REMEDIAL INVESTIGATION REPORT

RECEIVED

MAR 3 2003

DEPT OF ECOLOGY

FORMER TEXACO SERVICE STATION No. 211577 631 QUEEN ANNE AVENUE NORTH SEATTLE, WASHINGTON

March 3, 2003

AGENCY DRAFT

Remedial Investigation Report

FORMER TEXACO SERVICE STATION No. 211577 631 QUEEN ANNE AVENUE NORTH SEATTLE, WASHINGTON

Prepared by

Delta Environmental Consultants, Inc.

1200 - 112th Avenue NE, Suite C-210

Bellevue, WA 98004

Prepared for
Chevron Environmental Management Company
6001 Bollinger Canyon Road
San Ramon, CA 94583

March 3, 2003

DRAFT

DRAFI

Peter H. Catterall

Project Manager

Matthew R. Miller, R.G.

Project Geologist

TABLE OF CONTENTS

TAB	LE O	F CONTENTS	2
1.0	INT	RODUCTION	4
2.0	BAG	CKGROUND INFORMATION	4
	2.1	PROPERTY DESCRIPTION	4
	2.2	PROPERTY HISTORY	4
	2.3	PREVIOUS INVESTIGATIONS	5
	2.4	CURRENT STATUS	5
	2.5	REGIONAL AND AREA-SPECIFIC GEOLOGY AND HYDROLOGY	5
		REGIONAL GEOLOGY	5
		AREA-SPECIFIC GEOLOGY	6
		HYDROLOGY	6
3.0	PUF	RPOSE	7
4.0	SC	OPE OF WORK	7
5.0	FIELD ACTIVITIES		
	5.1	THIRD QUARTER GROUNDWATER MONITORING AND SAMPLING	8
	5.2	SOIL VAPOR PROBE INSTALLATION	10
	5.3	GEOPROBING AND SOIL SAMPLING	
	5.4	SOIL BORINGS	14
	5.5	MONITORING WELL INSTALLATION	16
	5.6	MONITORING WELL SURVEY	17
	5.7	MONITORING WELL DEVELOPMENT	
	5.8	SOIL VAPOR SAMPLING	18
	5.9	MONITORING WELL PURGING AND SAMPLING	19
6.0	DA	FA QUALITY ASSURANCE	20
	6.1	MONITORING EQUIPMENT CALIBRATION	20
	6.2	DECONTAMINATION PROCEDURES	20
	6.3	SAMPLE STORAGE, PACKING, AND SHIPMENT	20
	6.4	CHAIN OF CUSTODY PROCEDURES	21
	6.5	SAMPLE QUALITY ASSURANCE/ QUALITY CONTROL PROCEDURES	21

7.0	STO	DRAGE AND DISPOSAL OF RESIDUALS	21
8.0	RESULTS		22
	8.1	SUBSURFACE CONDITIONS	22
	8.2	SOIL ANALYTICAL RESULTS	23
		VAPOR PROBE INSTALLATION SOIL SAMPLE RESULTS	23
		GEOPROBE SOIL SAMPLE RESULTS	24
		SOIL BORING SAMPLE RESULTS	26
	8.2	GROUNDWATER ANALYTICAL RESULTS	28
		THIRD QUARTER GROUNDWATER MONITORING AND SAMPLING RESULTS	29
		SOIL VAPOR PROBE INSTALLATION GROUNDWATER SAMPLING RESULTS	31
		FOURTH QUARTER GROUNDWATER SAMPLING RESULTS	32
	8.3	SOIL VAPOR ANALYTICAL RESULTS	34
9.0	DISCUSSION		35
	9.1	SUBSURFACE SOILS	35
	9.2	GROUNDWATER	37
	9.3	SOIL VAPOR	40
10.0	PRELIMINARY RISK ASSESSMENT		40
	10.1	SUBSURFACE SOILS	41
	10.2	2 GROUNDWATER	43
	10.3	3 SOIL VAPOR	45
11 0	FIIT	TURE REMEDIATION AND SITE ASSESSMENT	51

LIST OF FIGURES

1	Property Location Map
2	Site Vicinity Map
3	Gettler-Ryan Inc. Potentiometric Map, dated July 24, 2002
4	Gettler-Ryan Inc. Concentration Map, dated July 24, 2002
5	Soil Sampling, Vapor Probe and Well Locations Map
6	Cross-Section Lines Location Map
7	Cross-Section A-A'
8	Cross-Section B-B'

LIST OF TABLES

1	Groundwater Analytical Results from wells
2	Soil analytical Results from DVP's
3	Groundwater Analytical Results from DVP's
4	Soil Analytical Results from DP's
5	Soil Analytical Results from DB's
6	Soil Physical Data from DB's
7	Well Completion Data with Elevations
8	Soil Vapor Sampling Results

LIST OF APPENDICES

- A Gettler-Ryan Inc. Groundwater Monitoring and Sampling Report
- B Laboratory Analytical Reports Soils
- C Boring and Well Completion Logs/Survey Data Sheets
- D Barometric Pressure Data
- E Laboratory Analytical Data Summa Canister Vapor Samples
- F Laboratory Analytical Reports Groundwater
- G Soil Vapor Modeling Results

1.0 INTRODUCTION

Delta Environmental Consultants (Delta), on behalf of Chevron Environmental Management Company a subsidiary of ChevronTexaco Corporation (ChevronTexaco), developed a Site Conceptual Model (SCM), Risk Assessment (RA) and supplemental investigation proposal for Former Texaco Station No. 211577 located at 631 Queen Anne Avenue North in Seattle, Washington (a site location map is included as **Figure 1**). The SCM/RA summarized activities and information collected at this location by several previous consultants and the Washington State Department of Ecology (WDOE) since 1986. Based on the SCM/RA, a Remedial Investigation Work Plan (RIWP) was developed which defined the purpose, scope and methods to be used while conducting the Remedial Investigation (RI).

2.0 BACKGROUND INFORMATION

2.1 Property Description

The former Texaco Queen Anne Service Station No. 211577 was located at 631 Queen Anne Avenue North, at the intersection of West Roy Street, in the City of Seattle, Washington. The property is located in a residential/commercial neighborhood in the Queen Anne District of northwest Seattle. Located within one city block east, west and south of the former facility location are several multi-story apartment buildings, a hotel, several retail and commercial shops and a former Union Oil Company 76 (Unocal) service station located at 700 Queen Anne Avenue North (Figure 2).

2.2 Property History

A gasoline service station has operated in various configurations at this location for approximately 66 years, ending in 1993. In early 1978, residents of the Monterey Apartments notified the Seattle Fire Department of the presence of hydrocarbon odors in the basement laundry room and lower apartments. The Fire Department investigation focused on the then active Texaco Service Station (also referred to as the Arnold Property), and a then-active Unocal gas station located at 700 Queen Anne Avenue North (Figure 2).

After the odors apparently abated in March 1978, no complaints were documented until January 1984 when Monterey Apartments residents complained of gasoline odors. Investigation identified the presence of separate phase hydrocarbons (SPH) in a sump at the Monterey Apartments. The Arnold Property and Unocal station were suspected as the likely sources.

2.3 Previous Investigations

Since the first reported hydrocarbon vapor complaints at the Monterey Apartments in February 1978, various agencies, consultants and contractors have conducted a number of separate investigations and sampling events at the Monterey Apartments and the Arnold Property. Several remedial actions have also been performed with varying levels of success. Information from these investigations is summarized in the Conceptual Site Model, Risk Assessment and Supplemental Investigation Proposal, (Delta Environmental Consultants, May 2002). Prior to the RI, there were 20 groundwater monitoring wells in the vicinity, 5 of which were on the Arnold property and 15 of which were located on adjacent properties.

2.4 Current Status

The subject property located at 631 Queen Anne Avenue North is currently owned by the Arnolds and is occupied by a deli/convenience store known as the "Manhattan Express".

2.5 Regional and Area-Specific Geology and Hydrology

REGIONAL GEOLOGY

Regional geologic mapping of the Queen Anne area indicates that Vashon Till underlies the base of Queen Anne Hill with Older Sand units adjacent to the hill on the north side. The Vashon Till is a well-graded, consolidated mixture of clays and gravels and contains local lenses of sand and gravel. The till is very dense and typically has a very low hydraulic permeability. The Older Sand (i.e. Esperance Sand) underlies the Vashon Till and consists of a well graded, medium to course grained sand with silt stringers and interbeds. Underlying the Esperance Sand is the Lawton Clay described as an older mixture of clay, till, and gravel and contains both vertical and lateral variations. The Lawton Clay has a mostly low to medium hydraulic permeability.

Ecology and Environment, Inc. (E&E) interpreted the soil underlying the Property soils to be within a transitional zone of the Esperance Sand to the underlying Lawton Clay that are described as underlying the Vashon Till. Based on the regional geologic mapping, boring logs prepared by others, and previous aquifer tests, soil underlying the property has low hydraulic permeability. Farallon Consulting (Farallon) concluded that the soil underlying the area consists of a transitional zone between the Vashon Till and Esperance Sand.

AREA-SPECIFIC GEOLOGY

GeoEngineers described soils underlying the investigation area as silty sand and gravel fill to 11 feet below ground surface (bgs), native silty sand extending to 16 to 29 bgs, and a basal unit of gray, silty clay (presumably the Lawton Clay) at the bottom of the borings. The depth to the top of the clay is deeper towards the southwest of the site where the bottom of the clay was not reached in any of the previous borings performed.

HYDROLOGY

Groundwater occurs a few feet above the previously described clay at depths ranging from 10 to 20 feet bgs. Based on a review of the available boring logs and descriptions from previous reports, the shallow groundwater in the area appears to be perched in discontinuous lenses and layers of fill, silty sand and sand that overlay the clay. Previous studies have indicated that the natural groundwater flow direction is towards the west-southwest (**Figure 3**).

The fill likely has a highly variable permeability that is more permeable than the underlying native soils. The native soils which are saturated, may be of low permeability as suggested by previous aquifer tests, well de-watering, and the local presence of impermeable glacial till. The sands that are interbedded with glacial till, silts and clay, are relatively more permeable, and are expected to be laterally discontinuous and variable. Pathways in native soil of varying permeability are expected to exist in the subsurface. Farallon indicated that groundwater beneath the Arnold property may be comprised of multiple shallow water-bearing zones each with unique flow directions and rates.

3.0 PURPOSE

The purpose of the RI was to further assess and document the nature and extent of gasoline, diesel and oil range petroleum hydrocarbons and possibly chlorinated solvents in soil and groundwater beneath both the former service station property and beneath several adjoining properties including the neighboring Monterey Apartments. Additional objectives of this investigation included:

- Further assessment and documentation of the indoor air quality within the Monterey Apartments,
- Collection of site-specific soil physical data for modeling potential indoor air risks at other surrounding properties, and
- Determining if other soil, groundwater or vapor exposure pathways are present and/or need to be addressed as part of the final remedial solution for this site.

This report presents the data collected from the RI procedures defined in the RI work plan. This data was collected to fill data gaps necessary for the selection of a site-specific remedy.

4.0 SCOPE OF WORK

The scope of work performed during this investigation included the following tasks:

- A 3rd Quarter 2002 groundwater monitoring event which included gauging and sampling 19 existing monitoring wells,
- Collection of soil and groundwater samples from directly beneath the basement floor of the Monterey Apartments,
- Installation of two vapor probes beneath the floor of the Monterey Apartments basement at each of the soil and groundwater sampling locations,
- Perform seven soil borings by Geoprobe on the Arnold property, and collect soil samples from each boring for chemical analysis,

- Perform 11 soil borings each to a total depth of between 20 and 40-feet bgs at locations on the Arnold and Monterey Apartments Properties and within the Queen Anne Avenue N. and 1st Avenue W. right-of-ways,
- Collect soil samples at 2.5-foot or 5.0-foot intervals from each of the soil borings,
- Complete six of the soil borings as groundwater monitoring wells,
- Collect soil vapor samples from the two soil vapor probes installed in the basement of the Monterey Apartments,
- · Develop the newly installed monitoring wells,
- Perform a 4th quarter groundwater monitoring event and collect groundwater samples from each of the newly installed and existing monitoring wells.
- Prepare a report describing the work performed.

5.0 FIELD ACTIVITIES

5.1 Third Quarter Groundwater Monitoring and Sampling

On July 24, 2002, monitoring wells VP-1, VP-3 [MW-2], VP-4, VP-6, VP-7 [MW-3], VP-8 [MW-7], MW-4, MW-6, MW-9, MW-10, MW-11 and RW-4 were gauged and sampled by a representative from Gettler-Ryan, Inc. (GRI), ChevronTexaco's groundwater sampling consultant. These wells are located on the Arnold and Monterey Apartments properties and at the southeast corner of the 18 Mercer Street building (**Figure 4**). The sampler could not locate Wells VP-2, RW-2, RW-3 and RW-5, and was unable to access wells VP-5, VP-9 and MW-9. Well VP-3 was dry at the time of sampling. One additional un-designated well (MP-1) was observed near the northeast corner of the Alvena Vista Apartments. No construction details or record of ownership of this well could be located, and the sampler was unable to open the monument cover of this well, therefore this well was not sampled.

Prior to purging and sampling, Depth To Water (DTW) and Separate Phase Hydrocarbon (SPH) thickness (if present) was measured with respect to Top Of well Casing (TOC) to the nearest 0.01-foot using an electronic interface probe.

A minimum of three bore volumes of groundwater was purged from each well with a disposable polyethylene bailer prior to sample collection. In the event a monitoring well ran dry during purging, the groundwater level in the well was allowed to recover to 75 percent of its original static level and purging continued. If the well again purged dry, it was allowed to recover to 75 percent of its original static water level (if possible) at which point it was considered sufficiently purged.

After purging was completed, groundwater samples were collected by bailer for laboratory analysis. Groundwater samples collected for laboratory analysis were transferred to laboratory supplied sample containers and immediately placed in a pre-chilled cooler for storage prior to transport to Northcreek Analytical (NCA) in Bothel, Washington. Groundwater samples collected for dissolved metals analyses were placed in un-preserved containers and filtered by the analytical laboratory.

Groundwater samples from each well sampled were analyzed for BTEX compounds by EPA Method 8021b, Total Petroleum Hydrocarbons as Gasoline (TPH-G) by Northwest Method NWTPH-g. Total Petroleum Hydrocarbons as Diesel fuel and as Oil (TPH-D and TPH-O) were quantified using Northwest Method NWTPH-D extended (ext.) with silica gel cleanup (hereafter denoted as TPH-D ext). A groundwater sample from each well sampled was also analyzed for dissolved lead using EPA 6000/7000 series methods.

In addition to the analyses listed above, samples from select groundwater monitoring wells were collected for the following analysis.

- Groundwater samples for Volatile Organic Compounds (VOCs) analysis by EPA Method 8260b, were collected from wells MW-2/VP-3, MW-4, MW-5/VP-5, MW-10, MW-11 and RW-4.
- Groundwater samples for Semi-Volatile Organic Compounds (SVOCs) and cPAHs analysis by EPA Method 8270C were collected from wells MW-3/VP-7, MW-4, MW-5/VP-5, MW-7/VP-8, MW-10, MW-11, VP-2 and RW-4.

Groundwater samples for dissolved Resource Conservation and Recovery Act (RCRA)
listed metals analysis were collected from wells MW-3/VP-7, MW-4, MW-5/VP-5, MW7/VP-8, MW-10, VP-9, RW-2 and RW-4.

Data from these analyses is presented in **Table 1**, a discussion of the results of this sampling is presented in section 9 of this report and the field sheets, laboratory reports and a copy of the GRI 'Groundwater Monitoring and Sampling Report' is included with this report as **Appendix A**.

5.2 Soil Vapor Probe Installation

Between September 12th and 13th, 2002, Cascade Drilling, Inc. (Cascade) of Woodinville, Washington and representatives from Delta installed two soil vapor sampling probes beneath the concrete slab floor of the basement of the Monterey Apartments. Soil and groundwater samples were collected from beneath the floor of the apartment buildings basement at each soil vapor probe installation location. These probes were installed to enable collection of soil vapor samples from beneath the floor of the apartment building. The following procedures were utilized during sampling and vapor probe installation -

Prior to subsurface investigation activities, Delta arranged for the location of underground utilities to be marked by contracting Applied Professional Services, Inc. (APS) of Issaquah, Washington (a private locating service) to identify, locate, and mark utilities beneath the basement floor in the areas to be sampled.

The carpet and padding on the floor of the basement corridor was then peeled back to expose the concrete. A six-inch diameter hole was cored from the concrete slab of the basement floor and a hand auger was used to complete a hand boring to between 6.5 and 7 feet below the level of the basement floor and approximately 12-15 inches below the static groundwater depth. Soil samples were collected from the hand auger at one foot and five feet below the level of the basement floor at both locations. Each soil sample collected was field screened for the presence of volatile petroleum hydrocarbons using a Photo Ionization Detector (PID), and tested for the presence of heavy oils and hydrocarbons by sheen screening. Soil samples were also collected from each location for laboratory analysis. Samples collected for laboratory analysis

were placed in laboratory supplied glass samples jars and stored in a pre-chilled ice chest prior to and during transport to NCA.

Following soil sample collection, a 2 ½ foot length of 1-inch diameter schedule 80 Poly Vinyl Chloride (PVC) well screen containing 0.010 inch factory machined slots was placed in the bottom of each hand boring. Attached to each length of well screen was a five-foot length of 1-inch diameter PVC blank well casing. Once this temporary well had been set at the bottom of each hand boring, the boring was back-filled with 3-4 feet of silica sand to provide a filter pack around the well during groundwater sample collection. Each temporary well was then developed and sampled in the following manner:

- A length of disposable polyethylene tubing was placed into each temporary monitoring well and lowered to within 6 inches of the bottom of the well.
- The polyethylene tubing was connected to a short length of flexible tubing attached to a peristaltic sampling pump.
- Prior to groundwater sample collection, each temporary well was developed using a
 peristaltic pump to purge water from each well until the groundwater being generated
 from each well was clear (none-turbid), or until a minimum of one liter of groundwater
 had been purged.
- 4. Groundwater samples from each temporary well were then collected into laboratory supplied sample containers using the peristaltic pump.
- 5. The groundwater samples collected were placed in a pre-chilled ice chest and delivered to NCA for analysis.
- 6. Following groundwater sample collection each temporary well was withdrawn, and the sand-pack was allowed to collapse into the resulting hole.

Once each temporary well had been removed, each sampling location was converted to a permanent soil vapor sampling port in the following manner:

1. Each auger hole was back-filled with silica sand to within 9-10 inches of the top of the basement floor, and a soil vapor probe was inserted in to the sand. Each vapor probe consisted of a length of 1/4-inch diameter stainless steel tubing which had been closed at

the bottom and, which had been perforated with 30 or more small diameter holes along its length. The top of each vapor probe was fitted with a 3/8-inch male National Pipe Thread (NPT) fitting to which a threaded brass cap had been attached.

- 2. Approximately two inches of concrete was then poured into the augured hole on top of the silica sand and around the vapor probe. A floor mounted electrical box was then slid over the probe by inserting the probe through a hole in the bottom of the box. The electrical box was then set in concrete level with the surface of the concrete floor and the top of each vapor probe positioned approximately one inch below the top of the electrical box. The interior of each electrical box was then filled with approximately 3/4 of an inch of concrete to seal the space between the vapor probe and the hole in the bottom of the box.
- 3. The carpet in the basement hallway was re-laid and the concrete around each electrical box was allowed to harden overnight. The following day, a brass carpet ring was secured to the electrical box, which sealed down around a hole cut in the carpet at each location. Each electrical box has been fitted with a removable brass cover to allow future access of monitoring and sample collection. Sampling and vapor probe locations are depicted in Figure 5.

Each of the soil samples collected during vapor probe installation were submitted to NCA and analyzed for TPH-G, TPH-D ext, VOCs, SVOCs and Carcinogenic Poly-Aromatic Hydrocarbons (cPAHs) with Selective Ion Monitoring (SIM) analysis by EPA Method 8270c, EPH and VPH analysis and for RCRA metals (including lead).

One groundwater sample from each temporary well was submitted to NCA and analyzed for BTEX compounds, TPH-G and TPH-D ext.

Soil data from these analyses is presented in **Table 2**, groundwater data is presented in **Table 3**, and the associated laboratory reports are contained in **Appendix B**.

5.3 Geoprobing and Soil Sampling

On September 18th and 20th 2002, soil samples were collected by geoprobe at seven locations (DP-1 through DP-7) on the Arnold Property. See **Figure 5** for Geoprobing locations.

Prior to subsurface investigation activities, Delta arranged for the location of underground utilities to be marked by 1) contacting the Utilities Underground Location Center, and 2) contracting APS to identify, locate, and mark utilities in the areas to be sampled.

At each probing location, a truck mounted probing rig operated by Cascade was used to advance a 1 3/8-inch diameter soil sampler to the upper interface of the Lawton clay which was generally encountered at depths between 30 and 40 feet below grade (bg). Soil samples were collected continuously at each probe location by pushing a soil-sampling probe containing an acetate sample liner ahead of a hollow outer tube.

Soil from the bottom 2-3-inches of each sample liner was cut-off, and soil from this portion of the acetate liner was logged by a Delta Environmental geologist in accordance with the Unified Soil Classification System ("USCS") Visual-Manual Procedure (American Society for Testing and Materials Method D2488), screened for the presence of hydrocarbons using a photoionization detector (PID) with a 10.0 electron volt (eV) lamp and tested for the presence of nonvolatile heavy range petroleum hydrocarbons and oils by sheen screening. The results of both headspace vapor screening and the sheen testing are recorded on the soil boring logs included in Appendix C. At least one soil sample from each probing location was submitted for laboratory chemical analysis based on the results of the headspace vapor screening and/or In general, the sampled interval containing the greatest headspace vapor concentration and/or which produced a moderate to heavy sheen was submitted for laboratory analysis. If none of the soil samples collected at a particular location produced headspacescreening concentrations exceeding background levels and no sheen is observed, then the sampled interval reflecting the capillary fringe was submitted for analysis. Soil samples collected for laboratory chemical analysis were be retained in the acetate sampling sleeve, capped at each end, sealed with tape and placed on ice while being transported to NCA for analysis. One soil sample from each probing location was analyzed for BTEX compounds, TPH-G, and TPH-D ext. A soil sample from the capillary fringe soils at each probing location was also analyzed for total lead using EPA 6000/7000 series methods.

Soil samples from four locations (DP-1 through DP-4) were also be submitted for VOCs analysis. Soil samples from two locations (DP-1 and DP-5) were submitted for SVOC and

cPAH analysis. A soil sample collected from DP-2 was submitted for EPH and VPH analysis, and soil samples from four locations (DP-1, DP-3, DP-4 and DP-6) were submitted for RCRA metals analysis.

Soil data from these analyses is presented in **Table 4**, the associated laboratory reports are presented as **Appendix B**.

5.4 Soil Borings

Based on an analysis of the results from the groundwater sampling listed above, and with input and concurrence from Mr. Brian Sato of WDOE, Mr. Thomas Morin of Environmental Partners, Inc. and Mr. Berthin Hyde of Sound Environmental Strategies, Delta finalized the locations of the proposed soil borings and monitoring wells.

On August 30, 2002, Delta meet with representatives of Cascade and King County Metro Transit at the site to determine if the soil boring locations were clear of overhead obstructions which might interfere will drilling activities and discuss potential impacts to the electric bus traffic on Queen Anne Avenue, N. from the proposed drilling activities. Based on the outcome of this meeting, a schedule for the field activities proposed was finalized and precise drilling locations were selected.

Delta arranged for the location of underground utilities to be marked by 1) contacting the Utilities Underground Location Center, and 2) contracting APS to identify, locate, and mark utilities at any location on privately owned property. Street-use permits were obtained from the City of Seattle, and a private subcontractor provided traffic control. Where required, concrete coring and safe-dig vacuum assisted bore-hole clearing was performed prior to drilling.

Between September 23 and 27, 2002, Cascade drilled 11 soil borings (DB-1 through DB-11) and completed six of these borings as groundwater monitoring wells (MW-12 through MW-17). See **Figure 5** for soil boring locations. Borings were advanced to total depths between 20 and 40 feet bgs, using a truck mounted hollow-stem auger drill rig. When present, each boring was terminated at the contact with the underlying Lawton clay layer. Soil samples were collected at 2.5-foot intervals beginning at five feet bg from soil borings DB-2, DB-3, DB-4 and DB-5. Soil samples from borings DB-1 and DB-6 through DB-11 were collected at 5.0-foot intervals

beginning at five feet bgs. At each boring location, samples were collected by driving a split-spoon soil sampler ahead of the auger flights, recovering the sampler and then placing a plug at the terminus of the lead auger prior to advancing the auger flight to the next sampling depth. Soil samples from borings DB-3, DB-4, DB-5 and DB-7 were collected for both physical and chemical analysis using brass rings placed within a Dames and Moore type sampler. Soil samples from the remaining seven locations were collected using a modified California type split-spoon sampler without brass rings. Each soil boring was logged by a registered environmental geologist in accordance with the Unified Soil Classification System ("USCS") Visual-Manual Procedure (American Society for Testing and Materials Method D2488). The sub-surface soil conditions and lithology encountered in each soil boring were recorded on a Boring and Well Construction Log (see Appendix C for logs).

Soil from each sampled interval was screened for the presence of hydrocarbons using a photo-ionization detector (PID) with a 10.0 electron volt (eV) lamp and for the presence of non-volatile heavy range hydrocarbons and oils by sheen screening. The results of both the headspace vapor screening and the sheen testing are recorded on the soil boring logs and used to select which samples were to be submitted for laboratory chemical analysis. At a minimum, one soil sample from the capillary fringe or vadose zone was collected and submitted for laboratory chemical analysis. Soil samples collected for laboratory chemical analysis were retained in either laboratory-supplied glass jars with Teflon® lined lids or in stainless steel soil sample liners, sealed with Teflon sheeting and capped with plastic end-caps. Each soil sample was immediately placed in a pre-cooled ice chest while onsite and during transport to NCA. At a minimum, one soil sample from each boring was analyzed for BTEX compounds, TPH-G and TPH-D ext. A soil sample from the capillary fringe in each boring was also analyzed for total lead using EPA 6000/7000 series methods.

Soil samples from eight locations (DB-1 through DB-8) were analyzed for VOCs, SVOCs, cPAHs and RCRA metals. Soil samples collected from five borings (DB-1, DB-2, DB-6, DB-7 and DB-8) were submitted for EPH and VPH analysis. These five samples were also submitted for hexane analysis by EPA method 8260B.

In addition to the analyses listed above, vadose and saturated zone soil samples were collected from borings DB-3, DB-4, DB-5 and DB-7 and submitted to Rosa Environmental and Geotechnical (REG) laboratories in Seattle, Washington for select physical analyses. These analyses are required as inputs so that soil vapor intrusion modeling could be performed and for calculation of appropriate soil and groundwater cleanup levels. Soil samples were submitted to REG for the following physical analyses-

Vadose Zone Samples and Analyses

- Fraction Organic Carbon (FOC) by ASTM D-2974
- Dry Soil Bulk density by ASTM D-2937
- Specific gravity by ASTM D-854
- Moisture content by ASTM D-2216
- Air permeability by SSSA 48 / ASTM D-4525
- Total porosity

Saturated Zone Samples and Analyses

- Total and effective porosity according to the method described in Freeze and Cherry,
 1979 (Groundwater)
- Saturated hydraulic conductivity by one of the following methods ASTM D-2434 or ASTM D-5084 (lab will determine which method used based on sample properties)
- Fraction Organic Carbon (FOC) by ASTM D-2974
- Specific gravity by ASTM D-854
- Bulk density by ASTM D-2937

Data from the chemical analyses of these soil samples is presented in **Table 5**, the physical data from these boring is presented in **Table 6**, and the associated laboratory reports are presented as **Appendix B**.

5.5 Monitoring Well Installation

Six of the exploratory soil borings were completed as monitoring wells (MW-12 through MW-17) by the installation of a 2-inch diameter, schedule 40 PVC casing with 0.010-inch factory slotted screen. Ten to fifteen feet (depending on total depth and depth to groundwater) of well screen

was placed at the bottom of each boring in the saturated zone and extend to at least five feet above the static groundwater elevation at the time of installation. The annular space across the entire screened interval and extending approximately two feet above the screened interval was filled with a graded 2x12 silica sand. The remaining annular space was then sealed with hydrated bentonite chips to approximately three-feet bg. Two-feet of concrete was then poured into the remaining annular space to provide a surface-seal at the well-head and the remaining blank well casing was cut at approximately 6 inches bg and a locking well plug installed. A traffic rated waterproof monitoring well monument set in concrete was installed at each well location flush with the surrounding surface. Well completion details are provided as part of each boring log presented in **Appendix C**. Data regarding well elevations, screened intervals and total depths are contained in **Table 7**.

5.6 Monitoring Well Survey

On September 27, 2002, the TOC elevation of each new monitoring well was surveyed to the nearest 0.01-foot using a tripod mounted survey scope and stadia rod. The TOC elevation of each new monitoring well was established with respect to two or more existing monitoring wells which had been resurveyed by Farralon Consultants in 2000. A survey reference mark was scribed on the lip of the new well casings for future groundwater elevation measurements. The survey field data sheet is presented in **Appendix C**. TOC elevations are also contained in **Table 7**. The location of each monitoring well installed was determined with respect to existing buildings and site features. Well locations were measured to the nearest 0.1-foot using a rolling-wheel measuring device. Well and soil boring locations are presented in **Figure 5**.

5.7 Monitoring Well Development

Each new monitoring well (MW-12 through MW-16) was developed by Cascade on September 27, 2002, by over pumping with an electric down-well pump (Wahl Pump). The development procedure consisted of lowering the Wahl pump into the well until it struck the surface of the water, and continuing to lower the pump to the bottom of the well. The pump was then raised and lowered repeatedly to surge the groundwater within the well. Pumping was continued until approximately 10 casing volumes of water had been removed.

5.8 Soil Vapor Sampling

On October 3, 2002 between 1220 and 1255 hours PST, Delta measured differential pressure at, and collected soil vapor samples from both of the soil vapor sampling probes installed at the Monterey Apartments. Prior to soil vapor sample collection, a barb fitting was connected to each vapor probe and a short length of tubing was slid onto the barb fitting. The differential pressure/vacuum between the soil surface beneath the basement floor and the interior building pressure was measured by connecting one side of a magnahelic gauge calibrated in inches of water column pressure/vacuum to the sampling port and leaving the other side of the gauge open to the atmosphere inside the apartment building. The differential pressure gauge remained connected to each vapor probe for a minimum of 15 minutes to allow equilibration at which time the differential pressure was recorded and the gauge and tubing removed.

Once differential pressure measurements had been collected at each vapor probe, soil vapor samples were collected from each sampling port using a lab supplied pre-evacuated 1-liter summa canister fitted with a fixed orifice sample nozzle. The orifice size of the sampling nozzle had been pre-set by the laboratory to collect the full volume of the summa canister over a 15minute sampling period. The vapor sample collection process involved connecting a short length of small diameter Tygon ® tubing to each vapor probe and then purging each probe of stagnant soil vapor using a hand actuated vacuum pump. Immediately following purging, the tubing was disconnected from the vacuum pump and connected to a barb fitting mounted on the summa canister. The sample valve on the canister was opened and the starting time recorded. Following a 15-minute (± 10 seconds) sample collection period, the canister valve was closed, the canister and tubing removed and the vapor probe capped. Soil vapor samples were collected at a time when stable barometric pressure immediately following falling pressure had been reported (based on data from the University of Washington Atmospheric Sciences Department and collected from the roof of the Atmospheric Science building located on the University Campus). A graphic representation of barometric pressure prior to and following the date and time of sample collection is provided in Appendix D. Following sample collection, each canister was shipped under chain of custody control to Lancaster Laboratories (Lancaster) in Lancaster, PA for methane (C1), gasoline range hydrocarbons (C4 - C10) and VOCs analysis by EPA Test Method TO-14. Results for these analyses are presented in Table 8. The laboratory report and associated chain of custody are included as Appendix E.

5.9 Monitoring Well Purging and Sampling

Groundwater samples from two of the six new monitoring wells (MW-12 and MW-13), along with samples from 12 existing wells were collected between October 17 and 18, 2002 by a representative from GRI. Groundwater samples could not be obtained from wells MW-14 through MW-17 on these dates due to vehicles being parked on top of the wells along 1st Avenue West. Delta arranged for parking control along both sides on 1st Avenue West, and a representative from GRI returned to the site on November 14, 2002 and collected groundwater samples from monitoring wells MW-14 through MW-17.

Each monitoring well was purged using a disposable polyethylene bailer until a minimum of three bore volumes of groundwater had been removed from each well. After purging was completed, groundwater samples were collected by bailer for hydrocarbon and metals analysis. Groundwater samples collected for laboratory analysis will be collected in laboratory supplied sample containers and immediately placed in a pre-cooled ice chest for storage prior to transport to the analytical laboratory under standard chain of custody procedures. Groundwater samples collected for metals and tetraethyl lead analyses were collected in un-preserved polybottles and filtered by NCA using a disposable 0.45-micron groundwater filter capsule and transferred to bottles containing a nitric acid preservative.

Groundwater samples were analyzed for BTEX compounds, TPH-G and TPH-D ext. A groundwater sample from each well sampled was also analyzed for dissolved lead using EPA 6000/7000 series methods.

In addition to the analyses listed above, selected groundwater samples were also collected for the following analysis-

- Groundwater samples from wells MW-12 and MW-13 were submitted for VOC analysis.
- Groundwater samples from wells MW-12 through MW-15 were submitted for SVOC and cPAH analyses.
- Groundwater samples collected from wells MW-13 through MW-15 were submitted for RCRA metals analysis.

Data from these analyses is presented in **Table 1**, a discussion of the results of this sampling is presented in section 9 of this report and the field sheets, laboratory reports and a copy of the GRI 'Groundwater Monitoring and Sampling Report' is included with this report as **Appendix A**.

6.0 DATA QUALITY ASSURANCE

The data quality assurance and control procedures utilized during this investigation were previously described in the RI Workplan. The following sections detail any discrepancies and/or departures from the QA/QC procedures proposed in the Workplan.

6.1 Monitoring Equipment Calibration

The portable PID used for screening soil vapor head-space was calibrated at the beginning of each day according to the manufactures recommended procedure using a laboratory certified isobutylene gas standard. No discrepancies or deviations from the prescribed calibration procedures were noted.

6.2 Decontamination Procedures

The split-spoon sampler and hand-auger were cleaned between each drilling and soil sampling location and interval by rinsing with clean tap water, scrubbing with phosphate-free detergent (alconox) and water and rinsed again with clean tap water followed by a final rinse with distilled water. All drilling equipment was steam-cleaned between boring locations. No deviations or discrepancies in the decontamination procedures specified in the Workplan were observed.

Disposable nitrile gloves, bailers, sampling pump tubing, peristaltic pump tubing and any other form of disposable sampling equipment was discarded after use at each sampling location and/or interval.

6.3 Sample Storage, Packing, and Shipment

All soil and groundwater samples were stored in an ice chest while at the site and during transportation to the laboratory. Samples were sub-packed by sample location in new zip-lock plastic bags and stored in the dark at 4° C. All soil and groundwater samples collected during this investigation arrived at NCA in good condition. No deviations or discrepancies in the sample storage, packing or shipping procedures specified in the Workplan were observed.

Soil vapor samples were collected in stainless steel summa canisters and stored in a sample cooler for protection while at the site. The canisters were wrapped in packing foam and placed in a re-enforced shipping container supplied by the laboratory for return transportation to the laboratory. Each Summa canister collected during this investigation arrived at Lancaster in good condition. No deviations or discrepancies in the sample storage, packing or shipping procedures specified in the Workplan were observed.

6.4 Chain of Custody Procedures

Chain of custody procedures were specified in the RI Workplan. Each sample cooler containing laboratory samples contained a fully completed chain of custody form. The field personnel retained a copy of the COC and the original accompanied the samples to the laboratory. No deviations or discrepancies to the chain of custody procedures were noted.

6.5 Sample Quality Assurance/ Quality Control Procedures

Quality assurance/quality control ("QA/QC") samples were collected as specified in the RI Workplan and included field blanks, trip blanks, source blanks, rinsate and duplicate soil and groundwater samples. Blanks, rinsate and duplicate samples were labeled with unique sample numbers. The laboratory had no indication that a sample was duplicate or blank. A field blank and duplicate sample were collected for each 10 soil and groundwater samples, and a trip blank accompanied each sample cooler containing soil or groundwater samples.

The quality assurance objective for this project was to ensure that chemical and physical data of known and acceptable quality was produced. To achieve this objective, all samples were analyzed in accordance with EPA or equivalent protocols. An analytical laboratory certified and approved by the state of Washington performed all analyses. No significant deviations or discrepancies regarding laboratory QA/QC procedures were noted.

7.0 STORAGE AND DISPOSAL OF RESIDUALS

Residual soil from this investigation was placed in 55-gallon DOT approved salvage drums and temporarily stored in the equipment compound on the Arnold property while awaiting analytical

results. Clearcreek Contractors later transported all drummed soil generated during this RI to Rinker Materials in Everett, Washington for treatment and disposal.

Development water and decontamination water produced during well development was contained in 55-gallon DOT approved salvage drums and temporarily stored in the equipment compound while awaiting analytical results. Clearcreek Contractors later transported the development water to Emerald Services for treatment by granular activated carbon filtration prior to disposal.

All purged groundwater produced during monitoring well sampling was treated on-site by activated carbon filtration and discharged to the storm-drain system

8.0 RESULTS

8.1 Subsurface Conditions

Soils encountered during this investigation consisted of medium dense to very dense sand and silty sand from ground surface to between approximately 17.5 and 31 feet below grade (bg). A stiff to very hard, low to moderate plasticity clay was encountered beneath the sand in the borings. A moderate-plasticity clay was observed in boring DB-11 from the surface to approximately 7 feet bg. Boring DB-11 was located on 1st Avenue West at the southwest side of the area of investigation. The clay was underlain by a very dense clayey sand at a maximum depth of 10 feet bg, and refusal was encountered at approximately 12 feet bg. Clay was not encountered in boring DB-1 to the total depth of 17 feet bg, or in the bottom of boring DB-10 at the total depth of 34 feet bg, although a thin lens of clay was observed in DB-10 at 33 feet bg.

Two cross sections were prepared for this report. Cross section A-A' (**Figure 7**) extends from boring DB-8 in the southwest portion of the area investigated (in front of the Alvena Apartments) to boring DB-2 at the northeast area of investigation on the Arnold's property (**Figure 6** depicts the locations of both cross-sections). Cross section B-B' (**Figure 8**) extends east-west across the Arnold's property from boring DB-3 in the west to boring DB-2 in the east. As shown on the cross-sections, the area of investigation consists mostly of sand and silty-sand predominantly underlain by clay. The clay layer was not verified under the western parking area between the

Monterey and Alvena Vista Apartments, or beneath well MW-12 located on Queen Anne Avenue North. Data from this investigation indicates that the clay layer slopes to the west or southwest, as it was encountered at deeper intervals as the investigation continued in this direction. It is unclear if the clay encountered in boring DB-11 is a continuation of the same clay layer, or an isolated lens of soil. Additional investigation in this area with continuous sampling may better define the relationship of the clay layers.

Borings DB-1, DB-2, DB-6, DB-8, DB-9 and DB-10 were completed as groundwater monitoring wells during this project. At the time of well installation, groundwater was encountered between 14 and 15 feet below TOC.

8.2 Soil Analytical Results

The following sections discuss soil analytical results from the three phases of soil sampling 1) Vapor Probe Installation, 2) Geoprobe Borings on the Arnold Property, and 3) Soil Borings and Monitoring Well Installation, performed during this investigation.

VAPOR PROBE INSTALLATION SOIL SAMPLE RESULTS

Two soil samples were collected from Delta Vapor Probe #1 (DVP-1), and two more from DVP-2. Soil samples were collected at one-foot and six-feet below the floor surface (bfs) from both probe locations.

TPH-G and BTEX compounds were detected in three of the four soil samples (and a duplicate sample from DVP-2 and six-feet bfs). The soil sample from DVP-2 collected from one-foot bfs did not contain TPH-G or any of the BTEX compounds at or above the laboratory reporting limits. TPH-D and TPH-O were also present in the same three samples as TPH-G and BTEX and absent from the sample collected from DVP-2 at one-foot bfs. Three of the four soil samples were submitted for both volatile and extractable petroleum hydrocarbon analysis using the VPH and EPH procedures specified by Ecology. Both volatile and extractable petroleum hydrocarbons were present in two of the three samples collected. Soil from DVP-2 at one-foot bfs did not contain volatile or extractable petroleum hydrocarbons at or above the method detection limits.

Soil samples from DVP-1 at one and six-feet bfs and from DVP-2 at six-feet bfs were analyzed for the RCRA metals. Concentrations of arsenic, barium, chromium and lead above the method

detection limits were present in each of these three samples.

Soil samples from DVP-1 and DVP-2 both from one-foot bfs were analyzed for VOCs. Ten of

the VOCs detected by the analytical method utilized were present in the sample from DVP-1,

but only toluene was present in the sample from DVP-2.

Two soil samples (DVP-1 and DVP-2) both collected at one-foot bfs were submitted for SVOCs

analysis. Only two compounds (2-methylnaphthalene and naphthalene) were present at or

above the method detection limits in the sample from DVP-1, and no SVOCs were present in

the sample from DVP-2.

Soil samples from DVP-1 and DVP-2 both from one-foot bfs were also analyzed for cPAHs.

Three compounds (1-methylnaphthalene, 2-methylnaphthalene and naphthalene) were present

at or above the method detection limits in soil from DVP-1. None of the ten cPAHs detected by

the method utilized were present in the sample from DVP-2.

Soil sample analytical results from both of the vapor probe locations are presented in Table 2.

Analytical reports, and chain-of-custody documentation are contained in Appendix B.

GEOPROBE SOIL SAMPLE RESULTS

Eight soil samples were collected at various depths from seven separate (Delta Probe [DP])

locations on the Arnolds property using a Geoprobe soil sampling system. Two samples were

collected from DP-2 and one each from the remaining six probe locations. Soil samples were

collected at depths representing the sampled interval producing the highest headspace vapor

concentrations and/or hydrocarbon sheen-test result as described in section 5.3.

TPH-G and TPH-D were detected in five of the seven soil samples collected for these analyses

(an eighth sample [DP-2-20] was only analyzed for VPH and EPH. The samples from DP-1 and

DP-2 collected from 16 and 14-feet below grade (bg) respectively did not contain TPH-G or

TPH-D at or above the laboratory reporting limit. TPH-O was not present in any of the seven

soil samples collected for this analysis at concentration at or above the laboratory reporting limit.

One or more of the BTEX compounds was present in each of the seven samples collected for this analysis. All eight soil samples collected were submitted for both VPH and EPH. VPHs ranging in concentration from 60.6 to 3,440 mg/kg were present in samples from DP-3 at 12-feet bg, DP-4 at 20-feet bg, DP-5 at 14-feet bg, DP-6 at 22-feet bg and DP- 7 at 20-feet bg. EPHs ranging in concentration from 8.64 to 1,890 mg/kg were present in samples from DP-1 at 16-feet bg, DP-3 at 12-feet bg, DP-5 at 14-feet bg, DP-6 at 22-feet bg and DP- 7 at 20-feet bg.

Soil samples from six of the seven sampled locations (DP-1 through DP-4, DP-6 and DP-7) on the Arnold property were analyzed for the RCRA metals. Concentrations of arsenic, barium, chromium and lead above the method detection limits were present in each of these six samples. Detectable concentrations of cadmium were also present in samples from DP-3 and DP-6. In addition to the RCRA metals analyses, a soil sample from the capillary fringe soil at each probing location was also analyzed for total lead using EPA 6000/7000 series methods. Total lead was detected in each of these seven samples at concentrations ranging from 1.78 to 9.48 mg/kg.

Soil samples from DP-1 through DP-7 were analyzed for VOCs. Twelve of the VOCs quantified by this analytical method were present in one or more of the seven samples analyzed at concentrations at or above the laboratory reporting limits.

Soil samples from DP-1 through DP-7 were analyzed for SVOCs. Eight of the SVOCs quantified by this analytical method were present in one or more of the seven samples analyzed at concentrations at or above the laboratory reporting limits.

Soil samples from DP-1 through DP-7 were also analyzed for PAHs. Three compounds (1-methylnaphthalene, 2-methylnaphthalene and naphthalene) were present at or above the method detection limits in samples collected from DP-3 through DP-7. None of the ten compounds detected by this analytical method were present in the soil collected from DP-1 or DP-2.

Soil sample analytical results from each of the probe locations are presented in **Table 4**. Analytical reports, and chain-of-custody documentation are contained in **Appendix B**.

SOIL BORING SAMPLE RESULTS

Seventeen soil samples were collected at various depths from eleven separate (Delta Boring

[DB]) locations as depicted in Figure 5 using a hollow-stem auger drill equipped with either a

Dames and Moore or a modified California type split-spoon soil sampler. Soil samples were

collected at depths representing the sampled interval producing the highest headspace vapor

concentrations and/or the most positive hydrocarbon sheen-test result as described in section

5.4.

TPH-G was present in five of the seventeen soil samples collected at concentrations ranging

from 5.74 to 10,200 mg/kg. The highest concentration of TPH-G (10,200 mg/kg) was detected

in soil from boring DB-5 at 13 feet bg. Soil samples from DB-1, DB-2 and DB-6 through DB-11

did not contain TPH-G at or above the 5.00 mg/kg laboratory reporting limit.

TPH-D was present in six of the seventeen soil samples collected at concentrations ranging

from 10.5 to 3,060 mg/kg. The greatest concentration of TPH-D (3,060 mg/kg) was detected in

soil from boring DB-5 at 13 feet bg. Soil samples from DB-1, DB-2 and DB-6 through DB-10 did

not contain TPH-D at or above the 10.0 mg/kg laboratory reporting limit.

TPH-O was present in only one of the seventeen soil samples collected. Soil from boring DB-11

at 10.5 feet bg contained 41.4 mg/kg of TPH-O. None of the other soil samples collected

contained TPH-O at or above the 25.0 mg/kg laboratory reporting limit.

Eight of the seventeen samples collected contained one or more of the BTEX compounds.

Benzene (when present) ranged in concentration from 0.0544 to 23.0 mg/kg. The greatest

concentration of Benzene (23.0 mg/kg) was detected in soil from boring DB-5 at 13 feet bg.

Three soil samples (DB-2 at 14 feet bg, DB-7 at 11.5 feet bg and DB-8 at 16.5 feet bg were

analyzed for both VPH and EPH. None of these three samples contained concentrations of

VPH or EPH at or above the laboratory reporting limits.

Soil samples from DB-2 through DB-8 were analyzed for the RCRA listed metals. Due to

refusal at 17 feet bg in boring DB-1, insufficient soil was available to submit a sample for RCRA

metal analysis. Concentrations of arsenic, barium, chromium and lead above the method detection limits were present in each of these seven samples. One sample from boring DB-2 at 14feet bg also contained a detectable concentration of selenium (0.935 mg/kg). In addition to the RCRA metals analyses, a soil sample from the capillary fringe soils at each of these seven boring location and from borings DB-9 at 16 feet bg and boring DB-10 at 11 feet bg were also analyzed for total lead using EPA 6000/7000 series methods. Total lead was detected in each of these nine samples at concentrations ranging from 1.29 to 10.5 mg/kg.

Soil samples from DB-2 through DB-8 were analyzed for VOCs. Thirteen different VOCs were present in five of the seven samples analyzed at concentrations at or above the laboratory reporting limits. Due to refusal at 17 feet bg in boring DB-1, insufficient soil was available to submit a sample for VOC analysis.

Soil samples from DB-2 through DB-8 were analyzed for SVOCs. Three compounds (Benzyl Alcohol, 2-methylnaphthalene and naphthalene) were present at or above the method detection limits in soil from DB-5 at 13 feet bg. Benzyl Alcohol was also detected in soil samples from borings DB-2 at 14 feet bg, DB-3 at 11 feet bg and DB-7 at 11.5 feet bg. None of the compounds detected by this analytical method were present in the samples from DB-4, DB-6 and DB-8 at concentrations at or above the laboratory reporting limits. Due to refusal at 17 feet bg in boring DB-1, insufficient soil was available to submit a sample for SVOC analysis.

Soil samples from DB-2 through DB-8 were also analyzed for cPAHs. Three compounds (1-methylnaphthalene, 2-methylnaphthalene and naphthalene) were preset at or above the method detection limits in samples collected from DB-4 at 9 feet bg and DB-5 at 13 feet bg. 1-methynaphthalene was also present in soil from boring DB-3 at 11 feet bg at a concentration of 0.0206 mg/kg. Naphthalene was also present in soil from boring DB-2 at 14 feet bg at a concentration of 0.0106 mg/kg. 2-methylnaphthalene and naphthalene were also present in soil from boring DB-6 at 16.5 feet bg at concentrations of 0.0106 and 0.0179 mg/kg respectively. None of the ten compounds detected by this analytical method were present in soil collected from borings DB-7 or DB-8. Soil sample analytical results from each of the boring locations are presented in Table 5. Analytical reports, and chain-of-custody documentation are contained in Appendix B.

In addition to the chemical analyses listed above, vadose and saturated zone soil samples were collected from borings DB-3, DB-4, DB-5 and DB-7 and submitted to Rosa Environmental and Geotechnical (REG) laboratories in Seattle, Washington for select physical analyses.

Soil samples were submitted to REG for the following physical analyses-

Vadose Zone Samples and Analyses

- Fraction Organic Carbon (FOC) by ASTM D-2974
- Dry Soil Bulk density by ASTM D-2937
- Specific gravity by ASTM D-854
- Moisture content by ASTM D-2216
- Air permeability by SSSA 48 / ASTM D-4525
- Total porosity

Saturated Zone Samples and Analyses

- Total and effective porosity according to the method described in Freeze and Cherry,
 1979 (Groundwater)
- Saturated hydraulic conductivity by one of the following methods ASTM D-2434 or ASTM D-5084 (lab will determine which method used based on sample properties)
- Fraction Organic Carbon (FOC) by ASTM D-2974
- Specific gravity by ASTM D-854
- Bulk density by ASTM D-2937

Analytical results for soil samples submitted to REG for physical analyses are presented in **Table 6**. Analytical reports, and chain-of-custody documentation are contained in **Appendix B**.

8.2 Groundwater Analytical Results

The following sections discuss groundwater analytical results from the three phases of groundwater sampling 1) Third Quarter Groundwater Sampling, 2) Vapor Probe Installation, and 3) Fourth Quarter Groundwater Sampling, performed during this investigation.

THIRD QUARTER GROUNDWATER MONITORING AND SAMPLING RESULTS

Groundwater Monitoring Results

On July 24, 2002, monitoring wells VP-1, VP-3 [MW-2], VP-4, VP-6, VP-7 [MW-3], VP-8 [MW-7], MW-4, MW-6, MW-9, MW-10, MW-11 and RW-4 were gauged for depth to water and separate phase hydrocarbon thickness by GRI's field technician. These wells are located on the Arnold and Monterey Apartments properties (**Figure 5**). The field technician was unable to locate wells VP-2 and RW-5, and was unable to access wells VP-5, VP-9 and MW-9; furthermore, well VP-3 [MW-2] was dry at the time of sampling. Groundwater elevations based on this data are contained in the GRI 'Groundwater Monitoring and Sampling Report' which is included with this

report as Appendix A.

When measured on July 24, 2002, groundwater was encountered between 9.74 feet below TOC at VP-7 [MW-3] and 19.76 feet below TOC at MW-6. Based on DTW and TOC elevations, groundwater surface elevations at each monitoring well were calculated, and ranged between 90.66 feet at VP-7 [MW-3] and 102.14 feet at MW-10, resulting in a westerly groundwater flow

at a gradient of between 0.05 and 0.1 feet/foot.

Groundwater Sampling Results

Following measurement of depth to groundwater/product, groundwater samples were collected from nine monitoring wells (VP-1, VP-4, VP-7 [MW-3], VP-8 [MW-7], MW-4, MW-6, MW-10, MW-11 and RW-4). SPH (1.58 feet) was observed in well VP-6 at the time of sampling, therefore no groundwater sample was collected from this well. Groundwater analytical results from the third quarter 2002 sampling are provided in **Table 1**. Laboratory Analytical reports, including chain-of-custody documents and QA/QC results, are contained in **Appendix F.**

Results from the July 24, 2002 groundwater sampling event are summarized below:

TPH-G was present in eight of the nine wells sampled at concentrations ranging from 240 to 89,000 ug/l. The highest concentration of TPH-G (89,000 ug/l) was detected in groundwater from well VP-4 on the Monterey Apartments property. A groundwater sample from well MW-11

did not contain TPH-G at or above the 50.0 ug/l laboratory reporting limit.

TPH-D was present in eight of the nine wells sampled at concentrations ranging from 320 to 78,000 ug/l. The highest concentration of TPH-D (78,000 ug/l) was detected in groundwater from well VP-4 on the Monterey Apartments property. A groundwater sample from well MW-11 did not contain TPH-D at or above the 250.0 ug/l laboratory reporting limit.

TPH-O was present in eight of the nine wells sampled at concentrations ranging from 420 to <10,000 ug/l. The highest concentration of TPH-O (10,000 ug/l) was detected in groundwater from well MW-6 on the Manhattan Express property. A groundwater sample from well MW-11 did not contain TPH-O at or above the 250.0 ug/l laboratory reporting limit.

Eight of the nine groundwater samples collected contained one or more of the BTEX compounds. Benzene (when present) ranged in concentration from 2.5 to 11,000 ug/l. The greatest concentration of Benzene (11,000 ug/l) was detected in groundwater from well MW-4 on the Monterey Apartments property.

Groundwater samples from five wells (VP-7 [MW-3], VP-8 [MW-7], MW-4, MW-10, and RW-4) were analyzed for dissolved (RCRA listed) metals. Concentrations of arsenic, barium, cadmium, chromium and lead above the method detection limits were present in each of these five samples. One sample from well VP-7/MW-3 also contained a detectable concentration of silver (0.068 ug/l). In addition to the wells sampled for RCRA metals analyses, groundwater samples from wells VP-1, VP-4, MW-6 and MW-11 were collected and analyzed for dissolved lead. Dissolved lead was detected in eight of the nine wells sampled at concentrations ranging from 1.3 to 28.0 ug/l.

Groundwater samples from wells MW-4, MW-10, MW-11 and RW-4 were analyzed for VOCs. MW-4 contained each of the BTEX compounds, isopropyl and n-propylbenzenes, 1,3,5 and 1,2,4-trimethylbenzenes, n-butylbenzene, naphthalene, MTBE and TBA at concentration at or above the laboratory reporting limits. MW-10 contained benzene and cis-1,2-dichloroethene at concentrations at or above the laboratory reporting limits. MW-11 did not contain any of the compounds detected by EPA Method 8260b at concentrations at or above the laboratory reporting limits. RW-4 contained each of the BTEX compounds, n-propylbenzene, 1,2,4-

trimethylbenzene, p-isopropyltoluene, n-butylbenzene and naphthalene at concentrations at or above the laboratory reporting limits.

Groundwater samples from seven wells (VP-1, VP-7 [MW-3], VP-8 [MW-7], MW-4, MW-10, MW-11 and RW-4) were analyzed for SVOCs and cPAHs. One or more of the following six compounds (2-methylnaphthalene and naphthalene, 2,4-dimethylphenol, 2- and 4-methylphenol and bis (2-ethylhexyl) phthalate) were present at or above the method detection limits in groundwater from wells VP-1, VP-7 [MW-3], MW-4 and MW-10. None of the compounds detected by these analytical methods were present in the samples from wells VP-8 [MW-7], MW-11 or RW-4 at concentrations at or above the laboratory reporting limits.

SOIL VAPOR PROBE INSTALLATION GROUNDWATER SAMPLING RESULTS

Following collection of soil samples from the two vapor probe hand borings performed on October 17-18, 2002, in the basement of the Monterey Apartments, groundwater samples were collected from temporary monitoring wells installed within each hand boring. Groundwater analytical results from the samples collected from DVP-1 and DVP-2 provided in **Table 3** (Note: Sample DVP-4 is a duplicate groundwater sample collected from sampling location DVP-2). Laboratory Analytical reports, including chain-of-custody documents and QA/QC results, are contained in **Appendix F.** Results from this groundwater sampling are summarized below:

TPH-G was present in groundwater samples collected from both temporary wells sampled at concentrations between 98,100 to 107,000 ug/l. The highest concentration of TPH-G (107,000 ug/l) was detected in groundwater from well DVP-2 beneath the central portion of the basement of the Monterey Apartments building.

Samples collected for both TPH-D and TPH-O were improperly processed by NCA. According to NCA Laboratories project manager, an aliquot of spike solution rather than the surrogate solution required by the analytical method was added to these samples prior to extraction. The addition of spike solution instead of surrogate prior to extraction meant that the full volume of each sample was irreversibly compromised and that no representative analytical result for TPH-D or TPH-O could then be generated. The presence of these two compounds at each of these sampled locations can only be inferred based on the soil analytical results.

Each of the groundwater samples collected contained from DVP-1 and DVP-2 contained all four of the BTEX compounds at concentrations exceeding the laboratory detection limits. Benzene was present in sample DVP-1 at 7,640 ug/l and in sample DVP-2/4 at 13,500 and 12,300 ug/l respectively. Each of the TEX compound were also present at equally elevated concentrations.

FOURTH QUARTER GROUNDWATER SAMPLING RESULTS

Groundwater Monitoring Results

Between October 17 and 18, 2002, monitoring wells VP-1, VP-2, VP-3 [MW-2], VP-4, VP-5 [MW-5], VP-6, VP-7 [MW-3], VP-8 [MW-7], VP-9, MW-4, MW-6, MW-9, MW-10, MW-11, MW-12, MW-13, RW-2, RW-4 and RW-5 were gauged for depth to water and separate phase hydrocarbon thickness by GRI's field technician. The field technician was unable to gauge the four newly installed wells on 1st Avenue W. due to vehicles being parked over these wells, was unable to locate well RW-3, and was unable to access well MP-1; furthermore, wells VP-3 [MW-2] and MW-13 were dry at the time of sampling. SPH was present in wells VP-4 (0.03 feet), VP-6 (0.65 feet) and in MW-6 (0.05 feet). Groundwater elevations based on this data are contained in the GRI 'Groundwater Monitoring and Sampling Report' which is included with this report as **Appendix A**.

When measured on October 17-18, 2002, groundwater was encountered between 10.57 feet below TOC at VP-7 [MW-3] and 20.88 feet below TOC at MW-9. Based on DTW and TOC elevations, groundwater surface elevations at each monitoring well were calculated, and ranged between 89.38 feet at VP-7 [MW-3] and 101.69 feet at MW-10, resulting in a westerly groundwater flow at a gradient of between 0.05 and 0.09 feet/foot.

On November 14, 2002 GRI's field technician returned to the site following placement of no parking signs along 1st Avenue W. and measured DTW in wells MW-14 through MW-17. DTW from that event was not available in time to include in this report, however the next GRI Groundwater Monitoring and Sampling Report will contain this data.

Groundwater Sampling Results

Following measurement of depth to groundwater/product on October 17-18, 2002, groundwater samples were collected from thirteen monitoring wells (VP-1, VP-5 [MW-5], VP-7 [MW-3], VP-8 [MW-7], VP-9, MW-4, MW-9, MW-10, MW-11, MW-12, RW-2, RW-4 and RW-5). SPH was

present in wells VP-4, VP-6 and MW-6 at the time of sampling; therefore no groundwater samples were collected from these wells. On November 14, 2002 GRI's field technician returned to the site and collected groundwater samples from wells MW-14 through MW-17. Groundwater analytical results from the Fourth quarter 2002 samplings are provided in **Table 1**. Laboratory Analytical reports, including chain-of-custody documents and QA/QC results, are contained in **Appendix F.** Results from the October 17-18 and November 14, 2002 groundwater sampling events are summarized below:

TPH-G was present in fourteen of the seventeen wells sampled at concentrations ranging from 490 to 110,000 ug/l. The highest concentration of TPH-G (110,000 ug/l) was detected in groundwater from well MW-4 on the Monterey Apartments property. Groundwater samples from wells MW-11, MW-12 and MW-16 did not contain TPH-G at or above the 50.0 ug/l laboratory reporting limit.

TPH-D was present in thirteen of the seventeen wells sampled at concentrations ranging from 667 to 84,900 ug/l. The highest concentration of TPH-D (84,900 ug/l) was detected in groundwater from well RW-5 on the northeast corner of the Monterey Apartments property. Groundwater samples from wells MW-11, MW-12, MW-16 and MW-17 did not contain TPH-D at or above the 250.0 ug/l laboratory reporting limit.

TPH-O was present in five of the seventeen wells sampled at concentrations ranging from 510 to 3,650 ug/l. The highest concentration of TPH-O (3,650 ug/l) was detected in groundwater from well RW-5 on the northeast corner of the Monterey Apartments property. Groundwater samples from wells VP-5 [MW-5], VP-8 [MW-7], VP-9, MW-4, MW-10, MW-11, MW-12, MW-14 through MW-17 and RW-2 did not contain TPH-O at or above the 250.0 ug/l laboratory reporting limit.

Fifteen of the seventeen groundwater samples collected contained one or more of the BTEX compounds. Benzene (when present) ranged in concentration from 0.516 to 14,500 ug/l. The greatest concentration of Benzene (14,500 ug/l) was detected in groundwater from well MW-4 on the Monterey Apartments property.

Groundwater samples from two wells (MW-14 and MW-15) were analyzed for dissolved (RCRA listed) metals. Concentrations of arsenic, barium, lead and selenium above the method detection limits were present in groundwater from MW-14. Concentrations of arsenic and lead above the method detection limits were present in groundwater from MW-15. In addition to the wells sampled for RCRA metals analyses, groundwater samples from fourteen wells (VP-1, VP-5 [MW-5], VP-7 [MW-3], VP-8 [MW-7], VP-9, MW-4, MW-9, MW-10, MW-11, MW-16, MW-17, RW-2, RW-4 and RW-5) were collected and analyzed for dissolved lead. Dissolved lead was detected in nine of these fourteen wells sampled at concentrations ranging from 1.23 to 10.7 ug/l.

A groundwater sample from well MW-12 was collected and analyzed for VOCs. Groundwater from this well contained benzene, toluene, tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, chloroform and 1,2-dichloroethene at concentrations at or above the laboratory reporting limits.

Groundwater samples from three wells (MW-12, MW-14 and MW-15) were analyzed for SVOCs. Six SVOCs (2-methylnaphthalene and naphthalene, 2,4-dimethylphenol, 2- and 4-methylphenol and phenol) were present at or above the method detection limits in groundwater from well MW-12. One SVOC (phenol) was present in groundwater from well MW-15, and none of the compounds detected by this analytical method were present at or above the laboratory reporting limits in the sample from MW-12.

8.3 Soil Vapor Analytical Results

Two soil vapor samples from beneath the basement of the Monterey Apartments were collected into summa canisters on October 3, 2002 and shipped under chain of custody control to Lancaster Laboratories (Lancaster) in Lancaster, PA for analysis. Summa canister 0101 was filled with soil gas from vapor probe DVP-1 located at the east end of the basement level of the apartment building, while summa canister 0132 was filled with soil gas from vapor probe DVP-2 located at the west end of the apartment building. Each canister was analyzed for methane (C1) and hydrocarbons (C4 – C10) using EPA Test Methods 18 and 25 (modified), and for VOCs by EPA Test Method TO-14. Results for these analyses are presented in **Table 8**. The laboratory report and associated chain of custody are included as **Appendix E**. Results from these analyses are summarized below:

Methane was present in both of the samples collected. Methane was present from the sample collected from DVP-1 at 350 parts per million by volume (ppmv) and at 25,000 ppmv from the sample collected at DVP-2. Hydrocarbons (C4-C10) were present in the sample collected from DVP-1 at 3,800 ppmv and at 8,600 ppmv from the sample collected at DVP-2. Each of the BTEX compounds in addition to tetrachloroethene, 4-ethyltoluene, and both 1,3,5- and 1,2,4-trimethylbenzene were detected in each of these samples. Benzene was present in the sample from DVP-1 at 6 ppmv and at 13,000 ppmv from the sample collected from DVP-2.

Prior to collecting soil vapor samples at DVP-1 and DVP-2, an magnahelic gauge calibrated in inches of water and with a range of 0.0 to 1.00-inches water column was connected to each vapor probe and allowed to equilibrate for 10-15-minutes. Following equilibration the resulting pressure differential was recorded. No differential pressure (as indicated by the gauge) was present at either probe location.

9.0 DISCUSSION

9.1 Subsurface Soils

TPH-G and BTEX impacts in soil appear to be most extensive in the south central and southwest portions of the Manhattan Express property and extend southwesterly on to the Monterey Apartments property. TPH-G and BTEX impacts on the Monterey Apartments property appear to be generally located beneath the footprint of the apartment building and adjacent to the eastern and south central areas of the building. Soil samples collected by geoprobe, hollow-stem auger and by hand auger for TPH-G analysis ranged in concentration between non-detectable (less than 5.00 mg/kg) to 10,200 mg/kg in a sample collected from DB-5 (adjacent to and south of the Monterey Apartments building) at 13.0 feet bg or approximately 7-8 feet below the basement floor of the apartment building. Soil samples collected for benzene analysis ranged in concentration from non-detectable (less than 0.03 mg/kg) to 33.0 mg/kg in a sample collected from DP-6 (on the southwest corner of the Manhattan Express property) at 22.0 feet bg.

TPH-D impacts in soil appear to be most extensive in the south central and southwest portions of the Manhattan Express property and extend southwesterly on to the Monterey Apartments property. TPH-D impacts on the Monterey Apartments property appear to be generally located beneath the apartment building and adjacent to the eastern and south central areas of the building. TPH-D in soil ranged in concentration between non-detectable (less than 10.00 mg/kg) to 3,060 mg/kg in a sample collected from DB-5 (adjacent to and south of the Monterey Apartments building) at 13.0 feet bg. Two soil samples; one from boring DB-5 at 13 feet bg and a second from hand boring DVP-2 at 6 feet bfs contained TPH-D at concentrations exceeding MTCA Method A CULs.

Only four of the twenty-five soil samples collected for TPH-O analysis contained this constituent at concentrations at or above the laboratory reporting limits. The concentration of TPH-O in soil ranged between non-detectable (less than 25.0 mg/kg) to 89.5 mg/kg in a drummed stockpile sample collected from DB-5. The concentration TPH-O in all of these samples is well below the 2,000 mg/kg MTCA Method A CUL.

Based on the results from soil samples collected during this investigation, the lateral extent of petroleum impacts to soils appear to be bounded in the following areas-

- The east side of the former station as evidenced by soil sample results from borings DB-1 and DB-2 and from soil sample results from probe DP-1.
- West of the east side of 1st Avenue W. as evidenced by soil sample results from borings DB-8, DB-9, DB-10 and DB-11. Note: Elevated PID readings were observed from soil collected at boring DB-6. None of the soil samples collected for analysis from DB-6 contained TPH-G, D, O or BTEX at concentrations at or above the MTCA Method A CUL's.

The vertical extent of petroleum hydrocarbon impacts to soils appear to extend to the Lawton clay layer between the central portion of the former station property and extending southwest toward the corner of the former station as evidenced by the boring logs for probe locations DP-3, DP-5, DP-6 and DP-7. In each of these probes, soil from the clay layer produced both elevated PID readings and gasoline odors. With the exception of soil boring DB-6, none of the

soil borings completed west of the eastern side of 1st Avenue W. encountered samples from the Lawton clay, which contained evidence of petroleum hydrocarbon impacts.

The results from this investigation appear to close three data gaps identified in the Conceptual Site Model, these gaps are-

- The nature and extent of both petroleum and chlorinated solvent impacts to soils east of the former station.
- 2) The down gradient i.e. southwesterly extent of petroleum hydrocarbon impacts to soils, and
- 3) Although not yet fully developed, knowledge related to the nature and extent of petroleum hydrocarbon impacts to the soils beneath the Monterey Apartments has been significantly improved.

Following completion of this investigation, no new data gaps related to petroleum hydrocarbon impacts to soil have been identified, however several data gaps continue to remain unaddressed. These data gaps include-

- Soils quality north and south of the former station beneath West Roy Street and the Lindberg Apartments respectively.
- 2) Soil quality beneath the Del Roy and Alvena Vista Apartments.

9.2 Groundwater

TPH-G and BTEX impacts in groundwater appear to originate from the central portion of the Manhattan Express property and extend both westerly and southwesterly beneath the Del Roy Apartments, Monterey Apartments, Alvena Vista Apartments and the northwest corner of the Lindberg Apartments. The downgradient extent of TPH-G and BTEX impacts in groundwater west of 1st Avenue West cannot be fully evaluated based on the data collected to date, but appear to extend beneath the ACT parking lot on the northwest corner of 1st Ave. W. and a second parking lot operated by ACT parking adjacent to and south of the Northgate Apartments, the Northgate Apartments building, the northwest corner of the 18 Mercer Street building and the Bank of America parking lot and building.

The greatest concentrations of TPH-G and BTEX in groundwater were detected in samples collected from wells VP-1, VP-4, VP-7 [MW-3] and MW-4 on the Monterey Apartments property, in MW-6 on the west side of the Manhattan Express and in MW-14 on the east side of 1st Ave. W. adjacent to and west of the Del Roy Apartments. TPH-G and BTEX compounds were either not present or below MTCA Method A CULs in wells MW-12, MW-13 (on the east side of the Manhattan Express), MW-16 on the northwest corner of 1st Ave. W., and in well MW-11 at the southeast end of 1st Ave. W.

The highest concentrations of TPH-D in groundwater were detected in samples from wells VP-4, VP-9, MW-6, MW-9, and RW-5. Based on this data, TPH-D in groundwater appears to originate from the north central or northwest corner of the Manhattan Express property and extend beneath the Del Roy and Monterey Apartments in a southwest direction.

The highest concentration of TPH-D in groundwater (84,900 ug/l) was detected in samples from well RW-5 in the northeast corner of the Monterey Apartments property. Due to the loss of TPH-D and TPH-O data from the groundwater samples collected beneath the apartment building during vapor probe installation, it is not possible to say if impacts beneath the building footprint are present, however, assuming the source of diesel is the same for the TPH-G impacts detected then it is reasonable to expect that TPH-D impacts are also present beneath the apartment building footprint.

Only four of the groundwater samples collected for TPH-O analysis contained this constituent at concentrations at or above the laboratory reporting limits. The concentration of TPH-O in groundwater ranged between non-detectable (less than 25.0 mg/kg) to 3,650 ug/l in groundwater collected from well RW-5.

Based on the results from groundwater samples collected during this investigation, the lateral extent of petroleum impacts to groundwater appear to be bounded in the following areas-

 Well MW-12 on the east side of the former station contained both benzene and toluene at concentrations below the MTCA Method A CULs, no TPH as gasoline, diesel or oil was detected in this well.

- The northwest corner of 1st Avenue W. as evidenced by groundwater samples collected in well MW-16 appears to be free of petroleum hydrocarbons.
- The southeast corner of 1st Avenue W. as evidenced by groundwater samples collected from well MW-11 also appears to be free of petroleum hydrocarbons.

The vertical extent of petroleum hydrocarbon impacts to groundwater continues to represent a data gap. Although the Lawton clay layer which was encountered in most of the soil probes and borings likely acts as an aquitard to the movement of dissolved phase petroleum hydrocarbons to deeper water-bearing layers (if present), further investigation into the presence of a deeper water-bearing unit beneath this site and the quality of the water in such an aquifer remain unresolved.

The results from this investigation appear to close two data gaps identified in the Conceptual Site Model related to groundwater, these gaps include-

- 1) The potential contribution from up gradient properties of both petroleum and chlorinated solvent impacts to soils east of the former station,
- 2) The down gradient plume width appears to be bounded by wells MW-11 and MW-16.

Following completion of this investigation, two new data gaps related to groundwater impacts have been identified, and several data gaps continue to remain un-addressed. These data gaps include-

- The downgradient extent of dissolved phase petroleum hydrocarbons in groundwater west and southwest of the Monterey apartments.
- 2) The lateral extent of groundwater impacts both north and south of the former station beneath West Roy Street and the Lindberg Apartments respectively.
- 3) The presence and magnitude of chlorinated solvents in groundwater beneath the former station and the Lindberg apartments.

9.3 Soil Vapor

Both TPH-G and BTEX were detected in the soil gas collected from beneath the basement of the Monterey Apartments. The concentrations of these compounds were significantly greater in the samples collected from DVP-1 then from DVP-2. Based on the concentrations of these same constituents in shallow soils, the increased vapor concentration present at location DVP-1 is likely a result of the proximity of the soil impacts to the vapor probe. The concentration of TPH-G and BTEX in soil gas from DVP-2 is potentially more indicative of the lower flux from deeper soil/groundwater impacts associated with the capillary fringe beneath the probe.

The results from this investigation have provided additional information with respect to the nature and extent of soil vapor and the potential impacts which soil vapor my have on the indoor air quality within the structures adjacent to the former station. Soil physical data collected during this investigation has been used to improve the accuracy of the Johnson & Ettinger indoor air intrusion model and to identify additional data gaps. These newly identified data gaps include-

- The concentration of petroleum hydrocarbons (specifically benzene) and chlorinated solvents (specifically PCE and its daughter products) in soil vapor beneath the Del Roy, Lindberg and Alvena Vista apartments.
- 2) Floor crack width, air exchange rates and pressure differentials in both the Monterey apartments and the other apartment buildings adjacent to the former station. These parameters are key to an accurate estimate of indoor air intrusion rates by soil vapor and therefore critical model inputs.

10.0 PRELIMINARY RISK ASSESSMENT

This preliminary risk assessment was constructed using a three step process –

Step 1: Identify Potential Chemicals of Concern (PCOCs) – In this step, historic information regarding site use is used to define an appropriate sampling plan from which data from all potentially impacted media is obtained and evaluated.

Step 2: Based on the nature and extent of the PCOCs present, the physical and chemical properties of these compounds and the media in which they are present, exposure pathways and receptors for each COC are identified.

Step 3: Cleanup levels and or permissible exposure limits for each compound in each affected medium are derived in accordance with all appropriate, relevant and applicable regulations and requirements.

The following sections discuss (in a media specific manner) the PCOCs identified, likely exposure pathways and appropriate cleanup levels for each COC in each impacted media.

10.1 Subsurface Soils

The PCOCs identified for soils at this site include TPH as gasoline and diesel fuel, the BTEX compounds, total naphthalene (including 1- and 2- methylnaphthalene), 1,2,4- and 1,3,5-trimethylbenzene, phenanthrene, phenol and tetrachloroethene. Each of these compounds is present in soils at various locations and depths throughout the site. The most likely exposure pathways from impacted soils at this site are direct contact by site workers, soil leaching to groundwater and soil to soil vapor and then to ambient and indoor air. The second and third pathways will be fully addressed in the next two sections on groundwater and soil vapor respectively, therefore only soil direct exposure will be discussed as a pathway in this section.

Direct dermal contact/ingestion of impacted soils at this site are a concern to site workers and those involved with construction and or subsurface utilities. Superficial soil impacts are only expected to be present beneath the asphalt/concrete surface cap at the former station. Soil impacts further west (downgradient) of the former station have been impacted by separate phase or dissolved petroleum hydrocarbons either on top of or associated with the groundwater table and as such, are located at depths which greatly minimize if not eliminate the potential for direct exposure. Because the site is located in a residential / commercial neighborhood, MTCA Method A or B CULs are appropriate. MTCA Method A CULs for soil are based not only on dermal and ingestion exposure, but also soil leaching to potable groundwater. Since groundwater at this site is not expected to be classified as potable (section 10.2 contains a discussion on the non-potable nature of the groundwater at this site), Method A CULs are not

appropriate. Therefore MTCA Method B CULs based on soil direct contact and ingestion have been selected.

Based on soil data collected from the soil probes, borings and during the installation of the soil vapor probes, and using the BTEX compounds and naphthalene as indicator hazardous substances as defined in WAC 173-340-703 (3) for the purposes this preliminary risk assessment, benzene is the only PCOC present in soil at concentrations which exceed the respective MTCA Method B CUL of 18.3 mg/kg as published in the CLARC II database (version 3.1). Two locations have been identified which contain benzene at or above this CUL. These locations are DP-6 at 22 feet bg and DB-5 at 13 feet bg. None of the other soil samples collected contained any of the PCOCs previously identified at concentrations at or above their respective MTCA Method B CULs.

In addition to the PCOCs previously defined for soil, both TPH as gasoline and as diesel fuel are present in soils at this site. The MTCA Method B worksheets for calculating CULs for TPH based on fractional equivalents as quantified by the VPH and EPH analytical procedures developed by WDOE were used to develop a CUL for TPH. The CUL derived is based only on the direct dermal contact pathway. Soil samples collected from DP-5 at 12 feet bg and DP-7 at 20 feet bg were used to calculated a TPH CUL for soils beneath the former station, and a soil sample collected from DVP-2 at 6 feet bg was used to calculate a TPH CUL for soils on the Monterey apartments property. Two CULs for TPH (one for the former station and a second for the Monterey apartments property were developed due to potential differences in the source and composition of the petroleum hydrocarbons present at each of these locations.

Based on the MTCA Method B worksheet results, a CUL for TPH soil at the former station is 2094 mg/kg (based on dermal contact) and the CUL for soil at the Monterey apartments is 120.0 mg/kg (based on dermal contact). By comparing these two CULs to soil data collected from the soil probes, borings and during the installation of the soil vapor probes, eight locations have been identified which contain TPH at or above the respective MTCA Method B CULs. These locations are DP-3 at 12 feet bg, DP-5 at 14 feet bg, DP-6 at 22 feet bg, DB-4 at 9 feet bg, DB-5 at 13 feet bg, DVP-1 at 1 foot bg, DVP-1 at 6 feet bg and DVP-2 at 6 feet bg. None of the other soil samples collected contained TPH at concentrations at or above these CULs.

10.2 Groundwater

The PCOCs identified for groundwater at this site include TPH as gasoline and diesel fuel, the BTEX compounds, total naphthalene (including 1- and 2- methylnaphthalene), 1,2,4- and 1,3,5-trimethylbenzene, 2- and 4-methylphenol, phenol, tetrachloroethene, trichloroethene and dichloroethene. Many of these compounds are present in groundwater throughout the site. The most likely exposure pathways from impacted groundwater at this site are dermal exposure to site workers, ingestion of impacted groundwater and groundwater volatilizing to soil vapor and then to ambient and/or indoor air. Groundwater ingestion is further discussed below, while groundwater volatilizing to soil vapor and then to ambient and/or indoor air is addressed in the next section on soil vapor.

Section 720 (2) of MTCA (WAC 173-340) outlines the requirements for obtaining a non-potable use designation for groundwater. These requirements include no current use of the groundwater as a source of drinking water and the unlikelihood of the groundwater being used as a future source of drinking water for one or more of the following reasons-

- Insufficient groundwater to sustain a yield of 0.75 gallons per minute or greater;
- Natural background concentrations of total solids or other deleterious compounds or microbial organisms such that use of the groundwater as a drinking water supply is not practicable; and
- The groundwater is located at a depth or location, which make recovery for drinking water purposes technically impossible.

As part of the development of the Site Conceptual Model (SCM) a drinking water supply well survey was performed and a record of each groundwater well listed with WDOE within a ½ mile radius of this site was obtained. There are currently no drinking water supply wells at or within a ½ mile radius of this site, thus groundwater at this site is not currently being used as a source of drinking water.

Use of groundwater at or within the potentially affected radius of his site as drinking water is improbable due to the shallow nature of the affected aquifer and the historic land development in this area of Seattle, which has resulted in a widespread deterioration of the groundwater

quality. Both high levels of dissolved solids from infiltration and leaking storm drains and as evidenced by iron fouling in the groundwater treatment system at this site and the presence of enteric coliform bacteria from leaking sewer lines have resulted in 'naturally' impacted groundwater conditions and prohibit the use of groundwater as drinking water. For these reasons, the most beneficial use of the groundwater at this site should not be defined as current or potential potable drinking water but rather as discharge to remote surface water.

Dermal exposure to groundwater at this site is a potential concern to site workers and those involved with construction and or subsurface utilities. Because groundwater occurs at depths between 9 and 18 feet bg, the potential for casual exposure to impacted groundwater is virtually eliminated, but as with soil, because the site is located in a residential / commercial neighborhood, MTCA Method A or B CULs are appropriate.

MTCA Method A CULs for groundwater are based on both dermal exposure and ingestion of potable groundwater. Since groundwater at this site should not be classified as potable, Method A CULs may not be appropriate for each PCOC, therefore a combination of both MTCA Method A and B CULs have been selected.

Comparing the results from groundwater samples collected at both existing and newly installed monitoring wells with the MTCA Method A CUL of 5 ug/L for benzene, tetrachloroethene and trichloroethene and the MTCA Method B CULs of 1600, 800, 16000, 72 and 160 ug/L for toluene, ethylbenzene, total xylenes, dichloroethene and naphthalene, respectively, 17 of the 24 currently existing monitoring wells contain one or more of the PCOCs identified at concentrations at or above the CULs defined. Note that one well contained SPH during the last groundwater-monitoring event and two wells have been dry since they were installed in September 2002. Therefore, none of these three wells have been sampled.

In addition to the PCOCs previously defined for groundwater, both TPH as gasoline and as diesel fuel are present in groundwater at this site. Because the MTCA Method B worksheets for calculating groundwater CULs for TPH apply only to potable water, MTCA Method A CULs for TPH were used instead. Comparing the MTCA Method A CULs for TPH as gasoline and diesel fuel with results from the latest groundwater monitoring and sampling event, 16 of the 24

currently existing monitoring wells contained concentrations of TPH as gasoline and/or as diesel fuel at or above the respective MTCA Method A CULs.

10.3 Soil Vapor

Volatile PCOCs in soil vapor typically originate from impacts in either soil or groundwater or both. When it has been determined that soil vapor concentrations pose no incremental risk to human health (due to depth, location or other site specific factors) it may be appropriate to base further health risk conclusions on the predicted soil vapor concentrations associated with soil and/or groundwater CUL's. That is not the case with this site. Rather than attempt to model and predict soil vapor concentrations from soil and/or groundwater CULs that would be protective of human health, soil vapor has specifically been chosen as a separate impacted media. The rationale for setting a separate CUL for soil vapor in addition to both soil and groundwater is based on our belief that soil vapor most closely represents the media of concern. It would therefore be more appropriate to sample and monitor soil vapor for protection of the receptor in question (apartment resident) rather than rely on CULs for soil and/or groundwater for the same purpose. Furthermore, continual monitoring of soil and/or groundwater to ensure compliance with CULs that are protective of indoor air is impractical and would not definitively demonstrate that human health is being protected. Setting a separate CUL for soil vapor which can be met through remedial actions and later monitored to demonstrate compliance, is a far more practical approach.

The PCOCs identified for soil vapor at this site include the BTEX compounds, 1,2,4- and 1,3,5-trimethylbenzene, 4-ethyltoluene and tetrachloroethene (PCE). Each of these compounds were detected in soil vapor samples collected from beneath the Monterey apartments building. The greatest potential risk posed by soil vapor at this location would be intrusion to indoor air and subsequent inhalation by apartment residents. Because the apartment building is a residential setting, MTCA Method A or B CULs are appropriate. However, MTCA does not contain published Method A cleanup levels for indoor air. Therefore MTCA Method B CULs have been selected for the PCOCs present with the exception of PCE, for which there is no published Method B indoor air CUL. In the absence of a Method B CUL for PCE, the Acceptable Source Impact Level (ASIL), defined by the Puget Sound Air Pollution Control Agency (PSAPCA) for PCE (1.1 ug/m3) was selected as the CUL for PCE in indoor air.

For the purposes of this preliminary risk assessment, five PCOCs (the BTEX compounds and Tetrachloroethene) present in soil vapor beneath the basement floor of the Monterey apartments were modeled to assess their potential impact to indoor air using the Johnson and Ettinger (J&E) model (Environmental Quality Management 2000). The BTEX compounds were selected because they represent indicator hazardous substances for petroleum hydrocarbon PCOCs present as defined in WAC 173-340-703 (3). PCE was also modeled because it was the only volatile non-petroleum hydrocarbon compound present.

The chemical fate and transport of vapor phase contaminants beneath enclosed spaces is determined by a number of physical and chemical processes. The J&E model used during this evaluation is based on a scenario where, impacted soil vapor is present below the floor of an enclosed building constructed with a basement or constructed slab-on-grade. The source of contamination is typically a volatile contaminant adsorbed on soil or a volatile contaminant dissolved in groundwater. At the top boundary of contamination, molecular diffusion moves the volatilized contaminants towards the soil surface until they reach the zone of influence of the building. Here advective air movement within the soil column transports these vapors through cracks between the foundation and the basement slab. This advective sweep effect is induced by a negative pressure within the structure caused by a combination of wind effects and stack effects due to building heating and mechanical ventilation.

When the source of contamination is below the top of the water table, the contaminant must diffuse through a capillary zone immediately above the water table and through the subsequent unsaturated or vadose zone before advection transports the vapors into the structure. The rate of soil gas entry is solely a function of advection; however, the vapor concentration entering the structure may be limited by either advection or diffusion depending upon the distance between the source and the building. In order to more closely approximate the vapor concentrations expected to enter an enclosed air space, the model incorporated actual soil vapor concentration data. By incorporating these data, the most conservative components of this model (i.e. phase change and solubility components which greatly effect the rate at which soil vapors are generated from soil or groundwater sources) could be eliminated. The model allows for the use of soil gas as the impacted subsurface media and then, based on both soil conditions and building parameters, predicts the potential health risk resulting from intrusion of soil gas.

The drawback with the J&E soil gas model is that it only predicts the incremental risk to human health associated with this exposure scenario and does not allow for the reverse-calculation of a representative soil vapor concentration that would be protective of human health.

Since the model cannot back-calculate soil vapor concentrations that would be protective of human health, a modification to the model was developed which allows indoor air concentrations for each PCOC to be predicted. Soil vapor concentrations protective of human health can then be calculated by comparing iterative downward adjustment of the input soil vapor concentration to both MTCA and EPA published values until the indoor air concentration predicted by the model are less than or equal to concentrations protective of human health.

This modified J&E model is based on a mass balance approach for calculating the ambient indoor air contaminant concentration within the building, which may result from the intrusion of contaminant soil vapors. The model described below was constructed using the Excel spreadsheets provided by the U.S. Environmental Protection Agency for the J&E Model (USEPA 2002). A project-specific worksheet called "Apartment Building Concentration" was then created for use in conjunction with the EPA-provided Excel workbook "SG-ADV.xls". A copy of the "Apartment Building Concentration" worksheet is provided in **Appendix G**.

Q bldg = outgoing building ambient air (m 3 /sec)

C bldg = contaminant concentration in building ambient air (mg/m 3)

C bldg = building ambient air contaminant concentration

Q air = incoming fresh air (m 3/sec)

C air = incoming air contaminant concentration (mg/m 3)

Q soil = incoming contaminated soil vapor (m 3 /sec)

C soil = contaminant concentration in soil vapor (mg/m 3)

The flow rates and corresponding contaminant concentrations are related by mass balance as shown in Equation 1.

Equation 1

Q bldg
$$\times$$
 C bldg = (Q air \times C air) + (Q soil \times C soil)

The mass balance model assumes that conditions are in a steady state and that complete mixing occurs within the basement interior. The outgoing building ambient airflow (Q bldg) is equal to the sum of the two incoming flows, incoming fresh air (Q air) and incoming contaminated soil vapor (Q soil). Therefore, Equation 1 can be rewritten as Equation 2.

Equation 2

$$(Q air + Q soil) \times C bldg = (Q air \times C air) + (Q soil \times C soil)$$

Equation 2 can be solved for the contaminant concentration in the building's interior ambient air (C bldg), as shown in Equation 3.

Equation 3

C bldg =
$$[(Q air \times C air) + (Q soil \times C soil)] / (Q air + Q soil)$$

The variables on the right side of Equation 3 can be measured or estimated to calculate the contaminant concentration in the building's interior ambient air.

The incoming contaminant concentration (C air) is assumed to be zero. There may already be some petroleum hydrocarbon vapors in the background air, but the intent of this model is to evaluate the incremental risk posed by petroleum hydrocarbon vapors solely from subsurface soil vapor entering the building. Q air is the fresh air exchange rate in the building. The higher this variable, the lower the resulting C bldg.

Contaminant concentration in soil vapor (C soil) was measured in soil vapor samples collected from the vapor probes installed beneath the basement floor. The incoming contaminated soil vapor (Q soil) is calculated from equations in the J&E Model.

Parameters that affect Q soil include soil vapor permeability, pressure differential between the soil in contact with the building foundation and the building interior, and effective crack width in the building floor.

MODEL SETUP

Architectural input includes building The model requires several inputs from the user. dimensions, floor-wall seam crack width, fresh air exchange rate, and pressure differential between the building interior and the subgrade soil atmosphere. For these inputs, building dimensions and fresh air exchange rate were measured or estimated. Floor-wall seam crack width and pressure differential were specified using the EPA default values of 0.1 cm and 4 Pascals, respectively (Environmental Quality Management 2000). The concentration of petroleum hydrocarbons in the soil vapor from beneath the apartment building was determined by previous sampling. Soil vapor samples collected from sampling location DVP-1 were used for the modeled input.

The J&E Model uses either the Soil Conservation Service (SCS) soil classification system to specify the physical characteristics of the underlying soils or user provided site-specific soil physical properties as model inputs. The soil in contact with the basement floor is the most critical soil type because its soil vapor permeability has a substantial effect on the amount of soil vapor that can enter the building. Selection of the appropriate SCS soil type or the collection and analysis of soil representative of this soil type is a critical and sensitive model input. Soils with higher permeability will allow greater amounts of contaminant to enter the building. For the purposes of this modeling activity, soil samples were collected from borings completed adjacent to the apartment building at depths equivalent to below the basement floor. These soil samples were submitted to ROSA environmental and Geo-technical Laboratories in Seattle, Washington for soil vapor permeability analysis using methods specified in SSSA 48 and ASTM D-4525 the results from which were then used as site-specific inputs to the modified J&E model.

95% MUL-

Remedial Investigation Report Former Chevron Station No. 21-1577

MODEL RESULTS

The predicted indoor air concentration of each of the compounds modeled is presented in the following table. Appendix G contains all of the J&E Model input parameters.

Compound	Soil Vapor	Predicted	ASIL	MTCA Method B
	Concentration	Conc.	ug/M^3	CUL
	ppbv	ug/M^3		ug/M^3
Benzene	13000	5.71	0.12	0.321
Toluene	110000	57.04	400	183
Ethlybenzene	55000	32.86	1000	4570
M/P Xylene	360000	215.08	1500	320
O-Xylene	140000	83.64	1500	320
Tetrachloroethene	6200	5.79	1.1	None Established

Based on the modeling results, both benzene and tetrachloroethene appear to be present in soil vapor at concentrations, which, may result in exceedences of either the ASIL (for PCE) and/or the MTCA Method B cleanup level (for benzene).

Using the modified J&E model, soil vapor concentrations were adjusted downward in an iterative manner until the predicted concentration within the basement of the Monterey apartments building was at or below either the ASIL and/or the Method B cleanup levels. Based on these iterative downward adjustments, soil vapor concentrations, which result in compliance with these CUL's, are -

Benzene = 275 ppby - meets both the ASIL and the MTCA Method B CUL for Air

To be applied throught when site? From to grown Southere?

To be applied throught when site? From to grown Southere?

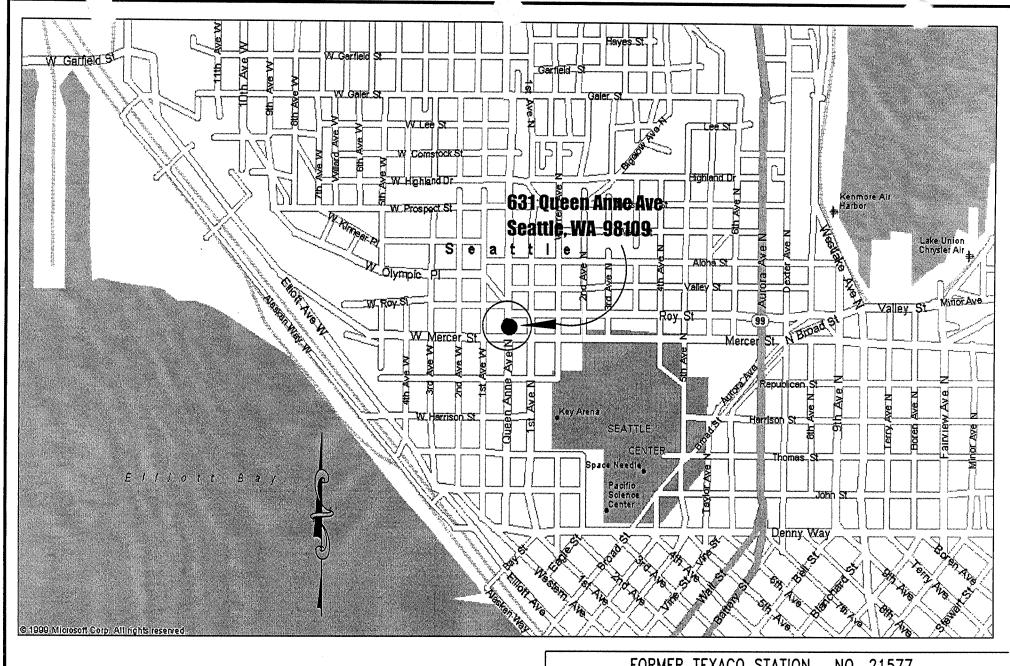
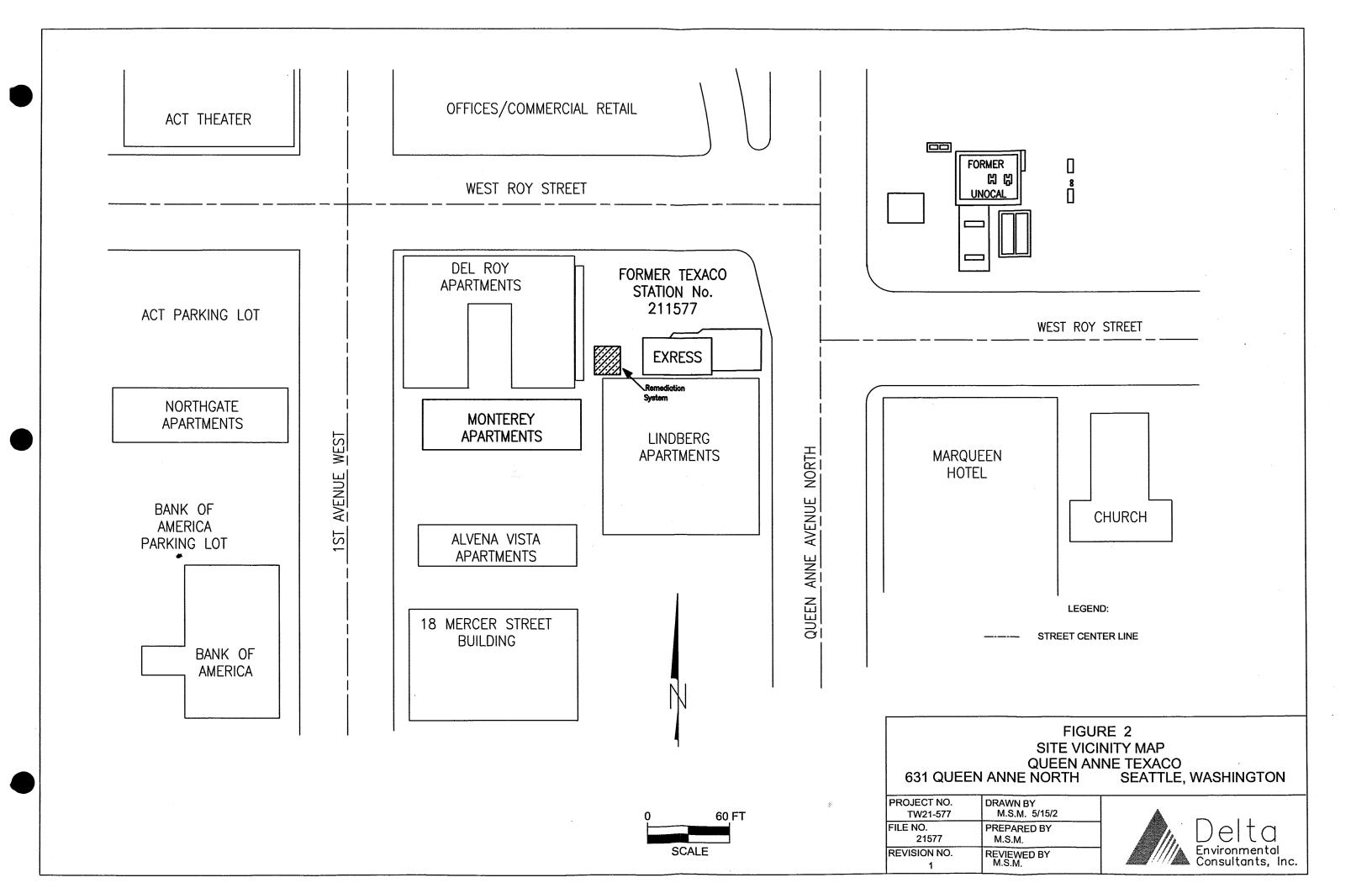
On the applied throught the site? The grown Southere?

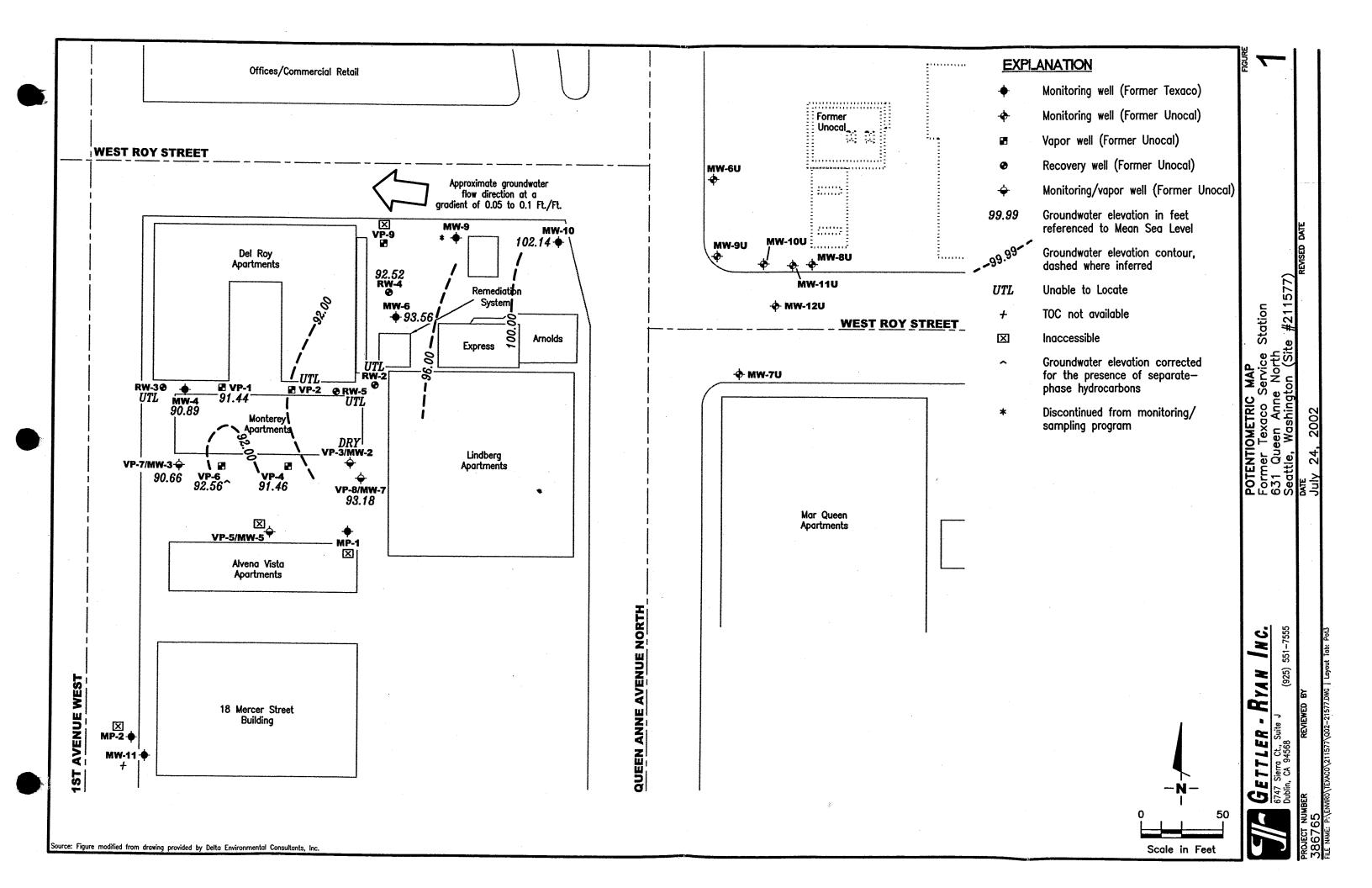
11.0 FUTURE REMEDIATION AND SITE ASSESSMENT

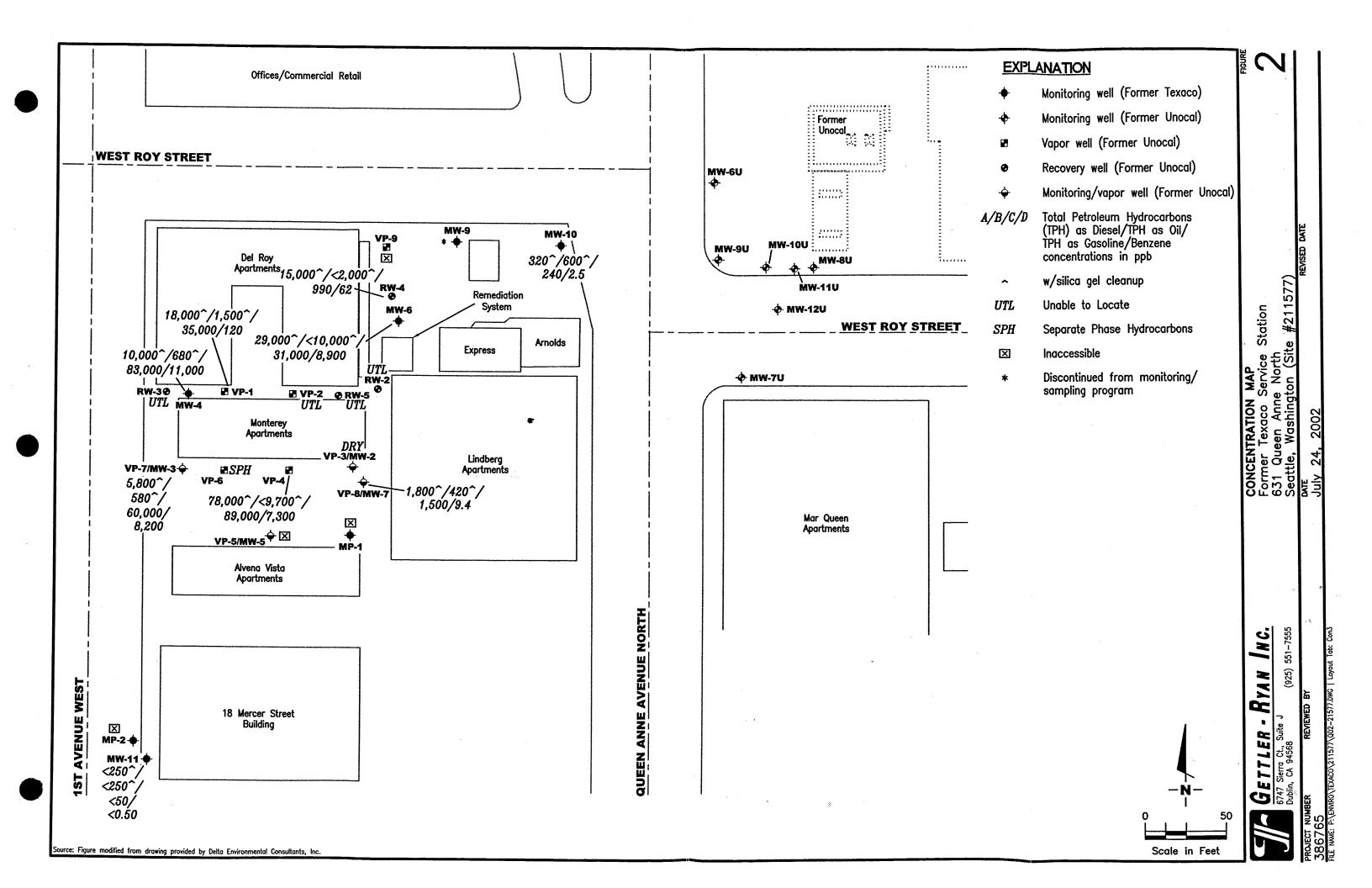
As a result of the air intrusion modeling, and based on discussions with the WDOE and the adjacent property owners, Delta on behalf of ChevronTexaco will restart the existing Soil Vapor Extraction (SVE) system and focus the full vapor recovery capacity of this system on the extraction wells surrounding the Monterey apartments building. In addition, based on the data gaps identified in this report, Delta recommends that further site investigation efforts be performed to better define the extent of impacts to soil, groundwater and soil vapor. Further investigations should include:

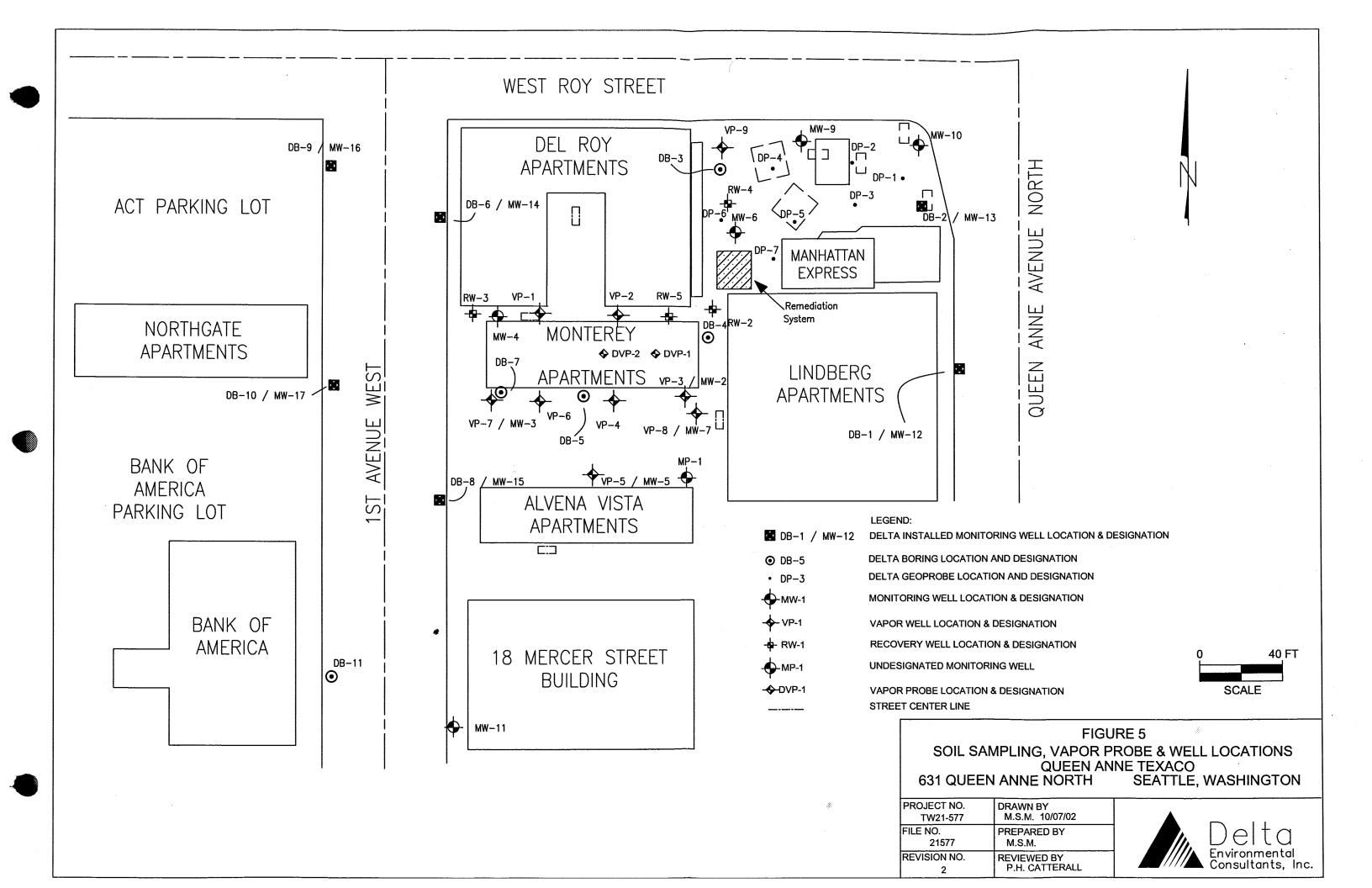
- Installation of additional soil vapor probes and collection of soil and soil vapor samples from beneath the Monterey, Lindberg, Del Roy and Alvena Vista Apartments.
- Installation of additional groundwater monitoring wells west of monitoring wells MW-14,
 MW-15 and MW-17 to further define the extent of down gradient groundwater impacts.
- 3) Installation of additional groundwater monitoring wells north of monitoring wells MW-9 and MW-10 to further define the lateral spread of groundwater impacts adjacent to the former station.

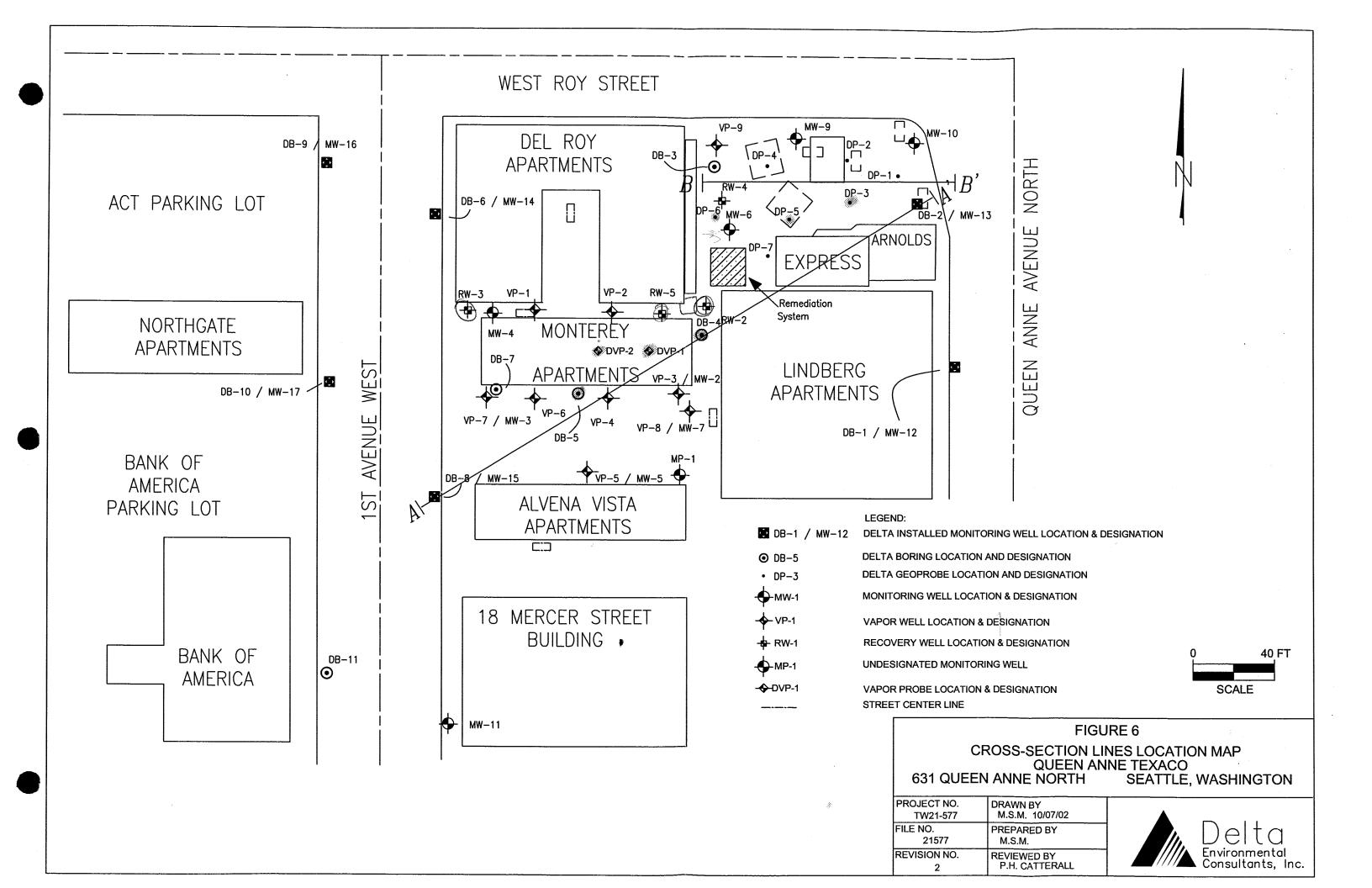
FIGURES

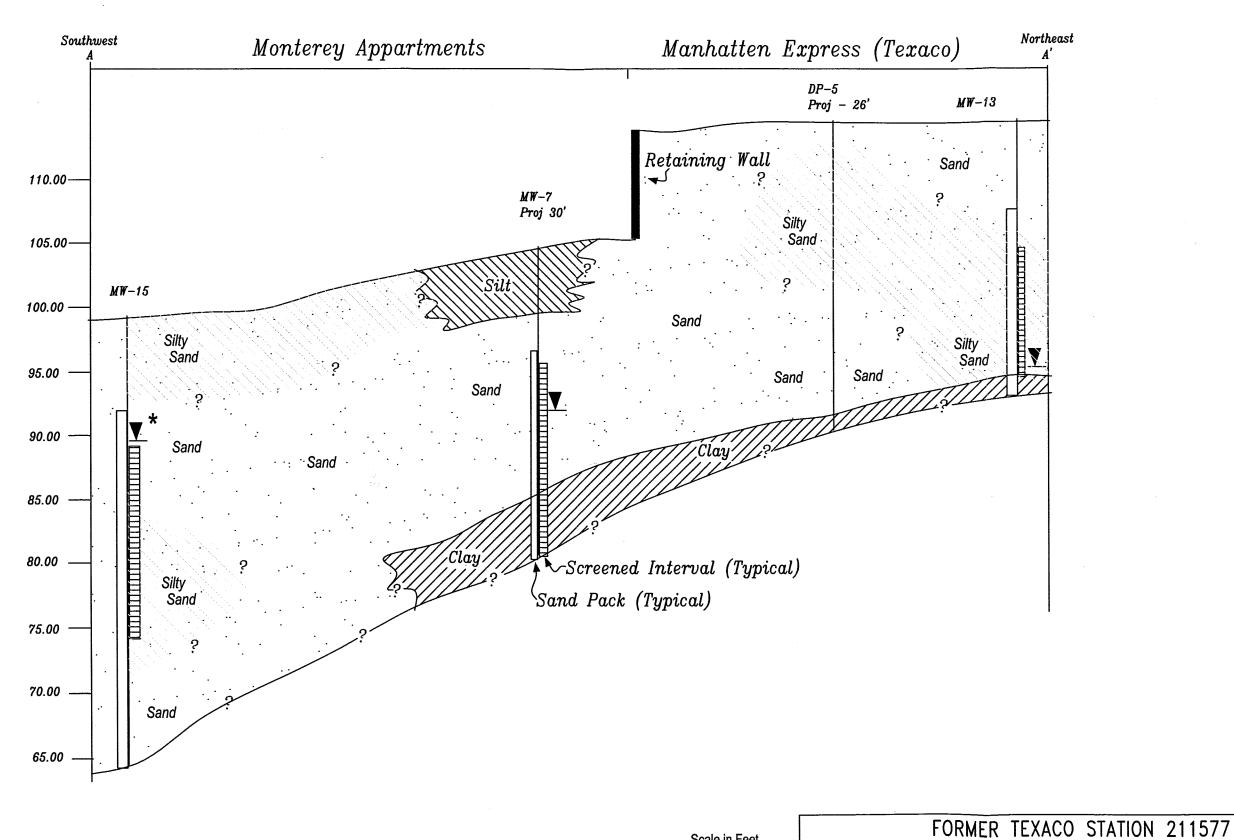



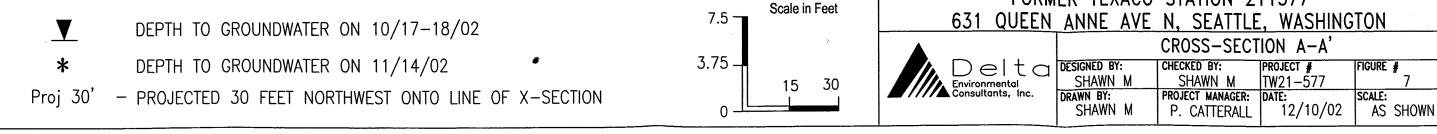

Figure 1

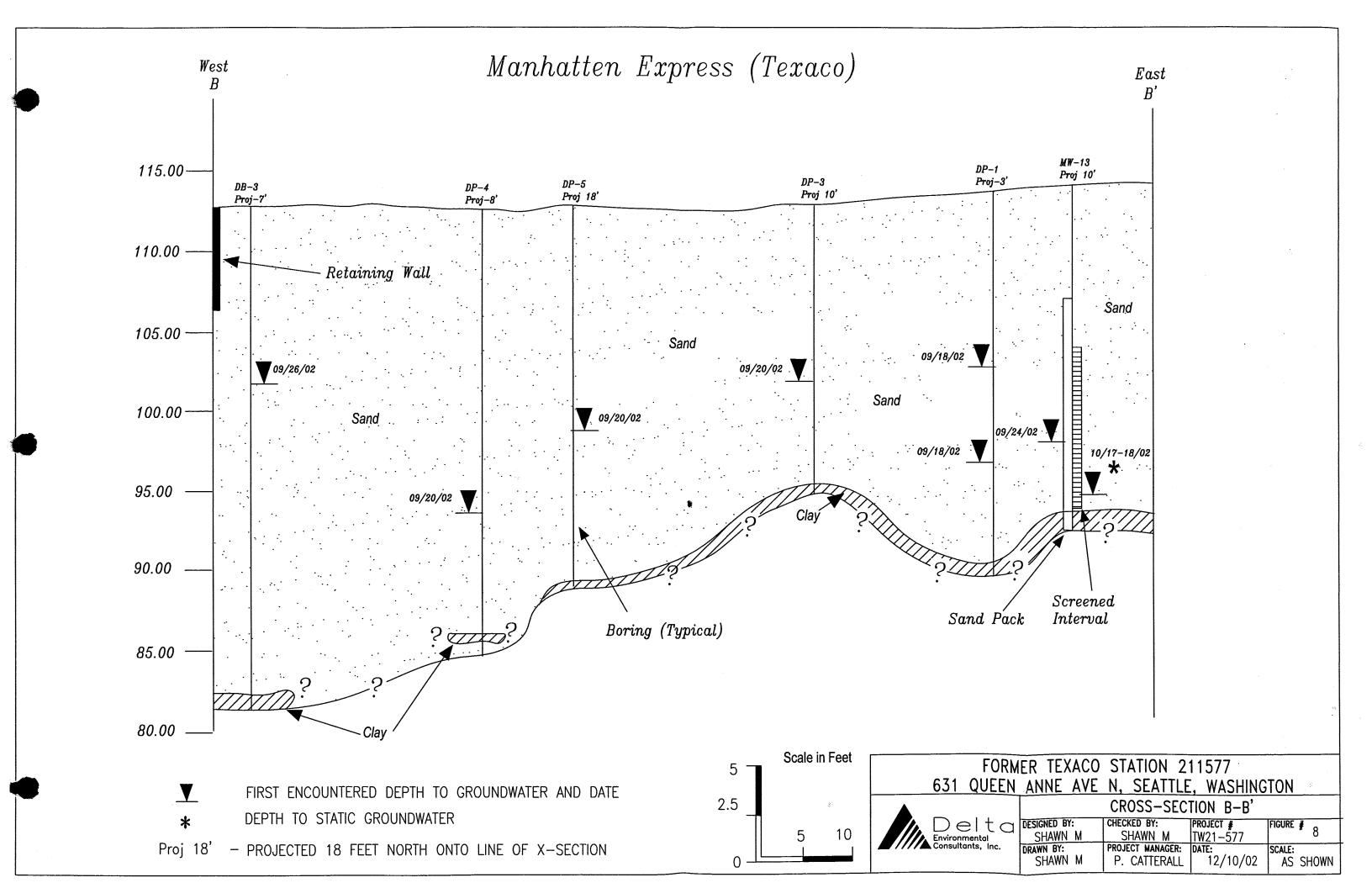

FORMER TEXACO STATION, NO. 21577 SEATTLE, WASHINGTON




	PRO	PERTY LOCAT	ION MAP	
ָוֹ	DESIGNED BY: S. MADISON	CHECKED BY: S. MADISON	PROJECT # TW21577	FIGURE #
•	DRAWN BY: S. MADISON	PROJECT MANAGER: P.CATTERALL	DATE: 5/17/2	SCALE: NTS







TABLES

TAble 1

ample I.D. ⁽¹⁾	Date	TPH-G (µg/l)	TPH-D (µg/l)	TPH-O (µg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylene (mg/l)
VP-1										
	Mar-91	NA				**				
	Oct-95						**			
	Jan-97									
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99									
	Jun-00	5,000	75,600	1,100U	21.60	14.4	32.8	435		
	Jul-02	35,000	18,000	1,500	120	820	280	4,600		
	Oct-02	27,300	7,500	598	170	756	334	4,820		
VP-2										
	Mar-91									
	Oct-95									
	Jan-97									
	Apr-97									
	Jul-97				***					
	Nov-97									
	Dec-99	5,980	29,900	2,500U	935	345	43.80	305		
	Jun-00	2,030	2,810	1,100U	45.90	16.2	3,000U	196		
•	Jul-02		,	-,	UTL		-,			
	Oct-02				UTA					
VP-3										
	Jul-02				DRY					
	Oct-02				DRY					

TABLE 1

Sample I.D. ⁽¹⁾	Date	TPH-G (μg/l)	TPH-D (μg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
		<i>1</i>				_			Out of the second	
VP-4										
	Mar-91									
	Oct-95			**						
	Jan-97				***					
	Apr-97									
	Jul-97						**			
	Nov-97									
	Dec-99									
	Jun-00	26,400	1,850	1,100U	1,020	3,270	890	6,160		
	Jul-02	89,000	78,000	9,700U	7,300	7,500	1,900	13,000		
	Oct-02				UTA					
VP-5 (MW-5)										
	Mar-91		1,850	ND	5,300	1,300	900	4,600		
	Oct-95						-			
	Jan-97								***	
	Apr-97									
	Jul-97									
	Nov-97		***				**			
	Dec-99	23,400	2,490	5,000U	841	191	1,480	7,720		
	Jun-00	25,600	1,340	1,120U	793	155	1,380	5,690		
	Jul-02				UTL					
	Oct-02	15,900	3,900	500U	318	49.3	880	1,870		
VP-6										
	Jul-02				SPH					
	Oct-02				SPH					

TAble 1

Sample I.D. ⁽¹⁾	Date	TPH-G (μg/l)	TPH-D (μg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
VD 7 (MXV 2)										
VP-7 (MW-3)	Mar-91	0.02						2.500		
		0.03			11 800	2 222		3,500		
	Oct-95	33,000			11,700	2,230	1,070	4,130		
	Jan-97	51,000	**		12,400	5,200	990	RA	3,700	1,500
	Apr-97	53,000			11,100	4,800	1,400	RA	5,400	2,200
	Jul-97	37,000			11,000	3,700	1,500	RA	5,200	1,900
	Nov-97	34,000			15,900	3,600	1,500	RA	4,800	1,800
	Dec-99	73,400	3,310	5,000U	16,800	9,670	1,890	10,500		
	Jun-00	54,400	931	1,460U	10,000	8,230	1,380	7,470		
	Jul-02	60,000	5,800	580	8,200	7,000	1,500	8,300		
	Oct-02	71,600	5,160	510	11,100	5,880	1,940	10,800		
VP-8 (MW-7)										
	Mar-91	0.01						1,100		
	Oct-95	3,100			2.50	1.20	3.00	16.0		
	Jan-97	8,000			816	824	26.0	RA	412	182
	Apr-97	18,000			605	786	119	RA	1,260	514
	Jul-97	9,100J			96.0	246	52.0	RA	706	274
	Nov-97	830J			5.60	7.00	11.0	RA	23.0	9.60
	Dec-99	7,640	2,780	5,000U	540	927	201	1,430		
	Jun-00	233	2,280	1,100U	1.10	1.81	1.95	7.99		
	Jul-02	1,500	1,800	420	9.40	9.20	34.0	50.0		
	Oct-02	552	1,830	500U	9.75	1.45	4.25	5.73		

TAbec 1

Sample I.D. ⁽¹⁾	Date	TPH-G (µg/l)	TPH-D (µg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
VP-9										
	Mar-91									
	Oct-95									
	Jan-97									
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99	118	2,500U	5,000U	0.50U	0.50U	0.50U	0.50U		
	Jun-00	474	1,420	1,130U	4.97	ND	55.6	4.80		
	Jul-02				UTL					
	Oct-02	1,910	13,200	500U	11.3	2.62	8.86	14.7	***	
MW-4										
102.07	Mar-91				10,000	12,000	500	9,800		
	Oct-95	95,000			19,600E	12,000	2,070	10,800		
	Jan-97	88,000			12,900	12,400	1,400	RA	7,500	3,100
	Apr-97	100,000			14,300	14,500	1,700	RA	7.80	3,200
	Jul-97	120,000			19,600	19,700	2,100	RA	9,300	3,800
	Nov-97	89,000			17,500	16,000	1,900	RA	8,800	3,400
	Dec-99	73,300	3,340	5,000U	13,700	13,500	1,830	11,000		
	Jun-00	74,400	3,390	1,240U	14,400	9,440	1,840	10,800		
	Jul-02	83,000	10,000	680	11,000	9,900	1,800	11,000		
	Oct-02	110,000	9.86	0.697	14,500	11,600	2,630	15,200		
DUP	Oct-02	92,400	7,100	500U	12,400	9,980	2,090	12,200		

TABLE 1

Sample I.D. ⁽¹⁾	Date	TPH-G (µg/l)	TPH-D (μg/l)	TPH-O (µg/l)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
150							400.00			
MW-6										
	Mar-91				25,000	29,000	2,500	19,000		
	Oct-95				12,000E	13,800E	920	5,680	4,170	1,520
	Jan-97				7,290	12,400	2,340		14,200	5,600
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99									
	Jun-00				***					
	Jul-02	31,000	29,000	10,000U	8,900	1,600	820	4,200	ANR	ANR
	Oct-02				UTA	·		·		
MW-9										
	Mar-91				1,600	2,900	250	3,100		**
	Oct-95	3,400			3,520	70J	200U	10,800		
	Jan-97	4,400	***		2,600	53.0	310	RA	7,500	3,100
	Apr-97	9,100			2,980	173	413	RA	7,800	3,200
	Jul-97	2,200J			2,680	127	460	RA	9,300	3,800
	Nov-97	5,000			2,010	80.0	334	RA	8,800	3,400
	Dec-99	4,460	8,510	5,000U	831	22.4	274	138		
	Jun-00	4,740	6,070	500U	786	26.0	274	156		
	Oct-02	6,380	43,600	671	493	13.0	230	107		

TABLE 1

Sample I.D. ⁽¹⁾	Date	TPH-G (μg/l)	TPH-D (μg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
367					10000		1000000			
MW-10										
174 77 -10	Mar-91				5.00U	5.00U	5.00U	5.00U		
	Oct-95	780			1.80	2.90J	0.82J	5.60		
	Jan-97	180			1.50	1.00U	1.00U	RA	2.00U	1.00U
	Apr-97	420			5.10	1.00	1.00U	RA	2.00J	1.40U
	Jul-97	1,100			10.0	2.10	2,40	RA	3.80	0.54J
	Nov-97	1,000	**		4.20	2.00	4.80	RA	1.60	0.60J
	Dec-99	618	353	5,000U	7.02	0.91U	0.85U	4.22U		
	Jun-00	99.2	2,500U	500U	1.56	ND	ND	ND	**	
	Jul-02	240	320	600	2.50	0.500U	1.00U	1.50U		
	Oct-02	490	667	500U	3.42	0.500U	1.34	5.00		
MW-11										
141 44-11	Jul-02	50.0U	250U	250U	0.500U	0.500U	0.500U	1.50U		
	Oct-02	50.0U	250U	500U	0.500U	0.500U	0.500U	1.00U		
	OC1-02	30.00	2300	3000	0.3000	0.3000	0.5000	1.000		
MW-12										
	Oct-02	50.0U	250U	500U	0.516	0.869	0.500U	1.00U		
MW-13	0									
	Oct-02				DRY					
MW-14										
******	Oct-02				UTA					
	Nov-02	43,100	4,710	500U	9,900	4,930	1,540	6,020		
		•	,			,	-,-	-,		
MW-15										
	Oct-02				UTA					
	Nov-02	3,280	780	500U	1,640	5.23	5.06	10.0U		

TAbed 1

GROUNDWATER ANALYTICAL RESULTS TPH-G, D, O AND BTEX COMPOUNDS

Sample I.D. ⁽¹⁾	Date	TPH-G (µg/l)	TPH-D (µg/l)	TPH-O (μg/l)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
MW-16									A Service Care Service	
	Oct-02				UTA					
	Nov-02	50.0U	250U	500U	0.500U	0.500U	0.500U	1.00U		
MW-17										
	Oct-02				UTA					
	Nov-02	2,780	250U	500U	569	31.0	91.1	250		
RW-2										
	Mar-91				19,000	46,000	2,500	120,000		
	Oct-95									
	Jan-97	390			31.0	14.0	6.00	RA	31.0	18.0
	Apr-97	11,000			189	243	99.0	RA	540	203
	Jul-97	24,000			4,230	2,490	389	RA	1,960	772
	Nov-97	4,400			3,140	1,200	338	RA	1,670	595
	Dec-99					•••				
	Jun-00							**		
	Jul-02				UTL					
	Oct-02	1,380	988	500U	90.5	8.05	29.2	31.5		
RW-3										
	Jul-02				UTA					
	Oct-02				UTA					
RW-4										
	Jul-02	990	15,000	2,000U	62.0	1.30	32.0	7.00		
	Oct-02	3,160	8,930	939	59.8	2.50	40.4	15.6		

TAbue 1

GROUNDWATER ANALYTICAL RESULTS TPH-G, D, O AND BTEX COMPOUNDS

Sample I.D. ⁽¹⁾	Date	TPH-G (μg/l)	TPH-D (µg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
RW-5										
	Jul-02				UTL					
	Oct-02	3,370	84,900	3,650	696	67.2	63.0	408		
Trip Blank LB										
	Oct-02	50.0U			0.500U	0.500U	0.500U	1.00U		
	Nov-02	50.0U			0.500U	0.500U	0.500U	1.00U		

- 1 Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 5.
- 2 Date groundwater samples were collected. Mar-91 from Ecology and Environment, Oct-95 through Nov-97 from Ecology, Dec-99 Jun-00 from Farallon.
- (--) Sample not analyzed.
- ANR- Analyte not reported or reported as total value
- DRY Insufficient groundwater to sample
- DUP Duplicate samples
- E The analyte was detected at a concentration above the linear response range of the instrument, value reported is an estimate.
- ND Not detected at or above laboratory detection limits. Laboratory detection limits not available or reported.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- RA Reported as m,p and o-xylene, total xylene not reported.
- SPH No sample collected due to the presence of separate phase hydrocarbons
- U The analyte was not detected at or above the reported value.
- UTA- No sample collected, unable to access well due to parked vehicle.
- UTL No sample collected, unable to locate well

GROUNDWATER ANALYTICAL RESULTS RCRA METALS

Sample I.D. ⁽¹⁾	Date	Silver (µg/l)	Arsenic (μg/l)	Barium (μg/l)	Cadmium (µg/l)	Chromium (µg/l)	Mercury (μg/l)	Lead (µg/l)	Selenium (μg/l)
VP-1				· -					
VI-1	Jul-02			and day				22.0	
	Oct-02			: <u></u>				22.9 1.80	**
VP-2	30.02							1.60	
	Jul-02			UTL					
	Oct-02			UTA					
				Ī					
VP-3									
	Jul-02	•		DRY					
	Oct-02			DRY					
VP-4									
	Jul-02	***						28.0	
	Oct-02			UTA					
37D = (3/137 =)									
VP-5 (MW-5)	T1 00			¥ 7/17)¥					
	Jul-02			UTL					
	Oct-02			· 				2.29	
VP-6				:					
V F-0	Jul-02			CDII					
				SPH					
	Oct-02			SPH					
VP-7 (MW-3)									
(Jul-02	0.068	97.2	33.6	0.080U	2.20	0.079U	25.0	1.10U
	Oct-02						0.0720	2.40	
								2	

GROUNDWATER ANALYTICAL RESULTS RCRA METALS

Sample I.D. ⁽¹⁾	Date	Silver (µg/l)	Arsenic (µg/l)	Barium (μg/l)	Cadmium (µg/l)	Chromium (µg/l)	Mercury (μg/l)	Lead (μg/l)	Selenium (µg/l)
VP-8 (MW-7)									
` ,	Jul-02	0.050U	2.1	49.5	0.13	0.82	0.079U	11.4	3.10U
	Oct-02			:				1.93	
VP-9									
	Jul-02								
	Oct-02	*** ***						1.00U	
MW-4									
	Jul-02	0.050U	31.0	63.8	0.080U	0.28U	0.079U	15.5	1.10U
	Oct-02							10.7	
DUP	Oct-02			40 100				9.61	
MW-6									
	Jul-02							5.10	
	Oct-02			UTA					
MW-9									
	Oct-02			. 				2.66	air an
MW-10									
	Jul-02	0.050U	4.1	52.1	0.17	0.38	0.079U	1.30	1.10U
	Oct-02							1.00U	

GROUNDWATER ANALYTICAL RESULTS RCRA METALS

Sample I.D. ⁽¹⁾	Date	Silver (µg/l)	Arsenic (μg/l)	Barium (μg/l)	Cadmium (μg/l)	Chromium (µg/l)	Mercury (μg/l)	Lead (µg/l)	Selenium (µg/l)
B#887 44									
MW-11	Jul-02							1 2011	
	Oct-02		••					1.20U 1.00U	
	001-02							1.000	
MW-12									
	Oct-02								
MW-13									
	Oct-02			DRY					
MW-14	0.400			T. 7.777. A					
	Oct-02	1 00**	150	UTA	4 0077	4 00**		4.00	4.40
	Nov-02	1.00U	17.0	18.4	1.00U	1.00U	1.00U	1.82	1.48
MW-15									
1/1//-15	Oct-02			UTA					
	Nov-02	1.00U	1.33	1.00U	1.00U	1.00U	1.00U	1.04	1.00U °
MW-16									
	Oct-02			UTA					
	Nov-02							1.00U	
MW-17									
	Oct-02			UTA					
	Nov-02		va re-		en en		AND AND	1.00U	
RW-2									
KW-Z	Jul-02								
	Oct-02							2.23	
	001-02							۷.4.	

GROUNDWATER ANALYTICAL RESULTS RCRA METALS

Sample I.D. ⁽¹⁾	Date	Silver (µg/l)	Arsenic (μg/l)	Barium (μg/l)	Cadmium (μg/l)	Chromium (µg/l)	Mercury (μg/l)	Lead (µg/l)	Selenium (µg/l)
RW-3	1016								
	Jul-02			UTA					
	Oct-02			UTA					
RW-4									
	Jul-02	0.050U	6.10	66.9	0.080U	1.20	0.079	3.30	1.10
	Oct-02							1.23	
RW-5									
	Jul-02			UTL					
	Oct-02				•••			3.91	

- 1 Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 5.
- (--) Sample not analyzed.
- J Anatyle was positively identified. The associated numerical result is an estimate.
- ND Not detected and reporting limit not available.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- U The analyte was not detected at or above the reported value.
- UTA- No sample collected, unable to access well due to parked vehicle.
- UTL No sample collected, unable to locate well
- DRY Insufficient groundwater to sample
- SPH No sample collected due to the presence of separate phase hydrocarbons
- * Metals results for dissolved metals (filtered).

TAI 1

S	Data	Lead (total)	Lead (dissolved)	Maganese	Ferrous	Nitrate- Nitrogen (mg/l	
Sample I.D. ⁽¹⁾	Date	(µg/l)	(µg/l)	(mg/l)	Iron(mg/l)	as N)	Sulfate (mg/l)
VP-1							
	Mar-91						
	Oct-95				***		
	Jan-97						
	Apr-97						
	Jul-97						~~
	Nov-97						
	Dec-99			***			
	Jun-00	33.4	33.9				
VP-2							
	Mar-91		***				
	Oct-95						
	Jan-97						
	Apr-97						
	Jul-97						
	Nov-97			***	***		
	Dec-99	262	61.7			***	400 1500
	Jun-00	37.8	9.87				
VP-4							
	Mar-91						
	Oct-95					***	
	Jan-97	-					
	Apr-97						
	Jul-97						
	Nov-97	•••	· 				
	Dec-99						** **
	Jun-00	9.12	4.66				

	T 14	4 B T 1/11			Nitrate-	
Sample I.D. ⁽¹⁾ Da	Lead (to ite (µg/l)	•			Nitrogen (mg/l as N)	Sulfate (mg/l)
			PM Sul		200 Mar 1	\ 9
VP-5 (MW-5)						
Mar	91			***		
Oct	-95	***	**		***	
Jan	-97					
Apr	97					
Jul-	-97					
Nov	r-97					
Dec	-99 6.76	2.57				
Jun	-00 3.75	2.66				
VP-7 (MW-3)						
Mar	:-91	**			•••	
Oct	-95 5.60P					
Jan						
Apr	-97 3.40					
Jul						
Nov	-97 5.00	an as				
Dec	-99 5.91	2.11	7.76	11.7	0.10U	13.4
Jun	-00	2.13				
VP-8 (MW-7)						
Mar	:-91			No 100		
Oct	-95 3.40P					
Jan	-97 3.70			also dell	die site	
Apr	-97 24.6	40 Hb	me	***		
Jul						**
Nov		60 40				100 sta
Dec	-99 40.6	5.02				
Jun	-00 17.7	7.95				

TAI 1

						Nitrate-	
440		Lead (total)	Lead (dissolved)	Maganese	Ferrous	Nitrogen (mg/	1
Sample I.D. ⁽¹⁾	Date	(μg/l)	(μg/l)	(mg/l)	Iron(mg/l)	as N)	Sulfate (mg/l)
			20 To 18 HOLL			(31)	
VP-9							
	Mar-91				***	***	
	Oct-95						
	Jan-97						
	Apr-97					**	
	Jul-97						
	Nov-97						
	Dec-99	15.0	1.00U	420	9400	9200	34000
•	Jun-00	15.2	1.00U				
MW-4							
	Mar-91						
	Oct-95	30.6		***			
	Jan-97	36.5					
	Apr-97	20.7					
	Jul-97	19.5					***
	Nov-97	16.2					
	Dec-99	19.8	9.86	10.5	6.15	0.10U	0.20U
	Jun-00	21.4	9.72				

Nitrate-							
4 0		Lead (total)	Lead (dissolved)	Maganese	Ferrous	Nitrogen (mg/	l
Sample I.D. ⁽¹⁾	Date	(µg/l)	(μg/l)	(mg/l)	Iron(mg/l)	as N)	Sulfate (mg/l)
	100						
MW-6							
	Mar-91	***		***			
	Oct-95	**					
	Jan-97		***				
	Apr-97	ale est					m us
	Jul-97						
	Nov-97		**				
	Dec-99		***				
	Jun-00	wa es					
MW-9							
	Mar-91						
	Oct-95	4.60P		 .			***
	Jan-97						
	Apr-97	6.80					
	Jul-97	8.60J		**			
	Nov-97	3.30	**				
	Dec-99	15.0	1.03	10.5	6.15	-	
	Jun-00	7.86	1.59				
MW-10							
	Mar-91						
	Oct-95	1.00U	***	**		•••	***
	Jan-97						
	Apr-97	1.00U					
	Jul-97	1.20J					
	Nov-97	4.90		AND 649			
	Dec-99	1.00U	1.00U	5.12	2.00U	0.72	70.6
	Jun-00	ND	ND				gaph Aller

						Nitrate-	
40		Lead (total)	Lead (dissolved)	Maganese	Ferrous	Nitrogen (mg/l	
Sample I.D. ⁽¹⁾	Date	(µg/l)	(µg/l)	(mg/l)	Iron(mg/l)	as N)	Sulfate (mg/l)
		141	No.		and the second		
RW-2							
	Mar-91			40.00			
	Oct-95						***
	Jan-97						
	Apr-97						90 Ya
	Jul-97						
	Nov-97						
	Dec-99		**				
	Jun-00						

- 1 Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 5.
- (--) Sample not analyzed.
- J Anatyle was positively identified. The associated numerical result is an estimate.
- ND Not detected and reporting limit not available.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- U The analyte was not detected at or above the reported value.
- UTA- No sample collected, unable to access well due to parked vehicle.
- UTL No sample collected, unable to locate well
- DRY Insufficient groundwater to sample
- SPH No sample collected due to the presence of separate phase hydrocarbons

TABLE 1

			tene	Ne.	eile	ene	ene	e.	ne	he	e 35	ene		, ne
		Liber	illeni	3.5 Albe	nic 24 sibe	ale soyltal	henlet	lehe	Moroette	roethe.	Moroett	atin	A 2: settle	idenler
		tsoliopylitet	Hene Propinsed	135 timetrythe	prepe Linethylpe	ptene pyton	tr hutylbenie	Andrithalene	Lettachloroethe	ne friceplaraether	e Dichloroeth	Chloroform	eis-13-ingette Dictionactive	ne sec.Butylbentene
						ď.	4	4. ,		>		Cr	Ø,	480
Sample I.D. ⁽¹⁾	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	•			•										
VP-1	* 1.00													
	Jul-02													
	Oct-02													
VP-2														
	Jul-02													
	Oct-02													
VP-3														
	Jul-02				**									
	Oct-02													
77D 4														
VP-4	T 1 00													
	Jul-02			**	***				***			•••		
	Oct-02													
VP-5 (MW-5)														
()	Jul-02					**								
	Oct-02										***			

TABLE 1

		lsopropyl-heat	tr Propinent	135 type	12.4 Trinethylic	plene hopforthan	tr butylbente	ne Haphthalene	, sette chloroeth	Tricalloroethe	ne L. Dichloroett	Chloroform	iis-17-7 nethe Dictioneethe	ere gee-Antylherhene
	4	Roll	N.Y.	Trill	Trill	Prise	W. Dr.	Haft.	Setti	Tir ,	St.	Child	Dieli	sec. k
Sample I.D. ⁽¹⁾	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
VP-6	T1 02													
	Jul-02								**					
	Oct-02													
VP-7 (MW-3)														
, ,	Jul-02				•••		***							
	Oct-02					:								
VP-8 (MW-7)														
VI-0 (IVI VV-7)	Jul-02					:								
	Oct-02													
	000-02													
VP-9														
	Jul-02		***									***		
	Oct-02	, •••			***									
3.5337.4														
MW-4	T1 02	46.0	140	500	1 000	10.077	22.0	260	0.0011	10.011	£ 00TT	0.0011	0.0011	10.011
	Jul-02 Oct-02	46.0	140	500	1,800	10.0U	23.0	360	8.00U	10.0U	5.00U	8.00U	8.00U	10.0U
	OCI-02							***						

TABLE 1

		Isopropyl bent	ene Propilizante	ie Likethytte Trinethytte	LA Trinethylie	p.tsopropytolu	ene menter	je Jene	Letra-eliloroeth	ene it ethoroethe	ne Dichloroeth	ene	, or settle	ne sec.Butylhentene
	•	Pobloby	Dr. Propy	Trineth,	Trineth,	P.Isobio1	tr buty the file	Anthhalene	Setracett.	Tricello.	1.7. Dietr	Chloroform	iis 1,76 noethe Dictionoethe	sec. Buty
Sample I.D. ⁽¹⁾	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-6														
	Jul-02 Oct-02													
MW-9														
	Jun-00 Oct-02			 	 	:	**							
MW-10														
	Jul-02 Oct-02	2.00U 	1.00U 	1.00U 	1.00U 	1.00U	1.00U 	2.00U 	1.00U 	1.00U 	1.00U 	1.00U 	15.0 	1.00
MW-11	7 1 00	2 2277	1 0077	1 0077	1 0077	1 0077	1 0077	2 0077	1 0077	1 0077	1 0077		1 0077	1 0077
	Jul-02 Oct-02	2.00U 	1.00U 	1.00U 	1.00U 	1.00U	1.00U 	2.00U 	1.00U 	1.00U 	1.00U 	1.00U 	1.00U 	1.00U
MW-12	0 . 00	1 0077	1 00**	1.0077	1 0077	1.0077	1 0077	1 0077	0.50	2.55	1.00	1.00	0.07	1.0077
	Oct-02	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	9.58	2.75	1.00	1.68	9.07	1.00U

TABLE 1

		lsopropyl-bent	ene Propinent	135 hype	Likety he	plear appropriation	te butyfteniet	ne malene	etrachloroeths.	frichloroether	e Dichloroeth	ene sorm	eischier deitre Die Monde	sec-Andylbenhene
	4	Pobloh,	n. Prop.	Trimet	Trimetr	prisopi	nr buty!	ar Anglithmene	etra c	Stireth 1	A. Dit	Chloroform	cist Dichlor	sec.But.
Sample I.D. ⁽¹⁾	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-13	Oct-02						**					**		
MW-14	Oct-02						**	***						
MW-15	Oct-02				•••									
MW-16	Oct-02						~~							
MW-17	Oct-02													
RW-2	Jul-02 Oct-02	 			 									
RW-3	Jul-02 Oct-02	 		 	 					 	 	<u></u> 	 	

GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

	Isopropylited for Propylhedrene 1.3.5 Triffie thy the other Prince thy the other propylhedrene triffie the propylhedrene triffie thy the other prince that the propylhedrene triffie triffie the propylhedrene triffie												ciscle Art of the sec. Huty to enterte		
		Tsopropy,	n. Propyli	Trimethy!	Trinethy!	Prisoprob.	h. but, lite	Haphthale.	Cetra-chile	Tricklot	.7. Diente	Chloroform	cis-1-1 droes	ene see Butylbertene	
Sample I.D. ⁽¹⁾	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
RW-4										***************************************					
	Jul-02	2.00U	3.00	1.00U	20.0	2.00	1.00	5.00	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	
	Oct-02								**						
RW-5															
	Jul-02											**			
	Oct-02														
Trip Blank LB															
-	Oct-02		***			 }		100.00							

^{1 -} Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 5.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix F.

^{(--) -} Sample not analyzed.

DRY - Insufficient groundwater to sample

DUP - Duplicate samples

RA - Reported as o-xylene, total xylene not reported.

SPH - No sample collected due to the presence of separate phase hydrocarbons

U - The analyte was not detected at or above the reported value.

UTA- No sample collected, unable to access well due to parked vehicle.

UTL - No sample collected, unable to locate well

TABLE 1

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

		nthale	ne aften	d tother	o	nat	not	ntha	inte	
		2.Methylasphhale	2.4.Thentorophens	A Timethylphet	N aphthalene	2.Methylphenol	A.Methylphenol	tist's Aphtha	Bentoic Acid	Phenol
Sample I.D.	Date	√ [∞] (μg/l)	∿ ^ኛ (μg/l)	_{ንኛ} (μg/l)	∻ ^φ * (μg/l)	γ ^{,∖,} (μg/l)	κ ⁾ (μg/l)	e ^{χχν} . (μg/l)	ფ ^{εν} (μg/l)	φ ^{ine} (μg/l)
VP-1	7/24/02	84.0	5.0U	80.0	160	13.0	18.0	31.0	10.0U	5.0U
VP-7	7/24/02	69.0	5.0U	28.0	420	5.0U	6.0	10.0U	34.0	5.0U
VP-8	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U	5.0U
MW-4	7/24/02	160	5.0U	24.0	500	6.0	9.0	10.0U	10.0U	5.0U
MW-10	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	13.0	10.0U	5.0U
MW-11	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U	5.0U
MW-12	10/18/02	10.0U	10.0U	10.0U	10.0U	10.0U	10.0U	50.0U	20.0U	10.0U
MW-14	11/14/02	52.2	10.0U	13.4	242	11.0	24.8	50.0U	20.0U	34.5
MW-15	11/14/02	10.0U	10.0U	10.0U	10.0U	10.0U	10.0U	50.0U	20.0U	37.0
RW-4	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U	5.0U

Note: Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 5.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix .

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix F.

U - Analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS TPH-G, D, O, BTEX AND HYDRCARBON FRACTIONS

Sample I.D.	Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total VPH ⁽¹⁾ (mg/kg)	Total EPH ⁽²⁾ (mg/kg)
DVP-1-1	9/12/02	1,640	333	ND	0.554	ND	13.3	49.7	1,020	382
DVP-1-6	9/12/02	4,600	1,360	31.8	7.72	84.6	41.9	175	NA	NA
DVP-2-1	9/12/02	5.00U	10.0U	25.0U	0.300U	0.500U	0.500U	0.100U	5.00U	5.00U
DVP-2-6	9/12/02 (8,850	2,030	52.4	14.0	157	112	523	4,980	1,950
DVP-4-6*	9/12/02	5,860	2,170	65.0	10.7	101	75.4	370	4,590	2,200
Source Blank (3)	9/12/02	50.00U			0.500U	0.500U	0.500U	1.00I		
Rinsate Blank ⁽³⁾	9/12/02	50.00U			0.500U	0.500U	0.500U	1.00U		
Field Blank ⁽³⁾	9/12/02	50.00U		·	0.500U	0.500U	0.500U	1.00U		•••
Trip Blank ⁽³⁾	9/12/02	50.00U			0.586	0.500U	0.500U	1.00U		

^{(--) -} sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aromatics.

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aromatics.

^{3 -} Results are for water and reported as ug/L

U - The analyte was not detected at or above the reported value.

^{* -} DVP-4 samples were duplicate of DVP-2

SOIL ANALYTICAL RESULTS TOTAL METALS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)
DVP-1-1	9/12/02	0.658U	3.72	88.6	0.658U	41.1	0.200U	6.00	0.658U
DVP-2-1	9/12/02	0.500U	2.28	81.60	0.500U	37.50	0.200U	2.91	0.500U
DVP-2-6	9/12/02	0.694U	2.46	46.1	0.694U	27.1	0.200U	5.04	0.694U
DVP-4-6*	9/12/02	0.500U	2.45	47.8	0.500U	31.6	0.200U	4.35	0.500U

U - The analyte was not detected at or above the reported value.

TW21577 Soil Analytical DVP

^{* -} DVP-4 samples were duplicate of DVP-2

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D. Date Sampled Reporting Units	DVP-1-1 (B210261-01) 9/12/02 (mg/kg)	DVP-1-1 (B210261-01RE1) 9/12/02 (mg/kg)	DVP-1-1 (B210261-01RE2) 9/12/02 (mg/kg)	DVP-2-1 (B210261-03) 9/12/02 (mg/kg)
n-Butylbenzene	33.7	23.7	36.8	0.0050U
sec-Butylbenzene	5.74	4.53	10.0U	0.0050U
Ethylbenzene	50.6	41.3	58.0	0.0040U
Isopropylbenzene	7.60	6.06	10.0U	0.0050U
p-Isopropyltoluene	14.3	8.94	13.1	0.0050U
Naphthalene	23.0	16.7	26.8	0.0050U
n-Propylbenzene	47.1	29.9	42.1	0.0050U
Toluene	2.42	2.00U	10.0U	0.00176
1,2,4-Trimethylbenzene	149	189	276	0.0050U
1,3,5-Trimethylbenzene	64.2	58.3	79.2	0.0050U
Total Xylenes	211	229	330	0.100U

U - The analyte was not detected at or above the reported value.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

TW21577 Soil Analytical DVP QA/QC____ 3/3/2003

SOIL ANALYTICAL RESULTS

SEMIVOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DVP-1-1 (B210261-01)	09/12/02	2.94	1.53

U - The analyte was not detected at or above the reported value.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

QA/QC_____ 3/3/2003

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Sample I.D. DV Date Sampled Reporting Units	P-1-1 (B210261-01) 9/12/2002 mg/kg	DVP-2-1 (B210261-01) 9/12/2002 mg/kg
Benzo (a) anthracene	0.010U	0.010 U
Benzo (a) pyrene	0.010U	0.010U
Benzo (b) fluoranthene	0.010 U	0.010U
Benzo (k) fluoranthene	0.010U	0.010U
Chrysene	0.010U	0.010U
Dibenz (a,h) anthracene	0.010U	0.010U
Indeno (1,2,3-cd) pyrene	0.010U	0.010U
1- Methylnaphthalene	1.92	0.010U
2- Methylnaphthalene	3.86	0.010U
Naphthalene	1.82	0.010U

U - The analyte was not detected at or above the reported value.

GROUNDWATER ANALYTICAL RESULTS

Sample I.D.	Date	TPH-G (μg/l)	TPH-D (μg/l)	TPH-O (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
DVP-1	9/12/02	98,100			7,640	18,600	- 2,660	- 15,000
DVP-2	9/12/02	107,000			- 13,500	-19,100	2,140	12,400
DVP-4*	9/12/02	102,000	900 MP		12,300	17,400	1,980	11,500

^{(--) -} Analytical data unavailable due to laboratory processing error.

U - The analyte was not detected at or above the reported value.

^{* -} DVP-4 samples were duplicate of DVP-2

TABLE 4

SOIL ANALYTICAL RESULTS

Sample I.D.	Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total VPH ⁽¹⁾ (mg/kg)	Total EPH ⁽²⁾ (mg/kg)
DP-1-16	9/18/02	5.00U	10.0U	25.0U	0.0300U	0.0500 U	0.0568	0.121	5.00U	8.64
DP-2-14	9/18/02	5.00U	10.0U	25.0U	0.0571	0.0500U	0.0500U	0.100U	5.00U	5.00U
DP-2-20	9/18/02						. 		5.00U	5.00U
DP-3-12	9/20/02	1,140	1,060	25.0U	2.39	2.01	10.3	20.3	1,410	685
DP-4-20	9/20/02	90.9	18.4	25.0U	0.131	0.248	0.851	3.34	60.6	5.00U
DP-5-14	9/20/02	8,160	1,200 -	25.0U	17.4	98.2	97.2	569	3,440	355
DP-6-22	9/20/02	7,750	88.7	25.0U	33.0	242	83.7	369	2,050	259
DP-7-20	9/20/02	329	788	25.0U	0.844	4.25	2.61	10.3	326	1,890
Tip Blank ⁽³⁾	9/18/02	50.00U			0.500U	0.500U	0.500U	1.00U		

^{(--) -} sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aromatics.

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aromatics.

ND - not detected above laboratory detection limits. Laboratory detection limits not available or reported.

U - The analyte was not detected at or above the reported value.

TABLE 4
SOIL ANALYTICAL RESULTS
TOTAL METALS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Lead ⁽¹⁾ (mg/kg)
DP-1-16	9/18/02	0.500U	2.33	57.1	0.500U	30.5	0.200U	1.92	0.500U	_
DP-2-14	9/18/02	0.500U	3.58	83.9	0.500U	36.2	0.200U	2.39	0.500U	-
DP-2-20	9/20/02	-	•	-	-	-	-	-	-	1.85
DP-3-12	9/20/02	0.500U	2.66	79.0	0.572	29.5	0.200U	4.15	0.500U	-
DP-4-18	9/20/02	-	-	-	-	-	-	-	-	3.36
DP-4-20	9/20/02	0.500U	1.69	29.0	0.500U	12.0	0.200U	1.78	0.500U	-
DP-5-14	9/20/02	-	-	-	-	-	-	-	-	3.53
DP-6-14	9/20/02	-	-	-	-	-	-	-	-	5.13
DP-6-22	9/20/02	0.500U	1.65	60.4	0.873	22.6	0.200U	4.74	0.500U	-
DP-7-10	9/20/02	-	· -	-	-	-	-	-	-	5.40
DP-7-20	9/20/02	0.500U	2.14	74.9	0.500U	29.6	0.200U	9.48	0.500U	-

⁽¹⁾ From analysis of total lead in soil separate of RCRA metals by EPA 6000/7000 series methods

TW21577 Soil Analytical DP QA/QC_____ 3/3/2003

TABLE 4

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Sample I.D.	Date	Benzo (a) anthracene (mg/kg)	Benzo (a) pyrene (mg/kg)	Benzo (b) fluoranthene (mg/kg)	Benzo (k) fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenz (a,h) anthracene (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	1- Methylnaphthalene (mg/kg)	2- Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DP-1-16	9/18/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DP-2-14	9/18/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DP-3-12	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	1.96	3.20	0.207
DP-4-20	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0354	0.0680	0.0231
DP-5-14	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.744	1.28	0.210
DP-6-22	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	1.86	3.70	0.863
DP-7-20	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	7.50	14.1	4.99

TABLE 4

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

			_	<i>د</i> ه	je.	: .et	de 146	ine	<i>*</i>	şe.	alber	Hent	Ilent
Sample I.D.	Pate	Rentene	h. Butylbenien	sec.Butylbenter	Fifty the treate	Isopropythenie	p-Isopropytolic	N aphthalene	h.Rropylbenler	Taluene	. J. d. Trimethylber	general strategy des	Tata Kylenes
DP-1-16	9/18/02	0.00336	0.00500U	0.00500U	0.00400U	0.00500U	0.00500U	0.00500U	0.00500U	0.00150U	0.00500U	0.00500U	0.0100U
DP-2-14	9/18/02	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.0100U
DP-3-12	9/20/02	0.100U	0.170	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.587	0.184	0.193
DP-4-20	9/20/02	0.100U	0.813	0.100U	0.233	0.100U	0.281	0.421	0.395	0.100U	3.09	0.947	1.17
DP-5-14	9/20/02	5.35	14.5	3.35	32.3	3.86	6.74	13.4	22.0	59.5	65.2	27.9	137
DP-5-14 RE	9/20/02	5.23	13.3	4.00U	34.6	4.00U	5.33	13.7	17.6	69.1	94.6	28.5	214
DP-6-22	9/20/02	52.2	28.7	1.00U	112	8.03	9.96	40.2	39.0	423	214	68.0	568
DP-6-22 RE	9/20/02	51.8	30.4	20.0U	110	20.0U	20.0U	42.7	37.7	448	236	60.9	629
DP-7-20	9/20/02	1.39	2.75	0.100U	4.83	0.503	0.985	2.81	2.64	9.49	15.4	4.57	26.8
DP-7-20 RE	9/20/02	2.00U	2.82	2.00U	4.77	2.00U	2.00U	2.88	2.49	8.67	16.1	4.92	27.9
Tip Blank (1)	9/18/02	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U

NOTE: Results are for soil and reported as mg/kg

Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix B.

1 - Results are for sum of m, p and o - Xylene isomers

TABLE 4

SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Benzoic Acid (mg/kg)	Fluorene (mg/kg)	Isophorone (mg/kg)	Di-n-octyl phthalate (mg/kg)	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)	Phenanthrene (mg/kg)	Phenol (mg/kg)
DP-1-16	9/18/02	1.00U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	0.515
DP-2-14	9/18/02	1.01	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	1.05
DP-3-12	9/20/02	1.00U	0.330U	0.330U	0.575	9.54	3.05	2.56	2.15
DP-4-20	9/20/02	1.00U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U
DP-5-14	9/20/02	1.00U	1.80	0.666	0.330U	20.1	11.5	2.92	0.330U
DP-6-22	9/20/02	1.00U	0.330U	0.330U	0.339	20.0	17.6	1.37	0.653
DP-7-20	9/20/02	1.00U	0.330U	0.330U	0.330U	4.27	1.85	0.827	1.41

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix B.

TABLE 5

SOIL ANALYTICAL RESULTS TPH-G, D, O, BTEX AND HYDROCARBON FRACTIONS

									Total		
	Sample I.D.	Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)		Total VPH (1) (mg/kg)	Total EPH (2) (mg/kg)
	DB-1-16.0	9/26/02	5.00U	10.0U	25.0U	0.030U	0.050U	0.050U	0.100U		
	DB-2-14.0	9/24/02	5.00U	10.0U	25.0U	0.030U	0.050U	0.050U	0.100U	5.00U	5.00U
	DB-3-11.0	9/26/02	8.30	10.5	25.0U	0.030U	0.050U	0.0602	0.176		
	DB-3-31.5	9/26/02	5.74	10.0U	25.0U	0.0544	0.309	0.160	0.840		•••
	DB-4-9.0	9/25/02 (1,740	802	125U	0.300U	2.56	10.2	20.4		
	DB-4-11.5	9/25/02	728	100	25.0U	0.300U	1.31	11.0	56.3		,
	DB-4-21.5	9/25/02	5.00U	42.6	25.0U	0.820	0.0674	0.500U	0.100U		
>	DB-5-13.0	9/23/02 (10,200	3,060	500U	23.0	145	105	445		
	DB-5-24.0	9/23/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.500U	0.100U		
	DB-6-16.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0516	0.216		
	DB-6-26.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U	***	
	DB-7-11.5	9/24/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U	5.00U	5.00U
	DB-7-33.5	9/24/02	5.00U	10.0U	25.0U	0.117	0.0500U	0.0500U	0.100U	**	

TABLE 5

SOIL ANALYTICAL RESULTS TPH-G, D, O, BTEX AND HYDROCARBON FRACTIONS

					Sea	attie, WA		Total		
		TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	Xylenes		
Sample I.D.	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DB-8-16.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U	5.00U	5.00U
DB-9-16.0	9/24/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U		
DB-10-11.0	9/23/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U		
DB-11-10.5	9/26/02	5.00U	18.4	41.4	0.0300U	0.0500U	0.0500U	0.100U		
Drum DB-5	9/23/02	381	128	89.5	0.721	4.62	3.72	16.9		
Blank #1 ⁽³⁾	9/24/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Blank #2 ⁽³⁾	9/24/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Blank #3 ⁽³⁾	9/26/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Blank #4 ⁽³⁾	9/26/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Tip Blank #1 ⁽³⁾	9/23/02	50.0U		**	0.500U	0.500U	0.500U	1.00U		
Tip Blank #2 ⁽³⁾	9/25/02	50.0U			0.500U	0.500U	0.500U	1.00U	**	~-
Tip Blank #3 ⁽³⁾	9/24/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #4 ⁽³⁾	9/24/02	50.0U		6m 6m	0.500U	0.500U	0.500U	1.00U		
Tip Blank #5 ⁽³⁾	9/26/02	50.0U		***	0.500U	0.500U	0.500U	1.00U		
Tip Blank #6 ⁽³⁾	9/26/02	50.0U		***	0.500U	0.500U	0.500U	1.00U	**	
Tip Blank #7 ⁽³⁾	9/26/02	50.0U			0.500U	0.500U	0.500U	1.00U	**	

^{(--) -} sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aromatics.

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aromatics.

^{3 -} Results are for water and reports as ug/L

U - Analyte was not detected at or above the reported value.

TABLE 5

SOIL ANALYTICAL RESULTS TOTAL RCRA METALS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Lead ⁽¹⁾ (mg/kg)
DB-2-14	9/24/02	0.500U	4.53	80.2	0.500U	48.6	0.200U	2.61	0.935	
DB-2-16.5	9/24/02								•••	2.56
DB-3-11	9/26/02	0.500U	2.27	49.6	0.500U	29.2	0.200U	6.89	0.500U	
DB-3-31.5	9/26/02									6.46
DB-4-11.5	9/25/02	0.500U	3.18	82.1	0.500U	33.1	0.200U	3.78	0.500U	
DB-4-21.5	9/25/02				~~					2.00
DB-5-13	9/23/02	0.500U	1.73	49.9	0.500U	30.4	0.200U	8.72	0.500U	
DB-5-24	9/23/02									1.29
DB-6-16.5	9/25/02	0.500U	1.87	52.0	0.500U	25.7	0.200U	2.44	0.500U	
DB-6-26.5	9/25/02									3.32
DB-7-11.5	9/24/02	0.500U	3.18	58.4	0.500U	25.8	0.200U	2.04	0.500U	
DB-7-33.5	9/24/02					**				10.5
DB-8-16.5	9/25/02	0.500U	1.19	33.6	0.500U	22.8	0.200U	1.62	0.500U	
DB-9-16	9/24/02					***	***		**	1.82
DB-10-11	9/23/02						••			3.41
Drum DB-5	9/23/02									1.87

QA/QC____ 3/3/2003

TABLE 5

SOIL ANALYTICAL RESULTS TOTAL RCRA METALS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Campula I D	Data	Silver	Arsenic	Barium	Cadmium	Chromium	Mercury	Lead	Selenium	Lead (1)
Sample I.D.	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Blank #1 ⁽²⁾	9/24/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #2 ⁽²⁾	9/24/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #3 ⁽²⁾	9/26/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #4 ⁽²⁾	9/26/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U

⁽¹⁾ From analysis of total lead in soil separate of RCRA metals by EPA 6000/7000 series methods

TW21577 Soil Analytical DB QA/QC_____ 3/3/2003

⁽²⁾ Results are for water, and reported as ug/L.

U - Analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Sample I.D.	Date	Benzo (a) anthracene (mg/kg)	Benzo (a) pyrene (mg/kg)	Benzo (b) fluoranthene (mg/kg)	Benzo (k) fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenz (a,h) anthracene (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	1- Methylnaphthalene (mg/kg)	2- Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DB-2-14	9/24/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0106
DB-3-11	9/26/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0206	0.0100U	0.0100U
DB-4-9	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	2.53	6.03	2.42
DB-5-13	9/23/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	16.3	31.5	25.9
DB-6-16.5	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0106	0.0179
DB-7-11.5	9/24/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DB-8-16.5	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U

U - Analyte was not detected at or above the reported value.

TABLE 5

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Ο.				₄ et	Je .	e spi	ene Hold	ene c	ploride	, N	ne	.	NIERE	NIERE of	,	_{se} ⇔
Sample 1.7.	Pate	Acetone	Benlene	h-Rutylbenite	R thy the tree!	Leopropytheni	p.lsopropykoli	ene Methylenec	A aphthalen	n.Propylhente	Tollene	1,2,4 Trinethyles	grege 1,3 5 Tripletry the	na Kapene	or Aylenes	Total Tyles
DB-2-14.0	9/24/02	0.0507	0.0015U	0.005U	0.004U	0.005U	0.005U	0.00469	0.005U	0.005U	0.001 <i>5</i> U	0.00879	0.005U	ANR	ANR	0.010U
DB-3-11.0	9/26/02	0.030U	0.0015U	0.005U	0.004U	0.005U	0.005U	0.0035U	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	0.010U
DB-4-9.0	9/25/02	5.00U	0.500U	0.963	1.09	0.500U	0.500U	5.00U	1.70	1.22	0.500U	9.39	2.84	6.58	1.04	
DB-5-13.0	9/23/02	100U	29.2	48.6	180	16.3	15.3	100U	66.0	68.5	339	472	158	ANR	ANR	1,050
DB-6-16.5	9/25/02	0.0625	0.0171	0.005U	0.0129	0.005U	0.005U	0.0035U	0.0431	0.005U	0.0266	0.0586	0.0117	ANR	ANR	0.118
DB-7-11.5	9/24/02	0.0300U	0.0015U	0.005U	0.004U	0.005U	0.005U	0.00488	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	0.100U
DB-8-16.5	9/25/02	0.0300U	0.0015U	0.005U	0.005U	0.005U	0.005U	0.0035U	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	0.010U
BLANK #1 ⁽¹⁾	9/24/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U	
BLANK #2 ⁽¹⁾	9/24/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U	
BLANK #3 ⁽¹⁾	9/26/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U	
BLANK #4 ⁽¹⁾	9/26/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U	***

NOTE: All results reported as mg/kg

ANR - Analyte not reported or reported as total value

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, Complete analytical laboratory reports are included in Appendix B.

TW21577 Soil Analytical DB QA/QC____ 3/3/2003

U - Analyte was not detected at or above the reported value.

⁽¹⁾ Results are for water, and reported as ug/L.

SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Benzyl alcohol (mg/kg)	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DB-2-14	9/23/02	4.99	0.330U	0.330U
DB-3-11	9/26/02	6.34	0.330U	0.330U
DB-4-9	9/25/02	0.330U	0.330U	0.330U
DB-5-13	9/23/02	9.27	31.8	40.0
DB-6-16.5	9/25/02	0.330U	0.330U	0.330U
DB-7-11.5	9/24/02	7.71	0.330U	0.330U
DB-8-16.5	9/25/02	0.330U	0.330U	0.330U
Blank #1 ⁽¹⁾	9/24/02	10.00U	10.00U	10.00U
Blank #2 ⁽¹⁾	9/24/02	10.00U	10.00U	10.00U
Blank #3 ⁽¹⁾	9/26/02	10.00U	10.00U	10.00U
Blank #4 ⁽¹⁾	9/26/02	10.00U	10.00U	10.00U

⁽¹⁾ Results are for water, and reported as ug/L.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix B.

TW21577 Soil Analytical DB QA/QC____ 3/3/200

U - Analyte was not detected at or above the reported value.

SOIL PHYSICAL DATA

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

	Depth	Moisture Content (3)	Organic Content (2)	Dry Density (4)	Total Porosity	Effective Porosity ⁽⁶⁾	Hydraulic Conductivity	Air Permeability ⁽⁵⁾
Sample I.D. (1)	(feet)	(% of dry weight)	(% of dry weight)	(lbs/ft ³)			(cm/s)	(cm²)
DB-3-18	18	19.98	1.12	118.3	0.31	0.27	3.41E-02	
DB-4-6.5	6.5	18.32	0.78	95.3	0.44			1.72E-08
DB-4-18	18	22.41	1.48	113.9	0.33	0.28	3.11E-03	
DB-5-9	9	20.57	0.38	97.6	0.40			<1.87E-10
DB-5-18	18	10.95	1.56	114.1	0.33	0.12	3.69E-03	
DB-7-6.5	6.5	17.54	0.62	85.0	0.49			1.52E-08
DB-7-20.5	20.5	9.54	0.55	110.2	0.35	0.35	2.76E-02	

^{1 -} Samples were collected between Sept 23 and 26, 2002.

QA/QC____3/3/2003

^{2 -} The Fraction of Organic Carbon was measured according to ASTM Method D-2974

 $^{{\}bf 3}$ - The Moisture Content was measured according to ASTM D2216.

^{4 -} The Density was measured according to ASTM D2937.

^{5 -} The Air Permeability was measured according to ASTM D4525.

^{6 -} The Effective Porosity was calculated from the break-through curved developed by passing a tracer through the sample.

WELL COMPLETION DATA WITH ELEVATIONS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Well Identification Casing	Top of Well Casing (feet) ¹	Casing Diameter (inches)	Total Depth (feet)	Screened Interval (feet)
VP-1	103.03	2.0	14.81	NA
VP-2	104.72	2.0	14.55	NA
VP-3 (MW-2)	104.75	2.0	9.10	NA
VP-4	103.35	2.0	14.70	NA
VP-5 (MW-5)	102.63	2.0	16.50	NA
VP-6	101.90	2.0	14.72	NA
VP-7 (MW-3)	100.40	2.0	17.42	NA
VP-8 (MW-7)	104.88	2.0	16.76	NA
VP-9	112.35	2.0	13.50	NA
MW-4	102.07	2.0	17.50	NA
MW-6	113.32	2.0	28.32	NA
MW-9	114.27	2.0	27.70	NA
MW-10	115.28	2.0	29.15	NA
MW-11	NS	2.0	17.30	NA
DB-1 (MW-12)	113.36	2.0	16.28	7-17
DB-2 (MW-13)	114.80	2.0	19.90	10-20
DB-6 (MW-14)	104.64	2.0	24.45	10-25
DB-8 (MW-15)	99.03	2.0	24.80	10-25
DB-9 (MW-16)	101.83	2.0	24.70	10-25
DB-10 (MW-17)	99.29	2.0	24.85	10-25
RW-2	106.63	8.0	21.40	NA
RW-3	100.70	8.0	NS	NA
RW-4	110.82	8.0	32.78	NA
RW-5	104.22	8.0	14.25	NA

Notes:

Wells surveyed relative to on-site datum

Total depth = Depth below top of well casing in feet

NS - Elevation has not been established - well not surveyed

TABLE 8

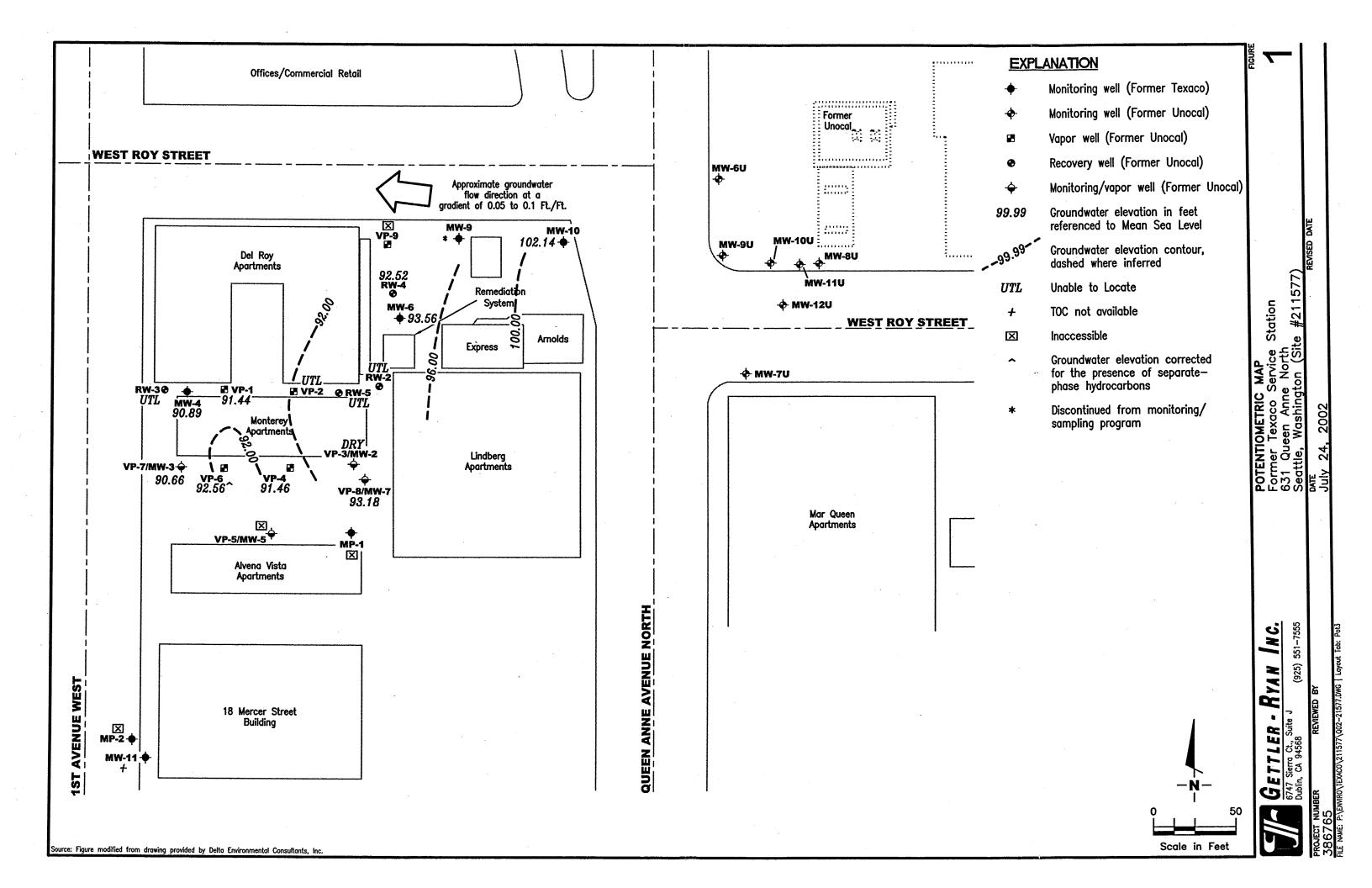
SOIL VAPOR ANALYTICAL RESULTS

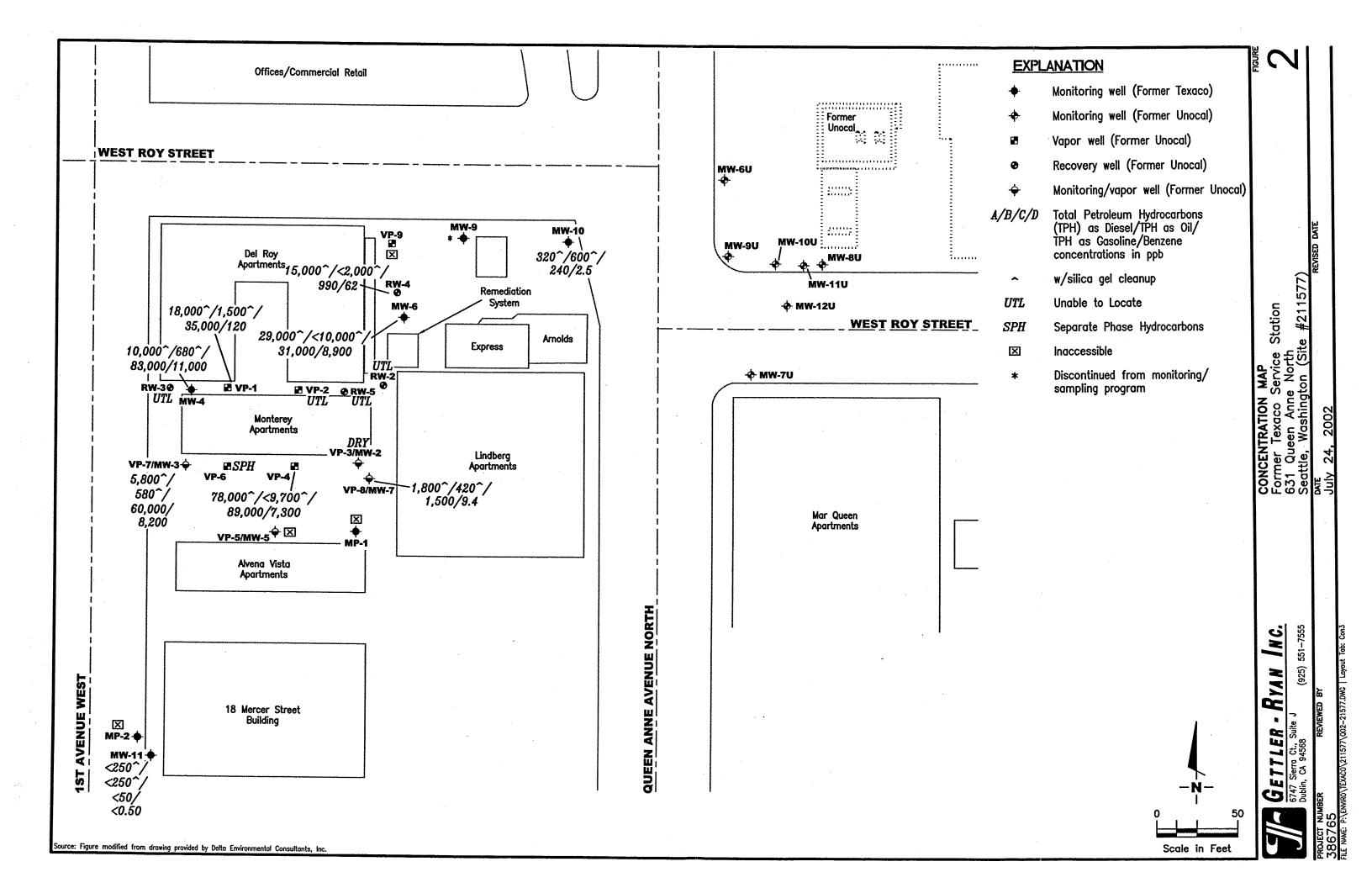
Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

	Sample Location	DVP-1	DVP-2
	Sample I.D.	SUMMA 0132	SUMMA 0101
	Concentration	ppb (v)	ppb (v)
Compound Name	Date	10/3/02	10/3/02
EPA METHODS 18 & 25	100 PG (100 PG		
Methane		25,000	350
>C4-C10 Hydrocarbons		8,600	3,800
EPA METHOD TO-14			
Dichlorodifluoromethane		1500 U	0.2 U
Feron 114		1500 U	0.2 U
Chloromethane		1500 U	0.2 U
Vinyl chloride		1500 U	0.2 U
Bromomethane		1500 U	0.2 U
Chloroethane		1500 U	0.2 U
Trichlorofluoromethane		1500 U	0.2 U
1,1-Dichloroethene		1500 U	0.2 U
Feron 113		3800 U	0.5 U
3-Chloropropane		3800 U	0.5 U
Methylene chloride		3800 U	0.5 U
1,1-Dichloroethene		1500 U	0.2 U
cis-1,2-Dichloroethene		1500 U	0.2 U
Chloroform		1500 U	0.2 U
1,1,1-Trichloroethane		1500 U	0.2 U
Carbon tetrachloride		1500 U	0.2 U
1,2-Dibromoethane		1500 U	0.2 U
Benzene		13000 D	6 D
Trichlorofluoromethane		1500 U	0.2 U
1,2-Dichloropropane		1500 U	0.2 U
cis-1,3-Dichloropropene		1500 U	0.2 U
Toluene		110000 D	35 D
trans-1,3-Dichloropropene		1500 U	0.2 U
1,1,2-Trichloroethane		1500 U	0.2 U
Tetrachloroethene		6200 D	0.5 U
1,2-Dibromoethane		1500 U	0.2 U

TABLE 8

SOIL VAPOR ANALYTICAL RESULTS


Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA


	Sample I.D.	SUMMA 0132	SUMMA 0101
	Concentration	ppb (v)	ppb (v)
Compound Name	Date	10/3/02	10/3/02
EPA METHOD TO-14 Con't			
Chlorobenzene		1500 U	0.2 U
Ethylbenzene		55000 D	10 D
m/p-Xylene		360000 D	62 D
o-Xylene		140000 D	26 D
Styrene		1500 U	0.2 U
1,1,2,2-Tetrachloroethane		1500 U	0.2 U
4-Ethyltoluene		100000 D	16 D
1,3,5-Trimethylbenzene		64000 D	11 D
1,2,4-Trimethylbenzene		110000 D	18 D
1,3-Dichlorobenzene		3800 U	0.5 U
1,4-Dichlorobenzene		3800 U	0.5 U
Benzyl chloride		1500 U	0.2 U
1,2-Dichlorobenzene		3800 U	0.5 U
1,2,4-Trichlorobenzene		7500 U	1 U
Hexachlorobutadiene		3800 U	0.5 U

APPENDIX A

Gettler-Ryan Inc. Groundwater Monitoring and Sampling Report

Figures from the latest Gettler-Ryan, Inc. *Groundwater Monitoring and Sampling Report* were not available for inclusion with this Appendix. In thier place, Figures 1 and 3 from Gettler-Ryan's previous *Groundwater Monitoring and Sampling Report* (July 24, 2002) have been included for reference.

Ta' 1 Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211577)

WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	T	E	X
TOC*(ft.)		(fi.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
VP-1											
103.03	07/24/02	11.59	91.44	0.00	18,000 ¹	1,500 ¹	35,000	120	820	280	4,600
	10/17-18/02	12.70	90.33	0.00	7,500 ¹	598 ^{1,2}	27,300	170	756	334	4,820
	01/21/03	12.70	90.33	0.00	14,200 ¹	807 ^{1,2}	36,700	90.5	801	500	6,630
VP-2											
104.72	07/24/02	UNABLE TO	LOCATE					•••			
	10/17-18/02	13.60	91.12	0.00	NOT SAMPLE	D DUE TO INS	UFFICIENT WA	TER			
	01/21/03	13.63	91.09	0.00	NOT SAMPLI	ED DUE TO IN	SUFFICIENT V	VATER	-		
VP-3 (MW-2)											
104.75	07/24/02	DRY									
	10/17-18/02	DRY									
	01/21/03	DRY		-			460 500.	***	***	42.00	
VP-4											
103.35	07/24/02	11.89	91.46	0.00	78,000 ¹	<9,700 ¹	89,000	7,300	7,500	1,900	13,000
	10/17-18/02	12.75	90.62**	0.03	NOT SAMPLE	D DUE TO THE	E PRESENCE OF	SPH			
	01/21/03	12.61	90.82**	0.10	NOT SAMPLE	ED DUE TO TH	IE PRESENCE	OF SPH			
VP-5 (MW-5)											
102.63	07/24/02	INACCESSIBI	LE - VEHICLE P	ARKED OVI	ER WELL			**			
	10/17-18/02	12.31	90.32	0.00	3,900 ¹	<500¹	15,900	318	49.3	880	1,870
	01/21/03	INACCESSIB	LE - VEHICLE	PARKED O	VER WELL				•••		
VP-6											
101.90	07/24/02	10.60	92.56**	1.58	NOT SAMPLE	D DUE TO THI	E PRESENCE OF	F SPH			
	10/17-18/02	11.35	91.07**	0.65			E PRESENCE OF				
	01/21/03	11.27	91.93**	1.63	NOT SAMPLI	ED DUE TO TH	HE PRESENCE	OF SPH			

Ta! 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	T	E	X
TOC*(ft.)		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
VP-7 (MW-3)											
100.40	07/24/02	9.74	90.66	0.00	5,800 ¹	580¹	60,000	8,200	7,000	1,500	8,300
	10/17-18/02	10.57	89.83	0.00	5,160 ¹	510 ^{1,2}	71,600	11,100	5,880	1,940	10,800
	01/21/03	10.29	90.11	0.00	714 ^{1,4}	<500 ¹	41,600	9,440	1,470	1,360	6,190
VP-8 (MW-7)											
104.88	07/24/02	11.70	93.18	0.00	1,800 ¹	420 ¹	1,500	9.4	9.2	34	50
	10/17-18/02	12.78	92.10	0.00	1,830 ¹	<500 ¹	552	9.75	1.45	4.25	5.73
	01/21/03	12.63	92.25	0.00	1,1201	<500 ¹	1,910	139	291	59.1	216
VP-9											
112.35	07/24/02	INACCESSIBI	LE - VEHICLE P.	ARKED OVE	ER WELL						
	10/17-18/02	11.90	100.45	0.00	13,200 ¹	786 ^{1,2}	1,910	11.3	2.62	8.86	14.7
	01/21/03	INACCESSIB	LE - VEHICLE	PARKED O	VER WELL						
MW-4											
102.07	07/24/02	11.18	90.89	0.00	10,000 ¹	680 ¹	83,000	11,000	9,900	1,800	11,000
	10/17-18/02	11.98	90.09	0.00	9,860 ¹	697 ^{1,2}	110,000	14,500	11,600	2,630	15,200
(D)	10/17-18/02	***			7,100 ¹	<500 ¹	92,400	12,400	9,980	2,090	12,200
	01/21/03	11.81	90.26	0.00	2,540 ^{1,5}	<500 ¹	80,000	10,700	10,100	1,920	11,700
MW-6											
113.32	07/24/02	19.76	93.56	0.00	29,000 ¹	<10,000 ¹	31,000	8,900	1,600	820	4,200
	10/17-18/02	20.64	92.72**	0.05	NOT SAMPLE	D DUE TO THE	PRESENCE OF	F SPH			
	01/21/03	21.71	91.63**	0.03	NOT SAMPLI	ED DUE TO TH	E PRESENCE	OF SPH			
MW-9											
114.27	10/17-18/02	20.88	93.39	0.00	43,600 ¹	671 ^{1,2}	6,380	493	13.0	230	107
	01/21/03	INACCESSIR	LE - VEHICLE	PARKEDO	VED WELL						

Ta' 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	Т	E	X
TOC*(fi.)		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-10											
115.28	07/24/02	13.14	102.14	0.00	320 ¹	600¹	240	2.5	< 0.50	<1.0	<1.5
	10/17-18/02	13.59	101.69	0.00	667 ¹	<500 ¹	490	3.42	< 0.500	1.34	5.00
	01/21/03	12.46	102.82	0.00	<250 ¹	<500 ¹	416	3.44	0.550	0.519	3.24
MW-11											
	07/24/02	11.16		0.00	<250 ¹	<250 ¹	<50	< 0.50	< 0.50	< 0.50	<1.5
	10/17-18/02	11.43		0.00	<250 ¹	<500 ¹	<50.0	< 0.500	< 0.500	< 0.500	<1.00
	01/21/03	11.29		0.00	<250 ¹	<500 ¹	<50.0	<0.500	<0.500	<0.500	<1.00
DB-1 (MW-12)											
113.36	10/17-18/02	12.22	101.14	0.00	<250 ¹	<500 ¹	<50.0	0.516	0.869	< 0.500	<1.00
	01/21/03	11.72	101.64	0.00	<250 ¹	<500 ¹	<50.0	<0.500	<0.500	<0.500	<1.00
DB-2 (MW-13)											
114.80	10/17-18/02	19.31	95.49	0.00	NOT SAMPLE	D DUE TO INS	HEFICIENT WA	ATER			
114.00	01/21/03	19.01	95.79	0.00	NOT SAMPLE						
PD (250 4 1)											
DB-6 (MW-14) 101.64	10/17-18/02										
101.04	10/17-18/02	11.88	 89.76	0.00	4,710 ¹	<500 ¹	43,100 ³	9,900 ³	4,930 ³	1,540 ³	$6,020^3$
			LE - VEHICLE		<u>=</u>	~500 	4 3,100	9,500 	4,530	1,540	0,020
	01/21/03	INACCESSID	LE - VERICLE	FARRED O	VER WELL						-
DB-8 (MW-15)											
99.03	10/17-18/02				 1	 					
	11/14/02	9.44	89.59	0.00	780 ¹	<500 ¹	3,280	1,640	5.23	5.06	<10.0
	01/21/03	9.29	89.74	0.00	<250 ¹	<500 ¹	<50.0	<0.500	<0.500	<0.500	<1.00

Ta' Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	T	E	X
OC*(fi.)		(ft.)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb
DB-9 (MW-16)											
101.83	10/17-18/02										
	11/14/02	12.36	89.47	0.00	<250 ¹	<500 ¹	<50.0	< 0.500	< 0.500	< 0.500	<1.00
	01/21/03	11.88	89.95	0.00	<250 ¹	<500 ¹	<50.0	<0.500	<0.500	<0.500	<1.00
DB-10 (MW-17)											
99.29	10/17-18/02	***		***	•••			***			
	11/14/02	10.00	89.29	0.00	<250 ¹	<500 ¹	2,780	569	31.0	91.1	250
	01/21/03	9.62	89.67	0.00	<250 ¹	<500 ¹	<50.0	<0.500	<0.500	<0.500	<1.00
RW-2											
06.63	07/24/02	UNABLE TO I	OCATE								
NI	P 10/17-18/02	14.44	92.19	0.00	988 ¹	<500 ¹	1,380	90.5	8.05	29.2	31.5
N	P 01/21/03	10.61	96.02	0.00	<250 ¹	<500 ¹	126	33.5	0.859	1.28	4.11
RW-3											
00.70	07/24/02	UNABLE TO I	OCATE								
	10/17-18/02	UNABLE TO I	OCATE								
	01/21/03	UNABLE TO	LOCATE	****	***		****			***	•••
RW-4						-4					
10.82	07/24/02	18.30	92.52	0.00	15,000 ¹	<2,000 ¹	990	62	1.3	32	7.0
	10/17-18/02		91.53	0.00	8,930 ¹	939 ¹	3,160	59.8	2.50	40.4	15.6
	01/21/03	17.88	92.94	0.00	2,830 ¹	<500 ¹	689	0.991	<0.500	2.37	7.03
RW-5											
04.22	07/24/02	UNABLE TO I	LOCATE		**	-					
	10/17-18/02	12.63	91.59	0.00	84,900 ¹	3,650 ¹	3,370	696	67.2	63.0	408
N	P 01/21/03	11.81	92.41	0.00	1,860 ¹	<500 ¹	493	17.1	4.43	1.37	52.9
211577.xls/#3	886765				4					Α	s of 01/21/03

Ta 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC* <i>(ft.)</i>	DATE	DTW	GWE	SPHT	TPH-D	TPH-O	TPH-G	В	T	E	X
ree gay		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MP-1											
	07/24/02	INACCESIBLE	- UNABLE TO	O OPEN WELL		**					
	10/17-18/02	INACCESIBLE	- UNABLE TO	O OPEN WELL							
	NOT MONIT	ORED/SAMPLI	ED								
MP-2											
1411 -2	07/24/02	INACCESIRI E	CAR PARKI	ED OVER WELL							
	10/17-18/02										
		ORED/SAMPLI	ED			-					
Trip Blank											
QA	07/24/02					40.46	<50	< 0.50	< 0.50	< 0.50	<1.5
	10/17-18/02						<50.0	< 0.500	< 0.500	< 0.500	<1.00
	11/14/02						<50.0	< 0.500	< 0.500	< 0.500	<1.00
	01/21/03				***	***	<50.0	<0.500	<0.500	<0.500	<1.00
					TPH-D	ТРН-О	TPH-G	В	Т	E	X
		Standard	I abaratary D	anauting I imita	250	250	500	0.500	0.500	0.500	1.00

	TPH-D	ТРН-О	TPH-G	В	Т	E	X
Standard Laboratory Reporting Limits:	250	250	50.0	0.500	0.500	0.500	1.00
MTCA Method A Cleanup Levels:	1,000	1,000	1,000	5.0	40	30	20
Current Method:	NWTPH-I) Extended		NWT	PH-G and EPA	8021B	

Ta' 1

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211577)
631 Queen Anne North
Seattle, Washington

EXPLANATIONS:

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

-- = Not Measured/Not Analyzed

(ft.) = Feet

B = Benzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

T = Toluene

NP = No Purge

GWE = Groundwater Elevation

E = Ethylbenzene

MTCA = Model Toxics Control Act Cleanup Regulations

(msl) = Mean Sea Level

X = Xylenes

[WAC 173-340-720(2)(a)(I), as amended 12/93].

TPH-D = Total Petroleum Hydrocarbons as Diesel

D. LEAD = Dissolved Lead

TPH-O = Total Petroleum hydrocarbons as Oil

(ppb) = Parts per billion

- * TOC elevations have been surveyed in feet relative to msl.
- ** GWE corrected due to the presence of SPH; correction factor: [(TOC DTW) + (SPHT x 0.8)].
- Analysis with silica gel cleanup.
- Laboratory report indicates the heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range.
- Laboratory report indicates this sample was received and analyzed unpreserved.
- Laboratory report indicates results in the diesel organics range are primarily due to overlap from a gasoline range product.
- Laboratory report indicates the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 2 Separate Phase Hydrocarbon Thickness/Removal Data

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

WELL ID	DATE	DTW (ft.)	SPH THICKNESS (ft.)	AMOUNT BAILED (SPH + WATER) (gallons)
VP-4	10/17-18/02	12.75	0.03	0.00
	01/21/03	12.61	0.10	0.00
VP-6	07/24/02	10.60	1.58	0.00
	10/17-18/02	11.35	0.65	0.00
	01/21/03	11.27	1.63	0.00
MW-6	10/17-18/02	20.64	0.05	0.00
	01/21/03	21.71	0.03	0.00

EXPLANATIONS:

DTW = Depth to Water

(ft.) = Feet

SPH = Separate Phase Hydrocarbons

Ta 3
Groundwater Analytical Results - SVOC and PAH

WELLID	DATE	(g. 2Wethylnaphthalene	(dd 2,4-Dimethylphenol	Naphthalene (ppb)	(ppb)	ල් 2-Methylphenol	(qdd) 4- Methylphenol	(qidd) bis (2-Ethylhexyl) phthalate	Benzoic acid
VP-1	7/24/2002	84	80	160	ND	13	18	31	<10
VP-2	7/24/2002	UNABLE TO LOC.	ATE						
VP-5 (MW-5)	7/24/2002	INACCESSIBLE -	VEHICLE PARK	ED OVER WELL					
VP-7 (MW-3)	7/24/2002	69	28	420	ND	<5.0	6	<10	34
VP-8 (MW-7)	7/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10
VP-9	7/24/2002	INACCESSIBLE -	VEHICLE PARK	ED OVER WELL					
MW-4	7/24/2002	160	24	500	ND	6	9	<10	<10
MW-10	7/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	13	<10
MW-11	7/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10

Ta: 3
Groundwater Analytical Results - SVOC and PAH

WELLID	DATE	3 2-Methylnaphthalene	G 2,←Dimethylphenol.	(909) Naphtháléne	De Bullon	රි 2-Methylphenol	(gd.) 4- Methylphenol	ිදු bis (2-Ethylhexyl) phthalate	Benzoic acid
DB-1 (MW-12)	10/17-18/02	<10.0	<10.0	<10.0	<10.0	<10.0		<50.0	<20.0
DB-2 (MW-13)	10/17-18/02							-	
DB-6 (MW-14)	10/17-18/02 11/14/02	 52.2	 13.4	 242	 34.5	 11.0	 24.8 ¹	 <50.0	 <20.0
DB-8 (MW-15)	10/17-18/02 11/14/02	 <10.0	 <10.0	 <10.0	 37.0	 <10.0	 <10.0¹	 <50.0	 <20.0
RW-4	7/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10

Га 3

Groundwater Analytical Results - SVOC and PAH

Former Texaco Service Station (Site #211577)
631 Queen Anne North
Seattle, Washington

EXPLANATIONS:

(ppb) = Parts per billion
-- = Not Analyzed

ND = Not Detected

Results are for 3 & 4-Methylphenol.

ANALYTICAL METHODS:

Semi-Volatile Organic Compounds (SVOC) by EPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270

NOTE:

Other PAH and SVOC constituents were less than the reporting limit.

Ta 4
Groundwater Analytical Results - SVOC

WELL ID/	DATE	(qdd) Chloroform	લે cis-1,2-Dichloroethene	Benzene (dqq)	(dq Lonene	d d. Ethylbenzene	dd Tetrachloroethene	र्व द्व Trichloroethene	(gd m+p-Xylene	emixXe (ppb)	(qd Isopropylbenzene	dd n-Propylbenzene	d 1,3,5-Trimethylbenzene	લું 1,2,4-Trimethylbenzene	લું sec-Butylbenzene	(dd p-Isopropyltoluene	(gd n-Butylbenzene	(qd Naphthalene	(gd Methyl t-butyl ether	र्वे t-Butyl alcohol
VP-3 (MW-2)	07/24/02	DRY				**									40.4			10-40		
VP-5 (MW-5)	07/24/02	INACC	ESSIBL	E - VEHI	CLE PA	RKED O	VER W	ELL										**	***	
VP-7 (MW-3)	10/17-18/02					•••								**					<10.0	<100
VP-9	07/24/02	INACC	ESSIBL	E - VEHI	CLE PA	RKED O	VER W	ELL		MD 100			***							
MW-4	07/24/02 10/17-18/02	ND 	<8.0 	12,000	10,000	1,800	ND 	ND 	8,900 	3,500	46 	140 	500	1,800	<10 	<10 	23	360 	6 <50.0	120 <500
MW-10	07/24/02	ND	15	2	<0.5	<0.5	ND	ND	<0.5	<0.5	<2	<1	<1	<1	1	<1	<1	<2	<2	<100
MW-11	07/24/02	ND	<1	<0.5	<0.5	<0.5	ND	ND	<0.5	<0.5	<2	<1	<1	<1	<1	<1	<1	<2	<2	<100
DB-1 (MW-12)	10/17-18/02	1.68	9.07	<1.00	<1.00	<1.00	9.58	2.75	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<5.00	<50.0

Ta 4
Groundwater Analytical Results - SVOC

WELL ID/	DATE	Chloroform	d cis-1,2-Dichloroethene	(dqqq)	Tolnene (dqq)	(gd Ethylbenzene	dd Tetrachloroethene	(dqq) Trichloroethene	m+p-Xylene	o-Xylene (ppb)	d Isopropylbenzene	(gd n-Propyilbenzene	d 1,3,5-Trimethylbenzene	d 1,2,4 Trimethylbenzene	de sec-Butylbenzene	d p-Isopropyltoluene	(gd n-Butylbenzene	dd Naphthalene	dd Methyl Ebutyl ether	dd G t-Butyl alcohol
DB-2 (MW-13)	10/17-18/02				****					**	***							60-44		**
DB-6 (MW-14)	10/17-18/02								**						***					
DB-8 (MW-15)	10/17-18/02						***													
RW-4	07/24/02	ND	<1	70	1	36	ND	ND	3	2	<2	3	<1	20	<1	2	1	5	<2	<100

Ta' 4

Groundwater Analytical Results - SVOC

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

EXPLANATIONS:

(ppb) = Parts per billion
 SVOC = Volatile Organic Compounds
 -- = Not Analyzed
 ND = Not Detected

ANALYTICAL METHOD:

SVOC by EPA Method 8260

NOTE:

Other SVOC were less than the reporting limit.

Ta 5
Groundwater Analytical Results - Dissolved Metals

WELL ID/	DATE	MERCURY	ARSENIC	CADMIUM	CHROMIUM	LEAD	SELENIUM	SILVER	BARIUM TR
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
VP-1	07/24/02		•••	***	**	22.9		40 40	
	10/17-18/02 ¹		***			18.0	***		
	01/21/03			-		47.1			
VP-2	07/24/02	UNABLE TO LO	CATE						
	10/17-18/02	NOT SAMPLED	DUE TO INSUFFI	CIENT WATER					
	01/21/03	NOT SAMPLED	DUE TO INSUFF	ICIENT WATER		***			
VP-3 (MW-2)	07/24/02	DRY							***
	10/17-18/02	DRY						***	-
	01/21/03	DRY			**	89 10			
VP-4	07/24/02					28.0			
	10/17-18/02	NOT SAMPLED	DUE TO THE PRE	SENCE OF SPH					
	01/21/03	NOT SAMPLED	DUE TO THE PR	RESENCE OF SPH		en 10			
VP-5 (MW-5)	07/24/02	INACCESSIBLE	- VEHICLE PARK	ED OVER WELL					
	10/17-18/02 ¹		. 			2.29			
	01/21/03	INACCESSIBLE	- VEHICLE PAR	KED OVER WELI	,				
VP-6	07/24/02	NOT SAMPLED	- DUE TO PRESEN	NCE OF SPH					
	10/17-18/02	NOT SAMPLED	DUE TO THE PRE	SENCE OF SPH			~~		
	01/21/03	NOT SAMPLED	DUE TO THE PR	RESENCE OF SPH					
VP-7 (MW-3)	07/24/02	<0.079	97.3	<0.080	2.2	25.0	<1.1	0.068	33.6
	10/17-18/02					2.40	-	***	
	01/21/03	***			•	<1.00			

Ta 5
Groundwater Analytical Results - Dissolved Metals

WELL ID/	DATE	MERCURY (ppb)	ARSENIC (ppb)	CADMIUM (ppb)	CHROMIUM (ppb)	LEAD (ppb)	SELENIUM (ppb)	SILVER (ppb)	BARIUM TR (ppb)
VP-8 (MW-7)	07/24/02	<0.079	2.1	0.13	0.82	11.4	<1.1	<0.050	49.6
, ,	10/17-18/02				40.00	1.93	••		
	01/21/03					8.33	***		
VP-9	07/24/02	INACCESSIBLE -	VEHICLE PARK	ED OVER WELL	**				
	10/17-18/02					<1.00	•••		
	01/21/03	INACCESSIBLE	- VEHICLE PAR	KED OVER WEL	L				
MW-4	07/24/02	<0.079	31.0	<0.080	<0.28	15.5	<1.1	<0.050	63.8
	10/17-18/02 ¹					10.7			
(D)	10/17-18/02					9.61			
	01/21/03					14.5	•••		an na
MW-6	07/24/02					5.1			
	10/17-18/02	NOT SAMPLED D	UE TO THE PRE	SENCE OF SPH					
	01/21/03	NOT SAMPLED	DUE TO THE PR	ESENCE OF SPH					un cor
MW-9	10/17-18/02					2.66			
	01/21/03	INACCESSIBLE	- VEHICLE PAR	KED OVER WEL	L	· 		4144	
MW-10	07/24/02	<0.079	4.1	0.17	0.38	1.3	<1.1	<0.050	52.1
	10/17-18/02			**		<1.00			
	01/21/03					<1.00			***
MW-11	07/24/02					<1.2			
	10/17-18/02			***		<1.00			
	01/21/03	-			***	<1.00			

Ta 5
Groundwater Analytical Results - Dissolved Metals

WELL ID/	DATE	MERCURY (ppb)	ARSENIC (ppb)	CADMIUM (ppb)	CHROMIUM (ppb)	LEAD (ppb)	SELENIUM (ppb)	SILVER (ppb)	BARIUM TR (ppb)
			(рро)	(рро)	(μμο)	(рро)	(P)O	Security (PPD)	(PPO)
DB-1 (MW-12)	01/21/03					<1.00	4144		
DB-6 (MW-14)	11/14/02	<1.00	17.0	<1.00	<1.00	1.82	1.48	<1.00	18.4
,	01/21/03	INACCESSIBLE - VI					•••		
DB-8 (MW-15)	11/14/02	<1.00	1.33	<1.00	<1.00	1.04	<1.00	<1.00	<10.0
	01/21/03			-		<1.00			
DB-9 (MW-16)	11/14/02			***		<1.00		4010	
	01/21/03		****	***		<1.00		•••	***
DB-10 (MW-17)	11/14/02					<1.00			
	01/21/03		allo Mar		•••	<1.00		***	
RW-2	07/24/02	UNABLE TO LOCAT	E			***			
	10/17-18/02					2.23			
	01/21/03			-	·	<1.00	***		
RW-3	07/24/02	UNABLE TO LOCAT	E						
	10/17-18/02	UNABLE TO LOCAT	Έ	**					
	01/21/03	UNABLE TO LOCA	ГE			***			40 MA
RW-4	07/24/02	<0.079	6.1	<0.080	1.2	3.3	<1.1	<0.050	66.9
	10/17-18/02					1.23			
	01/21/03	***				<1.00	***	***	

Ta: 5 Groundwater Analytical Results - Dissolved Metals

WELL ID/	DATE	MERCURY (ppb)	ARSENIC (ppb)	CADMIUM (ppb)	CHROMIUM (ppb)	LEAD (ppb)	SELENIUM (ppb)	SILVER (ppb)	BARIUM TR (ppb)
RW-5	07/24/02	UNABLE TO LOCA	ГЕ						
	10/17-18/02					3.91			
	01/21/03					13.3			

T: 5

Groundwater Analytical Results - Dissolved Metals

Former Texaco Service Station (Site #211577)
631 Queen Anne North
Seattle, Washington

EXPLANATIONS:

(ppb) = Parts per billion-- = Not Analyzed(D) - Duplicate

ANALYTICAL METHODS:

Dissolved Metals by EPA Method Series 7000 Barium TR by EPA Method 6010B

Organic Lead was <300 ppb.

Ta 6
Groundwater Analytical Results - Oxygenate Compounds

631 Queen Anne North Seattle, Washington

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	1,2-DCA (ppb)	EDB (ppb)
DB-1 (MW-12)	10/18/02		<50.0	<5.00		<1.00	<1.00		
VP-7 (MW-3)	10/18/02	<40.0	<100	<10.0	<2.00	<2.00	<2.00	<1.00	<1.00
MW-4	10/18/02	<200	<500	<50.0	<10.0	<10.0	<10.0	<5.00	<5.00

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

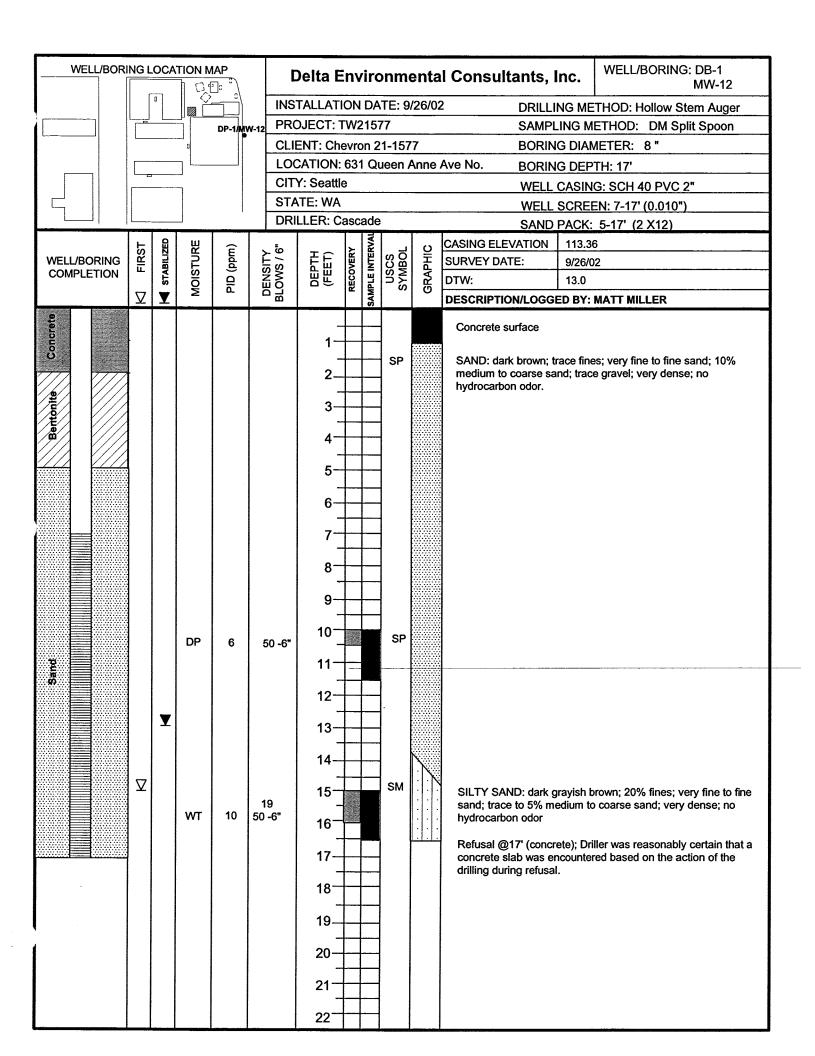
ETBE = Ethyl tertiary butyl ether

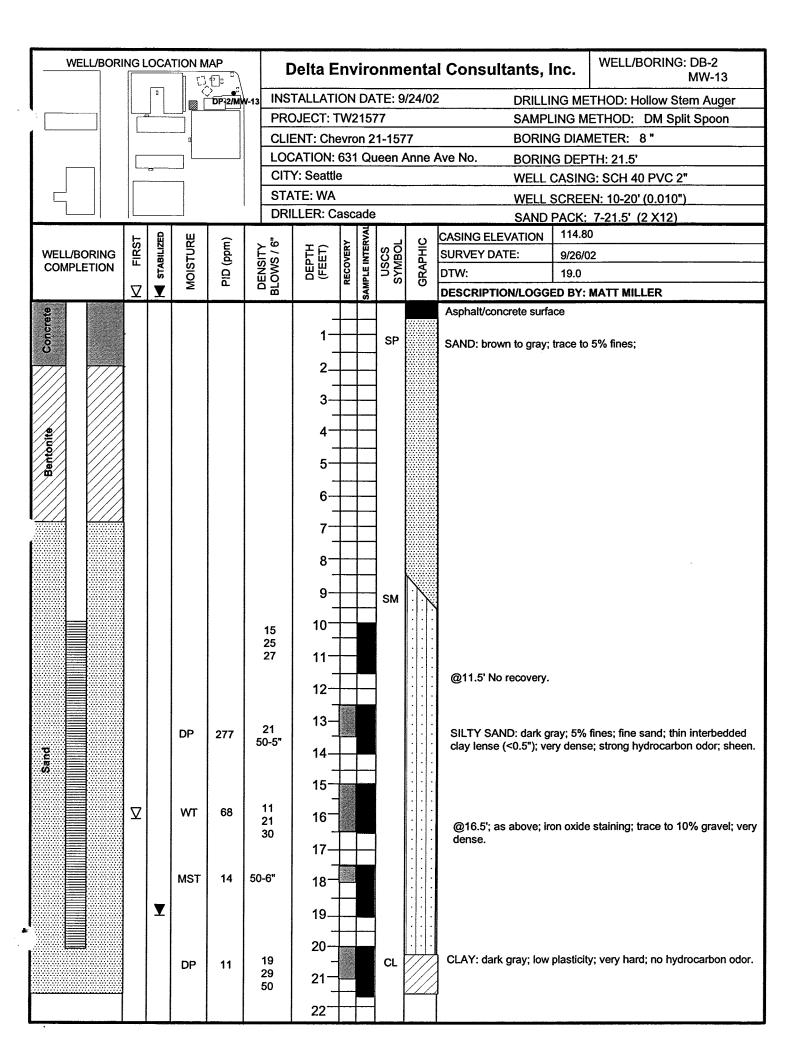
TAME = Tertiary amyl methyl ether

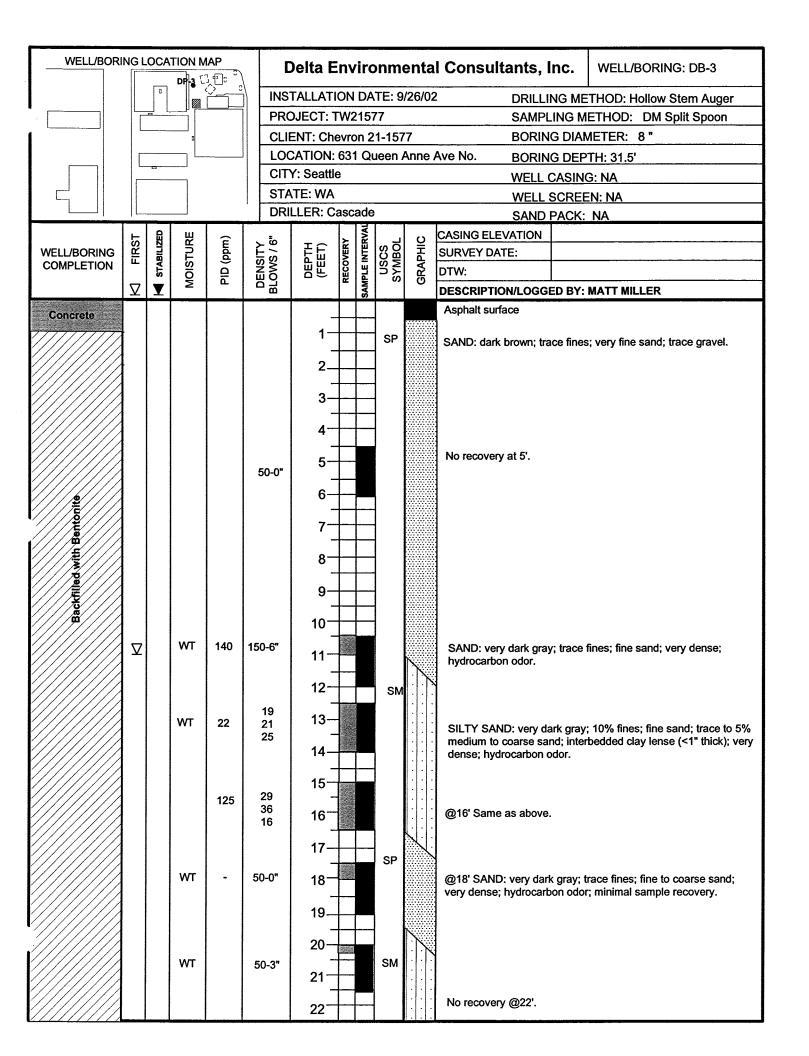
1,2- DCA = 1,2-Dichloroethane

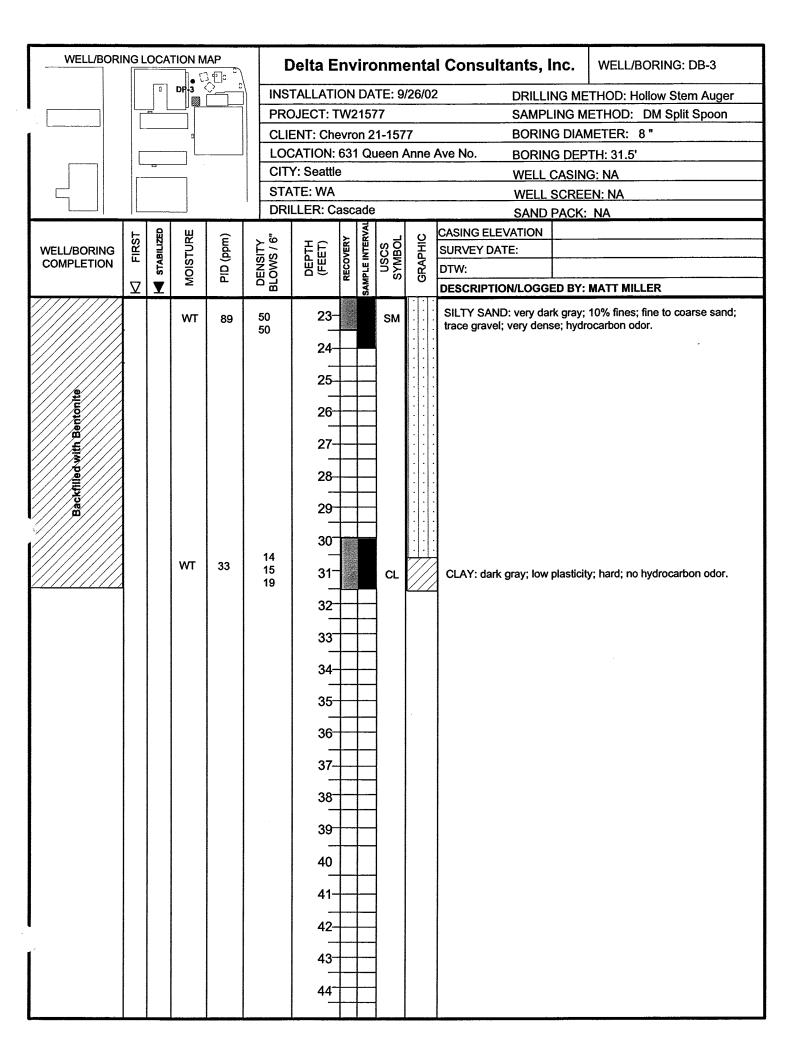
EDB = 1,2-Dibromoethane

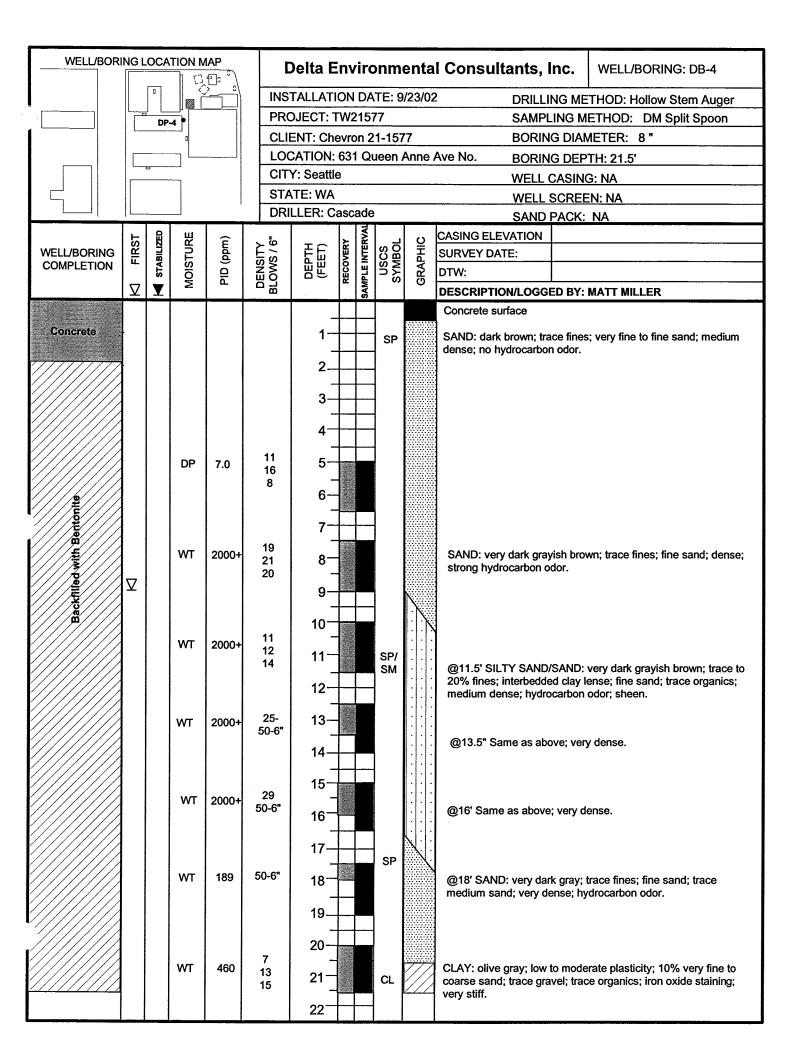
(ppb) = Parts per billion

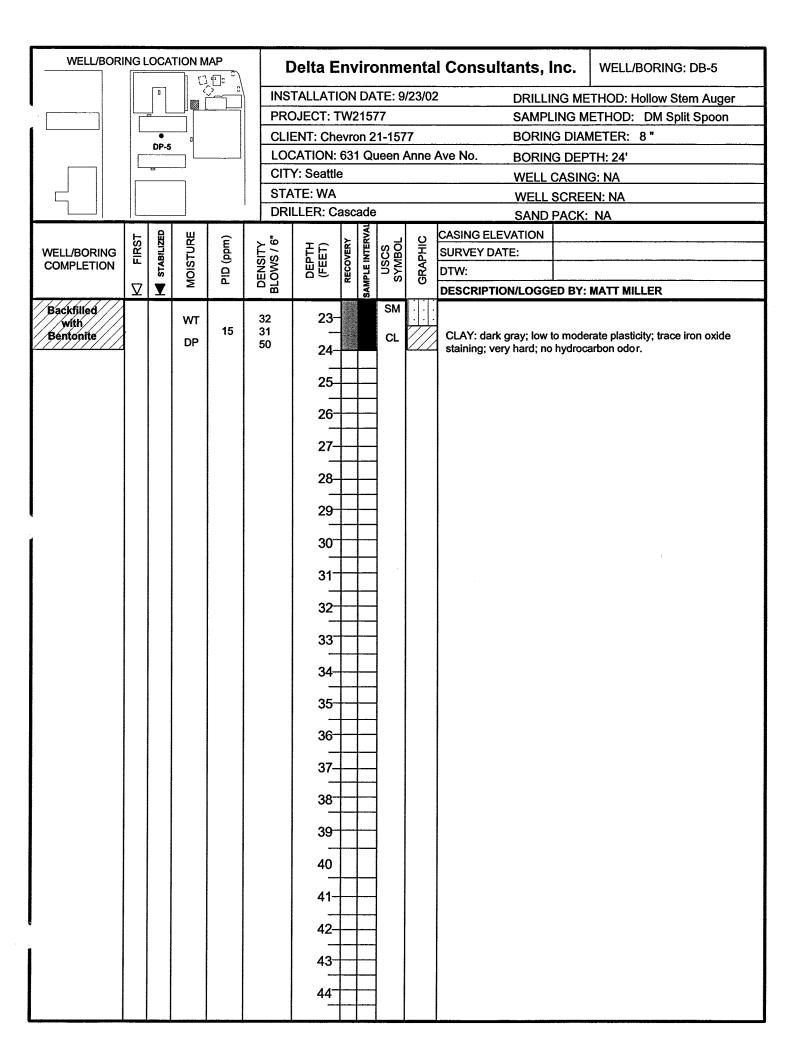

ANALYTICAL METHOD:

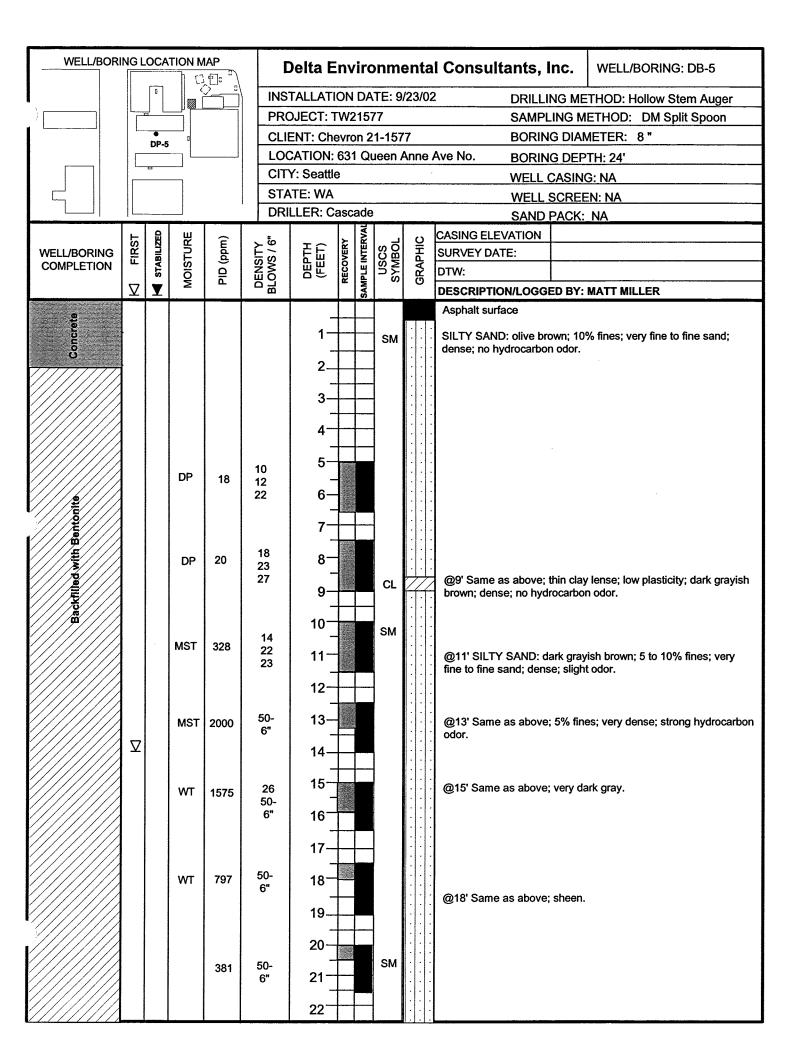

EPA Method 8260 for Oxygenate Compounds

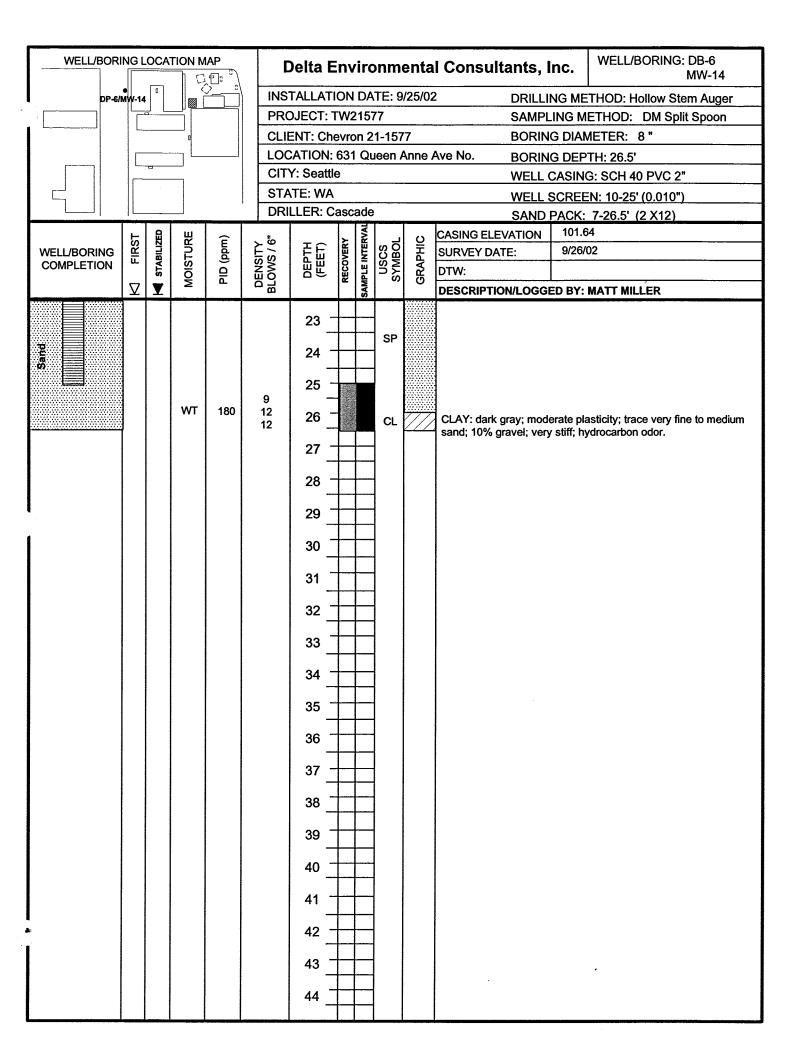

APPENDIX B Laboratory Analytical Reports – Soils

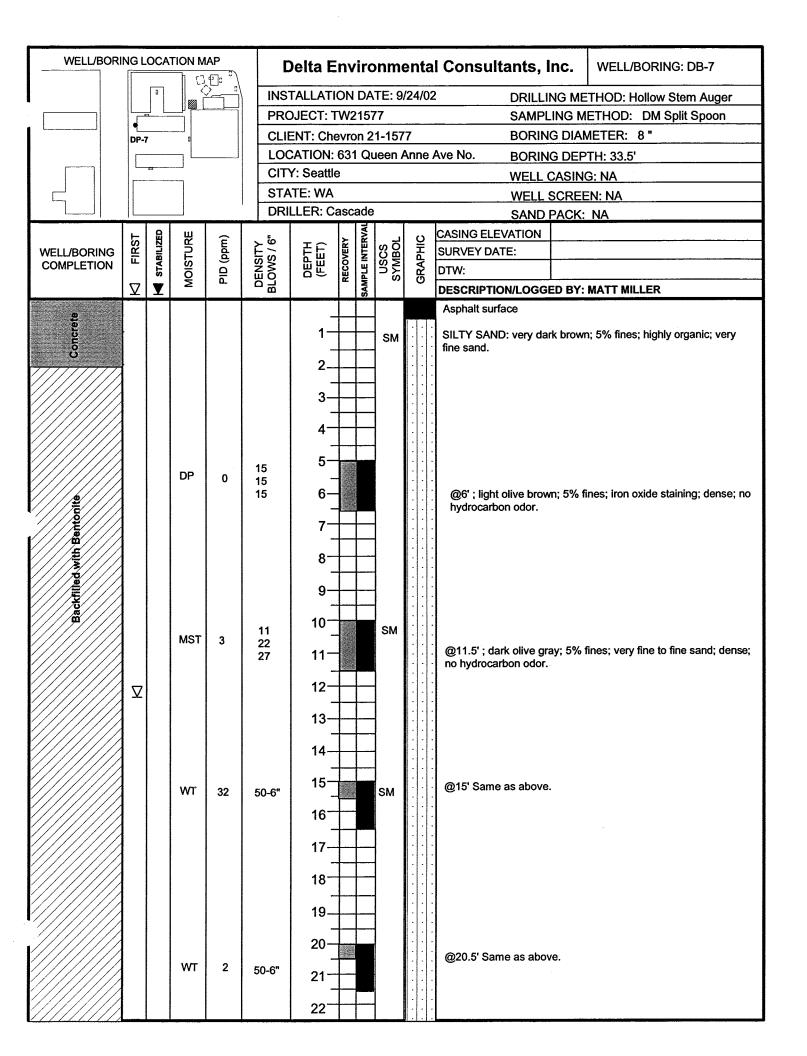

Analytical reports to be included in Final RI report

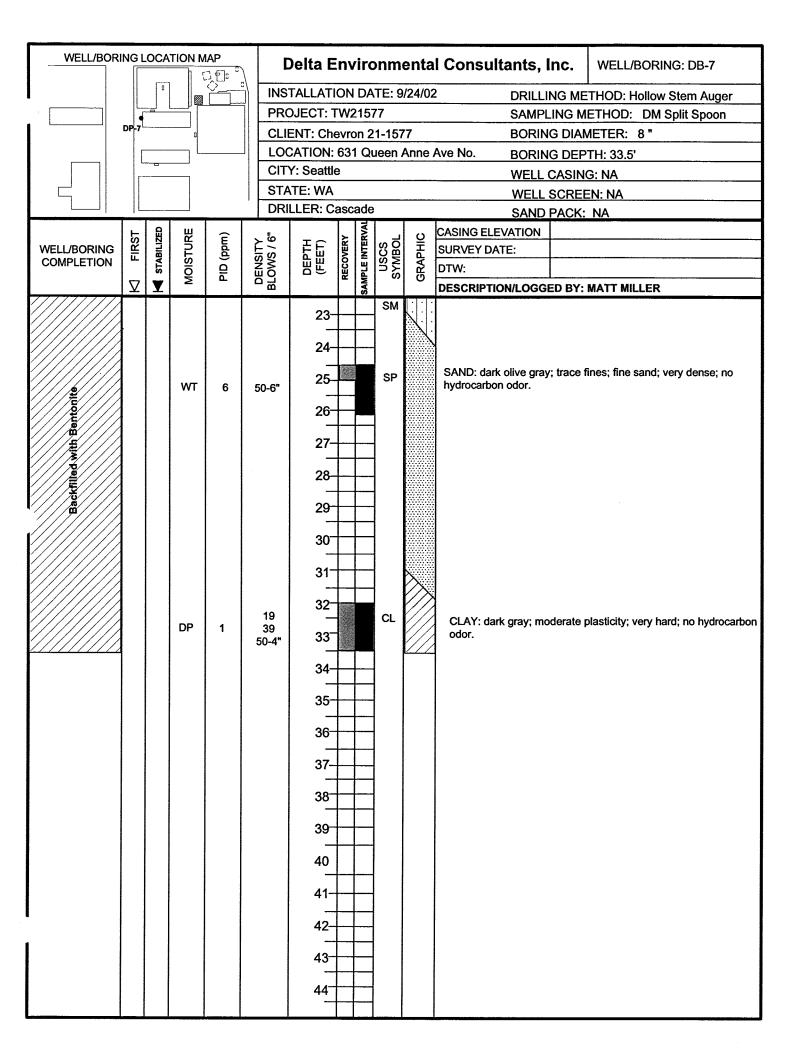

APPENDIX C Boring and Well Completion Logs/Survey Data Sheets

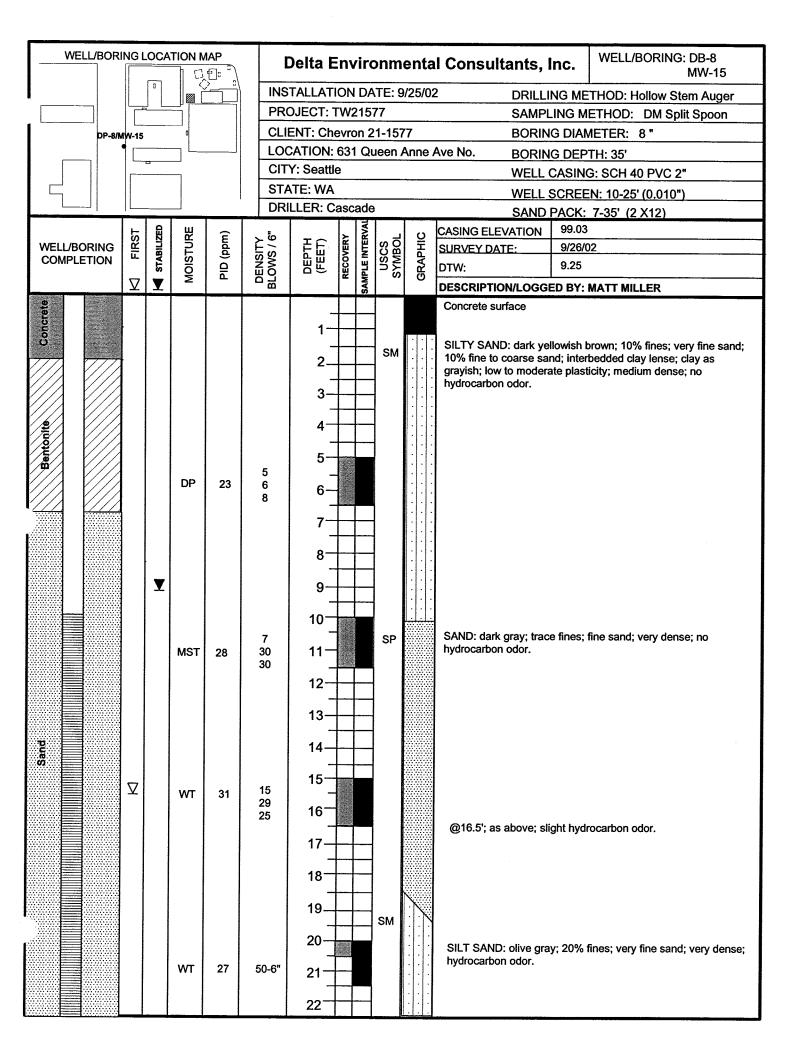


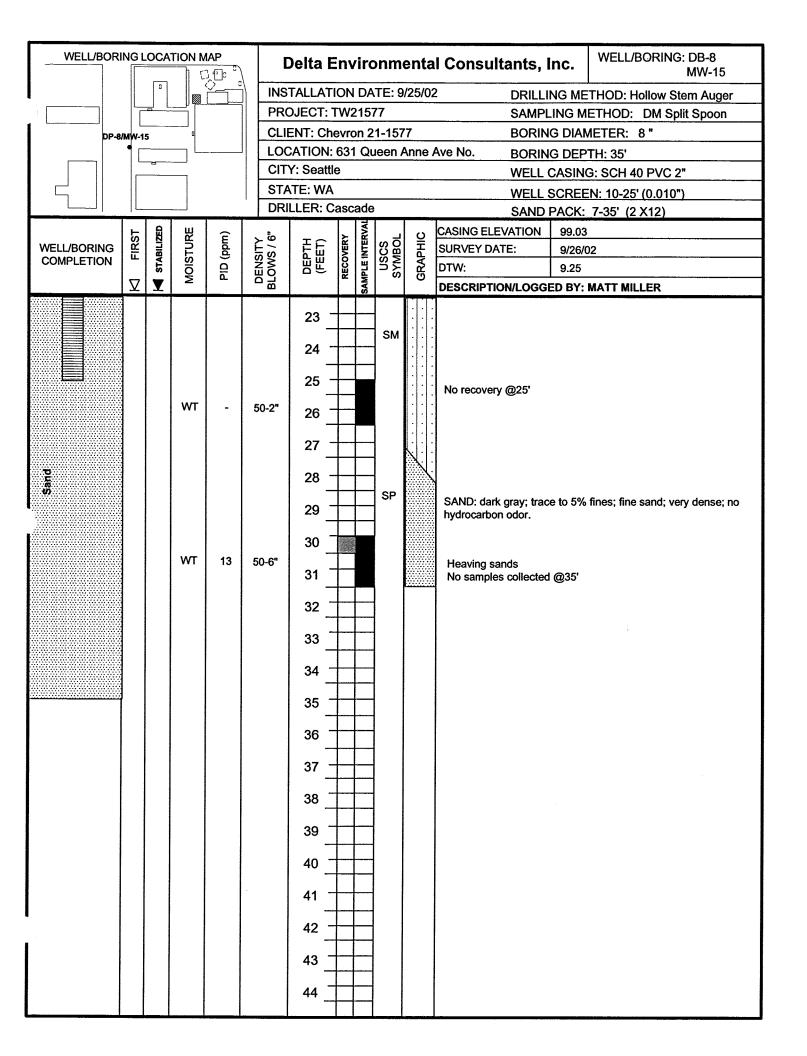


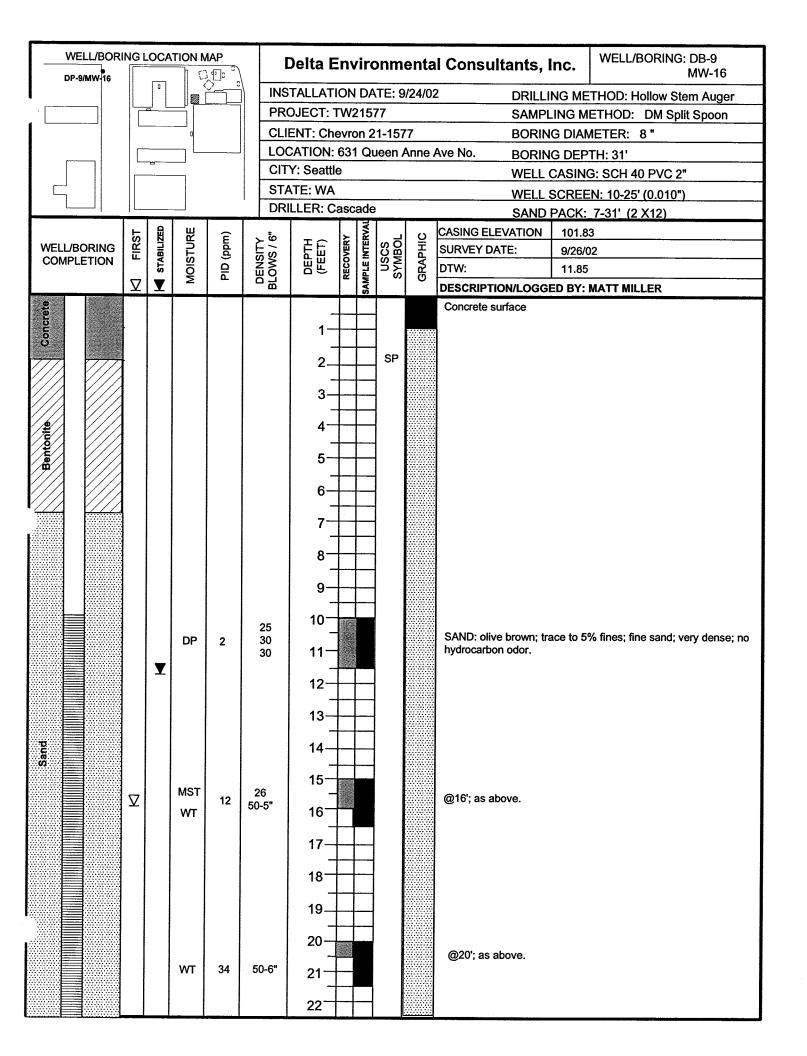


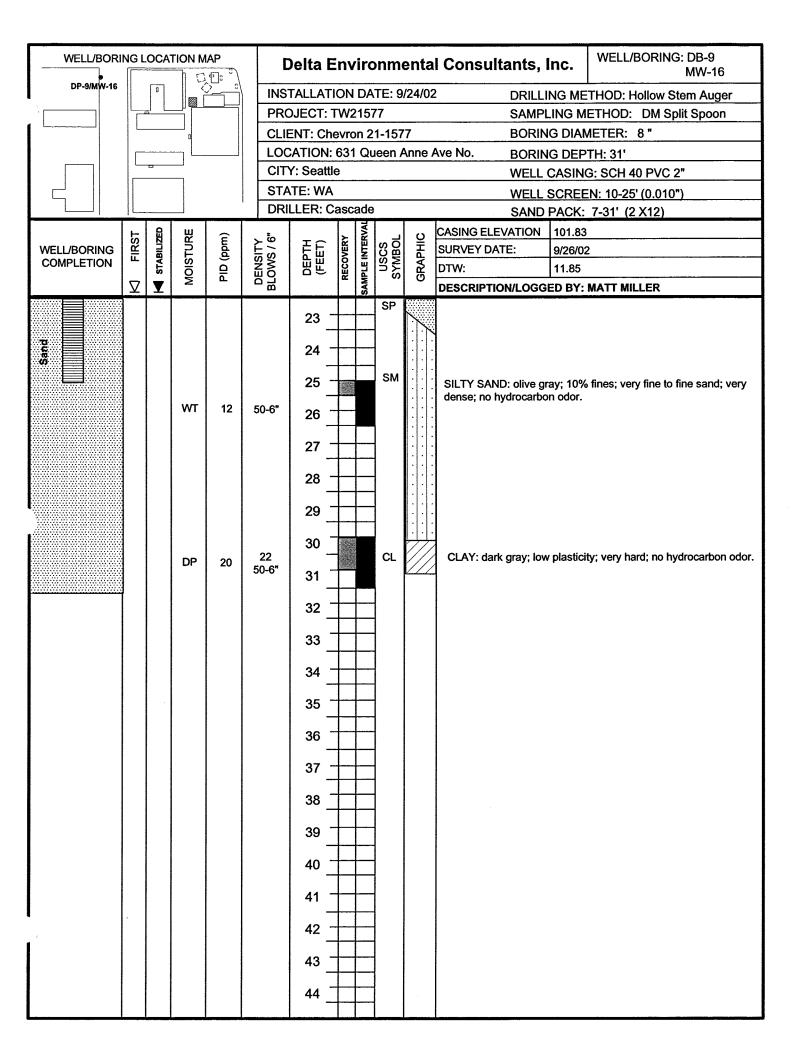


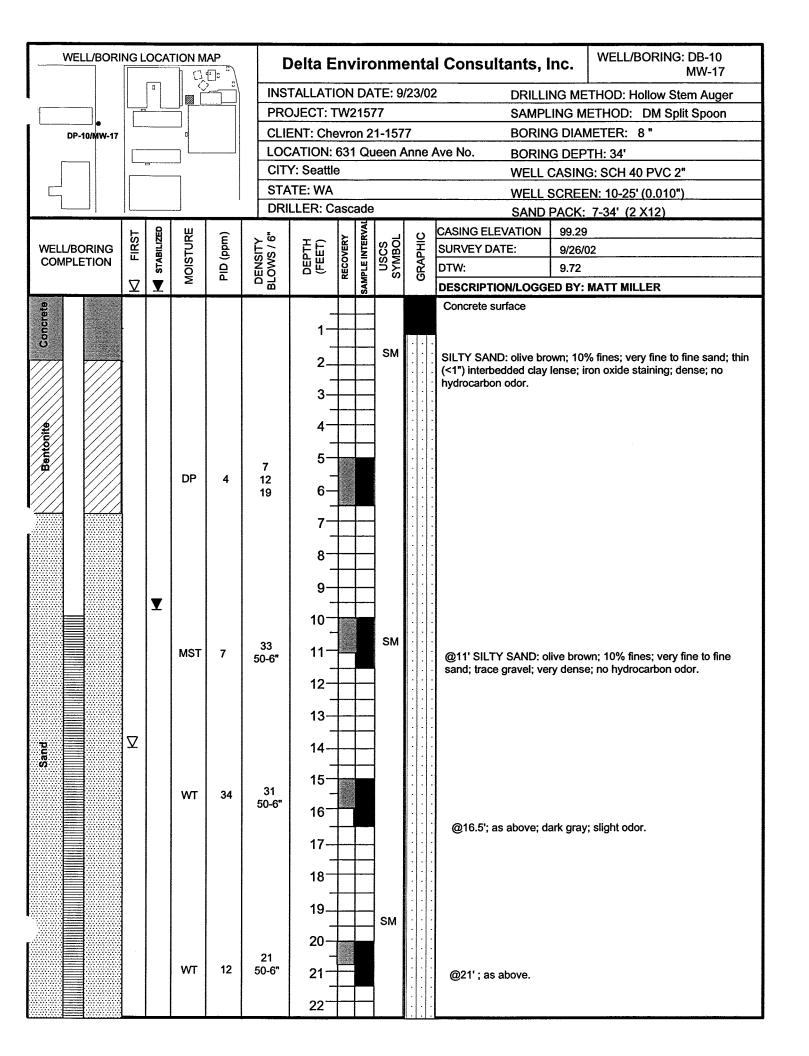


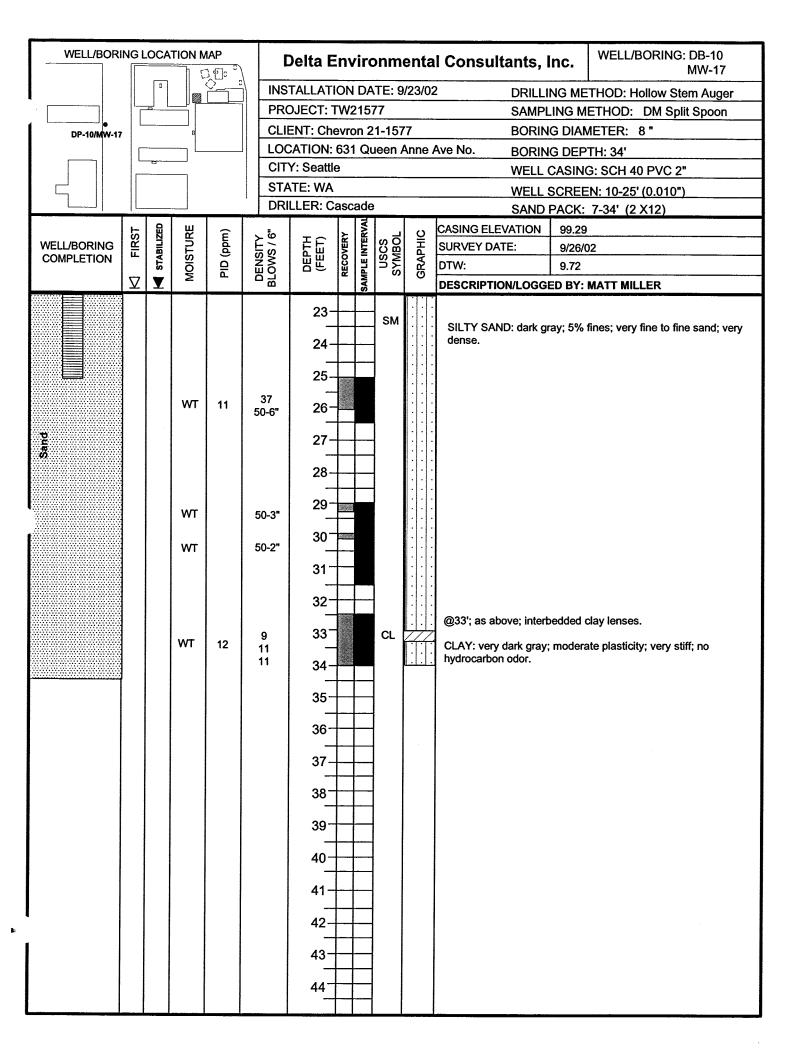


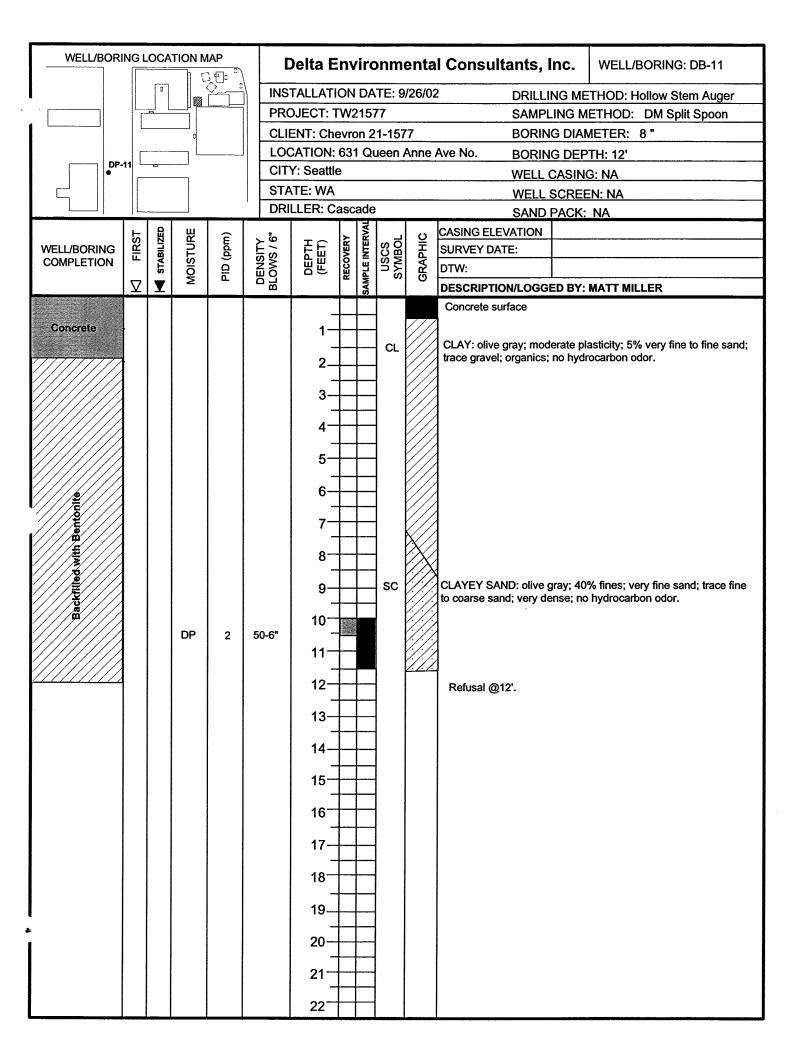

WELL/BORING LOCATION MAP	Delta Environmental	Consultants, Inc.	/ELL/BORING: DB-6 MW-14			
DP-6/WW-14	INSTALLATION DATE: 9/25/02					
	PROJECT: TW21577	SAMPLING METHOD: DM Split Spoon				
	CLIENT: Chevron 21-1577	BORING DIAMET				
	LOCATION: 631 Queen Anne Av	e No. BORING DEPTH:	26.5'			
	CITY: Seattle	WELL CASING: S				
	STATE: WA	WELL SCREEN:	10-25' (0.010")			
	DRILLER: Cascade	SAND PACK: 7-2				
F B B C	C L RVAL	ASING ELEVATION 101.64				
METT\BOUNDERD STABILIZED OISTURE D (ppm)	DEPTH (FEET) RECOVERY IPLE INTERV USCS SYMBOL GRAPHIC	URVEY DATE: 9/26/02				
	DEPTH (FEET) RECOVERY SAMPLE INTERVA USCS SYMBOL GRAPHIC	DTW:				
V Y -		DESCRIPTION/LOGGED BY: MA	TT MILLER			
Concrete		Concrete surface				
ouc		SILTY SAND: olive gray; 30% fine	es; very fine to fine sand;			
O		organics; no hydrocarbon odor.				
	2					
	3					
	4					
	5——————————————————————————————————————					
	4					
MST 5		SILT: olive gray; low to moderate				
<u> </u>		abundant organics; very stiff; no h	ydrocarbon odor.			
	7 + + -					
	8					
	9 SP					
	13 10					
MST 4	22 11-	SAND: very dark gray; trace fines	; fine sand; very dense.			
	_ 					
	12					
	13———					
	14					
	16					
□ □ □ □ WT 1367	26 16					
	29 SM	@16.5'; Same as above; increas hydrocarbon odor; thin (<1") inte	sing fines; very dense; rhedded silt lense			
	17	nyarodarbon odor, umr (*1) inte	iboadod oik toriot.			
	10					
	18					
	19					
						
	20	@20' Same as above; trace <5%	fines; very dense; hydrocarbon			
WT 402	50-6" 21	odor.	•			
	41					
	22					



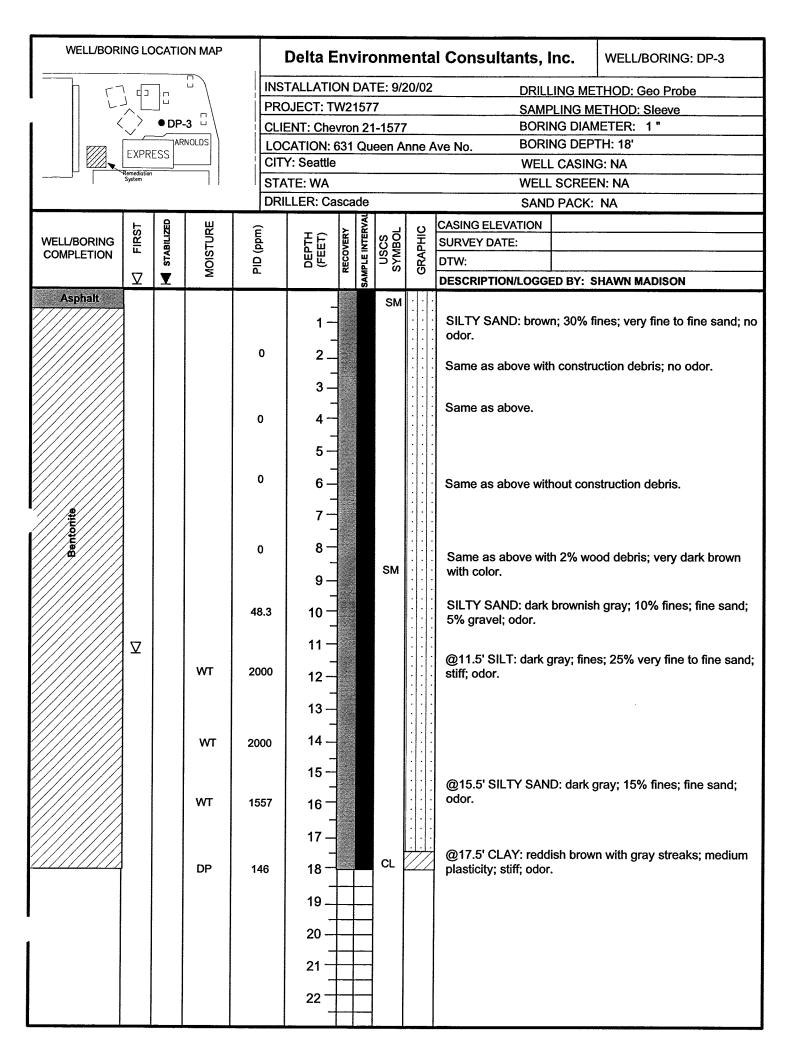




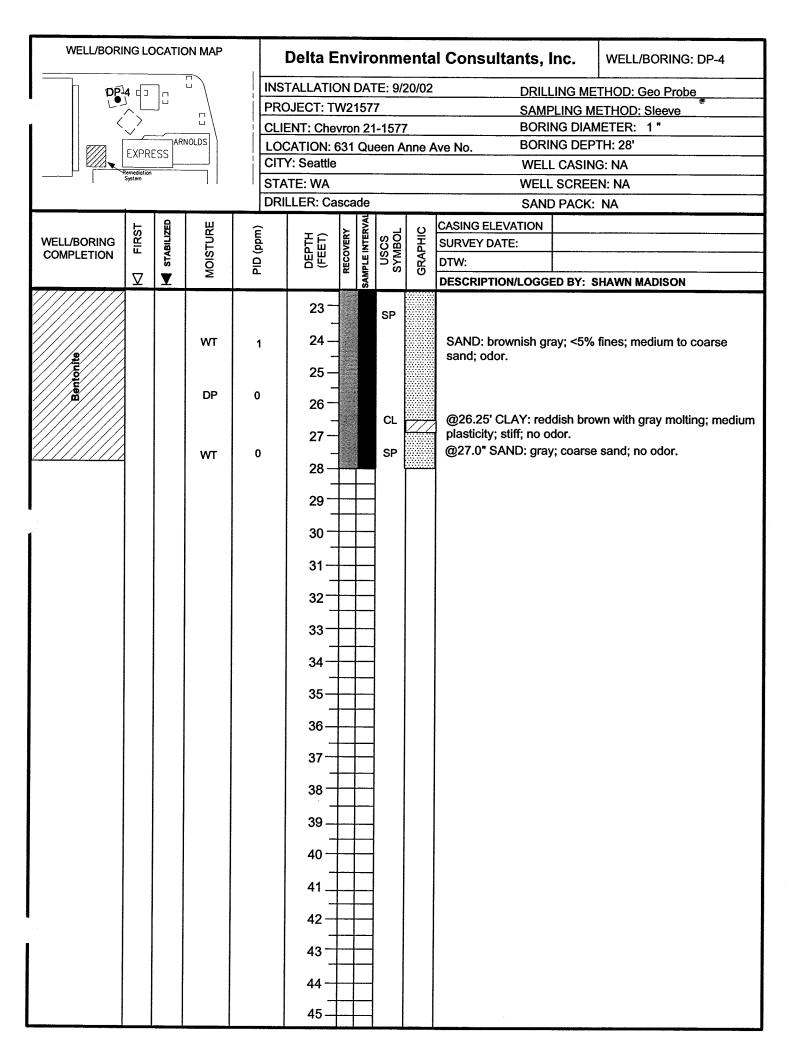




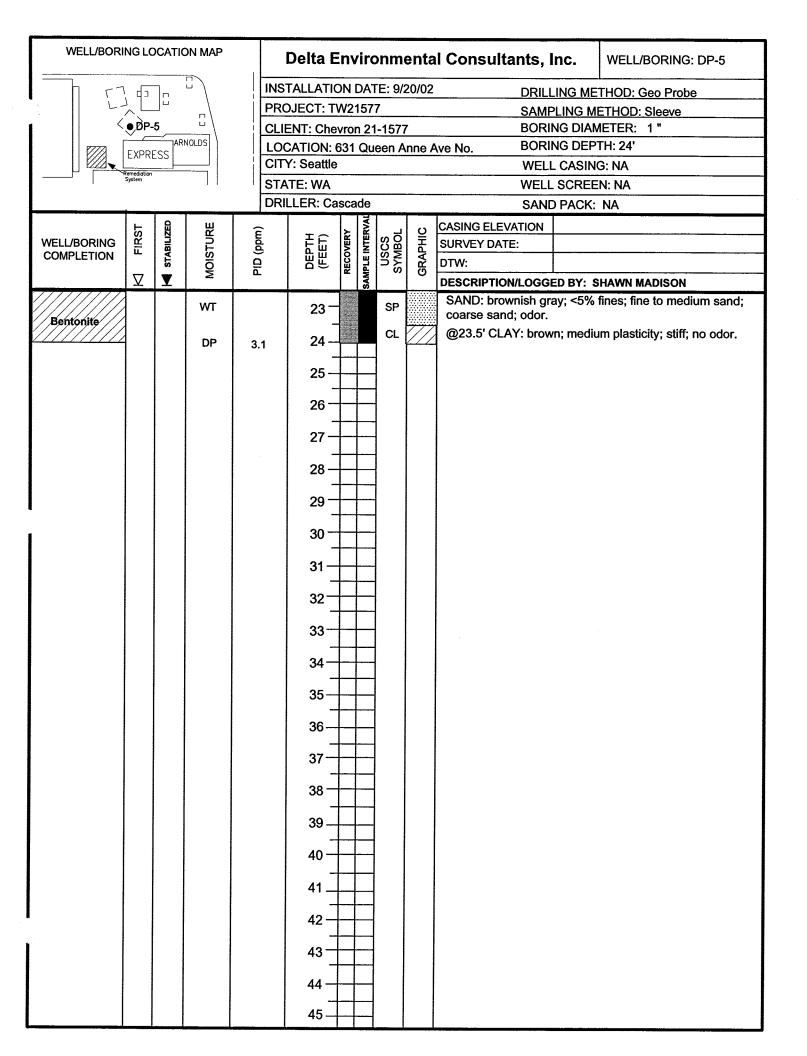
WELL/BORI	ING LO	DCATIO	ON MAP		Delta En	viro	nm	enta	l Consultants, Inc.	WELL/BORING: DVP-1
				INS	TALLATION	DAT	ΓE: 9/	12/02	DRILLING ME	THOD: Hand Auger
				PRO	DJECT: TW2	157	7			IETHOD: DM Split Spoon
1				CLII	ENT: Chevro	n 21	-157	7	BORING DIAI	• • • • • • • • • • • • • • • • • • • •
				LO	CATION: 631	1 Qu	een A	nne A	Ave No. BORING DEF	PTH: 7'
				CIT	Y: Seattle				WELL CASIN	G: 1/4" Stainless Steel
				STA	TE: WA				WELL SCRE	EN: 0.02 Hole Dia. Screen
	_	.,		DRI	LLER: Casc	ade			SAND PACK:	0.25 - 2.0 (2 X12)
	FS	ZED	쀭	<u> </u>	E	RVAI	پ	O	CASING ELEVATION	
WELL/BORING COMPLETION	FIRST	STABILIZED) Tč	(pp.	DEPTH (FEET) RECOVERY	N N	USCS	GRAPHIC	SURVEY DATE:	
COMPLETION	_	1	MOISTURE	PID (ppm)	PEC (FEC	SAMPLE INTERVA	š k	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DTW:	
	℧	Y				SA		<u>. </u>	DESCRIPTION/LOGGED BY:	SHAWN MADISON
and			DP					20000000	CONCRETE	
							SP		SAND: brown: <5% fines: fi	ne to medium sand, no odor.
				1480	_					•
					1 —		SM		SII TY SAND: grav: 25% fin	es; ;fine sand; odor; sheen.
			WT						0.2.1 O/ 11	iso, imo cana, caor, cricori.
			**		2 -					
* ////	1			:	2 -					
]						CL		CLAY: brownish gray; medi	um plasticity; odor.
										•
					3 —		SM		SILTY SAND: gray; 10% fin	es; fine to medium sand;
					_				odor; sheen.	
									@3.5' Same as above but 2	25% silt.
					4 —					
					-					
					_					
ğ										
55 E					5 —					
				2000						
	V	Y			_		SP		SAND: gray;<5% fines; fine	sand; odor; sheen.
	Y	_			6 —					
(A)			SAT	2000	_					
				2000						
]				7 —					
					'	-				
					+	\vdash				
					8 —					
						\perp				
						igsquare				
					_ +	\vdash				
					9 —					
					1	П			(A) = 1 Inch PVC monitoring	well with 0.010 slotted
									screen. Well screened fi	rom 3' to 7'. Well abandoned
					10	\dashv			after purging and sampli	ing on 9/12/02.
					-	$\vdash\vdash$				
					‡					
					11	\sqcup				
								L		

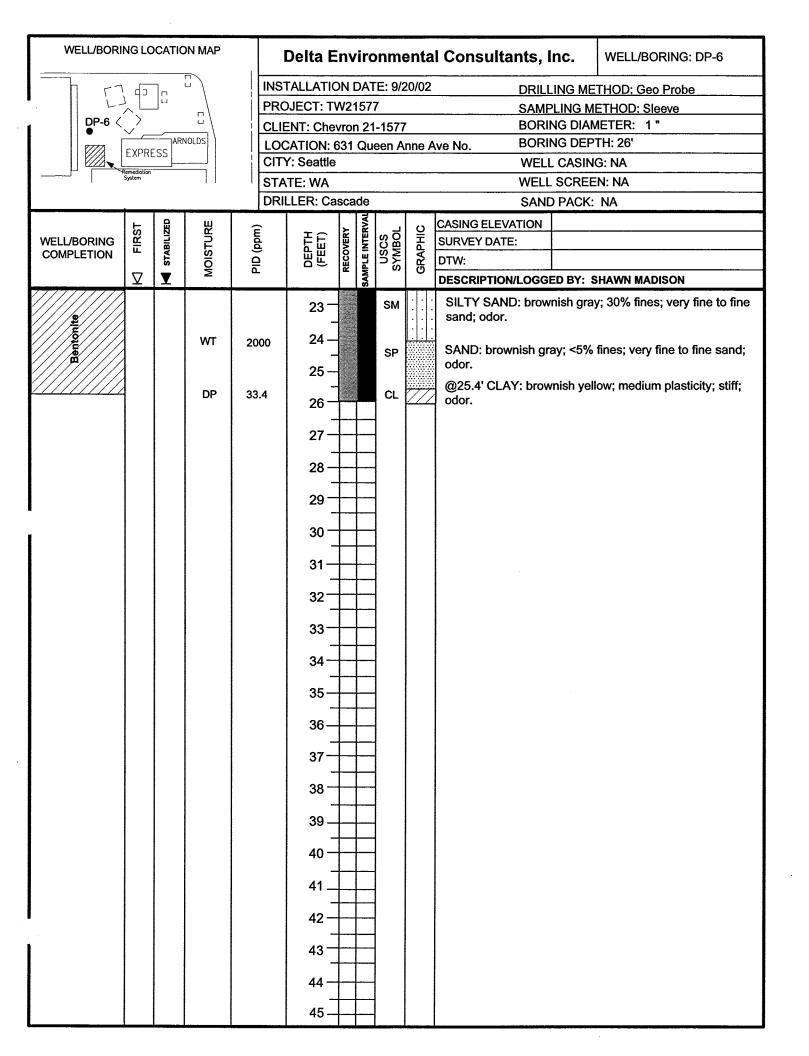

WELL/BORI	NG LC	CATIC	N MAP		Delta E	nvii	onm	enta	l Consultants, Inc.	WELL/BORING: DVP-2			
				INS	TALLATIO	N DA	TE: 9/	12/02	DRILLING ME	THOD: Hand Auger			
Į					JECT: TV					ETHOD: DM Split Spoon			
Ì					NT: Chev			7	BORING DIAM				
				I	LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 7'								
				CITY	CITY: Seattle WELL CASING: 1/4" Stainless Steel								
				STA	TE: WA				WELL SCREE	N: 0.02 Hole Dia. Screen			
		,		DRII	LER: Ca	scade)		SAND PACK:	0.25 - 2.0 (2 X12)			
	F	9	쀭	Ê	Τ	<u>}</u>	<u> </u>	ပ	CASING ELEVATION				
WELL/BORING COMPLETION	FIRST	STABILIZED	UTS	PID (ppm)	DEPTH (FEET)	RECOVERY	USCS	GRAPHIC	SURVEY DATE:				
COMPLETION	_	i	MOISTURE	PID	日 日 日	RECOVERY	i jä k	GR/	DTW:				
8	℧	Y				6	5		DESCRIPTION/LOGGED BY: S	HAWN MADISON			
5 99:			DP		_				CONCRETE				
							SP		SAND: brown; <5% fines; ve	ery fine to fine sand; no odor.			
				13.9	-								
<i>i</i>					1 -				SAND: brownish gray; <5%	fines; very fine to fine sand;			
					1 — — — 2 —				odor				
			WT		_				1	ith layers of silt less than			
]				2 -				0.25" thick.				
	1				_								
<u>m</u> ////					_								
			WΤ	649	3 -								
				040	_								
					_		SM		SILTY SAND: gray; 10% fine	es; very fine to fine sand;			
					4 –				odor.				
					_								
			WT		_								
P. C. S.					5 —								
				1327	_								
					 .		SP						
	▽	▼			- 6 -				SAND: gray;<5% fines; fine	sand; odor.			
			SAT		6 –								
A					_								
		1											
	ĺ				7 –								
					_	H	7						
						- -	\dashv						
					8 –	$ \cdot $							
					_								
					_	П							
					9 –	┼┼	\dashv						
					_	$\vdash \vdash$	\dashv		(A) = 1 Inch PVC monitoring	well with 0.010 slotted			
						+	1		screen. Well screened fr	om 3' to 7'. Well abandoned			
					10-	口			after purging and sampli	ng on 9/12/02.			
					_	-	4						
					_		1						
					11 -		7						
				<u> </u>									

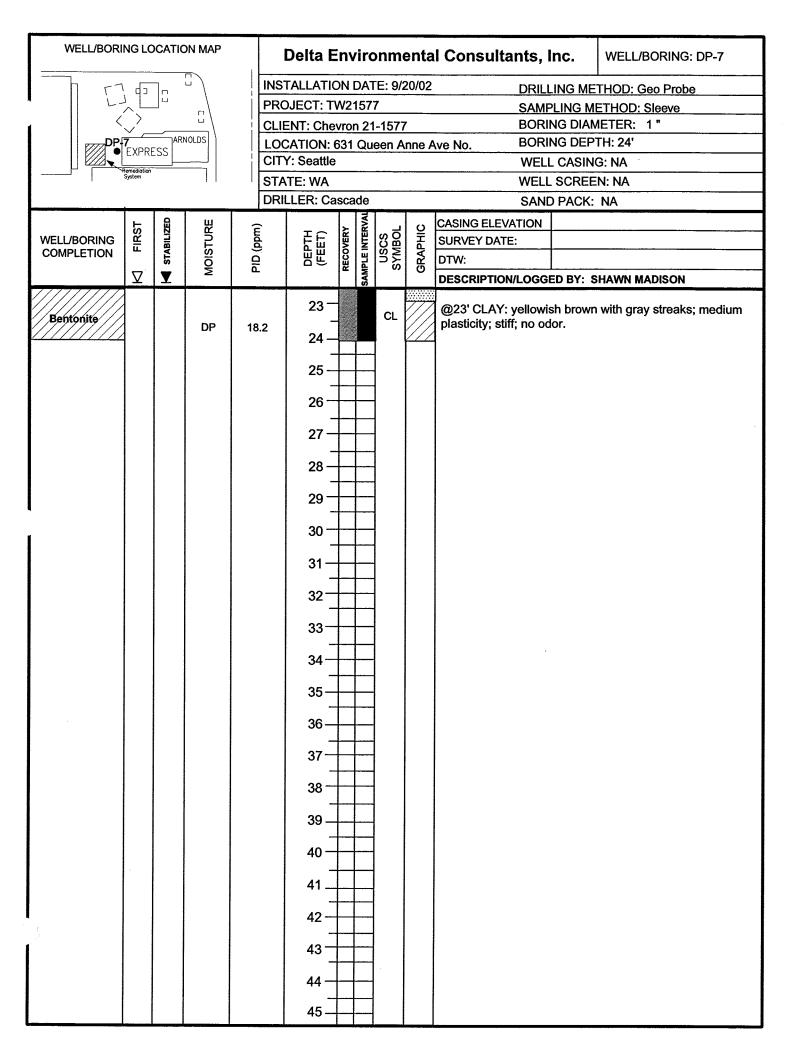
WELL/BORI	NG LC	CATIO	ON MAP		Delta Envi	ronm	enta	al Consultants, Inc. WELL/BORING: DP-1	
	EXPRESS ARNOLDS Remediation System					ATE: 9/ 77 21-1577 Lueen A	DRILLING METHOD: Geo Probe SAMPLING METHOD: Sleeve BORING DIAMETER: 1 " Ave No. BORING DEPTH: 24' WELL CASING: NA WELL SCREEN: NA SAND PACK: NA		
WELL/BORING COMPLETION		STABILIZED	MOISTURE	PID (ppm)	DEPTH (FEET) RECOVERY	USCS SYMBOL	GRAPHIC	CASING ELEVATION SURVEY DATE: DTW: DESCRIPTION/LOGGED BY: SHAWN MADISON	
Asphalt			DP	2.7	1-	SM		SILTY SAND: grayish brown; 20% fines; fine to medium sand; 15% gravel; no odor.	
			DP	59.0	3 - 4 - 5 -	SM		SILTY SAND: brownish gray; 10% fines; fine to medium sand; 25% gravel; odor.	
			DP	23.0	5 — 6 — 7 —			SILTY SAND: dark gray; 15% fines; medium to coarse sand; 10% gravel; odor.	
onite On the second			DP	11.0	8-		;P	Same as above.	
Bent	▽		DP	14.5	10 -	SP		SAND: gray; <5% fines; fine sand; no odor.	
			WT	33.3	12 —			Same as above with odor.	
			DP	0	14 — 15 —	SP		SAND: grayish brown; medium to coarse sand; no odor.	
	∇		DP	70.1	16 — 17 —			Same as above.	
			WT	0				SILTY SAND: grayish brown; 15% fines; fine to medium sand; no odor.	
			WT	5.7 20 — SILT				SILTY SAND: gray; 20% fines; fine to medium sand; 30% gravel; no odor.	
			WT	1.2	22 —	SM		Same as above.	


WELL/BORII	NG LC	CATIC	N MAP		Dalta Fari							
			<u> </u>		 			I Consultants, I	nc.	WELL/BORING: DP-1		
	(]	☐ DF	P-1		NSTALLATION DA		18/02	DIVILL		THOD: Geo Probe		
	^>	_ (רן		ROJECT: TW215		······································			ETHOD: Sleeve		
	~ _	ARN	IOLDS	1 1	CLIENT: Chevron 21-1577 BORING DIAMETER: 1 " LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 24'							
	EXPRE	ESS			CITY: Seattle WELL CASING: NA							
	emediation System			s	TATE: WA				SCREE	·····		
				D	RILLER: Cascade	!		SAND	PACK:	NA		
	STABILIZED STABILIZED				Y KVAL		CACING ELEVATION					
WELL/BORING COMPLETION	FIRST	ABILI	STU	PID (ppm)	DEPTH (FEET) RECOVERY	USCS	GRAPHIC	SURVEY DATE:				
COM LETION	∇		MOISTURE	Pισ	DEPTH (FEET) RECOVERY	la K	8	DTW:				
7777777777	∇	Y						DESCRIPTION/LOGGE		es; fine to medium sand; 30%		
Bentonite			WT	0.6	23 —	SM	. <i>.</i> .	gravel; no odor.	2076 HH	es, line to medium sand, 50%		
Bentonite			20		24 —	CL		CLAY: gray; mediur	n plastic	ity; stiff; no odor.		
			DP		24 —]						
					25	-						
					26	1						
					20 1	4						
					27	-						
					28	_						
					20	4						
					29	┪						
<u>.</u>					30							
					30 ++	-						
					31	1						
					32							
					52 ++	-						
					33	1						
					34	1						
						-				•		
					35	1						
					36]						
						-						
					37	-						
					38]						
					1	-						
					39	-						
					40	1						
					1	4						
					41							
		ŀ			42]						
				43								
					44]						
					- -							
					45	1						

WELL/BORI	NG LC	CATIC	ON MAP		Delta Env	virc	nme	enta	l Consultants, Inc.	WELL/BORING: DP-2		
- 	· 45	DP-2		INS	TALLATION I	DAT	E: 9/1	18/02	DRILLING ME	THOD: Geo Probe		
\ \ \ \ \	Ľ			! -	DJECT: TW2					IETHOD: Sleeve		
1 <	>			CLIE	ENT: Chevror	n 21	-1577	,	BORING DIA			
1 10773	EXPR		NOLDS	1 .	LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 24'							
	E XPK	F 22		CIT	Y: Seattle				WELL CASIN	IG: NA		
	System			STA	TE: WA				WELL SCREI	EN: NA		
				DRII	LLER: Casca	ıde			SAND PACK	: NA		
	F	<u> </u>	쀭	<u></u>	<u>}</u>	RVAL	پ ا	U	CASING ELEVATION			
WELL/BORING	FIRST	STABILIZED	JT.	PID (ppm)	DEPTH (FEET) RECOVERY	E	USCS SYMBOL	GRAPHIC	SURVEY DATE:			
COMPLETION	_	1	MOISTURE	OP OF	H H H H	SAMPLE INTERVA	S C	8	DTW:			
	℧	Y				SAR			DESCRIPTION/LOGGED BY:	SHAWN MADISON		
Asphalt					_		SM					
	1				1-			: : :				
	1		DP	0					SII TV SAND: gravich brow	n; 20% fines; fine to medium		
	1			U	2_			: : :	sand 30% gravel; no odor.	n, 2076 lines, line to medium		
	1				3 –							
	1		DP		_							
				0	4 —		Same as above with odor.					
					5 —							
			DP	672	6 —				SILTY SAND: dark gray; 20	% fines; fine to medium		
									sand; 10% gravel; odor.	,		
					7					,		
			DP	238	8-				Same as above but very da	ırk grav.		
<u></u>	1		DP	200			SM .					
					9 —		Civi			·		
Be ////			DP	4040	40			Same as above but dark of	reenish gray; 2% wood debris.		
	1		DP	1340	10 —			: : : : : :	Ĭ	3 ,,		
	1				11 —			- - - - - -				
	1		DD	4075	_			: : :	011 77 (0 4 4 1 7 4 1 4 1 4 1	.0/ 5		
			DP	1875	12 —			: : :	SILTY SAND: dark gray; 10 10% gravel; odor; <u>minimal </u>	% fines; fine to medium sand;		
					13 —			: : :	* See Page 2 of well log for			
					13			: : :				
			DP	2000	14 —			: : :	Same as above; minimal re			
					-				* See Page 2 of well log fo	r note.		
					15							
			DP	5.3	16							
			DF	5.5	_				SILTY SAND: dark gray; 10	% fines; medium to coarse		
					17 —				sand; 5% gravel; odor.			
			חח		10		<u> </u>		SAND: brown; medium san	d: odor.		
			DP	7.1	18 –		SP		or a solution in the solution of the	a, 20011		
					19							
			DP	40.0	_							
	又		אט	10.2	20 —				Same as above.			
	<u> </u>				21 —					·		
			wr	21.7	22		SP		SAND: grayish brown; fine	to medium sand; no odor.		


WELL/BORING LOC	CATION MAP	Delta	Enviro	onmen	tal Consulta	nts, Inc.	WELL/BORING: DP-2	
EXPRES Remediation System	DP-2	INSTALLA PROJECT CLIENT: C LOCATION CITY: Seat STATE: W	: TW2157 hevron 21 N: 631 Qu ttle	7 I-1577		DRILLING METHOD: Geo Probe SAMPLING METHOD: Sleeve BORING DIAMETER: 1 " Ave No. BORING DEPTH: 24' WELL CASING: NA WELL SCREEN: NA		
		DRILLER:				SAND PACK		
	MOISTURE	PID (ppm)	, VAI	USCS	CASING ELEVA SURVEY DATE DTW: DESCRIPTION	ATION ::	SHAWN MADISON	
Bentonite	DP	23 0 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		SP CL	* Redrilled foot intervals 10'-12' SILT medium sans	ovish brown; mo	get recovery for the 12 and 14 gray; 10% fines; fine to ; odor; P.I.D. reading 2000. gray; 10% fines; fine to ; odor; P.I.D. reading 2000.	


WELL/BORI	ING LC	CATIO	ON MAP		Delta Env	irc	nmo	enta	I Consultants, Inc. WELL/BORING: DP-4				
	4 65	7_		IN	ISTALLATION I	TAC	E: 9/2	20/02	DRILLING METHOD: Geo Probe				
' <u> </u>	J.L		_/	1	ROJECT: TW2				SAMPLING METHOD: Sleeve				
1 <	$\langle \rangle$			CI	LIENT: Chevror	ր 21	-1577	7	BORING DIAMETER: 1 "				
	EXPR		NOLDS		LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 28'								
	Remediation			- 1	TY: Seattle				WELL CASING: NA				
	System			<u> </u>	TATE: WA				WELL SCREEN: NA				
	·			DF	RILLER: Casca		 -		SAND PACK: NA				
WELL/BORING	FIRST	STABILIZED	뀖	Ē	H C X	SAMPLE INTERVA	ြက္ခ	ပ္	CASING ELEVATION				
COMPLETION	臣	TABI	MOISTURE	PID (ppm)	DEPTH (FEET) RECOVERY	N N	USCS SYMBOL	GRAPHIC	SURVEY DATE: DTW:				
	∇	Y	δ	<u> </u>	G (A)	AMPL	3 6	<u>6</u>	DESCRIPTION/LOGGED BY: SHAWN MADISON				
Asphalt		 -				S	SM		DECORN HOMEOGGED DT. SHAWN MADISON				
	1				1 1		Sivi						
	1												
]		DRY	0	2_				SILTY SAND: gray; 30% fines; fine sand; 10% gravel; no				
]	3 -			: : : : : :	odor.				
	1		DP	801	4-				Same as above with light odor.				
	1												
	1				5 —			: <i>:</i> :					
]		DP	49.4	6			: : :	SILTY SAND: dark gray; 10% fines; fine to medium				
	1		-			: : :	sand; light odor.						
	1				7 -			: : :					
		ļ	DP	0	8-				Same as above with 5% gravel.				
			J.	_	SM								
1	1				9 —								
]		DP	0	10			: : :	Same as above with 15% gravel.				
					-								
					11			: : :					
			DP	8.3	12				SILTY SAND: very dark gray; 10% fines; medium to				
					'2			: : :	coarse sand; light odor; encountered PVC well screen at 12 feet.				
					13 —			: <i>:</i> :					
			DP	474	14				SAND: dark gray to brown; fine to medium sand; no odor.				
			DΡ	174									
					15 —				15 to 15.5' SILTY SAND: 30% fine; fine to medium sand; no odor.				
					16				@15.5' SAND: brownish gray; <5% fines; fine to medium				
			DP	219					sand; 15% coarse sand; no odor.				
					17 —		į						
			P.	50 .			SP						
			DP	58.4	18								
	∇				19_		Ī		SAND: gray; fine sand; odor.				
			wr	2000									
////////			**1	2000	20 —		ļ		i				
					21 —				1				
					Same sand grades to medium sand; odor				Same sand grades to medium sand; odor.				
				21.7	22		Same same grades to medicin sand, odor.						
///////////////													

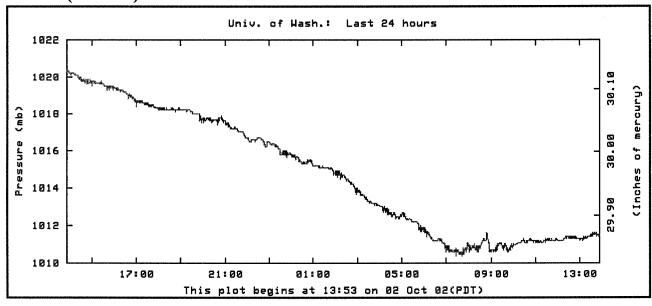

WELL/BORI	NG LC	CATIO	ON MAP		Delta Env	/irc	onmo	enta	I Consultants, Inc. WELL/BORING: DP-5			
	\			INS	TALLATION	DA1	TE: 9/2	20/02	DRILLING METHOD: Geo Probe			
•	ľ	L			DJECT: TW2				SAMPLING METHOD: Geo Probe			
1 <	●ØP-	.5		CLI	ENT: Chevro	n 21	-1577	,	BORING DIAMETER: 1 "			
	EXPR		NOLDS	LO	LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 24'							
	Remediation			CIT	Y: Seattle				WELL CASING: NA			
	System			— —	ATE: WA				WELL SCREEN: NA			
	r	1		DRI	LLER: Casca	1 -2	Υ	-	SAND PACK: NA			
MELLIBORING	FIRST	STABILIZED	뿚	Ē		SAMPLE INTERVA	್ಗನ	ပ္	CASING ELEVATION			
WELL/BORING COMPLETION	분	TABIL	MOISTURE	PID (ppm)	DEPTH (FEET) RECOVERY	E IN	USCS	GRAPHIC	SURVEY DATE:			
	∇	T w	₽] [AMPL] &	5	DTW: DESCRIPTION/LOGGED BY: SHAWN MADISON			
Asphalt						S	SM		DESCRIPTION/LOGGED BY: SHAWN MADISON			
			 		1 -		SM	: <i>:</i> :				
	1			:								
	1		DP	0	2_				SILTY SAND: brown; 15% fines; fine to medium sand; no			
									odor.			
					3 -							
			DP	77.0	4-				Same as above grades to grayish brown.			
			ļ					· · · · .	game as above grades to grayion brown.			
					5 —			· · ·				
			DP	77.4	6 -				Same as above; gray to dark gray; construction debris			
					-				(Brick); no odor.			
				7 -								
			DP	8.0	8-7				Same as above with construction debris (Asphalt); no			
<u></u>							SM		odor.			
					9 —		Sivi				
Be			DP		10			: : : : :	Same as above with Asphalt and wood debris.			
			D,	0	10 -			- - - - - -	·			
					11 —							
			DP	166	4.0							
					12 —				SILTY SAND: dark gray; 15% fines; fine sand; odor.			
					13 —							
	又							: <i>:</i> :				
			WT	2000	14 —			. . .	Same as above; 30% fines; odor.			
					15			: : :				
					-							
			WT	2000	16				SILTY SAND: gray to brownish gray; 20% fines; very fine			
					17				to fine sand; odor.			
					''		_					
			WT	1345	18 —		SP					
					19				SAND: brownish gray; <5% fines; fine to medium sand;			
									odor.			
			WT	2000	20 —							
									Same as above.			
					21 —							
			WT	1162	22				Same as above.			
							ŀ					

WELL/BORI	NG LO	OCATIO	ON MAP		Dalla F							
			<u> </u>	1					I Consultants, Inc. WELL/BORING: DP-6			
	/ 45		_ \	1	TALLATION			20/02	DRILLING METHOD: Geo Probe			
DP-6 <	^ <u> </u>	J_	ני /	h	OJECT: TW2				SAMPLING METHOD: Sleeve			
	<u>`</u> ~	AR	NOLDS		ENT: Chevro				BORING DIAMETER: 1 " BORING DEPTH: 26'			
	EXPR	ESS			LOCATION: 631 Queen Anne Ave No. BORING DEPTH: 26' CITY: Seattle WELL CASING: NA							
	Remediation System				ATE: WA				WELL SCREEN: NA			
				<u> </u>	LLER: Casca	de	-		SAND PACK: NA			
	H	A	Щ	<u> </u>		.≪AL		0	CASING ELEVATION			
WELL/BORING	FIRST	STABILIZED	F	(ppm	DEPTH (FEET) RECOVERY	INTE	ရှိ မြွ	GRAPHIC	SURVEY DATE:			
COMPLETION		1	MOISTURE	PID (ppm)	DEPTH (FEET) RECOVERY	SAMPLE INTERVA	USCS	8₹	DTW:			
	℧	Y				SAN			DESCRIPTION/LOGGED BY: SHAWN MADISON			
Asphalt					-		SM	: : :				
					1 -				SILTY SAND: brownish gray; 40% fines; fine to medium			
			DP	0	2_				sand; 10% gravel; 5% construction debris (Brick); no odor.			
									oudi.			
					3 –						
			DP	0	4-			: : : . .	SILTY SAND: dark brownish gray; 25% fines; fine sand;			
					- '-			10% medium sand; no odor.				
					5-				@5.5' SILTY SAND: very dark gray; 15% fines; medium			
			DP	0	6-				to coarse sand; no odor.			
					7 —		· · ·	©7 FLOI AV				
			DP	7.4	8-				@7.5' CLAY: very dark gray; medium plasticity; 10% very fine to fine sand; no odor.			
<u>,e</u>									,			
					9-		SM		@9.0' SILTY SAND: 15% fines; 40% fine sand; medium			
B			DP	6.9	10		J	: : : . . :	to coarse and; no odor; minimal recovery.			
			, Di	0.9	10							
					11 —			: : :	Same as above.			
			DP	67.4	12				Minimal Recovery			
	∇							: <i>:</i> <i>:</i>				
					13 —			· · ·				
					14 _		SP		SAND: grayish brown; <5% fines; very fine to fine sand;			
			WT	231	14 —		0.		odor.			
					15 —							
					46				Same as above.			
			WT	72	16							
					17 —							
			,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						@17.5' SAND: grayish brown; <5% fines; 30% medium sand; coarse sand; odor.			
			WT	4.2	18				ana, ooalse sana, outl.			
					19_				40.05145.40.51.01.026.53			
			wt	341			CL	77	19.25' to 19.5' CLAY: yellowish brown; stiff; sand stringers; very fine sand; odor.			
////////			**1	J-1	20 —		SM		@19.5' SILTY SAND: brownish gray; 30% fines; very fine			
					21 —				to fine sand; odor.			
			,,_		-			: : :				
			WT	2000	22				Same as above.			

WELL/BORI	NG LC	CATIC	ON MAP		Delta Env	rirc	nme	enta	al Consultants, Inc. WELL/BORING: DP-7			
	\	٦_		INST	TALLATION I	DAT	E: 9/2	20/02	DRILLING METHOD: Geo Probe			
L-			_\	PRC	JECT: TW2	157	7		SAMPLING METHOD: Sleeve			
. <				CLIE	NT: Chevro	n 21	-1577	,	BORING DIAMETER: 1 "			
DP			NOLDS	LOC	CATION: 631	Qu	een A	nne A	Ave No. BORING DEPTH: 24'			
	EXPRI Remediation			CITY	∕: Seattle				WELL CASING: NA			
	System			STA	TE: WA				WELL SCREEN: NA			
		_		DRII	LER: Casca		,		SAND PACK: NA			
	ST	CH2	쀭	(F	⊤	SAMPLE INTERVA		ပ္	CASING ELEVATION			
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DEPTH (FEET) RECOVERY	N.	USCS SYMBOL	GRAPHIC	SURVEY DATE:			
COMIT EL TION		1 .	MO	PID	RE CE	MPLE	∩ ≿	S,	DTW:			
	℧	Y	_			SA		1717	DESCRIPTION/LOGGED BY: SHAWN MADISON			
Asphalt	•				-		SM					
	1				1 -				SILTY SAND: brown; 20% fines; fine to medium sand;			
			DRY	0	2_				10% gravel; no odor.			
	1				3 —							
	1		DP	0	4 —	Same but brown to dark brown with construction debris						
	1		DF	0	4 4	(Brick); no odor.						
	1				5 —							
	1		DP	0					•			
	1			U	6				SILTY SAND: brownish gray; 10% fines; fine to medium			
V////////					7-				sand; no odor.			
]				-				@7.5' SILTY SAND: dark brown; 35% fines; fine to			
	1		DP	0	8 —				medium sand; 10% coarse sand; no odor.			
aj di	1				9 —		SM					
2 / / / S	▽				-				. @9.5' Grades to brown in color; odor.			
<u> </u>	1		WT	110	10 —				(@9.5 Grades to brown in color, odor.			
	1								@10.5' grades to gray; 10% fines; odor.			
	1				11 -							
	1		WT	193	12 —							
]				-							
					13 —		SP		SAND: gray; fine sand; odor.			
	1		WΤ	307	14 —		٦٢					
	1			007	-							
	1				15							
	1		WT	400	16				SAND, brougish grow fine conductor			
]		VV 1	126	"				SAND: brownish gray; fine sand; odor.			
					17 —							
									SAND: brownish gray; fine to medium sand; odor.			
			WT	355	18							
					19_							
V///////////	1		\ \v_=	6000	-							
	1		WT	2000	20 —				@20' Grades to very fine sand.			
	1				21 —							
	1				41							
	1		WT	2000	22				@22' Grades to fine to medium sand; odor.			
	1											

MONITORING WELL SURVEY FORM

CHEVRON S	TATION NO. ZUS77	DELTA PROJECT NO. TWZI 577					
ADDRESS	631 Queen Anne Ave N	FIELD F	PERSONNEL	Shawn Wadsow			
SEA	THE WA	DATE	9-26-2				
*****	******	NI TO	TUIC CU	CCT****************			


LOCATION	ELEVATION	TOP	MIDDLE	BOTTOM	CHECK ·
mw-3 (BM)	106.4	5.76	5.06	4.92	.ાપ .14
MW-15	-137 99.03 486	6.56	6.43	6.3ø	.13
MW-17	99.29 - 41	6.45	6.17	5.89	.28 ,28
mw-16	101.83 +1,43	4.45	3,63	Z, 81	.82 ,82
MW-16 (Turn)	1ø1,83	6.89	6.66	6,43	.23
MW-14	181.6418	7.01	6.85	6.69	.16 .16
v 2-9 (Bm)	114.27	6.42	6.32	6.12	10 10
triw-B	114,8¢ ÷53	5.89	5.58	S. 27	.31 .31
MW-13 (Tun)	114.8¢	5.9¢	5.78	5,66	.12 .12
MW-12	113,36 144	7.60	7.22	6.8ø	.44 .44
·		· · · · · · · · · · · · · · · · · · ·		./	
					·
			·		
		-			
£					

APPENDIX D Barometric Pressure Data

Weather data from: Univ. of Wash.

Pressure (millibars)

Created by:

Harry Edmon

Neal Johnson

Rich Edgerton

Jim Tillman

David Warren

Fred Weller

University of Washington Seattle, Washington USA

Clicking on a plot brings up the data file that was used to create that plot and available station information.

Current time GMT/UTC

Thu Oct 3 20:53:15 2002

Local (Pacific Daylight Time) Thu Oct 3 13:53:15 2002

APPENDIX E Laboratory Analytical Data – Summa Canister Vapor Samples

Analytical reports to be included in Final RI report

APPENDIX F Laboratory Analytical Reports – Groundwater

Analytical reports to be included in Final RI report

APPENDIX G Soil Vapor Modeling Results

DATA ENTRA SHEET

	ENTER	ENTER		ENTER					
	Chemical	Soil gas		Soil gas					
	CAS No.	conc.,	OR	conc.,					
	(numbers only,	C _g	OI C	C _a					
	no dashes)	(μg/m³)		(ppmv)		Chemical			
	no dasties)	(µg/iii)		(рршу)		Chemical			
	71432]			Benzene	1		
				L	1				
		Enter soil gas cond							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	Depth			Totals mus	st add up to value of L		Soil		
Ψ	below grade	Soil gas	_		Thickness	Thickness	stratum A		User-defined
	to bottom	sampling	Average	Thickness	of soil	of soil	scs		stratum A
	of enclosed	depth	soil	of soil	stratum B,	stratum C,	soil type	0.0	soil vapor
	space floor,	below grade,	temperature,	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
	L _F	L _s	Ts	h _A	h _B	h _C	soil vapor		k _v
	(cm)	(cm)	(°C)	(cm)	(cm)	(cm)	permeability)		(cm ²)
	r								
	200	225	10	225	0	0	1		1.62E-08
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
J	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
<u> </u>	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,
	Pb ^A	n ^A	θ_{w}^{A}	Рь	n ^B	θ _w ^B	PbC	n°	θwc
	(g/cm³)	(unitless)	(cm ³ /cm ³)	(g/cm³)	(unitless)	(cm ³ /cm ³)	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	(9.0.117	(unidess)	(OIII 7OIII)	(groin)	(unitiess)	(on rom)	(groin)	(dilidess)	(0.11.1011.)
	1.5	0.45	0.227]				
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Enclosed	ENIER	Enclosed	Enclosed	ENIER	ENIER	ENIER		
MORE	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
₩	floor	pressure	floor	floor	space	seam crack	air exchange		
<u> </u>	thickness,	differential,	length,	width,	height,	width,	rate,		
	L _{crack}	ΔP	L _B	W ₈	H _B	w.	ER		
		(a/cm-s ²)	_	=	-				
	(cm)	(g/cm-s)	(cm)	(cm)	(cm)	(cm)	(1/h)		
	12	40	3200	1067	244	0.1	0.1		
	ENTED	ENTED	PAITP	FUTED					
	ENTER Averaging	ENTER	ENTER	ENTER					
	time for	Averaging time for	Exposure	Exposure					
	carcinogens,	noncarcinogens,	duration,	frequency,					
	AT _C	AT _{NC}	ED	EF					
	(yrs)	(yrs)	(yrs)	(days/yr)					
		()19/	(3)	(uayayı)	=				
	70	30	30	365]				
END	1								
	I								

Soil Gas Concentration Data

Predicted Apartment Benzene Concentration

Present Condition

Floor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf)	3,675.00 Value from B2
L (ft)	105.00 Value from B3
W (ft)	35.00 Value from B4
H (ft)	8.00 Value from B5
Pressure differential (Pascal)	40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44
Q air rate (cfm/sf)	0.10 fresh air exchange rate value from DATAENTER H44
Floor-Wall seam crack width (cm)	0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm
C soil (ppbv)	13,000.00 user input average contaminant concentration in near surface soil vapor
MW Benzene	78.11 gram molecular weight value from CHEMPROPS H9
C air (ug/m3)	0.00 user input contaminant concentration in background air
ASIL (ug/m3)	0.12 user input contaminant ASIL limit
MTCA Method B (ug/m3)	0.32 user input contaminant MTCA Method B cleanup standard
ACGIH TLV (ug/m3)	1,600.00 user input contaminant ACGIH TLV standard
OSHA PEL (ug/m3)	3,190.00 user input contaminant OSHA PEL standard
Subgrade Soil Vapor Permeability	1.62E-08 soil permeability value from DATENTER J24
Pressure differential (g/cm-sec2)	400.00 unit conversion and program input to DATENTER C44
L (cm)	3,200.40 unit conversion and program input to DATENTER D44
W (cm)	1,066.80 unit conversion and program input to DATENTER E44
H (cm)	243.84 unit conversion and program input to DATENTER F44
Q air (cfm)	367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec)	0.17 unit conversion for fresh air exchange rate
Air exchange rate (1/hr)	0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h
Q soil (cm3/sec)	23.88 value from INTERCALCS D31
Q soil (m3/sec)	2.39E-05 unit conversion for soil vapor inflow to building
C soil (ug/m3)	41,508.46 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results	
C bldg (ug/m3)	5.71 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg)
Factor greater than or less than ASIL	47.62 how much C bldg is either greater or less than the ASIL
Factor greater than or less than MTCA Method B	17.80 how much C bldg is either greater or less than the MTCA Method B cleanup standard
Factor greater than or less than ACGIH TLV	-280.00 how much C bldg is either greater or less than the ACGIH TLV standard
Factor greater than or less than OSHA PEL	-558.26 how much C bldg is either greater or less than the OSHA PEL standard

Predicted Apartment Benzene Concentration

Adjusted Condition

Floor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf) L (ft) W (ft)	3,675.00 Value from B2 105.00 Value from B3 35.00 Value from B4
H (ft) Pressure differential (Pascal) Q air rate (cfm/sf) Floor-Wall seam crack width (cm)	8.00 Value from B5 40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44 0.10 fresh air exchange rate value from DATAENTER H44 0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm
C soil (ppbv) MW Benzene C air (ug/m3)	275.00 user input average contaminant concentration in near surface soil vapor 78.11 gram molecular weight value from CHEMPROPS H9 0.00 user input contaminant concentration in background air
ASIL (ug/m3) MTCA Method B (ug/m3) ACGIH TLV (ug/m3)	0.12 user input contaminant ASIL limit 0.32 user input contaminant MTCA Method B cleanup standard 1,600.00 user input contaminant ACGIH TLV standard
OSHA PEL (ug/m3) Subgrade Soil Vapor Permeability Pressure differential (g/cm-sec2)	3,190.00 user input contaminant OSHA PEL standard 1.62E-08 soil permeability value from DATENTER J24 400.00 unit conversion and program input to DATENTER C44
L (cm) W (cm) H (cm)	3,200.40 unit conversion and program input to DATENTER D44 1,066.80 unit conversion and program input to DATENTER E44 243.84 unit conversion and program input to DATENTER F44
Q air (cfm) Q air (m3/sec) Air exchange rate (1/hr)	367.50 equals Area (sf) * Q bidg rate 0.17 unit conversion for fresh air exchange rate 0.75 calculate fresh air exchange rate = [Q bidg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h
Q soil (cm3/sec) Q soil (m3/sec) C soil (ug/m3)	23.88 value from INTERCALCS D31 2.39E-05 unit conversion for soil vapor inflow to building 878.06 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results C bldg (ug/m3) Factor greater than or less than ASIL	0.12 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg) 1.01 how much C bldg is either greater or less than the ASIL
Factor greater than or less than MTCA Method B Factor greater than or less than ACGIH TLV	-2.66 how much C bldg is either greater or less than the MTCA Method B cleanup standard -13,236.58 how much C bldg is either greater or less than the ACGIH TLV standard

-26,390.42 how much C bldg is either greater or less than the OSHA PEL standard

Factor greater than or less than OSHA PEL

DATA ENTINE SHEET

ENTER Self-Case Concentration Data Self-Case Concentration Data Self-Case Concentration			0-	" O O	5.4.		DATA ENTAL SHEET	•		
Chemical CAS No. Conc. OR Conc. OR Conc. Cr.		ENTED		ii Gas Concentratio		7				
Chemical CAS No. Conc.		E141 E.C.								
CAS No. Conc. CR Co. CR Co. CR Co. CR CR CR CR CR CR CR C		Chemical	I .							
Can				OR						
127164				O.C		1				
Tetrachloroethylene Tetrachloroethylene		•								
## Entrex soil gas concentration above. ## ENTER Depth Depth Delto grade to bottom of enclosed space floor, (cm) (cm) (cm) (cm) (cm) (cm) (pcm²) (unitless) (cm²/cm²) (g/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless)		no dasnes)	(µg/m)		(ppmv)		Chemical			
## Entrex soil gas concentration above. ## ENTER Depth Depth Delto grade to bottom of enclosed space floor, (cm) (cm) (cm) (cm) (cm) (cm) (pcm²) (unitless) (cm²/cm²) (g/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless)		407484		1						
ENTER Depth De		12/184	<u> </u>	<u> </u>			<u> Fetrachloroethylen</u>	9		
ENTER Depth De										
Depth Depth Debtow grade Soil gas Soil gas Soil gas Soil gas Soil gas Totals must add up to value of Ls (cell C24) Soil stratum A Soil gas Soil gas Soil gas Soil gas Thickness Thickness Soil gas Soil gas Soil gas Thickness Soil gas Soil gas Soil gas Thickness Soil gas Soil gas Thickness Soil gas Soil gas Soil gas Thickness Thickness Soil gas Thickness Thickness Soil gas Thickness										
below grade to bottom sampling depth soil water-filled porcelly, porcelly			ENTER	ENTER				ENTER		ENTER
10 bottom 10					Totals mus	t add up to value of L	s (cell C24)	Soil		
of enclosed space floor, Le Cm) depth soll space floor, Le Cm) soll space floor, Le Cm) depth soll vapor soll vapor soll vapor permeability, Le Cm) soll type (cm) (cm) soll type (used to estimate soll vapor permeability, k, k, (cm²) soll vapor permeability, k, k, (cm²) 200 225 10 225 0 0 0 1.62E-08 MORE Stratum A soll total soll	Ψ					Thickness				User-defined
Space floor, below grade, temperature, L _L L _L T _S h _A (Enter value or 0) (Enter value or 0) (Lefter valu							of soil			stratum A
L _T L _T C _T					of soil	stratum B,	stratum C,	soil type		soil vapor
Cem Permeability Cem		space floor,	below grade,		stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
Cem Cem Cem Cem Cem Cem Cem Cem Demosibility Cem²		LF	Ls	Ts	h _A	h _B	h _C	soil vapor		k,
200 225 10 225 0 0 0		(cm)	(cm)	(°C)	(cm)	(cm)		nermeability)		
MORE Stratum A Stratum A Stratum A Stratum B Stratum C Stratum					<u> </u>		\\-\\-\\-\\\\\\	1		
MORE Stratum A Stratum A Stratum A Stratum B Stratum Soil dy soil deal soil dy		200	225	10	225	0	0			1.62E-08
Stratum A Stratum A Stratum B Str								<u> </u>		
Stratum A Stratum A Stratum B Str										
Soil dry Soil total Soil water-filled Soil water-filed Soil water-filled Soil water-filed Soil water-filled Soil water-filled Soil water-filled Soil water-filled S						ENTER	ENTER	ENTER	ENTER	ENTER
bulk density, porosity, bulk density, porosity, bulk density, porosity, porosity, porosity, ph. hulk density, porosity, ph. hulk density, porosity, porosity, ph. hulk density, porosity, porosity, porosity, porosity, ph. hulk density, porosity, p						Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
P _b P _b	Ψ				soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
(g/cm ³)										porosity,
(g/cm³)		ρь ^A	n^	$\theta_{\mathbf{w}}^{\mathbf{A}}$	ρ_b^B	n ^B	θω ⁸	O _b C	n ^c	θ ^C
ENTER		(g/cm³)	(unitless)	(cm³/cm³)		(unitless)			(unitless)	
ENTER Enclosed En					<u> </u>	(GINGOO)			(dridess)	<u> </u>
Enclosed space Soil-bidg. space space space Enclosed space		1.5	0.45	0.227						
Enclosed space Soil-bidg. space space space Enclosed space						h		·		
MORE ↓ space floor Soil-bldg. pressure space floor space floor floor space seam crack seam crack width, height, width, height, width, rate, Lcrack ΔP LB WB HB W ER (cm) (g/cm-s²) (cm) (cm) (cm) (cm) (cm) (cm) (1/h) 12 40 3200 1067 244 0.1 0.1 ENTER Averaging time for time for carcinogens, noncarcinogens, noncarcinogens, duration, frequency, ATc ATc (yrs) ED EF (yrs) EF (yrs) 70 30 30 365			ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
## floor pressure floor pressure floor pressure floor floor space seam crack air exchange thickness, differential, length, width, height, width, rate, Lorack ΔP L _B W _B H _B w ER (cm) (g/cm-s²) (cm) (cm) (cm) (cm) (1/h) 12					Enclosed					
thickness, differential, length, width, height, width, rate, L _{crack} ΔP L _B W _B H _B w ER (cm) (g/cm-s²) (cm) (cm) (cm) (cm) (1/h) 12 40 3200 1067 244 0.1 0.1 ENTER ENTER ENTER ENTER ENTER Averaging time for time for time for carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (yrs) (days/yr)			Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
L _{crack} (cm) ΔP (g/cm-s²) L _B (cm) W _B (cm) H _B w ER (cm) (g/cm-s²) (cm) (cm) (cm) (1/h) 12 40 3200 1067 244 0.1 0.1 ENTER Averaging time for carcinogens, Averaging time for carcinogens, AT _C Exposure Exposure Exposure frequency, Frequency, ED EF (yrs) (yrs) (yrs) (yrs) (days/yr)	¥			floor	floor	space	seam crack	air exchange		
(cm) (g/cm-s²) (cm) (cm) (cm) (dm) (1/h) 12 40 3200 1067 244 0.1 0.1 ENTER ENTER ENTER ENTER Averaging time for time for carcinogens, noncarcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (yrs) (days/yr)		thickness,		length,	width,	height,	width,	rate,		
12		L _{crack}	ΔΡ	L _B	W _B	H _B	w	ER		
12		(cm)	(g/cm-s²)	(cm)	(cm)	(cm)	(cm)	(1/h)		
ENTER ENTER ENTER Averaging Averaging time for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr)	•									
ENTER ENTER ENTER Averaging Averaging time for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr)		12	40	3200	1067	244	0.1	0.1		
Averaging Averaging time for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr)										
time for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr) 70 30 30 365				ENTER	ENTER					
carcinogens, noncarcinogens, duration, frequency, AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr) 70 30 30 365										
AT _C AT _{NC} ED EF (yrs) (yrs) (yrs) (days/yr) 70 30 30 365					•					
(yrs) (yrs) (days/yr) 70 30 30 365										
70 30 30 365										
		(yrs)	(yrs)	(yrs)	(days/yr)					
	E	70	20	20 1						
END	ŀ	70	ა0	30	305					
	END									

Predicted Apartment PCE Concentration

Current Condition

Floor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf) L (ft) W (ft) H (ft) Pressure differential (Pascal)	3,675.00 Value from B2 105.00 Value from B3 35.00 Value from B4 8.00 Value from B5 40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44
Q air rate (cfm/sf) Floor-Wall seam crack width (cm) C soil (ppbv) MW Tetrachloroethene	0.10 fresh air exchange rate value from DATAENTER H44 0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm 6,200.00 user input average contaminant concentration in near surface soil vapor
C air (ug/m3) ASIL (ug/m3) MTCA Method B (ug/m3)	165.83 gram molecular weight value from CHEMPROPS H9 0.00 user input contaminant concentration in background air 1.10 user input contaminant ASIL limit user input contaminant MTCA Method B cleanup standard
ACGIH TLV (ug/m3) OSHA PEL (ug/m3) Subgrade Soil Vapor Permeability Pressure differential (g/cm-sec2)	170,000.00 user input contaminant ACGIH TLV standard 678,000.00 user input contaminant OSHA PEL standard 1.62E-08 soil permeability value from DATENTER J24 400.00 unit conversion and program input to DATENTER C44
L (cm) W (cm) H (cm) Q air (cfm)	3,200.40 unit conversion and program input to DATENTER D44 1,066.80 unit conversion and program input to DATENTER E44 243.84 unit conversion and program input to DATENTER F44 367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec) Air exchange rate (1/hr) Q soil (cm3/sec) Q soil (m3/sec)	0.17 unit conversion for fresh air exchange rate 0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h 23.88 value from INTERCALCS D31 2.39E-05 unit conversion for soil vapor inflow to building
C soil (ug/m3) Results C bldg (ug/m3) Footor greater than as less than ASII	42,028.26 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088 5.79 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg)
Factor greater than or less than ASIL Factor greater than or less than MTCA Method B Factor greater than or less than ACGIH TLV Factor greater than or less than OSHA PEL	5.26 how much C bldg is either greater or less than the ASIL #DIV/0! how much C bldg is either greater or less than the MTCA Method B cleanup standard -29,382.53 how much C bldg is either greater or less than the ACGIH TLV standard -117,184.44 how much C bldg is either greater or less than the OSHA PEL standard

Predicted Apartment PCE Concentration

Adjusted Condition

Floor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf) L (ft) W (ft) H (ft)	3,675.00 Value from B2 105.00 Value from B3 35.00 Value from B4 8.00 Value from B5
Pressure differential (Pascal) Q air rate (cfm/sf) Floor-Wall seam crack width (cm) C soil (ppbv)	40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44 0.10 fresh air exchange rate value from DATAENTER H44 0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm 1,200.00 user input average contaminant concentration in near surface soil vapor
MW Tetrachloroethene C air (ug/m3) ASIL (ug/m3) MTCA Method B (ug/m3)	165.83 gram molecular weight value from CHEMPROPS H9 0.00 user input contaminant concentration in background air 1.10 user input contaminant ASIL limit user input contaminant MTCA Method B cleanup standard
ACGIH TLV (ug/m3) OSHA PEL (ug/m3) Subgrade Soil Vapor Permeability Pressure differential (g/cm-sec2)	170,000.00 user input contaminant ACGIH TLV standard 678,000.00 user input contaminant OSHA PEL standard 1.62E-08 soil permeability value from DATENTER J24 400.00 unit conversion and program input to DATENTER C44
L (cm) W (cm) H (cm) Q air (cfm)	3,200.40 unit conversion and program input to DATENTER D44 1,066.80 unit conversion and program input to DATENTER E44 243.84 unit conversion and program input to DATENTER F44 367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec) Air exchange rate (1/hr) Q soil (cm3/sec) Q soil (m3/sec)	 0.17 unit conversion for fresh air exchange rate 0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h 23.88 value from INTERCALCS D31 2.39E-05 unit conversion for soil vapor inflow to building
C soil (ug/m3) Results C bldg (ug/m3) Factor greater than or less than ASIL	8,134.50 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088 1.12 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg) 1.02 how much C bldg is either greater or less than the ASIL
Factor greater than or less than MTCA Method B Factor greater than or less than ACGIH TLV Factor greater than or less than OSHA PEL	#DIV/0! how much C bldg is either greater or less than the MTCA Method B cleanup standard -151,809.73 how much C bldg is either greater or less than the ACGIH TLV standard -605,452.92 how much C bldg is either greater or less than the OSHA PEL standard

DATA ENTRY SHEET

	ENTER	ENTER		ENTER					
	Chemical	Soil		Soil					
	CAS No.	gas conc.,	OR	gas conc.,	i				
	(numbers only,	C _a	OK	C _a					
	•	(μg/m³)		==		Observational			
:	no dashes)	į (μg/m)		(ppmv)		Chemical			
	108883					Toluene			
		Enter soil gas cond	entration above.						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	Depth			Totals mus	t add up to value of L	s (cell C24)	Soil		
₩	below grade	Soil gas			Thickness	Thickness	stratum A		User-defined
	to bottom	sampling	Average	Thickness	of soil	of soil	SCS		stratum A
	of enclosed	depth	soil	of soil	stratum B,	stratum C,	soil type		soil vapor
	space floor,	below grade,	temperature,	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
	L _F	Ls	Ts	h _A	h _B	h _C	soil vapor		k,
	(cm)	(cm)	(°C)	(cm)	(cm)	(cm)	permeability)		(cm²)
		T 225							1 005 00
l	200	225	10	225	0	0			1.62E-08
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
₩	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,
	$\rho_{\mathbf{b}}^{\mathbf{A}}$	n ^A	θω^^	ρ_{b}^{B}	n ^B	θ _w ^B	РьС	n ^c	θ _w c
	(g/cm³)	(unitless)	(cm³/cm³)	(g/cm³)	(unitless)	(cm ³ /cm ³)	(g/cm³)	(unitless)	(cm³/cm³)
;									
	1.5	0.45	0.227						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Enclosed	mid i mix	Enclosed	Enclosed	min i mix	mill i mil			
MORE	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
¥	floor	pressure	floor	floor	space	seam crack	air exchange		
	thickness,	differential.	length,	width,	height,	width,	rate.		
	L _{crack}	ΔΡ	L _B	W _B	H _B	w	ER		
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		
•	(011)	(9/011/0/)	(City)	(CIII)	(011)	(OIII)	(777)		
1	12	40	3200	1067	244	0.1	0.1		
	ENTER	ENTER	ENTER	ENTER					
	Averaging	Averaging							
	time for	time for	Exposure	Exposure					
	carcinogens,	noncarcinogens,	duration,	frequency,					
	ATc	ATNC	ED	EF					
:	(yrs)	(yrs)	(yrs)	(days/yr)	•				
ı	70	30	30	365	1				
	10	1 30	30	300	J				
END									

Soil Gas Concentration Data

Predicted Apartment Toluene Concentration

Floor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf) L (ft) W (ft) H (ft) Pressure differential (Pascal) Q air rate (cfm/sf)	3,675.00 Value from B2 105.00 Value from B3 35.00 Value from B4 8.00 Value from B5 40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44 0.10 fresh air exchange rate value from DATAENTER H44
Floor-Wall seam crack width (cm) C soil (ppbv) MW Toluene	0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm 110,000.00 user input average contaminant concentration in near surface soil vapor 92.14 gram molecular weight value from CHEMPROPS H9
C air (ug/m3) ASIL (ug/m3) MTCA Method B (ug/m3) ACGIH TLV (ug/m3)	0.00 user input contaminant concentration in background air 400.00 user input contaminant ASIL limit 183.00 user input contaminant MTCA Method B cleanup standard
OSHA PEL (ug/m3) Subgrade Soil Vapor Permeability Pressure differential (g/cm-sec2)	188,000.00 user input contaminant ACGIH TLV standard 754,000.00 user input contaminant OSHA PEL standard 1.62E-08 soil permeability value from DATENTER J24 400.00 unit conversion and program input to DATENTER C44
L (cm) W (cm) H (cm)	3,200.40 unit conversion and program input to DATENTER D44 1,066.80 unit conversion and program input to DATENTER E44 243.84 unit conversion and program input to DATENTER F44
Q air (cfm) Q air (m3/sec) Air exchange rate (1/hr)	367.50 equals Area (sf) * Q bidg rate 0.17 unit conversion for fresh air exchange rate 0.75 calculate fresh air exchange rate = [Q bidg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h
Q soil (cm3/sec) Q soil (m3/sec) C soil (ug/m3)	23.88 value from INTERCALCS D31 2.39E-05 unit conversion for soil vapor inflow to building 414,311.98 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results C bldg (ug/m3)	57.04 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg)
Factor greater than or less than ASIL Factor greater than or less than MTCA Method B Factor greater than or less than ACGIH TLV	-7.01 how much C bidg is either greater or less than the ASIL -3.21 how much C bidg is either greater or less than the MTCA Method B cleanup standard -3,296.19 how much C bidg is either greater or less than the ACGIH TLV standard
Factor greater than or less than OSHA PEL	-13,219.82 how much C bldg is either greater or less than the OSHA PEL standard

DATA ENTH. SHEET

	Ye for	_				DATA ENTH, SHEET	•		
	ENTER		il Gas Concentration		•				
	ENTER	ENTER		ENTER					
	Chamiani	Soil		Soil					
	Chemical	gas		gas					
	CAS No.	conc.,	OR	conc.,					
	(numbers only,	C _n		C _g					
	no dashes)	(μg/m³)		(ppmv)		Chemical			
								•	
	100414		1			Ethylbenzene			
l		I	<u> </u>	<u> </u>	<u> </u>	Euryberizene		ĺ	
		Enter soil gas con	contration above						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		PAIRE N
MORE	Depth	m141 m14	ENTER		at add up to value of I				ENTER
₩	below grade	Soil gas		Totals mus	Thickness		Soil		
	to bottom	sampling	Average	Thickness	of soil	Thickness	stratum A		User-defined
	of enclosed	depth				of soil	scs		stratum A
	space floor,		soil	of soil	stratum B,	stratum C,	soil type		soil vapor
		below grade,	temperature,	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
	L _F	L _s	Ts	h _A	h _B	h _c	soil vapor		k _v
,	(cm)	(cm)	(°C)	(cm)	(cm)	(cm)	permeability)		(cm²)
									111 111 11 11 11 11 11 11 11 11 11 11 1
	200	225	10	225	0	0			1.62E-08
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
L V	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,
	PbA	n^	$\theta_{\mathbf{w}}^{\mathbf{A}}$	Pb ^B	n ^B	θ _w B	ρ _b C	n ^c	θ _w c
	(g/cm³)	(unitless)	(cm ³ /cm ³)	(g/cm³)		(cm ³ /cm ³)	(g/cm³)		(cm³/cm³)
:	(9/0/1/)	(unitiess)	(GIII /GIII)	(g/cm/)	(unitless)	(CITI /CITI)	(g/cm)	(unitless)	(cm /cm)
1	1.5	0.45	0.227						
,	1,0	0.73	0.221	L	I				_4
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Enclosed		Enclosed	Enclosed		fig.1 % 1 by 1 %	EN LEIX		
MORE	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
Ψ.	floor	pressure	floor	floor	space	seam crack			
	thickness,	differential,	length,	width,			air exchange		
		ΔP			height,	width,	rate,		
	L _{crack}	_	L _B	W _B	H _B	w	ER		
:	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		
Т			,						
į	12	40	3200	1067	244	0.1	0.1		
	ENTER	ENTER	ENTER	PLITER					
	Averaging		ENIEK	ENTER					
		Averaging	Evacaria	Come					
	time for	time for	Exposure	Exposure					
	carcinogens,	noncarcinogens,	duration,	frequency,					
	AT _C	AT _{NC}	ED (2000)	EF (days (w)					
	(yrs)	(yrs)	(yrs)	(days/yr)	Ì				
1	70	30	30	365	Ì				
L				303	I				
END									

Predicted Apartment Ethylbenzene Concentration

	Bldg 1
Floor Area (sf)	3,675.00 user input footprint area of buildings
L (ft)	105.00 user input actual or longest length if footprint not rectangular
W (ft)	35.00 user input actual or longest width if footprint not rectangular
H (ft)	8.00 user input maximum height
• •	esta transi transportation
Floor Area (sf)	3,675.00 Value from B2
L (ft)	105.00 Value from B3
W (ft)	35.00 Value from B4
H (ft)	8.00 Value from B5
Pressure differential (Pascal)	40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44
Q air rate (cfm/sf)	0.10 fresh air exchange rate value from DATAENTER H44
Floor-Wall seam crack width (cm)	0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm
C soil (ppbv)	55,000.00 user input average contaminant concentration in near surface soil vapor
MW Ethylbenzene	106.17 gram molecular weight value from CHEMPROPS H9
C air (ug/m3)	0.00 user input contaminant concentration in background air
ASIL (ug/m3)	1,000.00 user input contaminant ASIL limit
MTCA Method B (ug/m3)	4,570.00 user input contaminant MTCA Method B cleanup standard
ACHIH TLV (ug/m3)	434,000.00 user input contaminant ACGIH TLV standard
OSHA PEL (ug/m3)	435,000.00 user input contaminant OSHA PEL standard
Subgrade Soil Vapor Permeability	1.62E-08 soil permeability value from DATENTER J24
Pressure differential (g/cm-sec2)	400.00 unit conversion and program input to DATENTER C44
L (cm)	3,200.40 unit conversion and program input to DATENTER D44
W (cm)	1,066.80 unit conversion and program input to DATENTER E44
H (cm)	243.84 unit conversion and program input to DATENTER F44
Q air (cfm)	367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec)	0.17 unit conversion for fresh air exchange rate
Air exchange rate (1/hr)	0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h
Q soil (cm3/sec)	23.88 value from INTERCALCS D31
Q soil (m3/sec)	2.39E-05 unit conversion for soil vapor inflow to building
C soil (ug/m3)	238,699.28 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C bldg (ug/m3)	32.86 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg)
Factor greater than or less than ASIL	-30.43 how much C bldg is either greater or less than the ASIL
Factor greater than or less than MTCA Method B	-139.07 how much C bldg is either greater or less than the MTCA Method B cleanup standard
Factor greater than or less than ACGIH TLV	-13,207.49 how much C bldg is either greater or less than the ACGIH TLV standard
Factor greater than or less than OSHA PEL	-13,237.92 how much C bldg is either greater or less than the OSHA PEL standard
	- · · · · · · · · · · · · · · · · · · ·

	ENTER	ENTER		ENTER	1				
	.	Soil		Soil	1				
	Chemical	gas		gas					
	CAS No.	conc.,	OR	conc.,					
	(numbers only,	C _o		C _p	İ				
	no dashes)	(μg/m³)		(ppmv)		Chemical			
	95476					o-Xylene			
	1								
		Enter soil gas cond	entration above.						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	· · · · · · · · · · · · · · · · · · ·	ENTER
MORE	Depth			Totals mus	t add up to value of L	s (cell C24)	Soil		
4	below grade	Soil gas			Thickness	Thickness	stratum A		User-defined
	to bottom	sampling	Average	Thickness	of soil	of soil	scs		stratum A
	of enclosed	depth	soil	of soil	stratum B,	stratum C,	soil type		soil vapor
	space floor,	below grade,	temperature,	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
	L _F	Ls	Ts	h _A	h _B	h _c	soil vapor		k,
	(cm)	(cm)	(°C)	(cm)	(cm)	(cm)	permeability)		(cm²)
				· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	200	225	10	225	0	0			1.62E-08
		<u> </u>							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
¥	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
	bulk density.	porosity,	porosity,	bulk density,	porosity,	porosity,	bulk density,	porosity,	porosity,
	Pb ^A	л ^A	θ_{w}^{A}	ρ_b^B	n ^B	θ [™] B	$\rho_b{}^C$	n ^c	θ _w c
	(g/cm ³)	(unitless)	(cm³/cm³)	(g/cm³)	(unitless)	(cm³/cm³)	(g/cm ³)	(unitless)	(cm³/cm³)
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	(011111000)		3/	(4//1/000)	
	1.5	0.45	0.227						
					L		J		
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Enclosed		Enclosed	Enclosed					
MORE	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
Ψ	floor	pressure	floor	floor	space	seam crack	air exchange		
	thickness,	differential,	length,	width,	height,	width,	rate,		
	L _{crack}	ΔP	L _B	W _B	H _B	w	ER		
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		

	12	40	3200	1067	244	0.1	0.1		
	ENTER	ENTER	ENTER	ENTER					
	Averaging	Averaging							
	time for	time for	Exposure	Exposure					
	carcinogens,	noncarcinogens,	duration,	frequency,					
	ATc	AT _{NC}	ED	EF					
:	(yrs)	(yrs)	(yrs)	(days/yr)	Ì				
ı		T			•				
	70	30	30	365					
END	1								
	i								

Soil Gas Concentration Data

Predicted Apartment 0-Xylene Concentration

Fioor Area (sf) L (ft) W (ft) H (ft)	Bldg 1 3,675.00 user input footprint area of buildings 105.00 user input actual or longest length if footprint not rectangular 35.00 user input actual or longest width if footprint not rectangular 8.00 user input maximum height
Floor Area (sf) L (ft) W (ft) H (ft) Pressure differential (Pascal) Q air rate (cfm/sf)	3,675.00 Value from B2 105.00 Value from B3 35.00 Value from B4 8.00 Value from B5 40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44 0.10 fresh air exchange rate value from DATAENTER H44
Floor-Wall seam crack width (cm) C soil (ppbv) MW o-xylene C air (ug/m3) ASIL (ug/m3)	0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm 140,000.00 user input average contaminant concentration in near surface soil vapor 106.17 gram molecular weight value from CHEMPROPS H9 0.00 user input contaminant concentration in background air 1,500.00 user input contaminant ASIL limit
MTCA Method B (ug/m3) ACGIH TLV (ug/m3) OSHA PEL (ug/m3) Subgrade Soil Vapor Permeability Pressure differential (g/cm-sec2)	320.00 user input contaminant MTCA Method B cleanup standard 434,000.00 user input contaminant ACGIH TLV standard 435,000.00 user input contaminant OSHA PEL standard 1.62E-08 soil permeability value from DATENTER J24 400.00 unit conversion and program input to DATENTER C44
L (cm) W (cm) H (cm) Q air (cfm)	3,200.40 unit conversion and program input to DATENTER D44 1,066.80 unit conversion and program input to DATENTER E44 243.84 unit conversion and program input to DATENTER F44 367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec) Air exchange rate (1/hr) Q soil (cm3/sec) Q soil (m3/sec) C soil (ug/m3)	 0.17 unit conversion for fresh air exchange rate 0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h 23.88 value from INTERCALCS D31 2.39E-05 unit conversion for soil vapor inflow to building 607,598.17 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results C bldg (ug/m3) Factor greater than or less than ASIL Factor greater than or less than MTCA Method B Factor greater than or less than ACGIH TLV Factor greater than or less than OSHA PEL	83.64 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg) -17.93 how much C bldg is either greater or less than the ASIL -3.83 how much C bldg is either greater or less than the MTCA Method B cleanup standard -5,188.66 how much C bldg is either greater or less than the ACGIH TLV standard -5,200.61 how much C bldg is either greater or less than the OSHA PEL standard

DATA ENTH: SHEET

		Soil		Soil					
	Chemical	gas		gas	ļ				
	CAS No.	conc.,	OR	conc.,					
	(numbers only,	C _o		C _p					
	no dashes)	(μg/m³)		(ppmv)		Chemical			
				V/		777777			
	106423					p-Xylene			
		Enter soil gas cond	contration above						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		CUTED
MORE	Depth	E/17/E/1	LHILK		t add up to value of L		ENTER Soil		ENTER
J J	below grade	Soil gas		7 Otalio Triao	Thickness	Thickness	stratum A		User-defined
1	to bottom	sampling	Average	Thickness	of soil	of soil	SCS		stratum A
	of enclosed	depth	soil	of soil	stratum B,	stratum C,	soil type		soil vapor
	space floor,	below grade,	temperature,	stratum A,	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability,
	L _F	L _s	Ts	h _A	h _B	h _c	soil vapor	٥,,	k _v
	(cm)	(cm)	(°C)	(cm)	_	=			(cm²)
1	(CITI)	(Citi)	(0)	(CIII)	(cm)	(cm)	permeability)		(CIII)
ı	200	225	10	225	0 1	0			1.62E-08
ı	200		10	225	0 1	U			1.62E-08
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C
_	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled	soil dry	soil total	soil water-filled
	bulk density,	porosity,	porosity,	bulk density.	porosity,	porosity,	bulk density,	porosity,	porosity,
	Pb ^A	n ^A	θ _w ^	PbB	n ^B	θ _w ^B	РьС	n ^c	θ _w c
	(g/cm³)	(unitless)	(cm³/cm³)	(g/cm³)	(unitless)	(cm ³ /cm ³)	(g/cm³)	(unitless)	(cm³/cm³)
•		(dilitious)	(0.11.7011.7	(9/0///)	(dilidess)	(0/11/0/11)	(g/cm /	(unidess)	(GHT/GHT)
	1.5	0.45	0.227		T		i i		
•				<u> </u>	<u> </u>				
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Enclosed		Enclosed	Enclosed					
MORE	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		
<u> </u>	floor	pressure	floor	floor	space	seam crack	air exchange		
	thickness,	differential,	length,	width,	height,	width,	rate,		
	L _{crack}	ΔP	L _B	W _B	H _B	w	ER		
_	(cm)	(g/cm-s²)	(cm)	(cm)	(cm)	(cm)	(1/h)		
-							<u> </u>		
[12	40	3200	1067	244	0.1	0.1		
	ENTER	ENTER	ENTER	ENTER					
	Averaging	Averaging							
	time for	time for	Exposure	Exposure					
	carcinogens,	noncarcinogens,	duration,	frequency,					
	ATc	AT _{NC}	ED	EF.					
	(yrs)	(yrs)	(yrs)	(days/yr)					
ſ	70	30	30	365	1				
	····				I				
END									

Soil Gas Concentration Data

ENTER

ENTER

ENTER

Predicted Apartment m, p-Xylene Concentration

Floor Area (sf)	Bldg 1 3,675.00 user input footprint area of buildings
L (ft)	105.00 user input actual or longest length if footprint not rectangular
W (ft)	35.00 user input actual or longest width if footprint not rectangular
H (ft)	8:00 user input maximum height
Floor Area (sf)	3,675.00 Value from B2
L (ft)	105.00 Value from B3
W (ft)	35.00 Value from B4
H (ft)	8.00 Value from B5
Pressure differential (Pascal)	40.00 pressure differential; J&E default = 4.0 Pascal and assumes building pressure less than atmosphere value from DATAENTER C44
Q air rate (cfm/sf)	0.10 fresh air exchange rate value from DATAENTER H44
Floor-Wall seam crack width (cm)	0.10 floor-wall crack width value from DATENTER G44; J&E default = 0.1 cm
C soil (ppbv)	360,000.00 user input average contaminant concentration in near surface soil vapor
MW m/p xylene	106.17 gram molecular weight value from CHEMPROPS H9
C air (ug/m3)	0.00 user input contaminant concentration in background air
ASIL (ug/m3)	1,500.00 user input contaminant ASIL limit
MTCA Method B (ug/m3)	320.00 user input contaminant MTCA Method B cleanup standard
ACGIH TLV (ug/m3)	434,000.00 user input contaminant ACGIH TLV standard
OSHA PEL (ug/m3)	435,000.00 user input contaminant OSHA PEL standard
Subgrade Soil Vapor Permeability	1.62E-08 soil permeability value from DATENTER J24
Pressure differential (g/cm-sec2)	400.00 unit conversion and program input to DATENTER C44
L (cm)	3,200.40 unit conversion and program input to DATENTER D44
W (cm)	1,066.80 unit conversion and program input to DATENTER E44
H (cm)	243.84 unit conversion and program input to DATENTER F44
Q air (cfm)	367.50 equals Area (sf) * Q bldg rate
Q air (m3/sec)	0.17 unit conversion for fresh air exchange rate
Air exchange rate (1/hr)	0.75 calculate fresh air exchange rate = [Q bldg / (Floor Area * H)] * 60 and program input to DATENTER H44; J&E default = 0.45/h
Q soil (cm3/sec)	23.88 value from INTERCALCS D31
Q soil (m3/sec)	2.39E-05 unit conversion for soil vapor inflow to building
C soil (ug/m3)	1,562,395.28 unit conversion for contaminant concentration where ug/m3 = ppbv * (P/RT) * MW *1/1000 = ppbv * MW * 0.04088
Results	
C bldg (ug/m3)	215.08 building contaminant concentration by mass balance ((C air * Q bldg)+(C soil * Q soil))/(Q soil + Q bldg)
Factor greater than or less than ASIL	-6.97 how much C bldg is either greater or less than the ASIL
Factor greater than or less than MTCA Method B	-1.49 how much C bldg is either greater or less than the MTCA Method B cleanup standard
Factor greater than or less than ACGIH TLV	-2,017.81 how much C bldg is either greater or less than the ACGIH TLV standard
Factor greater than or less than OSHA PEL	-2,022.46 how much C bldg is either greater or less than the OSHA PEL standard