

December 20, 2002 Job #386765

Mr. Brett Hunter Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE: Event of October 17 and 18, 2002

Event of November 14, 2002

Groundwater Monitoring & Sampling Report

Former Texaco Service Station

631 Queen Anne North Seattle, Washington (Site #211577)

Dear Mr. Hunter:

This report documents the groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All fieldwork was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were present in three wells (VP-4, VP-6 and MW-6). Separate Phase Hydrocarbon Thickness/Removal Data is presented in Table 2. Static water level data and groundwater elevations are presented in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Robert C. Mallory Registered Geologist

Figure 1: Potentiometric Map Figure 2: Concentration Map

Table 1: Groundwater Monitoring Data and Analytical Results
Table 2: Separate Phase Hydrocarbon Thickness/Removal Data
Table 3: Groundwater Analytical Results - SVOC and PAH

Table 4: Groundwater Analytical Results - SVOC

Table 5: Groundwater Analytical Results - Dissolved Metals
Table 6: Groundwater Analytical Results - Oxygenate Compounds
Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

					Scattle, was	simgton					
WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	T	E	X
TOC*(ft.)		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
VP-1						1					4.600
103.03	07/24/2002	11.59	91.44	0.00	18,000	1,500 ¹	35,000	120	820	280	4,600
	10/17-18/02	12.70	90.33	0.00	7,5001	598 ^{1,2}	27,300	170	756	334	4,820
VP-2											
104.72	07/24/2002	UNABLE TO	LOCATE		***						
	10/17-18/02	13.60	91.12	0.00	NOT SAMPLE	ED DUE TO IN	SUFFICIENT V	VATER			
VP-3 (MW-2)											
104.75	07/24/2002	DRY									
	10/17-18/02	DRY									
VP-4											
103.35	07/24/2002	11.89	91.46	0.00	78,000 ¹	<9,700¹	89,000	7,300	7,500	1,900	13,000
	10/17-18/02	12.75	90.62**	0.03	NOT SAMPLI	ED DUE TO TI	HE PRESENCE	OF SPH			
VP-5 (MW-5)											
102.63	07/24/2002	INACCESIBL	E - CAR PARKE	D OVER WE	LL						
	10/17-18/02	12.31	90.32	0.00	3,9001	<500 ¹	15,900	318	49.3	880	1,870
VP-6											
101.90	07/24/2002	10.60	92.56**	1.58	NOT SAMPLE	D DUE TO THI	E PRESENCE OI	F SPH			
	10/17-18/02	11.35	91.07**	0.65	NOT SAMPLE	ED DUE TO TH	HE PRESENCE	OF SPH			••
VP-7 (MW-3)											
100.40	07/24/2002	9.74	90.66	0.00	5,800 ¹	580¹	60,000	8,200	7,000	1,500	8,300
	10/17-18/02		89.83	0.00	5,160 ¹	510 ^{1,2}	71,600	11,100	5,880	1,940	10,800

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

WELL ID/ TOC*(ft.)		DATE	DTW (ft.)	GWE (msl)	SPHT (ft.)	TPH-D (ppb)	TPH-O (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)
VP-8 (MW-7) 104.88		07/24/2002 10/17-18/02	11.70 12.78	93.18 92.10	0.00 0.00	1,800 ¹ 1,830 ¹	420 ¹ < 500 ¹	1,500 552	9.4 9.7 5	9.2 1.45	34 4.25	50 5.73
VP-9 112.35		07/24/2002 10/17-18/02	INACCESIBLE	E - CAR PARKE 100.45	D OVER WEL 0.00	L 13,200 ¹	 786 ^{1,2}	 1,910	 11.3	 2.62	 8.86	 14.7
MW-4 102.07	(D)	07/24/2002 10/17-18/02 10/17-18/02	11.18 11.98 	90.89 90.09 	0.00 0.00 	10,000 ¹ 9,860 ¹ 7,100 ¹	680¹ 697¹,2 <500¹	83,000 110,000 92,400	11,000 14,500 12,400	9,900 11,600 9,980	1,800 2,630 2,090	11,000 15,200 12,200
MW-6 113.32		07/24/2002 10/17-18/02	19.76 20.64	93.56 92.72 **	0.00	29,000¹ NOT SAMPLI	<10,000 ¹ E D DUE TO T H	31,000 IE PRESENCE	8,900 OF SPH	1,600	820 	4,200
MW-9 114.27		10/17-18/02	20.88	93.39	0.00	43,6001	671 ^{1,2}	6,380	493	13.0	230	107
MW-10 115.28		07/24/2002 10/17-18/02	13.14 13.59	102.14 101.69	0.00 0.00	320 ¹ 667 ¹	600¹ <500¹	240 490	2.5 3.42	<0.50 < 0.500	<1.0 1.34	<1.5 5.00
MW-11		07/24/2002 10/17-18/02	11.16 1 1.43	 	0.00 0.00	<250 ¹ <250 ¹	<250 ¹ < 500 ¹	<50 < 50.0	<0.50 < 0.500	<0.50 < 0.500	<0.50 < 0.500	<1.5 <1.00

Former Texaco Service Station (Site #211577) 631 Queen Anne North

Seattle, Washington

					Southo, was	,,,,,,,					
WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	TPH-O	TPH-G	В	T	E	X
TOC*(ft.)		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DB-1 (MW-12) 113.36	10/17-18/02	12.22	101.14	0.00	<250 ¹	<500 ¹	<50.0	0.516	0.869	<0.500	<1.00
DB-2 (MW-13) 114.80	10/17-18/02	19.31	95.49	0.00	NOT SAMPLI	ED DUE TO IN	SUFFICIENT V	VATER			
DB-6 (MW-14) 101.64	10/17-18/02 11/14/02	 11.88	 89.76	 0.00	 4,710 ¹	 <500 ¹	 43,100 ³	 9,900 ³	 4,930 ³	 1,540 ³	 6,020 ³
DB-8 (MW-15) 99.03	10/17-18/02 11/14/02	 9.44	 89.59	 0.00	 780 ¹	 <500 ¹	 3,280	 1,640	5.23	 5.06	 <10.0
DB-9 (MW-16) 101.83	10/17-18/02 11/14/02	 12.36	 89.47	 0.00	 <250¹	 <500 ¹	 <50.0	 <0.500	 <0.500	 <0.500	 <1.00
DB-10 (MW-17) 99.29	10/17-18/02 11/14/02	 10.00	 89.29	 0.00	 <250 ¹	 <500 ¹	 2,780	 569	 31.0	 91.1	 250
RW-2 106.63	07/24/2002 P 10/17-18/02	UNABLE TO L 14.44	OCATE 92.19	 0.00	 988¹	 <500¹	 1,380	 90.5	 8.05	 29.2	 31.5

Former Texaco Service Station (Site #211577) 631 Queen Anne North

Seattle, Washington

WELL ID/	DATE	DTW	GWE	SPHT	TPH-D	ТРН-О	TPH-G	В	Т	E	X
TOC*(ft.)		(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
RW-3											
100.70	07/24/2002	UNABLE TO L									
	10/17-18/02	UNABLE TO	LOCATE								
ŔW-4											
110.82	07/24/2002	18.30	92.52	0.00	15,000 ¹	<2,000 ¹	990	62	1.3	32	7.0
110.02	10/17-18/02	19.29	91.53	0.00	8,930 ¹	939 ¹	3,160	59.8	2.50	40.4	15.6
	20,17, 10,02										
RW-5											
104.22	07/24/2002	UNABLE TO I	OCATE		1	1					400
	10/17-18/02	12.63	91.59	0.00	84,900 ¹	3,650 ¹	3,370	696	67.2	63.0	408
MP-1											
	07/24/2002	INACCESIBLE	E - UNABLE TO	OPEN WELL							
	10/17-18/02	INACCESIBL	E - UNABLE T	O OPEN WELL		••					
MP-2											
IVIF-2	07/24/2002	INACCESIDIE	CAD DADVE	D OVER WELL							
	10/17-18/02		:- CAR FARNE	DOVER WELL					••	•	
	10/1/-18/02			••			3-			-	

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	GWE (msl)	SPHT (ft.)	TPH-D (pph)	TPH-O (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)
Trip Blank							<50	<0.50	<0.50	<0.50	<1.5
QA	07/24/2002						<50.0	<0.500	< 0.500	<0.500	<1.00
	10/17-18/02 11/14/02						<50.0	<0.500	<0.500	< 0.500	<1.00

	TPH-D	ТРН-О	TPH-G	В	T	E	X
Standard Laboratory Reporting Limits:	250	250	50.0	0.500	0.500	0.500	1.00
MTCA Method A Cleanup Levels:		1,000	1,000	5.0	40	30	20
Current Method:	NWTPH-I) Extended		NWT	PH-G and EPA	8021B	

Table 1

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

EXPLANATIONS:

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

-- = Not Measured/Not Analyzed

(ft.) = Feet

B = Benzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

T = Toluene

NP = No Purge

GWE = Groundwater Elevation

E = Ethylbenzene

MTCA = Model Toxics Control Act Cleanup Regulations

(msl) = Mean Sea Level

X = Xylenes

[WAC 173-340-720(2)(a)(I), as amended 12/93].

TPH-D = Total Petroleum Hydrocarbons as Diesel

D. LEAD = Dissolved Lead

TPH-O = Total Petroleum hydrocarbons as Oil

(ppb) = Parts per billion

- * TOC elevations have been surveyed in feet relative to msl.
- ** GWE corrected due to the presence of SPH; correction factor: [(TOC DTW) + (SPHT x 0.8)].
- Analysis with silica gel cleanup.
- Laboratory report indicates the heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range.
- ³ Laboratory report indicates this sample was received and analyzed unpreserved.

Table 3 Groundwater Analytical Results - SVOC and PAH

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

					asmigion				
WELL ID	DATE	(dd 2-Methylnaphthalene	dd 2,4-Dimethylphenol	(naphthalene	(ppb)	(qd 2-Methylphenol	(qdd) (4- Methylphenol	d) (q bis (2-Ethylhexyl) phthalate	(q Benzoic acid
VP-1	07/24/2002	84	80	160	ND	13	18	31	<10
VP-2	07/24/2002	UNABLE TO LOCA	ATE						
VP-5 (MW-5)	07/24/2002	INACCESSIBLE - C	CAR PARKED O	VER WELL					
VP-7 (MW-3)	07/24/2002	69	28	420	ND	<5.0	6	<10	34
VP-8 (MW-7)	07/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10
VP-9	07/24/2002	INACCESSIBLE - C	CAR PARKED O	VER WELL					
MW-4	07/24/2002	160	24	500	ND	6	9	<10	<10
MW-10	07/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	13	<10
MW-11	07/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10

Table 3
Groundwater Analytical Results - SVOC and PAH

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

				Scattie,	O				
WELL ID	DATE	(qd 2-Methylnaphthalene	dd 2,4-Dimethylphenol) (qabthalene	(<i>dqq</i>)	(qd 2-Methylphenol	(qdd) (qd 4- Methylphenol	dd bis (2-Ethylhexyl) phthalate	(pgdd) Benzoic acid
DB-1 (MW-12)	10/17-18/02	<10.0	<10.0	<10.0	<10.0	<10.0		<50.0	<20.0
DB-2 (MW-13)	10/17-18/02								
DB-6 (MW-14)	10/17-18/02 11/14/02	52.2	 13.4	 242	 34.5	 11.0	 24.8 ¹	 <50.0	 <20.0
DB-8 (MW-15)	10/17-18/02 11/14/02	 <10.0	 <10.0	 <10.0	 37.0	 <10.0	 <10.0 ¹	 <50.0	 <20.0
RW-4	07/24/2002	<5.0	<5.0	<5.0	ND	<5.0	<5.0	<10	<10

Table 3

Groundwater Analytical Results - SVOC and PAH

Former Texaco Service Station (Site #211577)
631 Queen Anne North
Seattle, Washington

EXPLANATIONS:

(ppb) = Parts per billion-- = Not AnalyzedND = Not Detected

Results are for 3 & 4-Methylphenol.

ANALYTICAL METHODS:

Semi-Volatile Organic Compounds (SVOC) by EPA Method 8270 Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270

NOTE:

Other PAH and SVOC constituents were less than the reporting limit.

Table 4 Groundwater Analytical Results - SVOC

Former Texaco Service Station (Site #211577) 631 Queen Anne North

Seattle, Washington

WELL ID/	DATE	(bloroform	(q cis-1,2-Dichloroethene	(Benzene	(d Toluene	(defa) (d	dd Tetrachloroethene (g	(qdd) Trichloroethene	dd m+p-Xylene	(pdd) o-Xylene	(d Isopropylbenzene	(d n-Propylbenzene	dd 1,3,5-Trimethylbenzene	dd 1,2,4-Trimethylbenzene	da sec-Butylbenzene	dd) (g p-Isopropyltoluene	d n-Butylbenzene	d (q. Naphthalene	d Methyl t-butyl ether	(d t-Butyl alcohol
VP-3 (MW-2)	07/24/02	DRY										·								
VP-5 (MW-5)	07/24/02	INACCI	ESSIBLE	E - CAR I	PARKED	OVER	WELL					 .								
VP-7 (MW-3)	10/17-18/02				••		••		**										<10.0	<100
VP-9	07/24/02	INACC	ESSIBLI	E - CAR	PARKEI	OVER	WELL													
MW-4	07/24/02 10/17-18/02	ND 	<8.0 	12,000	10,000	1,800	ND 	ND 	8,900 	3,500	46 	140 	500 	1,800	<10 	<10 	23	360	6 <50.0	120 < 500
MW-10	07/24/02	ND	15	2	<0.5	<0.5	ND	ND	<0.5	<0.5	<2	<1	<1	<1	1	<1	<1	<2	<2	<100
MW-11	07/24/02	ND	<1	<0.5	<0.5	<0.5	ND	ND	<0.5	<0.5	<2	<1	<1	<1	<1	<1	<1	<2	<2	<100
DB-1 (MW-12)	10/17-18/02	1.68	9.07	<1.00	<1.00	<1.00	9.58	2.75	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<5.00	<50.0

Table 4 Groundwater Analytical Results - SVOC

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

WELL ID/	DATE	(qdd)	dd cis-1,2-Dichloroethene	Benzene (dpp)	(ppb)	(qdd) (qdd)	(dq Tetrachloroethene	(qdd) (qdd Trichloroethene	(qdd) (qdb)	o-Xylene	(dqq) (dqq)	(dd n-Propylbenzene	dd 1,3,5-Trimethylbenzene	(qdd) 1,2,4-Trimethylbenzene	d sec-Butylbenzene	(d p-Isopropyltoluene	(dn n-Butylbenzene	(dqq) (dqqq)	d Methyl t-butyl ether	(ddd) f-Butyl alcohol
DB-2 (MW-13)	10/17-18/02																			
DB-6 (MW-14)	10/17-18/02																			
DB-8 (MW-15)	10/17-18/02				***															
RW-4	07/24/02	ND	<1	70	1	36	ND	ND	3	2	<2	3	<1	20	<1	2	1	5	<2	<100

Table 4

Groundwater Analytical Results - SVOC

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

EXPLANATIONS:

(ppb) = Parts per billionSVOC = Volatile Organic Compounds-- = Not AnalyzedND = Not Detected

ANALYTICAL METHOD:

SVOC by EPA Method 8260

NOTE:

Other SVOC were less than the reporting limit.

Table 5 Groundwater Analytical Results - Dissolved Metals

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

WELL ID/	DATE	MERCURY	ARSENIC	CADMIUM	CHROMIUM	LEAD	SELENIUM	SILVER (ppb)	BARIUM TR (ppb)
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppo)	(PYU)
						22.9			
VP-1	07/24/2002					18.0			*-
	10/17-18/02 ¹								
VP-2	07/24/2002	UNABLE TO LOC							
	10/17-18/02	NOT SAMPLED	DUE TO INSUFI	FICIENT WATER					
VP-3 (MW-2)	07/24/2002	DRY							
	10/17-18/02	DRY							
VP-4	07/24/2002					28.0	••		
	10/17-18/02	NOT SAMPLED	DUE TO THE PI	RESENCE OF SPH				••	
VP-5 (MW-5)	07/24/2002	INACCESSIBLE	- CAR PARKED (OVER WELL					
	10/17-18/02 ¹		. ••	**		2.29			
VP-6	07/24/2002	NOT SAMPLED							
	10/17-18/02	NOT SAMPLED	DUE TO THE P	RESENCE OF SPH					••
								0.060	33.6
VP-7 (MW-3)	07/24/2002	< 0.079	97.3	<0.080	2.2	25.0	<1.1	0.068	33.0
	10/17-18/02					2.40			
								0.050	40.6
VP-8 (MW-7)	07/24/2002	< 0.079	2.1	0.13	0.82	11.4	<1.1	< 0.050	49.6
	10/17-18/02					1.93			

Table 5 Groundwater Analytical Results - Dissolved Metals

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

					CHROMIUM	LEAD	SELENIUM	SILVER	BARIUM TR
WELL ID/	DATE	MERCURY	ARSENIC (ppb)	CADMIUM (ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
		(ppb)	(<i>ppv</i>)	(PP0)	(PPV)	<u> </u>			
P-9	07/24/2002	INACCESSIBLE -	- CAR PARKED O	VER WELL					
r-9	10/17-18/02					<1.00			
	10/1/-10/02								
		0.070	21.0	<0.080	<0.28	15.5	<1.1	< 0.050	63.8
1W-4	07/24/2002	< 0.079	31.0	<0.080	<0.20 	10.7			
	10/17-18/021	••				9.61			
(D)	10/17-18/02	***	•=			7402			
						5.1			
AW-6	07/24/2002	NOT CAMPIED	DUE TO THE DI	RESENCE OF SPI					
	10/17-18/02	NOT SAMPLED	DUE TO THE PI	RESENCE OF SIT	1				
	40/4# 40/04			••		2.66			
MW-9	10/17-18/02								
	0710410000	<0.079	4.1	0.17	0.38	1.3	<1.1	<0.050	52.1
MW-10	07/24/2002					<1.00			
	10/17-18/02								
MW-11	07/24/2002					<1.2			
/I VV - 1 1	10/17-18/02					<1.00			
	10/17-10/02								
DB-6 (MW-14)	11/14/02	<1.00	17.0	<1.00	<1.00	1.82	1.48	<1.00	18.4
>ar 0 (1/4 // -1-)	A A: 1-71 VM								
OB-8 (MW-15)	11/14/02	<1.00	1.33	<1.00	<1.00	1.04	<1.00	<1.00	<10.0
.D-0 (14144.12)	11/17/02	41100	1.00						
ND A (MIII 16)	11/14/02			••		<1.00		••	
DB-9 (MW-16)	11/14/02			**		<1.00			

Table 5
Groundwater Analytical Results - Dissolved Metals

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

WELL ID/	DATE	MERCURY (ppb)	ARSENIC (ppb)	CADMIUM (ppb)	CHROMIUM (ppb)	LEAD (ppb)	SELENIUM (ppb)	SILVER (ppb)	BARIUM TR (ppb)
DB-10 (MW-17)	11/14/02					<1.00			
RW-2	07/24/2002	UNABLE TO LOCATI	E 	 	 	 2.23	 	 	
	10/17-18/02								
RW-3	07/24/2002 10/17-18/02	UNABLE TO LOCAT		 	 		 		
					1.0	3.3	<1.1	<0.050	66.9
RW-4	07/24/2002 10/17-18/02	<0.079	6.1 	<0.080 	1.2	1.23	••		
RW-5	07/24/2002 10/17-18/02	UNABLE TO LOCAT	Е 		 	 3.91	 	 	
	10/1/-10/02								

Table 5

Groundwater Analytical Results - Dissolved Metals

Former Texaco Service Station (Site #211577) 631 Queen Anne North Seattle, Washington

17

EXPLANATIONS:

(ppb) = Parts per billion-- = Not Analyzed(D) - Duplicate

ANALYTICAL METHODS:

Dissolved Metals by EPA Method Series 7000 Barium TR by EPA Method 6010B

Organic Lead was <300 ppb.

As of 11/14/02

Table 6

Groundwater Analytical Results - Oxygenate Compounds

Former Texaco Service Station (Site #211577)

631 Queen Anne North Seattle, Washington

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	1,2-DCA (ppb)	EDB (ppb)
DB-1 (MW-12)	10/18/02		<50.0	<5.00		<1.00	<1.00		
VP-7 (MW-3)	10/18/02	<40.0	<100	<10.0	<2.00	<2.00	<2.00	<1.00	<1.00
MW-4	10/18/02	<200	<500	<50.0	<10.0	<10.0	<10.0	<5.00	<5.00

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2- DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize. Purge water is treated by filtering the water through granular activated carbon and is subsequently discharged to the ground surface at the site.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used for all samples. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4NC for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

FORMER TEXACO SERVICE STATION Seattle, Washington (Site #211577)

MONITORING & SAMPLING EVENT OF OCTOBER 17 and 18, 2002

Client/Facility #: Site Address: City: Well ID	631 Queen Anne No Seattle, WA	orth	Event Date:	10.17	(inclusiv
	Seattle, WA				(110.00.1
Well ID			Sampler:	Brill	
	VP - 1	Well Condition:	or		
Well Diameter	2 in.	Hydrocarbon	est.	Amount Bailed	
Total Depth	14.81 ft.	Thickness:	ft.	(product/water):	gal.
Depth to Water	12.70 ft.	Volume	3/4"= 0.02 F) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
	2.11 xvF(["	7 = ,36	<u>, </u>	Estimated Purge Volume:	gal.
Purge	Disposable Bailer	√	Sampling	Disposable Bailer _	1
Equipment:	Stainless Steel Bailer		Equipment:	Pressure Bailer	
	Stack Pump			Discrete Bailer	
	Suction Pump			Other:	
	Grundfos				
	Other:				
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ter? No If yes,	Conductivity (umhos/cm)	Temperature (C/F)	gal. D.O. (mg/L)	ORP (mV)
		LABORATORY IN			
SAMPLE ID	(#) CONTAINER REFRI		E LABORATO	TPH-G/BTEX/MTBE	LYSES
1 VP 1	3 x voa vial YES 1 Amber L 1	HCL ↓	1	TFH (D) x W/3	
VV \	1500 mLP1	NP		Diss. Lead	
VPI	J. V	Ý	V	TEL	
COMMENTS:					

Well ID Well Diameter Total Depth Depth to Water Disposable Bailer Equipment: Stark Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Well Condition: Well Condition: Hydrocarbon Thickness: Wolume Factor (VF) Sample Time/Date: Volume PH Conductivity Tem Time Time Volume PH Conductivity Tem Time Time Time Time Time Time Time	Amou ft. (produ 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 e volume) = Estimated F pling Disposa pment: Pressure Other:	int Bailed gater/water): gater	
Well ID Well Diameter Z in. Hydrocarbon Thickness: Depth to Water Depth to Water Disposable Bailer Equipment: Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Well Condition: Other: Wolume Factor (VF) Sample Time/Date: Volume PH Conductivity Tem Volume Conductivity Tem Volume Conductivity Tem Volume Time Volume Conductivity Tem Time Volume Time Volume Time Volume Time Volume Time Volume Time Volume Time Conductivity Tem Time Time Volume Time Time Volume Time Time Volume Time Time Time Volume Time Time Time Volume Time	Amou ft. (produ 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 e volume) = Estimated F pling Disposa pment: Pressure Other:	int Bailed act/water): 2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Purge Volume: Bailer Bailer Bailer Bailer Odor:	
Well Diameter Total Depth Depth to Water Total Depth 13.60 ft. Thickness: Volume Factor (VF) xVF = x3 (case Value) Equipment: Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume PH Conductivity Tem Volume Conductivity Tem Conductivity	Amou ft. (produ 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 e volume) = Estimated F pling Disposa pment: Pressure Other:	ga 2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Purge Volume: ga able Bailer e Bailer e Bailer e Odor: Odor: Odor:	
Well Diameter Total Depth Depth to Water Total Depth 13.60 ft. Thickness: Volume Factor (VF) xVF = x3 (case Value) Equipment: Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume PH Conductivity Teme Volume Conductivity Teme Conductivity Teme Conductivity Teme Volume Conductivity Teme Conductivity Teme Conductivity Teme Volume Conductivity Teme Conduct	Amou ft. (produ 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 e volume) = Estimated F pling Disposa pment: Pressure Other:	ga 2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Purge Volume: ga able Bailer e Bailer e Bailer e Odor: Odor: Odor:	
Total Depth	ft. (produ 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 e volume) = Estimated F pling Disposa pment: Pressure Other:	ga 2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Purge Volume: ga able Bailer e Bailer e Bailer e Odor: Odor: Odor:	
Depth to Water 13.60 ft. Volume Factor (VF)	3/4"= 0.02	2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Purge Volume: gaster	
Purge Disposable Bailer Same Equipment: Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Weather Conditions: Sample Time/Date: / Water Color: Purging Flow Rate: gpm. Sediment Description: Did well de-water? If yes, Time: Volume PH Conductivity Tem	4"= 0.66 5"= 1.02 evolume) = Estimated F pling Disposa pment: Pressure Other:	6"= 1.50 12"= 5.80 Purge Volume: g sble Bailer e Bailer Bailer Odor:	al.
Purge Disposable Bailer Sample Equipment: Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Weather Conditions: Sample Time/Date: / Water Color: Purging Flow Rate: gpm. Sediment Description: Did well de-water? If yes, Time: Volume Other Conductivity Tem	pling Disposa pment: Pressure Discrete Other:	Purge Volume: g ble Bailer e Bailer Bailer Odor:	al.
Purge Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Weather Conditions: Sample Time/Date: / Water Color: Purging Flow Rate: gpm. Sediment Description: Did well de-water? If yes, Time: Volume Volume Volume Conductivity Tem	pling Disposa pment: Pressure Discrete Other:	oble Bailer e Bailer e Bailer Odor:	
Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Volume Conductivity Tem Stack Pump Suction Pump Weather Conditions: Water Color: Value of the ph Conductivity Tem Volume Conductivity Tem Volume Stack Pump Suction	pment: Pressure Discrete Other:	e Bailer e Bailer Odor:	- - -
Stack Pump Suction Pump Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Volume PH Conductivity Tem	Discrete Other:	Bailer Odor:	
Grundfos Other: Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Weather Conditions: Water Color: Yolu Sediment Description: Volume Time Volume Other: Other: Weather Conditions: Function of the phase of the p	Other:	Odor:	
Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Weather Conditions: Water Color: Yes, Time: Volume Volume Occupation: PH Conductivity Tem		Odor:	
Start Time (purge): Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Weather Conditions: Water Color: Your Sediment Description: Volume Time Volume PH Conductivity Tem			
Sample Time/Date: Purging Flow Rate: Did well de-water? Volume Volume Volume Conductivity Tem			
	nperature C	olo. ORP ng/L) (mV)	
			·····
LABORATORY INFORMA	TION		
	ORATORY	ANALYSES	
- xx6a vial YES HCL	TPH-G	/BTEX/MTBE	
1			
COMMENTS: Insufficient water to sample	5		
Add/Replaced Lock: Add/Re			

	Chevron #211577		Job Number:	386/65	
Site Address:	631 Queen Anne Noi	rth	Event Date:	10-17-02	(inclusive
City:	Seattle, WA		Sampler:	BWN	
Well ID	46 -3/WM.5-	Well Condition:	ok_		
Well Diameter	٦ in.	Hydrocarbon	(T	Amount Bailed	EL.
Total Depth	4.10 ft.	Thickness:	ft.	(product/water): /	gal.
Depth to Water	D 124 ft.	Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38 12"= 5.80
		Factor (V		5"= 1.02 6"= 1.50	
	xVF	=	_x3 (case volume) = E	stimated Purge Volume:	gal.
Durgo	Dianasahla Rajlar		Sampling	Disposable Bailer	
Purge Equipment:	Disposable Bailer Stainless Steel Bailer		Equipment:	Pressure Bailer	
Equipment	Stack Pump			Discrete Bailer	
	Suction Pump	/		Other:	
	Grundfos		٠.		
	Other:		•		
		/			
Start Time /pure	o). We	eather Conditions	s:		
Start Time (purg	ate:/	Water Colo		Odor:	
	ate: gpm. Sed	iment Description			
Did well de-wate		/ Time:		gal.	
				D 0	ODD
Time	Volume pH	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
(2400 hr.)	(gal.)	(a minosism)	(,	, - ,	<u> </u>
	- 				
<u> </u>			/		
	-				
		LABORATORY IN			
SAMPLE ID	(#) CONTAINER REFRIC	B. PRESERV. TY			ALYSES
SAMPLE ID	\			TPH-G/BTEX/MTBI	
SAMPLE ID	(#) CONTAINER REFRIC	B. PRESERV. TY			
SAMPLE ID	(#) CONTAINER REFRIC	B. PRESERV. TY			
SAMPLE ID	(#) CONTAINER REFRIC	B. PRESERV.TV			
SAMPLE ID	(#) CONTAINER REFRIC	B. PRESERV. TY			
	(#) CONTAINER REFRIC	B. PRESERV.TV			

Client/Facility #:	Chevron #211577		Job Number:	386765		
Site Address:	ite Address: 631 Queen Anne North		Event Date: 10-17-02			(inclusive)
City:	Seattle, WA		Sampler:	EWN		•
	VP - 4		- le			
Well ID		Well Condition	e of			
Well Diameter	<u>ان عام</u>	Hydrocarbon	777	Amount Bailed	d	
Total Depth Depth to Water	14.70 ft.	Thickness:	103 ft.	(product/water):	gal.	
Depui to water	12.75 ft.	Volume Factor (V	3/4"= 0.02 (F) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80	
	xVF	=	x3 (case volume) = [Estimated Purge Volume:		
Purge	Disposable Bailer		Sampling	Disposable Bailer		
Equipment:	Stainless Steel Bailer	_	Equipment:	Pressure Bailer		
	Stack Pump			Discrete Bailer		
	Suction Pump			Other:		
	Grundfos			1		
	Other:					
		$\overline{}$				
Start Time (purge	·/	ather Conditions:				
Sample Time/Da		Water Color:		Odor: _		
Purging Flow Ra Did well de-wate		ment Description:				•
Did weil de-wate	ir yes, i	ime:	_ Volume:	gal.		
Time	Volume pH	Conductivity	Temperature	D.O.	ORP	
(2400 hr.)	(gal.)	(u mhos/cm)	(C/F)	(mg/L)	(mV)	
/			·			,
				-		
		/				
				-		
		ABORATORY	ORMATION			•
SAMPLE ID	(#) CONTAINED REFRIG.		LABORATORY		YSES	
-	x yoa vial YES	HCL		TPH-G/BTEX/MTBE		
			[\ 			
			1			
	Not sampled	1 1	col			
COMMENTS:	1001 Sampled	due to s	2411			
A 44 /D - :- 1	all and					
Add/Replace	ed Lock;	Α	dd/Replaced Pl	lug:Size	e:	

Client/Facility #:	Chevron #211	577		Job Number:	386765	
Site Address:	631 Queen An	ne Nort	<u>h</u>	Event Date:	(inclus	
City:	Seattle, WA			Sampler:	BWN	
Well ID	VP - 5 /	mw-5	Well Condition:	οK		
Well Diameter	7 in.		Hydrocarbon	4.6	Amount Bailed	
Total Depth	16.50 ft.		Thickness:	Ø ft.		Ø gal.
Depth to Water	12-31 ft.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	
			Factor (VI		5"= 1.02 6"= 1.50	i i
	4.19 x	_{/F} 117	= ,71	x3 (case volume) = E	Estimated Purge Volume	:: gal.
				,	, and the second	
Purge	Disposable Bailer	- <u> </u>	<u> </u>	Sampli ng	Disposable Bailer	
Equipment:	Stainless Steel B	ailer		Equipment:	Pressure Bailer	
	Stack Pump				Discrete Bailer	
	Suction Pump				Other:	
	Grundfos					
	Other:			•		
Start Time (purge	1700	Wes	ther Conditions	: Sunn		
Sample Time/Da		vvea	Water Color	v	Odor:	ws.
Purging Flow Ra		Sedim	ent Description			
Did well de-wate			ne:	Volume:	gal.	
			Conductivity	Temperature	D.O.	ORP
Time (2400 hr.)	Volume (gal.)	pН	(u mhos/cm)	(C/ J)	(mg/L)	(mV)
,						
1202		6.81	341	15.0		
1204	_ 2	6.76	329	14.8		
	· · · · · · · · · · · · · · · · · · ·			-0011471011		
SAMPLE ID	(#) CONTAINER	REFRIG.	BORATORY INF		Y AN	ALYSES
VP - 5	3 x voa vial	YES	HCL	NC	TPH-G/BTEX/MTB	
Vf 5	1 Amber L	ĺ	4		TPH(D) x u	
VP 5	1 500m2 Pl.		NF		Disselved	Lead
N4 2	15 B	1	d/	ΨΨ	Totracthyl	Lear(
			1			
COMMENTS:						
Add/Replac	ed Lock:			Add/Replaced	Plug: \$	Size:

CII	ent/Facility #:	Chevron #21	15//		Job Number:	3867 65		
Site	e Address:	631 Queen A	nne Nor	th	Event Date: 10-17-02			- (inclusive)
City	y:	Seattle, WA			Sampler:	BWN		•

We	II ID	VP - 6		Well Condition:	ok	-		
We	II Diameter	<u> </u>		Hydrocarbon		Amount Bailed	0.1	•
	al Depth	14.72 ft.		Thickness:	165 ft.		gal.	
De _l	pth to Water	11.35 ft.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38	-]
				Factor (VI		5"= 1.02 6"= 1.50]
		x\	VF	<u> </u>	x3 (case volume) = F	Estimated Purge Volume	e: gal.	
Pui	rge	Disposable Baile	r		Sampling	Disposable Bailer		
Equ	uipment:	Stainless Steel B		<i>y</i>	Equipment:	Pressure Bailer		-
		Stack Pump	•			Discrete Bailer		•
		Suction Pump				Other;		-
		Grundfos			• •			
		Other:						
			-	/		<u>/</u>		
Sta	rt Time (purge)):	Wea	ather Conditions:	/			
Sar	mple Time/Dat	te:/		Water Color:		Odor:		-
	ging Flow Rat			nent Description:				- -
Did	well de-water	?	If yes, Ti	me:	Volume:	gal.		_
	Time	Volume		Conductivity	Temperature	D.O.	ORP	
	(2400 hr.)	(g ə l.)	pН	(u mhos/cm)	(C/F)	(mg/L)	(mV)	
		/ -						_
		·			-			_
		/		-/				-
								-
								-
		<i>C</i>	LA	BORATORY INFO	ORMATION			
	SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATOR	Y ANA	ALYSES	
-	-	x voa vial	YES	HCL		TPH-G/BTEX/MTB		
<u> </u>		\longrightarrow						
					}			
	<u> </u>	A A 1	. i 1	1 1 / x			-2	
COL	MMENTS:	Not som	pica	duc to St	1)			
CO	MMENTS:	Not som	vp Ica	anc to st				

Client/Facility #:	Chevron #211	1577		Job Number:	386765	
Site Address:	631 Queen Anne North			Event Date:	10-17	(inclusiv
City:	Seattle, WA			Sampler:	BWN	
Well ID	<u>VP - 7 /n</u>	1W-3	Well Condition:	ok		
Well Diameter	<u>ン in.</u>		Hydrocarbon	Ø	Amount Bailed	B
Total Depth	17.42 ft.		Thickness:	ft.	(product/water):	gal.
Depth to Water	10.57 ft.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	•
	6.85 x	17	= 7.16		5"= 1.02 6"= 1.50	
	x	VF	= [, [6]	x3 (case volume) = 1	Estimated Purge Volume	: 3. 5gal.
Purge	Disposable Baile	r	J	Sampling	Disposable Bailer	1
Equipment:	Stainless Steel E			Equipment:	Pressure Bailer	
	Stack Pump				Discrete Bailer	
	Suction Pump				Other:	
	Grundfos			•		
	Other:					
Start Time (purge): 1240	Wea	ther Conditions:	<i>šin</i> ni	√ }	
Sample Time/Da	-6/4		Water Color:			YES
Purging Flow Ra	te: gpm.	Sedim	ent Description:			
Did well de-wate	r? <u>nD</u>	If yes, Tir	ne:	Volume:	gal.	
Time	Volume		Conductivity	Temperature	D.O.	ORP
(2400 hr.)	(gal.)	pН	(u mhos/cm)	(C/F)	(mg/L)	(mV)
1244	1.2	6.77	281	14.9		
1248	7.4	6.72	276	14.6		
1252	3.5	6.69	272	14.5		<u></u>
						<u> </u>
		1.4	BORATORY INF	OPMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		RY AN	ALYSES
VP - 7	3 x voa vial	YES	HCL	NC	TPH-G/BTEX/MAP	
JP 7	1 Amber 2	1	1	1	TPH(D) Ru	
V\$ -7	1 Same Pi.	<u> </u>	hp	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Diss- Lead	
COMMENTS:	<u> </u>					
COMMENIA:	<u> </u>					
Add/Replac	ed Lock:	,	F	\dd/Replaced	Plug:	Size:

GETTLER-RYAN INC.

Client/Facilit	y#: Chevron #211577		Job Number:	386765	
Site Address	s: 631 Queen Anne N	lorth	Event Date:	10-17	(inclusiv
City:	Seattle, WA		Sampler:	BWN	
Well ID	VP - 2 /MW	-7 Well Condition	n: OK		
Well Diamet	<u> </u>	Hydrocarbon		Amount Bailed	
Total Depth	16.76 ft.	Thickness:	Æ ft.		Ø ool
Depth to Wa	ter 12.78 ft.	Volume			gal.
		Factor (1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
	3.90 XVF 1	(7) = 167	x3 (case volume) = [Estimated Purge Volume:	gal.
			_ *** (********************************	Louinated Furge Volume.	yai.
Purge	Disposable Bailer	<u> </u>	Sampling	Disposable Bailer	\checkmark
Equipment:	Stainless Steel Bailer		Equipment:	Pressure Bailer	
	Stack Pump			Discrete Bailer	
	Suction Pump			Other:	
	Grundfos				
	Other:				
Start Time (p	ourge): 1220 \	Veather Conditions	s:3uNI	\vee) $_{1}$	
Sample Time	e/Date: 1230 /	Water Colo	r: 900)	Odor:	Slight
Purging Flow		diment Description	n:		
Did well de-v	vater? <u>NO</u> If yes	, Time:	Volume:	gal.	
Time	Volume	Conductivity	Temperature	D.O.	000
(2400 h	nLl	(u mhos/cm)	(C/F)	(mg/L)	ORP (mV)
122		301	14.9		
1224	1 2 1.7.	1 291	14.7		
	·				
				-	
CAMPLE	1 (#\ 00\\ - -\\\	LABORATORY IN			
SAMPLE II					YSES
114 8	3 x voa vial YES	HCL 1	NC 1	TPH-G/BTEXALTBE	
14 8	SOO m.L P(.)		+ + + -	Diss. Leaf	135
				2.35	\
COMMENTS	:				
Add/Ren	laced Lock:		۸ dd/D	l 2:	
, laar top	TOOK.	•	vanvehiacea b	lug:Siz	.e:

Client/Facility #:	Chevron #211577		Job Number: 3	86765	
Site Address:	631 Queen Anne Nort	h	Event Date:	10.17	(inclusiv
City:	Seattle, WA		Sampler:	BWN	
Well ID	VP - 9	Well Condition:	ok		
Well Diameter		Hydrocarbon	α	Amount Bailed (product/water):	1
Total Depth	<u></u>	Thickness:			gal.
Depth to Water	11,90 ft.	Volume Factor (V	3/4"= 0.02 (F) 4"= 0.66		= 0.38 "= 5.80
	1.6 xVF . 17	= .27	x3 (case volume) = Est	timated Purge Volume:	gal.
Purge	Disposable Bailer	1	Sampling [Disposable Bailer	
Equipment:	Stainless Steel Bailer		Equipment: F	Pressure Bailer	
	Stack Pump		Ε	Discrete Bailer	
	Suction Pump			Other:	
	Grundfos				
	Other:				
Start Time (purge Sample Time/Da	ate: 1640 /	ther Conditions Water Color nent Descriptior	r: dark or		
Purging Flow Ra Did well de-wate	3	me:		gal.	
Time (2400 hr.)	Volume pH (gal.)	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
1635	,8 6.86	301	14.6		MAN (1994)
		ABORATORY IN			
SAMPLE ID	(#) CONTAINER REFRIG.	PRESERV. TYP	E LABORATORY	TPH-G/BTEX/MTBE	= 9
VP - 9	3 x voa vial YES		1	TPH(D) + W/SO	2
VP 9	1 500 mL Pl.	WP		Diss. Leah	
COMMENTS:	Only 300 ml	obtained elagiz in	for diss.	Izad	
Add/Replac				lug:Size:	

GETTLER-RYAN INC.

Client/Facility #:	Chevron #211577		Job Number:	386765	
Site Address:	631 Queen Anne No	orth	Event Date:	10-17	(inclusi
City:	Seattle, WA		Sampler:	BWN	
Well ID	MW-4	Well Condition	· oK		
Well Diameter	2∕ in.	Hydrocarbon		Amount Bailed	
Total Depth	17.50 ft.	Thickness:	Ø ft.		Ø gal.
Depth to Water	11.98 ft.	Volume	3/4"= 0.02		
		Factor (V		5"= 1.02 6"= 1.5	
	5-52 xVF '	17 = 7,43	x3 (case volume) =	Estimated Purge Volum	e: <u>3</u> gal.
		_	, (,	aller alge tolani	o gai.
Purge	Disposable Bailer	J	Sampling	Disposable Bailer	\checkmark
Equipment:	Stainless Steel Bailer		Equipment:	Pressure Bailer	
	Stack Pump			Discrete Bailer	
	Suction Pump			Other:	
	Grundfos		• 4		
	Other:				
Start Time (purg Sample Time/Da Purging Flow Ra Did well de-wate Time (2400 hr.)	ate: 1445 / gpm. Sed	eather Conditions Water Color liment Description Time: Conductivity (u mhos/cm)	Clerk	Odor	ORP
1436	2 6.76	349	14.4		
1439	3 6.77	342	14.2	-	
	1	LABORATORY INF	ORMATION		
SAMPLE ID	(#) CONTAINER REFRIG	. PRESERV. TYPE	LABORATOR	Y AN	ALYSES
MW - 4	3 x voa vial YES	HCL	本のこ		
MW 4	2 Amber 2	<u> </u>	1-1-	TPH(P) × W/	56
MW H	1 583 ML PI	NP 3	1	Diss. Lead	
7 100	Y Y	, , , , , , , , , , , , , , , , , , ,	 	Tetro Eth	y reed
COMMENTS:	DUP 1 5A	mple take	n (DUPL	ICATE NO	for TEL
Add/Replac	ed Lock:	A	Add/Replaced F	Plug: \$	Size:

Client/Facility #:	Chevron #211577		Job Number:	386765	
Site Address:	631 Queen Anne No	orth	Event Date:	10-17-0L	(inclusiv
City:	Seattle, WA		Sampler:	RWN	
Well ID	MW - 6	Well Condition	· ok		
Well Diameter	ァ in.	Hydrocarbon		Amount Bailed	
Total Depth	28.37 ft.	Thickness:	, 0.5 ft.	(product/water):	gal.
Depth to Water	20,64 ft.	Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	7 3"= 0.38
		Factor (V	'F) 4"= 0.66	5"= 1.02 6"= 1.50) 12"= 5.80
	xVF	=	x3 (case volume) =	Estimated Purge Volume	e: gal.
_			Sampli ng	Diseasable Beiler	
Purge Equipment:	Disposable Bailer		Equipment:	Disposable Bailer Pressure Bailer	
Equipment.	Stainless Steel Bailer		_ 4,	Discrete Bailer	
	Stack Pump		% 3	Other:	
	Suction Pump Grundfos	/			
	Other:	<i></i>			
	Other.				
Otant Time (-).	eather Conditions	. /		
Start Time (purg	-/-	Water Colo		Odor	•
Sample Time/Da Purging Flow Ra	,	diment Description			
Did well de-wate		Time:	7	gal.	
Dia Won de Wan			7		
Time	yolume pH	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
(2400 hr.)	(gal.)	(Ullillos/Cill)	(6/1)	(1119/2)	(_/)
	-/	- —/			
	/				
		LABORATORY IN			
SAMPLE ID	(#) CONTAINER REFRI		E LABORATO		NALYSES
-	x voa vial YES	HCL	$\overline{}$	TPH-G/BTEX/MT	DE
			/		
I .	1/)		
		1 /			
		- - - - - - - - - - 	2 D 94		
COMMENTS:	Not sampled	due to =	SPH		
COMMENTS:	Not sampled	due to =	SPA		

GETTLER-RYAN INC.

Client/Facility #:	Chevron #21	1577		Job Number:	38 6765	
Site Address:				Event Date:	10-18-02	(inclusiv
City:				Sampler:	BWN	
Well ID	mw-9		Well Condition:	οK		
Well Diameter	γ in.		Hydrocarbon		Amount Bailed	
Total Depth	27.70 ft.		Thickness:	∕Ø ft.	(product/water):	gal.
Depth to Water	20.38 ft.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38
	6.82	15	Factor (VI		5"= 1.02 6"= 1.50	12"= 5.80
	>	VF	/ = (.)	x3 (case volume) = E	stimated Purge Volume: _	<u>3</u> gal.
Purge	Disposable Baile	er	<u>√</u>		Disposable Bailer	√
Equipment:	Stainless Steel Bailer Stack Pump			Equipment:	Pressure Bailer	
					Discrete Bailer	
	Suction Pump	_			Other:	
	Grundfos			• •		
	Other:					
Sample Time/Da Purging Flow Ra Did well de-wate	ate: gpm.		Water Color: nent Description:		Odor:	Y es
Did well de-wate	er? <u>40</u>	ii yes, ii	me:	Volume:	gal.	
Time	Volume	рН	Conductivity	Temperature	D.O.	ORP
(2400 hr.)	(gal.)	ри	(u mhos/cm)	(C/) / ⁷	(mg/L)	(mV)
933		7.19	312	14.5		
936	2	7.13	309	14.4	-	
939	3	7.12	307	14,4		
		LA	ABORATORY INF			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		YSES
MW - G	3 x voa vial	YES	HCL •	66	TPH-G/BTEX/MTBE	
MW 9 MW 9	1 500 m L Pi.		1 4u	1,	Diss. Lend	
7.44					D:05. 26.0	
	1					
COMMENTS:						
COMMENTS:						

Client/Facility #:	Chevron #211577		Job Number:	386765	
Site Address:	631 Queen Anne No	rth	Event Date:	10-17-02	(inclusiv
City:	Seattle, WA		Sampler:	BUP	
Well ID	MW - 10	Well Condition:	oK		
Well Diameter Total Depth	2 in. 79.15 ft.	Hydrocarbon Thickness:	Ø ft.	Amount Bailed (product/water):	gal.
Depth to Water	13.59 ft.	Volume Factor (V	3/4"= 0.02 (F) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
	5.36 xVF +	7 = 2.5	x3 (case volume) = E	stimated Purge Volume	7.5 gal.
Purge	Disposable Bailer		Sampling Equipment:	Disposable Bailer	V
Equipment:	Stainless Steel Bailer		Equipment	Pressure Bailer Discrete Bailer	
	Stack Pump				
	Suction Pump			Other:	
	Grundfos				
	Other:				
Start Time (purg Sample Time/D	, , , , , , , , , , , , , , , , , , ,	eather Conditions Water Colo		Odor:	nð
Purging Flow R Did well de-wat		liment Descriptior Time:		gal.	
Time (2400 hr.)	Volume pH (gal.)	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
1752	2.5 6.39	289	14.6		
1759	<u> 5 1.82</u>	293	<u>H-5</u>		
1806	7.5 6.8	299	14-2		
		LABORATORY IN	EODMATION		
SAMPLE ID	(#) CONTAINER REFRIG			RY AN	ALYSES
MW - 10	3 x voa vial YES		LL	TPH-G/BTEX/M∓B	Ē.
MW 10	Amber 2	4		TOHEOUT W/	
MW 10	1500mh Pi. 4	NP	V	piss. Lead	
COMMENTS:					
Add/Panla	aced Lock:		Add/Replaced	Plug:	Size:

Client/Facility #:	Chevron #21	1577		Job Number:	386765	
Site Address: 631 Queen Anne North City: Seattle, WA			Event Date:	10-17-02	(inclusiv	
				Sampler:	BWN	•
Well ID	mw -11		Well Condition	: NO BO	rts	
Well Diameter Total Depth	2 in. 17.30 ft.		Hydrocarbon Thickness:	Ø ft.	Amount Bailed (product/water):	gal.
Depth to Water	11.43 ft. 5.87	KVF 1	Volume Factor (V			3"= 0.38 2"= 5.80
Purge Equipment:	Disposable Baile Stainless Steel I Stack Pump Suction Pump	er	J	Sampling Equipment:	Disposable Bailer Pressure Bailer Discrete Bailer Other:	gal.
	Grundfos Other:				<u> </u>	
Start Time (purge Sample Time/Da Purging Flow Ra	te: 1415 /		ather Conditions Water Color nent Description	: Clear	√) Odor: _ <i>[</i> ∧	0
Did well de-wate			me:	Volume:	gal.	•
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
1403 1406 1409	3	7.06 7.02 7.01	376 374 370	14.8 14.6 14.5		
,						
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY INF		Y ANALYSI	=
11- wm	3 x voa vial	YES	HCL	NC	TPH-G/BTEX/MARE	
MW II	1 Amber L 1 500 ml ft.	1	Į Į	1	7fH(0)x w/36 Diss bend	
COMMENTS:						
Add/Replace	ed Lock:			\dd/Replaced F	Plug:Size:	

Client/Facility #: C	Chevron #211577		Job Number:	386765	
	31 Queen Anne No	rth	Event Date:	10-18-02	(inclusive
City:	Seattle, WA		Sampler:	BWN	
Well ID DE-1	1/mw-12	Well Condition:	οŁ		
Well Diameter Total Depth	16.28 ft.	Hydrocarbon Thickness:	Ø ft.	Amount Bailed (product/water):	gal.
Depth to Water _	12.22 ft.	Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38 12"= 5.80
· _	4.06 _{XVF} 11	Factor (VF		5"= 1.02 6"= 1.50 Stimated Purge Volume:	
Purge [Disposable Bailer	$\sqrt{}$	Sampling	Disposable Bailer	
Equipment:	Stainless Steel Bailer		Equipment:	Pressure Bailer	
5	Stack Pump			Discrete Bailer	
	Suction Pump			Other:	
(Grundfos				
(Other:				
Start Time (purge):	900 w	eather Conditions:	: Sunh		
Sample Time/Date		Water Color:	,	Odor:	hd
Purging Flow Rate	e: gpm. Sed	liment Description	9 1		
Did well de-water?	If yes,	Time:	Volume:	gal.	
Time (2400 hr.)	Volume (gal.)	Conductivity (u mhos/cm)	Temperature (C/ /)	D.O. (mg/L)	ORP (mV)
903		346	14.6		·
406	2 6.81	339	14-5		
		LABORATORY INF	ORMATION		
SAMPLE ID	(#) CONTAINER REFRIG				SES
DGI MW-12	3 x voa vial YES	HCL 1	NC	TPH-G/BTEX/MESE	Ĺ
	1 Amber 2			VOC'S BRA 826	
	7 VOK'S			5VOU'S EAR 8	270 2
Ŭ .	l V		1 1	7 OF FAB.	FDZ
COMMENTS:	Not simpled to insufficient	for dissoli	ved lead,	TEL Icad, i	or RCRA Mo
Add/Replace	ed Lock:		Add/Replaced I	Plug:Size	e:

Client/Facility #:	Cnevron #2115/7		Job Number:	386765		
Site Address:	631 Queen Anne No	rth	Event Date:	10-17-02		- (inclusive
City:	Seattle, WA		Sampler:	BWN		,
Mallin TOP C	JM1 .2		.32			
Well ID DB-2		Well Condition	:OK			
Well Diameter	<u> </u>	Hydrocarbon	œ	Amount Bailed	Đ.	
Total Depth Depth to Water	19.90 ft.	Thickness:	ft.	(product/water):	gal.	
Depin to Water	19.31 ft.	Volume Factor (\	3/4"= 0.02 /F) 4"= 0.66	1"= 0.04 2"= 0.17	3"= 0.38	
	xVF	L	· · · · · · · · · · · · · · · · · · ·	5"= 1.02 6"= 1.50	12"= 5.80	İ
	741		x3 (case volume) = 1	Estimated Purge Volume:	gal.	
Purge	Disposable Bailer		Sampling	Disposable Bailer		
Equipment:	Stainless Steel Bailer		Equipment:	Pressure Bailer		
	Stack Pump			Discrete Bailer		
	Suction Pump		7	Other:		
	Grundfos		• •			
	Other:		•			
		/				
Start Time (purge		ather Conditions	:			
Sample Time/Da	/	/ Water Color		Odor:		
Purging Flow Ra		nent Description				
Did well de-wate	r? If yes, Ti	me:	/Volume:	gal.		
Time	Volume	Conductivity	Temperature	D.O.	ORP	
(2400 hr.)	(gal.) pH	(umhos/em)	(C/F)	(mg/L)	(mV)	
	- —					
	- / ,					
	/					
					· · · · · · · · · · · · · · · · · · ·	
	LA	BORATORY INF	ORMATION			
SAMPLE ID	(#) CONTAINER REFRIG	PRESERV. TYPE		Y ANAL	YSES	
-	x voa vial YES	HCL		TPH-G/BTEX/MTBE		
			\times			
COMMENTS:	Insufficient :	water to	5 mp (5			
					**	
Add/Replace	d Lock:		-1.37D			
/ du// teplace	u Look	Α	ad/Replaced Pl	lug: Siz	:e:	

	Chevron #211 631 Queen An			Job Number: Event Date:	386765	 (inclus
ite Address: City:	Seattle, WA	HE NOIL		Sampler:	BWN	`
Vell ID	DB-4/MW-	14 v	Vell Condition:			
Vell Diameter of otal Depth	<u>in.</u>		Volume Factor (VF)	3/4"= 0.02 4"= 0.66		l l
epth to Water	tt.		x	:3 (case volume) = [Estimated Purge Volume:	gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:		Dis Pre Dis	npling Equipment posable Bailer ssure Bailer crete Bailer er:		Time Started: hrs) Time Bailed: hrs) Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description:	(2400 ft
	e):	Weat	ner Conditions:			
Purging Flow Ra	ate: / gpm.		Water Color: ent Description: ne:			
Did Well de-Wate Time (2400 hr.)	Volume (gal.)	pH	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. ORF (mg/L) (mV	
	(#) CONTAINER	LA REFRIG.	BORATORY INF		RY ANALYSES	
SAMPLE ID	x voa vial	YES	HCL	NORTH CRE		21)
COMMENTS:						

Site Address:	Chevron #21	13//		Job Number:	386765	
one Address.	631 Queen A	nne No	rth	Event Date:	50/8/101-60/5/101	r (inclusiv
City:	Seattle, WA			Sampler:	BWN	
Well ID DB - Well Diameter Total Depth Depth to Water	8 /M-W-15 in. ft. x		Well Condition: Volume Factor (VF		1"= 0.04 2"= 0.17 3"= 0.3 5"= 1.02 6"= 1.50 12"= 5.8 stimated Purge Volume:	0
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Other:	r	s D P D	ampling Equipment isposable Bailer ressure Bailer iscrete Bailer other:		Time Started: hrs) Time Bailed: hrs) Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description	(2400 (2400 ft ft
	te: / gpm.	Sedim	ther Conditions: Water Color: nent Description: me: Conductivity (u mhos/cm)		Odor:	
	(#) CONTAINER	LA REFRIG. YES	ABORATORY INFO	ORMATION LABORATORY NORTH CREEK		1)
SAMPLE ID -	x voa vial					

lient/Facility #:	Chevron #211	577		Job Number:	386765	
ite Address:	631 Queen Anne North			Event Date:	10/17/02-10/18/0	(inclus
ity:	Seattle, WA			Sampler:	BWN	
22	alman 1					
	<u>-9/mw-1</u>	Ų [∨]	Vell Condition:			
/ell Diameter _	<u>in.</u>		Volume	3/4"= 0.02		0.38
otal Depth	ft.		Factor (VF	4"= 0.66	5"= 1.02 6"= 1.50 12"=	5.80
epth to Water	ft.					
-	xV	F	=	x3 (case volume) = 1	Estimated Purge Volume:	
		Car	npling Equipmen	f•	Time Started:	(2400
urge Equipment:			posable Bailer	•	hrs) Time Bailed:	(2400
isposable Bailer			ssure Bailer		hrs)	
tainless Steel Bailer			crete Bailer		Depth to Product:	f
tack Pump action Pump			er:		Depth to Water:	ft
Grundfos		~			Hydrocarbon Thickness:	
Other:	····				Visual Confirmation/Descript	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Start Time (purge)		Weatl	ner Conditions:			
Sample Time/Dat	e:/				Odor:	
Purging Flow Rat	e: gpm.	Sedime	ent Description			
Did well de-water	?	If yes, Tin	ne:	_ Volume:	gal.	
Time (2400 hr.)	Volume (gal.)	pН	Conductivity (u mhos/cm)	Temperature (C/F)		ORP mV)
	L contanted		BORATORY IN		RY ANALYSES	
SAMPLE ID	(#) CONTAINER x voa vial	REFRIG. YES	HCL	NORTH CRE		
-	X VOA VIAI	120			•	
				1		
COMMENTS:						
COMMENTS:						
COMMENTS:						
COMMENTS:						

- · · · · · · · · · · · · · · · · · · ·	Chevron #21	1377		Job Number:	386765	
Site Address:	631 Queen A	nne No	rth	Event Date:	10/17/02-10/18/01	(inclusi
City:	Seattle, WA			Sampler:	BWN	
Well ID Well Diameter Total Depth Depth to Water	013-101 MW in. ft.	•	Well Condition: Volume Factor (VF	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.3 5"= 1.02 6"= 1.50 12"= 5.8	30
	x	VF	=	x3 (case volume) = E	Estimated Purge Volume:	_ gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:		s D P	ampling Equipment isposable Bailer ressure Bailer viscrete Bailer Other:		Time Started: hrs) Time Bailed: hrs) Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description	(2400 (2400 ft ft ft
Start Time (purge	a):	Wea	ther Conditions:			
	te: /		Water Color:		Odor:	
Did well de-wate	te: gpm. r?		nent Description: me:			
Time (2400 hr.)	Volume (gal.)	рH	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. ORF (mg/L) (mV	
		L	ABORATORY INF	ORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		Y ANALYSES	
_	x voa vial	YES	HCL	NORTH CREE	K TPH-G(8015)/BTEX/MTBE(802	21)

Client/Facility #:	Chevron #211577		Job Number:	386765	
Site Address:	631 Queen Anne No	orth	Event Date:	10-17-02	(inclusive
City:	Seattle, WA		Sampler:	BNN	
				1	
Well ID	km - 5	Well Condition:	Inside	gate	
Well Diameter	g in.	Hydrocarbon	K.	Amount Bailed	X
Total Depth	21,40 ft.	Thickness:	ft.		gal.
Depth to Water	14,44 ft.	Volume Factor (V	3/4"= 0.02 'F) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
	6.96 xvF 1.	5 =	x3 (case volume) =	Estimated Purge Volume	:gal.
			•		1
Purge	Disposable Bailer		Sampling Equipment:	Disposable Bailer	
Equipment:	Stainless Steel Bailer		Edoibinetir	Pressure Bailer Discrete Bailer	
	Stack Pump			Other:	
	Suction Pump Grundfos	$\overline{}$	•		
	Other:	/			
Start Time (purg	ge): 1600 v	Weather Conditions	s: <u>Sunn</u>		
Sample Time/E		_ Water Colo		Odor:	ho
Purging Flow F	<u></u>	ediment Description		aal	
Did well de-wa	ter? <u>h</u> 0 If yes	s, Time:	_ Volume:	gal.	•
Time	Volume	Conductivity	Temperature	D.O.	ORP
(2400 hr.)	(gal.)	(u mhos/cm)	(C/F)	(mg/L)	(mV <u>)</u>
	/		/		
		/_			
	/				
		LABORATORY IN	IEODMATION		
SAMPLE ID	(#) CONTAINER REFF			RY AN	IALYSES
RW - 2	3 x voa vial YE	S . HCL	16	TPH-G/BTEX/	
RW 2	1 500 m L p7.) 4\4	 	TPHCD) x w/ Diss. Lea	
RW 2	- V	7 1-1		773, 2911	7
			1 1	1)	
COMMENȚS:	Due to ina	ccessible	ocation 1	ncil was no	T purgen
Inside	Due to inagated fence	within reac	hing dist	ance!	
	<u> </u>	,	-		
Add/Repl	aced Lock:		Add/Replaced	l Plug:	Size:

Cita A dd=====		115//		Job Number: _	300103	
Site Address:	631 Queen /	Anne No	<u>rth</u>	Event Date:		(inclusiv
City:	Seattle, WA			Sampler:		·
Well ID Well Diameter Total Depth	RW-3	<u>.</u>	Well Condition: Volume Factor (VF	3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0. 5"= 1.02 6"= 1.50 12"= 5.	
Depth to Water	ft	•	<u> </u>			
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Other:	-	s D	ampling Equipment disposable Bailer dressure Bailer discrete Bailer discrete Bailer		stimated Purge Volume: Time Started: hrs) Time Bailed: hrs) Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description	(2400 (2400 ft ft
Start Time (purge Sample Time/Da Purging Flow Ra Did well de-wate Time (2400 hr.)	ite: / gpm.	Sedim	water Color: Water Color: nent Description: me: Conductivity (u mhos/cm)		Odor:	
SAMPLE ID	(#) CONTAINER x voa vial	LA REFRIG. YES	ABORATORY INFO	ORMATION LABORATORY NORTH CREEK		11)
	11.001	210 +	b loca	tl		

GETTLER-RYAN INC.

Client/Facility #:	Chevron #211577		Job Number:	386765	
Site Address:	631 Queen Anne Nor	th	Event Date:	10-17	(inclusive
City:	Seattle, WA		Sampler:	BWN	
Well ID	RW - 4	Well Condition:	οK		
Well Diameter Total Depth	32.78 ft.	Hydrocarbon Thickness:	# ft	Amount Bailed (product/water):	gal.
Depth to Water	19.29 ft.	Volume Factor (V	3/4"= 0.02 F) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
	13.49 xvf 1.3	= 50	x3 (case volume) =	Estimated Purge Volume:	: gal.
Purge Equipment:	Disposable Bailer Stainless Steel Bailer		Sampling Equipment:	Disposable Bailer Pressure Bailer	
• •	Stack Pump Suction Pump	J		Discrete Bailer Other:	
	Grundfos				
Start Time (purg	_{ie):} 1700 We	eather Conditions	::SUNV	C)	
Sample Time/Da	1000	Water Colo		Odor:	ye3
Purging Flow Ra	ate: gpm. Sedi	ment Descriptior Fime:	າ:	gal.	<u> </u>
Time (2400 hr.)	Volume pH (gal.)	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
1710	20 7.04	376	14.9		
1726	40 7.09 60 692	318	14.5		
		LABORATORY IN	IFORMATION.		
SAMPLE ID	(#) CONTAINER REFRIG			ORY AN	ALYSES
RW - H	3 x voa viai YES	HCL	44	TPH-G/BTEX/MT	
RW 4 RW 4	7 Amby Z 1 1 500ml Al. U	Nt.	1	Diss-Lend	/56
COMMENTS					
COMMENTS:					
Add/Repla	aced Lock:		Add/Replaced	d Plug:	Size:

Client/Facility #:	Chevron #2	1577		Job Number:	386765	
Site Address:	631 Queen Anne North			Event Date:	10-17-02	—— (inclusive
City:	Seattle, WA			Sampler:	BWN	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Well ID	RW - 5		Well Condition:	ok		
Well Diameter	3 in	•	Hydrocarbon		Amount Bailed (2/	A STATE OF THE STA
Total Depth	14.25 ft.		Thickness:	Ø ft.	17	gal.
Depth to Water	12.63 ft.	•	Volume	3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0	.38
	1.62	VF_[.5	= 2.43	•	5"= 1.02 6"= 1.50 12"= Estimated Purge Volume: 7	
Purge	Di				(/	gal.
Equipment:	Disposable Baile	-	J	Sampling	Disposable Bailer	
- quipinotti	Stainless Steel	Bailer _		Equipment:	Pressure Bailer	
	Stack Pump	_			Discrete Bailer	
	Suction Pump	_			Other:	
	Grundfos			•		·
	Other:					
Start Time (purge	·	Wea	ather Conditions:	Sunhy		
Sample Time/Da			Water Color:		Odor: No	
Purging Flow Ra			nent Description:			
Did well de-water	15 KD	If yes, Ti	me:	Volume:	gal.	
Time	Volume		Conductivity	Temperature	D.O. OR	D
(2400 hr.)	(gal.)	рН	(u mhos/cm)	(C)F)	(mg/L) (m)	
1527	2.3	6.88	346	14-5		
1534	4.6	12.82]	340	14.4		Mariner dispusses and a second
1541	7	6.79	335	14.2		"
SAMPLE ID	(#) CONTAINER	REFRIG.	BORATORY INFO		1	
RW-5	3 x voa vial	YES	HCL	LL	TPH-G/BTEX/MTBE	
RW 5	I Amber L	1	N.	1	7PH(D) = W/86	
RW 5	1 BOUML PL.	4	101°	V	Dissolved Long	
					*	
COMMENTS:						

Site Address: 6	Chevron #211 331 Queen An		n E	ob Number: vent Date:	50/8/101-60/5/101	Y (inclus
City:	Seattle, WA			Sampler:	BWN	
Well ID Well Diameter Total Depth	mP - 1 in. ft.	V	Vell Condition: _ Volume Factor (VF)	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0. 5"= 1.02 6"= 1.50 12"= 5.	1
Depth to Water _	ft.	-	- v	3 (case volume) = F	Estimated Purge Volume:	gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:	xv	Sar Dis Pre Dis	mpling Equipment: posable Bailer essure Bailer crete Bailer		Time Started: hrs) Time Bailed: hrs) Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descriptio	(2400 (2400
Start Time (purge) Sample Time/Date Purging Flow Rate	e: <u>/</u>		her Conditions: Water Color: ent Description:		Odor:	
Did well de-water			ne:	Volume:		RP
(2400 hr.)	(gal.)	pH	(u mhos/cm)	(C/F)	(mg/L) (m	nV)
			ABORATORY INF		RY ANALYSES	
SAMPLE ID	(#) CONTAINER x voa vial	YES	HCL	NORTH CRE		3021)
COMMENTS:	PVC, O	lued	M.			
	cap					
Add/Replace	ed Lock:		ļ.	\dd/Replaced	Plug:Size:	

			Job Number:	386765	
31 Queen A	nne No	rth	Event Date:	1017/02-10/18/08	 (inclusive
eattle, WA			Sampler:	BWN	· · · · · · · · · · · · · · · · · · ·
ηρ - <u>J</u> in. ft. ft.		Volume	3/4"= 0.02		ı
	s D P	ampling Equipment isposable Bailer ressure Bailer iscrete Bailer		Time Started:hrs) Time Bailed:hrs) Depth to Product: Depth to Water:	(2400 (2400 ft
	Sedim	Water Color: ent Description:		Odor:	
) CONTAINER x voa vial	LA REFRIG. YES	BORATORY INFO	LABORATORY		
	eattle, WA np - 2 in. ft. ft. x / gpm. Volume (gal.)	eattle, WA in. ft. ft. xVF Sedim If yes, Ti Volume (gal.) CONTAINER REFRIG.	Well Condition: in. ft. ft. xVF Sampling Equipment Disposable Bailer Pressure Bailer Discrete Bailer Other: Water Color: gpm. Sediment Description: If yes, Time: Volume (gal.) pH Conductivity (umhos/cm) LABORATORY INFO DISPOSABLE PRESERV. TYPE	well Condition: Condition:	Well Condition:

OCT-31-2002

DELTA

10/31/2002

5 (m 5)

8 VP

	VO A	1640	X	×	メー	
	8. YF 7 RW 2	1615	X	X	X	
8837	PN H	1735	X	×	X	
450	10. RW 5	1550	X	X	X	
425	Mul 4	1445	X	X	X	
	MW 9	10-18-02 / 945	X	メ	X	
FAX	Mal 10	10-17-02 1810	X	X	X	
5:54	14. MW 11	10-17-02 1415	X	X	X	

Ber Newton

Job 386765

ANALYSIS ADDED TO COC

FIRM:

WK

SAMPLING

DATE/TIME

10-17-02

10-18-02

10-17-02

10-17-02/

CHAI	N O	F C	'US'	TOI	OY]	REI	POR	T			Wor	k O	rde	r#:	B		2474 REQUEST in Busine	es Davs*	a	<u>.</u> -
Tob 386				INVOI								•		Т	URNA		& Inorganic Analyses			
<u> 10в 344</u>														10	7	5	4 3 2	1 <1	J	
IT DW	blin, C	A 94	568										_	STD	5	Petroleum	1 Hydrocarbon Analyses 3 2 1	<1		
FAX: 125	5-551	-78	77 1	P.O. N			DANA	LYSES							57D		Please Specify			
Scottle,				m	. ,		90						1			OTHE			i	200
ik '	四	ايد	_	80008	اغ	N)	<u>ک</u>	20			1	1	- 1		*Turnuru	und Requests h	ss than standard may incur R			ñ
) Et	0	33	~ &	-2,6	4-3	74	3 3	1	1	1	1		MAT	RIX	#OF		NC	, W	
NG	TPHC)/BTEA	TPH(CD) x	Dissolved	VOC'S FDA 9740	SVO	32	70.47 E084 EDC	2	1		Ì			(W, S	s, O)	CONT.	COMMENTS		D .	
ME		<u> </u>	<u> </u>	1	,,,_									W	!		* Please fi)	
	X	~	3	<u></u>	X		Χ							~ {		11	for dissol	ved - 0		
910	X	X	~	X	-		/\	×								6	lad, TE			
1510	X	X	X	-			-									5	Lead, as	nd to	4	37
	X	×	X	<u> </u>		ļ. 										6	RCRA M	etalst-	OL_	8837
1210	7	X	X					X								5		1 1	54	450
1300	X	X	X			<u> </u>	X			<u> </u>				 	 	5	Bar Hea		67	
1230	Х	X	X			<u> </u>		ļ						-	-	5	* Please		O	4
1640	X	×	X				<u> </u>	<u> </u>		 	 			├	}-	5	7 0xy EDBA		59	
1615	X	X	X			Rev	4500	Ch	ain-	of C	ust	ody	-	} -	╂	5	samples on	- 1	10	
1735	X	X	X					ļ			 			}	╂-	5	will school a		-11	
1550	X	X	X						<u> </u>		<u> </u>	<u> </u>	<u> </u>	_	1		Treed on 19	- 1	12	
1445	X	X	X				K	X			Ī		 	╀	-	5	Results		13	
1 945	X	יכ	X						<u> </u>				-			5	1		1	5:51
1810	1×	X	1								1		 	-	1	13	Delta Envi	الماسي	1-1'	
2 1415		X	X								<u></u>	<u> </u>	<u> </u>			<u> </u>	16101 0	DATE: 1	JET.	-2002
		1 .		DAT	TE: 10	18/0		EDED	Y	You			÷		EUD.	a: N (48)			52c	1-2
FIRM:	GR:	Inc		TIN		520	PRL	TNAM		PANI	4-	TON	4		FIRE	NA 1/4		DATE:		1-3
				DA	TE:		REC	EIVED	BY:		•		•		FIR	۷i:		TIME:		8

DELTA ENY

EPA BZGOD FOR ALL ANADIES W/O

PRINT NAME:

PCATTERALL

TIME:

COC DEV TION

PRINT NAME:

PRINT NAME:

RELINQUISHED BY:

RELINQUISHED BY:

ADDITIONAL REMARKS:

TEMP:

5.9

PAGE

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

MOV 1 2 2002

06 November 2002

Deanna Harding Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin, CA/USA 94568

RE: Chevron #21-1577

Enclosed are the results of analyses for samples received by the laboratory on 10/18/02 15:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanne Garthwaite

Same Garthate

Project Manager

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

CASE NARRATIVE for B2J0474

Client: Gettler-Ryan Inc.

Project Manager: Deanna Harding Project Name: Chevron #21-1577

Project Number: 386765

1.0 DESCRIPTION OF CASE

Fifteen water samples were received in a single shipment as documented on the associated chain-of-custody. The scheduled analyses for these samples included: Gasoline Hydrocarbons and BTEX by NWTPH-Gx/EPA 8021B, Diesel Range Hydrocarbons by NWTPH-Dx, Dissolved Lead by EPA 6020, Volatile Organic Compounds and Oxygenates by EPA 8260B, Semivolatile Organic Compounds by EPA 8270C, and Organic Lead by DHS LUFT.

2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received in the Bothell laboratory on October 18, 2002. The cooler temperature was documented at 5.9 degrees C. upon receipt in the laboratory. All sample containers were received in good condition.

3.0 COMMENTS ON PREPARATION AND ANALYSIS

Gasoline Hydrocarbons and BTEX by NWTPH-Gx/EPA 8021

No anomalies or discrepancies were associated with this analysis other than those already qualified in the data. All quality control measures were within acceptable ranges.

Diesel Range Hydrocarbons by NWTPH-Dx

No anomalies or discrepancies were associated with this analysis other than those already qualified in the data. All quality control measures were within acceptable ranges.

Dissolved Lead by EPA 6020

No anomalies or discrepancies were associated with this analysis other than those already qualified in the data. All quality control measures were within acceptable ranges.

Volatile Organic Compounds and Oxygenates by EPA 8260B

No anomalies or discrepancies were associated with this analysis. All quality control measures were within acceptable ranges.

Semivolatile Organic Compounds by EPA 8270C

Sample DB1/MW12 had low surrogate recovery for the acid surrogates 2-FP and 2,4,6-TBP. The sample was re-analyzed with the same results occurring. We did not receive any extra sample volume for re-extraction. The results for this sample could be biased low.

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Organic Lead by DHS LUFT

Since we do not analyze for organic or tetraethyl lead in our laboratory samples VP1, VP5 (MW5), and MW4 were sent to a subcontract laboratory for the analysis. Calscience Environmental Laboratories, Inc. analyzed the samples for organic lead. Their results are included with this report.

"I certify that this data package is in compliance with the Contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature."

Project Manager

North Creek Analytical

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9200
 fax 509,924,9200

 Postland
 Most SWA William Asset State Programmer Concessor
 Programmer Concessor
 Programmer Concessor

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB LB	B2J0474-01	Water	10/17/02 12:00	10/18/02 15:20
DB1/MW12	B2J0474-02	Water	10/18/02 09:10	10/18/02 15:20
VP 1	B2J0474-03	Water	10/17/02 15:10	10/18/02 15:20
DUP 1	B2J0474-04	Water	10/17/02 15:10	10/18/02 15:20
VP 5(MW 5)	B2J0474-05	Water	10/17/02 12:10	10/18/02 15:20
VP 7	B2J0474-06	Water	10/17/02 13:00	10/18/02 15:20
VP 8	B2J0474-07	Water	10/17/02 12:30	10/18/02 15:20
VP 9	В2J0474-08	Water	10/17/02 16:40	10/18/02 15:20
RW 2	В2J0474-09	Water	10/17/02 16:15	10/18/02 15:20
RW 4	B2J0474-10	Water	10/17/02 17:35	10/18/02 15:20
RW 5	B2J0474-11	Water	10/17/02 15:50	10/18/02 15:20
MW 4	B2J0474-12	Water	10/17/02 14:45	10/18/02 15:20
MW 9	B2J0474-13	Water	10/18/02 09:45	10/18/02 15:20
MW 10	B2J0474-14	Water	10/17/02 18:10	10/18/02 15:20
	B2J0474-15	Water	10/17/02 14:15	10/18/02 15:20
MW 11			•	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	A a a . J	14.1	2.7
			Oma	Ditation	Daten	Frepared	Analyzed	Method	Note
TB LB (B2J0474-01) Water Sampl	ed: 10/17/02 12:00	Receive	d: 10/18/02	2 15:20					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	ND	0.500	**	**	ti	**	11	11	
Toluene	ND	0.500	"	**	11	**	11	**	
Ethylbenzene	ND	0.500	"	**	11	"	11	n	
Xylenes (total)	ND	1.00	**	11	**	**	11	fi	
Surrogate: 4-BFB (FID)	86.5 % 5	7-125			"	"	"	"	
Surrogate: 4-BFB (PID)	85.2 % 6	2-120			"	n	"	"	
DB1/MW12 (B2J0474-02) Water S	ampled: 10/18/02	09:10 Re	ceived: 10	/18/02 15:26)				
Gasoline Range Hydrocarbons	. ND	50.0	ug/l	1	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	0.516	0.500	11	**	11	tt	**	11	
Toluene	0.869	0.500	**	n	11	11	11	11	
Ethylbenzene	ND	0.500	#	11	11	**	11	11	
Xylenes (total)	ND	1.00	**	"	11	n	**	u	
Surrogate: 4-BFB (FID)	86.9 % 5	7-125			,,	"	"	"	
Surrogate: 4-BFB (PID)	89.8 % 6	2-120			"	н	"	"	
VP 1 (B2J0474-03) Water Sampled	l: 10/17/02 15:10	Received:	10/18/02 1	5:20					
Gasoline Range Hydrocarbons	27300	5000	ug/l	100	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	170	50.0	11	"	tt	ti	11	"	
Toluene	756	50.0	11	**	**	u u	**	11	٠
Ethylbenzene	334	50.0	**	**	tı	**	11	**	
Xylenes (total)	4820	100	"	**	**	u	Ħ	н	
Surrogate: 4-BFB (FID)	88.1 % 5	7-125			"	"	"	"	
Surrogate: 4-BFB (PID)	90.2 % 6	2-120			"	"	"	rr .	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Same Garthatt

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Method Casoline Range Hydrocarbons 92400 5000 ug/l 100 2J23007 10/23/02 10/23/02 NWTPH-Grave 9980 50.0 "	
Gasoline Range Hydrocarbons 92400 5000 ug/l 100 2J23007 10/23/02 NWTPH-Gr Toluene 9980 50.0 "	od Notes
Sasoline Range Hydrocarbons 92400 5000 ug/l 100 2J23007 10/23/02 10/23/02 NWTPH-Ground	
Foluene 9980 50.0	x/8021B
Ethylbenzene	
Surrogate: 4-BFB (FID) 94.6 % 57-125 " " " " " " " " " " " " " " " " " "	
Surrogate: 4-BFB (FID) 94.6 % 57-125 " " " " " " " " " " " " " " " " " " "	
Surrogate: 4-BFB (PID) 89.2 % 62-120 DUP 1 (B2J0474-04RE1) Water Sampled: 10/17/02 15:10 Received: 10/18/02 15:20 Benzene 12400 125 ug/l 250 2J24027 10/24/02 10/24/02 NWTPH-G Surrogate: 4-BFB (PID) 82.7 % 62-120 " " " " " " " " " " " WP 5(MW 5) (B2J0474-05) Water Sampled: 10/17/02 12:10 Received: 10/18/02 15:20 Gasoline Range Hydrocarbons 15900 2500 10/23/02 NWTPH-G	
Benzene 12400 125 ug/l 250 2J24027 10/24/02 10/24/02 NWTPH-G Surrogate: 4-BFB (PID) 82.7 % 62-120 "	
Benzene 12400 125 ug/l 250 2J24027 10/24/02 10/24/02 NWTPH-G Surrogate: 4-BFB (PID) 82.7 % 62-120 "	
Surrogate: 4-BFB (PID) 82.7 % 62-120 " " " " " " " " " " " " " " " " " " "	3x/8021B
VP 5(MW 5) (B2J0474-05) Water Sampled: 10/17/02 12:10 Received: 10/18/02 15:20 Gasoline Range Hydrocarbons 15900 2500 ug/l 50 2J23007 10/23/02 10/23/02 NWTPH-C Benzene 318 25.0 " " " " " "	
Gasoline Range Hydrocarbons 15900 2500 agr 55 252500 agr 5	
Benzene 318 25.0 " " " "	
Toluene 49.3 25.0	
Ethylbenzene 880 25.0 " " "	
Xylenes (total) 1870 50.0 " " " " " "	
Surrogate: 4-RFR (FID) 94.6 % 57-125 " " "	
Surrogate: 4-BFB (PID) 89.6 % 62-120 " " " "	"
VP 7 (B2J0474-06) Water Sampled: 10/17/02 13:00 Received: 10/18/02 15:20	
Gasoline Range Hydrocarbons 71600 10000 ug/l 200 2J23007 10/23/02 NWTPH-0	
Benzene 11100 100 " " " " "	••
Toluene 5880 100 " " " " "	**
Ethylbenzene 1940 100 " " " " "	11
Xylenes (total) 10800 200 " " " " "	"
Suprogate: 4 RER (FID) 88.1 % 57-125	"
Surrogate: 4-BFB (PID) 89.0 % 62-120 " " "	11

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509,924,9290

Spokane

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
VP 8 (B2J0474-07) Water	Sampled: 10/17/02 12:30	Received	: 10/18/02 1	5:20		14400	440		
Gasoline Range Hydrocarb	ons 552	50.0	ug/l	1	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	9.75	0.500	**	**	**	ŧŧ	n	ti	
Toluene	1.45	0.500	tt	**	91	Ħ	**	11	
Ethylbenzene	4.25	0.500	**	"	97	11	tt	Ħ	
Xylenes (total)	5.73	1.00	Ħ	**	11	99	**	ti	
Surrogate: 4-BFB (FID)	116 %	57-125			"	"	"	"	
Surrogate: 4-BFB (PID)	92.7 %	62-120			"	"	n	n	
VP 9 (B2J0474-08) Water	Sampled: 10/17/02 16:40	Received	: 10/18/02 1	5:20					
Gasoline Range Hydrocarb		250	ug/l	5	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	11.3	2.50	11	11	**	"	**	"	
Toluene	2.62	2.50	HT .	11	**	"	**	11	1-06
Ethylbenzene	8.86	2.50	**	n	Ħ	11	**	n	1.00
Xylenes (total)	14.7	5.00	11	H	••	ŧı	**	н	
Surrogate: 4-BFB (FID)	91.0 %	57-125			11	"	"	"	
Surrogate: 4-BFB (PID)	88.3 %	62-120			"	"	"	"	
RW 2 (B2J0474-09) Water	Sampled: 10/17/02 16:1:	Received	l: 10/18/02	15:20					
Gasoline Range Hydrocarb	ons 1380	500	ug/l	10	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	90.5	5.00	11	11	11	π	11	11	
Toluene	8.05	5.00	"	Ħ	**	n	11	u	
Ethylbenzene	29.2	5.00	**	"	**	Ħ	**	11	
Xylenes (total)	31.5	10.0	"	н	"	**	11	Ħ	
Surrogate: 4-BFB (FID)	87.5 %	57-125			"	"	"	и	
Surrogate: 4-BFB (PID)	88.8 %	62-120			"	"	"	n	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Searne Garthwater

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Fragons 2004 (cs. Eng. 2008-2016)

Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Dublin CA/USA, 94568 Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RW 4 (B2J0474-10) Water	Sampled: 10/17/02 17:35	Received	: 10/18/02	15:20					
Gasoline Range Hydrocarbo		250	ug/l	5	2J23007	10/23/02	10/24/02	NWTPH-Gx/8021B	
Benzene	59.8	2.50		**	11	Ħ	"	Ħ	
Toluene	2.50	2.50	**	11	**	"	**	**	
Ethylbenzene	40.4	2.50	11	ii.	**	11	**	H	
Xylenes (total)	15.6	5.00	11	ti	11	ti	**	11	I-06
Surrogate: 4-BFB (FID)	129 %	57-125			#	"	"	"	Q-30
Surrogate: 4-BFB (PID)		62-120			"	n	11	"	
RW 5 (B2J0474-11) Water	Sampled: 10/17/02 15:50	Received	: 10/18/02	15:20					
Gasoline Range Hydrocarb		2500	ug/l	50	2J23007	10/23/02	10/23/02		
Benzene	696	25.0	tt	*1	**	11	11	n	
Toluene	67.2	25.0	Ħ	11	"	"	**	*1	
Ethylbenzene	63.0	25.0	**	11	"	" .	"	11	
Xylenes (total)	408	50.0	11	11	**	**	11	11	
Surrogate: 4-BFB (FID)	88.3 %	57-125			"	"	**	n	
Surrogate: 4-BFB (PID)	87.3 %	62-120		•	"	"	"	n	
MW 4 (B2J0474-12) Water	Sampled: 10/17/02 14:4	5 Receive	d: 10/18/0	2 15:20					
Gasoline Range Hydrocark		10000	ug/l	200	2J23007	10/23/02	10/23/02		
Benzene	14500	100	"	11	**	"	**	**	
Toluene	11600	100	Ħ	u	ti	**	11	11	
Ethylbenzene	2630	100	11	**	**	"	11	н ,	
Xylenes (total)	15200	200	*1	11	11	11	Ħ	. #	
Surrogate: 4-BFB (FID)	84.8 %	57-125			"	"	"	n	
Surrogate: 4-BFB (PID) Surrogate: 4-BFB (PID)	88.3 %	62-120			"	II .	n	n	

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9200 Seattle

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 9 (B2J0474-13) Water Sample	ed: 10/18/02 09:45	Received	d: 10/18/02	15:20					
Gasoline Range Hydrocarbons	6380	500	ug/l	10	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	493	5.00	11	11	**	"	"	"	
Toluene	13.0	5.00	u .	"	#	11	**	ŧi .	
Ethylbenzene	230	5.00	11	"	Ħ	11	#	**	
Xylenes (total)	107	10.0	**	**	11	11	"	"	
Surrogate: 4-BFB (FID)	106 % 5	7-125			"	"	"	"	
Surrogate: 4-BFB (PID)	90.0 %	2-120			"	"	"	"	
MW 10 (B2J0474-14) Water Samp	led: 10/17/02 18:1	0 Receive	ed: 10/18/0	2 15:20					
Gasoline Range Hydrocarbons	490	50.0	ug/l	1	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	3.42	0.500	"	**	Ħ	u	"	11	
Toluene	ND	0.500	u	11	**	11	**	**	
Ethylbenzene	1.34	0.500	**	11	n .	11	11	11	1-00
Xylenes (total)	5.00	1.00	**	11	11	**	**	11	1-00
Surrogate: 4-BFB (FID)	95.2 % 5	7-125			"	n n	"	"	
Surrogate: 4-BFB (PID)	90.6 % 6	2-120			"	"	#	"	
MW 11 (B2J0474-15) Water Sample	led: 10/17/02 14:1	5 Receive	ed: 10/18/0	2 15:20					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	2J23007	10/23/02	10/23/02	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	**	**	u	"	" .	
Toluene	ND	0.500	**	"	*1	tt	**	**	
Ethylbenzene	ND	0.500	**	Ħ	**	11	"	H	
Xylenes (total)	ND	1.00	**	**	"	11	**	**	
Surrogate: 4-BFB (FID)	86.5 % 5	7-125			n	"	"	#	
Surrogate: 4-BFB (PID)	89.6 % 6	2-120			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Same Garthate

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting						34-413	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB1/MW12 (B2J0474-02) Water	Sampled: 10/18/0	2 09:10 Re	ceived: 10/	18/02 15:20)				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	2J22007	10/22/02	10/23/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	Ħ	11	11	**	11	"	
Surrogate: 2-FBP	52.6 %	52-126			"	n	"	"	
Surrogate: Octacosane	66.2 %	53-122			n	n	"	"	
VP 1 (B2J0474-03) Water Sample	ed: 10/17/02 15:10	Received:	10/18/02 1	5:20					
Diesel Range Hydrocarbons	7.50	0.500	mg/l	2	2J22007	10/22/02	10/24/02	NWTPH-Dx	D. 10
Lube Oil Range Hydrocarbons	0.598	0.500	"	1	***	II	10/23/02	**	D-10
Surrogate: 2-FBP	54.1 %	52-126			n	H	10/24/02	#	
Surrogate: Octacosane	64.1 %	53-122			"	"	10/23/02	# .	
DUP 1 (B2J0474-04) Water Samp	pled: 10/17/02 15:	10 Receive	d: 10/18/02	2 15:20					
Diesel Range Hydrocarbons	7.10	0.500	mg/l	2	2J22007	10/22/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	1	11	"	10/24/02	Ħ	
Surrogate: 2-FBP	116%	52-126			"	"	10/24/02	"	
Surrogate: Octacosane	83.0 %	53-122			"	"	10/24/02	"	
VP 5(MW 5) (B2J0474-05) Water	Sampled: 10/17	/02 12:10 F	Received: 1	0/18/02 15:	20				
Diesel Range Hydrocarbons	3.90	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	11	**	11	11	11-	
Surrogate: 2-FBP	72.5 %	52-126			"	"	. "	"	
Surrogate: Octacosane	64.8 %	53-122			"	"	#	п	
VP 7 (B2J0474-06) Water Samp	led: 10/17/02 13:0	0 Received	l: 10/18/02	15:20					
Diesel Range Hydrocarbons	5.16	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.510	0.500	н	11	ti	. 11	ti	"	D-1
Surrogate: 2-FBP	113 %	52-126			"	"	"	"	
Surrogate: Octacosane	111 %	53-122			"	"	"	"	
· · · · · · · · · · · · · · · · · · ·									•

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
VP 8 (B2J0474-07) Water Sampled	d: 10/17/02 12:3	0 Received:	10/18/02 1	5:20					
Diesel Range Hydrocarbons	1.83	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	n	ŧŧ	ti	**	tı	
Surrogate: 2-FBP	88.7 %	52-126			,,	"	"	"	
Surrogate: Octacosane	87.2 %	53-122			"	"	,,	"	
VP 9 (B2J0474-08) Water Sampled	i: 10/17/02 16:4	0 Received:	10/18/02 1	5:20					
Diesel Range Hydrocarbons	13.2	1.25	mg/l	5	2J23011	10/23/02	10/25/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.786	0.500	**	1	**	11	10/24/02	11	D-10
Surrogate: 2-FBP	109 %	52-126			"	"	10/25/02	"	
Surrogate: Octacosane	98.3 %	53-122			"	"	10/24/02	n .	
RW 2 (B2J0474-09) Water Sample	ed: 10/17/02 16:	15 Received	: 10/18/02	15:20					
Diesel Range Hydrocarbons	0.988	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	**		"	**	11	
Surrogate: 2-FBP	80.2 %	52-126			и	"	"	"	
Surrogate: Octacosane	91.0 %	53-122			"	"	"	н	
RW 4 (B2J0474-10) Water Sample	ed: 10/17/02 17:	35 Received	: 10/18/02	15:20					
Diesel Range Hydrocarbons	8.93	1.25	mg/l	5	2J23011	10/23/02	10/25/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.939	0.500	11	1	11	**	10/24/02	"	
Surrogate: 2-FBP	77.4 %	52-126			"	"	10/25/02	"	
Surrogate: Octacosane	96.9 %	53-122			"	"	10/24/02	"	
RW 5 (B2J0474-11) Water Sample	ed: 10/17/02 15:	50 Received	: 10/18/02	15:20					
Diesel Range Hydrocarbons	84.9	5.62	mg/l	20	2J23011	10/23/02	10/25/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	3.65	0.562	H	1	**	n	10/24/02	11	
Surrogate: 2-FBP	%	52-126			"	"	10/25/02	"	S-04
Surrogate: Octacosane	107 %	53-122			"	"	10/24/02	"	5-04

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting	** .	D'1-4'	Datah	Dranarad	Analyzed	Method	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzed	Method	Trotes
MW 4 (B2J0474-12) Water S	ampled: 10/17/02 14:45	Received	1: 10/18/02	15:20					
Diesel Range Hydrocarbons	9.86	1.25	mg/l	5	2J23011	10/23/02	10/25/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.697	0.500	**	1	11	11	10/24/02	11	D-10
Surrogate: 2-FBP	127 %	52-126			"	"	10/25/02	"	S-04
Surrogate: Octacosane	109 %	53-122			<i>n</i> ·	"	10/24/02	"	
MW 9 (B2J0474-13) Water S	ampled: 10/18/02 09:4	5 Received	1: 10/18/02	15:20					
Diesel Range Hydrocarbons	43.6	5.00	mg/l	20	2J23011	10/23/02	10/25/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.671	0.500	n	1	11	11	10/24/02	11	D-10
Surrogate: 2-FBP		52-126			"	"	10/25/02	"	S-01
Surrogate: Octacosane	105 %	53-122			"	"	10/24/02	"	
•	Sampled: 10/17/02 18:	10 Receiv	ed: 10/18/0	2 15:20					
Diesel Range Hydrocarbons	0.667	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	**	**	**	11	**	
Surrogate: 2-FBP	85.2 %	52-126			**	"	"	"	
Surrogate: Octacosane	86.6 %	53-122			#	"	"	"	
MW 11 (B2J0474-15) Water	Sampled: 10/17/02 14:	15 Receiv	ed: 10/18/0	02 15:20					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	2J23011	10/23/02	10/24/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	"	"		**	**	
Surrogate: 2-FBP	76.5 %	52-126			"	"	"	n	
Surrogate: Octacosane	94.2 %	53-122			"	"	"	"	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:58

Dissolved Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
VP 1 (B2J0474-03) Water	Sampled: 10/17/02 15:10	Received:	10/18/02 1	5:20				y	Q-30
Lead	0.0180	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
DUP 1 (B2J0474-04) Water	Sampled: 10/17/02 15:10	Receive	d: 10/18/02	15:20					Q-30
Lead	0.00961	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
<u>VP 5(MW 5) (B2J0474-05)</u>	Water Sampled: 10/17/02	2 12:10 R	eceived: 10	/18/02 15:2	0				Q-30
Lead	0.00229	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
VP 7 (B2J0474-06) Water	Sampled: 10/17/02 13:00	Received:	10/18/02 1	5:20					Q-30
Lead	0.00240	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
VP 8 (B2J0474-07) Water	Sampled: 10/17/02 12:30	Received:	10/18/02 1	5:20					Q-30
Lead	0.00193	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
VP 9 (B2J0474-08) Water	Sampled: 10/17/02 16:40	Received:	10/18/02 1	5:20					Q-30
Lead	ND	0.00100	mg/i	ì	2J18052	10/18/02	10/22/02	EPA 6020	
RW 2 (B2J0474-09) Water	Sampled: 10/17/02 16:15	Received	l: 10/18/02	15:20					Q-30
Lead	0.00223	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
RW 4 (B2J0474-10) Water	Sampled: 10/17/02 17:35	Received	l: 10/18/02	15:20			•		Q-30
Lead	0.00123	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
RW 5 (B2J0474-11) Water	Sampled: 10/17/02 15:50	Received	l: 10/18/02	15:20					Q-30
Lead	0.00391	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthoute

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane

425.420.9200 1ax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:58

Dissolved Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 4 (B2J0474-12) Water	Sampled: 10/17/02 14:45	5 Received	l: 10/18/02	15:20					Q-30
Lead	0.0107	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
MW 9 (B2J0474-13) Water	Sampled: 10/18/02 09:45	5 Received	1: 10/18/02	15:20					Q-30
Lead	0.00266	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
MW 10 (B2J0474-14) Water	Sampled: 10/17/02 18:	10 Receive	ed: 10/18/0	2 15:20					Q-30
Lead	ND	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	
MW 11 (B2J0474-15) Water	Sampled: 10/17/02 14:	15 Receiv	ed: 10/18/0	2 15:20					Q-30
Lead	ND	0.00100	mg/l	1	2J18052	10/18/02	10/22/02	EPA 6020	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB1/MW12 (B2J0474-02) Water	Sampled: 10/19/0	2.00.10 D.					7 Mary 200	Modelod	TVOICS
Acetone Acetone	ND	25.0		······································		10/00/00			
Benzene	ND ND	1.00	ug/l	1	2J20006	10/20/02	10/20/02	EPA 8260B	
Bromobenzene	ND ND	1.00	11	"	,,	" #	ti	"	
Bromochloromethane	ND ND	1.00	tt			"	" tt	"	
Bromodichloromethane	ND	1.00	н	"	,,		"	**	
Bromoform	ND	1.00	н	"		"	"	"	
Bromomethane	ND	2.00	**	11		"	"	" "	
2-Butanone	ND	10.0	**	11	**	 ti	 H		
n-Butylbenzene	ND	1.00	**	11	11	11			
sec-Butylbenzene	ND	1.00	77	Ħ	0	11	"	**	
tert-Butylbenzene	ND	1.00	#	*11	**		"	**	
Carbon disulfide	ND	1.00	ŝt	**	n	,,		**	
Carbon tetrachloride	ND	1.00	**	**	н	ŧı	"	,,	
Chlorobenzene	ND	1.00	11	11	91	**		11	
Chloroethane	ND	1.00	77	**	**	**	11		
Chloroform	1.68	1.00	91	11	17	"	11		
Chloromethane	ND	5.00	Ħ	**	97	**	**	"	
2-Chlorotoluene	ND	1.00	**	11	11	11	**	**	
4-Chlorotoluene	ND	1.00	**	11	tı	11		**	
Dibromochloromethane	ND	1.00		11	**	tt ·	**	"	
1,2-Dibromo-3-chloropropane	ND	5.00	11	ti	**	**	11	"	
1,2-Dibromoethane	ND	1.00	17	H	**	tr	11	11	
Dibromomethane	ND	1.00	11	rt	"	"	ŧŧ	"	
1,2-Dichlorobenzene	ND	1.00	11	**	11	11	11	"	
1,3-Dichlorobenzene	ND	1.00	91	Ħ	"	**	п	**	*
1,4-Dichlorobenzene	ND	1.00	11	11	**	**	11	,,	
Dichlorodifluoromethane	ND	1.00	e	11	**	"	11	**	
1,1-Dichloroethane	ND	1.00	n	11	**	11	11	**	
1,2-Dichloroethane	ND	1.00	11	**	**	"	**	"	
1,1-Dichloroethene	ND	1.00	ti	11	**	•	11	11	
cis-1,2-Dichloroethene	9.07	1.00	u	11	**	*1	11		
trans-1,2-Dichloroethene	ND	1.00	ti	11	"	**	ti	"	
1,2-Dichloropropane	ND	1.00	11	11	**	11	11	**	
1,3-Dichloropropane	ND	1.00	11	11	"	11	11	**	
2,2-Dichloropropane	ND	1.00	**	11	**	**	11	#	
1,1-Dichloropropene	ND	1.00	. "	**	**	n	11	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwate

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte									
DB1/MW12 (B2J0474-02) Water	Sampled: 10/18/02					10/00/00	10/00/02	11	
cis-1,3-Dichloropropene	ND	1.00	ug/l	1	2J20006	10/20/02	10/20/02	**	
trans-1,3-Dichloropropene	ND	1.00	**			"	" "	11	
Ethylbenzene	ND	1.00	n		"	11	"	"	
Hexachlorobutadiene	ND	1.00	ęı .	tt .	11	"	"		
2-Hexanone	ND	10.0	n	11	11		"	"	
lsopropylbenzene	ND	1.00	**	**	11	**		"	
p-Isopropyltoluene	ND	1.00	11	11	"	11		"	
Methylene chloride	ND	5.00	**	Ħ	**	n		"	
4-Methyl-2-pentanone	ND	10.0	**	11-	11	ŧı	**	11	
Naphthalene	ND	1.00	**	11	11	Ħ	**		
n-Propylbenzene	ND	1.00	**	11	11	"	11	**	
Styrene	ND	1.00	н	**	ti	"	11	Ħ	
1,1,2-Tetrachloroethane	ND	1.00	91	**	11	11	**	**	
1,1,2,2-Tetrachloroethane	ND	1.00	**	**	11	Ħ	**	"	
Tetrachloroethene	9.58	1.00	11	11	**	н	**	"	
Toluene	ND	1.00	11	**	"	11	11	u	
1,2,3-Trichlorobenzene	ND	1.00	11	**	Ħ	11	11	ŧi	
1,2,4-Trichlorobenzene	ND	1.00	**	**	11	tl	11	11	
1,1,1-Trichloroethane	ND	1.00	11	**		H	11	**	
1,1,2-Trichloroethane	ND	1.00	tt	11	11	"	11	**	
Trichloroethene	2.75	1.00	**	11	†I	11	11	"	
Trichlorofluoromethane	ND	1.00	**	**	Ħ	11	11	11	
1,2,3-Trichloropropane	ND	1.00	н	11	**	"	**	11	
1,2,4-Trimethylbenzene	ND	1.00	**	11	"	"	**	11	
1,3,5-Trimethylbenzene	ND	1.00	"	"	n	**	**	11	
Vinyl chloride	ND	1.00	**	**	н	Ħ	tt	**	
m,p-Xylene	ND	2.00	ti.	н	**	11	#1	n	
o-Xylene	ND	1.00	'n	u	"	11	11	11	
	93.5 %	77-122			"	"	. "	н	
Surrogate: 1,2-DCA-d4	96.0 %	75-124			"	"	"	"	
Surrogate: Toluene-d8	99.5 %	77-120			"	"	"	"	
Surrogate: 4-BFB	ND	20.0	11	n	2J31035	10/31/02	10/31/02	"	
Ethanol	· ND	0.500	,,	"	п	**	**	"	
1,2-Dibromoethane	ND ND	0.500	11	n	11	11	"	11	
1,2-Dichloroethane	ND ND	1.00	11	11	Ħ	11	**	**	
Diisopropyl ether	ND	1.00							

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane

509.924.9200 fax 509.924.9290 Portland

503.924.3200 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB1/MW12 (B2J0474-02) Wa	ter Sampled: 10/18/0	2 09:10 Re	ceived: 10/	18/02 15:20)				
Ethyl tert-butyl ether	ND	1.00	ug/l	1	2J31035	10/31/02	10/31/02	11	
Methyl tert-butyl ether	ND	5.00	"	**	91	11	"	11	
tert-Amyl Methyl Ether	ND	1.00	**	Ħ	11	11	11	17	
tert-Butyl Alcohol	ND .	50.0	н	**	**	11	11 .	н	
Surrogate: 1,2-DCA-d4	100 %	77-122	· · · · · · · · · · · · · · · · · · ·		"	"	"	"	
Surrogate: Toluene-d8	100 %	75-124			n	"	"	"	
VP 7 (B2J0474-06) Water Sa	mpled: 10/17/02 13:00	Received:	10/18/02 1	5:20					
Ethanol	ND	40.0	ug/l	2	2J31035	10/31/02	10/31/02	EPA 8260B	······
1,2-Dibromoethane	ND	1.00	11	11	11	**	"	"	
1,2-Dichloroethane	ND	1.00	11	n	*1	11	11	11	
Diisopropyl ether	ND	2.00	**	"	11	**	11	**	
Ethyl tert-butyl ether	ND	2.00	11	n	**	**	n	11	
Methyl tert-butyl ether	ND	10.0	11	"	**	**	ii .	**	
tert-Amyl Methyl Ether	ND	2.00	**	**	**	**	**	**	
tert-Butyl Alcohol	ND	100	"	**	**	11	"	n	
Surrogate: 1,2-DCA-d4	116 %	77-122			"	#	. "	"	
Surrogate: Toluene-d8	104 %	75-124			"	"	и ·	"	
MW 4 (B2J0474-12) Water S	Sampled: 10/17/02 14:4	5 Received	d: 10/18/02	15:20					
Ethanol	ND	200	ug/l	10	2J31035	10/31/02	10/31/02	EPA 8260B	
1,2-Dibromoethane	ND	5.00	**	"	**	**	**	**	
1,2-Dichloroethane	ND	5.00	**	**	**	**	"	11	
Diisopropyl ether	ND	10.0	"	**	**	**	**	**	
Ethyl tert-butyl ether	ND	10.0	**	•	tt	11	**	**	
Methyl tert-butyl ether	ND	50.0	11	*1	11	n	u	н	
tert-Amyl Methyl Ether	ND	10.0	ŧr	"	"	н	**	#	
tert-Butyl Alcohol	ND	500	Ħ	**	"	"	H	**	
Surrogate: 1,2-DCA-d4	104 %	77-122			"	"	"	,,	
Surrogate: Toluene-d8	110 %	75-124			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwate

Portland

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB1/MW12 (B2J0474-02) Water	Sampled: 10/18/02	09:10 Rec	eived: 10	/18/02 15:20)				X
Acenaphthene	ND	10.0	ug/l	1	2J21012	10/21/02	10/24/02	EPA 8270C	
Acenaphthylene	ND	10.0	*11	11	#	+1	н .	**	
Aniline	ND	10.0	11	11	**	"	" .	"	
Anthracene	ND	10.0	*1		**	17	"	11	
Benzoic Acid	ND	20.0	Ħ	Ħ	"	11	*1	11.	
Benzo (a) anthracene	ND	10.0	"	**	"	11	**	**	
Benzo (b) fluoranthene	ND	10.0	11	**	*1	"	"	"	
Benzo (k) fluoranthene	ND	10.0	ti	11	11,	11	"	11	
Benzo (ghi) perylene	ND	10.0	*1	11	**	*1	11	**	
Benzo (a) pyrene	ND	10.0	, m	11	**	**	Ħ	11	
Benzyl alcohol	ND	10.0		11	n	"	n	11	
Bis(2-chloroethoxy)methane	ND	10.0	**	u	**	11	n	**	
Bis(2-chloroethyl)ether	ND	10.0	#1	n	**	tt	ti	H	
Bis(2-chloroisopropyl)ether	ND	10.0	**	11	11	**	"	"	
Bis(2-ethylhexyl)phthalate	ND	50.0	**	11	11	17	**	"	
4-Bromophenyl phenyl ether	ND	10.0	**	*1	11	*1	11	**	
Butyl benzyl phthalate	ND	10.0	u u	**	11	11	11 ,	11	
Carbazole	ND	10.0	11	"	**	11	"	"	
4-Chloroaniline	ND	10.0	+1	11	"	11	**	11	
2-Chloronaphthalene	ND	10.0	**	11	**	н	ti	11	
4-Chloro-3-methylphenol	ND	10.0	**	tr	**	**	Ħ	"	
2-Chlorophenol	ND	10.0	**	**	**	"	"	**	
4-Chlorophenyl phenyl ether	ND	10.0	*1	**	**	11	11	ti	
Chrysene	ND	10.0	n	"	**	11	11	11	
Dibenz (a,h) anthracene	ND	10.0	,,	"	n'	ti	11	н	
Dibenzofuran	ND	10.0	11	**	"	tt	ŧŧ	Ħ	
	ND	10.0	11	"	11	#	11	**	
Di-n-butyl phthalate 1,3-Dichlorobenzene	ND	10.0	**	n	11	11	11	**	
•	ND	10.0	11	11	n	11	11	"	
1,4-Dichlorobenzene	ND ND	10.0	**	"	**	11	"	tt	
1,2-Dichlorobenzene	ND	10.0	**	ŧı	**	ti	n	**	
3,3'-Dichlorobenzidine	ND ND	10.0	**	**	ŧr	"	11	11	
2,4-Dichlorophenol	ND ND	10.0	"	**	**	**	11	11	
Diethyl phthalate	ND ND	10.0	,,	"	**	**	rı	**	
2,4-Dimethylphenol		10.0	,,	**	**	11	ŧŧ	**	
Dimethyl phthalate	ND	10.0	"	"	"	11	**	**	
4,6-Dinitro-2-methylphenol	ND	10.0						l in accordance with	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
DP1/MW/12 (P210474 02) W	6 1 1 4040			····		Tropulou	Zilalyzou	Method	Notes
DB1/MW12 (B2J0474-02) Water 2,4-Dinitrophenol	Sampled: 10/18/			18/02 15:20)				y
2,4-Dinitrophenor	ND	20.0	_	1	2J21012	10/21/02	10/24/02	ti	
2,6-Dinitrotoluene	ND	10.0		11	ti	"	'n	н	
Di-n-octyl phthalate	ND	10.0		"	*1	"	10	"	
Fluoranthene	ND	10.0		**	**	**	11	**	
Fluorene	ND	10.0		**	**	**	11	tt	
Hexachlorobenzene	ND	10.0		11	n	**	11	n	
	ND	10.0		11	"	. "	11	11	
Hexachlorobutadiene	ND	10.0		**	, t t	* .	**	н	
Hexachlorocyclopentadiene	ND	10.0		**	**	**	**	11	
Hexachloroethane	ND	10.0		Ħ .	**	11	**	11	
Indeno (1,2,3-cd) pyrene	ND	10.0	**	ŧŧ	**	Ħ	**	***	
Isophorone	ND	10.0	11	"	11	n	**	· ·	
2-Methylnaphthalene	ND	10.0	**	**	ti	Ħ	**	**	
2-Methylphenol	ND	10.0	**	***	*1	11	**	**	
3 & 4-Methylphenol	ND	10.0	11	Ħ	11	11	11	**	
Naphthalene	ND	10.0	**	"	**	11	п	n	
2-Nitroaniline	ND	10.0		**	tt	**	**	**	
3-Nitroaniline	ND	10.0	**	**	ŧr	**	**	11	
4-Nitroaniline	ND	10.0	**	**	Ħ	**	,	**	
Nitrobenzene	ND	10.0	tt	11	tt	**	**	**	
2-Nitrophenol	ND	10.0	11	"	11	"	**	"	
4-Nitrophenol	ND	10.0		**	11	**	**	n	
N-Nitrosodiphenylamine	ND	10.0		**	11	**	**	**	
N-Nitrosodi-n-propylamine	ND	10.0	**	11	**	**	"	"	
Pentachlorophenol	ND	10.0	н	11	11	11	**		
Phenanthrene	ND	10.0	**	**	"	**	**		
Phenol	ND	10.0	11	**	,,	**	"	"	
Pyrene	ND	10.0	**	"	11	11		"	
1,2,4-Trichlorobenzene	ND	10.0	**	**	**	11	"	"	
2,4,5-Trichlorophenol	ND	10.0	11		**	11	. #		
2,4,6-Trichlorophenol	ND	10.0	н	11	**	"	. "	**	
Surrogate: 2-FP	15.7 %	27-124			"		"	n	
Surrogate: Phenol-d6	34.5 %	12-124			"	,,	"	"	
Surrogate: 2,4,6-TBP	20.8 %	33-143			"	,,	"	"	
Surrogate: Nitrobenzene-d5	73.3 %	35-119			"	"	"	"	
Surrogate: 2-FBP	84.1 %	44-124			,,	"	,,	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwater

2J21012

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

10/21/02

10/24/02

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Surrogate: p-Terphenyl-d14

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB1/MW12 (B2,10474-02) Water	Sampled: 10/18/02	2 09:10 Re	ceived: 10	/18/02 15:20					X

58.4 %

10-131

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20322 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J23007: Prepared 10/23/02	Using EP	A 5030B	(P/T)							
Blank (2J23007-BLK1)										
Gasoline Range Hydrocarbons	ND	50.0	ug/l				7-20-0-			
Benzene	ND	0.500	11					-		
Toluene	ND	0.500	ŧ							
Ethylbenzene	ND	0.500	11							
Xylenes (total)	ND	1.00	**							
Surrogate: 4-BFB (FID)	42.1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	48.0		87.7	57-125			
Surrogate: 4-BFB (PID)	41.9		"	48.0		87.7 87.3	62-120			
LCS (2J23007-BS1)						07.5	02-120			
Gasoline Range Hydrocarbons	464	50.0	ug/l	502		92.4	80-120			
Benzene	6.73	0.500	11	6.20		109	80-120			
Toluene	31.7	0.500	11	38.1		83.2	80-120			
Ethylbenzene	8.46	0.500	ti .	8.94		94.6	80-120			
Xylenes (total)	40.5	1.00	**	44.0		92.0	80-120			
Surrogate: 4-BFB (FID)	45.1		<i>n</i>	48.0		94.0	57-125			
Surrogate: 4-BFB (PID)	40.8		n	48.0		85.0	62-120			
LCS Dup (2J23007-BSD1)										
Gasoline Range Hydrocarbons	461	50.0	ug/l	502		91.8	80-120	0.649	25	
Benzene	6.26	0.500	"	6.20		101	80-120	7.24	40	
Toluene	31.9	0.500	**	38.1		83.7	80-120	0.629	40	
Ethylbenzene	8.44	0.500	**	8.94		94.4	80-120	0.237	40	
Xylenes (total)	40.6	1.00	**	44.0		92.3	80-120	0.247	40	
Surrogate: 4-BFB (FID)	45.2		n	48.0		94.2	57-125			
Surrogate: 4-BFB (PID)	40.8		"	48.0		85.0	62-120			
Matrix Spike (2J23007-MS1)					Source: F	32J0474-0				
Gasoline Range Hydrocarbons	570	50.0	ug/l	502	ND	108	70-130			
Benzene	8.29	0.500	11	6.20	0.516	125	80-120			0.0
Toluene	37.3	0.500	**	38.1	0.869	95.6	68-114			Q-(
Ethylbenzene	9.90	0.500	**	8.94	ND	109	80-114			
Xylenes (total)	47.6	1.00	11	44.0	ND	106	80-120			
Surrogate: 4-BFB (FID)	48.1		"	48.0		100	57-125			
Surrogate: 4-BFB (PID)	41.7		"	48.0		86.9	57-125 62-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwate

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J23007:	Prepared 10/23/02	Using EP	A 5030B (P/T)							
Matrix Spike Dup	(2J23007-MSD1)					Source: H	32J0474-0	12			
Gasoline Range Hydro		563	50.0	ug/l	502	ND	106	70-130	1.24	25	
Benzene		8.51	0.500	tt	6.20	0.516	129	80-120	2.62	40	Q-0
Toluene		38.7	0.500	11	38.1	0.869	99.3	68-114	3.68	40	
Ethylbenzene		10.3	0.500	n	8.94	ND	113	80-120	3.96	40	
Xylenes (total)		49.4	1.00	11	44.0	ND	110	80-120	3.71	40	
	D\	46.9		"	48.0		97.7	57-125			
Surrogate: 4-BFB (FIL		40.9 41.9		"	48.0		87.3	62-120			
Surrogate: 4-BFB (PII	7)	71.5									
Batch 2J24027:	Prepared 10/24/02	Using EI	PA 5030B ((P/T)							
Blank (2J24027-B)	LK1)										
Gasoline Range Hydro	ocarbons	ND	50.0	ug/l							
Benzene		ND	0.500	**							
Toluene		ND	0.500	**							
Ethylbenzene		ND	0.500	11							
Xylenes (total)		ND	1.00	11							
Surrogate: 4-BFB (FI	(מ	40.5		"	48.0		84.4	57-125			
Surrogate: 4-BFB (PI		38.8		"	48.0		80.8	62-120			
LCS (2J24027-BS	1)										
Gasoline Range Hydr	ocarbons	492	50.0	ug/l	502		98.0	80-120			
Benzene		6.28	0.500	ti	6.20		101	80-120			
Toluene		33.4	0.500	11	38.1		87.7	80-120			
Ethylbenzene		8.62	0.500	"	8.94		96.4	80-120			
Xylenes (total)		40.8	1.00	!!	44.0		92.7	80-120			
Surrogate: 4-BFB (F.	<i>(</i> D)	41.6		,,	48.0		86.7	57-125			

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Part of the County
Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J24027:	Prepared 10/24/02	Using EP	A 5030B (P/T)							
LCS Dup (2J24027	-BSD1)										
Gasoline Range Hydrod	carbons	473	50.0	ug/l	502		94.2	80-120	3.94	25	
Benzene		5.76	0.500	**	6.20		92.9	80-120	8.64	40	
Toluene		30.8	0.500	**	38.1		80.8	80-120	8.10	40	
Ethylbenzene		7.81	0.500	**	8.94		87.4	80-120	9.86	40	
Xylenes (total)		37.2	1.00	**	44.0		84.5	80-120	9.23	40	
Surrogate: 4-BFB (FID)	44.0		<i>ii</i>	48.0		91.7	57-125	-47		
Surrogate: 4-BFB (PID)	37.0		"	48.0		77.1	62-120			
Matrix Spike (2J24	027-MS1)					Source: I	3 2 J0601-0)1			
Gasoline Range Hydrod	carbons	486	50.0	ug/l	502	ND	94.7	70-130			
Benzene		6.31	0.500	11	6.20	ND	102	80-120			
Toluene		33.2	0.500	11	38.1	ND	86.4	68-114			
Ethylbenzene		8.44	0.500	**	8.94	ND	92.8	80-120			
Xylenes (total)		40.3	1.00	tt	44.0	ND	90.7	80-120			
Surrogate: 4-BFB (FID)	42.1		"	48.0		87.7	57-125	****		
Surrogate: 4-BFB (PID)	<i>36.8</i>		"	48.0		76.7	62-120			
Matrix Spike Dup (2J24027-MSD1)		•			Source: I	32J0601-0)1			
Gasoline Range Hydrod	carbons	462	50.0	ug/l	502	ND	89.9	70-130	5.06	25	
Benzene		5.90	0.500	ti	6.20	ND	95.2	80-120	6.72	40	
Toluene		31.2	0.500	11	38.1	ND	81.2	68-114	6.21	40	
Ethylbenzene		7.83	0.500	11	8.94	ND	86.0	80-120	7.50	40	
Xylenes (total)		37.6	1.00	11	44.0	ND	84.5	80-120	6.93	40	
Surrogate: 4-BFB (FID)	43.6		"	48.0		90.8	57-125			
Surrogate: 4-BFB (PID))	36.8		"	48.0		76.7	62-120		,	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwate

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210
 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509.924,9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503,906,9200
 fax 503,906,9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC	·	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J22007: Prepared 10/22/02	Using EP	A 3520C								
Blank (2J22007-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	11					1		
Surrogate: 2-FBP	0.269		11	0.320		84.1	52-126			
Surrogate: Octacosane	0.273		,	0.320		85.3	53-122			
LCS (2J22007-BS1)										
Diesel Range Hydrocarbons	1.72	0.250	mg/l	2.00		86.0	60-122			
Surrogate: 2-FBP	0.276		"	0.320		86.2	52-126			
LCS Dup (2J22007-BSD1)										
Diesel Range Hydrocarbons	1.71	0.250	mg/l	2.00		85.5	60-122	0.583	40	
Surrogate: 2-FBP	0.279		"	0.320		87.2	52-126			
Batch 2J23011: Prepared 10/23/02	Using E	PA 3520C								
Blank (2J23011-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	ŧı							
Surrogate: 2-FBP	0.253		"	0.320		79.1	52-126			
Surrogate: Octacosane	0.263		" .	0.320		82.2	53-122			
LCS (2J23011-BS1)										
Diesel Range Hydrocarbons	1.65	0.250	mg/l	2.00		82.5	60-122			
Surrogate: 2-FBP	0.272		"	0.320		85.0	52-126			
LCS Dup (2J23011-BSD1)					····					
Diesel Range Hydrocarbons	1.66	0.250	mg/l	2.00		83.0	60-122	0.604	40	
Surrogate: 2-FBP	0.278		"	0.320		86.9	52-126			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane

426.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588 Portland

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J18052:	Prepared 10/18/02	Using E	PA 3005A								
Blank (2J18052-B)	LK1)										
Lead		ND	0.00100	mg/l							····
LCS (2J18052-BS1	1)										
Lead		0.200	0.00100	mg/l	0.200		100	80-120	·		
LCS Dup (2J18052	2-BSD1)										
Lead		0.205	0.00100	mg/l	0.200		102	80-120	2.47	20	
Matrix Spike (2J1	8052-MS1)					Source: E	32J0474-()3			
Lead		0.119	0.00100	mg/l	0.100	0.0180	101	75-125			
Matrix Spike Dup	(2J18052-MSD1)					Source: E	B2J0474-()3			
Lead		0.122	0.00100	mg/l	0.100	0.0180	104	75-125	2.49	20	-

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

%REC

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Reporting

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J20006: Prepared 10/20/02	Using EP	A 5030B								
Blank (2J20006-BLK1)										
Acetone	ND	25.0	ug/l							
Benzene	ND	1.00	ŧŧ					1		
Bromobenzene	ND	1.00	Ħ							
Bromochloromethane	ND	1.00	n							
Bromodichloromethane	ND	1.00	11							
Bromoform	ND	1.00	11							
Bromomethane	ND	2.00	"							
2-Butanone	ND	10.0	11							
n-Butylbenzene	ND	1.00	11							
sec-Butylbenzene	ND	1.00	n							
tert-Butylbenzene	ND	1.00	**							
Carbon disulfide	ND	1.00	*1							
Carbon tetrachloride	ND	1.00	**							
Chlorobenzene	ND	1.00	**							
Chloroethane	ND	1.00	**							
Chloroform	ND	1.00	11							
Chloromethane	ND	5.00	**							
2-Chlorotoluene	ND	1.00	**							
4-Chlorotoluene	ND	1.00	**							
Dibromochloromethane	ND	1.00	tr							
1,2-Dibromo-3-chloropropane	ND	5.00	**							
1,2-Dibromoethane	ND	1.00	**							
Dibromomethane	ND	1.00	11							
1,2-Dichlorobenzene	ND	1.00	"							
1,3-Dichlorobenzene	ND	1.00	"							
1,4-Dichlorobenzene	ND	1.00	11							
Dichlorodifluoromethane	ND	1.00	11							
1,1-Dichloroethane	ND	1.00	"							
1,2-Dichloroethane	ND	1.00	"							
1,1-Dichloroethene	ND	1.00	**							
cis-1,2-Dichloroethene	ND	1.00	11							
trans-1,2-Dichloroethene	ND	1.00	**							
1,2-Dichloropropane	ND	1.00	11							
1,3-Dichloropropane	ND	1.00	11							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

541.383.9310 fax 541.382.7588

Spokane

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200
 fax 503.906.9210 503.906.9210

 Pond
 20232 Empire Avenue, Siths E 1 Bend OR 07701 5711
 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

A		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J20006: Prepared 10/20/02	Using EP	A 5030B								A STATE OF THE STA
Blank (2J20006-BLK1)										
2,2-Dichloropropane	ND	1.00	ug/l							
1,1-Dichloropropene	ND	1.00	31							
cis-1,3-Dichloropropene	ND	1.00	**							
trans-1,3-Dichloropropene	ND	1.00	**							
Ethylbenzene	ND	1.00	11							
Hexachlorobutadiene	ND	1.00	**							
2-Hexanone	ND	10.0	*1							
Isopropylbenzene	ND	1.00	11						•	
p-Isopropyltoluene	ND	1.00	11							
Methylene chloride	ND	5.00	11							
4-Methyl-2-pentanone	ND	10.0	**							
Naphthalene	ND	1.00	11							
n-Propylbenzene	ND	1.00	**							
Styrene	ND	1.00	tt							
1,1,1,2-Tetrachloroethane	ND	1.00	11							
1,1,2,2-Tetrachloroethane	ND	1.00	11							
Tetrachloroethene	ND	1.00	17							
Toluene	ND	1.00	"							
1,2,3-Trichlorobenzene	ND	1.00	tt							
1,2,4-Trichlorobenzene	ND	1.00	tı							
1,1,1-Trichloroethane	ND	1.00	ti							
1,1,2-Trichloroethane	ND	1.00	11							
Trichloroethene	ND	1.00	"							
Trichlorofluoromethane	ND	1.00	**							
1,2,3-Trichloropropane	ND	1.00	11							
1,2,4-Trimethylbenzene	ND	1.00	"							
1,3,5-Trimethylbenzene	ND	1.00	**							
Vinyl chloride	ND	1.00	11							
m,p-Xylene	ND	2.00	"							
o-Xylene	ND	1.00	**							
Surrogate: 1,2-DCA-d4	37.1		"	40.0		92.8	77-122			
Surrogate: Toluene-d8	35.9		"	40.0		89.8	77-122 75-124			
Surrogate: 4-BFB	35.7		. "	40.0		89.2	77-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Same Garthwate

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J20006: Prepared 10/20/02	2 Using EP	PA 5030B								
LCS (2J20006-BS1)										
Benzene	10.4	1.00	ug/l	10.0		104	80-120			
Chlorobenzene	10.3	1.00	**	10.0		103	77-120			
1,1-Dichloroethene	9.76	1.00	**	10.0		97.6	80-120			
Toluene	9.48	1.00	**	10.0		94.8	80-120			
Trichloroethene	10.2	1.00	"	10.0		102	80-120			
Surrogate: 1,2-DCA-d4	19.2		"	20.0		96.0	77-122			
Surrogate: Toluene-d8	19.2		"	20.0		96.0	75-124			
Surrogate: 4-BFB	19.9		"	20.0		99.5	77-120			
LCS Dup (2J20006-BSD1)										
Benzene	10.1	1.00	ug/l	10.0		101	80-120	2.93	20	
Chlorobenzene	10.1	1.00		10.0		101	77-120	1.96	20	
1,1-Dichloroethene	9.05	1.00	**	10.0		90.5	80-120	7.55	20	
Toluene	9.18	1.00	**	10.0		91.8	80-120	3.22	20	
Trichloroethene	9.73	1.00	**	10.0		97.3	80-120	4.72	20	
Surrogate: 1,2-DCA-d4	19.1		11	20.0		95.5	77-122			
Surrogate: Toluene-d8	19.6		"	20.0		98.0	75-124			
Surrogate: 4-BFB	19.8		"	20.0		99.0	77-120			
Batch 2J31035: Prepared 10/31/0	2 Using E	PA 5030B								
Blank (2J31035-BLK1)										
Ethanol	ND	20.0	ug/l							
1,2-Dibromoethane	ND	0.500	"							
1,2-Dichloroethane	ND	0.500	*1							
Diisopropyl ether	ND	1.00	"							
Ethyl tert-butyl ether	ND	1.00	**							
Methyl tert-butyl ether	ND	5.00	**							
tert-Amyl Methyl Ether	ND	1.00	**							
tert-Butyl Alcohol	ND	50.0	"							
Surrogate: 1,2-DCA-d4	22.7		"	20.0		114	77-122			
Surrogate: Toluene-d8	19.9		"	20.0		99.5	75-124			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
 Spokane

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

A 1- 4-		Reporting		Spike	Source	-	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J31035: Prepared 10/31/	02 Using E	PA 5030B								
LCS (2J31035-BS1)										"
Diisopropyl ether	9.81	1.00	ug/l	10.0		98.1	75-125	~~~		
Methyl tert-butyl ether	7.82	5.00	**	10.0		78.2	75-125			
tert-Butyl Alcohol	ND	50.0	"	50.0		92.8	75-125			
Surrogate: 1,2-DCA-d4	20.9		n	20.0		104	77-122			
Surrogate: Toluene-d8	20.6		"	20.0		103	75-124			
LCS Dup (2J31035-BSD1)										
Diisopropyl ether	10.1	1.00	ug/l	10.0		101	75-125	2.91	25	
Methyl tert-butyl ether	8.86	5.00	ti .	10.0		88.6	75-125	12.5	25	
tert-Butyl Alcohol	56.1	50.0	ti	50.0		112	75-125	18.9	25	
Surrogate: 1,2-DCA-d4	23.5		"	20.0		118	77-122			
Surrogate: Toluene-d8	20.4		"	20.0		102	75-124			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

Bend 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J21012: Prepared 10/21/02	Using E	PA 3520C								
Blank (2J21012-BLK1)										
Acenaphthene	ND	10.0	ug/l							
Acenaphthylene	ND	10.0	11					•		
Aniline	ND	10.0	11						•	
Anthracene	ND	10.0	Ħ							
Benzoic Acid	ND	20.0	ti							
Benzo (a) anthracene	ND	10.0	*1						•	
Benzo (b) fluoranthene	ND	10.0	Ħ					•		
Benzo (k) fluoranthene	ND	10.0	"							
Benzo (ghi) perylene	ND	10.0								
Benzo (a) pyrene	ND	10.0	11							
Benzyl alcohol	ND	10.0	**							
Bis(2-chloroethoxy)methane	ND	10.0	ti							
Bis(2-chloroethyl)ether	ND	10.0	**							
Bis(2-chloroisopropyl)ether	ND	10.0	*1							
Bis(2-ethylhexyl)phthalate	ND	50.0	"					,		
4-Bromophenyl phenyl ether	ND	10.0	"							
Butyl benzyl phthalate	ND	10.0	11							
Carbazole	ND	10.0	ŧı							
4-Chloroaniline	ND	10.0	Ħ							
2-Chloronaphthalene	ND	10.0	**							
4-Chloro-3-methylphenol	ND	10.0	**							
2-Chlorophenol	ND	10.0	"							
4-Chlorophenyl phenyl ether	ND	10.0	'n							
Chrysene	ND	10.0	**							
Dibenz (a,h) anthracene	ND	10.0	11							
Dibenzofuran	ND	10.0	**							
Di-n-butyl phthalate	ND	10.0	97							
1,3-Dichlorobenzene	ND	10.0	"							
1,4-Dichlorobenzene	ND	10.0	11							
1,2-Dichlorobenzene	ND	10.0	u							
3,3'-Dichlorobenzidine	ND	10.0	11							
2,4-Dichlorophenol	ND	10.0	11							
Diethyl phthalate	ND	10.0	11							
2,4-Dimethylphenol	ND	10.0	11							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9200

 709.924.9200
 fax 509.924.9200

 809.924.9200
 fax 509.924.9200

Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	מממ	RPD	N Y /
Ratch 2 121012.	Duomous 2 10/21/05				Ecvel	Mesuit	/ONEC	Limits	RPD	Limit	Notes
Batch 2J21012:	Prepared 10/21/02	Using E	PA 3520C								
Blank (2J21012-BI	LK1)										
Dimethyl phthalate		ND	10.0	ug/l							
4,6-Dinitro-2-methylpl	nenol	ND	10.0	"	•						
2,4-Dinitrophenol		ND	20.0	**							
2,4-Dinitrotoluene		ND	10.0	**							
2,6-Dinitrotoluene		ND	10.0	n							
Di-n-octyl phthalate		ND	10.0	tt.							
Fluoranthene		ND	10.0	u							
Fluorene		ND	10.0	11							
Hexachlorobenzene		ND	10.0	"							
Hexachlorobutadiene		ND	10.0	**							
Hexachlorocyclopentae	liene	ND	10.0	**							
Hexachloroethane		ND	10.0	**							
Indeno (1,2,3-cd) pyren	ne	ND	10.0	**							
sophorone		ND	10.0	"							
2-Methylnaphthalene		ND	10.0	17							
2-Methylphenol		ND	10.0	**							
& 4-Methylphenol		ND	10.0	**							
Naphthalene		ND	10.0	H							
2-Nitroaniline		ND	10.0	Ħ							
3-Nitroaniline		ND	10.0	tt							
I-Nitroaniline		ND	10.0	11							
Vitrobenzene		ND	10.0	11							
2-Nitrophenol		ND	10.0	**							
I-Nitrophenol		ND	10.0	11							
N-Nitrosodiphenylamir	ne	ND	10.0	"							
N-Nitrosodi-n-propylar	nine	ND	10.0	**		•					
Pentachlorophenol		ND	10.0	**							
henanthrene		ND	10.0	"							
henol		ND	10.0	**							
yrene		ND	10.0	**							
,2,4-Trichlorobenzene		ND	10.0	11							
,4,5-Trichlorophenol		ND ND	10.0	11							
,4,6-Trichlorophenol		ND	10.0								
Surrogate: 2-FP		19.7		"							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

%REC

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G

Dublin CA/USA, 94568

Project: Chevron #21-1577

Portland

Project Number: 386765

Reporting

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

]	Reporting		Spike	Source		70NEC	DDD	Timit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2J21012: Prepared 10/21/0	2 Using EP.	A 3520C								
Blank (2J21012-BLK1)										
Surrogate: Phenol-d6	26.4		ug/l	50.0		52.8	12-124			
Surrogate: 2,4,6-TBP	31.9		"	50.0		63.8	33-143			
Surrogate: Nitrobenzene-d5	42.0		"	50.0		84.0	35-119			
Surrogate: 2-FBP	44.7		"	50.0		89.4	44-124			
Surrogate: p-Terphenyl-d14	45.1		"	50.0		90.2	10-131			
LCS (2J21012-BS1)										
Acenaphthene	107	10.0	ug/l	100		107	45-130			
4-Chloro-3-methylphenol	95.3	10.0	**	100		95.3	37-120			
2-Chlorophenol	86.8	10.0	**	100		86.8	38-120			
1,4-Dichlorobenzene	87.6	10.0	. "	100		87.6	33-120			
2,4-Dinitrotoluene	99.2	10.0	11	100		99.2	52-120			
4-Nitrophenol	106	10.0	ni.	100		106	20-135			
N-Nitrosodi-n-propylamine	83.2	10.0	н	100		83.2	40-120			
Pentachlorophenol	91.0	10.0	u	100		91.0	31-133			
Phenol	55.3	10.0	u	100		55.3	20-120			
Pyrene	104	10.0	**	100		104	38-123			
1,2,4-Trichlorobenzene	85.9	10.0	11	100		85.9	28-120			
Surrogate: 2-FP	33.3		"	50.0		66.6	27-124			
Surrogate: Phenol-d6	36.1		"	50.0		72.2	12-124			
Surrogate: 2,4,6-TBP	43.2		"	50.0		86.4	33-143			
Surrogate: Nitrobenzene-d5	43.6		"	50.0		87.2	35-119			
Surrogate: 2-FBP	46.2		"	50.0		92.4	44-124			
Surrogate: p-Terphenyl-d14	42.4		"	50.0		84.8	10-131			
LCS Dup (2J21012-BSD1)							40.105	0.000	40	
Acenaphthene	106	10.0	ug/l	100		106	45-130	0.939	49	
4-Chloro-3-methylphenol	102	10.0	Ħ	100		102	37-120	6.79	49	
2-Chlorophenol	87.6	10.0	**	100		87.6	38-120	0.917	61	
1,4-Dichlorobenzene	83.9	10.0	11	100		83.9	33-120	4.31	26	
2,4-Dinitrotoluene	106	10.0	**	100		106	52-120	6.63	29	
4-Nitrophenol	107	10.0	Ħ	100		107	20-135	0.939	37	
N-Nitrosodi-n-propylamine	78.7	10.0	"	100		78.7	40-120	5.56	36	
Pentachlorophenol	109	10.0	"	100		109	31-133	18.0	32	
•	60.1	10.0	"	100		60.1	20-120	8.32	53	
Phenol	95.9	10.0	11	100		95.9	38-123	8.10	50	
Pyrene	70.9	10.0		200						

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

Portland

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte		Result	Limit Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2J21012:	Prepared 10/21/02	Using EP	A 3520C								
LCS Dup (2J21012	2-BSD1)										
1,2,4-Trichlorobenzen	e	89.6	10.0	ug/l	100		89.6	28-120	4.22	25	
Surrogate: 2-FP		36.9		"	50.0		73.8	27-124			
Surrogate: Phenol-d6		39.0		"	50.0		78.0	12-124	,		
Surrogate: 2,4,6-TBP		50.6		"	50.0		101	33-143			
Surrogate: Nitrobenze	ne-d5	45.0		"	50.0		90.0	35-119			
Surrogate: 2-FBP		41.3		"	50.0		82.6	44-124			
Surrogate: p-Terpheny	vl-d14	41.3		"	50.0		82.6	10-131			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210
 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: 386765

Project Manager: Deanna Harding

Reported: 11/06/02 14:24

Notes and Definitions

D-10	The heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range.
------	---

The analyte concentration may be artificially elevated due to coeluting compounds or components. I-06

The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference. Q-02

This sample was laboratory filtered since it was not field filtered as is required by the methodology. Q-30

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or S-01

matrix interferences.

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04

Х See case narrative.

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

November 06, 2002

Deanna Harding Gettler-Ryan Inc. 6747 Sierra Ct. Suite G Dublin, CA 94568

Project: Chevron #21-1577

The following is a cross reference of the sample identification for the samples that were subbed out to Calscience Environmental Laboratories, Inc.

Gettler-Ryan Inc. #	NCA Lab#	Calscience Environmental #
VP 1	B2J0474-03	B2J0474-03
VP 5 (MW 5)	B2J0474-05	B2J0474-05
MW 4	B2J0474-12	B2J0474-12

October 30, 2002

Jeanne Garthwaite North Creek Analytical 11720 North Creek Parkway North, Ste 400 Bothell, WA 98011-8223

Subject:

Calscience Work Order No.:

02-10-1407

Client Reference:

B2J0474

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/23/02 and analyzed in accordance with the attached chain-of-custody (COC). Although the COC indicates tetraethyl lead for testing, organic lead was determined instead, with approval from the client.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely.

Calscience Environmental

Laboratories, Inc. Robert Stearns Project Manager Michael J. Crisostomo

Quality Assurance Manager

Lalscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

North Creek Analytical 11720 North Creek Parkway North, Ste 400 Bothell, WA 98011-8223

Date Received: Work Order No: Preparation: Method:

10/23/02 02-10-1407 DHS LUFT DHS LUFT

Project: B2J0474

Page 1 of 1

Client Sample Number			Sample umber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
B2J0474-03		02-	10-1407-1	10/17/02	Aqueous	10/25/02	10/25/02	021025L05
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Organic Lead	ND	0.300	1		mg/L			
B2J0474-05		02-	10-1407-2	10/17/02	Aqueous	10/25/02	10/25/02	021025L05
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	0.300	1		mg/L			
B2J0474-12		02-	10-1407-3	10/17/02	Aqueous	10/25/02	10/25/02	021025L05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	0.300	1 '		mg/L			
Method Blank		099	9-10-019-9	N/A	Aqueous	10/25/02	10/25/02	021025L05
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Organic Lead	ND	0.300	1		mg/L			

Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

Quality Control - Spike/Spike Duplicate

North Creek Analytical 11720 North Creek Parkway North, Ste 400 Bothell, WA 98011-8223 Date Received: Work Order No: Preparation:

Method:

02-10-1407 DHS LUFT

DHS LUFT

10/23/02

Project: B2J0474

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date M Analyzed	MS/MSD Batch Number
B2J0474-03	Aqueous	FLAA	10/25/02		10/25/02	021025S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Organic Lead	79	83	50-130	5	0-20	

Quality Control - Laboratory Control Sample

North Creek Analytical 11720 North Creek Parkway North, Ste 400 Bothell, WA 98011-8223

Date Received: Work Order No: Preparation:

Method:

10/23/02 02-10-1407 DHS LUFT DHS LUFT

Project:

B2J0474

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
099-10-019-9	Aqueous	FLAA	10/25/02	NONE	021025L05
<u>Parameter</u> Organic Lead		nc Added 3.13	Conc Recovered 2.59	<u>%Rec</u> 83	%Rec CL Qualifiers 50-130

GLOSSARY OF TERMS AND QUALIFIERS

alscience nvironmental aboratories, Inc.

Work Order Number: 02-10-1407

Qualifier

Definition

ND

Not detected at indicated reporting limit.

FORMER TEXACO SERVICE STATION Seattle, Washington (Site #211577)

MONITORING & SAMPLING EVENT OF NOVEMBER 14, 2002

	F	IELD DATA	A SHEET			·
Client/	04.507		Job#:	386	745 <u> </u>	
Facility #Cho	1100 211577 1 Queen Annel			11-14-02		
Address: 63	I Queen Annel	Wei. N.	Date:	BWN		
Address. Sack	He, WA		Sampler:	BW10		
City:	110 1 1011					
		1	07			
Well ID	mw-1	Well Conditi	ion:			
•	2	Hydrocarbo	n B.	Amount B	ailed	<u>ioal.)</u>
Well Diameter		Thickness:		3" = 0.3		0.66
Total Depth	24.45	Volume Factor (VF)	2" = 0.17	5" = 1.50	12" = 5.80	
Depth to Water	11.88	Pacior (VI)				l :
Deput to Water		۷٦		me) = Estimated i	urge Volume:	(oel)
	12-57 x VF	17: -2	X 3 (case volu	me, = combine		
_	Disposable Bailer	•	Sampling	· Disposable E	lailer	•
Purge Equipment:	Bailer	•	Equipment:	Bailer		
	Stack Suction			Pressure Bai Grab Sample		
	Grundfos		Ot	her:		
	Other:	. ·				`
	. 112.0	Meat	ther Conditions:	pt. s		
Starting Time:	1130		er Color:		Odor: 10	
Sampling Time:	1155	– Sedi	ment Description	on:		
Purging Flow Ra	x 77		s; Time:	Vol	ume:	(gal.)
Did well de-wat	er?			burne D.O	ORP	Alkalinity
Tiroe	Volume pH	Conductiv	ity Tempera	iture D.C. (mg/l		(bbw)
2.2	(gal.)	printosec				•
		351	13.4			
1136	7,4	- 346	13.7			
1147	<u>4</u> <u>7.36</u> . 7.31	341	13.			
1148	6 1,31					•
		LABORAT	ORY INFORMA	TION		LYSES COR+FDY
	AN CONTAINED	REFRIG. P	RESERV. TYPE	LABOURTON		The state of the s
SAMPLE ID	(#) - CONTAINER	Y	HLL	NCA	TPHG BTE	W/56
MW 14	6 x VDA VIAL 1 Amber L		· ·		PCRA M	etals
MW 14	1 500 nL Pl.		NP		Disselve	d hard
MW 14	1500ml P1.				Tetract	
L			↓		VOC'S	82605
COMMENTS	-	111		 	SVOCI	S EPA 8270C
MW 12	1 2 Amber L	1	NP			9/97-Reldes.frm
•	V 17 V					,

		FIELD L				
Client/ Facility #Ckc	won 21157	7	_ Job#:		e745	•
Address: 63	of Queen Anna	Avei.N.	Date:	11-14-		
ζ	Ale, WA		_ Sample	. BWN		
City:	ITIO] WIT	.,	_ Sample			
		_		K		
Well ID	mw-15	Well Co	ondition:			
Well Diameter	in_	Hydroc Thickne			nt Bailed	(a)
Total Depth	24.80	Volum	c 2" = 0.17	_	0.38	4" = 0.66
Depth to Water	9.44	Factor	(VF)	6" = 1.50	12" = 5	.80
· •	15.36 x v	r 17.	2-5 10 X,8 (case vo	lume) = Estime	ted Purge Volu	me: 25 (gel.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampli ng Equipment: O	Baller Pressure Grab Sar	Bailer	
	000		Veather Conditions	pt.	shun	
Starting Times	1000		ABBRIDE COLOURAL			
Starting Time:	Linn	\ \	Vater Color: It	. 4 CO. V	Odor:	N
Sampling Time:	1100	•	Vater Color:	304	Odor:	N
Sampling Time: Purging Flow Rat	te:o	xm. S	Vater Color:	on:		nd (cal.)
Sampling Time:	te:o	xm. S	Vater Color:	on:	Odor: /olume:	
Sampling Time: Purging Flow Rat Did well de-wate	te:o	Condu	Vater Color: rediment Description ryes; Time: cutvity Temper rediction C	on:	/olume:	
Sampling Time: Purging Flow Rat Did well de-wate	volume pH (gal.)	wn. S ii Condu	vater Color: dediment Description f yes; Time: ctivity Temper of Colors 13	on:	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time	te:or or? Volume pH (gal.)	Condu	vater Color: rediment Description ryes; Time: ctivity Temper ctivity C	on: Sture I	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time 1010 1020	Volume pH (gal.) 7.09	Condu Condu Landra 14 02	Vater Color:	on: Cature I	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time: 10 10 1020 1030	Volume pH (gal.) 7.09 7.04	Condu Condu µmho 40 ² 391	Vater Color:	on: Sature I	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0 1020 1030 1010	Volume pH (gal.) 5 7.09 7.02 15 7.7	Condu Condu	Vater Color:	on: Sature I	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0 1020 1030 1040	Volume pH (gal.) 5 7.09 7.04 15 7.67 20 6.92	Condu Condu	Vater Color:	on: Considered in the constant of the constan	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0 1020 1030 1040	Volume pH (gal.) 5 7.09 7.04 15 7.67 20 6.92	Condu	Vater Color:	ion: Tature (III)	/olume:	(gal.) RP Alkalimity
Sampling Time: Purging Flow Rate Did well de-wate Time 1010 1020 1030 1030 1050	Volume pH (gal.) 5 7.09 15 7.02 15 7.7 20 6.86	Condu	Vater Color:	ion: Tature (III)	/olume:	RP Alkalinity (ppsn)
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0 1020 1030 1040 1050 SAMPLE ID	Volume pH (gal.) 5 7.09 7.04 15 7.67 20 6.86	Conduments of the second secon	Vater Color:	ion: Lature II Current Curre	/olume:	ANALYSES 70.4 FPB+1
Sampling Time: Purging Flow Rat Did well de-wate Time 1010 1020 1030 1030 1050 SAMPLE ID MW 15	Volume pH (gal.) 5 7.09 15 7.02 15 7.97 20 6.86 (#) - CONTAINER 6 x VDA VIAL	Condu	Vater Color:	ion: Laborato	/olume:	ANALYSES 70.7 FPB+1 BTE x /ATTOE
Sampling Time: Purging Flow Rate Did well de-wate Time 10 0 1020 1030 1040 1050 SAMPLE ID MW IS MW IS	Volume pH (gal) 5 7.09 15 5.97 20 6.92 25 6.86 (11) - CONTAINER 6 x VDA VIAL 1 Amber L	Conduments of the second secon	Vater Color:	ion: Laborato	Volume:	ANALYSES TO FORH
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0	Volume pH (gal.) 5 7.09 10 7.02 15 7.97 20 6.86 18) - CONTAINER 6 x VDA VIAL 1 Amber L 1 500ml pl.	Conduments of the second secon	Vater Color:	ion: Laborato	Volume:	ANALYSES 70.7 FPB+1 BTE x /ATTOE
Sampling Time: Purging Flow Rate Did well de-wate Time 10 0 1020 1030 1040 1050 SAMPLE ID MW 15 MW 15 MW 15 MW 15	Volume pH (gal.) 5 7.09 7.04 15 7.97 20 6.86 (#)- CONTAINER 6 x VDA VIAL 1 SOONL PI. 1 500ml PI.	Conduments of the second secon	Vater Color:	ion: Laborato	AV TPHE TPH RCE	ANALYSES TO FORH
Sampling Time: Purging Flow Rat Did well de-wate Time 10 10 1020 1030 1040 1050 SAMPLE ID MW 15	Volume pH (gal.) 5 7.09 7.04 15 7.97 20 6.86 (#)- CONTAINER 6 x VDA VIAL 1 SOONL PI. 1 500ml PI.	Conduments of the second secon	Vater Color:	ion: Laborato	AV TPHE TPH RCE Dis.	ANALYSES TO FOB +1 ANALYSES TO FOB +1 (D) x w/56 A Metals solved Lend Tacthyl Lend
Sampling Time: Purging Flow Rat Did well de-wate Time 10 0 1020 1030 1040 1050 SAMPLE ID MW 15 MW 15 MW 15 MW 15 MW 15	Volume pH (gal.) 5 7.09 7.04 15 7.97 20 6.86 (#)- CONTAINER 6 x VDA VIAL 1 SOONL PI. 1 500ml PI.	Conduments of the second secon	Vater Color:	ion: Laborato	RY TPHE TPH RCE D:S	ANALYSES TO FORH ANALYSES TO FORH BIEX MICE (D) x W/S6 A Metals Solved Lend Tacthyl Lend

	YVEL N	TELD DATA SH	HEET			•
Client/ Facility #Cho	won 211577 I Queer Annel		ab#• 3	38676 -14-02	<u>5 </u>	· · · · · · · · · · · · · · · · · · ·
Address:63	1 Queen Annel	tre: N. D	ate:	WN		
5-2	He, WA	S	ampler:	w(/		
City:				· · · · · · · · · · · · · · · · · · ·		
	mw-16	Well Condition:	or_			
Well ID	IIIW IC	Met Coloron		mount Baile	d Ø	
Well Diameter	in	Hydrocarbon		product/water)		Lleol
	24.70	Thickness:	2" = 0.17	3" = 0.38	4" = 2" = 5.80	0.66
Total Depth	12.36	Factor (VF)	6° = 1.5	0 · 1	2-= 3.50	
Depth to Water					Ę	, 9
	12.34 x VF	172 x	3 (case volume) = I	Estimated Purg	e Volume:	(gal.)
			pling		٦	
Purge Equipment:	Disposable Bailer Bailer	Equi	pment: Dis	posable Baile	20	
Edolbuser	Stack	·	Pre	ssure Bailer		
	Suction Grundfos		Gra Other:	b Sample	÷	
	Other:		00.0			
	122.77	Weather C	ionditions:	pt. sun	my	
Starting Time:	133 <i>0</i> 135 <i>5</i>	. Water Col	or: brown		Odor: h0	
Sampling Time:		Sediment	Description:			
Purging Flow Ra	٠. ٨	If yes; T		Volume):	(gal.)
Did Meli Ge-Mai	(817	- ·	Temperature	D.O.	ORP	Alkalinity
Time	Volume pH	Conductivity umhos/cm	-C	(mg/L)	(Var)	(bbss)
	(gal.)					-
1336	2 7.16	3 3	13.2		**************************************	4.000
1338	4 7.14.	. 309	13.0		•	
1348	6 7.09	302	12.8	-	•	
						•
	·					
		LABORATORY	NFORMATION V. TYPE: LAB	ORATORY	ANALY	TSES TON FIPBHEPL
SAMPLE ID	(#) - CONTAINER		I N	CA	TPHE BTEX	MINE
MW. 16	G X VDA VIAL	Y He		1	TPH (D) x i	
mu 16	1 Amber L 1 SoonL Pl.	NF			RCRA Met Dissolved	tols
MW 16				 _ ·	Disselved Tetracthy	11/20
			/			
COMMENTS		+++			VOC'S	62609 Keep 8270.
19W	1 2 Amber L	N	P	•		ERP 8270C
- XIII.		for car	ONET WE	11 to b	e towa	水水
> 1 1X 12	t to the state of		-			

			LIELD			_				•
Client/ Facility #	harron d	2/1577	7		lob#:		307U	5		
Address:	harron d	er Anne	Ave: N	<u>.</u> 1	Date:		-14-02			
<	attle, WA				Sample	r:	MN			•
City: — ~e	10.1.0.1	<u> </u>								
Well ID	-	mw-1	7 Well C	ondition:		K				
Well Diameter	2	in.	Hydro Thicks	carbon ness:	Ø		mount Bai		loel_)	
Total Depth	24.8.	<u> </u>	Volu	noe	2" = 0.17		3" = 0.38	4" 12" = 5.80	- 0.66	
Depth to Water	10.0	0	Facto	er (VIF)		6" = 1.50		17 - 2:00		
	14.8	5 × v	F _17-	<u>2-5</u> x	3 (case vo	ljume) = E	stimated Pu	ge Volume:	7:5 (0=1)	
Purge Equipment:	Disposa Bailer	ble Bailer			ipli ng ipment:		osable Bai	ler	•	
	Stack		•				ssure Bailer	*		
	Suction Grundle				_	Gra ther:	b Sample			
	Other: .		·····			/ 510-511				•
Starting Time:	121	5		Weather (Condition	s:	pt. sw		13	
Sampling Time	171			Water Col		ioun		Odor: 51.5	hr	
Purging Flow F	late:	gp	m.	Sediment	Descript	ion:				•
Did well de-wa	eter? Ni)		If yes; T	ime:	<u> </u>	Volum	e:	(gel.)	l
Time	Volume (gal.)	pΗ		uctivity 105/cm	Temper	rature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)	,
			3	1	i3、	ξ	•			-
1222	<u>2.5</u>	6.82	<u> </u>		13.0					-
1236	7.5	6.79	35		12.				· - 	•
									_ +	-
						· •				-
				RATORY !	NFORMA	TION	PATABY	ANA	LYSES	, ,
SAMPLE ID	(#) - C	ONTAINER	REFRIG.	PRESER		NC	RATORY -A	TPHE BTE	. , , , , ,	FPB+EP
MW . 17		DA VIAL	4	140	•	1,00	-TV	7PH(D) x		
mu 17		oer L		NP				ROBA TO		
MW 17		mb Pl.					·	D:ssolved		
	7 4	17		1 1	,			k	Yl Land	
COMMENTS	:'		1-1-	1 =					82601	1
MW 1-	7 25	table de	11	701	>		· .	SHOCES	EPA 8170	<u>e</u>

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

27 November 2002

Deanna Harding Gettler-Ryan Inc. - Dublin 3747 Sierra Ct, Suite G Dublin, CA/USA 94568

RE: Chevron #21-1577

Enclosed are the results of analyses for samples received by the laboratory on 11/15/02 14:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanne Garthwate

Jeanne Garthwaite **Project Manager**

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 Seattle

Spokane

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB LB	B2K0376-01	Water	11/14/02 12:00	11/15/02 14:00
MW 14	B2K0376-02	Water	11/14/02 11:55	11/15/02 14:00
MW 15	B2K0376-03	Water	11/14/02 11:00	11/15/02 14:00
MW 16	B2K0376-04	Water	11/14/02 13:55	11/15/02 14:00
MW 17	B2K0376-05	Water	11/14/02 12:40	11/15/02 14:00

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

425.420.9200 fax 425.420,9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588 Portland

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

		Reporting				***************************************	, , , , , , , , , , , , , , , , , , ,	WMO-A-1	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB LB (B2K0376-01) Water	Sampled: 11/14/02 12:0	0 Receive	ed: 11/15/0	2 14:00					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	2K19006	11/19/02	11/19/02	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	11	· n	11	11	**	
Toluene	ND	0.500	**	"	**	**	11	11	
Ethylbenzene	ND	0.500	Ħ	11	tt	**	"	tt	
Xylenes (total)	ND	1.00	"	ŧŧ	**	11	n	н	
Surrogate: 4-BFB (FID)	90.0 % 3	57-125	· · · · · · · · · · · · · · · · · · ·		"	"	"	"	
Surrogate: 4-BFB (PID)	99.8 %	52-120			· #	"	"	"	
MW 14 (B2K0376-02) Water	Sampled: 11/14/02 11:	55 Receiv	ed: 11/15/0	02 14:00					Q-23
Gasoline Range Hydrocarbons	s 43100	2500	ug/l	50	2K19006	11/19/02	11/19/02	NWTPH-Gx/8021B	
Toluene	4930	25.0	ti	11	"	11	11	**	
Ethylbenzene	1540	25.0	n	**	n	11	**	u	
Xylenes (total)	6020	50.0	"	"	**	m	11	Ħ	
Surrogate: 4-BFB (FID)	90.8 %	57-125	-		"	"	"	. "	
Surrogate: 4-BFB (PID)	102 %	52-120			"	"	n	n	
MW 14 (B2K0376-02RE1) Wa	ater Sampled: 11/14/02	2 11:55 R	eceived: 11	/15/02 14:0	00				Q-23
Benzene	9900	250	ug/l	500	2K20003	11/19/02	11/20/02	NWTPH-Gx/8021B	
Surrogate: 4-BFB (PID)	86.2 %	52-120			"	"	n	и	
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 11:	00 Receiv	ved: 11/15/	02 14:00					
Gasoline Range Hydrocarbon	s 3280	500	ug/l	10	2K19006	11/19/02	11/19/02	NWTPH-Gx/8021B	
Toluene	5.23	5.00	11	Ħ	11	n	Ħ	n	
Ethylbenzene	5.06	5.00	**	11	11	"	**	n n	
Xylenes (total)	ND	10.0	**	11	11	**	17	n	
Surrogate: 4-BFB (FID)	95.8%	57-125			"	n n	11	ıı .	
Surrogate: 4-BFB (PID)	105%	52-120			n	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lame Garthate

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portiand 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

		Reporting		75.11 !	D 4.1	D	A 1 1	Mashad	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 15 (B2K0376-03RE1) Water	Sampled: 11/14/	02 11:00 R	eceived: 11	/15/02 14:0	0				
Benzene	1640	25.0	ug/l	50	2K20003	11/19/02	11/20/02	NWTPH-Gx/8021B	
Surrogate: 4-BFB (PID)	83.3 %	62-120			"	"	"	n .	
MW 16 (B2K0376-04) Water San	npled: 11/14/02 1	3:55 Receiv	ed: 11/15/0	02 14:00					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	2K19006	11/19/02	11/19/02	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	u	11	11	**	н′ .	
Toluene	ND	0.500	"	11	+ #	11	ti	Ħ	
Ethylbenzene	ND	0.500	**		**	, "	11	tt	
Xylenes (total)	ND	1.00	tt	**	11	**	**	"	
Surrogate: 4-BFB (FID)	90.0 %	57-125			11	n	"	"	
Surrogate: 4-BFB (PID)	101 %	62-120			#	n	н	#	
MW 17 (B2K0376-05) Water Sai	npled: 11/14/02 1	2:40 Receiv	ved: 11/15/	02 14:00					
Gasoline Range Hydrocarbons	2780	250	ug/l	5	2K19006	11/19/02	11/19/02	NWTPH-Gx/8021B	
Toluene '	31.0	2.50	11	"	"	11	***	H	
Ethylbenzene	91.1	2.50	н	**	u	**	11	ti	
Xylenes (total)	250	5.00	**	**	11	11	"	. 11	
Surrogate: 4-BFB (FID)	94.2 %	57-125			"	11	tı	#	
Surrogate: 4-BFB (PID)	109 %	62-120			"	"	"	n	
MW 17 (B2K0376-05RE1) Water	Sampled: 11/14	I/02 12:40 R	leceived: 1	1/15/02 14:	00				
Benzene	569	12.5	ug/l	25	2K20003	11/19/02	11/20/02	NWTPH-Gx/8021B	
Surrogate: 4-BFB (PID)	80.6 %	62-120			"	11	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Searne Garthwate

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577 Project Number: TW21577

Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW 14 (B2K0376-02) Water	Sampled: 11/14/02 1	1:55 Receiv	ed: 11/15/(02 14:00					
Diesel Range Hydrocarbons	4.71	0.500	mg/l	2	2K19013	11/19/02	11/21/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	**	1	ŧı	**	11/20/02	**	
Surrogate: 2-FBP	108 %	52-126			"	"	" ,	11	
Surrogate: Octacosane	108 %	53-122			"	"	"	n	
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 1	1:00 Receiv	ed: 11/15/0	02 14:00					
Diesel Range Hydrocarbons	0.780	0.250	mg/l	1	2K19013	11/19/02	11/20/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	11	n	**	11	ŧI	
Surrogate: 2-FBP	89.9 %	52-126			#	"	"	ii .	
Surrogate: Octacosane	97.8 %	53-122			"	"	"	"	
MW 16 (B2K0376-04) Water	Sampled: 11/14/02 1	3:55 Receiv	ed: 11/15/	02 14:00					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	2K19013	11/19/02	11/20/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	**	**	**	tt	11	n	
Surrogate: 2-FBP	82.5 %	52-126		· · · · · · · · · · · · · · · · · · ·	"	"	"	n	
Surrogate: Octacosane	93.4 %	53-122			n	"	n	"	
MW 17 (B2K0376-05) Water	Sampled: 11/14/02 1	2:40 Receiv	ed: 11/15/	02 14:00					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	2K19013	11/19/02	11/20/02	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	*1	u	87	**	tt	**	
Surrogate: 2-FBP	83.8 %	52-126		~	<i>n</i> ·	"	11	"	
Surrogate: Octacosane	98.4 %	53-122			"	n	"	n	•

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Dissolved Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

		Reporting	* T * -	D:1-4:	Batch	Duomonad	Analyzed	Method	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Alialyzeu	Method	Notes
MW 14 (B2K0376-02) Water	Sampled: 11/14/02 1	1:55 Receive	ed: 11/15/0	02 14:00					Q-30
Silver	ND	0.00100	mg/l	1	2K18044	11/18/02	11/21/02	EPA 6020	
Arsenic	0.0170	0.00100	91	"	11	**	11	**	
Barium	0.0184	0.0100	*1		**	**	**	11	
Cadmium	ND	0.00100	**	11	**	Ħ	Ħ	11	
Chromium	ND	0.00100	**	"	"	11	11	Ħ	
Mercury	ND	0.00100	11	11	2K20023	11/20/02	11/20/02	EPA 7470A	
Lead	0.00182	0.00100	"	n	2K15061	11/15/02	11/16/02	EPA 6020	
Selenium	0.00148	0.00100	"	"	2K18044	11/18/02	11/21/02	11	
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 1	1:00 Receiv	ed: 11/15/	02 14:00					Q-30
Silver	ND	0.00100	mg/l	1	2K18044	11/18/02	11/21/02	EPA 6020	
Arsenic	0.00133	0.00100	**	11	**	н	11	Ħ	
Barium	ND	0.0100	Ħ	**	tt	11	"	11	
Cadmium	ND	0.00100	tt	"	"	"	u	11 :	
Chromium	ND	0.00100	**	**	"	11	n	**	
Mercury	ND	0.00100	ŧŧ	**	2K20023	11/20/02	11/20/02	EPA 7470A	
Lead	0.00104	0.00100	11	**	2K15061	11/15/02	11/16/02	EPA 6020	
Selenium	ND	0.00100	**	11	2K18044	11/18/02	11/21/02	н	
MW 16 (B2K0376-04) Water	Sampled: 11/14/02 1	3:55 Receiv	ed: 11/15/	02 14:00					Q-30
Lead	ND	0.00100	mg/l	1	2K15061	11/15/02	11/16/02	EPA 6020	
MW 17 (B2K0376-05) Water	Sampled: 11/14/02 1	2:40 Receiv	ved: 11/15	/02 14:00				-	Q-30
Lead	ND	0.00100	mg/l	1	2K15061	11/15/02	11/16/02	EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 14 (B2K0376-02) Water	Sampled: 11/14/02 11:55	Receive	ed: 11/15/0	2 14:00		, , ,			
Acenaphthene	ND	10.0	ug/l	1	2K16001	11/16/02	11/25/02	EPA 8270C	
Acenaphthylene	ND	10.0	**	н	11	11	"	11	
Aniline	ND	10.0	tı	**	н	n	11	**	•
Anthracene	ND	10.0	11	11	11	11	" '	**	
Benzoic Acid	ND	20.0	n·	11	n	11	u	ч	
Benzo (a) anthracene	ND	10.0	**	11	"	11	**	"	
Benzo (b) fluoranthene	ND	10.0	u	11	**	"	11	u ,	
Benzo (k) fluoranthene	ND	10.0	ŧı	**	11	11	ŧŧ	**	
Benzo (ghi) perylene	ND	10.0	**	11	**	**	11	11	
Benzo (a) pyrene	ND	10.0	*1	**	n.	11	**	"	
Benzyl alcohol	ND	10.0	" .	*1	**	**	11	n	
Bis(2-chloroethoxy)methane	ND	10.0	**	**	**	**	tt	"	
Bis(2-chloroethyl)ether	ND	10.0	*1	11	**	**	11	11	
Bis(2-chloroisopropyl)ether	ND	10.0	**	**	*1	**	**	*	
Bis(2-ethylhexyl)phthalate	ND	50.0	n	**	**	"	"	n	
4-Bromophenyl phenyl ether	ND	10.0	"	**	**	10	†I	u	
Butyl benzyl phthalate	ND	10.0	"	**	tı)r	**	tt	
Carbazole .	ND	10.0	Ħ	"	"	11	11	H .	
4-Chloroaniline	ND	10.0	**	**	*1	n	**	tr	
2-Chloronaphthalene	ND	10.0	**	11	и .	Ħ	11	**	
4-Chloro-3-methylphenol	ND	10.0	ti	ti	n	11	ti	tr	
2-Chlorophenol	ND	10.0	"	**	**	11	"	**	
4-Chlorophenyl phenyl ether	ND	10.0	11	11	н	**	tt	11	
Chrysene	ND	10.0	**	**	n	11	Ħ	**	
Dibenz (a,h) anthracene	ND	10.0	97	n	11	н	11	"	
Dibenzofuran	ND	10.0	11	11	Ħ	н	u	11	
Di-n-butyl phthalate	ND	10.0	11	tı	Ħ	**	ŧi	n	
1,3-Dichlorobenzene	ND	10.0	11	. "	ŧ	ti	**	**	
1,4-Dichlorobenzene	ND	10.0	Ħ	**	11	H	**	11	
1,2-Dichlorobenzene	ND	10.0	**	11	Ħ	11	11	tt	
3,3'-Dichlorobenzidine	ND	10.0	n	**	11	**	**	**	
2,4-Dichlorophenol	ND	10.0		**		U	**	**	
Diethyl phthalate	ND	10.0	"	11	**	11	11	**	
2,4-Dimethylphenol	13.4	10.0	11	**	11	**	**	tt	
Dimethyl phthalate	ND	10.0	**		ti	11	u	**	
4,6-Dinitro-2-methylphenol	ND	10.0	**	"	**	п	11	u	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Dublin CA/USA, 94568

6747 Sierra Ct, Suite G

Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	C		d. 11/15/	02 14:00					
MW 14 (B2K0376-02) Water	ND	20.0	ug/l .	1	2K16001	11/16/02	11/25/02	N	
2,4-Dinitrophenol	ND ND	10.0	ug/1.	1 11	#	11/10/02	"	*1	
2,4-Dinitrotoluene	ND ND	10.0	**	**	11	*1		**	
2,6-Dinitrotoluene	ND	10.0	11	11	. "	u		**	
Di-n-octyl phthalate	ND ND		11	11	**	"	н	. 11	
Fluoranthene		10.0	11	11	**	**	**	11	
Fluorene	ND	10.0	11	Ħ	ti	n ·	H	11	
Hexachlorobenzene	ND	10.0	n	11	**	11		**	
Hexachlorobutadiene	ND	10.0	11		,,		,,	11	
Hexachlorocyclopentadiene	ND	10.0			11	n	н	11	
Hexachloroethane	ND	10.0	11	,,	,,		" "	11	
Indeno (1,2,3-cd) pyrene	ND	10.0		"			 ti	••	
Isophorone	ND	10.0	**	"	,,	**		,,	
2-Methylnaphthalene	52.2	10.0	11	"	"	"	" "		
2-Methylphenol	11.0	10.0	"			"	"		
3 & 4-Methylphenol	24.8	10.0	"	"	**			"	
Naphthalene	242	50.0	"	. 5	"	11	11/26/02		
2-Nitroaniline	ND	10.0	**	1	**	**	11/25/02		
3-Nitroaniline	ND	10.0	#1	Ħ	"	11	11	**	,
4-Nitroaniline	ND	10.0	**	"	11	11	"	*1	
Nitrobenzene	ND	10.0	**	"	**		11	*1	
2-Nitrophenol .	ND	10.0	#1	**	ŧi	**	**	"	
4-Nitrophenol	ND	10.0	11	tt	**	**	**	11	
N-Nitrosodiphenylamine	ND	10.0	Ħ	**	**	n	**	**	
N-Nitrosodi-n-propylamine	ND	10.0	11	11	**	Ħ	**	11	
Pentachlorophenol	ND	10.0	**	11	**	Ħ	н	11	
Phenanthrene	ND	10.0	. **	"	n	11	tt	n	
Phenol	34.5	10.0	11	**	11	11	**	Ħ	
Pyrene	ND	10.0	11	tr	11	\$ †	**	n	
1,2,4-Trichlorobenzene	ND	10.0	"	11	Ħ	Ħ	11	11	
2,4,5-Trichlorophenol	ND	10.0	11	"	H	**	11	11	
2,4,6-Trichlorophenol	ND	10.0	**	n	**	#	Ħ	41	
Surrogate: 2-FP		7-124			"	"	"	"	
Surrogate: 2-FP Surrogate: Phenol-d6		2-124			,,	"	"	"	
Surrogate: Pnenot-ao Surrogate: 2,4,6-TBP		3-143			"	"	"	"	
Surrogate: Nitrobenzene-d5	· ·	35-119			"	Ħ	"	"	
Surrogate: 2-FBP		14-124			rr	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 $503.906.9200 \quad \mathsf{fax} \ 503.906.9210$

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

	Re	porting	,						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 14 (B2K0376-02) Water	Sampled: 11/14/02 11:55	Receiv	ed: 11/15/	02 14:00					
Surrogate: p-Terphenyl-d14	23.6 % 10-	131			2K16001	11/16/02	11/25/02	н	
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 11:00	Receiv	ed: 11/15/	02 14:00					
Acenaphthene	ND	10.0	ug/l	1	2K16001	11/16/02	11/25/02	EPA 8270C	
Acenaphthylene	ND	10.0	11	tt	Ħ	tı	**	Ħ	
Aniline	ND	10.0	Ħ	11	11	**	**	**	
Anthracene	ND	10.0	**	Ħ	**	Ħ	11	Ħ	
Benzoic Acid	ND	20.0	**	11	ti	11	и	Ħ	
Benzo (a) anthracene	ND	10.0	n	**	**	"	n	n	
Benzo (b) fluoranthene	ND	10.0	H	11	н	u	tt	**	
Benzo (k) fluoranthene	ND	10.0		**	n	**	11	u	
Benzo (ghi) perylene	ND	10.0	**	**	**	ŧı	11	**	
Benzo (a) pyrene	ND	10.0	11	"	ŧı	11	11	11	
Benzyl alcohol	ND	10.0	n	n	**	11	u	11	
Bis(2-chloroethoxy)methane	ND	10.0	n	11	"	tı	**	**	
Bis(2-chloroethyl)ether	ND	10.0	11	11	11	**	*1	ti	
Bis(2-chloroisopropyl)ether	ND	10.0	**	"	**	11	**	tı	
Bis(2-ethylhexyl)phthalate	ND	50.0	11	11	"	**	**	**	
4-Bromophenyl phenyl ether	ND	10.0	"	"	**	ŧı	**	**	
Butyl benzyl phthalate	ND	10.0	н	11	11	tt	u u	**	
Carbazole	ND	10.0	**	**	11	Ħ	11	H	
4-Chloroaniline	ND	10.0	11	Ħ	tt	ti ti	n	tt	
2-Chloronaphthalene	ND	10.0	**	**	11	"	"	11	
4-Chloro-3-methylphenol	ND	10.0	Ħ	и .	"	ŧ	11	**	
2-Chlorophenol	ND	10.0	**	**	**	'n	tt	n	
4-Chlorophenyl phenyl ether	ND	10.0	" ,	11	**	11	"	"	
Chrysene	ND	10.0	11	n	**	11	11	•	
Dibenz (a,h) anthracene	ND	10.0	**	**	**	"	Ħ	n	
Dibenzofuran	ND	10.0	**	u	"	11	11	**	
Di-n-butyl phthalate	ND	10.0	u	**	11	**	**	**	
1,3-Dichlorobenzene	ND	10.0	"	11	n	11	11	11	
1,4-Dichlorobenzene	ND	10.0	11	н	11	***	**	11	
1,2-Dichlorobenzene	ND	10.0	н	**	"	11	n	**	
3,3'-Dichlorobenzidine	ND	10.0	u	tt	11	Ħ	"	11	
2,4-Dichlorophenol	ND	10.0	11	**	н	11	11		
Diethyl phthalate	ND	10.0	"	11	11	**	11	11	
	1,12	10.0							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwater

Jeanne Garthwaite, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 22

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 Seattle

425.420.9200 fax 425.420.9210

H23.420.5200 1ax 423.420.5210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Spokane

Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 Bend

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte	Kesun	Liiiii		Zilution					
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 11:00		ed: 11/15/	02 14:00		,		!	
2,4-Dimethylphenol	ND	10.0	ug/l	1	2K16001	11/16/02	11/25/02	ti	
Dimethyl phthalate	ND	10.0	n .	**	••	**	tt.	u	
4,6-Dinitro-2-methylphenol	ND	10.0	н	. 11	"	**	Ħ	11	
2,4-Dinitrophenol	ND	20.0	**	"	11	**	"	**	
2,4-Dinitrotoluene	ND	10.0	**	11	**	**	ŧI	н.	
2,6-Dinitrotoluene	ND	10.0	11	**	#P	**	11	**	
Di-n-octyl phthalate	ND	10.0	**	**	**	**	11	*1	
Fluoranthene	ND	10.0	ŧi	. 11	11	11	11	11	
Fluorene	ND	10.0	"	31	tı	**	11	11	
Hexachlorobenzene	ND	10.0	n	11	11	Ħ	Ħ	n	
Hexachlorobutadiene	ND	10.0	**	**	11	**	**	11	
Hexachlorocyclopentadiene	ND	10.0	**	**	*11	tı	**	n	
Hexachloroethane	ND	10.0	**	**	11	**	"	11	
Indeno (1,2,3-cd) pyrene	ND	10.0	**	11	*1	**	Ħ	11	
Isophorone	ND	10.0	**	ŧŧ	**	11	n .	**	
2-Methylnaphthalene	ND	10.0	**	11	**	ш	. "	H	
2-Methylphenol	ND	10.0	**	11	Ħ	11	"	n	
3 & 4-Methylphenol	ND	10.0	**	11	Ħ	ŧı	**	. 11	
Naphthalene	ND	10.0	"	**	11	11	51	11	
2-Nitroaniline	ND	10.0	**	**	Ħ	. 0	"	11	4
3-Nitroaniline	ND	10.0	**	*1	11	11	11	11	
4-Nitroaniline	ND	10.0	**	u	U	11	11	11	
Nitrobenzene	ND	10.0	ti	**	**	*1	11	11	
2-Nitrophenol	ND	10.0	11	**	"	u	11	"	
4-Nitrophenol	ND	10.0	**	"	**	. "	n		
N-Nitrosodiphenylamine	ND	10.0	n	п	11	n	11	**	
N-Nitrosodi-n-propylamine	ND	10.0	n	11	11	**	tt	11	
Pentachlorophenol	ND	10.0	n	n	**	ti	tt	**	
Phenanthrene	ND	10.0	n	**	**	**	. 11	**	
Phenol	37.0	10.0	11	ŧI	tt	**	"	"	
Pyrene	ND	10.0	11	11	11	#1	**	'n	
1,2,4-Trichlorobenzene	ND	10.0	91	11	ŧr	**	**	n	
2,4,5-Trichlorophenol	ND	10.0	*1	**	**	*1	Ħ	**	
2,4,6-Trichlorophenol	ND	10.0	11	ŧi	**	**	11	**	
Surrogate: 2-FP		7-124				"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane

Portland

423-420-3200 fax 423-420-3210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW 15 (B2K0376-03) Water	Sampled: 11/14/02 1	1:00 Receiv	ed: 11/15/	02 14:00		,			
Surrogate: Phenol-d6	74.0 %	12-124			2K16001	11/16/02	11/25/02	#	
Surrogate: 2,4,6-TBP	86.8 %	33-143			"	"	"	"	
Surrogate: Nitrobenzene-d5	85.2 %	35-119			"	Ħ	"	n	
Surrogate: 2-FBP	87.2 %	44-124			"	"	n 1	"	
Surrogate: p-Terphenyl-d14	40.6 %	10-131			"	n	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

%REC

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

Source

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

RPD

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Reporting

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K19006: Pr	epared 11/19/02	Using EP	А 5030В (P/T)							
Blank (2K19006-BLK1)											
Gasoline Range Hydrocarbon	ıs	ND	50.0	ug/l							
Benzene		ND	0.500	**					T.		
Toluene		ND	0.500	11							
Ethylbenzene		ND	0.500	**							
Xylenes (total)		ND	1.00	**							
Surrogate: 4-BFB (FID)		41.2		"	48.0		85.8	57-125			
Surrogate: 4-BFB (PID)		47.5		"	48.0		99.0	62-120			
LCS (2K19006-BS1)											
Gasoline Range Hydrocarbo	ns	442	50.0	ug/l	500		88.4	80-120			
Benzene		6.20	0.500	**	6.19		100	80-120			
Toluene		33.3	0.500	**	37.3		89.3	80-120			
Ethylbenzene		8.68	0.500	**	8.92		97.3	80-120			
Xylenes (total)		42.5	1.00	11	43.6		97.5	80-120			
Surrogate: 4-BFB (FID)		46.7		"	48.0		97.3	57-125			
Surrogate: 4-BFB (PID)		47.4		u	48.0		98.8	62-120	1		
LCS Dup (2K19006-BS	SD1)										,
Gasoline Range Hydrocarbo	ons	489	50.0	ug/l	500	-	97.8	80-120	10.1	25	
Benzene		6.59	0.500	**	6.19		106	80-120	6.10	40	
Toluene		35.5	0.500	11	37.3		95.2	80-120	6.40	40	
Ethylbenzene		9.24	0.500	n	8.92		104	80-120	6.25	40	
Xylenes (total)		45.4	1.00	ir.	43.6		104	80-120	6.60	40	
Surrogate: 4-BFB (FID)		49.5		"	48.0		103	57-125			
Surrogate: 4-BFB (PID)		48.3		"	48.0		101	62-120			
Matrix Spike (2K1900	6-MS1)					Source:	B2K0243	-01			
Gasoline Range Hydrocarb	ons	452	50.0	ug/l	500	21.3	86.1	70-130			-
Benzene		6.27	0.500	**	6.19	ND	101	80-134			
Toluene		33.5	0.500	**	37.3	ND	89.8	68-114			
Ethylbenzene		8.65	0.500	11	8.92	0.139	95.4	72-128			
Xylenes (total)		41.2	1.00	U	43.6	0.355	93.7	67-125			
Surrogate: 4-BFB (FID)		48.6		"	48.0		101	57-125	,		
Surrogate: 4-BFB (PID)		49.0		#	48.0		102	62-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source	irce %REC			RPD		
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 2K19006:	Prepared 11/19/02	Using EI	PA 5030B	(P/T)						į		
Matrix Spike Dup ((2K19006-MSD1)					Source: I	32K0243-	01				
Gasoline Range Hydro	carbons	474	50.0	ug/l	500	21.3	90.5	70-130	4.75	25		
Benzene		6.46	0.500	17	6.19	ND	104	80-134	2.99	40		
Toluene		34.4	0.500	11	37.3	ND	92.2	68-114	2.65	40		
Ethylbenzene		8.88	0.500	tr	8.92	0.139	98.0	72-128	2.62	40		
Xylenes (total)		42.0	1.00	ŧ	43.6	0.355	95.5	67-125	1.92	40		
Surrogate: 4-BFB (FIL))	49.9		"	48.0		104	57-125				
Surrogate: 4-BFB (PIL))	48.1		"	48.0		100	62-120				
Batch 2K20003:	Prepared 11/20/02	Using El	PA 5030B	(P/T)								
Blank (2K20003-B)	LK1)											
Gasoline Range Hydro	carbons	ND	50.0	ug/l			110,000			*****		
Benzene		ND	0.500	11								
Toluene		ND	0.500	11						•		
Ethylbenzene		ND	0.500	Ħ								
Xylenes (total)		ND	1.00	**								
Surrogate: 4-BFB (FIL))	38.0		"	48.0		79.2	57-125				
Surrogate: 4-BFB (PIL))	39.9		"	48.0		83.1	62-120				
LCS (2K20003-BS)	1)											
Gasoline Range Hydro	carbons	440	50.0	ug/l	500		88.0	80-120				
Benzene		5.89	0.500	Ħ	6.19		95.2	80-120				
Toluene		32.8	0.500	11	37.3		87.9	80-120				
Ethylbenzene		8.56	0.500	**	8.92		96.0	80-120				
Xylenes (total)		43.2	1.00	**	43.6		99.1	80-120				
Surrogate: 4-BFB (FIL))	47.6		ıı .	48.0		99.2	57-125				
Surrogate: 4-BFB (PIL	D)	40.9		"	48.0		85.2	62-120				

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek P kwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting			Spike	Source		%REC		RPD		
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K20003: Pro	epared 11/20/02	Using EF	A 5030B	(P/T)							
LCS Dup (2K20003-BSI	D1)										
Gasoline Range Hydrocarbon	S	434	50.0	ug/l	500		86.8	80-120	1.37	25	
Benzene		5.93	0.500	н	6.19		95.8	80-120	0.677	40	
Toluene		32.8	0.500	11	37.3		87.9	80-120	0.00	40	
Ethylbenzene		8.53	0.500	**	8.92		95.6	80-120	0.351	40	
Xylenes (total)		43.1	1.00	11	43.6		98.9	80-120	0.232	40	
Surrogate: 4-BFB (FID)		47.4		"	48.0		98.8	57-125			
Surrogate: 4-BFB (PID)		40.9		"	48.0		85.2	62-120			
Matrix Spike (2K20003-MS1)					*	Source: 1	B2K0275-	-06			
Gasoline Range Hydrocarbor		448	50.0	ug/l	500	16.8	86.2	70-130			
Benzene		6.20	0.500	Ħ	6.19	ND	100	80-134			
Toluene		34.5	0.500	"	37.3	ND	92.5	68-114			
Ethylbenzene		9.04	0.500	"	8.92	ND	101	72-128			
Xylenes (total)		45.6	1.00	11	43.6	ND	105	67-125			
Surrogate: 4-BFB (FID)		46.9	· · · · · · · · · · · · · · · · · · ·	"	48.0		97.7	57-125			······································
Surrogate: 4-BFB (PID)		41.3		"	48.0		86.0	62-120	1		
Matrix Spike Dup (2K2	0003-MSD1)					Source:	B2K0275	-06			
Gasoline Range Hydrocarbo		450	50.0	ug/l	500	16.8	86.6	70-130	0.445	25	
Benzene		6.06	0.500	"	6.19	ND	97.9	80-134	2.28	40	
Toluene		33.7	0.500	11	37.3	ND	90.3	68-114	2.35	40	
Ethylbenzene		9.03	0.500	**	8.92	ND	101	72-128	0.111	40	
Xylenes (total)		44.4	1.00	**	43.6	ND	102	67-125	2.67	40	
Surrogate: 4-BFB (FID)		47.3		n	48.0		98.5	57-125			
Surrogate: 4-BFB (PID)		40.6		"	48.0		84.6	62-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

larne Gartha

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K19013:	Prepared 11/19/02	Using EF	A 3520C					-			
Blank (2K19013-BLK	(1)										
Diesel Range Hydrocarbo	ns	ND	0.250	mg/l			· · · · · · · · · · · · · · · · · · ·				
Lube Oil Range Hydrocar	bons	ND	0.500	n							
Surrogate: 2-FBP		0.304		11	0.320		95.0	52-126			
Surrogate: Octacosane		0.286		H	0.320		89.4	53-122			
LCS (2K19013-BS1)										•	
Diesel Range Hydrocarbo	ns	1.63	0.250	mg/l	2.00		81.5	60-122			
Surrogate: 2-FBP		0.265		"	0.320		82.8	52-126			
LCS Dup (2K19013-I	BSD1)										
Diesel Range Hydrocarbo	ns	1.67	0.250	mg/l	2.00		83.5	60-122	2.42	40	
Surrogate: 2-FBP		0.277		н	0.320		86.6	52-126			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source	· ·	%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K15061:	Prepared 11/15/02	Using E	PA 3005A							1	
Blank (2K15061-BI	LK1)										
Lead		ND	0.00100	mg/l							
LCS (2K15061-BS1	1)										
Lead		0.196	0.00100	mg/l	0.200		98.0	80-120			
LCS Dup (2K15061	L-RSD1)										
Lead	1-0501)	0.198	0.00100	mg/l	0.200	1	99.0	80-120	1.02	20	
	-0.64 3464)			-		Source: E	21/0274	0.2			
Matrix Spike (2K1)	5061-MS1)	0.0000	0.00100		0.100	0.00182	96.2	75-125			
Lead		0.0980	0.00100	mg/l	0.100						
Matrix Spike Dup	(2K15061-MSD1)					Source: H					
	(21115001 //1021)										
	(21112001 111221)	0.0980	0.00100	mg/l	0.100	0.00182	96.2	75-125	0.00	20	
Lead	Prepared 11/18/02		0.00100 CPA 3005A	mg/l	0.100	0.00182	96.2	75-125	0.00	20	
Lead Batch 2K18044: Blank (2K18044-B	Prepared 11/18/02			mg/l	0.100	0.00182	96.2	75-125	0.00	20	
Lead Batch 2K18044:	Prepared 11/18/02			mg/l	0.100	0.00182	96.2	75-125	0.00	20	
Batch 2K18044: Blank (2K18044-B	Prepared 11/18/02	Using E	CPA 3005A		0.100	0.00182	96.2	75-125		20	
Lead Batch 2K18044: Blank (2K18044-B Arsenic	Prepared 11/18/02	Using E	0.00100	mg/l	0.100	0.00182	96.2	75-125		20	
Lead Batch 2K18044: Blank (2K18044-B Arsenic Barium	Prepared 11/18/02	Using E	0.00100 0.0100	mg/l	0.100	0.00182	96.2	75-125		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium	Prepared 11/18/02	ND ND ND ND	0.00100 0.0100 0.00100	mg/l "	0.100	0.00182	96.2	75-125		20	
Lead Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium	Prepared 11/18/02	Using E ND ND ND ND ND	0.00100 0.00100 0.00100 0.00100 0.00100	mg/l	0.100	0.00182	96.2	75-125		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium	Prepared 11/18/02 LK1)	ND	0.00100 0.0100 0.00100 0.00100 0.00100 0.00100	mg/l	0.100	0.00182	96.2	75-125		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium Silver	Prepared 11/18/02 LK1)	ND	0.00100 0.0100 0.00100 0.00100 0.00100 0.00100	mg/l	0.100	0.00182	96.2	75-125		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium Silver LCS (2K18044-BS	Prepared 11/18/02 LK1)	ND	0.00100 0.0100 0.00100 0.00100 0.00100 0.00100	mg/l " " "		0.00182				20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium Silver LCS (2K18044-BS Arsenic	Prepared 11/18/02 LK1)	ND N	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	mg/l " " " " " " " " "	0.200	0.00182	94.0	80-120		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium Silver LCS (2K18044-BS Arsenic Barium	Prepared 11/18/02 LK1)	ND N	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	mg/l " " " " " " " " " " " "	0.200 0.200	0.00182	94.0 99.0	80-120 80-120		20	
Batch 2K18044: Blank (2K18044-B Arsenic Barium Cadmium Chromium Selenium Silver LCS (2K18044-BS Arsenic Barium Cadmium	Prepared 11/18/02 LK1)	ND N	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	mg/l " " " " " " " " " " " "	0.200 0.200 0.200	0.00182	94.0 99.0 93.5	80-120 80-120 80-120		20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

Spokane

Portland

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K18044:	Prepared 11/18/02	Using E	PA 3005A								
LCS Dup (2K18044	-BSD1)									· ··· · · · · · · · · · · · · · · · ·	
Arsenic		0.186	0.00100	mg/l	0.200		93.0	80-120	1.07	20	
Barium		0.198	0.0100	11	0.200		99.0	80-120	0.00	20	
Cadmium		0.184	0.00100	H	0.200		92.0	80-120	1.62	20	
Chromium		0.198	0.00100	11	0.200		99.0	80-120	1.01	20	
Selenium		0.189	0.00100	11	0.200		94.5	80-120	0.00	20	*
Silver		0.188	0.00100	"	0.200		94.0	80-120	1.06	20	
Matrix Spike (2K18	3044-MS1)					Source: B	2K0376-	02			
Arsenic		0.110	0.00100	mg/l	0.100	0.0170	93.0	75-125			
Barium		0.114	0.0100	**	0.100	0.0184	95.6	75-125			
Cadmium		0.0899	0.00100	11	0.100	0.000200	89.7	75-125			
Chromium		0.0925	0.00100	11	0.100	0.000290	92.2	75-125			
Selenium		0.0976	0.00100	**	0.100	0.00148	96.1	76-128			
Silver		0.0655	0.00100	It	0.100	ND	65.5	21-136			
Matrix Spike Dup (2K18044-MSD1)					Source: E	32K0376-	-02			
Arsenic		0.110	0.00100	mg/l	0.100	0.0170	93.0	75-125	0.00	20	
Barium		0.114	0.0100	11	0.100	0.0184	95.6	75-125	0.00	20	
Cadmium		0.0897	0.00100	Ħ	0.100	0.000200	89.5	75-125	0.223	20	
Chromium		0.0935	0.00100	*1	0.100	0.000290	93.2	75-125	1.08	20	
Selenium		0.0977	0.00100	tt	0.100	0.00148	96.2	76-128	0.102	20	
Silver		0.0718	0.00100	91	0.100	ND	71.8	21-136	9.18	50	
Batch 2K20023:	Prepared 11/20/02	Using E	PA 7470A	Diss							
Blank (2K20023-Bl	LK1)										
Mercury		ND	0.00100	mg/l		***					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K20023:	Prepared 11/20/02	Using E	PA 7470A	Diss							
LCS (2K20023-BS1)										
Mercury		0.00436	0.00100	mg/l	0.00500		87.2	80-120			
LCS Dup (2K20023	-BSD1)								ı		
Mercury		0.00465	0.00100	mg/l	0.00500		93.0	80-120	6.44	20	
Matrix Spike (2K20	0023-MS1)					Source: B	2K0376-	-02			
Mercury		0.00468	0.00100	mg/l	0.00500	0.0000810	92.0	70-130			
Matrix Spike Dup (2K20023-MSD1)					Source: B	2K0376-	-02			
Mercury		0.00487	0.00100	mg/l	0.00500	0.0000810	95.8	70-130	3.98	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

%REC

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Project Number: TW21577

Reporting

Reported: 11/27/02 11:38

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Project Manager: Deanna Harding

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K16001:	Prepared 11/16/02	Using EP	PA 3520C					,			
Blank (2K16001-BL)	K1)										
Acenaphthene		ND	10.0	ug/l							
Acenaphthylene		ND	10.0	11							
Aniline		ND	10.0	**							
Anthracene		ND	10.0	11							
Benzoic Acid	1	ND	20.0	11							
Benzo (a) anthracene		ND	10.0	11		1					
Benzo (b) fluoranthene		ND	10.0	11							
Benzo (k) fluoranthene		ND	10.0	**							
Benzo (ghi) perylene		ND	10.0	Ħ							
Benzo (a) pyrene		ND	10.0	п.,							
Benzyl alcohol		ND	10.0	ti							
Bis(2-chloroethoxy)meth	ane	ND	10.0	**							,
Bis(2-chloroethyl)ether		ND	10.0	ti						. ,	
Bis(2-chloroisopropyl)et	her	ND	10.0	**		•					
Bis(2-ethylhexyl)phthala	te	ND	50.0	11							
4-Bromophenyl phenyl e	ther	ND	10.0	tı							
Butyl benzyl phthalate		ND	10.0	**							
Carbazole		ND	10.0	11							
4-Chloroaniline		ND	10.0	**							
2-Chloronaphthalene		ND	10.0	11							
4-Chloro-3-methylpheno	1	ND	10.0	"							
2-Chlorophenol		ND	10.0	ti.							
4-Chlorophenyl phenyl e	ether	ND	10.0	u							
Chrysene		ND	10.0	**							
Dibenz (a,h) anthracene		ND	10.0	**							
Dibenzofuran		ND	10.0	**							
Di-n-butyl phthalate		ND	10.0	ŧ							
1,3-Dichlorobenzene		ND	10.0	**							
1,4-Dichlorobenzene		ND	10.0	11							
1,2-Dichlorobenzene		ND	10.0	11							
3,3'-Dichlorobenzidine		ND	10.0	"							
2,4-Dichlorophenol		ND	10.0	"							
Diethyl phthalate		ND	10.0	*1							

North Creek Analytical - Bothell

2,4-Dimethylphenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

larne Garthate

ND

10.0

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K16001: Prepared 11/16/02	Using EI	PA 3520C							1	
Blank (2K16001-BLK1)			-							
Dimethyl phthalate	ND	10.0	ug/l							
,6-Dinitro-2-methylphenol	ND	10.0	**							
2,4-Dinitrophenol	ND	20.0	11							
2,4-Dinitrotoluene	ND	10.0	tt							
2,6-Dinitrotoluene	ND	10.0	*11		ŧ				•	
Di-n-octyl phthalate	ND	10.0	**							
Fluoranthene	ND	10.0	**							
Fluorene	ND	10.0	17							
Hexachlorobenzene	ND	10.0	**			•				
Hexachlorobutadiene	ND	10.0	11							
Hexachlorocyclopentadiene	ND	10.0	11							
Hexachloroethane	ND	10.0	**						1	
Indeno (1,2,3-cd) pyrene	ND	10.0	"			•				
Isophorone	ND	10.0	91							
2-Methylnaphthalene	ND	10.0	ŧŧ							
2-Methylphenol	ND	10.0								
3 & 4-Methylphenol	ND	10.0	*1							
Naphthalene	ND	10.0	*1							
2-Nitroaniline	ND	10.0	11							
3-Nitroaniline	ND	10.0	**							
4-Nitroaniline	ND	10.0	**							
Nitrobenzene	ND	10.0	ŧŧ							
2-Nitrophenol	ND	10.0	*11							
4-Nitrophenol	ND	10.0	**							
N-Nitrosodiphenylamine	ND	10.0	11							
N-Nitrosodi-n-propylamine	ND	10.0	**							
Pentachlorophenol	ND	10.0	**							
Phenanthrene	ND	10.0	"							
Phenol	ND	10.0	n							
Pyrene	ND	10.0	H							
1,2,4-Trichlorobenzene	ND	10.0	11							
2,4,5-Trichlorophenol	ND	10.0	11							
2,4,6-Trichlorophenol	ND	10.0	11							
Surrogate: 2-FP	38.6		"	50.0		77.2	27-124			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

%REC

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

6747 Sierra Ct, Suite G Dublin CA/USA, 94568 Project: Chevron #21-1577

Spike

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Reporting

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2K16001: I	Prepared 11/16/02	Using EF	A 3520C								
Blank (2K16001-BLK	1)										
Surrogate: Phenol-d6		40.6		ug/l	50.0		81.2	12-124			
Surrogate: 2,4,6-TBP		32.0		"	50.0		64.0	33-143			
Surrogate: Nitrobenzene-d	5	43.2		"	50.0		86.4	35-119	'		
Surrogate: 2-FBP		43.7		u	50.0		87.4	44-124			
Surrogate: p-Terphenyl-d1	4	50.5		"	50.0		101	10-131			
LCS (2K16001-BS1)											
Acenaphthene	-	96.2	10.0	ug/l	100		96.2	45-130		***************************************	
4-Chloro-3-methylphenol		102	10.0	H	100		102	37-120			
2-Chlorophenol		108	10.0	"	100		108	38-120			
1,4-Dichlorobenzene		97.9	10.0	11	100		97.9	33-120			
2,4-Dinitrotoluene		96.7	10.0	ŧŧ	100		96.7	52-120			
4-Nitrophenol		94.4	10.0	11	100		94.4	20-135			
N-Nitrosodi-n-propylamin	e	97.3	10.0	ŧI	100		97.3	40-120			
Pentachlorophenol		89.4	10.0	Ħ	100		89.4	31-133			
Phenol		107	10.0		100		107	20-120			
Pyrene		101	10.0	11	100		101	38-123	ı		
1,2,4-Trichlorobenzene		96.9	10.0	н	100		96.9	28-120			
Surrogate: 2-FP		44.9		"	50.0		89.8	27-124			
Surrogate: Phenol-d6		48.4		"	50.0		96.8	12-124			
Surrogate: 2,4,6-TBP		45.5		"	50.0		91.0	33-143			
Surrogate: Nitrobenzene-a	15	47.6		n	50.0		95.2	35-119			
Surrogate: 2-FBP		47.0		"	50.0		94.0	44-124			
Surrogate: p-Terphenyl-d.	14	48.2		"	50.0		96.4	10-131			
LCS Dup (2K16001-E	SSD1)										
Acenaphthene		94.0	10.0	ug/l	100		94.0	45-130	2.31	49	
4-Chloro-3-methylphenol		102	10.0	n	100		102	37-120	0.00	49	
2-Chlorophenol		98.9	10.0	"	100		98.9	38-120	8.80	61	
1,4-Dichlorobenzene		91.9	10.0	"	100		91.9	33-120	6.32	26	
2,4-Dinitrotoluene		101	10.0	**	100		101	52-120	4.35	29	
4-Nitrophenol		104	10.0	ti	100		104	20-135	9.68	37	
N-Nitrosodi-n-propylamin	e	91.9	10.0	11	100		91.9	40-120	5.71	36	
Pentachlorophenol		95.8	10.0	**	100		95.8	31-133	6.91	32	
Phenol		102	10.0	**	100		102	20-120	4.78	53	
Pyrene		99.5	10.0	11	100		99.5	38-123	1.50	50	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin

Project: Chevron #21-1577

6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

<u> </u>		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
That yes										

Batch 2K16001: Prepared 11/16/02	Using EP.	A 3520C						
LCS Dup (2K16001-BSD1)								
1,2,4-Trichlorobenzene	89.9	10.0	ug/l	100	89.9	28-120	7.49	25
Surrogate: 2-FP	40.7		"	50.0	81.4	27-124		
Surrogate: Phenol-d6	45.2		"	50.0	90.4	12-124		
Surrogate: 2,4,6-TBP	46.5		"	50.0	93.0	33-143		
Surrogate: Nitrobenzene-d5	43.2		n	50.0	86.4	35-119		4
Surrogate: 2-FBP	45.0		n	50.0	90.0	44-124		
Surrogate: p-Terphenyl-d14	48.1		"	50.0	96.2	10-131		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Searne Gartha

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fox 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fox 509.924.9200
 fox 509.924.9200

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Ct, Suite G Dublin CA/USA, 94568

Project: Chevron #21-1577

Project Number: TW21577 Project Manager: Deanna Harding

Reported: 11/27/02 11:38

Notes and Definitions

Q-23	This sample was received and analyzed unpreserved. Preservation with acid is required by the method.	
------	--	--

This sample was laboratory filtered since it was not field filtered as is required by the methodology. Q-30

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

NOV 1 5 2002

LETTER OF TRANSMITTAL

DEPT OF ECOLOGY

1200-112th Avenue NE, Suite C-210 Bellevue, WA 98004 Phone: (425) 450-7726 Fax: (425) 450-8837

To:					Date:	November 13, 2002
Washi North Mr. Br Project Toxics 3190 -	Washington State Department of Ecology Northwest Region Mr. Brian Sato, P.E. Project Manager Toxics Cleanup Program 3190 – 160 th Avenue, SE, Bellevue, WA 98008 Attached Please Find:			Proje	ect No.	Office Use TW21577-4C02 Queen Ann Texaco
Attacl	hed Please	Find:			- in	
	Copies	Date	No.			Description
	1	11/13/02		Primary a	analytica	al tables with sampling location figure
TRANSMITTED	for Y As Oth	Your Use Your Review & Requested ner:	Comment	SENT VIA	_ о _ с	C. S. Mail Overnight Express Mail Courier Hand Delivery Other:
Com	ments:					
Bret Ton Bert	n Morin – I t Hyde – Sc	Environmental Par ound Environment	al Strategies, Inc.		425	om: Peter Catterall 5-450-9637 atterall@deltaenv.com
Patr	ick M. Pau	lich - Thorsrud, C	ane & Paulich			

RECEIVED

NOV 1 5 2002

DEPT OF ECOLOGY

AIR ANALYTICAL RESULTS

RECEIVED

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

NOV 1 5 2002 DEPT OF ECOLOGY

Compound Name EPA METHODS 18 & 25	Sample Location Sample I.D. Concentration Date	DVP-1 SUMMA 0132 ppb (v) 10/3/02	DVP-2 SUMMA 0101 ppb (v) 10/3/02
Methane		25,000	350
>C4-C10 Hydrocarbons		8,600	3,800
EPA METHOD TO-14			
Dichlorodifluoromethane		1500 U	0.2 U
Feron 114		1500 U	0.2 U
Chloromethane		1500 U	0.2 U
Vinyl chloride		1500 U	0.2 U
Bromomethane		1500 U	0.2 U
Chloroethane		1500 U	0.2 U
Trichlorofluoromethane		1500 U	0.2 U
1,1-Dichloroethene		1500 U	0.2 U
Feron 113		3800 U	0.5 U
3-Chloropropane		3800 U	0.5 U
Methylene chloride		3800 U	0.5 U
1,1-Dichloroethene		1500 U	0.2 U
cis-1,2-Dichloroethene		1500 U	0.2 U
Chloroform		. 1500 U	0.2 U
1,1,1-Trichloroethane		1500 U	0.2 U
Carbon tetrachloride		1500 U	0.2 U
1,2-Dibromoethane		1500 U	0.2 U
Benzene		13000 D	6 D
Trichlorofluoromethane		1500 U	0.2 U
1,2-Dichloropropane		1500 U	0.2 U
cis-1,3-Dichloropropene		1500 U	0.2 U
Toluene		110000 D	35 D
trans-1,3-Dichloropropene		1500 U	0.2 U
1,1,2-Trichloroethane		1500 U	0.2 U
Tetrachloroethene	•	6200 D	0.5 U
1,2-Dibromoethane		1500 U	0.2 U

AIR ANALYTICAL RESULTS

	Sample I.D. Concentration	SUMMA 0132 ppb (v)	SUMMA 0101 ppb (v)
Compound Name	Date	10/3/02	10/3/02
EPA METHOD TO-14 Con't	anterior de la companya de la compa La companya de la co		
Chlorobenzene		1500 U	0.2 U
Ethylbenzene		55000 D	10 D
m/p-Xylene		360000 D	62 D
o-Xylene		140000 D	26 D
Styrene		1500 U	0.2 U
1,1,2,2-Tetrachloroethane		1500 U	0.2 U
4-Ethyltoluene		100000 D	16 D
1,3,5-Trimethylbenzene		64000 D	11 D
1,2,4-Trimethylbenzene		110000 D	18 D
1,3-Dichlorobenzene		3800 U	0.5 U
1,4-Dichlorobenzene		3800 U	0.5 U
Benzyl chloride		1500 U	0.2 U
1,2-Dichlorobenzene		3800 U	0.5 U
1,2,4-Trichlorobenzene		7500 U	1 U
Hexachlorobutadiene		3800 U	0.5 U

SOIL ANALYTICAL RESULTS

								Total		
Sample I.D. TOC (ft.)	Date	TPH-G	TPH-D	TPH-O	Benzene (mg/kg)	Toluene	Ethylbenzene (mg/kg)	•	Total VPH (1)	
TOC (ii.)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DB-1-16.0	9/26/02	5.00U	10.0U	25.0U	0.030U	0.050U	0.050U	0.100U	**	
DB-2-14.0	9/24/02	5.00U	10.0U	25.0U	0.030U	0.050U	0.050U	0.100U	5.00U	5.00U
DB-3-11.0	9/26/02	8.30	10.5	25.0U	0.030U	0.050U	0.0602	0.176		
DB-3-31.5	9/26/02	5.74	10.0U	25.0U	0.0544	0.309	0.160	0.840		
DB-4-9.0	9/25/02	1,740	802	125U	0.300U	2.56	10.2	20.4		
DB-4-11.5	9/25/02	728	100	25.0U	0.300U	1.31	11.0	56.3		
DB-4-21.5	9/25/02	5.00U	42.6	25.0U	0.820	0.0674	0.500U	0.100U		
DB-5-13.0	9/23/02	10,200	3,060	500U	23.0	145	105	445		***
DB-5-24.0	9/23/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.500U	0.100U	**	
DB-6-16.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0516	0.216		•••
DB-6-26.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U		
DB-7-11.5	9/24/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U	5.00U	5.00U
DB-7-33.5	9/24/02	5.00U	10.0U	25.0U	0.117	0.0500U	0.0500U	0.100U		

SOIL ANALYTICAL RESULTS

Sample I.D. TOC (ft.)	Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total VPH (1) (mg/kg)	Total EPH ⁽²⁾ (mg/kg)
DB-8-16.5	9/25/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U	5.00U	5.00U
DB-9-16.0	9/24/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U		w ==
DB-10-11.0	9/23/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0500U	0.100U		
DB-11-10.5	9/26/02	5.00U	18.4	41.4	0.0300U	0.0500U	0.0500U	0.100U		
Drum DB-5	9/23/02	381	128	89.5	0.721	4.62	3.72	16.9	00 No.	
Blank #1 ⁽³⁾	9/24/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Blank #2 ⁽³⁾	9/24/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Blank #3 ⁽³⁾	9/26/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		***
Blank #4 ⁽³⁾	9/26/02	50.0U	0.250U	0.500U	0.500U	0.500U	0.500U	1.00U		
Tip Blank #1 ⁽³⁾	9/23/02	50.0U			0.500U	0.500U	0.500U	1.00U		**
Tip Blank #2 ⁽³⁾	9/25/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #3 ⁽³⁾	9/24/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #4 ⁽³⁾	9/24/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #5 ⁽³⁾	9/26/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #6 ⁽³⁾	9/26/02	50.0U			0.500U	0.500U	0.500U	1.00U		
Tip Blank #7 ⁽³⁾	9/26/02	50.0U			0.500U	0.500U	0.500U	1.00U		

^{(-) =} sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aroma

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aro

^{3 -} Results are for water and reports as ug/L

U - Analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS TOTAL METALS

Sample I.D.	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Lead ⁽¹⁾ (mg/kg)
DB-2-14	9/24/02	0.500U	4.53	80.2	0.500U	48.6	0.200U	2.61	0.935	
DB-2-16.5	9/24/02									2.56
DB-3-11	9/26/02	0.500U	2.27	49.6	0.500U	29.2	0.200U	6.89	0.500U	
DB-3-31.5	9/26/02			***						6.46
DB-4-11.5	9/25/02	0.500U	3.18	82.1	0.500U	33.1	0.200U	3.78	0.500U	
DB-4-21.5	9/25/02				***	**				2.00
DB-5-13	9/23/02	0.500U	1.73	49.9	0.500U	30.4	0.200U	8.72	0.500U	tion man
DB-5-24	9/23/02			on to						1.29
DB-6-16.5	9/25/02	0.500U	1.87	52.0	0.500U	25.7	0.200U	2.44	0.500U	
DB-6-26.5	9/25/02					***				3.32
DB-7-11.5	9/24/02	0.500U	3.18	58.4	0.500U	25.8	0.200U	2.04	0.500U	
DB-7-33.5	9/24/02								day nia	10.5
DB-8-16.5	9/25/02	0.500U	1.19	33.6	0.500U	22.8	0.200U	1.62	0.500U	
DB-9-16	9/24/02									1.82
DB-10-11	9/23/02									3.41
Drum DB-5	9/23/02									1.87

SOIL ANALYTICAL RESULTS TOTAL METALS

Sample I.D.	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Lead ⁽¹⁾ (mg/kg)
Blank #1 ⁽²⁾	9/24/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #2 ⁽²⁾	9/24/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #3 ⁽²⁾	9/26/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U
Blank #4 ⁽²⁾	9/26/02	0.0010U	0.0010U	0.010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U

⁽¹⁾ From analysis of total lead in soil separate of RCRA metals by EPA 6000/7000 series methods

⁽²⁾ Results are for water, and reported as ug/L.

U - Analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Benzo (a) anthracene (mg/kg)	Benzo (a) pyrene (mg/kg)	Benzo (b) fluoranthene (mg/kg)	Benzo (k) fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenz (a,h) anthracene (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	1- Methylnaphthalene (mg/kg)	2- Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DB-2-14	9/24/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0106
DB-3-11	9/26/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0206	0.0100U	0.0100U
DB-4-9	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	2.53	6.03	2.42
DB-5-13	9/23/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	16.3	31.5	25.9
DB-6-16.5	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0106	0.0179
DB-7-11.5	9/24/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DB-8-16.5	9/25/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U

U - Analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

												1,2,4-	1,3,5-				
Sample I.D.	Date	Acetone	Benzene	n-Butylbenzene	Ethylbenzene	Isopropylbenzene	p-Isopropyltoluene	Methylene chloride	Naphthalene	n-Propylbenzene	Toluene	Trimethylbenzene	Trimethylbenzene	m,p- Xylenes	o-Xylenes	Total Xylenes	
and a superior for the superior than the superior	en a positio o esset diti cico ci o	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
DB-2-14.0	9/24/02	0.0507	0.0015U	0.005U	0.004U	0.005U	0.005U	0.00469	0.005U	0.005U	0.0015U	0.00879	0.005U	ANR	ANR	0.010U	
DB-3-11.0	9/26/02	0.030U	0.0015U	0.005U	0.004U	0.005U	0.005U	0.0035U	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	0.010U	
DB-4-9.0	9/25/02	5.00U	0.500U	0.963	1.09	0.500U	0.500U	5.00U	1.70	1.22	0.500U	9.39	2.84	6.58	1.04		
DB-5-13.0	9/23/02	100U	29.2	48.6	180	16.3	15.3	100U	66.0	68.5	339	472	158	ANR	ANR	1,050	
DB-6-16.5	9/25/02	0.0625	0.0171	0.005U	0.0129	0.005U	0.005U	0.0035U	0.0431	0.005U	0.0266	0.0586	0.0117	ANR	ANR	0.118	
DB-7-11.5	9/24/02	0.0300U	0.0015U	0.005U	0.004U	0.005U	0.005U	0.00488	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	0.100U	
DB-8-16.5	9/25/02	0.0300U	0.0015U	0.005U	0.005U	0.005U	0.005U	0.0035U	0.005U	0.005U	0.0015U	0.005U	0.005U	ANR	ANR	U010.0	
BLANK #1 (1)	9/24/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1,00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U		
BLANK #2 ⁽¹⁾	9/24/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U		
BLANK #3 ⁽¹⁾	9/26/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U		
BLANK #4 ⁽¹⁾	9/26/02	25.0U	1.00U	1.00U	1.00U	1.00U	1.00U	5.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U		

ANR - Analyte not reported or reported as total value

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

U - Analyte was not detected at or above the reported value.

⁽¹⁾ Results are for water, and reported as ug/L.

SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	Benzyl alcohol (mg/kg)	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
DB-2-14	9/23/02	4.99	0.330U	0.330U
DB-3-11	9/26/02	6.34	0.330U	0.330U
DB-4-9	9/25/02	0.330U	0.330U	0.330U
DB-5-13	9/23/02	9.27	31.8	40.0
DB-6-16.5	9/25/02	0.330U	0.330U	0.330U
DB-7-11.5	9/24/02	7.71	0.330U	0.330U
DB-8-16.5	9/25/02	0.330U	0.330U	0.330U
Blank #1 ⁽¹⁾	9/24/02	10.00U	10.00U	10.00U
Blank #2 ⁽¹⁾	9/24/02	10.00U	10.00U	10.00U
Blank #3 ⁽¹⁾	9/26/02	10.00U	10.00U	10.00U
Blank #4 ⁽¹⁾	9/26/02	10.00U	10.00U	10.00U

 $^{^{\}left(1\right) }Results$ are for water, and reported as ug/L.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

U - Analyte was not detected at or above the reported value.

GROUNDWATER ANALYTICAL RESULTS

Sample I.D.	Date	TPH-G (μg/l)	TPH-D (μg/l)	TPH-O (μg/l)	Benzene (μg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
DVP-1	9/12/02	98,100			7,640	18,600	2,660	15,000
DVP-2	9/12/02	107,000			13,500	19,100	2,140	12,400
DVP-4*	9/12/02	102,000			12,300	17,400	1,980	11,500

⁽⁻⁻⁾ = sample not analyzed.

U - The analyte was not detected at or above the reported value.

^{* =} DVP-4 samples were duplicate of DVP-2

SOIL ANALYTICAL RESULTS

Sample I.D. TOC (ft.)	Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total VPH ⁽¹⁾ (mg/kg)	Total EPH ⁽²⁾ (mg/kg)
	0/10/00	1.640	222	ND	0.554	ND	13.3	49.7	1,020	382
DVP-1-1	9/12/02	1,640	333	ND	0.554	1412	13.3	47.7	1,020	
DVP-1-6	9/12/02	4,600	1,360	31.8	7.72	84.6	41.9	175	NA	NA
DVP-2-1	9/12/02	5.00U	10.0U	25.0U	0.300U	0.500U	0.500U	0.100U	5.00U	5.00U
DVP-2-6	9/12/02	8,850	2,030	52.4	14.0	157	112	523	4,980	1,950
DVP-4-6*	9/12/02	5,860	2,170	65.0	10.7	101	75.4	370	4,590	2,200
Source Blank (3)	9/12/02	50.00U	**		0.500U	0.500U	0.500U	1.001		
Rinsate Blank (3)	9/12/02	50.00U			0.500U	0.500U	0.500U	1.00U		-
Field Blank (3)	9/12/02	50.00U			0.500U	0.500U	0.500U	1.00U		
Trip Blank ⁽³⁾	9/12/02	50.00U			0.586	0.500U	0.500U	1.00U		

⁽⁻⁻⁾ = sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aromatics.

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aromatics.

^{3 -} Results are for water and reported as ug/L

U - The analyte was not detected at or above the reported value.

^{* =} DVP-4 samples were duplicate of DVP-2

SOIL ANALYTICAL RESULTS TOTAL METALS

Sample I.D. TOC (ft.)	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)
DVP-1-1	9/12/02	0.658U	3.72	88.6	0.658U	41.1	0.200U	6.00	0.658U
DVP-2-1	9/12/02	0.500U	2.28	81.60	0.500U	37.50	0.200U	2.91	0.500U
DVP-2-6	9/12/02	0.694U	2.46	46.1	0.694U	27.1	0.200U	5.04	0.694U
DVP-4-6*	9/12/02	0.500U	2.45	47.8	0.500U	31.6	0.200U	4.35	0 500U

U - The analyte was not detected at or above the reported value.

^{* =} DVP-4 samples were duplicate of DVP-2

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D. Date Sampled Reporting Units	DVP-1-1 (B210261-01) 9/12/02 (mg/kg)	DVP-1-1 (B210261-01RE1) 9/12/02 (mg/kg)	DVP-1-1 (B210261-01RE2) 9/12/02 (mg/kg)	DVP-2-1 (B210261-03) 9/12/02 (mg/kg)
n-Butylbenzene	33.7	23.7	36.8	0.0050U
sec-Butylbenzene	5.74	4.53	10.0U	0.0050U
Ethylbenzene	50.6	41.3	58.0	0.0040U
Isopropylbenzene	7.60	6.06	10.0U	0.0050U
p-Isopropyltoluene	14.3	8.94	13.1	0.0050U
Naphthalene	23.0	16.7	26.8	0.0050U
n-Propylbenzene	47.1	29.9	42.1	0.0050U
Toluene	2.42	2.00U	10.0U	0.00176
1,2,4-Trimethylbenzene	149	189	276	0.0050U
1,3,5-Trimethylbenzene	64.2	58.3	79.2	0.0050U
Total Xylenes	211	229	330	0.100U

U - The analyte was not detected at or above the reported value.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table complete analytical laboratory reports are included as Appendix ____.

SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

		2-Methylnaphthalene	Naphthalene
Sample I.D.	Date	(mg/kg)	(mg/kg)
DVP-1-1 (B210261-01)	09/12/02	2.94	1.53

U - The analyte was not detected at or above the reported value.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Sample I.D. Date Sampled Reporting Units	DVP-1-1 (B210261-01) 9/12/2002 mg/kg	DVP-2-1 (B210261-01) 9/12/2002 mg/kg
Benzo (a) anthracene	0.010U	0.010U
Benzo (a) pyrene	0.010U	0.010U
Benzo (b) fluoranthene	0.010U	0.010U
Benzo (k) fluoranthene	0.010U	0.010U
Chrysene	0.010U	0.010U
Dibenz (a,h) anthracene	0.010U	0.010U
Indeno (1,2,3-cd) pyrene	0.010U	0.010U
1- Methylnaphthalene	1.92	0.010U
2- Methylnaphthalene	3.86	0.010U
Naphthalene	1.82	0.010 U

U - The analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS

Sample I.D.		трн-G	TPH-D	трн-о	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total VPH (1)	Total EPH (2)
TOC (ft.)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DP-1-16	9/18/02	5.00U	10.0U	25.0U	0.0300U	0.0500U	0.0568	0.121	5.00U	8.64
DP-2-14	9/18/02	5.00U	10.0U	25.0U	0.0571	0.0500U	0.0500U	0.100U	5.00U	5.00U
DP-2-20	9/18/02								5.00U	5.00U
DP-3-12	9/20/02	1,140	1,060	25.0U	2.39	2.01	10.3	20.3	1,410	685
DP-4-20	9/20/02	90.9	18.4	25.0U	0.131	0.248	0.851	3.34	60.6	5.00U
DP-5-14	9/20/02	8,160	1,200	25.0U	17.4	98.2	97.2	569	3,440	355
DP-6-22	9/20/02	7,750	88.7	25.0U	33.0	242	83.7	369	2,050	259
DP-7-20	9/20/02	329	788	25.0U	0.844	4.25	2.61	10.3	326	1,890
Tip Blank ⁽³⁾	9/18/02	50.00U			0.500U	0.500U	0.500U	1.00U		

^{(--) =} sample not analyzed.

^{1 -} Total Volatile Petroleum Hydrocarbons (VPH) by WDOE policy method VPH reported is total for C5 through C13 Aliphatics and Aromatics.

^{2 -} Total Extractable Petroleum Hydrocarbons (EPH) by WDOE policy method EPH reported is total for C8 through C34 Aliphatics and Aromati

³ - Results are for water and reported as $ug\slash L$

ND = not detected above laboratory detection limits. Laboratory detection limits not available or reported.

U - The analyte was not detected at or above the reported value.

SOIL ANALYTICAL RESULTS TOTAL METALS

Sample I.D. TOC (ft.)	Date	Silver (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Lead ⁽¹⁾ (mg/kg)
DP-1-16	9/18/02	0.500U	2.33	57.1	0.500U	30.5	0.200U	1.92	0.500U	e Coppeggiore green properties and the second s
DP-2-14	9/18/02	0.500U	3.58	83.9	0.500U	36.2	0.200U	2.39	0.500U	_
DP-2-20	9/20/02	-	<u>.</u>	-	-	-	-	-	_	1.85
DP-3-12	9/20/02	0.500U	2.66	79.0	0.572	29.5	0.200U	4.15	0.500U	-
DP-4-18	9/20/02	-	-	•	-	-	-	-	-	3.36
DP-4-20	9/20/02	0.500U	1.69	29.0	0.500U	12.0	0.200U	1.78	0.500U	-
DP-5-14	9/20/02	-	-	-	-	-	-	-	-	3.53
DP-6-14	9/20/02	-	-	-	-	-	-	-	-	5.13
DP-6-22	9/20/02	0.500U	1.65	60.4	0.873	22.6	0.200U	4.74	0.500U	-
DP-7-10	9/20/02	-	-	-	-	-	-	-	-	5.40
DP-7-20	9/20/02	0.500U	2.14	74.9	0.500U	29.6	0.200U	9.48	0.500U	-

⁽¹⁾ From analysis of total lead in soil separate of RCRA metals by EPA 6000/7000 series methods

SOIL ANALYTICAL RESULTS POLYNUCLEAR AROMATIC HYDROCARBONS

Sample I.D.	Date	Benzo (a) anthracene (mg/kg)	Benzo (a) pyrene (mg/kg)	Benzo (b) fluoranthene (mg/kg)	Benzo (k) fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenz (a,h) anthracene (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	1- Methylnaphthalene (mg/kg)	2- Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)
		(88)	(88/	(-8-8/	(8 8)	(8 8)	(6 6)	\ 0 0/	\ 0.00		
DP-1-16	9/18/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DP-2-14	9/18/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U
DP-3-12	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	1.96	3.20	0.207
DP-4-2 0	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0354	0.0680	0.0231
DP-5-14	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.744	1.28	0.210
DP-6-22	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	1.86	3.70	0.863
DP-7-20	9/20/02	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	0.0100U	7.50	14.1	4.99

SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Sample I.D.	Date	Benzene	n-Rutulhenzene	sec-Butvlbenzene	Ethylbenzene	Isopropylbenzene	p-Isopropyltoluene	Nanhthalene	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xvlenes
-	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DP-1-16	9/18/02	0.00336	0.00500U	0.00500U	0.00400U	0.00500U	0.00500U	0.00500U	0.00500U	0.00150U	0.00500U	0.00500U	0.0100U
DP-2-14	9/18/02	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.0100U
DP-3-12	9/20/02	0.100U	0.170	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.100U	0.587	0.184	0.193
DP-4-20	9/20/02	0.100U	0.813	0.100U	0.233	0.100U	0.281	0.421	0.395	0.100U	3.09	0.947	1.17
DP-5-14	9/20/02	5.35	14.5	3.35	32.3	3.86	6.74	13.4	22.0	59.5	65.2	27.9	137
DP-5-14 RE	9/20/02	5.23	13.3	4.00U	34.6	4.00U	5.33	13.7	17.6	69.1	94.6	28.5	214
DP-6-22	9/20/02	52.2	28.7	1.00U	112	8.03	9.96	40.2	39.0	423	214	68.0	568
DP-6-22 RE	9/20/02	51.8	30.4	20.0U	110	20.0U	20.0U	42.7	37.7	448	236	60.9	629
DP-7-20	9/20/02	1.39	2.75	0.100U	4.83	0.503	0.985	2.81	2.64	9.49	15.4	4.57	26.8
DP-7-20 RE	9/20/02	2.00U	2.82	2.00U	4.77	2.00U	2.00U	2.88	2.49	8.67	16.1	4.92	27.9
Tip Blank ⁽¹⁾	9/18/02	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U

^{1 -} Results are for water and reported as ug/L

^{1 -} Results are for sum of m, p and o - Xylene isomers

SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Sample I.D.	Date	Benzoic Acid (mg/kg)	Fluorene (mg/kg)	Isophorone (mg/kg)	Di-n-octyl phthalate (mg/kg)	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)	Phenanthrene (mg/kg)	Phenol (mg/kg)
DP-1-16	9/18/02	1.00U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	0.515
DP-2-14	9/18/02	1.01	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	1.05
DP-3-12	9/20/02	1.00U	0.330U	0.330U	0.575	9.54	3.05	2.56	2.15
DP-4-20	9/20/02	1.00U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U	0.330U
DP-5-14	9/20/02	1.00U	1.80	0.666	0.330U	20.1	11.5	2.92	0.330U
DP-6-22	9/20/02	1.00U	0.330U	0.330U	0.339	20.0	17.6	1.37	0.653
DP-7-20	9/20/02	1.00U	0.330U	0.330U	0.330U	4.27	1.85	0.827	1.41

VP-1 Mar-91	Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
Mar-91 NA	VP-1										
VP-2 Jan-97		Mar-91	NA								
Apr-97		Oct-95									
VP-2 Jul-97		Jan-97				***					
Nov-97		Apr-97				<u></u>					
Dec-99		Jul-97									
Jun-00		Nov-97				~~	~~				
VP-2 Mar-91		Dec-99									
VP-2 Mar-91		Jun-00	5,000	75,600	1,100U	21.60	14.4	32.8	435		
VP-2 Mar-91		Jul-02	35,000	18,000	1,500	120	820	280	4,600		
Mar-91		Oct-02	27,300	7.50	0.598	170	756	334	4,820		
Oct-95	VP-2										
Jan-97		Mar-91									
Apr-97		Oct-95									
Jul-97		Jan-97						. 			
Nov-97		Apr-97							***		
Dec-99 5,980 29,900 2,500U 935 345 43.80 305 Jun-00 2,030 2,810 1,100U 45.90 16.2 3,000U 196 Jul-02 UTL Oct-02 UTA VP-3 Jul-02 DRY		Jul-97									
Jun-00 2,030 2,810 1,100U 45.90 16.2 3,000U 196 Jul-02 UTL Oct-02 UTA VP-3 Jul-02 DRY		Nov-97									
Jul-02 UTL Oct-02 UTA VP-3 Jul-02 DRY		Dec-99	5,980	29,900	2,500U	935	345	43.80	305		
Oct-02 UTA VP-3 Jul-02 DRY		Jun-00	2,030	2,810	1,100U	45.90		3,000U	196		
VP-3 Jul-02 DRY		Jul-02					UTL				
Jul-02 DRY		Oct-02					UTA				
	VP-3										
		Jul-02					DRY			•	
		Oct-02					DRY				

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
VP-4										
	Mar-91									
	Oct-95									
	Jan-97									
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99									
	Jun-00	26,400	1,850	1,100U	1,020	3,270	890	6,160		
	Jul-02	89,000	78,000	9,700U	7,300	7,500	1,900	13,000		
	Oct-02					UTA				
VP-5 (MW-5)										
	Mar-91		1,850	ND	5,300	1,300	900	4,600		
	Oct-95									
	Jan-97									
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99	23,400	2,490	5,000U	841	191	1,480	7,720		
	Jun-00	25,600	1,340	1,120U	793	155	1,380	5,690		
	Jul-02					UTL				
	Oct-02	15,900	3.90	500U	318	49.3	880	1,870		
VP-6										
	Jul-02					SPH				
	Oct-02					SPH				

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (μg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
		Section 1								
VP-7 (MW-3)										
	Mar-91	0.03						3,500		
	Oct-95	33,000			11,700	2,230	1,070	4,130		
	Jan-97	51,000			12,400	5,200	990	RA	3,700	1,500
	Apr-97	53,000			11,100	4,800	1,400	RA	5,400	2,200
	Jul-97	37,000			11,000	3,700	1,500	RA	5,200	1,900
	Nov-97	34,000			15,900	3,600	1,500	RA	4,800	1,800
	Dec-99	73,400	3,310	5,000U	16,800	9,670	1,890	10,500		
	Jun-00	54,400	931	1,460U	10,000	8,230	1,380	7,470		
	Jul-02	60,000	5,800	580	8,200	7,000	1,500	8,300		
	Oct-02	71,600	5.16	0.510	11,100	5,880	1,940	10,800		
VP-8 (MW-7)										
, ,	Mar-91	0.01						1,100		
	Oct-95	3,100			2.50	1.20	3.00	16.0		
	Jan-97	8,000			816	824	26.0	RA	412	182
	Apr-97	18,000			605	786	119	RA	1,260	514
	Jul-97	9,100J			96.0	246	52.0	RA	706	274
	Nov-97	830J			5.60	7.00	11.0	RA	23.0	9.60
	Dec-99	7,640	2,780	5,000U	540	927	201	1,430		
	Jun-00	233	2,280	1,100U	1.10	1.81	1.95	7.99		
	Jul-02	1,500	1,800	420	9.40	9.20	34.0	50.0		
	Oct-02	552	1.83	500U	9.75	1.45	4.25	5.73		

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
				on the second				Data kepa periminan dan 100 km.		Produktion (Control of Control of
VP-9										
	Mar-91									
	Oct-95									
	Jan-97									
	Apr-97		*-							
	Jul-97									
	Nov-97									
	Dec-99	118	2,500U	5,000U	0.50U	0.50U	0.50U	0.50U		
	Jun-00	474	1,420	1,130U	4.97	ND	55.6	4.80		
	Jul-02					UTL				
	Oct-02	1,910	13.2	500U	11.3	2.62	8.86	14.7		
MW-4										
102.07	Mar-91				10,000	12,000	500	9,800		
	Oct-95	95,000			19,600E	12,000	2,070	10,800		
	Jan-97	88,000			12,900	12,400	1,400	RA	7,500	3,100
	Apr-97	100,000			14,300	14,500	1,700	RA	7.80	3,200
	Jul-97	120,000			19,600	19,700	2,100	RA	9,300	3,800
	Nov-97	89,000			17,500	16,000	1,900	RA	8,800	3,400
	Dec-99	73,300	3,340	5,000U	13,700	13,500	1,830	11,000		
	Jun-00	74,400	3,390	1,240U	14,400	9,440	1,840	10,800		
	Jul-02	83,000	10,000	680	11,000	9,900	1,800	11,000		
	Oct-02	110,000	9.86	0.697	14,500	11,600	2,630	15,200		
DUP	Oct-02	92,400	7.10	500U	12,400	9,980	2,090	12,200		

Groundwater GROUNDWATER ANALYTICAL RESULTS

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
						oriente de l'administration estate	400000000000000000000000000000000000000	15-2 20-10-16-06-00-00-16-0-00-00-0	en de la companya de	
MW-6										
	Mar-91				25,000	29,000	2,500	19,000		
	Oct-95				12,000E	13,800E	920	5,680	4,170	1,520
	Jan-97				7,290	12,400	2,340		14,200	5,600
	Apr-97									
	Jul-97									
	Nov-97									
	Dec-99									
	Jun-00									
	Jul-02	31,000	29,000	10,000U	8,900	1,600	820	4,200	ANR	ANR
	Oct-02					UTA				
MW-9										
	Mar-91				1,600	2,900	250	3,100		
	Oct-95	3,400			3,520	70J	200U	10,800		
	Jan-97	4,400			2,600	53.0	310	RA	7,500	3,100
	Apr-97	9,100			2,980	173	413	RA	7,800	3,200
	Jul-97	2,200J			2,680	127	460	RA	9,300	3,800
	Nov-97	5,000			2,010	80.0	334	RA	8,800	3,400
	Dec-99	4,460	8,510	5,000U	831	22.4	274	138		
	Jun-00	4,740	6,070	500U	786	26.0	274	156		
	Oct-02	6,380	43.6	0.671	493	13.0	230	107		

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (μg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
	San									
MW-10										
	Mar-91				5.00U	5.00U	5.00U	5.00U		
	Oct-95	780			1.80	2.90J	0.82J	5.60		
	Jan-97	180			1.50	1.00U	1.00U	RA	2.00U	1.00U
	Apr-97	420			5.10	1.00	1.00U	RA	2.00J	1.40U
	Jul-97	1,100			10.0	2.10	2.40	RA	3.80	0.54J
	Nov-97	1,000			4.20	2.00	4.80	RA	1.60	0.60J
	Dec-99	618	353	5,000U	7.02	0.91U	0.85U	4.22U		
	Jun-00	99.2	2,500U	500U	1.56	ND	ND	ND		
	Jul-02	240	320	600	2.50	0.500U	1.00U	1.50U		
	Oct-02	490	0.667	500U	3.42	0.500U	1.34	5.00		
MW-11										
*****	Jul-02	50.0U	250U	250U	0.500U	0.500U	0.500U	1.50U		
	Oct-02	50.0U	250U	500U	0.500U	0.500U	0.500U	1.00U	 .	
MW-12										
	Oct-02	50.0U	250U	500U	0.516	0.869	0.500U	1.00U		
MW-13										
	Oct-02					DRY				
MW-14										
	Oct-02					UTA				
MW-15										
141 44 - 13	Oct-02					UTA				
1.00V 4.0										
MW-16	Oct-02					UTA				•

Groundwater GROUNDWATER ANALYTICAL RESULTS

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (μg/l)	Toluene (µg/l)	Ethylbenzene (μg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
MW-17	aggy cognigoration in a case via endorre con tri consis	and the second s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
141 44 - 1 /	Oct-02					UTA				
RW-2										
	Mar-91			-+	19,000	46,000	2,500	120,000		
	Oct-95									
	Jan-97	390			31.0	14.0	6.00	RA	31.0	18.0
	Apr-97	11,000			189	243	99.0	RA	540	203
	Jul-97	24,000			4,230	2,490	389	RA	1,960	772
	Nov-97	4,400			3,140	1,200	338	RA	1,670	595
	Dec-99									
	Jun-00									
	Jul-02					UTL				
	Oct-02	1,380	0.988	500U	90.5	8.05	29.2	31.5		
RW-3										
	Jul-02					UTA				
	Oct-02					UTA				
RW-4										
	Jul-02	990	15,000	2,000U	62.0	1.30	32.0	7.00		
	Oct-02	3,160	8.93	0.939	59.8	2.50	40.4	15.6		

Groundwater GROUNDWATER ANALYTICAL RESULTS

Sample I.D. ⁽¹⁾	Date	TPH-G (mg/l)	TPH-D (mg/l)	TPH-O (mg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Xylenes (μg/l)	m,p- xylenes (mg/l)	o-xylenes (mg/l)
RW-5	Jul-02 Oct-02	3,370	84.9	3.65	696	UTL 67.2	63.0	408		
Trip Blank LB	Oct-02	50.0U			0.500U	0.500U	0.500U	1.00U		

- 1 Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 1 (well designations in () indicate previous labeling)
- 2 Date groundwater samples were collected. Mar-91 from Ecology and Environment, Oct-95 through Nov-97 from Ecology, Dec-99 Jun-00 from Farallon.
- (--) Sample not analyzed.
- ANR- Analyte not reported or reported as total value
- DRY Insufficient groundwater to sample
- DUP Duplicate samples
- E The analyte was detected at a concentration above the linear response range of the instrument, value reported is an estimate.
- ND Not detected at or above laboratory detection limits. Laboratory detection limits not available or reported.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- RA Reported as m,p and o-xylene, total xylene not reported.
- SPH No sample collected due to the presence of separate phase hydrocarbons
- U The analyte was not detected at or above the reported value.
- UTA- No sample collected, unable to access well due to parked vehicle.
- UTL No sample collected, unable to locate well

Sample I.D. ⁽¹⁾	Date	Lead (total) (μg/l)	Lead (dissolved) (µg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
VP-1							
V1 1	Mar-91						
	Oct-95						
	Jan-97						
	Apr-97						
	Jul-97						
	Nov-97						
	Dec-99						
	Jun-00	33.4	33.9				
	Jul-02		22.9				
	Oct-02		1.80				
VP-2							
	Mar-91					·	
	Oct-95			***			
	Jan-97						
	Apr-97						
	Jul-97	en en					
	Nov-97						
	Dec-99	262	61.7				
	Jun-00	37.8	9.87				
	Jul-02			UT	L		
	Oct-02			UT	`A		
VP-3							
	Jul-02			DR			
	Oct-02			DR	Υ		

Sample I.D. ⁽¹⁾	Date	Lead (total) (μg/l)	Lead (dissolved) (μg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
VP-4							
	Mar-91						
	Oct-95						
	Jan-97						
	Apr-97						
	Jul-97						
	Nov-97						
	Dec-99						
	Jun-00	9.12	4.66				
	Jul-02		28.0		400 400		
	Oct-02			UT	'A		
VP-5 (MW-5)							
	Mar-91	**					de de
	Oct-95					de de	
	Jan-97						
	Apr-97	••					
	Jul-97						
	Nov-97						
	Dec-99	6.76	2.57				
	Jun-00	3.75	2.66				
	Jul-02			UT	L		
	Oct-02		2.29				
VP-6							
	Jul-02			SP	H		
	Oct-02			SP			

Sample I.D. ⁽¹⁾	Date	Lead (total) (μg/l)	Lead (dissolved) (µg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
VP-7 (MW-3)							
, ,	Mar-91						
	Oct-95	5.60P					
	Jan-97	9.90					900 NO
	Apr-97	3.40					
	Jul-97	4.30J					
	Nov-97	5.00		40 NO			
	Dec-99	5.91	2.11	7.76	11.7	0.10U	13.4
	Jun-00		2.13				
	Jul-02		25.0				
	Oct-02		2.40				
VP-8 (MW-7)							
,	Mar-91		-				
	Oct-95	3.40P		***			**
	Jan-97	3.70					
	Apr-97	24.6					
	Jul-97	2.30			-		
	Nov-97	12.7					
	Dec-99	40.6	5.02				
	Jun-00	17.7	7.95				**
	Jul-02		11.4				
	Oct-02		1.93			***	

Sample I.D. ⁽¹⁾	Date	Lead (total) (μg/l)	Lead (dissolved) (μg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
	The second of th			Maria da Antonio de An	engres 200 ekket soort jaardagnaa seedest in 1850 eeu het.	Delegate (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (19	CONTROL CONTRO
VP-9							
	Mar-91						
	Oct-95						
	Jan-97	***					
	Apr-97						***
	Jul-97						
	Nov-97						
	Dec-99	15.0	1.00U	420	9400	9200	34000
	Jun-00	15.2	1.00U				
	Jul-02						
	Oct-02		1.00U				
MW-4							
112 11	Mar-91						
	Oct-95	30.6					
	Jan-97	36.5					
	Apr-97	20.7				w. m.	
	Jul-97	19.5		***			→ **
	Nov-97	16.2					
	Dec-99	19.8	9.86	10.5	6.15	0.10U	0.20U
	Jun-00	21.4	9.72				
	Jul-02		15.5				
	Oct-02		10.7				
DUP	Oct-02	**	9.61		•••		

Sample I.D. ⁽¹⁾	Date	Lead (total) (µg/l)	Lead (dissolved) (µg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
MW-6		gggggggggggggggggggggggggggggggggggggg	Story College 2019 College Col		3.000		
171 77 -0	Mar-91						
	Oct-95				***		
	Jan-97						
	Apr-97				***		
	Jul-97				**	*-	
	Nov-97		****				
	Dec-99						
	Jun-00						
	Jul-02		5.10				
	Oct-02		5.10	UT	'A		
	001.02						
MW-9							
	Mar-91					940 HB	
	Oct-95	4.60P					
	Jan-97						
	Apr-97	6.80					
	Jul-97	8.60J					
	Nov-97	3.30				***	
	Dec-99	15.0	1.03	10.5	6.15		
	Jun-00	7.86	1.59				
	Oct-02		2.66				

Sample I.D. ⁽¹⁾	Date	Lead (total) (µg/l)	Lead (dissolved) (µg/l)	Maganese (mg/l)	Ferrous Iron(mg/l)	Nitrate- Nitrogen (mg/l as N)	Sulfate (mg/l)
Self-self-self-self-self-self-self-self-s	the control in the property of the control in the c	55.00					
MW-10	Man 01						
	Mar-91 Oct-95	1.00U					
	Jan-97	1.00U					
	Apr-97						
	Jul-97	1.20J 4.90					
	Nov-97		1.00U	5.12	2.00U	0.72	70.6
	Dec-99	1.00U ND	ND			0.72	70.0
	Jun-00		1.30	***			
	Jul-02		1.30 1.00U				
	Oct-02		1.000				
WAXX 44							
MW-11	T-1.00		1.20U				
	Jul-02	₩.~	1.20U 1.00U				
	Oct-02	wa 199	1.000				•••
3 ATT 4 A							
MW-12	0 . 02						
	Oct-02						
B #331 40							
MW-13	0 . 00			DR	N.		
	Oct-02			DN	. 1		
3.6337. d.4							
MW-14	0 / 00			UT	· A		
	Oct-02			01	A		
NAXX 15							
MW-15	0-4-02			UT	`^		
	Oct-02			UI	A		
NATS 1 4 C							
MW-16	0-1-02			T 17T	٠.٨		
	Oct-02			UT	A		

ite (mg/l)		Nitrate- Nitrogen (mg/l as N)	Ferrous Iron(mg/l)	Maganese (mg/l)	Lead (dissolved) (µg/l)	Lead (total) (μg/l)	Date	Sample I.D. ⁽¹⁾
								MW-17
			A	UI			Oct-02	
								RW-2
							Mar-91	
							Oct-95	
							Jan-97	
							Apr-97	
					2.23			
					21.20		001 02	
								RW-3
			A	UT			Jul-02	22
	- - - - -	 			2.23	 		RW-2

		Lead (total)	Lead (dissolved)	Maganese	Nitrate- Ferrous Nitrogen (mg/l			
Sample I.D. ⁽¹⁾	Date	$(\mu g/l)$	(μg/l)	(mg/l)	Iron(mg/l)	as N)	Sulfate (mg/l)	
RW-4								
	Jul-02		3.30					
	Oct-02		1.23		-+			
RW-5								
	Jul-02			UT	L			
	Oct-02		3.91					

- 1 Well designations have historically varied. The designations used here are consistent with the designations shown on Figure 1 (well designations in () indicate previous labeling)
- (--) = Sample not analyzed.
- J Anatyle was positively identified. The associated numerical result is an estimate.
- ND Not detected and reporting limit not available.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- U The analyte was not detected at or above the reported value.
- UTA- No sample collected, unable to access well due to parked vehicle.
- UTL No sample collected, unable to locate well
- DRY Insufficient groundwater to sample
- SPH No sample collected due to the presence of separate phase hydrocarbons

				1,3,5-	1,2,4-	p-			mo .	m •	1.0	
			n-	Trimethyl			n-		Tetra-	Tri-	1,2-	CI I G
(1)		Isopropyl-	Propylbenzene		benzene	toluene					Dichloroethene	
Sample I.D. ⁽¹⁾	Date	benzene (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		1					Security of the second				(12.00 page (1.00 page	
VP-1												
	Jul-02											
	Oct-02											
VP-2												
	Jul-02											
	Oct-02											
VP-3												
	Jul-02											
	Oct-02											
VP-4												
	Jul-02											
	Oct-02											
VP-5 (MW-5)												
	Jul-02											
	Oct-02											

VP-6	X 1 00											
	Jul-02											
	Oct-02											

				1,3,5-	1,2,4-	p-	_		Tetra-	Tri-	1,2-	
			n-	Trimethyl			n-	Now hall allows				Chlouoform
(I)		Isopropyl-	Propylbenzene		benzene	toluene					Dichloroethene	
Sample I.D. ⁽¹⁾	Date	benzene (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
:											3000 (Labora - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Mila
VP-7 (MW-3)												
71-7 (1717) b)	Jul-02											
	Oct-02											
	00.02											
VP-8 (MW-7)												
(,	Jul-02											
	Oct-02											
VP-9												
	Jul-02											
	Oct-02											
MW-4												
	Jul-02	46	140	500	1,800	1.00U	23	360	1.00U	1.00U	1.00U	1.00U
	Oct-02											
MW-6												
	Jul-02											
	Oct-02							***				
MW-9												
	Jun-00											
	Oct-02											

Sample I.D. ⁽¹⁾	Date	Isopropyl- benzene (ug/l)	n- Propylbenzene (ug/l)	1,3,5- Trimethyl benzene (ug/l)	1,2,4- Trimethyl benzene (ug/l)	p- Isopropyl toluene (ug/l)	n- butylbenzene (ug/l)	Naphthalene (ug/l)	Tetra- chloroethene (ug/l)	Tri- chloroethene (ug/l)	1,2- Dichloroethene (ug/l)	Chloroform (ug/l)
MW-10												
11271 20	Jul-02									+-		
	Oct-02											
MW-11	T 1 00	2 0011	1.0017	1 0011	1 0011	1.0011	1 0011	2.0011	1 007 7	1 0011	1 0011	1.0011
	Jul-02	2.00U	1.00U	1.00U	1.00U	1.00U	1.00U	2.00U	1.00U	1.00U	1.00U	1.00U
	Oct-02			+-					+-			
MW-12												
	Oct-02	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	1.00U	9.58	2.75	9.07	1.68
MW-13												
	Oct-02								**			
MW-14	_											
	Oct-02											
MW-15												
W1 W-13	Oct-02		top-row									
	O 00 0 0											
MW-16												
	Oct-02											
MW-17	0 . 04											
	Oct-02	w w										

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

			n-	1,3,5- Trimethyl	1,2,4- Trimethyl	p- Isopropyl	n-		Tetra-	Tri-	1,2-	
		Isopropyl-	Propylbenzene		benzene	toluene		Naphthalene	chloroethene	chloroethene	Dichloroethene	Chloroform
Sample I.D. ⁽¹⁾	Date	benzene (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
										The state of the s	NAME OF THE OWNER, WHITE OF THE OWNER, WHITE OF THE OWNER, WHITE OWNER, WHITE OWNER, WHITE OWNER, WHITE OWNER,	ner skar severkelet Anett
RW-2												
	Jul-02											
	Oct-02											
RW-3												
	Jul-02											~*
	Oct-02											
RW-4						_	_	_	4 0077	1 00*1	1 0011	1 0077
	Jul-02	2.00U	3	1.00U	20	2	1	5	1.00U	1.00U	1.00U	1.00U
	Oct-02											
RW-5												
	Jul-02											
	Oct-02											
Trip Blank LB												
	Oct-02											

^{1 -} Well designations have historically varied. The designations used here are consistent with the designations shown on Figure ____ (well designations in () indicate previous labeling)

UTL - No sample collected, unable to locate well

⁽⁻⁻⁾ Sample not analyzed.

DRY - Insufficient groundwater to sample

DUP - Duplicate samples

RA - Reported as o-xylene, total xylene not reported.

SPH - No sample collected due to the presence of separate phase hydrocarbons

U - The analyte was not detected at or above the reported value.

UTA- No sample collected, unable to access well due to parked vehicle.

Former Queen Anne Texaco 211577 631 Queen Anne Avenue North Seattle, WA

Sample I.D.	Date	2-Methylnaphthalene (μg/l)	2,4-Dichlorophenol (µg/l)	Naphthalene (μg/l)	2-Methylphenol (μg/l)	4-Methylphenol (μg/l)	Bis(2-ethylhexyl) phthalate (µg/l)	Benzoic Acid (μg/l)
VP-1	7/24/02	84.0	80.0	160	13.0	18.0	31.0	10.0U
VP-7	7/24/02	69.0	28.0	420	5.0U	6.0	10.0U	34.0
VP-8	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U
MW-4	7/24/02	160	24.0	500	6.0	9.0	10.0U	10.0U
MW-10	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U
MW-11	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U
MW-12	10/18/02	10.0U	10.0U	10.0U	10.0U	10.0U	50.0U	20.0U
RW-4	7/24/02	5.0U	5.0U	5.0U	5.0U	5.0U	10.0U	10.0U

⁽¹⁾ Results are for water, and reported as ug/L.

Note: Only those analytes detected in the samples listed at or above the laboratory reporting limits have been included in this table, complete analytical laboratory reports are included as Appendix ____.

U - Analyte was not detected at or above the reported value.