             |          |            |        |

|            | 9.5                                                                                                                                         | 10       | 10.5  | 11        | 11.5    | 12                    | 12.5                     | 13                       | 13.5              | 14               | 14.5                           | 15             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------|---------|-----------------------|--------------------------|--------------------------|-------------------|------------------|--------------------------------|----------------|
| ,          |                                                                                                                                             |          |       |           |         |                       |                          |                          |                   |                  |                                |                |
| no recov   | ery)                                                                                                                                        |          | Browr | n-Gray Si | lt, wet |                       | Black<br>Sand,<br>bea    | k Fine<br>water-<br>ring | Gray Sa<br>w      | ndy Silt,<br>ret | Black<br>Fine<br>Sand,<br>W.B. | Bottom @ 15 ft |
|            |                                                                                                                                             |          |       |           |         | 10                    | 0%                       |                          |                   |                  |                                |                |
|            |                                                                                                                                             | 20B7-W   |       |           |         |                       |                          |                          |                   |                  |                                |                |
| bist       | Black Fine Sand to Sandy Silt, water-bearing Gray Silt, wet<br>Black Fine Sand to Sandy Silt, water-bearing Gray Silt, wet<br>Sand,<br>W.B. |          |       |           |         |                       |                          |                          |                   | Bottom @ 15 ft   |                                |                |
|            |                                                                                                                                             |          |       |           |         | 10                    | 0%                       |                          |                   |                  |                                |                |
|            | 20B8-W                                                                                                                                      | 1        |       |           |         |                       |                          |                          |                   |                  |                                | •              |
|            | 9.5                                                                                                                                         | 10       | 10.5  | 11        | 11.5    | 12                    | 12.5                     | 13                       | 13.5              | 14               | 14.5                           | 15             |
| ;, with or | ganics, p                                                                                                                                   | peat, we | t     |           |         | Blacl<br>Sand,<br>bea | < Fine<br>water<br>Iring | Gray S                   | Silt, Clay<br>wet | ey Silt,         | Black<br>Fine<br>Sand,<br>W.B. | Bottom @ 15 ft |
|            |                                                                                                                                             |          |       |           |         | 10                    | 0%                       | •                        |                   |                  |                                |                |
|            |                                                                                                                                             |          |       |           |         | 20B9-W                | 1                        |                          |                   |                  |                                | •              |

### **11-105 N 2400**, E 600 Elev. 8.0

| Depth      | Elev.     | Description                                                                                      |
|------------|-----------|--------------------------------------------------------------------------------------------------|
| 0.0 - 2.0  | 8.0 - 6.0 | brown, silty SAND with occasional organics and roots<br>(possible topsoil or fill); loose, moist |
| 2.0 - 3.5  | 6.0 - 4.5 | brown, silty PEAT; soft, wet                                                                     |
| 3.5 - 10.5 | 4.52.5    | gray, silty CLAY with some organics; soft, wet                                                   |
| at 10.5    | -2.5      | black, medium SAND with some silt; loose, wet                                                    |
|            |           | groundwater at depth 3.1' (el. 4.9)                                                              |

**MA-106** N 2300, E 700 Elev. 6.5

completed 12/4/83

| Depth     | Elev.     | Description                                                               |
|-----------|-----------|---------------------------------------------------------------------------|
| 0.0 - 3.2 | 6.5 - 3.3 | brown, silty PEAT; soft, wet                                              |
| 3.2 - 7.5 | 3.31.0    | gray, silty CLAY with occasional organics and thin sand layers; soft, wet |
| 7.5 - 9.0 | -1.02.5   | gray, silty SAND; loose, wet                                              |
|           |           | groundwater at depth 2.8' (el. 3.7)<br>completed 12/4/83                  |

#### LOG OF HAND AUGER HOLES

PROPOSED SOUTH BASE ANNEX King County, Washington for Arthur M. James - Engineers, Inc. Project No. 83-5123-02

 $\bigotimes$ 

Approved tor peolicat

Drawing No.

Converse Consultants Geotechnical Engineering and Applied Sciences

A-9

# **114** N 2200, E 635 Elev. 7.8

| Depth       | Elev.     | Description                                                                                |
|-------------|-----------|--------------------------------------------------------------------------------------------|
| 0.0 - 1.2   | 7.8 - 6.6 | brown, fine, sandy SILT, trace roots; very soft, wet                                       |
| 1.2 - 1.8   | 6.6 - 6.0 | gray SILT, trace sand; soft, wet                                                           |
| 1.8 - 3.8   | 6.0 - 4.0 | gray, silty SAND, lenses of organics; loose, wet                                           |
| 3.8-5.2     | 4.0 - 2.6 | interbedded gray, silty SAND and sandy SILT, numerous organics; loose, wet                 |
| 5.2 - 7.8   | 2.6 - 0.0 | gray-brown, silty PEAT, trace clay and sand; soft, wet                                     |
| 7.8 - 12.2  | 0.04.4    | gray, clayey SILT, organic, trace fine sand; soft, wet                                     |
| 12.2 - 13.0 | -4.45.2   | gray, fine SAND; loose, wet<br>groundwater at 1.9' depth (elev. 5.9)<br>completed 12/14/83 |
|             |           |                                                                                            |

2125, E 560 Elev. 13.2

| Depth       | Elev.       | Description                                                                   |
|-------------|-------------|-------------------------------------------------------------------------------|
| 0.0 - 1.2   | 13.2 - 12.0 | gray-brown, fine sandy SILT, trace gravel and organ-<br>ics; soft, very moist |
| 1.2 - 1.5   | 12.0 - 11.7 | brown SILT, lenses of organics; soft, wet                                     |
| 1.5 - 5.2   | 11.7 - 8.0  | gray, interbedded SAND/SILT, organic layers, woody in places; loose, wet      |
| 5.2 - 7.8   | 8.0 - 5.4   | gray-brown, sandy SILT, pockets of peat; soft, wet                            |
| 7.8 - 10.4  | 5.4 - 2.8   | gray-brown, clayey SILT, some organics; soft, wet                             |
| 10.4 - 12.4 | 2.8 - 0.8   | gray, fine SAND; loose, wet                                                   |
| 4.          |             | groundwater at 5.2' depth (elev. 8.0)<br>completed 12/14/83                   |

LOG OF HAND AUGER HOLES

PROPOSED SOUTH BASE ANNEX King County, Washington for Arthur M. James - Engineers, Inc. Project No.

•

83-5123-02

 $\bigotimes$ 

EO VP

Converse Consultants Geotechnical Engineering and Applied Sciences

Drawing No.

A-14



| DATE DRILLED:                                                                               |                                               | SUMMARY: BORING NO.5 (                                                                                                                                                                                 | Cont.                                    | ) ELEVATION                                               | 1:                 |                  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|--------------------|------------------|
| CEPTTEET WRITE OWS                                                                          | HER TESTS WOISTURE                            | LON THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORIN<br>SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AN<br>WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPL<br>OF CF ENCOUNTERED. | G AND AT T<br>ID MAY CHA<br>IFI CATION ( | HE TIME OF ORILLI<br>NGE AT THIS LOCA<br>OF ACTUAL CONDIT | NG<br>TION<br>IONS |                  |
| ° ₹ 5 <sup>°</sup> 5 <sup>°</sup> 6 <sup>°</sup> 0 <sup>°</sup><br>5 <del></del>            | ζ <sup>ην</sup> φ <sup>ο</sup> Ο <sup>η</sup> | DESCRIPTION                                                                                                                                                                                            | SYMBO                                    |                                                           | CONSISTENCY        | _ <b>€`</b><br>⊤ |
|                                                                                             |                                               | CLAYEY SILT; gray                                                                                                                                                                                      | MH                                       | wet                                                       | stiff              | <u>-</u> 4       |
| -10A 1/18'                                                                                  | 38                                            | SANDY SILT; dark gray                                                                                                                                                                                  | ML                                       | wet                                                       | very<br>soft       |                  |
| -<br>-11A 1/18'<br>5 -                                                                      | 57                                            | CLAYEY SILT; dark gray, trace sand                                                                                                                                                                     | МН                                       | wet                                                       | very<br>soft       |                  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 42                                            | SANDY SILT; dark gray                                                                                                                                                                                  | ML                                       | wet                                                       | very<br>stiff      |                  |
| -<br>-<br>13A 1/18'                                                                         | 48                                            | <b>CLAYEY SILT;</b> dark gray, with trace sand                                                                                                                                                         | MH                                       | wet                                                       | soft               | -<br>-<br>-<br>- |
| -14A 1/18'                                                                                  | 53                                            |                                                                                                                                                                                                        |                                          |                                                           |                    | -<br>-<br>-<br>  |
| -15A 0/18'<br>5 -                                                                           | 28                                            | grades to:<br>SANDY SILT; with shell fragments,<br>and trace gravel                                                                                                                                    | ML                                       |                                                           |                    |                  |
| 0 - 16A 17<br>41                                                                            | 16                                            | SILTY SAND; gray, fine to medium,<br>with some gravel and shell fragment                                                                                                                               | SM<br>S                                  | wet                                                       | very<br>dense      |                  |
| 5 - 17A 50/4"                                                                               | 11                                            | SAND; gray, medium to coarse, with trace gravel and shell fragments                                                                                                                                    | SP                                       | wet                                                       | very<br>dense -~   |                  |
| -18A 129/<br>6"                                                                             | 16                                            | Bottom of boring at depth 88.5'<br>Groundwater encountered at depth 1.                                                                                                                                 | 3'                                       |                                                           |                    |                  |
| · · · ·                                                                                     | PF<br>Ki                                      | RUPOSED SOUTH BASE ANNEX<br>ing County, Washington<br>or Arthur M. James - Engineers Inc.                                                                                                              |                                          |                                                           | 83-5123-           | 02               |
|                                                                                             |                                               |                                                                                                                                                                                                        |                                          |                                                           |                    |                  |

|      |          | 10 L |       |
|------|----------|------|-------|
| DATE | DRILLED: | 12   | /2/83 |

# SUMMARY: BORING NO. 6

ELEVATION: Approx. 7.5

| «×<br>               | SAM                       | GAMY                     | 81.0X                   | ో                         | NE FIELD      | of ord             | Q DESCRIPTION                                                                                                                          | SYMBOL   | MOISTURE       | CONSISTENCY                                      |
|----------------------|---------------------------|--------------------------|-------------------------|---------------------------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------------------------------------------------|
|                      | 1C                        | 2,                       | /12<br>/6"              | 10                        | 54            |                    | SANDY SILT; brown, with organics                                                                                                       | ML       | wet            | medium<br>stiff                                  |
|                      |                           |                          | 3                       |                           |               |                    | layer of sand with some silt at 4.5                                                                                                    |          |                | medium<br>dense                                  |
|                      | 20                        | ■ 30<br>  50             | )<br>)/6                | DS<br>"                   | 30            | 94                 | SAND; brown, fine, with some silt, with trace roots                                                                                    | SP       | wet            | very<br>dense                                    |
|                      | 3A                        |                          | 3<br>5<br>L             |                           |               |                    | grades slightly coarser to fine san<br>with trace silt                                                                                 | d        |                | medium<br>dense                                  |
|                      | 4A                        | 2                        | L<br>3<br>3             |                           |               |                    |                                                                                                                                        |          |                | dense                                            |
|                      | 5A                        | 1<br>2<br>4              | 572                     |                           |               |                    | with shell fragments and organic fibers                                                                                                |          |                | very<br>dense                                    |
|                      | 6A                        | 3:<br>4:<br>5:           | 2<br>2<br>0/5           | 14                        |               |                    |                                                                                                                                        |          |                |                                                  |
|                      | 7A                        | 2<br>2<br>4              | 4<br>7<br>1             |                           |               |                    |                                                                                                                                        |          |                |                                                  |
|                      | 88                        | 1<br>1<br>1              | 5<br>8<br>7             |                           |               |                    | (Continued)                                                                                                                            |          |                |                                                  |
| 2″ a<br>3″ (<br>3- 1 | ipilt-<br>).D. t<br>/2" ( | spoon<br>hin-w<br>).D. s | sam<br>all sa<br>allt b | pier<br>ampier<br>arrei : | C.<br>sampler | 3~1/4" C<br>X. sam | ).D. x 2-1/2" liner **A - Atterberg, C - consolidation, DS - direc<br>ple not recovered G - grain size, T - triaxial, P - permeability | t shear, | <b>†</b> ▲<br> | water level<br>Impervious seal<br>piezometer tip |
|                      |                           |                          |                         |                           |               | PR<br>Ki<br>fo     | DPOSED SOUTH BASE ANNEX<br>ng County, Washington<br>c Arthur M. James - Engineers, Inc.                                                |          |                | Project No.<br>83–5123                           |



## Project: METRO SOUTH BASE ANNEX Project Location: TUKWILA, WA Project Number: 944039NA

177

(\_,

1

1

# Log of Boring SB-1

1

Sheet 1 of 1

| <u> </u>                                                                |                                                                                         |    |       |          |       |          |                          |                         |                                    |           |                   |                         |               |               |        | · · · · · · · · · · · · · · · · · · · |         |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----|-------|----------|-------|----------|--------------------------|-------------------------|------------------------------------|-----------|-------------------|-------------------------|---------------|---------------|--------|---------------------------------------|---------|
| Date(s)<br>Drilled                                                      | Date(s) 10/11/94<br>Drilled                                                             |    |       |          |       |          | Logged S. Dunnigan<br>By |                         |                                    |           |                   | Checked D. Walker<br>By |               |               |        |                                       |         |
| Drilling<br>Method Hollow Stem Auger Drill Bit<br>Size/Type 8" O.D. HSA |                                                                                         |    |       |          |       |          |                          |                         | Total Depth<br>Drilled (feet) 18.0 |           |                   |                         |               |               |        |                                       |         |
| Drill Rig<br>Type                                                       | Drill Rig<br>Type 450 Canterra Drilled By Ramlo Well Drilling Hammer W.<br>Drop (lbs/in |    |       |          |       |          |                          |                         |                                    |           | ner Wo<br>(lbs/in | eight/ 140#/3<br>.)     | 80"           |               |        |                                       |         |
| Appare<br>Ground                                                        | Apparent7 ftSurface Elevation (*                                                        |    |       |          |       |          |                          |                         |                                    |           | ce<br>tion (f     | eet)                    |               |               |        |                                       |         |
| Comments Borehole Bentonite Chips Elevation Datum                       |                                                                                         |    |       |          |       |          |                          |                         |                                    | tion<br>ກ | on Not Surveyed   |                         |               |               |        |                                       |         |
|                                                                         |                                                                                         | SA | MPLES | \$       |       | <u> </u> |                          |                         |                                    |           |                   |                         |               |               |        |                                       | - · .   |
| Depth,<br>feet                                                          | Type<br>Number<br>Blows per<br>Alootent (%)<br>Graphic<br>Garaphic                      |    |       |          |       | N        | /IATERI                  | AL D                    | ESCRI                              | PTIO      | Ń                 | ÷                       | •             | FIELD<br>NOTE | )<br>S |                                       |         |
| 0-                                                                      | <u> </u>                                                                                |    |       | <u> </u> |       | 833      | Cone                     | crete (12")             | , Pea Grav                         | /el (6")  |                   |                         |               |               |        |                                       |         |
|                                                                         | .                                                                                       |    |       |          |       |          | · .                      |                         |                                    |           |                   |                         |               |               | -      | -                                     |         |
| · _                                                                     | 6                                                                                       |    |       |          |       |          |                          | 5                       |                                    |           |                   |                         |               |               |        | -<br>-<br>-                           |         |
| · -                                                                     |                                                                                         |    |       |          |       |          | Loos                     | e, organic              | clayey SI                          | LT (OL)   | , with ro         | ot mat                  | erial, b      | rown          | -      | No evidence of                        | ТРН     |
|                                                                         |                                                                                         |    |       |          |       | <u> </u> | -                        | 4                       |                                    |           |                   |                         |               |               | -      | contamination                         |         |
| 5-                                                                      | _                                                                                       |    | 2     |          |       |          | _                        |                         |                                    |           | •                 |                         | ۰.            |               | ·<br>  |                                       | •       |
|                                                                         |                                                                                         |    | 5     |          |       |          | -                        |                         |                                    | ·         |                   |                         |               |               | -      | <br>                                  |         |
|                                                                         |                                                                                         |    | /     |          |       | 2<br>    | ▽                        |                         |                                    |           |                   |                         |               |               |        |                                       |         |
| -                                                                       |                                                                                         |    |       |          |       |          |                          |                         | 1                                  |           | /                 |                         |               |               |        |                                       |         |
|                                                                         | . [                                                                                     |    |       |          |       |          | Medi<br>satu             | um dense<br>rated       | silty SAN                          | D (SM)    | , with so         | me org                  | janic m       | hatter.       | ,      | ]                                     |         |
|                                                                         | ·                                                                                       |    | •     |          |       |          | ÷                        | •                       |                                    |           |                   | •                       |               |               |        |                                       |         |
| 10-                                                                     |                                                                                         | 2  | . 4   |          |       |          | <del></del>              | •                       |                                    |           |                   |                         |               |               | -      | Sample sent to                        | lab     |
| -                                                                       |                                                                                         |    | 10    |          |       |          | • ,<br>                  | · · · ·                 |                                    |           | •                 |                         |               | `             | -      | - ·                                   |         |
| -                                                                       |                                                                                         |    | ,     |          |       |          | -                        |                         | •                                  |           | ·                 |                         |               |               | -      | -                                     |         |
| ŀ -                                                                     | 1                                                                                       |    |       | •        | -     |          | Medi                     | ium dense               | SAND (SI                           | P), dark  | with rec          | l and w                 | vhite g       | rains,        | ·-     | No evidence of                        | трн     |
|                                                                         |                                                                                         |    |       |          |       |          | satui                    | ated                    |                                    |           |                   | -                       |               |               | • -    | contamination                         |         |
| 15-                                                                     |                                                                                         | 2  |       |          | · . : |          |                          |                         |                                    |           | ÷                 |                         | 5<br>1        | <u>.</u>      | _      |                                       |         |
|                                                                         |                                                                                         | 3  | 6     |          |       |          | -                        |                         |                                    |           |                   |                         | <u>د</u><br>، |               |        | · ·                                   | N       |
|                                                                         |                                                                                         |    |       |          |       |          | -                        | -                       |                                    |           |                   |                         | :             | •             | -      |                                       | 1       |
|                                                                         |                                                                                         |    |       |          |       |          |                          |                         | •                                  |           |                   |                         | 1.5           |               |        |                                       | -       |
|                                                                         |                                                                                         | -  | -     |          |       |          | Borir                    | ng termina <sup>.</sup> | ted at 18                          | ft bgs.   | :                 |                         |               |               | ,      |                                       |         |
|                                                                         |                                                                                         |    |       |          | •     |          | -                        |                         | •<br>•                             | -         |                   |                         |               |               | -      |                                       |         |
| 20                                                                      | -                                                                                       | 2  |       |          |       |          | <b>—</b>                 |                         | ı                                  |           |                   | ,<br>1                  |               |               |        | 1                                     |         |
|                                                                         |                                                                                         |    | •     |          |       |          | -                        |                         |                                    |           |                   |                         |               | -             | -      |                                       |         |
|                                                                         |                                                                                         |    |       |          | •     | -        |                          |                         |                                    |           |                   |                         |               |               | -      | - · · ·                               | •       |
|                                                                         |                                                                                         | ŀ  |       |          |       |          |                          |                         | · /                                |           |                   | 2                       |               |               | -      |                                       |         |
|                                                                         |                                                                                         |    |       |          |       |          | •                        |                         |                                    |           |                   | •                       |               |               | -      | -                                     |         |
| 25                                                                      |                                                                                         |    |       |          | ·     |          |                          | ,                       |                                    |           |                   |                         |               |               |        |                                       | · · · · |

1

11/15/94 1GLG2 METRO

-Woodward-Clyde Consultants 🍊

#### **METRO SOUTH BASE ANNEX** Project: Project Location: TUKWILA, WA Project Number: 944039NA

# Log of Boring SB-2

Sheet 1 of 1

| Date(s)                         | <br> 1                                  | 0/11/94                                                                | 4      |        |                | Logged S. Dunnigan                                      | Checked<br>By                             | D. Walker                        |  |  |
|---------------------------------|-----------------------------------------|------------------------------------------------------------------------|--------|--------|----------------|---------------------------------------------------------|-------------------------------------------|----------------------------------|--|--|
| Drilling                        |                                         | iollow S                                                               | Stem A | uger   |                | Drill Bit<br>Size/Type 8" O.D. HSA                      | Total Depth<br>Drilled (feet) 16.5        |                                  |  |  |
| Drill Rig<br>Type               | 3 4                                     | 50 Can                                                                 | terra  |        |                | Drilled<br>By Ramlo Well Drilling                       | Hammer Weight/<br>Drop (lbs/in.) 140#/30" |                                  |  |  |
| Appare<br>Ground                | nt<br>Iwater De                         | Surface<br>levation (feet)                                             |        |        |                |                                                         |                                           |                                  |  |  |
| Comm                            | ents _                                  |                                                                        |        |        |                | Borehole<br>Backfill Bentonite Chips                    | Elevation<br>Datum                        | Not Surveyed                     |  |  |
| ,                               | SÅ                                      | MPLES                                                                  | 3      | · ·    |                |                                                         | •                                         |                                  |  |  |
| Depth,<br>feet                  | Type<br>Number                          | Number<br>Number<br>1/2 foot<br>Recovery(%)<br>Moisture<br>Content (%) |        |        | Graphic<br>Log | MATERIAL DESCRIPTION                                    |                                           | FIELD<br>NOTES                   |  |  |
| 0-                              |                                         |                                                                        |        |        |                | Concrete (12"), Pea gravel (6")                         |                                           | No evidence of TPH contamination |  |  |
| -<br>5<br>-                     | Part Part Part Part Part Part Part Part | 3<br>4<br>3                                                            |        |        |                | Z<br>Silty SAND (SM), gray, saturated below 7'          | -                                         | Possible TPH odor                |  |  |
| -<br>-<br>10                    | And | 1<br>1<br>2<br>3<br>2<br>3                                             |        |        |                | SAND (SP), with red and white grains, very dark, satura |                                           | Sample submitted to lab          |  |  |
| -<br>-<br>15 <del>`-</del><br>- | A A A A A A A A A A A A A A A A A A A   | 2<br>4<br>4                                                            | •      | ·<br>· |                | · · · · ·                                               | -<br>-<br>                                |                                  |  |  |
| 20-                             |                                         |                                                                        |        |        |                | Boring terminated at 16.5 ft bgs.                       |                                           | 1                                |  |  |
|                                 | ÷.                                      | r                                                                      |        |        |                |                                                         | -<br>-<br>-<br>-                          |                                  |  |  |
| 25–                             | <u> </u>                                | <u>.</u>                                                               |        | I      | <u>F</u>       |                                                         | ·                                         | 1                                |  |  |

-Woodward-Clyde Consultants

£
## Project: METRO SOUTH BASE ANNEX Project Location: TUKWILA, WA

# Log of Boring SB-3

Sheet 1 of 1

Project Number: 944039NA Checked Date(s) Drilled Logged By 10/11/94 S. Dunnigan D. Walker By Drill Bit Size/Type Total Depth Drilled (feet) Drilling 8" O.D. HSA Hollow Stem Auger 16.5 Method Drill Rig Drilled Hammer Weight/ 140#/30" **Ramlo Well Drilling** 450 Canterra Drop (lbs/in.) By Type Surface Elevation (feet) Apparent Groundwater Depth 7 ft Borehole Backfill Elevation Not Surveyed Comments **Bentonite Chips** Datum SAMPLES Moisture Content (%) Recovery(% FIELD Blows per 1/2 foot MATERIAL DESCRIPTION Depth, feet Number Graphic Log NOTES Type 0 Concrete (12"), Pea Gravel (6") Sandy GRAVEL (GP), backfill material 5 No evidence of impact 1 4 5 7 2 Sample sent to lab 10 SAND (SP), with white and red grains, dark, saturated 3 3 3 4 15 4 2 2 Boring terminated at 16.5 ft bgs 20-25 -Woodward-Clyde Consultants 🗳 1/22/94 1GLG2 METRO

+ -<sub>}</sub>

1 :

# Log of Boring SB-4

Sheet 1 of 1

|                    |                      |     |                  |            |               |      |                |                      |                      |              |          |             |                        | ····               | _ |
|--------------------|----------------------|-----|------------------|------------|---------------|------|----------------|----------------------|----------------------|--------------|----------|-------------|------------------------|--------------------|---|
| Date(s)<br>Drilled |                      | 1   | 0/11/9           | 4          |               |      | B              | ogged<br>Y           | S. Dunnig            | jan          | •        | Che<br>By   | ecked                  | D. Walker          |   |
| Drilling<br>Method |                      | Н   | ollow S          | Stem A     | uger          |      | DS             | rill Bit<br>ize/Type | 8" O.D. I            | ISA          |          | Tot<br>Dril | al Depth<br>led (feet) | 16.5               | _ |
| Drill Rig<br>Type  |                      | 4   | 50 Can           | terra      |               |      | D<br>B         | rilled<br>Y          | Ramio W              | ell Drilling |          | Har<br>Dro  | nmer We<br>op (lbs/in. | aight/ 140#/30"    |   |
| Appare<br>Ground   | nt<br>wate           | Dep | oth _            | 7 ft       |               |      |                |                      |                      | •            |          | Sur<br>Elev | face<br>vation (fe     | eet)               |   |
| Comme              | ents                 |     |                  |            |               |      |                |                      | Borehole<br>Backfill | Bentonite    | Chips    | Ele<br>Dat  | vation<br>tum          | Not Surveyed       |   |
|                    | -                    | SA  | MPLES            | 3          |               |      |                |                      |                      | ·            | <u> </u> |             |                        |                    | ٦ |
|                    |                      |     | <b>_</b>         | (%)        | (%)           |      |                |                      |                      |              |          |             |                        | FIELD              |   |
| tth,               |                      | ber | s pe<br>oot      | very(      | ture<br>ent ( | 흘    |                | , IV                 | IATERIA              | AL DESC      | RIPTION  |             |                        | NOTES              |   |
| De                 | Type                 | Num | Blow<br>1/2 f    | Recor      | Mois          | Grap |                |                      |                      |              |          |             |                        |                    |   |
| 0—                 |                      | _   | . <u> </u>       |            |               |      | Concre         | te (12")             | , Pea Grav           | el (6")      |          |             |                        |                    | ٦ |
|                    |                      |     |                  |            |               | 趑    |                |                      |                      |              |          |             |                        | 4                  |   |
| -                  |                      |     |                  |            |               |      |                | st -                 |                      |              |          |             | -                      |                    |   |
| . –                |                      |     |                  |            |               |      | · . ·          |                      |                      |              |          |             | -                      | No evidence of TPH |   |
| , · ·              |                      |     |                  |            |               |      | Sandv          | Gravel (             | GP), backfi          | ill material |          |             | -                      | contamination      |   |
| 5                  | -                    |     | <u>.</u>         |            |               |      | _              |                      |                      |              |          |             | . —                    |                    |   |
| • •                | illities<br>illities | 1   | 1<br>3           |            |               |      |                |                      |                      |              | ·        |             | _                      | _                  |   |
|                    |                      |     | 2                |            |               |      | Ω <sup>'</sup> |                      |                      |              | -        |             |                        | · · ·              |   |
| _                  | 111                  | 2   | 1                |            | •             |      | ±              |                      |                      |              |          |             | -                      | -<br>-<br>-        |   |
| -                  |                      | 2   | 2                |            |               |      |                |                      |                      |              |          |             |                        | Sample sent to lab |   |
| -                  |                      |     |                  |            |               |      | · .            |                      |                      |              |          | ;           | -                      | 4                  |   |
| 10-                |                      | 3   |                  |            |               |      | -              |                      |                      |              |          | •           | _                      | -                  |   |
| -                  |                      |     |                  |            | •             |      |                |                      |                      |              |          |             | -                      |                    |   |
| -                  |                      |     |                  | ···· · · · |               |      |                |                      | • •                  |              | ,        |             |                        |                    |   |
|                    |                      |     |                  |            |               |      | •              |                      |                      |              | (        | •           | -                      |                    |   |
|                    |                      |     |                  | •          |               |      | •              |                      |                      | -            |          |             | -                      | ,<br>,             |   |
|                    |                      |     |                  |            |               |      |                |                      |                      |              |          |             |                        |                    |   |
| 15                 |                      | 4   | 1                |            |               |      | -              |                      |                      |              |          | -           | -                      | · ·                |   |
|                    |                      |     |                  |            |               |      |                |                      |                      |              |          |             |                        |                    |   |
| -                  |                      |     |                  |            |               |      | Boring         | termina              | ted at 16.9          | 5 ft bgs.    |          |             |                        |                    |   |
| -                  | ·                    |     |                  | ,          |               |      |                |                      |                      |              |          |             | -                      | -<br>              |   |
| -                  |                      | •   |                  |            |               |      | •              |                      |                      |              |          |             | -                      | · ·                |   |
| 20-                | -                    |     |                  |            |               |      | -              |                      |                      |              |          |             | ÷                      |                    |   |
| · -                |                      |     |                  |            |               |      |                |                      | •                    |              |          |             | -                      | -                  | • |
|                    |                      |     |                  |            | ٦             |      |                |                      | •                    |              |          |             |                        | · · · ·            |   |
|                    |                      |     |                  |            |               |      |                |                      |                      |              | а        |             |                        |                    |   |
|                    | · ·                  |     |                  |            |               |      |                |                      |                      |              |          |             | -                      |                    |   |
|                    |                      |     |                  |            |               |      | 1              |                      |                      |              |          | •           | -                      |                    |   |
| 25-                | [                    |     | _ , _ <u>,</u> ] |            | L             | اا   | <u> </u>       |                      | ·                    |              |          | · ·         |                        | · · · · ·          |   |
|                    |                      |     |                  |            |               | —v   | whonV          | ard-C                | lvde (               | Consult:     | ants ┹   | B           |                        | ······             | _ |

..

# Log of Boring SB-5

Sheet 1 of 1

•••

į.

| Date(s)<br>Drilled            | 12/12/94                         | Logged BH<br>By                                       | Checked JB<br>By                       |
|-------------------------------|----------------------------------|-------------------------------------------------------|----------------------------------------|
| Drilling<br>Method            | HOLLOW STEM AUGER                | Top of PVC<br>Elevation (feet) FLUSH MOUNT            | Total Depth 16.5<br>Drilled (feet)     |
| Drill Rig<br>Type             | MOBILE-B61                       | Drilled<br>By TACOMA PUMP AND DRILL                   | Hammer Weight/<br>Drop (lbs/in.)       |
| Groundwater<br>Level (ft bgs) | 7.75                             | Sampler SPLIT SPOON                                   | Approx. Surface 98<br>Elevation (feet) |
| Diameter of<br>Hole (inches)  | 8 Diameter of<br>Well (inches) 2 | Type of SCH 40 PVC                                    | Screen 0.020"                          |
| Type of<br>Sand Pack          | 10/20 SILICA                     | Type/Thickness BENTONITE CHIPS 1-3 FEET<br>of Seal(s) | · · · · · ·                            |
| Comments                      |                                  | · · · ·                                               |                                        |

|                |                    | 1                                      | SAMP   | AMPLES       |                | ,                                                                                        |               | Ľ,                       | OVA (     | (ppm)      |                         |                    |
|----------------|--------------------|----------------------------------------|--------|--------------|----------------|------------------------------------------------------------------------------------------|---------------|--------------------------|-----------|------------|-------------------------|--------------------|
| Depth,<br>feet | Elevation,<br>feet | Type                                   | Number | Blows/6in    | Graphic<br>Log | MATERIAL DESCRIPTION                                                                     |               | Well<br>Completic<br>Log | Headspace | Background | Drilling<br>Rate (time) | REMARKS            |
| 0-             |                    |                                        | -      |              |                | Ground Surface - Concrete                                                                |               |                          |           |            | 1335                    |                    |
| -              | •                  | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | -      | 40<br>30     |                | 1 - 2.0' SANDŸ GRAVEL (GP) - Brown to<br>gray, angular gravel, medium grained<br>sand.   |               |                          | 1,        | 0          |                         |                    |
| -              | - 95               |                                        |        |              |                | 2-4' Gravels become rounded (FILL)                                                       | -             |                          |           | 2.0        |                         |                    |
| 5              |                    | ALTINGTON CONTRACTOR                   | SB-5   | 1<br>2<br>4  |                | 5.0 - 6.5 CLAYEY SILT (ML), brown to<br>gray, moist, abundnant organics.                 |               |                          | 6         | 0          |                         | Sample sent to lab |
|                | - 90               |                                        |        |              |                | 6.5 - 16.5 SAND (SM), Brown to black,<br>fine grained, minor organics.<br>Wet at 7.5-8.0 | Ā             |                          |           |            |                         |                    |
| -<br>10—<br>-  |                    |                                        |        | 8<br>3<br>6  |                | -<br>                                                                                    | 1             |                          | 4         | 0          |                         |                    |
|                | — 85               |                                        |        |              |                |                                                                                          | , I<br>I<br>I |                          |           |            |                         |                    |
| 15             |                    |                                        |        | 6<br>9<br>10 |                | <ul> <li>Same as above; sand becomes finer</li> <li>grained</li> </ul>                   | -             |                          | 5         | 0          | 1400                    |                    |
| -              |                    |                                        |        |              | j.             | Boring terminated at 16.5'BGS.                                                           |               |                          |           |            |                         | ,                  |
|                | - 80               |                                        |        |              |                |                                                                                          | -             |                          |           |            |                         |                    |
| - 20-          | •                  |                                        |        |              |                |                                                                                          |               |                          | ۶.        |            |                         |                    |
| 20-            |                    |                                        |        |              |                |                                                                                          |               |                          | <b>)</b>  |            |                         |                    |
| 1/11/95 1      | WL1 SARA           |                                        |        |              | • •            | – woodward-Clyde Consul                                                                  | τan           | τς 🗲                     |           |            | •                       |                    |

t.,

; \_\_\_\_\_; ;

# Log of Boring SB-6

Sheet 1 of 1

|                    |                                                                                                                  | unn    |                       | 9440        | 3211/                   |                |                                       |                                     | <u> </u>                    | · · ·                                 | <u></u>                    | · · · · · · · · · · · · · · · · · · ·                                   |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------|-------------------------|----------------|---------------------------------------|-------------------------------------|-----------------------------|---------------------------------------|----------------------------|-------------------------------------------------------------------------|--|--|
| Date(s)<br>Drilled |                                                                                                                  | 12     | 2/12/94               | 4           | `                       |                | <u> </u>                              | Logged<br>By                        | BH                          | · · · · · · · · · · · · · · · · · · · | Checked<br>By              | JB                                                                      |  |  |
| Drilling<br>Method | 1                                                                                                                | H      | OLLOW                 | / STEN      | /I AUG                  | ER             |                                       | Drill Bit<br>Size/Type              | 8"                          |                                       | Total Dept<br>Drilled (fee | h<br>t) 16.0 .                                                          |  |  |
| Drill Rig          | 1                                                                                                                | M      | OBILE-                | B61         |                         |                |                                       | Drilled<br>By TACOMA PUMP AND DRILL |                             |                                       | Hammer W<br>Drop (lbs/ir   | Hammer Weight/<br>Drop (lbs/in.) 140/30                                 |  |  |
| Appare<br>Ground   | nt<br>wate                                                                                                       | r Dep  | th                    | 7.5 ft      |                         |                |                                       |                                     |                             |                                       | Surface<br>Elevation (     | Surface 100<br>Elevation (feet)                                         |  |  |
| Comme              | ents                                                                                                             |        | -                     |             |                         |                |                                       |                                     | Borehole<br>Backfill BENT   | ONITE CHIPS                           | Elevation<br>Datum         | RELATIVE                                                                |  |  |
|                    |                                                                                                                  | SA     | MPLES                 | ;           |                         |                |                                       |                                     |                             |                                       |                            |                                                                         |  |  |
| Depth,<br>feet     | Type                                                                                                             | Number | Blows per<br>1/2 foot | Recovery(%) | Moisture<br>Content (%) | Graphic<br>Log |                                       | <u>.</u> N                          | IATERIAL DE                 | SCRIPTION                             | · ·                        | FIELD<br>NOTES                                                          |  |  |
| 0                  |                                                                                                                  |        |                       |             |                         |                | Grou                                  | und Surface                         | e - Concrete                | •                                     |                            |                                                                         |  |  |
| -                  |                                                                                                                  |        |                       |             |                         |                | - 1 - 5<br>med                        | 9.0' SAND<br>lium graine            | Y GRAVEL (GP) - E<br>d sand | rown to gray, fin                     | ne to                      |                                                                         |  |  |
| _                  | Indiana and a state of the second s |        |                       | -           |                         |                | -                                     | 1                                   |                             |                                       |                            | ft. Sample spoon                                                        |  |  |
| 5-                 |                                                                                                                  |        |                       |             |                         |                | -                                     |                                     |                             |                                       |                            |                                                                         |  |  |
| -                  |                                                                                                                  | 5B6-1  | 17<br>22<br>14        |             | 0                       |                | • • • • • • • • • • • • • • • • • • • |                                     |                             |                                       |                            | -                                                                       |  |  |
| -                  |                                                                                                                  |        | 2<br>4<br>8           |             | 0,                      |                | ·볼 Grou<br>-                          | undwater le                         | evel approximately          | 7.5 feet.                             | •                          | - Collect lab sample from<br>7-9 ft, poor recovery,<br>- abandon boring |  |  |
| -                  | (                                                                                                                |        |                       |             |                         |                | Bori                                  | ng Termina                          | nted at 9.0'BGS.            |                                       |                            |                                                                         |  |  |
| 10                 | -                                                                                                                |        | 1.                    |             | 4<br>                   |                | -                                     | •                                   |                             | ·                                     |                            | -                                                                       |  |  |
| -<br>-             |                                                                                                                  |        | A have to a           |             |                         |                | -                                     | •                                   |                             |                                       |                            |                                                                         |  |  |
|                    | 11.<br>1                                                                                                         |        |                       |             |                         |                | <b>.</b>                              | 7                                   | د.<br>م                     |                                       | -                          |                                                                         |  |  |
| 15—<br>· ·         |                                                                                                                  | •      | ٠<br>چ                |             |                         |                | -                                     | 4.<br>()<br>}                       |                             |                                       | ۰<br>۰                     |                                                                         |  |  |
| -<br>-             |                                                                                                                  |        |                       | ,<br>,      |                         |                | • · · ·                               | :                                   | · .                         |                                       | •<br>•                     |                                                                         |  |  |
| 20-                |                                                                                                                  |        |                       |             |                         |                | -                                     | ۰.<br>پ                             |                             |                                       |                            | -                                                                       |  |  |
| 20-                |                                                                                                                  |        |                       | •           |                         | v              | Vood                                  | ward-0                              | Clyde Consi                 | ultants 🕰                             | ·                          |                                                                         |  |  |

 $\left[ \right]$ 

÷į

# Log of Boring SB-7

Sheet 1 of 1

| Date(s)<br>Drilled            | 12/12/94 12/13/94                     | Logged BH<br>By BH                                           | Checked JB<br>By                        |
|-------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| Drilling<br>Method            | HOLLOW STEM AUGER                     | Top of PVC<br>Elevation (feet) FLUSH MOUNT                   | Total Depth 16.5<br>Drilled (feet)      |
| Drill Rig<br>Type             | MOBILE-B61                            | Drilled<br>By TACOMA PUMP AND DRILL                          | Hammer Weight/ 140/30<br>Drop (lbs/in.) |
| Groundwater<br>Level (ft bgs) | 7.0                                   | Sampler SPLIT SPOON                                          | Approx. Surface 98<br>Elevation (feet)  |
| Diameter of<br>Hole (inches)  | 8 Diameter of<br>Well (inches) 2      | Type of SCH 40 PVC                                           | Screen 0.020"                           |
| Type of<br>Sand Pack          | 10/20 SILICA                          | Type/Thickness <b>BENTONITE CHIPS 1-3 FEET</b><br>of Seal(s) |                                         |
| Comments                      | · · · · · · · · · · · · · · · · · · · |                                                              | · · · ·                                 |

*...* 

|                |                    | SAMF                                                                                                            | LES           | •              |                                                                                                                                                                    | Lo L |                  | OVA (       | ppm)       |                         |                    |
|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-------------|------------|-------------------------|--------------------|
| Depth,<br>feet | Elevation,<br>feet | Type<br>Number                                                                                                  | Blows/6in     | Graphic<br>Log | MATERIAL DESCRIPTION                                                                                                                                               | Well                                     | Completic<br>Log | Headspace   | Background | Drilling<br>Rate (time) | REMARKS            |
|                |                    |                                                                                                                 |               |                | Ground Surface - Concrete                                                                                                                                          |                                          |                  |             | E          | 1530                    |                    |
|                |                    | 11000000000000000000000000000000000000                                                                          | 50<br>60      |                | 0 - 4' GRAVEL (GP) - Brown to gray,<br>angular gravel.                                                                                                             |                                          |                  | 1           | 0          | •                       | •                  |
| -              | - 95               |                                                                                                                 |               |                | (FILL)                                                                                                                                                             |                                          |                  |             | $\langle$  |                         |                    |
| 5              |                    | SB-7                                                                                                            | 11<br>12<br>8 |                | <ul> <li>4-14' SANDY GRAVEL (GW), Brown,</li> <li>with fine to coarse grained sand, sand</li> <li>becomes finer grained towards bottom of<br/>interval.</li> </ul> |                                          |                  | 3           | 0.         |                         | Sample sent to lab |
|                | - 90               |                                                                                                                 | •             |                | . Wet at 7.0                                                                                                                                                       |                                          |                  | . 1         |            |                         |                    |
| -<br>10        |                    | Allen all | 12<br>19<br>5 |                |                                                                                                                                                                    |                                          |                  | 3           | 0          | ,                       |                    |
|                | - 85               | •                                                                                                               |               |                |                                                                                                                                                                    |                                          |                  | -           |            | • .                     | ·<br>·             |
| 15—            |                    |                                                                                                                 | 5<br>5<br>12  |                | SAND (SM) - Light to dark gray, fine to<br>– medium grained, wet, dark colored due to<br>organics.                                                                 |                                          |                  | 4           | o          |                         |                    |
|                | - 80               |                                                                                                                 |               |                | Boring terminated at 16.5'BGS.                                                                                                                                     | · ·                                      |                  |             |            | 0730                    |                    |
| 20-            |                    |                                                                                                                 | -             | ė.             |                                                                                                                                                                    |                                          |                  | ,<br>,<br>, |            | ·,                      | · · ·              |
| 1/11/95 11     | -<br>VL1 SARA      |                                                                                                                 |               |                | -Woodward-Clyde Consultar                                                                                                                                          | nts                                      |                  |             |            |                         | ·                  |

· · - ·

\*\*\* ) | | |

}

•

# Log of Boring SB-8

Sheet 1 of 1

| Date(s)<br>Drilled            | 12/12/94                         | Logged BH<br>By                                              | Checked<br>By                       | JB ·   |
|-------------------------------|----------------------------------|--------------------------------------------------------------|-------------------------------------|--------|
| Drilling<br>Method            | HOLLOW STEM AUGER                | Top of PVC<br>Elevation (feet) FLUSH MOUNT                   | Total Depth<br>Drilled (feet)       | 17.0   |
| Drill Rig<br>Type             | MOBILE-B61                       | Drilled<br>By TACOMA PUMP AND DRILL                          | Hammer Weight/<br>Drop (lbs/in.)    | 140/30 |
| Groundwater<br>Level (ft bgs) | 11.00                            | Sampler SPLIT SPOON                                          | Approx. Surface<br>Elevation (feet) | 98     |
| Diameter of<br>Hole (inches)  | 8 Diameter of<br>Well (inches) 2 | Type of SCH 40 PVC                                           | Screen<br>Perforation               | 0.020" |
| Type of<br>Sand Pack          | 10/20 SILICA                     | Type/Thickness <b>BENTONITE CHIPS 1-3 FEET</b><br>of Seal(s) |                                     |        |
| Comments                      |                                  |                                                              |                                     |        |

|                |                    | S                                       | SAMP   | LES          | 1              |                                                                                                                                   | L L   | OVA (ppm) |            |                         |                                       |
|----------------|--------------------|-----------------------------------------|--------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------------|-------------------------|---------------------------------------|
| Depth,<br>feet | Elevation,<br>feet | Type                                    | Number | Blows/6in    | Graphic<br>Log | MATERIAL DESCRIPTION                                                                                                              |       | Headspace | Background | Drilling<br>Rate (time) | REMARKS                               |
|                |                    |                                         |        |              |                | Ground Surface - Concrete                                                                                                         |       |           |            | 1100                    |                                       |
| -              | 95                 | HILITIAN PARAMETERS                     |        | 29<br>60     |                | 1 - 4' GRAVEL <sup>*</sup> (GP), Angular gravel to .5"<br>in diameter.                                                            |       | 0         | o          |                         |                                       |
| 5-             |                    |                                         |        | 1 2          |                | (FILL)<br>4 - 5' SILTY SAND (SM), Brown to black,<br>fine grained, abundant organics.<br>5-11' SILTY SAND, Brown to gray, fine to | il il | 1         | 0          |                         |                                       |
| יי<br>         | - 90               |                                         |        | 4            |                | medium grained sand, moist, natural<br>organic odor.                                                                              |       |           |            |                         |                                       |
| 10             |                    | 41444411111111111111111111111111111111  | SB-8   | 4<br>8<br>6  |                | <br>Wet at 11'                                                                                                                    |       | 0         | o          |                         | Sample sent to lab                    |
|                | - 85               |                                         |        |              |                | 11-17' SAND (SW) - Grey to dark grey,<br>medium grained, water at contact with<br>sand.                                           |       |           |            |                         |                                       |
| - 15           |                    | ALL |        | 6<br>9<br>10 |                |                                                                                                                                   |       |           | 0          | 1200                    | · · · · · · · · · · · · · · · · · · · |
|                | - 80               | -                                       |        |              |                | Boring terminated at 17.0'BGS.                                                                                                    |       | <u> </u>  |            |                         | · · · · · · · · ·                     |
| 20             |                    |                                         |        |              | <u> </u>       | -Woodward-Clyde Conculta                                                                                                          | nte 🛋 |           |            | <u>.</u>                |                                       |

| Well Number:      | Mh)-      | /                                     | Sample Nun  | nber: <u></u> | $1W^{-1}$       | Date:   | 10/11/94  |
|-------------------|-----------|---------------------------------------|-------------|---------------|-----------------|---------|-----------|
| Project:          | Jown B    | ase Annex                             | Project Nun | nber:         | 440391          | A Task: | 200       |
|                   |           |                                       |             |               |                 |         |           |
| Well Depth:       |           | 01                                    |             | Me            | asuring Point   | (MP):   |           |
| Water Depth:      | le T      | 2'                                    |             | Ele           | vation of MP:   | ·       | <u> </u>  |
| Feet of Water:    | 4.78      | 31                                    |             | Ele           | vation of Wa    | ter:    | ~         |
| Gallons per Foot: | 2.61      | mal/H                                 |             | We            | Il Diameter:    |         | 8"        |
| Well Volume:      | 12.5      | Scal                                  | •           |               | •               |         |           |
| Purge Volume:     | 404       | d                                     | w           |               |                 |         |           |
|                   | 1         | · · · · · · · · · · · · · · · · · · · | •           | We            | 11              | Gallo   | ns per    |
|                   | <u>.</u>  | •                                     | đ ·         |               | meter           | casing  | g 100t    |
|                   |           |                                       |             | 2 1           | iches           | 0.16    |           |
|                   |           | 1 .                                   |             | <u>4 u</u>    | icnes           | 0.65    | <b>_</b>  |
| Purge Method:     | Baily     | Dispo                                 | able)       | pl            | I meter:        |         |           |
| Sample Method:    | Bail      | u                                     |             | E             | n meter:        |         | <b></b>   |
| Water Disposal: 2 | In Site   | D:1/Wat                               | In Separa   | tor c         | onductivity m   | eter:   | <u> </u>  |
| Weather:          | Part      | ly Clo                                | uder        | C:            | alibration Date | e:      |           |
| Sampler(s):       | S. DUNN   | san / C.                              | Barri       | 30~ Q         | A/QC samples    | s:      | -         |
| -                 | . /       |                                       |             |               |                 |         |           |
| Field             | Before    | Volume                                | Volume      | Volume        | Volume          | Volume  | Sample    |
| Parameters        | Purging   | 1                                     | 2           | • 3           | 4               | 5       |           |
| Time              |           | 9:45                                  | 10:00       | 10:20         |                 | Ν       | 10:30     |
| pH                | $\square$ | 6.82                                  | 6.82        | 6.81          |                 |         | 6.81      |
| Conductivity      |           | 40 Suchas                             | HBlambas    | 488 marks     | s \             |         | 18 markos |
| Eh                |           | /_                                    | -           |               |                 |         | ·         |
| Temperature       |           | 18.5°C                                | 18.50       | 18.6°C        |                 |         | 18.62     |

۰.

| MW-2     | )                                                                                                                                         | Sample Numb                                                                                                                                                                                                                         | ver: <u>M</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/11/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| outh Bas | Annex                                                                                                                                     | Project Num                                                                                                                                                                                                                         | ber: <u>94</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATask:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.30    | 2                                                                                                                                         | • .                                                                                                                                                                                                                                 | Meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uring Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MP):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.50     |                                                                                                                                           |                                                                                                                                                                                                                                     | Eleva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion of MP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.74     | · · ·                                                                                                                                     |                                                                                                                                                                                                                                     | Eleva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation of Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.6/ 9   | al/It                                                                                                                                     |                                                                                                                                                                                                                                     | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12.4     | gal                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4Dan     | float                                                                                                                                     | r.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | - 0                                                                                                                                       | ,                                                                                                                                                                                                                                   | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gallo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                           | ť                                                                                                                                                                                                                                   | 2 incl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ·        |                                                                                                                                           |                                                                                                                                                                                                                                     | 4 incl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Baile    | r Dist                                                                                                                                    | osable)                                                                                                                                                                                                                             | pH ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | meter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bail     |                                                                                                                                           | -                                                                                                                                                                                                                                   | Eh 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| On Site  | 0.1/4                                                                                                                                     | Inter Span                                                                                                                                                                                                                          | to Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ductivity me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Parte    | y Cla                                                                                                                                     | rudy                                                                                                                                                                                                                                | Cali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bration Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S. Du    | maan                                                                                                                                      | 1C. Barn                                                                                                                                                                                                                            | BAG QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QC samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                           | 9                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Before   | Volume                                                                                                                                    | Volume                                                                                                                                                                                                                              | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Purging  | 1                                                                                                                                         | 2                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\sum$   | 1:40                                                                                                                                      | 1.50                                                                                                                                                                                                                                | 2:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 6.55                                                                                                                                      | 6.55                                                                                                                                                                                                                                | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 414 unhas                                                                                                                                 | 42 tunkes                                                                                                                                                                                                                           | 447 Junkes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 449 unhis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | -                                                                                                                                         | -                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>`~</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 19.9%                                                                                                                                     | 19.98                                                                                                                                                                                                                               | 18.9°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.9°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | MW-2<br>and Bas<br>11. 30<br>6.50<br>4. 74<br>2. 6/ 9<br>12. 4<br>40 9<br>Baile<br>Baile<br>S. Le<br>Parte<br>S. Dun<br>Before<br>Purging | MW-2<br>eith Base Annex<br>11.30<br>6.56<br>4.74<br>2.61 gal/ft<br>12.4 gal<br>40 gallont<br>Bailer Diof<br>Bailer<br>Bailer<br>S. Le O.1/h<br>Fartly Cla<br>S. Dunaigan<br>Before Volume<br>Purging 1<br>1:40<br>6.55<br>Hittuntos | <u>MW-2</u><br>Sample Numb<br><u>ach Base Annex</u> Project Numb<br><u>11.30</u><br><u>6.56</u><br><u>4.74</u><br><u>2.61 gal/It</u><br><u>12.4 gal</u><br><u>40 gallent</u><br><u>70 gallent</u><br><u>Baile</u><br><u>Baile</u><br><u>5.46 Oil Witer Space</u><br><u>70 Hy Cloudy</u><br><u>8. Dun mgan M. Barn</u><br><u>Before Volume Volume</u><br><u>Purging 1</u><br><u>2</u><br><u>1:40</u><br><u>1:50</u><br><u>6.55</u><br><u>6.55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:47</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>5.55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>5.10</u><br><u>5.10</u><br><u>5.55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>4:50</u><br><u>5.55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:55</u><br><u>4:40</u><br><u>4:40</u><br><u>4:40</u><br><u>5.55</u><br><u>4:55</u><br><u>4:40</u><br><u>5.55</u><br><u>5.55</u><br><u>5.55</u> | MW-2 Sample Number: Ma<br>and Base Anney Project Number: 94<br>11.30 Neas<br>6.56 Eleva<br>4.74 Eleva<br>2.6 gal/ff Well<br>12.4 gal<br>40 gal/ff Well<br>12.4 gal<br>40 gal/ff Well<br>12.4 gal<br>40 gal/ff Eleva<br>Well<br>12.4 gal<br>40 gal/ff Eleva<br>4 incl<br>Bailer (Disposable) pH f<br>Baile, Eh f<br>S. S. & B. / With Sparsks Con<br>7artly Cloudy Cali<br>S. Dun ingan / C. Barnison QA<br>Before Volume Volume Volume<br>Purging 1 2 3<br>1:40 /:50 2:10<br>6.55 6.55 6.46<br>Hitundos 424 under 447 under | MW-2Sample Number: $MW-2$ $add. Bass AnneyProject Number:944039MMW-2944039MMW-2944039MMu = 2944039MMu = 2Mu = 2$ | MW-2       Sample Number: $MW-2$ Date: $Base Anney       Project Number:       944039MA       Task:         M.30       Measuring Point (MP):       Image: Constraint of the second secon$ |

y----

· · ·

. J

i.

/

| Well Number:             | Mhr-3       |                                       | Sample Num  | iber: <u>M</u>  | W-3            | Date:    | 10/1/94     |
|--------------------------|-------------|---------------------------------------|-------------|-----------------|----------------|----------|-------------|
| Project:                 | Jook Base   | Annex                                 | Project Nun | nber: <u>94</u> | 4039 <i>NA</i> | /Task:   | 200         |
|                          |             |                                       |             |                 |                |          | 3           |
| Well Depth:              | 11.30       | <u> </u>                              |             | Meas            | uring Point (  | (MP):    | ~ <u> </u>  |
| Water Depth:             | 5.98        | <u> </u>                              |             | Eleva           | ation of MP:   |          |             |
| Feet of Water:           | 5.32        | <u> </u>                              |             | Eleva           | ation of Wat   | er:      | -           |
| -<br>Gallons per Foot:   | 2.61        | gal/ft                                |             | Well            | Diameter:      | <u>.</u> | · · · · · · |
| Well Volume:             | 13.8        | ial                                   |             |                 | · .            |          |             |
| -<br>Purge Volume:       | 400         | llon                                  |             |                 | · ·            |          |             |
|                          |             |                                       |             | Well            |                | Gallo    | ns per      |
|                          |             |                                       | \$          | Diam            | leter          |          | <u>100t</u> |
| •                        |             |                                       | ,           | 2 inc           | nes<br>hes     | 0.10     |             |
| :                        | 0 -         | 5.                                    | <i>*</i>    | 4 110           |                |          |             |
| Purge Method:            | Barler      | Dispos                                | able)       | pH :            | meter:         |          |             |
| Sample Method:           | Baily       | · · · · · · · · · · · · · · · · · · · |             | Eh ı            | meter:         |          |             |
| Water Disposal: <u>(</u> | In Site a   | Dil/Wat                               | w Separa    | Con             | ductivity me   | eter:    |             |
| Weather:                 | Part        | y Cla                                 | udy_        | Cali            | bration Date   |          | -           |
| Sampler(s):              | S. Dunn     | arm 11                                | Barris      | an QA           | QC samples     | • •      |             |
|                          | /           |                                       | 9           |                 |                |          |             |
| Field                    | Before      | Volume                                | Volume      | Volume          | Volume         | Volume   | Sample      |
| Parameters               | Purging     | 1                                     | 2           | 3               | 4              | 5        |             |
| Time                     | $\sum$      | 10:20                                 | 10:30       | 10:40           | $\backslash$   | $\Delta$ | 0.55        |
| рН                       |             | 6.80                                  | 6.65        | 6.65            |                |          | 6.60        |
| Conductivity             |             | 45 Junilos                            | 48 Tuskas   | 4Tuntos         |                |          | +74 makes   |
| Eh                       |             |                                       |             | <u> </u>        |                |          | ~           |
| Temperature              |             | 18.9°C                                | 19.0°C      | 19.0°C          |                |          | 1928        |
|                          | · · · · · · |                                       |             |                 | :              |          | •           |
|                          |             | I I I I I I I I I I I I I I I I I I I |             |                 |                |          |             |
|                          |             | · · · · · · · · · · · · · · · · · · · |             |                 |                |          |             |
| ·                        | -           | ·                                     |             |                 |                |          |             |

#### h/- .4 Date: 10 MW-4 Sample Number: Well Number: 9440391/A Task: 200 South Base Annex Project Number: Project: Measuring Point (MP): Well Depth: Elevation of MP: Water Depth: \_ Feet of Water: Elevation of Water: Well Diameter: Gallons per Foot: a Well Volume: Purge Volume: 1 sallors Well Gallons per Diameter casing foot 2 inches 0.16 4 inches 0.65 Dispesable pH meter: Purge Method: Sample Method: Eh meter: Water Disposal: parator Conductivity meter: On S. Weather: Sinne Calibration Date: QA/QC samples: Sampler(s): Volume Volume Volume Before Volume Volume Sample Field Purging **Parameters** 1 2 3 4 5 12:20 12:10 12:15 2:45 Time 78 78 6.78 pН 518mmb 24 mapos 501 Conductivity 522 Eh 2% 9.3°C 3℃ 19.6% Temperature

### **GROUNDWATER SAMPLING DATA SHEET**

Υ - - -1 --

¥ -

. ...

| Well Number:      | SB        | »·\$                                  |               | Sample N             | lumber:      | S (            | 3-5      |
|-------------------|-----------|---------------------------------------|---------------|----------------------|--------------|----------------|----------|
| Project Name:     | MEREO     | S. B.A.                               | Ĺ             | Project/Ta           | ask:         | 9440           | 39NA/100 |
|                   |           |                                       |               | Date:                | -            | 12-            | 17-94    |
| -Well Depth:      | 14        | 1000                                  | _             | Measurin             | g Point (MP) | ): 70          |          |
| Water Depth:      | 7         | -50 6.0                               | 60            | Elevation            | of MP:       | ر <i>م</i> الا | 4        |
| Feet of Water:    |           | 1,50                                  | _             | Elevation            | of Water:    | · A ,          | 4        |
| Gallons per Foot: | () a      | 16                                    | >             |                      |              |                | <u> </u> |
| -                 |           |                                       |               | Well Diar            | neter:       | 210            | CIMES    |
| Well Volume:      | 1.1       | 20                                    |               |                      |              |                |          |
| Purge Volume:     | 6.        | 0                                     |               | Well                 |              | Gallons pe     | r        |
|                   |           |                                       | -             | Diameter             |              | casing foo     | t        |
|                   |           |                                       |               | 2 inches<br>4 inches |              | 0.16<br>0.65   |          |
| Purge Method:     | Patrice   | and an are the                        | BAJEN         | pH meter             |              | B.F.C.W.       | maral    |
| Sample Method:    | antice    | er en e                               | ant a         | - Fh meter           | ·•           | N A            |          |
| Water Disposal    |           | hypric 1                              | 50171CC       | - Conducti           | ·            |                |          |
| Weather:          | EPC/CATIC |                                       |               | vity meter.          |              | NAM            |          |
| Sampler(s):       | NG MI     | 0403                                  | _ D.O. Iviei  | er.                  | 17 10 011    |                |          |
| Sampler(s).       | 17.12.66  | als Gol                               | GIN S         |                      | on Date:     |                | 9-94     |
| QA/QC Samples     |           |                                       |               |                      |              |                |          |
| Blind Duplicate   |           |                                       |               |                      |              |                |          |
| MS/MSD            | ^         | <u></u>                               |               | -                    |              | <i>:</i>       |          |
| Renlicate         | :         |                                       |               | _                    |              |                |          |
| Blank             |           |                                       |               | -                    |              |                |          |
|                   | ·         |                                       |               | -                    |              |                |          |
| Field Parameters  | 0         | 1                                     | 2             | 3                    | 4            | 5              | Sample   |
|                   | Volumes   | Volume                                | Volumes       | Volumes              | Volumes      | Volumes        |          |
| l'emperature      | 14.0      | 14.0                                  | 14.0          | 14.0                 |              |                | ·        |
| Conductivity      | 5210      | 531                                   | 6.45          | 6.45                 |              |                |          |
| 3h                | NA        | 500<br>FIN                            | WA-           |                      | 3/17-        | a/ 1           |          |
| Dissolved Oxygen  | NA        | NA                                    | NA            | NA                   | NA           | NA             |          |
| Turbidity         | High      | HAH                                   | HAGH          | 1+1411               |              |                |          |
| Sime              | 1235      | 1237                                  | 1.2.39        | 1241                 |              |                |          |
|                   |           | вотт                                  | ,<br>Le reoui | REMENTS              |              |                | · .      |
| Analysis          |           | Bottle                                | Number        | Number               | Bottle       | Bottle         | Number   |
|                   |           | Туре                                  |               | MS/MSD               | Туре         | Number         | MS/MSD   |
| •                 |           |                                       |               |                      |              |                |          |
|                   |           |                                       |               |                      |              |                |          |
|                   |           |                                       |               |                      |              |                |          |
|                   |           |                                       |               |                      |              |                |          |
|                   |           |                                       | — <u> </u>    |                      | <u>├</u>     |                |          |
|                   | ·         | · · · · · · ·                         |               |                      |              |                |          |
|                   |           | · · · · · · · · · · · · · · · · · · · |               |                      |              |                | <u>`</u> |
|                   |           |                                       |               |                      |              |                |          |

.•

÷

.

.

-

į

Į

ŀ

;\_\_; ;\_\_;

 $\sum_{i=1}^{n}$ 

 $\bigcap_{i=1}^{n}$ 

 $\left\{ \right\}$ 

{ .

<u>ح</u>

 $\left[ \right]$ 

 $\prod_{i=1}^{n}$ 

|                     | GRU      |                                       |                 |                  |                |                                              |                                       |
|---------------------|----------|---------------------------------------|-----------------|------------------|----------------|----------------------------------------------|---------------------------------------|
| Well Number:        | SB       | ,7                                    |                 | Sample Nu        | ımber:         | <u> </u>                                     | 7                                     |
| Project Name:       | M ETRE   | <u>S. Ba</u>                          | <u>5</u> ē      | Project/Tas      | Project/Task:  |                                              | 39NA/1000                             |
| 1                   |          |                                       | _               | Date:            |                | 127                                          | 9-94                                  |
| Well Depth:         | 12       | . 00                                  | -               | Measuring        | ; Point (MP):  | 700                                          |                                       |
| Water Depth:        | - 4      | . 80                                  | -               | Elevation (      | of MP:         | لىم                                          | イ                                     |
| Feet of Water:      | 7.       | 20                                    | -               | Elevation c      | of Water:      | ~N                                           | A                                     |
| Gallons per Foot:   | 0.       | 16                                    | -               |                  |                | -                                            |                                       |
| Well Volume:        | 1.       | 15                                    | -               | Well Diam        | eter:          | 2 .~                                         | <u>( HE S</u>                         |
| Purge Volume:       | 5.       | 75                                    | -               | Well             |                | Gallons per                                  |                                       |
|                     |          |                                       | -               | Diameter         |                | casing foot                                  |                                       |
|                     |          |                                       |                 | 4 inches         |                | 0.10                                         |                                       |
| Purge Method:       | PolyEst  | tu ICNE                               | BAILER          | pH meter:        | :              | BECK                                         | MAN                                   |
| -<br>Sample Method: | 1201-1EN | Thuisse                               | BAUER           | Eh meter:        |                | NA                                           |                                       |
| Water Disposal:     | BIL S    | -senteria                             | Tan             | Conductiv        | vity meter:    | HANI                                         | VAH                                   |
| Weather:            | RATH     | ING M                                 | 10 40'5         | D.O. Mete        | er:            | · NA                                         |                                       |
| Sampler(s):         | RICHT    | 20 600                                | CINS            | -<br>Calibratio  | on Date:       | 12-1                                         | 9.94                                  |
| QA/QC Samples       |          | <u> </u>                              |                 |                  | l              | · .                                          | <br>                                  |
| Blind Duplicate     | 5        | 3-6                                   |                 |                  |                | 7                                            |                                       |
| MS/MSD              | k        | IA                                    | · ·             |                  |                | •                                            | , ·                                   |
| Replicate           |          | V A                                   |                 |                  |                |                                              |                                       |
| Blank               | ;        | NA                                    |                 | •<br>•           |                |                                              |                                       |
| Field Parameters    | 0        | 1                                     | 2               | 3                | 4              | 5                                            | Sample                                |
|                     | Volumes  | Volume                                | Volumes         | Volumes          | Volumes        | Volumes                                      |                                       |
| Temperature         | 11.6     | 11.0<br>1. Un                         | 10.9            | 10.8             | 11.3           | 10.8                                         | · · · · · · · · · · · · · · · · · · · |
| pri<br>Conductivity | 6.41     | 621                                   | 582             | 537              | 567            | 498                                          |                                       |
| Eh                  | NA.      | NA                                    | NA              | NA               | N.A            | NA                                           |                                       |
| Dissolved Oxygen    | A A      | NA.                                   | NA              | NA               | Na             | NA                                           |                                       |
| Turbidity           | HIGH     | HIGH                                  | HIGH            | HIGH             | HIGH           | 1210                                         | <br>I                                 |
| Time                | 1/43     | 1130                                  | 1153            | 1000             | 1205           | 1010                                         |                                       |
|                     |          | BOTT                                  | <u>ILE REQU</u> | IREMENT:         | 5              |                                              |                                       |
| Analysis            |          | Bottle<br>Type                        | Number          | Number<br>MS/MSD | Bottle<br>Type | ' Bottle<br>Number                           | Number<br>MS/MSD                      |
|                     |          |                                       |                 |                  |                |                                              |                                       |
|                     |          |                                       | <u> </u>        | <b>↓</b> !       | <b> </b> '     | <u>↓                                    </u> | · · · · · · · · · · · · · · · · · · · |
| ·                   |          | · · · · · · · · · · · · · · · · · · · | ───             |                  |                | <b>├────</b> ┦                               |                                       |
|                     |          | ┟─────                                | <del> </del> -  | <u></u> }┦       | ()             | <u>├</u> ───┤                                |                                       |
|                     | 1        |                                       | <u> </u>        | <u> </u>         |                | <u> </u>                                     |                                       |
|                     |          |                                       |                 |                  |                |                                              |                                       |
| 1                   | ,        | 4                                     |                 | 1 1              | 11 .           | 1 1                                          | r                                     |

÷

| Well Number:                          | Se           | 3-8           |                | Sample Nu            | umber:       | SB                                    | -8         |
|---------------------------------------|--------------|---------------|----------------|----------------------|--------------|---------------------------------------|------------|
| Project Name:                         | METRO        | 5. BASE       |                | Project/Ta           | sk:          | 944039                                | NALIDDA    |
|                                       |              |               |                | Date:                |              | . 1.2-1                               | 19-94      |
| -Well Depth:                          |              | 10            |                | Measuring            | ; Point (MP) | To                                    | c          |
| Water Depth:                          | _ 4,         | 28            | _              | Elevation            | of MP:       | <b>T</b> \$                           | A.         |
| Feet of Water:                        | 6.           | 82            |                | Elevation of         | of Water:    | · ~                                   | A          |
| Gallons per Foot:                     | 0.           | 16            |                |                      |              | • . •                                 |            |
|                                       | ,            |               | •              | Well Diam            | eter:        | 211                                   | Vertes     |
| Well Volume:                          | /.           | 09            |                |                      |              | · · ·                                 |            |
| <b>Purge Volume:</b>                  | 5.           | 45            | ÷              | Well                 |              | Gallons per                           | r l        |
|                                       |              | ·             | <b>-</b> .     | Diameter             |              | casing foot                           |            |
|                                       |              |               |                | 2 inches<br>4 inches |              | 0.16                                  |            |
| Purge Method                          |              | 1. 10 .5      | Dailes         | nH meter             |              | Real                                  | ]          |
| Sample Method:                        | - porgeri    | te e B        | aule a         | - Fh meter           |              |                                       | NH N       |
| Water Disposal                        | POYETHY      | Srange Pl     | 5              | - Conductiv          | uitu meter:  |                                       |            |
| Weather                               | <u> </u>     | SCPHICH1      | are            | - DO Met             | er.          |                                       | d d        |
| Sampler(s):                           | - RHIN       | NG MI         |                | - Calibratio         | an Date:     | <u></u>                               | <u>, 1</u> |
| Sumpton(b):                           |              | <u>90 (90</u> | 44705          | -                    | n Date.      |                                       |            |
| QA/QC Samples                         |              |               |                |                      |              |                                       |            |
| Blind Duplicate                       |              | NA            | <del>л</del> . |                      |              |                                       |            |
| MS/MSD                                |              | NA            | :              | -                    | • ,          |                                       |            |
| Replicate                             |              | NA            |                | -                    |              | 、                                     |            |
| Blank                                 |              | NA            |                |                      | •            |                                       |            |
|                                       |              |               | r <u> </u>     |                      |              |                                       |            |
| field Parameters                      | 0<br>Volumes | I<br>Volume   | 2<br>Volumes   | 3<br>Volumes         | 4<br>Volumes | 5<br>Volumes                          | Sample     |
| Cemperature                           | 14 2         | 142           |                | V orumes             | v orumes     | Volumes                               |            |
| эн                                    | 6.13         | 6.15          |                |                      | · · ·        | ·                                     |            |
| Conductivity                          | 708          | 700           |                | -                    | · · · ·      |                                       |            |
| Eh                                    | NA           | NA            | ·              |                      |              |                                       |            |
| Dissolved Oxygen                      | Nit          | NA            | ·              |                      |              |                                       |            |
| l'urbidity                            | HIGH         | 1+1611        |                |                      |              | ,                                     |            |
| lime                                  | 1025         | 1050          | <u>,</u>       | ļ                    |              |                                       |            |
|                                       |              | BOT           | LE REOU        | REMENTS              | 3            | s. •                                  | -          |
| Analysis                              |              | Bottle        | 'Number        | Number               | Bottle       | Bottle                                | Number     |
|                                       |              | Туре          | Ъ.             | MS/MSD               | Туре         | Number                                | MS/MSD     |
|                                       |              | *             |                | ·                    |              |                                       |            |
| <u> </u>                              | ,            |               |                |                      | ,            |                                       |            |
|                                       |              | · · ·         |                |                      | ·            | · · · · · · · · · · · · · · · · · · · |            |
| - <u></u> ;                           |              |               |                |                      |              | ·                                     |            |
|                                       |              |               | · · · ·        |                      | ·            | <u> </u>                              |            |
| · · · · · · · · · · · · · · · · · · · | ·            |               |                |                      |              |                                       |            |
| ·····                                 |              |               |                |                      | · · · ·      |                                       |            |
|                                       |              |               | <u> </u>       | L                    | ·            |                                       |            |

 $\left[ \begin{array}{c} \cdot \\ \cdot \end{array} \right]$ ----| 1 | [ | [ ·----~~~



# **Resource Protection Well Report**

| Resource F                                                                                                          | Protection Well Re                                                                                                                                     | enort                                                                  | Notice of Intent No.                                                                                                                                                                                 | RE19268                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| Submit one well rep                                                                                                 | ort per well installed. See page                                                                                                                       | two for instructions.                                                  | Type of Well                                                                                                                                                                                         |                                                                                                               |  |  |
| Type of Work:<br>Construction<br>Decommission<br>Ecology Well ID                                                    | n ⇔ Original NOI No<br>Fag NoBNF195                                                                                                                    |                                                                        | Resource Protection Well       Injection Point         Remediation Well       Grounding Well         Geotechnical Soil Boring       Ground Source Heat Pump         Environmental Boring       Other |                                                                                                               |  |  |
| Site Well Name                                                                                                      | B-25                                                                                                                                                   |                                                                        | Soil- 🗆 Vapor                                                                                                                                                                                        | - Water-sampling                                                                                              |  |  |
| Consulting Firm _                                                                                                   |                                                                                                                                                        |                                                                        | Property Owner KIT                                                                                                                                                                                   | ng County Iransit                                                                                             |  |  |
| Was a variance ap                                                                                                   | proved for this well/boring?                                                                                                                           | 🗆 Yes 🗆 No                                                             | Well Street Address 1                                                                                                                                                                                | 1911 E Marginal Ways                                                                                          |  |  |
| If yes, what was th                                                                                                 | e variance for?                                                                                                                                        |                                                                        | City UKWIIQ                                                                                                                                                                                          | County_ <u>Ring</u>                                                                                           |  |  |
|                                                                                                                     |                                                                                                                                                        |                                                                        | Tax Parcel No.                                                                                                                                                                                       |                                                                                                               |  |  |
| WELL CONSTRU<br>accept responsibility for<br>Washington well const<br>reported are true to my<br>R Driller T Traing | JCTION CERTIFICATION:<br>r construction of this well, and its c<br>ruction standards. Materials used an<br>best knowledge and belief.<br>ee T Engineer | I constructed and/or<br>ompliance with all<br>ad the information       | Location (see instructio<br><u>SW</u> ¼-¼ <u>NW</u> ¼, S<br>Latitude (Example: 47.1<br>Longitude (Example: -1                                                                                        | ms): WWM $\square$ or EWM $\square$<br>ection <u>10</u> Town <u>23</u> Range <u>4E</u><br>12345)<br>20.12345) |  |  |
| Name (Print Last,                                                                                                   | First Name) Thompson Jerry                                                                                                                             | d                                                                      | (WGS                                                                                                                                                                                                 | 84 Coordinate System)                                                                                         |  |  |
| Driller/Engineer/T                                                                                                  | rainee Signature                                                                                                                                       | M                                                                      | Borehole diameter                                                                                                                                                                                    | inches Casing diameter inches                                                                                 |  |  |
| License No. 2823                                                                                                    |                                                                                                                                                        |                                                                        | Static water level                                                                                                                                                                                   | ft below top of casing Date                                                                                   |  |  |
| Company Name H                                                                                                      | olocene Drilling Inc.                                                                                                                                  |                                                                        | ☐ Above-ground comp                                                                                                                                                                                  | letion with bollards YFlush monument                                                                          |  |  |
| If trainee box is ch                                                                                                | ecked, sponsor's license nun                                                                                                                           | nber:                                                                  | Stick-up of top of well casing ft above ground surface                                                                                                                                               |                                                                                                               |  |  |
| Sponsor's signatur                                                                                                  | e                                                                                                                                                      |                                                                        | Start Date 4. 21. 202                                                                                                                                                                                | 0 Completed Date 4.21-2020                                                                                    |  |  |
| Cons                                                                                                                | truction Design                                                                                                                                        | V                                                                      | Vell Data                                                                                                                                                                                            | Driller's Log                                                                                                 |  |  |
| Vaula                                                                                                               |                                                                                                                                                        | Casing Diame                                                           | ter _ 2 ''                                                                                                                                                                                           | Fill                                                                                                          |  |  |
| 0 FT                                                                                                                |                                                                                                                                                        | Casing Materia                                                         | al <u>PVC</u>                                                                                                                                                                                        |                                                                                                               |  |  |
| to<br>2 <sub>FI</sub>                                                                                               |                                                                                                                                                        | □Welded ⊠Threaded □Glued<br>Well Seal Material: <u>BentoniteChip</u> S |                                                                                                                                                                                                      | FT FT<br>Sand & silt                                                                                          |  |  |
| Seal                                                                                                                |                                                                                                                                                        | Borehole Diam                                                          | to <u>36.5</u>                                                                                                                                                                                       | 8 FT - 34.5 FT                                                                                                |  |  |
| 2 <sub>11</sub>                                                                                                     |                                                                                                                                                        | From _                                                                 | to                                                                                                                                                                                                   |                                                                                                               |  |  |
| to                                                                                                                  |                                                                                                                                                        | Screen.                                                                |                                                                                                                                                                                                      |                                                                                                               |  |  |
| <u> </u>                                                                                                            |                                                                                                                                                        |                                                                        | 2" PVC                                                                                                                                                                                               | FT FT                                                                                                         |  |  |
| Cildura Da ala                                                                                                      |                                                                                                                                                        | From                                                                   | to                                                                                                                                                                                                   |                                                                                                               |  |  |
| 3 ET                                                                                                                |                                                                                                                                                        | Slot Size                                                              | 20                                                                                                                                                                                                   |                                                                                                               |  |  |
| <u>F1</u>                                                                                                           |                                                                                                                                                        | Filter Pack :                                                          |                                                                                                                                                                                                      | FT - Received FT                                                                                              |  |  |
| 20                                                                                                                  |                                                                                                                                                        | Material <u>CO</u>                                                     | lorado Sand                                                                                                                                                                                          | Department of Ecolog                                                                                          |  |  |
| _20 FI                                                                                                              | Charles and a standard and a standard and an and a standard and a standard and a standard and a standard as a s                                        | Size 12                                                                | 2   20                                                                                                                                                                                               | MAY 2 6 2020                                                                                                  |  |  |
|                                                                                                                     |                                                                                                                                                        | 1                                                                      |                                                                                                                                                                                                      | Vvater Resources Progra                                                                                       |  |  |

NWRO

# Appendix F

TEE Form



# **Voluntary Cleanup Program**

# Washington State Department of Ecology Toxics Cleanup Program

Title: Senior Hydrogeologist

# TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

# Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</u>.

## Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: King County METRO Transit S Facilities/S Annex

Facility/Site Address: 11911 E Marginal Way, Tukwila, WA 98168

Facility/Site No: 8422289

VCP Project No.:

## Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Lisa Gilbert

Organization: Parametrix, Inc.

Mailing address: 719 2nd Avenue, Suite 200

| City: Seattle       |      |  | te: WA         | Zip code: 98104   |
|---------------------|------|--|----------------|-------------------|
| Phone: 206.394-3667 | Fax: |  | E-mail: Igilbe | rt@parametrix.com |

| Step 3: DOCUMENT EVALUATION TYPE AND RESULTS                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A. Exclusion                                                                                                                | A. Exclusion from further evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1. Does the Site qualify for an exclusion from further evaluation?                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                             | Yes If you answered " <b>YES</b> ," then answer <b>Question 2</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| ⊠<br>Un                                                                                                                     | No or <i>If you answered "<b>NO" or "UNKNOWN,"</b> then skip to <b>Step 3B</b> of this form.</i>                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 2. What is                                                                                                                  | the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Point of                                                                                                                    | Compliance: WAC 173-340-7491(1)(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                             | All soil contamination is, or will be,* at least 15 feet below the surface.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                             | All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Barriers                                                                                                                    | to Exposure: WAC 173-340-7491(1)(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                             | All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Undevel                                                                                                                     | oped Land: WAC 173-340-7491(1)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                             | There is less than 0.25 acres of contiguous <sup>#</sup> undeveloped <sup>±</sup> land on or within 500 feet<br>of any area of the Site and any of the following chemicals is present: chlorinated<br>dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin,<br>endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride,<br>toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.                                                               |  |  |  |  |  |
|                                                                                                                             | For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous <sup>#</sup> undeveloped <sup>±</sup> land on or within 500 feet of any area of the Site.                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Backgro                                                                                                                     | und Concentrations: WAC 173-340-7491(1)(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                             | Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| * An exclusic<br>acceptable to<br><sup>±</sup> "Undevelop<br>prevent wildli<br># "Contiguou<br>highways, ex<br>by wildlife. | on based on future land use must have a completion date for future development that is<br>b Ecology.<br>bed land" is land that is not covered by building, roads, paved areas, or other barriers that would<br>fe from feeding on plants, earthworms, insects, or other food in or on the soil.<br>s" undeveloped land is an area of undeveloped land that is not divided into smaller areas of<br>tensive paving, or similar structures that are likely to reduce the potential use of the overall area |  |  |  |  |  |

| в  | 3. Simplified evaluation.                                                       |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. | 1. Does the Site qualify for a simplified evaluation?                           |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    | X Y                                                                             | es If you answered "YES," then answer Question 2 below.                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | ☐ N<br>Unkn                                                                     | o or<br>own If you answered " <b>NO"</b> or " <b>UNKNOWN,"</b> then skip to <b>Step 3C</b> of this form.                                                                                                                                                                                                                          |  |  |  |  |
| 2. | Did you co                                                                      | enduct a simplified evaluation?                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    | X Y                                                                             | es If you answered "YES," then answer Question 3 below.                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | □ N                                                                             | o If you answered " <b>NO,</b> " then skip to <b>Step 3C</b> of this form.                                                                                                                                                                                                                                                        |  |  |  |  |
| 3. | Was furthe                                                                      | er evaluation necessary?                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|    | ×Υ                                                                              | es If you answered "YES," then answer Question 4 below.                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | □ N                                                                             | o If you answered " <b>NO</b> ," then answer <b>Question 5</b> below.                                                                                                                                                                                                                                                             |  |  |  |  |
| 4. | lf further e                                                                    | valuation was necessary, what did you do?                                                                                                                                                                                                                                                                                         |  |  |  |  |
|    | $\boxtimes$                                                                     | Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then</i> s <i>kip to</i> <b>Step 4</b> of this form.                                                                                                                                                                                                   |  |  |  |  |
|    |                                                                                 | Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.                                                                                                                                                                                                                                                   |  |  |  |  |
| 5. | If no furthe<br>to Step 4 o                                                     | er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.                                                                                                                                                                                                                                    |  |  |  |  |
|    | Exposure A                                                                      | Analysis: WAC 173-340-7492(2)(a)                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|    |                                                                                 | Area of soil contamination at the Site is not more than 350 square feet.                                                                                                                                                                                                                                                          |  |  |  |  |
|    |                                                                                 | Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.                                                                                                                                                                                                                                                   |  |  |  |  |
|    | Pathway A                                                                       | nalysis: WAC 173-340-7492(2)(b)                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    | No potential exposure pathways from soil contamination to ecological receptors. |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    | Contamina                                                                       | nt Analysis: WAC 173-340-7492(2)(c)                                                                                                                                                                                                                                                                                               |  |  |  |  |
|    |                                                                                 | No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.                                                                                                                                                                                 |  |  |  |  |
|    |                                                                                 | No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.                                                             |  |  |  |  |
|    |                                                                                 | No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.                                                                                                                     |  |  |  |  |
|    |                                                                                 | No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination. |  |  |  |  |

| C. | Site-specif<br>the problem<br>require con                                                                      | <b>ic evaluation.</b> A site-specific evaluation process consists of two parts: (1) formulating<br>and (2) selecting the methods for addressing the identified problem. Both steps<br>sultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c). |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1. | <b>1. Was there a problem?</b> See WAC 173-340-7493(2).                                                        |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    | Yes If you answered " <b>YES</b> ," then answer <b>Question 2</b> below.                                       |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    | No If you answered " <b>NO</b> ," then identify the reason here and then skip to <b>Quest</b> below:           |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                                                | No issues were identified during the problem formulation step.                                                                                                                                                                                                   |  |  |  |  |  |
|    |                                                                                                                | While issues were identified, those issues were addressed by the cleanup actions for protecting human health.                                                                                                                                                    |  |  |  |  |  |
| 2. | What did y                                                                                                     | ou do to resolve the problem? See WAC 173-340-7493(3).                                                                                                                                                                                                           |  |  |  |  |  |
|    |                                                                                                                | Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to Question 5 below.</i>                                                                                                                                                    |  |  |  |  |  |
|    |                                                                                                                | Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>                                                                                                 |  |  |  |  |  |
| 3. | <b>If you conc</b><br>Check all th                                                                             | ucted further site-specific evaluations, what methods did you use?<br>at apply. See WAC 173-340-7493(3).                                                                                                                                                         |  |  |  |  |  |
|    |                                                                                                                | Literature surveys.                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                | Soil bioassays.                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                                                | Wildlife exposure model.                                                                                                                                                                                                                                         |  |  |  |  |  |
|    |                                                                                                                | Biomarkers.                                                                                                                                                                                                                                                      |  |  |  |  |  |
|    |                                                                                                                | Site-specific field studies.                                                                                                                                                                                                                                     |  |  |  |  |  |
|    |                                                                                                                | Weight of evidence.                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                | Other methods approved by Ecology. If so, please specify:                                                                                                                                                                                                        |  |  |  |  |  |
| 4. | 4. What was the result of those evaluations?                                                                   |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                                                | Confirmed there was no problem.                                                                                                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                                                | Confirmed there was a problem and established site-specific cleanup levels.                                                                                                                                                                                      |  |  |  |  |  |
| 5. | 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    | Yes If so, please identify the Ecology staff who approved those steps:                                         |                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|    | □ No                                                                                                           |                                                                                                                                                                                                                                                                  |  |  |  |  |  |

### Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.



If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.