

SoundEarth Strategies, Inc. 2811 Fairview Avenue East, Suite 2000 Seattle, Washington 98102

October 15, 2019

Columbia Trust Company c/o Ken Lederman Foster Pepper PLLC 1111 Third Avenue, Suite 3000 Seattle, Washington 98101

SUBJECT: SUBSURFACE INVESTIGATION REPORT Duwamish Yacht Property 1801 South 93rd Street King County, Washington Project Number: 1419-001

Dear Mr. Lederman:

SoundEarth Strategies, Inc. (SoundEarth) has prepared this letter report to present the findings and results of the subsurface investigation conducted within the upland areas of the property located at the address listed above in unincorporated King County, Washington (the Property). The purpose of the investigation was to assess current condition of soil and groundwater on and beneath the Property.

PROPERTY DESCRIPTION

The following subsections provide a summary of the location, legal description, and current use of the Property, as well as a discussion of surrounding land use.

Location and Legal Description

The Property is located at 1801 South 93rd Street in unincorporated King County, as shown in Figure 1. Figure 2 depicts a plan view/layout of the Property. The Property consists of three irregularly shaped tax parcels (King County Parcel Nos. 000160-0029, 000160-0061, and 000160-0062; Parcels A through C, respectively) that cover a total of approximately 500,270 square feet (11.49 acres) of land in Township 24 North/Range 4 East/Section 33. According to the King County iMap application, the Property is located at an approximate elevation of 0 to 20 feet above mean sea level, with the highest elevations on the western portion of the Property; the eastern portion of the Property is submerged beneath the waters of the Lower Duwamish Waterway (LDW).

Structures and Improvements

Mr. Travis Zandi, a SoundEarth Associate Scientist, visited the Property on March 6, 2019, to review conditions and land use practices on the Property and on adjoining and nearby properties. The purpose of the Property reconnaissance was to identify readily apparent indications of hazardous or potentially hazardous substances or petroleum products that were historically or are currently used, generated, stored, or disposed of on the Property.

Grounds and Buildings

The northern portion of Parcel A is covered with a gravel storage yard. Multiple large ship hulls are stored on the western portion of Parcel A. A shop building and office building are located on the southern portion of Parcel A. The southern portion of Parcel A and the entirety of Parcel C are covered with an asphaltpaved parking lot. An apparent boat wash area with a dedicated drain is located on the northeastern portion of Parcel C.

The uplands portion of Parcel B is developed with a clubhouse, an office building, and multiple storage sheds. Interior access was not provided to the buildings. An electrical transformer is located south of the clubhouse. A boat lift dock is located on the southeastern portion of the uplands portion. Most of the surface of the Parcel B uplands is covered with an asphalt parking lot. Four floating docks with multiple slips occupied by boats are located on the submerged portion of the Property. The riverbank is covered with vegetation and riprap.

Stormwater appears to be diverted into catch basins located throughout the Property. Observations made at the Property indicated that the catch basins are plumbed into the municipal storm drain. One outfall was observed on the southeastern portion of the uplands portion of Parcel B. Based on documents discussed below, this appears to be the South 96th Street Basin discharge point.

Parcel A is currently occupied as a shop and storage area by Delta Marine and is developed with a 1987vintage, one-story shop building that encloses approximately 12,000 square feet of space and a 1977vintage, one-story office building that encloses approximately 1,350 square feet of space. Parcel B is occupied by the Duwamish Yacht Club and is developed with the following: a 1979-vintage, one-story office building that encloses approximately 600 square feet of space; a 1998-vintage, one-story restroom building that encloses approximately 200 square feet of space; and a 2002-vintage, one-story storage shed that encloses approximately 960 square feet of space. Parcel C is currently occupied as a storage area by Delta Marine, and is developed with a 1985-vintage, one-story shop building that encloses approximately 1,280 square feet of space.

HISTORICAL REVIEW

The history of land use for the Property and surrounding areas was evaluated to identify past uses that might have had adverse effects on the environmental conditions, primarily through the use of potentially hazardous materials. The following history of the Property and surrounding parcels is based on a compilation of information obtained from the following resources:

- King County Assessment records reviewed online and at Puget Sound Regional Archives (Attachment A)
- King County Department of Permitting and Environmental Review building permit files
- Cole's City Directories
- Historical City Atlases and Maps Map of Seattle Tide Lands and Kroll Atlases of Seattle
- Aerial Photographs (Attachment B)

 Washington State Department of Ecology (Ecology) LDW River Mile 3.8 to 4.2 West Sea King Industrial Park Summary of Existing Information and Identification of Data Gaps (Data Gaps Report)

Historical Use of the Property

Date(s)	Source	Description
1913	Map of Seattle Tide Lands	The east-adjoining Duwamish River is channelized for use as the LDW.
1930	Kroll Map	The Property is vacant and undeveloped.
1936	Aerial Photograph	The western portion of the Property appears to be used for agricultural purposes. A road is depicted along the central portion of Parcel B. A second road, which appears to be a smaller access road, is located along the southern portions of Parcels A and B and the central portion of Parcel C. A small stream is visible parallel to the access road along the southern portions of Parcels A and B and the central portion of Parcel C.
1939	Tax Records	Giuseppe Desimone purchases the Property.
1946	Aerial Photographs	A structure is located along the waterfront on the northeastern portion of Parcel B, east of the road located on the central portion of the parcel. An oblique aerial shows the structure in the waters of the LDW, while an orthogonal aerial appears to show the residence on tideflats. The remaining agricultural portions of the Property appear to have been recently plowed. The roadways and stream noted on the 1936 aerial remain on the Property; the stream discharges to the LDW near the southeastern corner of Parcel B. An access road that connects to a road located south of the parcel is located on the western portion of Parcel C. A building has been constructed on the Delta Marine property to the south of Parcel B, and several structures have been constructed to the north and northwest of Parcel A.
1952–1955	Aerial Photographs	The Property appears to be in generally the same condition as in the previous aerial photographs. There are no visual indications of fill material.

CHRONOLOGICAL DEVELOPMENT AND USE HISTORY FOR THE PROPERTY

Date(s)	Source	Description
1960	Aerial Photograph	The Property remains mostly vacant, with a structure still visible on the northeastern portion on the Property and the stream present along the southern portion of the Property. The exterior areas of the Property appear to be mottled with a light-colored material. Commonly, the mottled appearance is associated with the placement of fill material. The light coloring may be due to the inclusion of cement kiln dust in the fill material. Similar mottling is evident on the property to the south of Parcel A and north of Parcel B.
1961	Aerial Photograph	The northwestern portion of the Property appears to be partially covered with patches of vegetation. The southern portion of the Property appears to be cultivated for agricultural use. The residence is still located on the northeastern portion of the Property and the stream is still visible along the southern portion of the Property.
1963	Tax Records	San Juan Concrete Products constructs a storage yard and dock on the Property.
1965	Aerial Photograph	White discoloration, which may indicate the presence of fill material, is visible on the northern portion of the Property. A dock is located on the submerged portion of the Property on the southeastern portion of Parcel B. The southern portion of Parcel B and the northern portion of Parcel C appears to have been cleared. An access road is located along the western portion of Parcel C. This access road appears to bridge the stream along the southern portion of the Property. Numerous vehicles are visible on the southern portion of Parcel C. These vehicles may be related to the operation of a junkyard that is visible on the southwest- adjoining property. However, there are significantly more vehicles and other materials stored on the adjoining property than on the southern portion of Parcel C. Portions of the west-adjoining property are also occupied by a junkyard.
1966	Kroll Map	The Kroll map indicates that the Property is used as a "Saturnalite Storage Yard." Saturnalite is the brand name of a lightweight concrete aggregate material.
1967–1968	Aerial Photographs	Vegetation is visible on the northern portion of the Property where potential fill material was previously identified. A light-colored patch is located in the cleared southeastern portion of the Property, which potentially suggests the presence of fill material. The southwest-adjoining property is in use as a junkyard, as are portions of the west-adjoining property. Vehicles are also parked on the southern portion of Parcel C, but it is not apparent whether the vehicles are parked temporarily, or if they are associated with the southwest-adjoining junkyard.

Date(s)	Source	Description
1969–1974	Aerial Photograph, Ecology Data Gaps Report	The residence is no longer located on the northeastern portion of the Property. The dock remains on the southeastern portion of the Property. The junkyard on the southwest- and west-adjoining properties have expanded, and now appear to extend onto portions of Parcels B and C of the Property.
1978	Aerial Photograph, Tax Records	The eastern portion of Parcel B has been dredged, resulting in a straightened shoreline. Boat slips have been constructed on the submerged portion of the Property. Tax records indicate that a dock, winch anchor, bulkhead ramp, and piles were removed at this time and a new sloped revetment (retaining wall) was constructed of concrete riprap along the shoreline. The remaining portions of the Property have been cleared of vegetation. No vehicles or visual indications of a junkyard are present on the Property. Most of the vehicles have been removed from the adjoining property to the southwest and all the vehicles have been constructed on the properties to the west and southwest.
1979	Tax Records	A one-story, steel-framed shop building is constructed on Parcel A. Heat is provided by space heaters. A one-story, wood-framed convenience market is constructed on Parcel B. A 1,500-gallon holding tank for a sanitary pump station is located south of the market building.
1982	Ecology Data Gaps Report	Duwamish Yacht Club conducts maintenance dredging in the submerged portions of the Property. Approximately 15,000 cubic yards of material is dredged and removed.
1983–1986	Aerial Photograph, Reverse Directories	Parcel A is occupied by ITEL Container and primarily used for container storage. Parcel B is occupied by the Duwamish Yacht Club. Parcel C is occupied by ITEL Container and primarily used as a parking lot and storage yard. The Property is paved and the creek along the southern portion of the Property has been covered by a parking lot.
1987	Tax Records	A one-story, wood-framed office building is constructed on Parcel A. Heat is provided by a forced air unit.
1989–1997	Aerial Photographs, Reverse Directories	Parcel A is occupied by ITEL Terminal/Global Intermodal Systems and primarily used for container storage. Parcel B is occupied by the Duwamish Yacht Club. Parcel C is occupied by ITEL Terminal and primarily used as a parking lot and storage yard.

Date(s)	Source	Description
1998	Tax Records, Building Permits	A one-story, wood-framed restroom is constructed on Parcel B. Heat is provided by electric baseboards.
2002	Tax Records	A one-story, prefabricated steel storage shed is constructed on Parcel B.
2005–2017	Aerial Photographs, Reverse Directories	Parcels A and C are occupied by Delta Marine. Parcel B is occupied by the Duwamish Yacht Club.

The Property appears to have been initially developed for agricultural use by 1936 and was occupied by a residence in at least 1946. Potential indications of fill material are visible on the Property as early as 1960. In 1963, San Juan Concrete Products constructed a storage yard and dock on the Property. A 1965 aerial photo indicates that the southern portion of the Property was cleared during construction of the storage yard; fill material may have been added to the cleared portions of the Property. In addition, visible indications of fill material are present along the northern portion of the Property in the 1965 aerial photograph. This fill material may have contained cement kiln dust. Vehicles and assorted debris, which appear to be related to the operation of a junkyard that also occupied portions of the west- and southwest-adjoining properties, are visible on the southern portion of the Property between at least 1967 and 1974. The Property was cleared and the existing marina was constructed in 1978. A shop building and a market building were constructed on the Property in 1979. By 1985, the majority of the Property was paved. Parcels A and C were occupied by a container storage yard between 1983 and 1997 and by Delta Marine since 2005. Parcel B has been occupied by Duwamish Yacht Club since 1979.

Regulatory Records

ITEL Terminals, a cargo and freight company that operated on the Property from approximately 1983 through 1995, submitted a Notification of Dangerous Wastes activities in 1987. According to the initial form, the facility stored used thinner on the site until removed by a third-party disposal company. Approximately 385 pounds of used thinner was generated annually. The site identification number associated with these activities was withdrawn in 2004 when the facility (then known as Global Intermodal) closed.

Delta Marine is also listed as a generator of hazardous wastes. According to the most recent (2018) Pollution Prevention Plan, Delta Marine generated wastes include styrene, lacquer thinner, paints, and stains. Ecology documents do not differentiate between activities conducted on the Property (Parcels A and C) and activities conducted at Delta Marine's off-Property facility to the south. However, the majority of the waste generation is assumed to take place at the off-Property facility where the bulk of Delta Marine's activities are conducted.

Lower Duwamish Waterway

The Property is located along the banks of the LDW, which was declared a Superfund site in 2001. Numerous documents and reports have been prepared identifying potential source properties located along the banks of the LDW.

The Property is listed as Delta Marine Industries (Parcels A and C) and Duwamish Yacht Club (Parcel B) in the Data Gaps Report for the Sea King Industrial Park, which was completed by Ecology in 2013. The Data Gaps Report identified two outfalls in the vicinity of the Duwamish Yacht Club. Outfall 2100(A), located on the southeastern corner of Parcel B, is the discharge point for the South 96th Street storm drainage system. Outfall 2100(B) is a 6-inch-diameter PVC pipe with an unknown use. A 1996 figure produced by Global Intermodal indicates that catch basins from Parcels A and C drain either into the South 96th Street storm drain system or potentially directly into the LDW. The Data Gaps Report indicates that these drains may discharge through Outfall 2100(B) but that the discharge point is unknown.

The remedial investigation report for the LDW lists three surface sediment samples (LDW-SS131, DR284, and WST314) that were collected in the waterway in the vicinity of the Property. A map showing these sample locations is included in Attachment C. All three samples were collected southeast of the existing docks. Chemicals that were detected at concentrations above the Sediment Quality Standards (SQS) included 1,2,4-trichlorobenzene and hexachlorobenzene in sample DR284. The concentrations of both chemicals were below the Cleanup Screening Level (CSL).

Atlas Geotechnical Engineering (Atlas) collected five sediment samples (sample numbers 1 through 5) from the submerged portion of Parcel B in 1989 as part of a dredge permit process for the Duwamish Yacht Club property. Sediments in the vicinity of Outfall 2100(A) contained concentrations of copper, lead, nickel, zinc, high molecular weight polycyclic aromatic hydrocarbons (PAHs), low molecular weight PAHs, dimethyl phthalate, and benzoic acid that exceeded open water disposal criteria. Based on grain size distribution analysis, Atlas concluded that the most likely source was runoff from industrial sites within the drainage basin.

Tax records and aerial photographs indicate that the Property was dredged in 1978, resulting in a straightened shoreline. The Data Gaps Report indicates that sediments were dredged from the submerged portions of Parcel B in at least 1982 and 1999. Duwamish Yacht Club received permits to dredge approximately 15,000 cubic yards of material in 1982. Ecology requested that the facility cap the dredge material to prevent potential leaching of heavy metals. A composite soil sample was collected from the dredge spoils at the upland disposal site in 1985. Polychlorinated biphenyls (PCBs), halogenated hydrocarbons, and metals were not detected or were detected below Washington State Model Toxics Control Act (MTCA) regulatory criteria, according to the Data Gaps Report. As a result, Ecology rescinded the capping requirement.

Hart Crowser reportedly completed a Dredge Material Characterization report for a 1999 sediment removal event. As part of that investigation, six samples were collected from the submerged portion of the Property. The results, which are included in the 2010 LDW RI report, indicated that 1,2,4-trichlorobenzene (a solvent used for a variety of compounds and materials) was detected at concentrations above the SQS but below the CSL in all six samples. Metals, PAHs, phthalates, phenols,

benzoic acid, and benzyl alcohol were detected at concentrations below both the SQS and the CSL. This material was subsequently dredged.

According to a Joint Public Notice issued by the US Army Corps of Engineers and Ecology, Duwamish Yacht Club submitted an application to dredge approximately 22,300 cubic yards of sediment from the eastern portion of Parcel B in 2013. As part of the permitting process, Kane Environmental, Inc. completed a Sediment Characterization Report in May 2013. Six Dredged Material Management Units (DMMUs) were identified in the characterization report. Subsurface DMMU-5 and DMMU-6 are located beneath the surface sediments identified as DMMU-4 at depths between 6 and 8 feet below the mean lower low water line. Eleven sediment samples (DC-1 through DC-11) were collected from the DMMUs to determine the disposal locations. The report concluded that sediments from DMMU-4 and DMMU-6 (Figure 2) contained concentrations of dioxins and furans, dimethyl phthalate, and butyl benzyl phthalate above the Dredged Material Management Office (DMMO) Screening Levels. Dioxins/furans were also detected at elevated concentrations, but below the DMMO Screening Levels in DMMU-1 and DMMU-5. PCBs and PAHs were detected in all the DMMUs at concentrations below the DMMO Screening Levels. The concentrations of dioxins and phthalates detected in the DMMUs are all below the SQS and CSL, as defined in the US Environmental Protection Agency (EPA) Record of Decision. According to Army Corps permit documents, 7,900 cubic yards of sediments were determined to be suitable for open water disposal while the remaining 14,400 cubic yards were determined unsuitable for open water disposal. The unsuitable material was to be disposed of at an upland disposal area. However, according to Ms. Kelsey van der Elst with the Army Corps of Engineers, this dredging was not completed.

Cement Kiln Dust

Cement kiln dust (CKD) is a very fine-grained material produced as a by-product of cement manufacturing. CKD commonly contains elevated concentrations of toxic constituents, such as arsenic, lead, chromium, PCBs, and dioxins. According to a report produced by Leidos for Ecology, which summarizes the known areas of CKD along the LDW, all three parcels of the Property are also listed as potentially containing CKD.

The Leidos report indicates that the Property was leased by San Juan Concrete Products Company between 1963 and 1965 and used for storage. The Leidos report indicates that during that time, CKD may have been deposited on Parcels A and B. Both parcels were subsequently occupied by a junkyard between 1965 and 1974.

The Leidos report references a 2007 arbitrator's decision that indicated CKD at the Property was reportedly capped and covered with fill material composed of dredged sediments from the LDW. The Leidos report did not include any additional information regarding the amount or source location of the dredged material, the year in which it was reportedly placed on the Property, or any chemical testing on the fill material.

Summary of Historical Review—Recognized Environmental Conditions

Aerial photographs indicate the likely addition of fill material to the Property between 1960 and 1965. According to the Leidos 2015 report, this fill material may have contained CKD, which is a very fine-grained material produced as a by-product of cement manufacturing and commonly contains elevated concentrations of arsenic, lead, chromium, PCBs, and dioxins. The potential presence of CKD on the Property was determined to be a potential issue of environmental concern. Dredged material from the LDW was reportedly added to the Property. Information regarding the amount and original location of the dredged material was not included in the available records. The material placed may have been generated during dredging activities conducted on the Property in approximately 1978. This material was tested and designated suitable for upland fill. However, since the source of this fill material was not included in the available documents and considering the chemicals of concern that are potentially present in sediments of the LDW (such as PCBs, PAHs, arsenic, and dioxins/furans), the presence of fill material from the LDW was determined to be a potential issue of environmental concern.

The Ecology Data Gaps report indicated that a junkyard operated on the Property and surrounding properties between approximately 1965 and 1974. Assorted vehicles and debris are visible on the southern portion of the Property in an aerial photograph from 1967, and on Parcel C and the southern portion of Parcel B between 1969 and 1974. Impacts from petroleum, metals, PCBs, and PAHs are commonly encountered at junkyards. While specific impacts related to this historical activity have not been identified, the historical use of the Property as a junkyard was determined to be a potential issue of environmental concern.

SUBSURFACE INVESTIGATION

To assess the current environmental conditions on and beneath the Property, SoundEarth performed a subsurface investigation in June 19 and 20, 2019, that included in the advancement of 12 borings (B01 through B12). Four borings (borings B01 through B04) were advanced on Parcel A where potential fill material was observed on historical aerial photographs. Four borings (borings B05 through B08) were advanced on Parcel C where potential fill material and a historical junkyard were observed on historical aerial photographs. Four borings (borings B09 through B12) were advanced on Parcel B along the eastern uplands portions of the Property, proximate to the shoreline, in order to evaluate whether soil or groundwater along the shoreline of the Property contains elevated concentrations of the contaminants that have been detected in the sediments of the adjacent LDW. Prior to conducting the investigation, private and public utility locate services were used to identify the location of underground utilities. Private utility locates were conducted by CNI Locates, Ltd. of Bonney Lake, Washington.

Under the observation of a licensed SoundEarth geologist, Environmental Services Network Northwest advanced twelve direct-push soil borings to a depth of 20 feet below ground surface (bgs) at the locations shown on Figure 2. The borings were advanced using a truck-mounted GeoProbe drill rig. Soil was sampled at 4- to 5-foot intervals from the continuous cores retrieved from each direct-push boring.

Field Activities

Soil samples were described in accordance with American Society for Testing Material Method D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), and a Unified Soil Classification System (USCS) group symbol was assigned to each sample. Soil samples were screened in the field for potential evidence of contamination using visual observations and notations of odor, and by conducting headspace analysis using a photoionization detector (PID) to detect the presence of volatile organic vapors. The USCS symbol, visual and olfactory notations for the samples, and PID readings were recorded on boring log forms, copies of which are provided as Attachment D. Soil samples selected for laboratory analysis were placed directly into laboratory-prepared glassware, in accordance with EPA guidelines. Soil cuttings and decontamination water generated during the investigations were placed in three labeled 16-gallon drums, pending waste profiling and proper disposal. Based on boring locations, screening results, sampling depths, and observed soil characteristics, selected soil samples from the borings were labeled with a unique sample ID, placed on ice in a cooler, and delivered to Friedman & Bruya, Inc. of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis of the following:

- MTCA 5 metals (arsenic, cadmium, chromium, mercury, and lead) by EPA Method 1631E
- PCBs by EPA Method 8082A
- PAHs by EPA Method 8270D
- Diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH) by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Dx
- Gasoline-range petroleum hydrocarbons (GRPH) by Method NWTPH-Gx
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B

Reconnaissance groundwater samples were collected from eight of the soil borings and submitted for the following analyses:

- MTCA 5 metals by EPA Method 1631E
- PCBs by EPA Method 8082A
- PAHs by EPA Method 8270D
- DRPH and ORPH by Method NWTPH-Dx
- GRPH by Method NWTPH-Gx
- BTEX by EPA Method 8021B

Reconnaissance groundwater samples collected from borings B05 and B07 were also submitted for analysis of volatile organic compounds (VOCs) by EPA Method 8260C.

Subsurface Conditions and Analytical Results

This section summarizes the results of the subsurface investigation. The analytical results for the soil samples collected during the investigation at the Property are presented in Tables 1 through 4 and on Figures 2 and 3. The analytical results for the groundwater samples collected during the investigation at the Property are presented in Tables 5 through 9 and on Figures 4 through 6. The laboratory analytical reports for the samples collected are provided in Attachment E.

Based on observations presented in soil boring logs provided in Attachment D, shallow soil conditions on the Property generally consisted of silty sand with gravel, sand with trace silt, and silt with trace gravel. Groundwater was encountered at depths between 8 and 12 feet bgs.

The results of laboratory testing of the soil samples revealed the following:

 Cadmium, arsenic, and lead were detected at concentrations above their respective MTCA Method A cleanup levels in only one boring—boring B02. Mercury was also detected in boring B02 at a concentration below the MTCA Method A cleanup level. Cadmium was detected at a concentration below the MTCA Method A cleanup level in boring B12. Lead, arsenic, and chromium were detected at concentrations below their respective MTCA Method A cleanup levels in the remaining borings.

- PAHs, including naphthalene and benzo(a)pyrene, were detected at a concentration above the MTCA Method A cleanup level in only one boring—boring B12. PAHs were detected in the remaining borings at concentrations below the MTCA Method A cleanup level.
- PCBs were detected in 7 of the 12 borings at concentrations below the MTCA Method A cleanup level.
- DRPH was detected at a concentration below the MTCA Method A cleanup level in one sample collected from boring B12 at a depth of 15 feet bgs.
- GRPH, ORPH, and BTEX were not detected in any of the soil samples.

Laboratory testing of groundwater samples revealed the following:

- DRPH and PAHs were detected at concentration above their MTCA Method A cleanup levels in only one reconnaissance groundwater sample collected at boring B12. GRPH was also detected in boring B12 at a concentration below the MTCA Method A cleanup level. DRPH was also detected in borings B01, B04, B05, B07, B08, and B09 at concentrations below the MTCA Method A cleanup level.
- Arsenic was detected at concentrations above the MTCA Method A cleanup level in all eight reconnaissance groundwater samples.
- Lead was detected at a concentration above the MTCA Method A cleanup level in only one boring—boring B02. Lead was detected at concentrations below the MTCA Method A cleanup level in six of the remaining seven borings
- Chromium was detected at concentrations below the MTCA Method A cleanup level in all eight borings.
- ORPH, BTEX, mercury, PCBs, and VOCs were not detected in any of the groundwater samples analyzed.

CONCLUSIONS

The results of our investigation have demonstrated that impacts on and beneath the Property are relatively minor in magnitude, and appear to be generally limited to the western portion and southeastern portions of the Property. Impacts to soil were limited to elevated concentrations of arsenic, cadmium, and lead in boring B02 located on the western portion of the Property, and elevated concentrations of PAHs in boring B12 located on the southeastern portion of the Property. The specific sources of these impacts have not been clearly identified, but they are likely related to the importation of fill material and potentially to the former use of the Property as a junkyard.

Groundwater impacts beneath the Property were encountered only in boring B12 on the southeastern portion of the Property, where the concentrations of DRPH and PAHs exceeded their respective MTCA Method A cleanup levels. Elevated concentrations of arsenic were detected in groundwater throughout the Property and the groundwater sample collected from boring B02 contained an elevated concentration

of lead; however, the elevated concentrations of arsenic and lead were detected in reconnaissance groundwater samples collected from temporary well points, which tend to produce artificially elevated results for metals and other contaminants due to the presence of suspended solids in the water column.

VOCs were not detected in any of the groundwater samples, and none of the soil or groundwater samples collected from the Property contained concentrations of PCBs that exceeded the laboratory's lower reporting limit.

Considering the limited magnitude and extent of the impacts on and beneath the Property, no further investigation is recommended.

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report are derived, in part, from data gathered by others, and from conditions evaluated when services were performed, and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We do not warrant and are not responsible for the accuracy or validity of work performed by others, nor from the impacts of changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the use of segregated portions of this report.

Respectfully,

SoundEarth Strategies, Inc.

Travis Zandi U Associate Scientist

Managing Principal

Attachments: Figure 1, Property Location Map

Figure 2, Soil Analytical Results for PAHs Figure 3, Soil Analytical Results for PCBs Figure 4, Groundwater Analytical Results for TPH and BTEX Figure 5, Groundwater Analytical Results for MTCA 5 Metals Figure 6, Groundwater Analytical Results for PAHs Table 1, Soil Analytical Results for TPH and BTEX Table 2, Soil Analytical Results for MTCA 5 Metals Table 3, Soil Analytical Results for PAHs Table 4, Soil Analytical Results for PAHs Table 4, Soil Analytical Results for PCBs Table 5, Reconnaissance Groundwater Analytical Results for VOCs Table 7, Reconnaissance Groundwater Analytical Results for MTCA 5 Metals Table 8, Reconnaissance Groundwater Analytical Results for PAHs Table 9, Reconnaissance Groundwater Analytical Results for PCBs A, Tax Records B, Aerial Photographs

- C, Selected Figures from Referenced Documents
- D, Boring Logs
- E, Laboratory Analytical Reports

Friedman & Bruya, Inc. #906443 Friedman & Bruya, Inc. #906444

TJZ/RKB:dnm

FIGURES

/20/2019		LEGE	ND			PARC	EL: 7619000	0000	er la	e n		PA	RCEL: 000160	00060			and the second	12	
6		CATCH BAS	IN		-		041/-		Make.	-									
	⊕ В03	BORING LOO (SOUNDEAF	CATION RTH 2019)				et.					-0				and in		1	
	🕀 B01	GROUNDWA (SOUNDEAF	ATER SAMPI RTH 2019)	E LOCATION	SOUT	H 93RD STREET						h+	RI						-
	<u>∧</u> 5	SEDIMENT S (ATLAS 1989	Sample Loo 9)	CATION			-									2			C1
	<u> </u>	SEDIMENT S (HERRERA	SAMPLE LOO 1994)	CATION	. D	at at 1				⊕B01				⊕ B0à /	1			A TT	
	<u>∧</u> C6	SEDIMENT S (HART CRO)	SAMPLE LOO WSER 1999)	CATION		1 1 1							1		C.	* #			
	∕ WST31	4 SEDIMENT S (WINDWARE	SAMPLE LOO 2010)	CATION	7.0 C									8	Carl	E			
	△ DC-11	SEDIMENT S (KANE 2013)	SAMPLE LOO	CATION		1.18						SW B							
		PROPERTY	BOUNDARY		· B	I I			SW					- SW	14				
		PARCEL BO	UNDARY		• R	1. 1	1		1			NS		NS		17 23			
	SW	STORMWAT	ER LINE		in -	tea 1			S S S S S S S S S S S S S S S S S S S		B03 🕀	N		B10 ⊕				113	
		SURFACE D	MMU		1.0	Sec. 1			MS					20	NS	1		Ĩ	H
		SUBSURFAC	CE DMMU							PARCEL:	0001600029	SW -		SW	1 1	DADOTI			B
		APPROXIMA AREAS OF \ FILL PLACEI	ATE LOCATIO /ISUALLY AF	ON OF PPARENT ROPERTY		1			S			NS N			Sz	0001600061	<u>∆</u> DC-	6 DMMU 3	3
		APPROXIMA FORMER JU	TE LOCATION	ON OF I PROPERTY	(III)				SW	11		Jay	1						E
	bgs	BELOW GRO	OUND SURF.	ACE	(B _ I	1 1			⊕B02 ≷	100		S	STORA	GE	t		21		Ē
S.DWG	cPAH	CARCINOGE HYDROCAR	ENIC POLYC BONS	YCLIC AROMATIC		11. 1			2M			- s			2		1		4
JIL-RE	PAH	POLYCYCLI	C AROMATIC	CHYDROCARBON	s I I	and of		1.	20	15	T	SM 2	X A	1	SHOP	V S			
9_SC	TEQ	TOXICITY E	QUIVALENT		B 10	1		T.	MS L	V		SW SW	SW B	s	8		C		1
1_201	DMMU	DREDGED N	IATERIAL M	ANAGEMENT UNI	Г <u>п</u> . п	4	ALL E		F	1 1 9	1.1			⊕ B05		⊕ B11		R.	
419-00	MTCA	WASHINGTO CONTROL A	ON STATE M .CT	ODEL TOXICS	1 1	1			sw sw	sw ————————————————————————————————————	В	04 /			SW SW	asw for a			
\2019\1	RED	DENOTES C MTCA METH	ONCENTRA	TION EXCEEDS NUP LEVELS	PARC	EL: 0001600050			SV.	SH	OP	NS					-		TI
AL\CAD	-				1 11	8	A CAR	🛛 sv	OFFICE &	1	11	MS					A.C.		DMMU
CHNIC				and the second	6.8.6	561		1.2.2.	- SW	- water	Caret-		P/	ARCEL: 0001600	0062			E	
-UB/TE	— <u>SM</u> — <u>SM</u> —	<u> </u>	<u>- SW SV</u>	<u> </u>	<u>SW</u>	<u>swsw</u>	sw —— sw	SW	- sw sw -	SW SW	SW SW	EL A	v sv	⊕ B06		B1	2⊕	96-8	DC-8
HTC	-	and the second	1 21		-					100	- Aller		-			SW	SW		
I ΥAC	9.99	0		. 1		0.0	0 77				A.			2 500		-			
VAMISH		18	ĩ	4			8	DE PARC	ELTA MARINE CEL: 562420002	E ett	. 16		6	B07			5		E
1 DU			1	Analytical Results	dPAH	e e 93	14					All	-18			1	4		16
19-00		Data	Derth	(milligrams per kilogram)	TEQ (milligrams per		1			<u>11-1</u>			Contra de	40			-	DELTA MARIN PARCEL: 5624200	E 0005
W14	Well/Boring ID	Sample ID Sampled	(feet bgs)	Naphthalene	kilogram)	F					E PR	- 15	S.	10 10			14		
MPAN	802	802-10 06/20/19	10	<0.01	0.008					with .	and a st		2			E	THE		
CO	803 804	B03-05 06/20/19 B04-05 06/20/19	5	<0.01 0.45	0.008					-	M	171	and of			21			
T	805	B05-10 06/19/19	10	<0.01	0.008					T	MI -	IN	C nil					a state	1
IA TF	806	806-09 06/19/19 807-05 06/19/19	5	<0.01	0.008					1			1-51						5
UME	B08	B08-05 06/19/19 B09-10 06/20/10	5	<0.01	0.010					-			BHE		PARCE	C			- St
Ы СО	810	B10-10 06/20/19	10	<0.01	0.008	t				Sham			17	B08 (+)					
1419	811 812	B11-20 06/20/19 B12-15 06/20/19	20	<0.01	0.008	1			2	-	98	-	6			-		-	-
á.	TCA Cleanup Level	for Soil		5	0.1		14			Sec. Sec.							~ 1		

61.02		LE	GEN)		67			1	X.	in the	THE		-		H. H.	a a a			1 0	
9/20/		CATC	H BASIN	_		63		PAR	EL: 761900	0000				PARCEL	: 0001600060	0					10
	⊕ воз	BORIN	IG LOCAT	ION		1	1	-		312	66 1 2		-								
	🕀 во1	(SOUN GROU		2019) R SAMPLE 2019)	LOCATION	-	SOUTH 93F	RD STREE				- hereite	- corre	-	RESTRO						-
	<u>∕</u> 5	SEDIN (ATLA	IENT SAN S 1989)	IPLE LOCA	TION			- mail									Γ				△ C1
	<u> </u>	SEDIN (HERF	/ENT SAN RERA 1994	IPLE LOCA 4)	TION		n o se f	1 ⁴			⊕ BC	1			B 09			51	$\Pi \square$	DIVINO	
	<u>∧</u> C6	SEDIN (HART	IENT SAN CROWSE	IPLE LOCA ER 1999)	TION		I I	1						一一	SW	- AND	-			1	
	▲ WST314	SEDIN (WIND	MENT SAM	IPLE LOCA 10)	TION	7	D CIA	E .							- SV	E		R		4	Ì
	△ DC-11	SEDIN (KANE	/IENT SAN 2013)	IPLE LOCA	TION		B						- sw			8				-	
		PROP	ERTY BOI	JNDARY		1	1.1.1	T I			No.					S	The state				
-		PARC	EL BOUND	DARY		- 1	t It i						NS I		- SW -	3	1399	A D		U D	
_	SW	STOR	MWATER	LINE		i.	b "gerg						B03 ⊕			B10 ⊕	0				
-		SURF	ACE DMM	U		1	- il	1	1		No.				G.S	NS -	12	the last			
_		SUBS				1	in the	1.1			E I	PARCEL: 0001600	0029	Carlor II		- SW	1	PARCEL:	3		· · ·
		APPR AREA FILL P	S OF VISU	JALLY APF	N OF PARENT OPERTY	1	1.0	ind			3		- Sw				2	0001600061		-6 DMML	<u>∠</u> 3 J3
		APPR FORM	OXIMATE	LOCATION YARD ON I	N OF PROPERTY	6) II	Į., į				SV	11-53.55	- MS	41	Contraction of the second	Star and					
	DMMU	DRED	GED MAT	ERIAL MAI	NAGEMENT	UNIT	I. I	1	E.		⊕B02 ³	1.00		-	STORAGE -	+	-KI		21		
	TPH	ΤΟΤΑΙ	L PETROL	EUM HYD.	ROCARBON	S	IT I	1 1					→ s	Train and a second				OFFICE	E	1111	
	BTEX	BENZI AND T	ENE, TOLI TOTAL XYI	JENE, ET⊦ LENES	IYLBENZENI	E,			1	. I.c			5	su - su	16	1	SHOP		1	HT	ALL A
	GRPH	GASO HYDR	LINE-RAN OCARBON	IGE PETRO NS	OLEUM	E	TEL E				AS A	1 12 .	- SW	- sv -	SK R						
	DRPH	DIESE HYDR	L-RANGE OCARBON	PETROLE NS	UM	E.	1 4	: -	141		S - S - S -	Xsw — 🔀		MS	(⊕ B0:	5	-54	⊕ B11			•
	ORPH	OIL-R/	ANGE PET	FROLEUM	HYDROCAR	BONS	1-4				Bo n As	SHOP	₩ B04				3	1		1	
	MTCA	WASH CONT	INGTON S	STATE MO	DEL TOXICS	6 F	PARCEL: 000	01600050	TET	A.A.		111	1	St.			E				
	RED	DENO MTCA	TES CON	CENTRATI A CLEANI	ON EXCEED JP LEVELS	os	A 66	Rin	6.6			III Neter years	1 6	MS	PARCEL	_: 0001600062	2			1	DMMU
sw		- <u>s</u> w <u>- s</u>		<u></u> s <u>w</u> -		- <u>sw</u> <u>sw</u>				1995	2M		PARCEL A		⊕	B06		B1	2	96-8	DC-8
	~	anten r	-			_			SW			SW SW		SW	w2 w2		-desv	SW	SW		
	1	10	-				-		-			2001			60			-			
5	-	1	4		4	-	1						THE -	23	100		- SW		19121	STRENT?	
	-	-	1					8		EF	ARCEL: 5624200021	et.	103	1- Termina	6	B 07					
		Sampled	Date			Analytical Resu	lts (microgram	s per liter)		Total		-	South	1 Part	32	200		1	i	DELTA M	ARINE
Boring	B01-	Ву	Sampled	GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylenes		-		E	120				in	PARCEL: 562	24200005
801	B02- 20190620		06/20/19	<100	250	<250	4	<1	<1	<3		Line in	The V	and -	1 10			in.		1	
B02	B04- 20190620		06/20/19	<100	320	<250	4	<1	<1	<3		2	-	1-1	1 26					-	
B05	B05- 20190619		06/19/19	<100	100	<250	4	<1	<1	<3			INT	- aller	1 00				12145		
B07	B07- 20190619	SoundEarth	06/19/19	<100	190	<250	<1	<1	<1	<3		1	4774	-1-5	1. 0						1
BOB	B08- 20190619		06/19/19	<100	120	<250	<1	<1	<1	<3		the state of the	AL DAU	R	4	P00 0	PARCEL	С			- A
BOS	B09- 20190620		06/20/19	<100	140	<250	<1	<1	<1	<3			E		TI S	500		TE	T		
B12	B12- 20190620	Creation	06/20/19	200	2,200	<250	<1	<1	<1	<3		R. HOR								-	2
MTCA	leanup Level for	Groundwate	r	800	500	500	5	1,000	700	1,000		100 100						1 44		1	

20/2019			LEGE	<u>ND</u>		1.2		PAR	EL: 761900000		100	0			PARCEL	.: 000160006					1.4	
9/2	E	\otimes	CATCH B	SIN			- Marting		01 %	5	in the	-		-								
	⊕	B03	BORING L (SOUNDE	OCATION ARTH 2019)			0		-15	66											H	
		B01	GROUND (SOUNDE	VATER SAMI ARTH 2019)	PLE LOCATION	and the	SOUTH 93F	RD STREE							in parts	REST					DC-1	
	Δ	5	SEDIMEN (ATLAS 19	Г SAMPLE LC 89)	OCATION	Se.		- 74 41	-										2			<mark>∕</mark> C1
		96-8	SEDIMEN (HERRER	Г SAMPLE LC \ 1994)	OCATION		D-6D ²	11 · · ·			Ø	B01				⊕ E	09		-			
	Δ	C6	SEDIMEN (HART CR	r Sample Lo Owser 1999	OCATION))		I I	1.00	T							- SW		C.			Ī	
	Δ^{*}	WST314	SEDIMEN (WINDWA	r Sample Lo RD 2010)	CATION		D CIA									SV SV	s an	Par	R			j
	\bigtriangleup	DC-11	SEDIMEN (KANE 20	T SAMPLE LO 3)	OCATION		1.1	1						NS NS			SW					∠ c:
		·	PROPERT	Y BOUNDAR	Y	-	B	π 1			SW T						SV COL	1		111		
		· _ 	PARCEL E	OUNDARY		-]	R I. I							S	and the second	- SW		1	R 209		E	E HT
	S'	W	STORMW	ATER LINE		i.	p figer a				S S		B03	\oplus			B10 ⊕	0				2
			SURFACE	DMMU		1.0	in the local				No.			S	1220-	S						
			SUBSURF	ACE DMMU								DARCEL	0001600029	X			- sw	F				
			APPROXI AREAS O FILL PLAC	MATE LOCAT	ION OF APPARENT PROPERTY	2.0					SV			MS NS				Se	PARCEL: 0001600061	D	C-6	∆ 3
			APPROXI FORMER	MATE LOCAT	ION OF	50 B	Į., į	100	A ANA			-		-4	.	-	0					
	DM	MU	DREDGE	MATERIAL	MANAGEMENT	UNIT	I'r a	Ĩ			⊕B02 💈		_	15		STORAGE	7	A.				
S.DWG	МТС	CA	WASHING CONTROL	TON STATE ACT	MODEL TOXICS	S	111	1 1			SW			NS - SN						I.		
GW-RE	RED	D	DENOTES MTCA ME	CONCENTR	ATION EXCEED ANUP LEVELS	os 🔛	ALC: N		A STORE	4		5		s⊮.	sh	S S S S S S S S S S S S S S S S S S S		SHOP				10111
2019_	-1	10	= =				ALL I	1.		đ	· ·	1 1 8		- SW	SW R		305					
19-001	100							1			- sw - sw		8	9B04	NS -			SW SW	⊕ B11			<u> </u>
2019\14	ALC NO.		-		-	1.	1.1			BP	- MS	S⊢	IOP	JJJJJJJJJJJJJ	MS					1.55		mII
L\CAD\3		-	-			E INF	PARCEL: 000	01600050		OFFI				-	2				1 V	and the second sec		Z DMMU 6
HNICAI					For man	6	e 66	Euro	S.C.A.			- and	Carel	de		PARC	EL: 00016000	062	(le	8		(())
JB/TEC			sw — sw –		<u>sw</u> sw	- SW			su sw	— SM —— SM			PA	RCEL A		ŧ) B06		B1	2 🕀	96-8	DC-8
TT CLL	1	1		-1-21	the state of the s	-			I			3W 3W		- SWSW		SV Constant		≷sw	2M			
YAC	9.99		0		. 1		-	0 0	A -1	-			and the second	11		20						
AMISH	1		5	4	44. 11.	1	1		£	DELTA PARCEL: {	MARINE 5624200021	E	. [55		1		-	15		E
WNC				-	Analytical P	esults(microgram	ms per liter)	-	24			-			L K	20	⊕B07			-	-	2
001	Wallup	Somela ID S	ampled By Sa	ate Arseni	c Cadmium	Chromium	Lead	Mercury	F			-			11: 20	18				E	DELTA M	ARINE
1419-	Wentb 3	B01-	06/	20/19	Total	11.5	1.00	Iotar				B. (1-	1				1	PARCEL: 56	24200005
Ň	B01 2	B02-	05/	7.40	<1	11.6	1.66	<1				1.			10					4		-
MPA	B02 2	20190620 B04-	00/	17.6	1.06	36.9	21	<1				- and	and a							E		
20 F	B04 2	20190620 B05-	06)	18.1	<1	12.3	1.31	<1				-	10		- Gutte	1 50			8 -			
RUS	B05 2	20190619 B07	oundEarth	19/19 30.6	<1	5.85	<1	<1				1	U.C.	M		1 0						3ª
BIAT	B07 2	20190619	06/	19/19 8.67	<1	13.9	1.87	<1					-4	/ 我 .	21-1	18 8		A C				1
ĪŴ	B08 2	BU8- 20190619	06/	19/19 11.2	<1	27.7	3.96	<1						- UNI	B	4 19	BOS (D	PARCE	LC	-		al al
000	B09 2	B09- 20190620	06/	20/19 9.01	<1	12	1.35	<1				SIL MI				TI.			TE	T		
\141{	B12 2	B12- 20190620	06/	20/19 7.47	<1	11.7	13.9	<1		P-		-	1919	-				-	5		-	1
ġ.	MTCA Cleanu	up Level for G	iroundwater	5	5	50	15	2	25		· · · · · · · · · · · · · · · · · · ·	THE STATE	See.			-				-	1	

20/2019		LEGEND	PARCEL: 7619000000 PARCEL: 0001600060	
2/6		CATCH BASIN		
	⊕ В03	BORING LOCATION (SOUNDEARTH 2019)		
	🛞 В01	GROUNDWATER SAMPLE LOCATION (SOUNDEARTH 2019)	SOUTH 93RD STREET RESTROOM	
	△ 5	SEDIMENT SAMPLE LOCATION (ATLAS 1989)		C1
	<u>96-8</u>	SEDIMENT SAMPLE LOCATION (HERRERA 1994)		
	<u>∧</u> C6	SEDIMENT SAMPLE LOCATION (HART CROWSER 1999)		
	▲ WST314	SEDIMENT SAMPLE LOCATION (WINDWARD 2010)		Ì
	△ DC-11	SEDIMENT SAMPLE LOCATION (KANE 2013)		
		PROPERTY BOUNDARY		
		PARCEL BOUNDARY		
	SW	STORMWATER LINE	B03 ⊕ B10 ⊕	
		SURFACE DMMU		
		SUBSURFACE DMMU	PARCEL: 0001600029	5 - L
		APPROXIMATE LOCATION OF AREAS OF VISUALLY APPARENT	PARCEL: 0001600061 DC-6	▲3
] 3
	DMMU	DREDGED MATERIAL MANAGEMENT UNIT	⊕ B02 ≥ STORAGE	L.
DWG.	сРАН	CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS		
W-RES	PAH	POLYCYCLIC AROMATIC HYDROCARBONS	Bar Shop 2	
19 G	TEQ	TOXICITY EQUIVALENT		
001_20	MTCA	WASHINGTON STATE MODEL TOXICS CONTROL ACT		
9\1419-(RED	DENOTES CONCENTRATION EXCEEDS MTCA METHOD A CLEANUP LEVELS		
0\2019	100			
-\CAL	-		PARCEL: 0001600050	DMMU
NICAL			PARCEL: 0001600062	11/1
ECH.		and the second second second		A DC-8
UB/T	2M 2M	sw _sw _sw		
ц Г		the train the state of the state of the		atom -
ΥACF	9 99			-
, HSII	1 Tel	5 4 4	DELTA MARINE DADCEL: 5574200021	1
NAN		Analytical Results	PARCEL. 5024200021	
91 D		(micrograms per liter) cPAH Date TEQ		
119-0(Well ID Sample ID B01-	Sampled Naphthalene (micrograms per liter)	DELTA MU PARCEL: 562	24200005
NY12	B01 20190620 B02-	<0.4 0.030		
MPA	B02 20190620 B04-	<0.4 0.030		
00 ⊢	B04 20190620 B05-	<0.4 0.030		
RUS	B05 20190619 B07-	06/19/19 <0.4 0.030		3
BIA 1	B07 20190619	06/19/19 <0.4 0.030		
NLUM	B08 20190619 B09-	06/19/19 <0.4 0.030		el.
19 CC	B09 20190620 B12-	06/20/19 <0.4 0.030		
P:\14 [.]	B12 20190620	06/20/19 230 0.703		2
	aroungwater	100 0.1		

TABLES

Table 1 Soil Analytical Results for TPH and BTEX Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

					Analytical Results (milligrams per kilogram)									
		Sampled	Date	Depth							Total			
Boring ID	Sample ID	Ву	Sampled	(feet bgs)	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Xylenes ⁽³⁾			
B05	B05-05		06/19/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
605	B05-10		06/19/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B06	B06-04		06/19/19	4	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B06	B06-09		06/19/19	9	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B07	B07-05		06/19/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B07	B07-10		06/19/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B08	B08-05		06/19/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B08	B08-15	SoundEarth	06/19/19	15	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B09	B09-05	SoundLarth	06/20/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B09	B09-10		06/20/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B10	B10-05		06/20/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B10	B10-10		06/20/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B11	B11-05		06/20/19	5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B11	B11-20		06/20/19	20	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B12	B12-10		06/20/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06			
B12	B12-15		06/20/19	15	<5	93 [×]	<250	<0.02	<0.02	<0.02	<0.06			
MTCA Cleanup Lev	el for Soil ⁽⁴⁾				30	2,000	2,000	0.03	7	6	9			

NOTES:

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

 ${\mbox{\scriptsize <}}$ = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

TPH = total petroleum hydrocarbons

Table 2 Soil Analytical Results for MTCA 5 Metals Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

		Data	Donth	Analytical Results ⁽¹⁾ (milligrams per kilogram)								
Well/Boring ID	Sample ID	Sampled	(feet bgs)	Arsenic	Cadmium	Chromium	Lead	Mercury				
B01	B01-05	06/20/19	5	7.85	<1	18.9	14.8	<1				
B01	B01-10	06/20/19	10	3.56	<1	12.8	3.81	<1				
B01	B01-20	06/20/19	20	<1	<1	7.67	<1	<1				
B02	B02-05	06/20/19	5	147	6.73	12.4	1,510	<1				
B02	B02-10	06/20/19	10	12.4	6.97	38.6	494	1.33				
B02	B02-20	06/20/19	20	1.17	<1	9.91	2.28	<1				
B03	B03-05	06/20/19	5	4.61	<1	14	8.98	<1				
B03	B03-10	06/20/19	10	3.08	<1	12.6	2.28	<1				
B03	B03-15	06/20/19	15	<1	<1	8.88	1.00	<1				
B04	B04-05	06/20/19	5	9.79	<1	10.8	76.9	<1				
B04	B04-10	06/20/19	10	2.84	<1	14.8	3.84	<1				
B04	B04-15	06/20/19	15	2.22	<1	11.0	1.76	<1				
B05	B05-05	06/19/19	5	7.66	<1	9.78	22.1	<1				
B05	B05-10	06/19/19	10	5.15	<1	14.1	2.58	<1				
B05	B05-15	06/19/19	15	3.05	<1	9.62	1.05	<1				
B06	B06-04	06/19/19	4	5.61	<1	10.2	32.4	<1				
B06	B06-09	06/19/19	9	4.02	<1	8.89	3.18	<1				
B06	B06-15	06/19/19	15	1.2	<1	9.64	1.00	<1				
B07	B07-05	06/19/19	5	3.81	<1	10.1	10.5	<1				
B07	B07-10	06/19/19	10	3.40	<1	8.35	2.19	<1				
B07	B07-15	06/19/19	15	3.61	<1	8.93	1.27	<1				
B08	B08-05	06/19/19	5	8.12	<1	13.1	26.2	<1				
B08	B08-15	06/19/19	15	3.36	<1	12.1	1.61	<1				
B08	B08-20	06/19/19	20	<1	<1	7.78	<1	<1				
B09	B09-05	06/20/19	5	4.21	<1	13.4	6.7	<1				
B09	B09-10	06/20/19	10	<1	<1	8.91	<1	<1				
B09	B09-15	06/20/19	15	<1	<1	9.01	<1	<1				
B10	B10-05	06/20/19	5	7.01	<1	16.9	9.53	<1				
B10	B10-10	06/20/19	10	2.50	<1	10.1	1.86	<1				
B10	B10-15	06/20/19	15	<1	<1	9.71	1.00	<1				
B11	B11-05	06/20/19	5	5.45	<1	9.37	39.2	<1				
B11	B11-10	06/20/19	10	7.12	<1	10.3	56.9	<1				
B11	B11-20	06/20/19	20	3.86	<1	12.5	6.84	<1				
B12	B12-05	06/20/19	5	4.09	<1	8.64	22.5	<1				
B12	B12-10	06/20/19	10	6.76	<1	9.47	40.0	<1				
B12	B12-15	06/20/19	15	5.56	1.99	24.2	38.4	<1				
MTCA Cleanup Lev	el for Soil			20 ⁽²⁾	2 ⁽²⁾	2,000 ⁽²⁾	250 ⁽²⁾	2 ⁽²⁾				

NOTES:

Red denotes concentration exceeds MTCA cleanup level for soil.

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Samples analyzed by EPA Method 200.8.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007. < = not detected at a concentration exceeding the laborat

bgs = below ground surface

CLARC = Cleanup Levels and Risk Calculations

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

Table 3 Soil Analytical Results for PAHs Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical ResultscPAHs Toxicity Equivalency ⁽¹⁾ (milligrams per kilogram)(milligrams per kilogram)												am)				
Well/Boring ID	Sample ID	Date Sampled	Depth (feet bgs)	Naphthalene	Acenaphthene	Acenaphthylene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)- perylene	Benzo(a)- anthracene TEF: 0.1	Chrysene TEF: 0.01	Benzo(a)pyrene TEF: 1	Benzo(b)- fluoranthene TEF: 0.1	Benzo(k)- fluoranthene TEF: 0.1	Indeno(1,2,3-cd)- pyrene TEF: 0.1	Dibenz(a,h)- anthracene TEF: 0.1	TEQ ⁽¹⁾ (milligrams per kilogr
B01	B01-10	06/20/19	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B02	B02-10	06/20/19	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	<0.01	< 0.01	< 0.01	< 0.01	0.10	< 0.01	< 0.01	< 0.01	0.017
B03	B03-05	06/20/19	5	< 0.01	<0.01	<0.01	<0.01	0.016	<0.01	<0.01	0.033	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B04	B04-05	06/20/19	5	0.45	0.66	<0.01	0.081	0.31	0.012	0.024	0.029	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B05	B05-10	06/19/19	10	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B06	B06-09	06/19/19	9	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B07	B07-05	06/19/19	5	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B08	B08-05	06/19/19	5	<0.01	<0.01	< 0.01	<0.01	0.019	<0.01	0.032	0.033	< 0.01	< 0.012	< 0.016	< 0.014	< 0.019	< 0.01	< 0.01	< 0.01	0.010
B09	B09-10	06/20/19	10	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B10	B10-10	06/20/19	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B11	B11-20	06/20/19	20	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.008
B12	B12-15	06/20/19	15	15	27	<0.01	20	64	5.7	24	20	0.11	3.2 3 0.95 1.6 0.46 0.17 0.049							
MTCA Cleanup Lev	el for Soil			5 ⁽²⁾ 4,800 ⁽³⁾ NE 3,200 ⁽³⁾ NE 24,000 ⁽³⁾ 3,200 ⁽³⁾ 2,400 ⁽³⁾ NE									NE NE 0.1 ⁽²⁾ NE NE NE NE							

NOTES:

Red denotes concentration exceeds MTCA cleanup level for soil.

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

Samples analyzed by GC/MS-SIM or EPA Method 8270D.

⁽¹⁾Analytical result for each individual cPAH is multiplied by the TEF and all seven cPAH values are added. When analytical results are reported as less than the LRL, one half the LRL is used to calculate the TEQ.

(2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

(3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Non cancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.

< = not detected at a concentration exceeding the laboratory reporting limit	M
bgs = below ground surface	NE
CLARC = Cleanup Levels and Risk Calculations	PA
cPAH = carcinogenic polycyclic aromatic hydrocarbon	TE
EPA = US Environmental Protection Agency	TE
LRL = laboratory reporting limit	W

ATCA = Washington State Model Toxics Control Act

E = not established

AH = polycyclic aromatic hydrocarbon

EF = toxicity equivalency factor

EQ = toxicity equivalent

Table 4 Soil Sample Analytical Results for PCBs Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical Results ⁽¹⁾ (milligrams per kilogram)								
Sample ID	Sampled By	Date Sampled	Depth (feet bgs)	Arocolor 1016	Arocolor 1221	Arocolor 1232	Arocolor 1242	Arocolor 1248	Arocolor 1254	Arocolor 1260	Total PCBs ⁽²⁾	
B01-10		06/20/19	10	<0.002	<0.002	<0.002	<0.002	<0.002	0.0024	<0.002	0.0024	
B02-10		06/20/19	10	<0.002	<0.002	<0.002	<0.002	<0.002	0.83	<0.002	0.83	
B03-05		06/20/19	5	<0.002	<0.002	<0.002	<0.002	<0.002	0.12	0.11	0.23	
B04-05		06/20/19	5	<0.002	<0.002	<0.002	<0.002	<0.002	0.021	0.017	0.38	
B05-10		06/19/19	10	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
B06-09	SoundEarth	06/19/19	9	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
B07-05	Soundearth	06/19/19	5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
B08-05		06/19/19	5	<0.002	<0.002	<0.002	<0.002	<0.002	0.021	0.013	0.34	
B09-10		06/20/19	10	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
B10-10		06/20/19	10	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
B11-20		06/20/19	20	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0042	0.0042	
B12-15		06/20/19	15	<0.002	<0.002	<0.002	<0.002	<0.002	0.026	0.033	0.059	
MTCA Cleanup Lev	ITCA Cleanup Level for Soil ⁽³⁾				NE	NE	NE	NE	NE	NE	1.0	

NOTES:

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Analyzed by EPA Method 8082A.

⁽²⁾Total PCBs are calculated by summing the detected PCB concentrations.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

NE = Not established

PCB = polychlorinated biphenyl

SoundEarth = SoundEarth Strategies, Inc.

Table 5 Reconnaissance Groundwater Analytical Results for TPH and BTEX Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical Results (micrograms per liter)							
Boring ID	Sample ID	Sampled By	Date Sampled	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾	
B01	B01-20190620		06/20/19	<100	130 [×]	<250	<1	<1	<1	<3	
B02	B02-20190620		06/20/19	<100	<50 ^{ip}	<250	<1	<1	<1	<3	
B04	B04-20190620		06/20/19	<100	320 [×]	<250	<1	<1	<1	<3	
B05	B05-20190619	SoundEarth	06/19/19	<100	100 [×]	<250	<1	<1	<1	<3	
B07	B07-20190619	Soundearth	06/19/19	<100	190 [×]	<250	<1	<1	<1	<3	
B08	B08-20190619		06/19/19	<100	120 ^x	<250	<1	<1	<1	<3	
B09	B09-20190620		06/20/19	<100	140 [×]	<250	<1	<1	<1	<3	
B12	B12-20190620		06/20/19	200	2,200 ^{x,ip}	<250	<1	<1	<1	<3	
MTCA Cleanup Lev	800	500	500	5	1,000	700	1,000				

NOTES:

Red denotes concentration exceeds MTCA cleanup level for groundwater.

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

Laboratory Notes:

^{ip} Recovery fell outside of control limits due to sample matrix effects.

^x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

< = not detected at a concentration exceeding the laboratory reporting limit

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons

EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

TPH = total petroleum hydrocarbons

Table 6 Reconnaissance Groundwater Analytical Results for VOCs Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

					Analytical Results ⁽¹⁾ (micrograms per liter)							
		Sampled	Date			Cis-1,2-	Trans-1,2-	1,1-				
Boring ID	Sample ID	Ву	Sampled	Tetrachloroethene	Trichloroethene	Dichloroethene	Dichloroethene	Dichloroethene	Vinyl Chloride			
B05	B05-20190620	SoundEarth	06/19/19	<1	<1	<1	<1	<1	<0.2			
B07	B07-20190620	Soundearth	06/19/19	<1	<1	<1	<1	<1	<0.2			
MTCA Cleanup Level for Groundwater				5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	400 ⁽³⁾	0.2 ⁽²⁾			

NOTES:

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Samples analyzed by EPA Method 8260C.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B, Non cancer, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.

< = not detected at a concentration exceeding the laboratory reporting limit CLARC = Cleanup Levels and Risk Calculations EPA = US Environmental Protection Agency MTCA = Washington State Model Toxics Control Act

SoundEarth = SoundEarth Strategies, Inc.

VOC = volatile organic compound

Table 7 Reconnaissance Groundwater Analytical Results for MTCA 5 Metals Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical Results ⁽¹⁾ (micrograms per liter)						
			Date	Arsenic	Cadmium	Chromium	Lead	Mercury		
Well ID	Sample ID	Sampled By	Sampled	Total	Total	Total	Total	Total		
B01	B01-20190620		06/20/19	7.40	<1	11.6	1.66	<1		
B02	B02-20190620		06/20/19	17.6	1.06	36.9	21	<1		
B04	B04-20190620	SoundForth	06/20/19	18.1	<1	12.3	1.31	<1		
B05	B05-20190619		06/19/19	30.6	<1	5.85	<1	<1		
B07	B07-20190619	SoundEarth	06/19/19	8.67	<1	13.9	1.87	<1		
B08	B08-20190619		06/19/19	11.2	<1	27.7	3.96	<1		
B09	B09-20190620		06/20/19	9.01	<1	12	1.35	<1		
B12	B12-20190620		06/20/19	7.47	<1	11.7	13.9	<1		
MTCA Cleanup Lev	el for Groundwater			5 ⁽²⁾	5 ⁽²⁾	50 ⁽²⁾	15 ⁽²⁾	2 ⁽²⁾		

NOTES:

Red denotes concentration exceeds MTCA cleanup level for groundwater.

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

 $^{\rm (1)}\!{\rm Samples}$ analyzed by EPA Method 200.8.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

< = not detected at a concentration exceeding the laboratory reporting limit

CLARC = Cleanup Levels and Risk Calculations EPA = US Environmental Protection Agency MTCA = Washington State Model Toxics Control Act SoundEarth = SoundEarth Strategies, Inc. WAC = Washington Administrative Code

Table 8 Reconnaissance Groundwater Analytical Results for PAHs Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical Results								cPAHs Toxicity Equivalency ⁽¹⁾							
						(mic	crograms per l	liter)						(m	icrograms per li	ter)			(L
Well ID	Sample ID	Date Sampled	Naphthalene	Acenaphthene	Acenaphthylene	Huorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)- perylene	Benzo(a)- anthracene TEF: 0.1	Chrysene TEF: 0.01	Benzo(a)pyrene TEF: 1	Benzo(b)- fluoranthene TEF: 0.1	Benzo(k)- fluoranthene TEF: 0.1	Indeno(1,2,3-cd)- pyrene TEF: 0.1	Dibenz(a,h)- anthracene TEF: 0.1	TEQ ⁽¹⁾ (micrograms per lite
B01	B01-20190620	06/20/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B02	B02-20190620	06/20/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B04	B04-20190620	06/20/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B05	B05-20190619	06/19/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B07	B07-20190619	06/19/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B08	B08-20190619	06/19/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B09	B09-20190620	06/20/19	<0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.030
B12	B12-20190620	06/20/19	230	130	0.63	55	72	9.5	24	19	0.048	2.00	1.5	0.4	0.6	0.19	0.066	< 0.04	0.703
MTCA Cleanup Lev	el for Groundwater		160 ⁽²⁾	960 ⁽⁴⁾	NE	640 ⁽⁴⁾	NE	4,800 ⁽⁴⁾	640 ⁽⁴⁾	480 ⁽⁴⁾	NE	NE	NE	0.1 ⁽²⁾	NE	NE	NE	NE	0.1 ⁽²⁾

NOTES:

Red denotes concentration exceeds MTCA cleanup level.

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

Samples analyzed by GC/MS-SIM or EPA Method 8270D.

(1)Analytical result for each individual cPAH is multiplied by the TEF and all seven cPAH values are added. When analytical results are reported as less than the LRL, one half the LRL is used to calculate TEQ.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

(3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B, Cancer, CLARC Website < https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B, Non cancer, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

= not analyzed/not applicable	М
< = not detected at a concentration exceeding the laboratory reporting limit	N
CLARC = Cleanup Levels and Risk Calculations	PA
cPAH = carcinogenic polycyclic aromatic hydrocarbon	TE
EPA = US Environmental Protection Agency	TE
LRL = laboratory reporting limit	w

ATCA = Washington State Model Toxics Control Act

NE = not established

AH = polycyclic aromatic hydrocarbon

EF = toxicity equivalency factor

EQ = toxicity equivalent

Table 9 Reconnaissance Groundwater Analytical Results for PCBs Duwamish Yacht Property 1801 South 93rd Street Seattle, Washington

				Analytical Results ⁽¹⁾ (micrograms per liter)								
Boring ID Sample ID	Sampled By	Date Sampled	Arocolor 1016	Arocolor 1221	Arocolor 1232	Arocolor 1242	Arocolor 1248	Arocolor 1254	Arocolor 1260	Total PCBs ⁽²⁾		
B01	B01-20190620		06/20/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B02	B02-20190620		06/20/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B04	B04-20190620		06/20/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B05	B05-20190619	SoundEarth	06/19/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B07	B07-20190619	SoundEarth	06/19/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B08	B08-20190619		06/19/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B09	B09-20190620		06/20/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
B12	B12-20190620		06/20/19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
MTCA Cleanup Level for Groundwater ⁽³⁾					NE	NE	NE	NE	NE	NE	0.1	

NOTES:

Sample analyses conducted by Friedman & Bruya Inc. of Seattle, Washington.

⁽¹⁾Analyzed by EPA Method 8082A.

⁽²⁾Total PCBs are calculated by summing the detected PCB concentrations.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Ground Water, revised November 2007.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

NE = Not established

PCB = polychlorinated biphenyl

- SoundEarth = SoundEarth Strategies, Inc.
- WAC = Washington Administrative Code

ATTACHMENT A TAX RECORDS

368	7				
	FOLIO 3687 PERMIT NO. 100026 DATE	Address 1810 5 96	29 <u>J</u> EWM. Block Tox Lot <u>574 ST</u>	Lot or Tract	-

ee Own	er					Archit	ect					_Contractor		Page
oning_	C	onditio	n of Es	terior	Interio		Fou	ndation		Floor	Plan	: Good	_Acc	ept
SE	OFC - 616	ROOF	CONS	TRUCTION		FLOO	OR FINIS	IES		Tile		ino Form.	PLU	MBING
1	No. Stories		From	-Joist			Fie		Maple		Both	Floor		No. Fixtures
	No. Stores		Mill-D	Deck			Ock		2 x 6 T G		Both	Walls	-	Toilets Urinals
	No. Rooms		Rein.	Conc. (GLB		Lino		3 x 6 T G		Tub	Recess		Tubs Log. or Pena.
	Besement II.		Steel	Fr Metal De	rck		Cement		Latwat.		Droit	n Bds.	-	Basins Dr. Fms.
	No. Offices Sq. Ft.		Truss	ses Spon			Terrazz	•	Conc.		Vani	ties		Sinks
	No. Apartmts.		Wood	Steel			Asphal	Tile	Tile				-	Washers Dryers
	1 m. 2 m. 3m.					or							-	Showers (tub) (stell)
	4 m. 5 m. 6 m.											•		H.W. Tanks Ldy. Trays
		Date	Built_	87 Dore Add	. Built		K	Finish	-d 🗌	Unfinish	hed	Remodeled		D-Woshers Disposo's
TYPE	FCONSTRUCTION	Effec	tive A	je	Year	5	Fut	are Life				Years		
X	Frame	Dep.	for Co	nd De	p for C	06		Dep.	for Es.		T	otol		Sprinkler Sys.
	Metal-Prefab	FAC	TOR	ITEM		DIMEN	ISION S	SQ. FT	AREA	FACTOR	4	COST	HEA	TING
	Ordinary Masonry		1			-								Elec. Oil Gas
	Mill Construction													H.WH.A.
	Closs A Rein, Conc.													B.BdSuspended
	Stru. Steel and Conc.													FHAPipeless
	Struct. Steel, Frame													A. Cond. Wall Unit
10		-												Comb. Unit Custom
	QUALITY-TYPE	4												KetrigConvector
Good	Med. X Cheop	-												rical Pump rireplace
FOUNI		+				-		-	_				YEA	R ASSESSED VALUE
	Mud Sill Post Pie	1												1
<u></u>	Conc. Brick		1						i	-				
BASE	AENT	1 1							il	- N				
	Full SPort	1								IT I				
	Sub-Bosement /								11	HDC				
	Size	_		THE REAL PROPERTY AND				-	11	Pr 1				
	Gorage No. Cor	5	Harris -	the state of the second se	-		-	Constant of the	- AND			IG		
	Floor	5										nob& Tube		
-	Plastered PI. Bo	4.		- ATTREAMENT OF F		127 3	in the		the later	20 in		lex. Cable		
	No. Apartments											onduit		
	Service Rooms	-			Upors	AU'O_	Mon.		rid. Mile	. mor. +		Wwr. Wiring		
		-				Escol	ators	P	aved	H		Range Wiring		
EXTE	RIOR WALL CONST.	-				Stops_	Speed	Dech	olphins	+		Outlets		
_X	Single Double	-			C op y	Hat	GROUNT	ELOO	RAREA		11.0	6 th		1
X	Stud Walls				SB		TOTAL	FLOOR	AREA		60	o th		
	Brick Pil.	1-			B						000			
-	- Conc. Pil.L	1			1									
	See Sal E	-			2									
	Pro Eab Matal	INT	ERIOR	WALLS& CEILING	3									
	Tiltello	-	Stud	Wood Metal	4									
	Filler Wall		Plast	er Dry Wall	5									
	Curtain Wa	11	Acc. 1	lile Celotex	6									
			Ceile	d Plywood	7							40		
EXT	ERIOR FACING		Solid	Block	8				T					
Y	Siding		Sound	Proofed Lomin.	9									
-	Stucco Shakes		Finis	hed Unfinished	10	-								
	Marblecrete		Point	ed Varnished	11		and and and		1.00					

	· onned	12
Brick Veneer		13
Conc. L Conc. Blk.	INCLUL A TION	40
	Estar Partitions	15
OR CONSTRUCTION	Roof Floor	16
DOR CONSTRUCTION		17
Mill Cor Deck	INTERIOR TRIM	18
R.Conc. Elev.	Fir Birch	19
Steel GLB.	Moh. Ook	20
	Metal	21
OF COVERING	Wood Metal Doors	22
BitUp X Tar.&Gr.	Wood Metal Seeh	23
Comp. Motal	Stained Varnish	24
	Painted Unlin.	25
		26

3687		K. M.	
	1818 5 9674		
000160 - 0029 5000 mmon 0000	5217 10210 368-7 SUBLETTER	SUBNUMBER	ASSESSION'S FORM

	1-					1
	801	LDING CA	LCULATIO	DN B		
IE S	1-					1
5						1
FAC.						1
FAC.						1
FAC.						1
FAC.						1
BASE						
T.						
R						
OHO						
rs						
11						
L						
IES						
-		8F (9			
		8F .	6			
		8F (e			
		8F (e			
		8F (9			
ITE	W 8					
TOTA	L					
TONS						
<u>L</u>						
ST FAC	TOR					
TAL RE	PLACEMENT		*			
TAL	VERECIAI					
24 00	FUNCT O	8301 (1	FTI		x	
J	FUNCT U	000L. 14		Same and the second second	-	

SELECTED VALUE PPRAISER 95 ATE 4-24-79	SELECTED VALUE: LAND 22 SER 95 BLD'S 43 4-24-79 TOTAL 60		000000		
FC			DATE	LOCATION	
ES PARCEL	E #	AMOUNT	UATE	1	NOTES
DARCEL	E #	AMOUNT			NOTES

PIER LAYOUT PIER BY 13 17 1.8 23 24 PER LA

D1 and C1 and 26 are not saleable slips and will not be issued as memberships.

Juest moorages - A 27+28, R-28, + C.-26

OVE ALL EXISTING SHOR INE FACILITIES G DOCK, WINCH) NCUD **ANCHOR** ULKHE4D RAMP AND N UC. FILES aag. HATCHE APPROX DREDG! UPLAN DREDGE PLAN .. south or of . SCALE IN FEET . 10 7.00

FOLIO 3687 PERMIT NO. ALSG	ITION BUCKLEY	SDC # 424 Ferm. Block Job Lot Tax Lot 22 Tra	L. 29 T.L.C. 45 Legal or	54) on Back
DATE <u>A-29-63</u> <u>Addre</u> <u>Addre</u> <u>Fee Owner</u> <u>SAN JVAN</u> <u>Condition of Exterior</u> <u>G</u>	CONL PRODS Interior G Founds	Architect Architect In G Floor Plan: God	Contractor odAccept	Good
USE STG YARD	ROOF CONSTRUCTION	FLOOR FINISHES	Tile Lino.	PLUMBING
// No. Stories No. Stores No. Rooms Basement No. Offices No. Apartments 1 rm. 2 rm. 3 rm. 4 rm. 5 rm. 6 rm.	Frame Lam.	Fir Oak Lino. Cement Terrasso Raecolith Tile	Baths Fl. Walls Sq. Ft. Floors Sq. Ft. Walls Lin. Ft. Dr. Bds. Sq. Ft. Floors Sq. Ft. Floors Sq. Ft. Dr. Bds. Sq. Ft. Floors Sq. Ft. Dr. Bds. Sq. Ft. Dr. Bds. Sq. Ft. Dr. Bds. Kit's Fl. Walls	No. Fixtures Toilets Tub, Leg or Pem. Basins, Ped. Sinks Urinals Showers (Tub) (Stall) Laundry Trays H. W. Tank Fl. Drains
Frame Single Double	Date Built 1963	Finished Future I	Unfinished Remodeled	Bprink. Sys. NoHds.

LIMI	TS	ROAD		SCHOO	DL W	ATER	FIRÉ	SEWER	HOS	PITAL		METRO	PK	E REC
e	0	2		1			11							
									000	160-6	029	9130	1850	3015
YR	AC	LAND	BI	LDGS	TOTAL	BY	DATE	REASON		CD	FEE OWNER	DATE	FILE #	PRICE
63	10 21	9130			9130	IT) GE	5/23/63	chy. les	aliA	. + A C	4. 3068			
65	10 -1	9130	1	850	10980	148	1/16/64	Stg. yas	ex (Dack				
66		40840	1	850	4269	0 sa	1 4-6-65	au						
66	6.28	22600	10	150	94450	RE	1 4/34/65	killet.	10	Die	e T.H. 297		11-	4027
71	L	45200 B	1	3700	D T	4890	0*000160	-0054-0	8/9					
73		192550	4	400	1969	50 C1	15-1072	RV						
				•										

Care	TRICT	1:	2. AI	DITION	JOHN	BUCK	LEY :	DONATIO	ON CL	AIM #	42 8	c 45		0	001	6		٢	
	IMITS		DI	ESCOIPTION	Beg 1850	on E	N.R	ANGE	EV S 66	VM	S of S	BLOCK	• • • •	South	Park A	t NO.	h S	29 629'	thi
6	Por.				to b	eg le	SS W	1100*	(6)	A	LSO A	TRAC	T	OF LAN	DLYS	OF	AN	ELY EX	TN
cc	DDE NO) .	-		WEST	TERLY	OF (C.W.W.	#1 &	E OF	MEAN	DER I	N I	IF ANY	• TGW	I POR	AB	ANDONE	D BI
Fal	io 36	87			ADJ	& LY	WLY	OF WLY	MGN	OF E	IMAWU	SH WA	ATE	RWAY					
3. AD	DRESS	OF PR	OPER	TY	and and a second se	and the state	11			allow at the		CONTR	ACT	PURCHA	SER				20
I. FE	EOWN	ER_K	11	uneg	parta and	General C		Colina	1.01	and have		D	13	38.	1	7-	Zar	6	52
I. SIZ AL I. LA	E OF T	PING_	ne)TX 3. si	idewalk Tr	TOPOG N	one ardei	yLev sew/ n	AGE CE	GRAN	ol w	ORMAT	ION 5.	_FT. 2. TREND	Static	ROAD_	Gra	DR DR	S
FA	CTOR \$	F		SIDE STRE	ET FACTO	OR \$		DEPTH	FACTOR	\$		CREDIT		Po	07-013	<u>.</u>			
5. US	E	Hande segment	Lon Stanling								7.	DISTR	ICT.	Q. P.	01-010	L			
LA	ND US	E	so	DIL TYPE	CR	OPS-TIM	IBER S	TAND	NO. AC	RES	VALUE	ACRE	VAL	UE		LOT		ASSES	SED
												8				UNIM	PROV	ED ACRI	E 199
												5				OTHE	RLA	NDS	
												6				TIMB	ER		
D L	AND S	IZE		x				TOTAL				\$	-			TOTA	L ASS	ESSED	VALUI
2	OWNE	R OR CO	ONTR	ACT PURCH	ASER	DA	ATE	FILI	E NO.	PR	ICE	MTGE		STAMP		DATE			
11	ATIL	BANK	MONT	COMMERC	E TRU	ST DE	1/62	TTC	7 1.08	20/26	7				REMARN	(@			
	a/c	DEPT	MONI	<u>e colale</u>	2	07.	1/02		<u>, 1420</u>	<u>erec</u>									
								1											
															A DESCRIPTION OF A DESC	ana	ov I	per construction of the construction	
DI	STRIC	:Т:	ROAL	0			SCI	HOOL		WATER	FIRE	SEWE	R	HSPTL.	AIRPT.	PER			
			2					1			M								
												-		CLASSICAL DE LA COMPANY DE		1	percenter la	CALMAR BORN (COMP.)	_
AS	SSESSI	ED VAL	JE	DE	CREASE	OR INC	REASE	IN ASSES	SSED VA	LUATI	ON			LAN	D				
YEAR	AC.	LAN	ID 70	DATE		BY			RE	ASON			DEC	REASE	INCREAS	<u>E</u>			
31		20	20		Ad	otr		A June	and		2		a 7, 7	14.5.5					
0 41	5-	307	0	/	anne		19	20 7	17 1	13.98	7 -				/				
1944	1	307	0	2/3/43	NJ	I.		<u> </u>	n in the second	500									
1959		893	30/	2/16/58	1.	JG.	1.5	RV		(0	HG OF	LECA	L	3/1/62	MM(I	·) K	-	1063)	
9 63	10.2	1 913	0	5/23/63	"d"	JF(T)	Palenter.	CHG I	EGAL.	AV	& AC	1	L	- 306	8				
19	-	/					/					/							
19		/		1								Jerra .	_						
9					-														
19																			
19	ANT.		THE PARTY OF THE P				the second second					P. C. S. L.	-			-	-		

6. -N LN THOF, ED OF DUWAMISH RIVER - faded 4-26-41 URFACEGravel FRONT STREET VALUE LAND 30% 8 ----+ and the local division of the local division . And in case of the second second 4 many as every surplicity of the tax advantation * and the second sec when he is not set of the set of

· 2 × SECTION SW33 24 TWP._ BUCKLEY JOHN-D C # 42 6 45 BEG ON E MGN 14TH AVE S 1289 FT RANGE. OF S LN SOUTH PK ADD TH S 89-47-27 E 1025 FT TO TPOB TH N 00-36-38 E 295.68 FT TH S TSH WATER WAY FTHTS WEY OBDRY E ALG SD BDRY 306.40 FT TH N 89-47-27 W 817.80 FT TO TPOB LESS RD TAX LOT NO ._ PARCEL NO ._

IF USED AS 1/4-1/4 " SCALE ONE INCH 100 FEET OR 10 ACRES OR 660 FEET

AERIAL PHOTO QUARTER MAP_ PLAT MAP

K.

#23/88

ACRES

ACRES

LAND USE 111 CULTIVATED # PASTURE OO TIMBER XX STUMP ... GRAVEL OR USELESS V SWAMP

	LAND TYPE
A	SHOT CLAY
в	BOG
С	PEAT
D	SILT
E	LOA
F	GRAVEL
G	BOTTOM
н	UPLANDS
к	HILLY

ATTACHMENT B AERIAL PHOTOGRAPHS

DUWAMISH YACHT PROPERTY 1801 SOUTH 93RD STREET KING COUNTY, WASHINGTON SOUNDEARTH PROJECT #1419-001

CT ISLAY

DUWAMISH YACHT PROPERTY 1801 SOUTH 93RD STREET KING COUNTY, WASHINGTON SOUNDEARTH PROJECT #1419-001

Strategies www.soundearthinc.com

DUWAMISH YACHT PROPERTY 1801 SOUTH 93RD STREET KING COUNTY, WASHINGTON SOUNDEARTH PROJECT #1419-001

ATTACHMENT C SELECTED FIGURES FROM REFERENCED DOCUMENTS

	AL A	Legend
1.9	3.8	Technology Assignment
		Additional Eaderal Channel Dradining (21 agree)
MULW= mean lower low water; SMS= Sediment Management Standards;		Rediciples and Cap (20 acres)
SCO = benthic sediment cleanup objective		Parital Dredge and Cap (20 acres)
		Cap (24 acres)
		ENR/in situ (48 acres)
		Monitored Natural Recovery (Surface Sediment >SCO)(33 acres)
		Monitored Natural Recovery (Surface Sediment <sco)(203 acres)<="" td=""></sco)(203>
		Early Action Area (29 acres)
		Overwater Structures
		Intertidal Area > -4 ft MLLW
		Navigation Channel
		River Mile Marker
	0 500 1,000	
	Feet	

Figure 18. Selected Remedy

ATTACHMENT D BORING LOGS

C		nd	Ear	R	Proje Proje Logge	ct: ct Num ed by:	ber:	Duwam 1419-0 JSL	ish Yacht Property 01		BORING LOG	B01 	
20	JU		Edl		Date : Surfa	Started	: ditions:	06/20/1 Gravel	9	Si	te Address: 1801 s Seattle	South 93rd S	treet
		51	Idlt	yres	Locat	tion N/S):	54' S of	parcel A NW corner		Water Depth A	At	
					Locat	tion E/W	V:	150' E o	f parcel A NW corner		Time of Drillin	g 9	feet bgs
					Revie Date (wea by Comple	': eted:	CJT 06/20/-	10		Water Depth After Complet	ion 11.	2 feet bas
								00/20/	Lithologic D	escript	ion		5
gs)	val	ount	ery		Sampla	le ed	<u>а</u> о	hic	(ASTM texture, density, co	lor, odor	, moisture,		Well Detail/
Dep eet b	nter	W C	%00	(ppm)	Sample	amp nalyz	,mb	rapl	supplemental descriptors, estimat Field-estimated grain size o	ed grain listributio	size distribution)		Water Depth
I (fé	1	Blc	Re		10	Ar S	O Ś	G	(% Fines - % Sand	I - % Gra	avel)		
0 -							SM		0.0-3.0 feet bgs: Silty SAND wi hydrocarbon odor, moist (15-6	th grav 0-25).	el, gray, no		
-	\bigwedge		70				SP		3.0-5.5 feet bgs: Fine SAND, tra hydrocarbon odor, moist (5-95 Occasional wood debris, 1" w	ace silt -0). rood fra	, brown to gray, agment at 4 feet	no bgs.	
	\setminus			1.5	B01-05		sw	•••••	5.5-6.5 feet bgs: SAND with fin hydrocarbon odor, moist (5-75	e grave -20).	el, trace silt, gray	, no	
	\setminus						SM		6.5-9.5 feet bgs: Fine silty SAN	, D, blac	k, no hydrocarb	on	
-	\mathbb{N}		90						odor, moist to wet, numerous o	organic	s/rootlets (15-85	-0).	\square
10 —				0.8	B01-10	x	SM		9.5-10.5 feet bgs: Silty SAND w brown, no hydrocarbon odor, y	vith fine wet (15	e gravel, gray to -70-15).	dark	
_	V		80				SP		10.5-14.0 feet bgs: Fine SAND, hydrocarbon odor, wet (5-95-0	trace s).	ilt, gray, no		
- - 15 —				1.7	B01-15		SP		14.0-20.0 feet bgs: Fine to med hydrocarbon odor, wet (5-95-0	ium SA).	ND, trace silt, bl	ack, no	
-			90	10	504.00				Boring terminated at 20 feet b groundwater sample B01-201 temporary well screened from Borehole abandoned, backfill with asphalt.	gs. Re 90620 (1 10 fee ed with	connaissance collected throug t to 20 feet bgs i bentonite and	h sealed	
20				1.3 FON/O	B01-20		10/- II/A		/ · · ·		Netr-IO:	t o:	
Drilling	g Co./ q Eaui	pment	: t:	ESN/Col Push pro	e obe		Well/Au Well Sci	ger Dian reened li	neter:/ incl nterval: fee	ies t bas	Notes/Commen	ts:	
Sampl	er Typ	e:		Core bar	rel plastic slee	eve	Screen	Slot Size	: incl	nes			
Hamm	er Typ	e/Wei	ght:		lbs	6	Filter Pa	ack Usec	:				
Total E	Boring	Depth	1:	20	fee	et bgs	Surface	Seal:					
Total V	Vell D	epth:			fee	et bgs	Annular	Seal:					
State V	veli IC	9 NO.:					Monum	ent Type	:		Page:	1	of 1

Cr	SoundEarth Strategies Project Logged Date Sta						ber:	Duwam 1419-0 JSL	nish Yacht PropertyBORINGB0201LOG	
30	Strategies Date Sta							06/20/1 	19 Site Address: 1801 South 93rd Street Seattle, Washington	
		0.	, u c c	9,00	Locat Locat	ion N/S ion E/V	3: V:	109'So 349'Eo	of parcel A NW corner Water Depth At of parcel A NW corner Difference of Drilling 9 feet	bgs
					Revie	wed by	/:	CJT	Water Depth After Completion 11.2 foot	hao
					Date	Comple	etea:	06/20/2		bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	0etail/ Depth
0							SP		0.0-1.5 feet bgs: SAND with gravel, trace silt, no hydrocarbon odor, moist (5-65-30).	
_	V		90				SW		1.5-3.0 feet bgs: Fine SAND, trace silt, gray, no hydrocarbon odor, moist (5-95-0).	
-							SW		3.0-6.0 feet bgs: Fine SAND, trace silt, gray, no hydrocarbon odor, moist (5-95-0).	
5—				2.5	B02-05		SP		6.0-7.5 feet bgs: SAND with fine gravel, trace silt, gray, no hydrocarbon odor, moist, numerous organics, wood, glass, and plastic debris (5-75-20).	
-			90				ML		7.5-10.0 feet bgs: SILT, trace gravel, dark brown to black, no hydrocarbon odor, moist to wet (95-0-5).	Z
10 — - -			25	3.8	B02-10	x			10.0-14.0 feet bgs: No recovery. 2" brick fragment at 10 feet bgs.	
-	$\left \right\rangle$						ML		14.0-14.5 feet bgs: SILT, dark brown to black, numerous organics, wood and glass debris, wet (100-0-0).	
15	n Co "	Driller	<u> </u>	ESN/0-			Woll/Am		14.5-15.0 feet bgs: SAND, trace silt, gray, no hydrocarbon	
Drilling	y co./ g Equi	pmen	t:	ESN/CO Push pro	obe		Well/Aug	yer Dian reened li	nterval:/ incnes Notes/Comments:	
Sampl	er Typ	e:		Core ba	rrel plastic slee	eve	Screen	Slot Size	e: inches	
Hamm	er Typ	e/Wei	ght:		lbs	5	Filter Pa	ack Used	1:	
Total E	Boring	Dept	1 :	20	fee	et bgs	Surface	Seal:	-	
Total V	Vell D	epth:			fee	et bgs	Annular	Seal:		
State V	Vell IC) No.:					Monume	ent Type	e: Page: 1 of 2	

Sc)[[nd	Ear	th	Proje Proje Logg	ct: ct Num ed by: Started	ber:	Duwam 1419-0 JSL 06/20/1	BORING B02 LOG 9 Site Address: 1801 South 93rd Street	
		St	rate	egies	Surfa Locat Locat Revie Date	ce Con ion N/S ion E/V wed by Comple	ditions: S: V: V: deted:	 109' S o 349' E o CJT 06/20/'	Seattle, Washington f parcel A NW corner of parcel A NW corner Water Depth At Time of Drilling 9 Water Depth After Completion 11.2	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	1
-				3.5	B02-15		SM		odor, wet (5-95-0). 15.0-17.0 feet bgs: Silty SAND with gravel, dark brown to black, no hydrocarbon odor, wet (15-60-25). 17.0-20.0 feet bgs: Fine to medium SAND, trace silt, black, no	
-	\bigwedge		60						hydrocarbon odor, wet (5-95-0).	
20 —				1.4	B02-20				Boring terminated at 20 feet bgs. Reconnaissance groundwater sample B02-20190620 collected through temporary well screened from 10 feet to 20 feet. Borehole abandoned and backfilled with bentonite.	
-										
- 25										
-										
Drillin Drillin Sampl Hamm Total I Total V	g Co./ g Equ er Typ er Typ Boring Nell D	/Driller ipmen pe: pe/Wei g Depth epth:	: t: ght: 1:	ESN/Col Push pro Core bar 20 	le obe rrel plastic slev lbs fee fee	eve s et bgs et bgs	Well/Aug Well Scr Screen S Filter Pa Surface Annular	ger Dian reened li Slot Size ick Usec Seal: Seal:	neter: / inches Notes/Comments: nterval: feet bgs inches inches	
State \	Nell II	D No.:					Monume	ent Type		

So	SoundEarth Strategies Project: Project Nu Logged by Date Starte Surface Co Location N Location E Reviewed Date Comp						ber: : ditions: : : V: : : :	Duwam 1419-00 JSL 06/20/1 Gravel 207' S o 267' E o CJT 06/20/ ²	Borng Bo3 9 Site Address: 1801 South 93rd Street 9 Site Address: 1801 South 93rd Street 9 Site Address: 10 1 f parcel A NW corner Vater Depth At 1 Time of Drilling 10 19 Siter Depth
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)
0 - - - 5-			90	1.4	B03-05	×	SP SM		0.0-3.0 feet bgs: SAND with fine gravel, trace silt, gray, no hydrocarbon, moist (5-75-20). 3.0-8.0 feet bgs: Silty fine SAND, gray to black, no hydrocarbon odor, moist (15-85-0).
-			100	3.8	B03-10		SP		8.0-13.0 feet bgs: Fine SAND, trace silt, gray, no hydrocarbon odor, moist (5-95-0)
			90	3.0	B03-15		SP		13.0-20.0 feet bgs: Fine to medium SAND, trace silt, black, no hydrocarbon, wet (5-95-0).
20			90	1.8	B03-20				Boring terminated at 20 feet bgs. Borehole abandoned and backfilled with bentonite.
Drilling Drilling Sample Hamme Total B Total W State W	Equip Equip Type Type oring /ell De /ell ID	Driller: oment e: e/Weig Depth pth: No.:	: ght: ::	ESN/Col Push pro Core bar 20 	e obe rrel plastic slee lbs fee fee	eve s et bgs et bgs	Well/Au Well Screen Filter Pa Surface Annular Monume	ger Diam reened In Slot Size ack Used Seal: r Seal: r Seal: ent Type	neter: / inches Notes/Comments: interval: feet bgs : inches Page: 1 of 1

C		nd	Eau	R	Proje Proje Logg	ct: ct Num ed by:	ber:	Duwam 1419-0 JSL	ish Yacht Property)1	BORING LOG	B04 	
30	JU	IIU	Edi	ul2	Date	Started		06/20/1	9	Site Address: 1801	South 93rd S	Street
		51	rate	egies	Locat	tion N/S	:	134" N o	of parcel A SW corner	Water Depth	At	
					Locat	tion E/W	<i>I</i> :	252' E c	f parcel A SW corner	Time of Drillin	ng 12	feet bgs
					Revie	ewed by	: tod:	CJT	0	Water Depth After Comple	tion 11	5 feet bas
					Date		icu.	00/20/	Jithologic Descri			
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color, odd supplemental descriptors, estimated grai Field-estimated grain size distribu (% Fines - % Sand - % G	or, moisture, n size distribution) ion by volume ravel)		Well Detail/ Water Depth
0							sw		0.0-0.25 feet bgs: 3" of asphalt at su	irface.		
-			80	3.7	B04-05	x			0.25-5.0 feet bgs: SAND with fine gr gray, faint mothball odor around wo Numerous wood fragments and ro at 4.5' bgs.	avel, trace silt, bi od fragments (5- otlets. 2" piece c	rown to 80-15). of wood	
5							SP		5.0-6.0 feet bgs: Fine SAND, trace s	ilt, dark gray, no		
_	\setminus /			5.2			ML		6.0-7.0 feet bgs: SILT, black, no hyd (100-0-0).	rocarbon odor, n	noist	
-	$\left \right\rangle$		100				SP		7.0-10.0 feet bgs: Fine SAND, trace hydrocarbon odor, moist (5-95-0).	silt, gray, no		
10 —				3.2	B04-10		SP		10.0-14.0 feet bgs: Fine SAND, trace hydrocarbon odor, moist to wet (5-5	e silt, gray, no 5-0).		
- - 15 —			90	0.8	B04-15		SP		14.0-20.0 feet bgs: Fine to medium s gray to black, no hydrocarbon odor	SAND, trace silt, (, wet (5-95-0).	dark	
- 20	\mathbb{A}		80	17	B04-20				Boring terminated at 20 feet bgs. F groundwater sample B04-20190620 temporary well screened from 10 f abandoned, backfilled with benton asphalt.	econnaissance) collected throu set to 20 feet. Bo ite and sealed w	gh irehole ith	
Drillin	g Co./	Driller		ESN/Col	le		Well/Au	ger Dian	eter:/ inches	Notes/Comme	nts:	I
Drilling	g Equi	pment	:	Push pro	obe		Well Sc	reened li	iterval: feet bgs			
Sampl	er Typ	e:		Core bar	rrel plastic slee	eve	Screen	Slot Size	: inches			
Hamm	er Typ	e/Wei	ght:		lbs	s	Filter Pa	ack Used	:			
	Soring	Depth	:	20	fe	et bgs	Surface	Seal:				
State V	Vell D Nell IF	epth: No ·			fe	et bgs	Monum	ent Type			1 4	- 6 4
State	ven iL	/ NO.:					wonum	енк туре		Page:	1	of 1

Sc		nd	Ear	th	Proje Proje Logg	ct: ct Numi ed by:	ber:	Duwam 1419-0 JSL	ish Yacht Property D1	BORING LOG	B05 	
JU	JU		La		Date Surfa	Started:	ditions	06/19/1 Asphal	9	Site Address: 1801	South 93rd S	Street
		51	Idlt	eyres	Locat	ion N/S	:	75' S of	parcel C NW corner	Water Depth	At	
					Locat	ion E/M	<i>I</i> :	53' E of	parcel C NW corner	Time of Drillin	ng 11	feet bgs
					Revie	wed by	: ted:	CJT	0	Water Depth After Comple	tion	feet bas
					Date		ieu.	00/19/	Jithologic Descri			loor bgo
th gs)	val	ount	ery		Commis	ed	<u>σ 0</u>	j <u>c</u>	(ASTM texture, density, color, od	or, moisture,		Well Detail/
Dep: set b	nter	Ŭ ≷	%00	(ppm)	ID	amp alyz	irou mp	rapl	supplemental descriptors, estimated gra Field-estimated grain size distribu	n size distribution) ion by volume		Water Depth
(fe	-	Blo	Re			Ar S	ωý	G	(% Fines - % Sand - % G	ravel)		
0							014/		0.0-0.25 feet bgs: 3" of asphalt at su	irface.		
_	\setminus /						500		0.25-3.0 feet bgs: SAND with gravel	trace silt, gray to	, ,	
	\setminus								brown, no hydrocarbon odor, moist	(5-70-25).		
-	V								Concrete and asphalt debris, brick	fragments, and		
	Ň		90						charcoal.			
-	$ \rangle$						SP		3.0-6.0 feet bgs: Fine to medium SA	ND, trace silt, da	rk gray,	
-	$ \rangle$							•••••	no hydrocarbon odor, moist (5-95-0).		
	$ \rangle$											
5—	<u> </u>			0.9	B05-05	v						
	$ \ $			0.5	200 00	^						
-	\setminus /						ML		6.0-8.0 feet bgs: Sandy SILT, dark g	ray, no hydrocarl	oon	
_	\backslash								odor, moist (80-20-0).			
	X		90									
-	Λ						SP-SM		8.0-13.0 feet bos: Fine SAND with s	lt. grav. no hydro	carbon	
	$ \rangle$								odor, moist (10-90-0).	, g, ,,		
_	$ \rangle$											
10 —					505.40							
				1.6	B05-10	Х						
-	\setminus /											$\mathbf{\nabla}$
	Y		80									
	\wedge							••••				
	$ \rangle$						SP		13.0-20.0 feet bgs: Fine to medium in hydrocarbon odor, wet (5-95-0).	SAND, trace silt, I	olack,	
-	/											
15				1.8	B05-15							
10								•••••				
	\setminus /											
	\backslash											
-	V							•••••	Boring terminated at 20 feet bos	loconnaissanco		
-	\land		90						groundwater sample B05-2019061	ollected throu	gh	
	$ \rangle$								temporary well screened from 10 f abandoned, backfilled with benton	eet to 20 feet. Bo ite and sealed w	rehole ith	
-	$ \rangle$								asphalt.			
20	/			1.3	B05-20							
Drilling	g Co./	Driller		ESN/Co	e		Well/Au	ger Dian	inches	Notes/Commer	nts:	
Drilling	g Equi	ipment	:	Push pro	be		Well Sc	reened li	terval: feet bgs			
Sample	er Typ er Tyr	be: be/Wei	aht.	Core bar	rei plastic slee	eve	Screen	Slot Size	: inches			
Total E	Boring	Depth	9'''' I:	20	fee	, et bgs	Surface	Seal:	• •••			
Total V	Vell D	epth:			fee	et bgs	Annular	Seal:				
State V	Nell IC) No.:					Monum	ent Type		Page:	1	of 1

C		nd	Ear		Proje Proje Logg	ct: ct Numl ed by:	ber:	Duwarr 1419-0 JSL	ish Yacht Property)1	BORING LOG	B06 	
30	JU		Edl		Date : Surfa	Started:	: ditions [,]	06/19/1 Asphal	9	Site Address: 1801 Seattl	South 93rd S e. Washingto	Street
		51	Idlt	; y i e s	Locat	tion N/S	:	127' S o	parcel C NW corner	Water Depth	At	
					Locat Revie	tion E/W	/: :	40' E of CJT	parcel C NW corner	Water Depth	ng 9.5	teet bgs
					Date	Comple	ted:	06/19/	9	After Comple	tion	feet bgs
	H	nt	×			7		0	Lithologic Descri	otion		
Depth (feet bgs	Interva	Blow Cou	% Recover	PID (ppm)	Sample ID	Sample Analyzeo	Group Symbol	Graphi	supplemental descriptors, estimated gra Field-estimated grain size distribu (% Fines - % Sand - % C	in size distribution) tion by volume Gravel)		Well Detail/ Water Depth
0								RRRRR	0.0-0.25 feet bgs: 3" of asphalt at su	rface.		
-			90	10	R06.04	×	SM		0.25-4.0 feet bgs: Silty fine to mediu dark gray to black, no hydrocarbon wood fragments (15-80-5).	m SAND, trace gr odor, moist, occa	avel, sional	
- 5—				1.7	D00-04	^	SP		4.0-6.0 feet bgs: Fine to medium SA hydrocarbon odor, moist (5-95-0).	ND, trace silt, gra	y, no	
- - - 10			95	1.2	B06-09	x	SP-SM		6.0-12.0 feet bgs: Alternating layers medium SAND, trace silt, gray to bro odor, wet (100-0-0)/(5-95-0).	of SILT and fine t	o bon	\square
- - - 15			80	0.6	B06-15		SP		12.0-20.0 feet bgs: Fine to medium S hydrocarbon odor, wet (5-95-0).	GAND, trace silt, b	lack, no	
- - 20 Drillin; Sampl	g Co./ g Equi	Driller: pment be:	:	0.9 ESN/Col Push pro Core bai	B06-20 le obe rrel plastic sle	eve	Well/Au Well Sc Screen	ger Dian reened In Slot Size	Boring terminated at 20 feet bgs. B backfilled with bentonite and seale reter:/ inches tterval: feet bgs : inches	orehole abandor d with asphalt. Notes/Commen	ned, nts:	
Hamm	er Typ	oe/Wei	ght:		lbs	3	Filter Pa	ack Used	·			
Total E	Boring	Depth	1:	20	fee	et bgs	Surface	Seal:				
Total V	Vell D	epth:		-	fee	et bgs	Annular	Seal:				
State	veil IC) NO.:					Monum	ent lype		Page:	1	of 1

CoundEarth Droject: Project Numb Logged by:						ct: ct Num ed by:	ber:	Duwamish Yacht Property ar: 1419-001 JSL BORING B LOG			B07 	
Strategies Date Started: Surface Condi Location N/S:						Started ce Con tion N/S	: ditions: S:	06/19/1 Asphal 237' S o	9 f parcel C NW corner	Site Address: 1801 South 93rd Street Seattle, Washington Water Depth At		
					Locat Revie	tion E/V wed by	V: /:	94' E of CJT	parcel C NW corner	Time of Drillin	ng 9.5	feet bgs
					Date	Comple	eted:	06/19/	9	After Comple	tion 11	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Desc (ASTM texture, density, color, supplemental descriptors, estimated of Field-estimated grain size distr (% Fines - % Sand - %	ription odor, moisture, rain size distribution) oution by volume , Gravel)		Well Detail/ Water Depth
0							GP		0.0-0.25 feet bgs: 3" of asphalt at	surface.	/	
_	$\left \right\rangle$						SP-SM		hydrocarbon odor, moist (5-25-70		, no	
-	V		90	18.9					1.0-3.0 feet bgs: Fine to medium S dark gray, no hydrocarbon odor, i	AND with silt, trace noist (10-85-5).	gravel,	
-							ML		3.0-5.5 feet bgs: SILT, light gray, r (100-0-0).	o hydrocarbon odc	r, moist	-
5—				19.9	B07-05	x			2 piece of wood at 4 feet bys.			
-				1.2			SP		5.5-9.5 feet bgs: Fine SAND, trace hydrocarbon odor, moist (5-95-0).	silt, gray to brown,	no	
_			90	1.2								
10 —				0.7	B07-10	x	SP		9.5-10.5 feet bgs: Fine SAND, trac hydrocarbon odor, wet (5-95-0).	e silt, gray to browr	i, no	\Box
-							SP		10.5-15.0 feet bgs: Fine to mediun gray to black, no hydrocarbon od	SAND, trace silt, d or, wet (5-95-0).	ark	
-			80	13	B07-15							
15 —							SP		15.0-20.0 feet bgs: Fine to mediun gray to black, no hydrocarbon od	SAND, trace silt, d or, wet (5-95-0).	ark	
-			100						Boring terminated at 20 feet bgs. groundwater sample B07-201906 temporary well screened from 10 abandoned, backfilled with bento asphalt.	Reconnaissance 19 collected from feet to 20 feet. Bo nite and sealed wi	rehole th	
20 Drillin		/Drillor		1.9 ESN/Co	B07-20		Woll/A	der Diam	neter: inches	Notes/Commo	nts:	
Drilling	g Equ	ipment	t:	Push pro	obe		Well/Au	reened li	nterval: feet bg	s Notes/Comme		
Sampl	er Ty	pe:		Core ba	rrel plastic sle	eve	Screen	Slot Size	: inches			
Hamm	er Ty	pe/Wei	ght:		lbs	S	Filter Pa	ack Used	:			
Total B	⊐oring תוו⊿א	y Depth Jenth	1:	∠∪ 	fee	et bas	Surface	Seal:	-			
Total Well Depth: feet bgs State Well ID No.:				Monum	ent Type	:	Page:	1	of 1			

CoundCort Number Logged by:					Proje Proje Logge	ct: ct Num ed by:	ber:	Duwam 1419-0 JSL	ish Yacht Property)1	BORING B08 LOG		
JUUIIUEdI UI Date Started:				:	06/19/1	9	Site Address: 1801 South 93rd Street					
		St	rate	egies	Surfa Locat	ce Con tion N/S	ditions: S:	Asphal 406' S o	t f parcel C NW corner	Seattl	A+	on
					Locat	tion E/V	V:	132' E o	f parcel C NW corner	Time of Drillin	ng 9.5	feet bgs
					Revie	wed by	<i>ı</i> :	CJT		Water Depth		
				1	Date	Comple	eted:	06/19/	19	After Comple	tion 11.	.1 feet bgs
د (s	a	nnt	2			g, p	_	.O	Lithologic Descri (ASTM texture_density_color_od	otion or moisture		
epth et bg:	ervä	/ Col	% ovei	PID	Sample	mple Ilyze	dno	aphi	supplemental descriptors, estimated gra	n size distribution)		Well Detail/ Water Depth
(fee	Int	Blow	Rec	(ppm)	ID	Sal Ana	Syn	Ü	Field-estimated grain size distribu	tion by volume		
0									0.0.0.25 foot bas: 2" of conbalt at su	rfaco		
Ŭ							GP		0.25-2.0 feet bgs: S of asphalt at su	L. trace silt. grav	/	
-	\setminus								brown, no hydrocarbon odor, moist	(5-20-75).		
_	\backslash											
	Y		90				SP-SM		2.0-4.0 feet bgs: Fine to medium SA	ND with silt, trace	gravel, 5-5)	
-	\wedge										,.	
	$ \rangle$											
-	$/ \setminus$						ML		4.0-5.0 feet bgs: SILT, trace sand, da	rk gray, no hydro	ocarbon	
5-				1.6	B08-05	х			odor, moist (95-5-0).			
Ŭ							SM		5.0-9.0 feet bgs: Silty fine SAND, dat	k gray, no hydrod	carbon	
-	\setminus /											
	\setminus											
_	V											
	\land		90									
	$ \rangle$											
_												
	/						511		no hydrocarbon odor, moist to wet (10-90-0).	k gray,	\square
10 —				1.3	B08-10		SP-SM		10.0-15.0 feet bgs: Alternating layers	SILT and fine to		
_	\setminus /								medium SAND, trace silt, dark gray	o black, no hydro	ocarbon	_
	\setminus /								ouor, wet (100-0-0)/(0-00-0).			
_	\backslash											
	X		90									
-	\wedge											
_	/											
15 —				16.0	B08-15	Х						
							SP		15.0-20.0 feet bgs: Fine to medium S hydrocarbon odor, wet (5-95-0).	AND, trace silt, b	lack, no	
-	\setminus /											
	\backslash											
_	V		05									
_	Λ		95									
	$ \rangle$								Boring terminated at 20 feet bgs. R groundwater sample B08-20190619	econnaissance collected from		
-	/								temporary well screened from 10 fe	et to 20 feet. Bo	rehole	
20	$\langle \rangle$			0.8	B08-20				abandoned, backfilled with benton asphalt.	te and sealed wi	m	
Drillin	g Co./	Driller	:	ESN/Col	le		Well/Au	ger Dian	neter:/ inches	Notes/Commer	nts:	
Drilling	g Equi	pment	t:	Push pro	obe		Well Sc	reened l	nterval: feet bgs			
Sampl	er Typ)e:	abt:	Core bar	rrel plastic slee	eve	Screen	Slot Size	: inches			
Total E	er ryp Borina	Depth	ម្នារៈ: 1:	 20	ibs fee	et bas	Surface	Seal:				
Total V	Nell D	epth:			fee	et bgs	Annular	Seal:				
State V	Nell IC) No.:					Monum	ent Type	:	Page:	1	of 1

CoundCortics Project: Project Numb Logged by:					Proje Proje Logge	ber:	Duwam 1419-0 JSL	ish Yacht Property)1		BORING LOG	B09 		
JUUIIUEAI UI Date Started:				: ditional	06/20/19 Site			te Address: 1801 s	Address: 1801 South 93rd Street				
		51	lare	gres	Locat	ion N/S	:	252 N of	NW corner of DYC office building		Water Depth A	At	
					Locat	ion E/W	/: 	66' W of	NW corner of DYC office building		Time of Drillin	g 8.5	feet bgs
					Date	Comple	ted:	06/20/ [,]	9		After Complet	ion	feet bgs
		ht							Lithologic D	escript	ion		
Depth (feet bgs)	Interval	Blow Cour	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, co supplemental descriptors, estimat Field-estimated grain size d (% Fines - % Sanc	lor, odor ed grain listributio I - % Gra	, moisture, size distribution) on by volume avel)		Well Detail/ Water Depth
0							SP		0.0-0.25 feet bgs: 3" of asphalt	at surf	ace		
-			70						0.2-5.0 feet bgs: Fine SAND, tra gray layers, no hydrocarbon o	ace silt dor, mo	, alternating brov ist (5-95-0).	wn and	
5			90	1.2	B09-05	x	SP		5.0-9.0 feet bgs: Fine SAND, tra hydrocarbon odor, moist to we	ace silt et (5-95	, gray to brown, ⊧ ∙0).	no	$\nabla \overline{J}$
_									1" layer of silt at 8.5 feet bgs.				$\mathbf{\nabla}$
10 — -				1.6	B09-10	x	58		9.0-20.0 feet bgs: Fine to mean hydrocarbon odor, wet (5-95-0)	um sar).	ND, trace slit, no		
- - 15			80	1.4	B09-15				1" layer of silt at 12 feet bgs.				
			100	1.7	B09-20				Boring terminated at 20 feet b groundwater sample B09-2019 temporary well screened from abandoned, backfilled with be asphalt.	gs. Re 90620 d 1 10 fee entonite	connaissance collected from it to 20 feet. Bor e and sealed wit	ehole th	
Drilling	g Co./I	Oriller:		ESN/Col	e		Well/Au	ger Dian	eter:/ inch	nes	Notes/Commen	ts:	
Drilling	g Equi	pment	:	Push pro	be		Well Sc	reened li	terval: feel	t bgs	DYC: Duwamish	Yacht Club	
Hamm	er iyp er Tvn	e: e/Wei	aht:	Core bar	i ei piastič slee	eve S	Screen Filter P	alot Size	inci	ies			
Total E	Boring	Depth): :	20	fee	et bgs	Surface	Seal:	- 				
Total V	Vell De	epth:			fee	et bgs	Annular	r Seal:					
State V	Vell ID	No.:					Monum	ent Type			Page:	1	of 1

CoundCort Numb Logged by:				Duwamish Yacht Property 9 r: 1419-001 JSL		BORING B10 LOG		
JUUIIUEALUS Date Started:				06/20/ ⁻	19	Site Address: 1801 South 93rd Street		
5113	legies	Location N	/S:	74' N of	NW corner of DYC office building	Water Depth At		
		Location E	/W:	33' W o'	NW corner of DYC office building	Time of Drilling 9	feet bgs	
		Date Comp	oleted:	06/20/	19	After Completion	feet bgs	
					Lithologic Descri	ption		
Depth (feet bgs) Interval Blow Court	PID (ppm)	Sample ID Sample	Group	Graphic	(ASTM texture, density, color, od supplemental descriptors, estimated gra Field-estimated grain size distribu (% Fines - % Sand - % C	or, moisture, in size distribution) ition by volume Gravel)	Well Detail/ Water Depth	
0			sw		0.0-0.2 feet bgs: 2" of asphalt at sur	face		
_\ /					0.2-1.5 feet bgs: SAND with gravel, t no hydrocarbon odor, moist (5-75-2	trace silt, brown to tan, 0).		
			SP		1.5-5.0 feet bgs: Fine SAND, trace si hydrocarbon odor, moist, occasiona	ilt, brown to black, no al organics/rootlets		
-	D				(5-95-0).			
5	3.8	B10-05 X	SP		Sand grades from brown to black a 5.0-10.0 feet bos: Fine SAND, trace	at 4.5 feet bgs. silt. brown to black to		
_\ /					gray, no hydrocarbon odor, moist to	o wet (5-95-0).		
70	0							
_/ \							\square	
10								
	1.6	B10-10 X	SM		10.0-12.5 feet bgs: Silty fine SAND, hydrocarbon odor, wet (15-85-0).	black to gray, no		
- V								
9	0		SP		12.5-20.0 feet bgs: Fine to medium S	SAND, trace silt and		
						wet (0-00-0),		
	1.3	B10-15						
15								
\setminus /								
- V								
	0							
					Boring terminated at 20 feet bgs. B	Borehole abandoned,		
-/ \					backlined with bentonite and seale	o with asphalt.		
20	1.9	B10-20				1		
Drilling Co./Driller:	ESN/Co	le	Well/Au	uger Diar	neter:/ inches	Notes/Comments:		
Sampler Type	Pusn pro	rrel plastic sleeve	Screen	Slot Size	nterval: Teet bgs	DYC: Duwamish Yacht Club)	
Hammer Type/Weight		lhs	Filter P	ack User				
Total Boring Depth:	20	feet bas	Surface	e Seal:				
Total Well Depth:		feet bas	Annula	r Seal:				
State Well ID No.:			Monum	ent Type	::	Page: 1	of 1	

SoundEarth Strategies Project: Project Numbe Logged by: Date Started: Surface Condi Location N/S: Location E/W: Reviewed by:				ct: ct Numb ed by: Started: ce Conc ion N/S ion E/W ewed by Comple	ber: ditions: : /: : ted:	Duwamish Yacht Property ∴ 1419-001 JSL 06/20/19 ions: Asphalt 132' S of SE corner of DYC office building 4' E of SE corner of DYC office building CJT d: 06/20/19 BORING LOG Site Address: 1801 So Seattle, ' Water Depth At Time of Drilling Vater Depth After Completio			
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)
			60				SP		0.0-0.5 feet bgs: .5" of asphalt and gravel at surface 0.5-5.0 feet bgs: Fine to medium SAND, trace gravel and silt, brown to gray, no hydrocarbon odor, moist, occasional organics/rootlets (5-90-5).
5			70	5.0	B11-05	x	SP		 5.0-10.0 feet bgs: SAND, trace gravel and silt, brown, no hydrocarbon odor, moist to wet, occasional wood debris (5-90-5). 2" piece of gravel at 7 feet bgs.
10 - - -				2.3	B11-10		SP		3" piece of wood at 9.5 feet bgs. 10.0-12.5 feet bgs: Fine to medium SAND, trace silt, brown, no hydrocarbon odor, wet (5-95-0).
- - 15			80	2.5	B11-15		SM		12.5-16.0 feet bgs: Silty SAND, dark gray to black, no hydrocarbon odor, wet, occasional wood debris (20-80-0).
-			80				SM ML		 16.0-17.5 feet bgs: Silty SAND, black, no hydrocarbon odor, wet, numerous organics (20-80-0). 17.5-20.0 feet bgs: SILT, brown to green-gray, no hydrocarbon odor, wet, streaks of black organic material (100-0-0). Boring terminated at 20 feet bgs. Borehole abandoned, backfilled with bentonite and sealed with asphalt.
20 Drilling Sample Hamme Total B Total V State V	J Co./[J Equi F Typ Typ or Typ oring Vell De Vell ID	Driller: pment e: pe/Weių Depth pth: No.:	: :: ght: 1:	1.9 ESN/Col Push pro Core bar 20 	B11-20 e bbe rel plastic slee lbs fee fee	≥ve s st bgs st bgs	Well/Au Well Sci Screen Filter Pa Surface Annular Monum	ger Dian reened In Slot Size ack Used Seal: r Seal: r Seal: ent Type	Interval: / inches nterval: feet bgs inches inches DYC: Duwamish Yacht Club I:

Project: Project Numb Logged by:				ber:	Duwan 1419-0 JSL	nish Yacht Property 01	BORING B12 LOG					
Strategies Date Started: Strategies					Date Surfa	Started ce Con tion N/S	: ditions: S:	06/20/19 tions: Gravel 252' S of SE corner of DYC office building		Site Address: 1801 Seattle	South 93rd S e, Washingto At 	itreet
					Revie	wed by	v: /:	CJT	E corner of DYC onice building	Water Depth	g old	1001 bg5
				<u> </u>	Date	Comple	eted:	06/20/	19		10n 11	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color, od supplemental descriptors, estimated gra Field-estimated grain size distribu (% Fines - % Sand - % C	or, moisture, in size distribution) tion by volume Gravel)		Well Detail/ Water Depth
0							SM		0.0-1.0 feet bgs: SAND with gravel, t no hydrocarbon odor, moist (5-75-2	race silt, gray to k)).	vrown,	
			60	1.6	B12-05		SP		1.0-5.0 feet bgs: Fine to medium SA brown, no hydrocarbon odor, moist	ND, trace gravel a (5-90-5).	nd silt,	
			60				SP-SM		5.0-10.0 feet bgs: Fine to medium S/ inclusions of gray silt, brown, no hy wet (10-90-0).	ND with small drocarbon odor, r	noist to	
10— - - -			50	1.0	B12-10	X	SP		10.0-15.0 feet bgs: Fine to medium S mothball-like odor, wet (5-95-0). 2" layer of angular to subangular fi bgs. 4" piece of wood with moderate my	AND, trace silt, b ne gravel at 12 fe	rown, eet	
15 — - - -			0	4.8	B12-15	x			Boring terminated at 20 feet bgs. R groundwater sample B12-20190620 temporary well screened from 10 fe abandoned and backfilled with ber	econnaissance collected from et to 20 feet. Boi tonite.	rehole	
20 Drillin	g Co./	Driller	:	ESN/Co!	l le		Well/Au	ger Diar	I neter:/ inches	Notes/Commer	its:	
Drilling	g Equi	pment	t:	Push pro	obe		Well Sci	reened I	nterval: feet bgs	DYC: Duwamish	Yacht Club	J
Sampl	er lyp)e: /\//~:	aht.	Core bar	rei piastic slee	eve	Screen	SIOT SIZE	e: inches			
Total F	Borina	Denth	ցու. ነ:	 20	IDS fei	et bas	Surface	Seal:				
Total V	Nell D	epth:			fer	et bas	Annular	Seal:				
I otal Well Depth: feet bgs State Well ID No.:			Monum	Annuiar Seai: Monument Type: Page:								

ATTACHMENT E LABORATORY ANALYTICAL REPORTS

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 1, 2019

Travis Zandi, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Zandi:

Included are the results from the testing of material submitted on June 21, 2019 from the SOU_1419-001_ 20190621, F&BI 906443 project. There are 45 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jonathan Loeffler SOU0701R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 21, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1419-001_ 20190621, F&BI 906443 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906443 -01	B08-20190619
906443 -02	B07-20190619
906443 -03	B05-20190619
906443 -04	B04-20190620
906443 -05	B02-20190620
906443 -06	B01-20190620
906443 -07	B12-20190620
906443 -08	B09-20190620

A 6020A internal standard failed the acceptance criteria for samples B08-20190619 and B07-20190619. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

Lead in the 6020A matrix spike and matrix spike duplicate failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

All other quality control requirements were acceptable.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443 Date Extracted: 06/24/19 Date Analyzed: 06/24/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
B07-20190619 906443-02	<100	85
$\underset{906443\cdot03}{B05\text{-}20190619}$	<100	84
Method Blank	<100	118
ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443 Date Extracted: 06/24/19 Date Analyzed: 06/24/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
B08-20190619 906443-01	<1	<1	<1	<3	<100	89
B04-20190620 906443-04	<1	<1	<1	<3	<100	83
B02-20190620 906443-05	<1	<1	<1	<3	<100	82
B01-20190620 906443-06	<1	<1	<1	<3	<100	84
B12-20190620 906443-07	<1	<1	<1	<3	200	86
B09-20190620 906443-08	<1	<1	<1	<3	<100	88
Method Blank ^{09-1413 MB}	<1	<1	<1	<3	<100	116

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443 Date Extracted: 06/24/19 Date Analyzed: 06/24/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
$\underset{906443\cdot01}{B0820190619}$	120 x	<250	107
B07-20190619 906443-02	190 x	<250	100
$\underset{906443\cdot03}{B05\text{-}20190619}$	100 x	<250	95
B04-20190620 906443-04	320 x	<250	106
B02-20190620 906443-05	<50	<250	ip
B01-20190620 906443-06	130 x	<250	103
B12-20190620 906443-07	2,200 x	<250	ip
B09-20190620 906443-08	140 x	<250	110
Method Blank	<50	<250	118

 $09\text{-}1478\ \mathrm{MB}$

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B08-20190619 06/21/19 06/24/19 06/24/19 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906443-01 906443-01.129 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	11.2		
Cadmium	<1		
Chromium	$23.2 \mathrm{J}$		
Lead	3.96		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received:	B08-20190619 06/21/19	Client: Project:	SoundEarth Strategies SOU 1419-001 20190621
Date Extracted:	06/24/19	Lab ID:	906443-01 x10
Date Analyzed:	06/25/19	Data File:	906443-01 x 10.059
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Chromium	27.7		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-20190619 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-02 906443-02.130 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	8.67		
Cadmium	<1		
Chromium	$11.2 \mathrm{~J}$		
Lead	1.87		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B07-20190619	Client:	SoundEarth Strategies
Date Received:	06/21/19	Project:	SOU_1419-001_ 20190621
Date Extracted:	06/24/19	Lab ID:	906443-02 x10
Date Analyzed:	06/25/19	Data File:	906443-02 x10.060
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Chromium	13.9		

8

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-20190619 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-03 906443-03.131 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	30.6		
Cadmium	<1		
Chromium	5.85		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-04 906443-04.142 ICPMS2 SP
Onits.	ug/L (ppb)	Operator.	DI .
Analyte:	Concentration ug/L (ppb)		
Arsenic	18.1		
Cadmium	<1		
Chromium	12.3		
Lead	1.31		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Unito:	B02-20190620 06/21/19 06/24/19 06/24/19 Water	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-05 906443-05.143 ICPMS2 SP
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	17.6		
Cadmium	1.06		
Chromium	36.9		
Lead	21.0		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-06 906443-06.144 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	7.40		
Cadmium	<1		
Chromium	11.6		
Lead	1.66		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-07 906443-07.145 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	7.47		
Cadmium	<1		
Chromium	11.7		
Lead	13.9		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-08 906443-08.146 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	9.01		
Cadmium	<1		
Chromium	12.0		
Lead	1.35		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 I9-389 mb I9-389 mb.189 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B07-201906	519	Client:	SoundEarth Strategie	es
Date Received:	06/21/19		Project:	SOU 1419-001 2019	0621
Date Extracted:	06/24/19		Lab ID:	906443-02	
Date Analyzed:	06/24/19		Data File:	062411.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator :	MS/AEN	
	0 01 /		- T	тт	
C		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:		Limit:	
1,2-Dichloroethane	·d4	99	07	121	
Toluene-d8		95	63	127	
4-Bromofluorobenze	ene	95	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
-	1		1 0 D' 1	1	
Dichlorodifluorome	thane	<[1,3-Dich	loropropane	<[
		<10	1 etrachi	oroetnene	<[
Vinyl chloride		<0.2	Dibromo	chloromethane	<[
Bromomethane		<[1,2-Dibr	omoethane (EDB)	<[
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-1	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<1	o-Xylene		<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<1
1,1-Dichloroethane		<1	n-Propyl	lbenzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-T	etrachloroethane	<1
2-Butanone (MEK)		<10	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	<1	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B05-201906	619	Client:	SoundEarth Strategie	es
Date Received:	06/21/19		Project:	SOU_1419-001_ 2019	0621
Date Extracted:	06/24/19		Lab ID:	906443-03	
Date Analyzed:	06/24/19		Data File:	062412.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	MS/AEN	
			Lowor	Uppor	
Surrogates		% Recovery	Limit.	Limit.	
1 2-Dichloroethane	d4	100	57	121	
Toluene-d8	u-i	98	63	121	
4-Bromofluorobenze	ene	98 97	60	133	
	5110			100	a
a 1		Concentration	a		Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	ochloromethane	<1
Bromomethane		<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-T	Cetrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<1	o-Xylene	9	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1	Isopropy	vlbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<1
1,1-Dichloroethane		<1	n-Propyl	lbenzene	<1
2,2-Dichloropropan	е	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-T	Cetrachloroethane	<1
2-Butanone (MEK)		<10	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	Э	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	е	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	oene	<1	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Bla	nk	Client:	SoundEarth Strategie	es
Date Received:	Not Applica	ble	Project:	SOU 1419-001 2019	0621
Date Extracted:	06/24/19		Lab ID:	09-1494 mb	
Date Analyzed:	06/24/19		Data File:	062410.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator :	MS/AEN	
	0 11 /		- T	тт	
C		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:		Limit:	
1,2-Dichloroethane	-04	100	07 C2	121	
1 oluene-08		98	63	127	
4-Bromofluorobenze	ene	97	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
$D'_{1} = 1^{2} - 1^{$	41	-1	1.9 D'.1	1	-1
Ohlessethese	tnane	<10	1,3-Dich	loropropane	<1
		<10	1 etrachi	loroetnene	<1
Vinyl chloride		<0.2	Dibromo	chloromethane	<[
Bromomethane		<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-1	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<1	o-Xylene))	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	orm	<1
1,1-Dichloroethane		<1	n-Propy	lbenzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-1	Cetrachloroethane	<1
2-Butanone (MEK)		<10	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	е	<1	tert-But	ylbenzene	<1
Carbon tetrachloric	le	<1	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	<1	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	519	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-01 1/2 062612.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 90	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		<0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	519	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-02 1/2 062613.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 94 98	Lower Limit: 31 25	Upper Limit: 160 165
Company day		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	319	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-03 1/2 062614.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	ə-d12	% Recovery: 90 96	Lower Limit: 31 25	Upper Limit: 160 165
Company day		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	320	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-04 1/2 062615.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	ə-d12	% Recovery: 87 95	Lower Limit: 31 25	Upper Limit: 160 165
Compounda		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		0.066		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	320	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-05 1/2 062616.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 88 92	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration		
Compounds.		ug/L (ppb)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-06 1/2 062617.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 93	Lower Limit: 31 25	Upper Limit: 160 165
Compoundor		Concentration		
Compounds:		ug/L (ppp)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-07 1/2 062618.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 88 62	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ene ene	$\begin{array}{c} 220 \text{ ve} \\ 0.63 \\ 130 \text{ ve} \\ 59 \text{ ve} \\ 72 \text{ ve} \\ 9.5 \\ 28 \text{ ve} \\ 21 \text{ ve} \\ 2.0 \\ 1.5 \\ 0.40 \\ 0.60 \\ 0.19 \\ 0.066 \\ < 0.04 \end{array}$		
Benzo(g,h,i)perylen	e	0.048		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-201906 06/21/19 06/25/19 06/27/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-07 1/200 062706.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 64 d 46 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		230		
Acenaphthylene		<4		
Acenaphthene		130		
Fluorene		55		
Phenanthrene		72		
Anthracene		5.2		
Fluoranthene		24		
Pyrene		19		
Benz(a)anthracene		<4		
Chrysene		<4		
Benzo(a)pyrene		<4		
Benzo(b)fluoranthe	ne	<4		
Benzo(k)fluoranthe	ne	<4		
Indeno(1,2,3-cd)pyr	ene	<4		
Dibenz(a,h)anthrac	ene	<4		
Benzo(g,h,i)perylen	e	<4		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-201906 06/21/19 06/25/19 06/26/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-08 1/2 062619.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	ə-d12	% Recovery: 91 96	Lower Limit: 31 25	Upper Limit: 160 165
Compoundat		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.4		
Acenaphthylene		< 0.04		
Acenaphthene		< 0.04		
Fluorene		< 0.04		
Phenanthrene		< 0.04		
Anthracene		< 0.04		
Fluoranthene		< 0.04		
Pyrene		< 0.04		
Benz(a)anthracene		< 0.04		
Chrysene		< 0.04		
Benzo(a)pyrene		< 0.04		
Benzo(b)fluoranthe	ne	< 0.04		
Benzo(k)fluoranthe	ne	< 0.04		
Indeno(1,2,3-cd)pyr	ene	< 0.04		
Dibenz(a,h)anthrac	ene	< 0.04		
Benzo(g,h,i)perylen	e	< 0.04		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/25/19 06/26/19 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 09-1481 mb2 062606.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 83 94	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.2		
Acenaphthylene		< 0.02		
Acenaphthene		< 0.02		
Fluorene		< 0.02		
Phenanthrene		< 0.02		
Anthracene		< 0.02		
Fluoranthene		< 0.02		
Pyrene		< 0.02		
Benz(a)anthracene		< 0.02		
Chrysene		< 0.02		
Benzo(a)pyrene		< 0.02		
Benzo(b)fluoranthe	ne	< 0.02		
Benzo(k)fluoranthe	ne	< 0.02		
Indeno(1,2,3-cd)pyr	rene	< 0.02		
Dibenz(a,h)anthrac	ene	< 0.02		
Benzo(g,h,i)perylen	e	< 0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-01 062425.D GC9 IJL
Surrogates: TCMX		% Recovery: 55	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	319	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-02 062426.D GC9 IJL
Surrogates: TCMX		% Recovery: 67	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		<0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	19	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906443-03 062427.D GC9 IJL
Surrogates: TCMX		% Recovery: 65	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-04 062428.D GC9 IJL
Surrogates: TCMX	% Recover 46	y: Lower 27	Upper Limit: 106
Compounds:	Concentrat ug/L (ppb	ion)	
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-20190620 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-05 062429.D GC9 IJL
Surrogates: TCMX	% Recov 21 ip	ery: Lower 27	Upper Limit: 106
Compounds:	Concentr ug/L (p	ation pb)	
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-06 062430.D GC9 IJL
Surrogates: TCMX		% Recovery: 60	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	20	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-07 062431.D GC9 IJL
Surrogates: TCMX		% Recovery: 53	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		<0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-201906 06/21/19 06/24/19 06/24/19 Water ug/L (ppb)	320	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906443-08 062432.D GC9 IJL
Surrogates: TCMX		% Recovery: 59	Lower Limit: 27	Upper Limit: 106
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		< 0.1		
Aroclor 1232		< 0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		< 0.1		
Aroclor 1248		< 0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		< 0.1		
Aroclor 1262		< 0.1		
Aroclor 1268		<0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_1419-001_ 20190621
Date Extracted:	06/24/19	Lab ID:	09-1477 mb 1/0.5
Date Analyzed:	06/24/19	Data File:	062406.D
Matrix:	Water	Instrument:	GC9
Units:	ug/L (ppb)	Operator:	VM
		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	65	27	106
	Concentration		
Compounds:	ug/L (ppb)		
Aroclor 1221	< 0.01		
Aroclor 1232	< 0.01		
Aroclor 1016	< 0.01		
Aroclor 1242	< 0.01		
Aroclor 1248	< 0.01		
Aroclor 1254	< 0.01		
Aroclor 1260	< 0.01		
Aroclor 1262	< 0.01		
Aroclor 1268	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906187-15 (Duplicate) Reporting Sample Duplicate

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	110	nm

Laboratory Code: Laboratory Control Sample

		Percent	ent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	109	65-118
Toluene	ug/L (ppb)	50	113	72 - 122
Ethylbenzene	ug/L (ppb)	50	117	73 - 126
Xylenes	ug/L (ppb)	150	113	74-118
Gasoline	ug/L (ppb)	1,000	89	69 - 134
ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	104	58 - 134	8

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906443-03 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	30.6	90	96	75-125	6
Cadmium	ug/L (ppb)	5	<1	95	100	75-125	5
Chromium	ug/L (ppb)	20	5.85	97	101	75 - 125	4
Lead	ug/L (ppb)	10	<1	72 vo	74 vo	75 - 125	3
Mercury	ug/L (ppb)	5	<1	76	80	75 - 125	5

Laboratory Code: Laboratory Control Sample

			P	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	97	80-120
Cadmium	ug/L (ppb)	5	94	80-120
Chromium	ug/L (ppb)	20	98	80-120
Lead	ug/L (ppb)	10	101	80-120
Mercury	ug/L (ppb)	5	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Percent

Laboratory Code: 906443-03 (Matrix Spike)

	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	101	10-172
Chloromethane	ug/L (ppb)	50	<10	92	25-166
Vinyl chloride	ug/L (ppb)	50	<0.2	102	36-166
Bromomethane	ug/L (ppb)	50	<1	99	47-169
Trichlorofluoromothono	ug/L (ppb)	50	<1	98	46-160
Acetone	ug/L (ppb)	250	<50	55	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	101	60-136
Hexane	ug/L (ppb)	50	<1	102	52 - 150
Methylene chloride	ug/L (ppb)	50	<5	100	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	72-129
2 2-Dichloropropage	ug/L (ppb)	50	<1	101	36-154
cis-1.2-Dichloroethene	ug/L (ppb)	50	<1	105	71-127
Chloroform	ug/L (ppb)	50	<1	101	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	77	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	104	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	102	69-133 EC 159
Benzene	ug/L (ppb)	50	<0.35	105	76-125
Trichloroethene	ug/L (ppb)	50	<1	98	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	99	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	101	61-150
Dibromomethane	ug/L (ppb)	50	<1	105	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	109	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	104	72-132
trans-1 3-Dichloropropene	ug/L (ppb)	50	<1	94 100	76-122
1.1.2-Trichloroethane	ug/L (ppb)	50	<1	103	68-131
2-Hexanone	ug/L (ppb)	250	<10	100	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	102	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	101	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	104	70-139
1,2-Dibromoethane (EDB) Chlorohonzono	ug/L (ppb)	50 50	<1	103	69-134 77-199
Ethylbenzene	ug/L (ppb)	50	<1	99	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	108	73-137
m,p-Xylene	ug/L (ppb)	100	<2	101	69-135
o-Xylene	ug/L (ppb)	50	<1	100	60-140
Styrene	ug/L (ppb)	50	<1	103	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	102	65-142
n-Pronylhenzene	ug/L (ppb)	50	<1	104	58-144
Bromobenzene	ug/L (ppb)	50	<1	102	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	103	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	108	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	104	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	101	66-127
4-Uniorotoluene tort-Butylbonzono	ug/L (ppb)	50 50	<1	101	65-130 65-137
1 2 4-Trimethylbenzene	ug/L (ppb)	50	<1	102	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	102	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	103	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	103	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50 50	<1	102	69-128 22 164
1.2.4-Trichlorobenzene	ug/L (ppb)	50 50	<10	105	02-104 66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	102	60-143
Naphthalene	ug/L (ppb)	50	<1	108	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	106	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recoverv	Recoverv	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	111	105	25-158	6
Chloromethane	ug/L (ppb)	50	105	100	45-156	5
Vinyl chloride	ug/L (ppb)	50	116	108	50 - 154	7
Bromomethane	ug/L (ppb)	50	108	103	55-143	5
Chloroethane	ug/L (ppb)	50	108	103	58-146	5
Trichlorofluoromethane	ug/L (ppb)	250	114	110	50-150	4
1 1-Dichloroothono	ug/L (ppb)	250	58 107	109	67-136	5
Hexane	ug/L (ppb)	50	104	106	57-137	2
Methylene chloride	ug/L (ppb)	50	104	103	39-148	5
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	111	106	64-147	5
trans-1,2-Dichloroethene	ug/L (ppb)	50	110	105	68-128	5
1,1-Dichloroethane	ug/L (ppb)	50	106	104	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	126	120	55-143	5
cis-1,2-Dichloroethene	ug/L (ppb)	50	110	107	80-123	3
Chloroform	ug/L (ppb)	50	105	104	80-121	1
2-Butanone (MEK) 1.2 Dishlaroothana (FDC)	ug/L (ppb)	250	11	100	07-149 79 199	3 9
1.1.1.Trichloroethane	ug/L (ppb)	50	109	100	81.125	2
1.1-Dichloropropene	ug/L (ppb)	50	103	104	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	109	106	75-158	3
Benzene	ug/L (ppb)	50	100	101	69-134	1
Trichloroethene	ug/L (ppb)	50	97	100	79-113	3
1,2-Dichloropropane	ug/L (ppb)	50	98	102	77-123	4
Bromodichloromethane	ug/L (ppb)	50	101	104	81-133	3
Dibromomethane	ug/L (ppb)	50	104	106	82-125	2
4-Metnyl-2-pentanone	ug/L (ppb)	250	105	106	60-138 89-139	1
Toluene	ug/L (ppb)	50	96	98	72-122	2
trans-1.3-Dichloropropene	ug/L (ppb)	50	100	107	80-136	7
1,1,2-Trichloroethane	ug/L (ppb)	50	100	104	75-124	4
2-Hexanone	ug/L (ppb)	250	94	100	60-136	6
1,3-Dichloropropane	ug/L (ppb)	50	98	102	76-126	4
Tetrachloroethene	ug/L (ppb)	50	105	106	76-121	1
Dibromochloromethane	ug/L (ppb)	50	105	109	84-133	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	98 109	104	82-115	6
Ethylhenzene	ug/L (ppb)	50	101	103	77.124	2
1.1.1.2-Tetrachloroethane	ug/L (ppb)	50	115	113	84-127	2
m,p-Xylene	ug/L (ppb)	100	102	104	81-112	2
o-Xylene	ug/L (ppb)	50	106	105	81-121	1
Styrene	ug/L (ppb)	50	103	106	84-119	3
Isopropylbenzene	ug/L (ppb)	50	109	107	80-117	2
Bromoform	ug/L (ppb)	50	109	112	74-136	3
n-Propylbenzene Bromohonzono	ug/L (ppb)	50 50	106	106	74-126	0
1 3 5-Trimethylbenzene	ug/L (ppb)	50	110	105	78-123	23
1 1 2 2-Tetrachloroethane	ug/L (ppb)	50	111	111	66-126	0
1,2,3-Trichloropropane	ug/L (ppb)	50	105	106	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	107	106	77-127	1
4-Chlorotoluene	ug/L (ppb)	50	103	105	78-128	2
tert-Butylbenzene	ug/L (ppb)	50	109	107	80-123	2
1,2,4-Trimethylbenzene	ug/L (ppb)	50	109	107	79-122	2
sec-Butylbenzene	ug/L (ppb)	50 50	110	108	80-116	2
1 3-Dichlorohonzono	ug/L (ppb)	50	105	108	01-125 83-113	2
1.4-Dichlorobenzene	ug/L (ppb)	50	100	101	83-107	1
1,2-Dichlorobenzene	ug/L (ppb)	50	108	106	84-112	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	121	114	57-141	6
1,2,4-Trichlorobenzene	ug/L (ppb)	50	118	112	72-130	5
Hexachlorobutadiene	ug/L (ppb)	50	115	109	53-141	5
Naphthalene	ug/L (ppb)	50	123	115	64-133	7
1,2,3-Trichlorobenzene	ug/L (ppb)	50	120	111	65-136	8

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/0.25

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	66	66	57 - 114	0
Acenaphthylene	ug/L (ppb)	1	71	73	65 - 119	3
Acenaphthene	ug/L (ppb)	1	72	73	66-118	1
Fluorene	ug/L (ppb)	1	74	77	64 - 125	4
Phenanthrene	ug/L (ppb)	1	77	79	67-120	3
Anthracene	ug/L (ppb)	1	81	84	65 - 122	4
Fluoranthene	ug/L (ppb)	1	86	90	65 - 127	5
Pyrene	ug/L (ppb)	1	78	80	62-130	3
Benz(a)anthracene	ug/L (ppb)	1	84	87	60-118	4
Chrysene	ug/L (ppb)	1	82	84	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	90	94	55 - 135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	81	85	62 - 125	5
Benzo(a)pyrene	ug/L (ppb)	1	84	87	58 - 127	4
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	77	81	36 - 142	5
Dibenz(a,h)anthracene	ug/L (ppb)	1	71	79	37-133	11
Benzo(g,h,i)perylene	ug/L (ppb)	1	70	74	34 - 135	6

ENVIRONMENTAL CHEMISTS

Date of Report: 07/01/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample 1/0.5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.13	65	64	25 - 165	2
Aroclor 1260	ug/L (ppb)	0.13	73	74	25 - 163	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

an6443				SAA	APLE CHA	IN OF C	USTC	DY	NE	06-	21-	19	,	AIS	-/ 1.BK	
Send Report To Travis Zand	li; Jonathan I	Loeffler		SA	MPLERS (sign	atural,	$\overline{\boldsymbol{z}}$	-						age # TL		
Company <u>SoundEarth Stra</u>	tegies, Inc.			PR	PROJECT NAME/NO.					PO #			Stando	ard (2 Wee	kst	
Address 2811 Fairview Avenue East, Suite 2000 City, State, ZIP <u>Seattle, Washington 98102</u> Phone # <u>(206) 306-1900</u> Fax # <u>(206) 306-1907</u>			-	DUWAM		í prof	ERTY					Ru	RUSH Rush charges authorized by:			
			_ RE	MARKS	1419-00	1						SAMPLE DISPOSAL				
						1 7			ĞĔ	MS Y ,	/ N	- 1	Dispose Return Will cal	e after 30 - samples I with instr	days uctions	
	<u>`</u>			· ·	······		*****	T					· L a		1	
Sample ID	Sample Location	Sample Depih	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by WWTPH-GX	PH/ORPH by VWTPH-Dx	Cs by 8260C	Bs by 8082A	Hs by 8270D	CA 5 Metals	HOLD WOLD	porte clulifa ac	Notes
	•					- / -			D.	٥Ņ	5	PA	E I	9767		
808-20190619	BOB		GIA +	16/19/19	1100	WATER	8	Χ.	×		×	X	×	8	1	
B07-20190619	B07	·	12A+	6/19/19	1230	WATER	11	X	×	×	Х.	X	×		1	······································
BO5-20190619	BO 5		03 T	6/19/19	1455	WATER	11	×	· 🗡	X	×	X	X	1	Bc5-	201906
B04-20190620	B04		OYA-H	6/20/19	0920	WATER	8	X	×		×	×	×	8		
BOZ-20190620	B02		15 T	6/20/19	1030	WATER	8	×	×		×	×	×	10	(m)	me Tz
BO1-20190620	BOI		06	6/20/19	1130	WATER	8	×	×	{		X	×	10	L/2	HE AF
312-20190620	BIZ		07	6/20/19	1320	WATER	8	×	X		*	X	X	$\overline{\mathbb{Q}}$		<u>ur na</u>
509-20190620	BA		68	6/20/19	1640	WATER	8	\mathbf{X}	\times		X	*	×	Ø		
						A							Ĺ			
						+#	·	61	20/	9		- <i>i</i>		•	· ·	•
1						~-0			î		·		San	ples	receive	d at 2
· •	<u> </u>											-		1		
													į	,		
riedman & Bruya, Inc.		SIGNAT	URE	~		PRINT	NAME		,		C	OMPÁ	NY		DATE	TIME
012 16th Avenue West	Relinquished	by Son	72		JONA	THAN	Lot	FFL	EL	S	$\phi_{\mathcal{N}}$	DEA	RTH	í (6/21/19	ngu
eattle, WA 98119-2029	Received by	r. bah	~		Anda		<u></u>		, F.		260	6×			halastia	194
'h. (206) 285-8282 .	Relinquished	d by:						:							<u></u>	
ax (206) 283-5044	Received by	MM	um	v	Nhai	n ph	ún	· · · · ·		Fr	BJ	-			6/21/19	1030

ú. -----

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 3, 2019

Travis Zandi, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Zandi:

Included are the results from the testing of material submitted on June 21, 2019 from the SOU_1419-001_ 20190621, F&BI 906444 project. There are 93 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jonathan Loeffler SOU0703R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 21, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1419-001_ 20190621, F&BI 906444 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906444 -01	B08-05
906444 -02	B08-10
906444 -03	B08-15
906444 -04	B08-20
906444 -05	B07-05
906444 -06	B07-10
906444 -07	B07-15
906444 -08	B07-20
906444 -09	B06-04
906444 -10	B06-09
906444 -11	B06-15
906444 -12	B06-20
906444 -13	B05-05
906444 -14	B05-10
906444 -15	B05-15
906444 -16	B05-20
906444 -17	B04-05
906444 -18	B04-10
906444 -19	B04-15
906444 -20	B04-20
906444 -21	B02-05
906444 -22	B02-10
906444 -23	B02-15
906444 -24	B02-20
906444 -25	B01-05
906444 -26	B01-10
906444 -27	B01-15
906444 -28	B01-20
906444 -29	B03-05
906444 -30	B03-10
906444 -31	B03-15
906444 -32	B03-20
906444 -33	B12-05
906444 -34	B12-10
906444 -35	B12-15

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (Continued)

<u>Laboratory ID</u>	SoundEarth Strategies
906444 -36	B11-05
906444 -37	B11-10
906444 -38	B11-15
906444 -39	B11-20
906444 -40	B10-05
906444 - 41	B10-10
906444 -42	B10-15
906444 -43	B10-20
906444 -44	B09-05
906444 - 45	B09-10
906444 -46	B09-15
906444 - 47	B09-20

A 6020B internal standard failed the acceptance criteria for several samples. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444 Date Extracted: 06/25/19 Date Analyzed: 06/25/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
B08-05 906444-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B08-15 906444-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B07-05 906444-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	91
B07-10 906444-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B06-04 906444-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
B06-09 906444-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
B05-05 906444-13	< 0.02	< 0.02	< 0.02	< 0.06	<5	91
B05-10 906444-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	91
B12-10 906444-34	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B12-15 906444-35	< 0.02	< 0.02	< 0.02	< 0.06	<5	88

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444 Date Extracted: 06/25/19 Date Analyzed: 06/25/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B11-05 906444-36	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
B11-20 906444-39	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B10-05 906444-40	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
B10-10 906444-41	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
B09-05 906444-44	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
B09-10 906444-45	< 0.02	< 0.02	< 0.02	< 0.06	<5	87
Method Blank ^{09-1489 MB}	< 0.02	< 0.02	< 0.02	<0.06	<5	91

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444 Date Extracted: 06/24/19 Date Analyzed: 06/24/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
B08-05 906444-01	<50	<250	89
B08-15 906444-03	<50	<250	89
B07-05 906444-05	<50	<250	90
B07-10 906444-06	<50	<250	88
B06-04 906444-09	<50	<250	88
B06-09 906444-10	<50	<250	91
B05-05 906444-13	<50	<250	91
B05-10 906444-14	<50	<250	96
B12-10 906444-34	<50	<250	92
B12-15 906444-35	93 x	<250	96

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444 Date Extracted: 06/24/19 Date Analyzed: 06/24/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
B11-05 906444-36	<50	<250	103
B11-20 906444-39	<50	<250	92
B10-05 906444-40	<50	<250	102
B10-10 906444-41	<50	<250	98
B09-05 906444-44	<50	<250	95
B09-10 906444-45	<50	<250	94
Method Blank ^{09-1484 MB}	<50	<250	100

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-01 906444-01.121 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	8.12		
Cadmium	<1		
Chromium	$12.1~\mathrm{J}$		
Lead	26.2		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B08-05 06/21/19 06/24/19 06/25/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-01 x5 906444-01 x5.044 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Chromium

13.1

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-03 906444-03.122 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.36		
Cadmium	<1		
Chromium	12.1		
Lead	1.61		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-20 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-04 906444-04.123 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	7.78		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-05 906444-05.124 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.81		
Cadmium	<1 10.1		
Lead	10.1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-06 906444-06.125 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	3.40 <1		
Chromium	8.35		
Lead	2.19		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-07 906444-07.126 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.61		
Chromium	8.93		
Lead	1.27		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B06-04 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-09 906444-09.151 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.61		
Cadmium	<1		
Chromium	10.2		
Lead	32.4		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B06-09 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-10 906444-10.152 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	4.02 <1		
Chromium	8.47 J		
Lead	3.18		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B06-09 06/21/19 06/24/19 06/25/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-10 x5 906444-10 x5.045 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	8.89		

8.89

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B06-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-11 906444-11.160 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	1.20 <1		
Chromium	9.64		
Lead	1.00		
Mercury	<1		
ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-13 906444-13.137 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	7.66 <1 9.78 22.1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-14 906444-14.161 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.15		
Cadmium	<1		
Chromium	14.1		
Lead	2.58		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-15 906444-15.162 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.05		
Cadmium	<1		
Chromium	9.62		
Lead	1.05		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-17 906444-17.163 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	9.79		
Cadmium	<1		
Chromium	10.8		
Lead	76.9		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-18 906444-18.164 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.84		
Cadmium	<1		
Chromium	13.9 J		
Lead	3.84		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B04-10 06/21/19 06/24/19 06/25/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-18 x5 906444-18 x5.046 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	14.8		

14.8

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-19 906444-19.165 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium	2.22 <1 11.0		
Lead Mercury	11.0 1.76 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-21 906444-21.173 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	147		
Chromium	6.75 11.9 J		
Lead	1,260 ve		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B02-05 06/21/19 06/24/19 06/25/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-21 x10 906444-21 x10.052 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	12.4		
Lead	1,510		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-22 906444-22.174 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	12.4		
Cadmium	6.97		
Chromium	$36.9~\mathrm{J}$		
Lead	504 ve		
Mercury	1.33		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	B02-10 06/21/19 06/24/19	Client: Project: Lab ID:	SoundEarth Strategies SOU_1419-001_20190621 906444-22 x5
Date Analyzed:	06/25/19	Data File:	906444-22 x5.053
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	38.6		
Lead	494		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-20 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-24 906444-24.175 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	1.17 <1		
Chromium	9.91		
Lead	2.28		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-25 906444-25.176 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	7.85 <1		
Chromium	18.8 J		
Lead	14.8		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B01-05 06/21/19 06/24/19 06/25/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-25 x5 906444-25 x5.054 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	18.9		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-26 906444-26.177 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.56		
Cadmium	<1		
Chromium	12.8		
Lead	3.81		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-20 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-28 906444-28.180 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	7.67		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-29 906444-29.181 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.61		
Cadmium	<1		
Chromium	14.0		
Lead	8.98		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-30 906444-30.182 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	3.08 <1		
Chromium	12.6		
Lead	2.28		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-31 906444-31.183 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	8.88		
Lead	1.00		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-33 906444-33.184 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.09		
Cadmium	<1		
Chromium	8.64		
Lead	22.5		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-34 906444-34.185 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	6.76		
Cadmium	<1		
Chromium	9.47		
Lead	40.0		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-15 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-35 906444-35.186 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.56		
Cadmium	1.99		
Chromium	24.2		
Lead	38.4		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-05 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-36 906444-36.187 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	5.45 <1		
Chromium	9.37		
Lead	39.2		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-10 06/21/19 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-37 906444-37.188 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	7.12 <1		
Chromium	10.3		
Lead	56.9		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-20 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-39 906444-39.112 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.86		
Cadmium	<1		
Chromium	$10.2 \mathrm{J}$		
Lead	6.84		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B11-20 06/21/19 06/25/19 06/26/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-39 x5 906444-39 x5.033 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	12.5		

12.5

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-40 906444-40.113 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	7.01 <1		
Chromium	14.0 J		
Lead	9.53		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B10-05 06/21/19 06/25/19 06/26/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-40 x5 906444-40 x5.036 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	16.9		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-41 906444-41.126 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium	2.50 <1		
Chromium	10.1		
Lead	1.86		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-15 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-42 906444-42.127 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	$7.82~\mathrm{J}$		
Lead	1.00		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B10-15 06/21/19 06/25/19 06/26/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-42 x5 906444-42 x5.044 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	9.71		

9.71

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-44 906444-44.133 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.21		
Cadmium	<1		
Chromium	$11.2 \mathrm{~J}$		
Lead	6.70		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B09-05	Client:	SoundEarth Strategies
Date Received:	06/21/19	Project:	SOU_1419-001_20190621
Date Extracted:	06/25/19	Lab ID:	906444-44 x5
Date Analyzed:	06/26/19	Data File:	906444-44 x5.045
Matrix:	Soll	Instrument:	SP
Units:	mg/kg (ppm) Dry Weight	Operator:	
Analyte:	Concentration mg/kg (ppm)	1	

Chromium

13.4

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-45 906444-45.134 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	$7.65~\mathrm{J}$		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B09-10 06/21/19 06/25/19 06/26/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-45 x5 906444-45 x5.048 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	8.91		

8.91

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-15 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-46 906444-46.135 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	$8.37~\mathrm{J}$		
Lead	<1		
Mercury	<1		
ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B09-15 06/21/19 06/25/19 06/26/19 Soil	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_20190621 906444-46 x5 906444-46 x5.049 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	9.01		

9.01

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 I9-390 mb I9-390 mb.101 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/24/19 06/24/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 I9-391 mb I9-391 mb.135 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/25/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 I9-392 mb I9-392 mb.110 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-01 1/5 062511.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 85	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		0.019		
Anthracene		< 0.01		
Fluoranthene		0.032		
Pyrene		0.033		
Benz(a)anthracene		0.012		
Chrysene		0.016		
Benzo(a)pyrene		0.014		
Benzo(b)fluoranthe	ne	0.019		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-05 1/5 062513.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 78 82	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B06-09 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-10 1/5 062514.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 78 79	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-14 1/5 062515.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 78 76	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		<0.01 <0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-17 1/5 062516.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 80 86	Lower Limit: 31 24	Upper Limit: 163 168
Compoundat		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.45		
Acenaphthylene		< 0.01		
Acenaphthene		0.66		
Fluorene		0.081		
Phenanthrene		0.31		
Anthracene		0.012		
Fluoranthene		0.024		
Pyrene		0.029		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-22 1/50 062524.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 77 d 102 d	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		0.17		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ne	0.10		
Benzo(k)fluoranthe	ne	< 0.1		
Indeno(1,2,3-cd)pyr	ene	< 0.1		
Dibenz(a,h)anthrac	ene	< 0.1		
Benzo(g,h,i)perylen	e	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-26 1/5 062517.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 80 83	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-29 1/5 062518.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 85 91	Lower Limit: 31 24	Upper Limit: 163 168
Compounda		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		0.016		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		0.033		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-15 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-35 1/5 062519.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 85 99	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr	ne ne ene	$14 \text{ ve} < 0.01 \\ 24 \text{ ve} \\ 18 \text{ ve} \\ 56 \text{ ve} \\ 5.0 \text{ ve} \\ 24 \text{ ve} \\ 21 \text{ ve} \\ 3.3 \text{ ve} \\ 2.7 \text{ ve} \\ 0.95 \\ 1.6 \\ 0.46 \\ 0.17 \\ 0.049 \\ 0.049 \\ 0.049 \\ 0.019 \\ 0.0$		
Benzo(g,h,i)perylen	e 11e	0.11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B12-15 06/21/19 06/24/19 07/01/19 Soil		Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-35 1/500 070111.D GCMS6
Units:	mg/kg (ppn	n) Dry Weight	Operator:	ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 459 d 293 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		15		
Acenaphthylene		<1		
Acenaphthene		27		
Fluorene		20		
Phenanthrene		64		
Anthracene		5.7		
Fluoranthene		24		
Pyrene		20		
Benz(a)anthracene		3.2		
Chrysene		3.0		
Benzo(a)pyrene		<1		
Benzo(b)fluoranthe	ne	1.2		
Benzo(k)fluoranthe	ne	<1		
Indeno(1,2,3-cd)pyr	ene	<1		
Dibenz(a,h)anthrac	ene	<1		
Benzo(g,h,i)perylen	e	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-20 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-39 1/5 062520.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 85 87	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-41 1/5 062521.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 82 82	Lower Limit: 31 24	Upper Limit: 163 168
~ .		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_20190621 906444-45 1/5 062522.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 80 80	Lower Limit: 31 24	Upper Limit: 163 168
C 1		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applica 06/24/19 06/25/19 Soil mg/kg (ppm	nk ble) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 09-1479 mb 1/5 062506.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 84 84	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	ene	< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-05 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-01 cl 062604.D GC9 IJL
Surrogates: TCMX	% Recovery: 88	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 0.021 0.013 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-05 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-05 062512.D GC9 IJL
Surrogates: TCMX	% Recovery: 74	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B06-09 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-10 062514.D GC9 IJL
Surrogates: TCMX	% Recovery: 56	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B05-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-14 062515.D GC9 IJL
Surrogates: TCMX	% Recovery: 55	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-05 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-17 cl 062605.D GC9 IJL
Surrogates: TCMX	% Recovery: 54	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 0.021 0.017 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-22 062517.D GC9 IJL
Surrogates: TCMX	% Recovery: 66	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-10 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-22 1/10 062610.D GC9 IJL
Surrogates: TCMX	% Recovery: 70 d	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B01-10 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-26 cl 062606.D GC9 IJL
Surrogates: TCMX	% Recovery: 55	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-05 06/21/19 06/24/19 06/28/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-29 062808.D GC9 VM
Surrogates: TCMX	% Recovery: 73	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 0.12 0.11 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-15 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-35 cl 062608.D GC9 IJL
Surrogates: TCMX	% Recovery: 63	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 0.026 0.033 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-20 06/21/19 06/24/19 06/26/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-39 cl 062609.D GC9 IJL
Surrogates: TCMX	% Recovery: 65	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.0042 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-41 062522.D GC9 IJL
Surrogates: TCMX	% Recovery: 66	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-10 06/21/19 06/24/19 06/25/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1419-001_ 20190621 906444-45 062523.D GC9 IJL
Surrogates: TCMX	% Recovery: 70	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_1419-001_ 20190621
Date Extracted:	06/24/19	Lab ID:	09-1525 mb
Date Analyzed:	06/25/19	Data File:	062504.D
Matrix:	Soil	Instrument:	GC9
Units:	mg/kg (ppm) Dry Weight	Operator:	IJL
~		Lower	Upper
Surrogates: TCMX	% Recovery: 83	Limit: 31	Limit: 119
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.002		
Aroclor 1232	< 0.002		
Aroclor 1016	< 0.002		
Aroclor 1242	< 0.002		
Aroclor 1248	< 0.002		
Aroclor 1254	< 0.002		
Aroclor 1260	< 0.002		
Aroclor 1262	< 0.002		
Aroclor 1268	< 0.002		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906444-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	99	69-120
Toluene	mg/kg (ppm)	0.5	104	70-117
Ethylbenzene	mg/kg (ppm)	0.5	110	65 - 123
Xylenes	mg/kg (ppm)	1.5	110	66-120
Gasoline	mg/kg (ppm)	20	85	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

Units

mg/kg (ppm)

Analyte

Diesel Extended

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

RPD

(Limit 20)

12

Laboratory Code: 906444-01 (Matrix Spike) Sample Percent Percent Reporting Result Spike Recovery Recovery Acceptance Analyte Units Level (Wet Wt) MSMSD Criteria **Diesel Extended** mg/kg (ppm) 5,000<50 98 110 73-135 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance

LCS

98

Criteria

74-139

Level

5,000

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906475-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	10.8	90	87	75 - 125	3
Cadmium	mg/kg (ppm)	10	<5	100	97	75 - 125	3
Chromium	mg/kg (ppm)	50	18.4	93	92	75 - 125	1
Lead	mg/kg (ppm)	50	59.4	99	82	75 - 125	19
Mercury	mg/kg (ppm	5	<5	88	76	75 - 125	15

Laboratory Code: Laboratory Control Sample

Laboratory could haboratory control sample								
		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Arsenic	mg/kg (ppm)	10	95	80-120				
Cadmium	mg/kg (ppm)	10	104	80-120				
Chromium	mg/kg (ppm)	50	109	80-120				
Lead	mg/kg (ppm)	50	109	80-120				
Mercury	mg/kg (ppm)	5	93	80-120				

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906444-13 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	6.74	92	79	75 - 125	15
Cadmium	mg/kg (ppm)	10	<1	101	100	75 - 125	1
Chromium	mg/kg (ppm)	50	8.61	85	82	75 - 125	4
Lead	mg/kg (ppm)	50	19.5	84	84	75 - 125	0
Mercury	mg/kg (ppm	5	<1	88	91	75 - 125	3

Laboratory Code: Laboratory Control Sample

Laboratory could haboratory control sample								
		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Arsenic	mg/kg (ppm)	10	88	80-120				
Cadmium	mg/kg (ppm)	10	107	80-120				
Chromium	mg/kg (ppm)	50	105	80-120				
Lead	mg/kg (ppm)	50	106	80-120				
Mercury	mg/kg (ppm)	5	103	80-120				
ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906444-40 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	5.26	91	87	75 - 125	4
Cadmium	mg/kg (ppm)	10	<5	103	103	75 - 125	0
Chromium	mg/kg (ppm)	50	12.2	99	97	75 - 125	2
Lead	mg/kg (ppm)	50	7.35	99	100	75 - 125	1
Mercury	mg/kg (ppm	5	<5	94	91	75 - 125	3

Laboratory Code: Laboratory Control Sample

Basoratory con	ac. Basoratory com	ci oi sumpio		
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	94	80-120
Cadmium	mg/kg (ppm)	10	98	80-120
Chromium	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	109	80-120
Mercury	mg/kg (ppm)	5	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 906444-01 1/5 (Matrix Spike)

Laboratory Couc. 000111	or no (maining	pinc)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	74	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	79	52 - 121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	77	51 - 123
Fluorene	mg/kg (ppm)	0.17	< 0.01	81	37 - 137
Phenanthrene	mg/kg (ppm)	0.17	0.014	82	34 - 141
Anthracene	mg/kg (ppm)	0.17	< 0.01	80	32 - 124
Fluoranthene	mg/kg (ppm)	0.17	0.023	87	16-160
Pyrene	mg/kg (ppm)	0.17	0.024	85	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	0.0090	80	23 - 144
Chrysene	mg/kg (ppm)	0.17	0.012	77	32 - 149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.014	86	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	84	42 - 139
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.010	81	21 - 163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	59	23 - 170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	58	31 - 146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	49	37 - 133

Laboratory Code: Laboratory Control Sample 1/5

Laboratory couct Labora	long control ban	ipic 1/0				
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	83	83	58-121	0
Acenaphthylene	mg/kg (ppm)	0.17	83	87	54 - 121	5
Acenaphthene	mg/kg (ppm)	0.17	87	88	54 - 123	1
Fluorene	mg/kg (ppm)	0.17	86	89	56 - 127	3
Phenanthrene	mg/kg (ppm)	0.17	86	88	55 - 122	2
Anthracene	mg/kg (ppm)	0.17	88	89	50 - 120	1
Fluoranthene	mg/kg (ppm)	0.17	87	91	54 - 129	4
Pyrene	mg/kg (ppm)	0.17	87	83	53 - 127	5
Benz(a)anthracene	mg/kg (ppm)	0.17	87	89	51 - 115	2
Chrysene	mg/kg (ppm)	0.17	89	93	55 - 129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	91	91	56 - 123	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	89	91	54 - 131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	84	84	51 - 118	0
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	88	84	49-148	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	89	86	50 - 141	3
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	84	79	52 - 131	6

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/21/19 Project: SOU_1419-001_ 20190621, F&BI 906444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 906444-05 (Matrix Spike)

Analyta	Reporting	Spike	Sample Result (Wet Wt)	Percent Recovery MS	Control
Analyte Aroclor 1016 Aroclor 1260	mg/kg (ppm) mg/kg (ppm)	0.083 0.083	<0.002 <0.002	77 82	50-150 50-150

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	83	87	47 - 158	5
Aroclor 1260	mg/kg (ppm)	0.083	90	95	69 - 147	5

-

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				SAMF	LE CHAIN		STOR	γ	HE	06-	21 -	-19		80	14 Vey 1	1
90644	+			SAM	PLERS (signat	ture	+	1					Pag	<u>e #</u> TUR		
Send Report To Travis zaric	n, Jonathan La	oeffler			(You	Mas	1_							d 12 Weeks	
Company SoundFarth Stro	iteaies, Inc.			PRO	JECT NAME/I	NO.				P	PO #		RU	SH	S DAY	THE B
Company <u>Journaeamran</u>	- Frist Suite	- 2000			DUWAMIS		PROPE	RTY					Rush	char	ges authorized b	Y. St
Address 2811 Fairview Ave	nue East, suite	2000				1419-001			<u> </u>				47-1	SA	MPLE DISPOSAL	
City, State, ZIP <u>Seattle, W</u>	ashingtan 981	02		REM	ARKS	bres r	NH	ol D		GEN	AS Y / I	N	Dis	spose	e after 30 days	
Rhopp # (204) 306-1900	Fax # (206)	306-1907			MIL UNM	RE SEU	ECTED	BY	PM				Wi	ll call	with instructions	
FILCHE #_12001 500-1700				INNA	01363 10	<u></u>							······		1]
· · · · · · · · · · · · · · · · · · ·			<u></u> **			T	r	<u> </u>	r							
	Sample	Sample	Lab	Date	Time	Matrix	# of	₩ by ¥	ОКРН ЬУ РН-DX	oy 8260C	oy 8082A	by 8270D	ozo 5 Metals 1631E	lolD	X-per W Notes	1H 1 21
Sample ID	Location	Depth	1D	Sampled	Sampled	Inclus	jars	GRF NWT	RPH/G	OC3	CBs h	PAHs	MTC 6	*	×	at
· · ·					· 	<u> </u>		<u> </u>	Δ	~ ~					1 Asto	TEX
808-05	808	5'	OIAt	6/19/19	1000	SOIL	5	×	X		Ž		$\downarrow \sim \downarrow$		THE GIDIA	4-
BOB-10	B08	10'	621		1015		15	<u> </u>			<u> </u>	<u> </u>	X	<u> </u>	96	2
B08-15	BOB	15'	03		1030			\uparrow	<u> </u>	[<u> </u>		X			
B08-20	808	20'	04	<u> </u>	1040		5		x	<u> </u>	×	X	X			
B07-05	BOF	5'	05		1155		15	łĘ	12	<u> </u>			X			
B07-10	807	10'	06		1135		+	<u> </u>	+	<u> </u>			X			
B07-15	B07	15'	67	<u> </u>	1203				+	<u> </u>	+	1				
B07-20	B07	20'	08		1215		5	$+ \overline{\checkmark}$	K			1	X	1		
B06-04	B06	4'	09	ļ	1320		+	₩Ş-	t'z	+	X	×	TX	1		
B06-09	B06	9'	10		1350			\uparrow	$+ \hat{-}$	+	+	<u> </u>	X	1		
B06-15	806	15'	$\downarrow u \downarrow$		1343		5		-	+	-			1		
B06-20	B06	20'	12	<u> </u>	1400	<u></u>		$+ \overline{\checkmark}$	$+ \overline{\mathbf{x}}$					1		
B05-05	B05	5'	13		1410	<u> </u>	9	12				I	Sam	nles	received at 4	°C
																1

•		CONTNAME	COMPANY	DATE	TIME
Friedman & Bruya, Inc. 2012 16th Avenue West	SIGNATURE Relinguished by:	JONATHAN LOEFFLER	SOUNDEARTH	6/11/19	0948
Seattle, WA 98119-2029	Received by:	Andre	FEDEX	6/21/15	0948
Ph. (206) 285-8282	Relinquished by:			6/24/10	1120
Fax (206) 283-5044	Received on w MMS	Khan Phin	FeBI	rang	10,0

an u	44			SAM	PLE CHAI	N OF CI	JSTOI	DY	ME	06-	21-	19	BL	14	7 Vi4 4
Send Report To_ <u>Travis Zan</u>	di; Jonathan I	.oeffler		SAN	APLERS (signo	sture)	ta	Z					Pag	<u>je # _</u> Tur	CINAROUND TIME
Company_SoundEarth Str	ategies, Inc.	MARAANA		PRC	DJECT NAME,	/NO. (PO #		St	andar	d (2 Weeks)
Address 2811 Fairview Ave	enue East, Suii	e 2000		n	DUWAMI	SH YACHT 1419-001	PROPE	RTY					Rush	ı charı	ges authorized by:
City, State, ZIP <u>Seattle, W</u>	ashington 98	102		REN	AARKS	A:			D	GE	V 5 7 1	N		SA	MPLE DISPOSAL
Phone # <u>(206) 306-1900</u>	Fax # <u>(206</u>	<u>) 306-1907</u>		- AN	ALLSAM	BE SELE	CTED	- 87	PM.		vij i 7		Re W	spose sturn s <u>ill call '</u>	amples with instructions
								<u>```</u> `````````````````	······						
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	RPH by TPH-Gx 1878	/ОКРН ЬУ /ТРН-DX	by 8260C	by 8082A	by 8270D	v720 N 5 Metals H 31E	ЧОГР	X-per WH DG[21 Notes

Sample ID	Location	Depth	ID	Sampled	Sampled	Mo	itrix	jars	GRP I NWTPI	DRPH/OI NWTPI	VOCs by	PCBs by	PAHs by	MTCA 5 bv-H	우	Notes
B05-10	805	10'	14A-E	6/19/19	1420	Sç	NL	5	X	メ		X	X	X		Joa lid creckedt
B05-15	B05	15'	5		1435			5	1					X		
B05-20	B05	20'	16		1445			5								
B04-05	B04	5'	17	6/20/19	0830		,	5				X	X	X		
B04-10	B04	10'	18		0845			5				<u> </u>		メ		
B04-15	B04	15'	19		0900			5						\times		
B04-20	B04	20'	20		0910			5								ς
802-05	BOZ	5'	21		0950			#						X		
B02-10	BOZ	10'	22		0955			F I				×	\succ	x		
B02-15	BO2	15'	23	,	1010			Ø1								
B02-20	B02	20'	24		1020			61						\mathbf{x}	-	· · ·
B01-05	BOI	5 ⁱ	Z5		1055			01					c	m	os ro	ceived at 4 °C
B01-10	BOI	10'	26	V	1105	V	/	Ø1				X	X	X		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	JONATHAN LOEFFLER	SOUNDEARTH	6/21/19	0948
Seattle, WA 98119-2029	Received by:	Andre	PEDEX	6/11/19	0948
Ph. (206) 285-8282	Relinquished by:		Man		
Fax (206) 283-5044	Received by Man Mus	Nhan Phan	FLBI	6/21/19	(0;0)

															-	i
				SAMP	LE CHAIN	I OF CU	STO	DY M	IE O	6-2	1-1	2	ł	ŝąψ	3	. 4
9064	++			SAM	PLERS (signat	uje) /		2	4 4				Pag F	<u>e #'</u> Tur		
Send Report To Wayne (an	ing the section of th	oeffler			S	my		······								- 184
Course Coursed Forth Stre	atogios Inc			PRO.	JECT NAME/I	NO				F	°O #			andar	d (2 Wee	eks)
Company <u>soundearn sin</u>						X .		-ntv					Rush	i char	ges auth	orized by:
Address 2811 Fairview Ave	enue East, Suite	∋ 2000			DUWAMIS	1419-001	PROPE	KI I								
	Inchington 081	02		REM	ARKS	14.1. 00.								SA	MPLE DI:	davs
City, State, ZIP <u>Seame, W</u>	rushingion 781	02			ALLSAN	ares c	2Nt	DED	<i>-</i>	GEN	as y /	N		spose sturn s	amples	
Phone #_ (206) 306-1900	Fax # <u>{206</u>	306-1907		- ANA	LYSES TO	BE SEL	ECTE	D BY	PM.				W	ill call	with inst	ructions
								F						<u></u>	I]
			·			r		<u> </u>							1-1	erwh
							" - E	ې وکې	PH by LDX	8260C	8082A	8270D	Metal: Metal:	9		El 6/21
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# or jars	GRPH IWTPH	H/OF MTPH	Cs by	Βs bγ	yd sH.	by to 60	오		
								- Z	0%P	٥,	2	A	ΙΨ.			- -
R01-15	BOI	15'	27	Q110/19	1115	SOIL	1		 		<u> </u>					
Bol-20	BOI	20'	28	6/20/19	1120			ļ	 		ļ		X			
803-05	B03	5'	29	6/20/19	1155	ļ	<u> </u>				X_					
B03-10	B03	10'	30	6/20/19	1200	<u> </u>		<u> </u>	<u> </u>	<u> </u>			$ \mathcal{L} $	<u> </u>		
B03-15	BOB	15'	31		1210				<u> </u>	<u> </u>	<u> </u>	<u> </u>	X			
B03-20	B03	20'	32	,	1215	<u> </u>		<u> </u>	<u> </u>	<u> </u>		+	$\overline{\mathbf{v}}$			
B12-05	B12	5'	33 A-	E	1245	<u></u>	5		+		+		\uparrow		-	
B12-10	BIZ	10'	34		1255		2	-X-	R		X	X	1Ž	1		
B12-15	BIZ	15'	35		1310	+	13	15	₩ ×	+	+42-		X	1		
B11-05	BII	<u>5'</u>	36	<u> </u>	1340	- 		$+$ \rightarrow	+		-		X	1		
B11-10	Bil	10'	37		1350	- -	5			+	<u>. </u>	Sa	mple	s rec	ceived	at <u>4°C</u>
BIL-15	<u>B11</u>	15'	38	ļ	1410	+	15			-	$\overline{\mathbf{x}}$	X	X			
B11-20	Bil	20'	39	V	1420	Y					<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	>	<u></u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>		

٦

			COMPANY	DATE	TIME
Friedman & Bruya, Inc. 3012 16th Avenue West	SIGNATURE Relinguished by:	TOULATHAN LOEFFLER	SOUNDEARTH	6/21/19	0928
Seattle, WA 98119-2029	Received by:	Andry	CEPER	6/21/19	Ugys
Ph. (206) 285-8282	Relinquished by:	All Le			
Fax (206) 283-5044	Received by	Whan Phan	FCBI	6/21/11	1030

90641	14	·			SAM		N OF C	USTC	DY	ME	E ØE	5-2	1-1	9		4 Boy 4/1
Send Report To travis Zandi: Jonathan Loeffler					SAMPLERS (signature)							TURNAROUND TIME				
Company_SoundEarth Strategies, Inc. Address_2811 Fairview Avenue East, Suite 2000				_	PROJECT NAME/NO. PO #				<u></u> ;	(Standard (2 Weeks))						
					-	DUWAMISH YACHT PROPERTY 1419-001								Ru	RUSH Rush charges authorized by:	
City, State, ZIP <u>Seattle, Washington 98102</u> Phone # <u>(206) 306-1900</u> Fax # <u>(206) 306-1907</u>					REA	REMARKS ALL SAMPLES ON HOLD.				GEMS Y / N			F	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		
· · · · · · · · · · · · · · · · · · ·					······	· · · · · · · · · · · · · · · · · · ·					r	1				
Sample ID	Sample Location	Sample Depth	Lab ID	Dc Sam	ite pled	Time Sampled	Matrix	# of Jars	GRPH by NWTPH-Gx ///rc	DRPH/ORPH by NWTPH-Dx	VOCs by 8260C	PCBs by 8082A	PAHs by 8270D	MTCA 5 Metals	HOLD	X-per WH Ep 6/2/ Notes 6/2/
B10-05	BIO	5'	404-	£6/20	119	1455	SOIL	5	X	X				X		
B10-10	BIO	10'	41 1	1		1510		5	X	X		X	X	×		
B10-15	BIO	15'	42			1520		5					1	X		
B10-20	BIO	20'	43	T		1525		5	I							
B09-05	BC9	5'	44			1550		5	X	X				X		
B09-10	B09	10'	45			1600		5	X	X		X	×	X		-
B09-15	BO9	15'	46			1610		5						X		
B09-20	B09	20'	47			1630		5								
**************************************				<u> </u>		<u> </u>						ļ				
					**************************************		H		6/	20/,	ý		- c		00.000	enved at te of
						V	rvV-					<u> </u>		auhu	do rer	civeu at 70

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME	
3012 16th Avenue West	Relinquished by:	JONATHAN LOEFFLER	SOUNDEARTH	6/21/19	0943	
Seattle, WA 98119-2029	Received by:	Andre	FEPEX	6/21/16	0948	
Ph. (206) 285-8282	Relinquished by:					
Fax (206) 283-5044	Received by: Mm hm	Nhan phan	FeBI	6/21/14	1030	
	/					