ECY received 4/18/02

J.H. BAXTER & CO., a California Limited Partnership

Central Bles Copy J.H. Baxter-Arlinston HEN G. 2.1 Starts Reports 4/15/02 WAD 053823019

April 15, 2002

Ms. Kim Ogle, RCRA Project Manager United States EPA, Region 10 1200 Sixth Avenue Seattle, WA 98101

Subject: April 15, 2002 Progress Report J. H. Baxter Arlington Facility Docket No. RCRA-10-2001-0086

Dear Ms. Ogle:

This letter provides the April 15, 2002 progress report for work completed under the Administrative Order on Consent (AOC) for the J. H. Baxter (Baxter) facility during the period March 15 to April 15, 2002.

Significant Developments This Period

This section discusses significant developments for the referenced reporting period, including actions performed and any problems encountered relative to work required by the Order. Significant developments that occurred on this project during this reporting period are outlined below:

- Baxter received comments on the Site Investigation Work Plan from the Environmental Protection Agency (EPA) on March 20, 2002.
- On March 27, 2002, we met with you, Rene Fuentes, Bob Melton, and Chris Pace in your office to discuss EPA's comments on the Site Investigation Work Plan. Also in attendance were Baxter personnel from the Arlington facility, and staff from Premier Environmental Services (Premier). Baxter transmitted a letter to you dated April 15, 2002 confirming the agreements made during the meeting and requested that the due date of the revised work plan be extended until May 17, 2002.
- On April 5, a teleconference was held between Baxter, Premier, and EPA to discuss the approach for evaluating air data in the Site Investigation.

April 15, 2002 Progress Report

- A quality assurance review for the December 2001 State Waste Discharge Permit (SWDP) lysimeter sampling event, January 2002 SWDP sampling event (Untreated Pole Storage Area drains, Stormwater Permit Monitoring Wells, and the closed woodwaste landfill wells), and February SWDP lysimeter sampling event are included in Attachment 1. Laboratory reports are provided in Attachment 2.
- The Baxter Team met via telephone and in person on numerous occasions to discuss and attempt to resolve discharge limit issues associated with the ESMS (see Anticipated Problems and Problem Resolution, below). During these meeting we developed a conceptual model of an approach that may meet the needs of the AOC and Ecology's contained-out determination.
- The April 2002 SWDP sampling event (Stormwater Permit Monitoring Wells, closed woodwaste landfill monitoring wells, and lysimeters) was conducted during the week of April 8, 2002.
- Laboratory results from the March 5, 2002 SWDP drain sampling event were received by Baxter on March 26, 2002. These data are currently being validated.

Anticipated Developments Next Period

This section discusses developments anticipated during the next reporting period.

- Baxter will provide written responses to each of EPA's comments on the Site Investigation Work Plan. The response letter will be transmitted to EPA no later than April 19, 2002.
- Baxter has requested an April 25, 2002 meeting with Washington State Department of Ecology (Ecology) and the EPA Project Manager to discuss the new approach for stormwater management at the Arlington Facility. Baxter will provide a letter outlining the new approach and provide conceptual drawings to Ecology and EPA before the meeting.
- Laboratory data from recent sampling events that are validated in accordance with the SWDP requirements will be summarized and forwarded to EPA with the next progress report.

Anticipated Problems and Problem Resolution

This section discusses anticipated problems, and planned resolution of past or anticipated problems.

April 15, 2002 Progress Report

• As discussed in the previous progress report, implementation of the Excess Stormwater Management Plan continues to be problematic. The operation of the Excess Stormwater Management System (ESMS) required a contained-out determination from Ecology to allow discharge of the treated water. The Ecology-issued contained-out determination included not only requirements for pentachlorophenol (PCP), which the system was designed to address, but also limits for dioxins no greater than 0.6 ppq toxic equivalents (TEQ). The ability of the treatment system in the ESMS to meet the state dioxin limits has been a significant obstacle in the implementation of the system. Baxter and its consultants have tried to identify technologies that would provide Baxter and Ecology with a sufficient comfort level that the standards could be consistently achieved. In literature searches regarding technologies for handling dioxins in water, we were unable to identify information that would demonstrate a successful pilot-scale or full-scale treatment of dioxins from similar conditions.

Baxter continues to work on solutions to the issue. As discussed above, Baxter has requested a meeting with Ecology and the EPA Project Manager to present a preliminary overview of a proposed final stormwater management system that would address this issue. If Ecology and EPA concurs that the conceptual plan is an acceptable approach, then Baxter will submit detailed information to Ecology and EPA for review and approval.

Other Information

Any other information relevant to the Order is discussed in this section, including results of any sampling or testing completed within the reporting period.

• No other information relevant to the Order was generated during the reporting period.

Certification

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to evaluate the information submitted. I certify that the information contained in or accompanying this submittal is true, accurate and complete. As to those identified portions(s) of this submittal for which I cannot personally verify the accuracy, I certify that this submittal and all attachments were prepared in accordance with procedures designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those directly responsible for gathering the information, or the immediate supervisor of such person(s), the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature:

Name: Title: Date: RueAnn Thomas Environmental Programs Director April 15, 2002

We trust this letter meets the intent of the Progress Report per Paragraph 71 of the AOC. If you have any questions, please contact me at (541) 689-3801.

Sincerely,

Kuef Humas

RueAnn Thomas Environmental Programs Director Attachments:

cc: Jeanne Tran, Ecology
Dean Yasuda, Ecology
Georgia Baxter, J. H. Baxter & Co.
Mary Larson, J. H. Baxter & Co.
Sara Beth Watson, Steptoe and Johnson
Will Abercrombie, Hart Crowser Inc.
J. Stephen Barnett, Premier Environmental Services, LLC.

Attachment 1

Quality Assurance Review

Memorandum

Date:	April 10, 2002
То:	J. Stephen Barnett, Premier Environmental Services
From:	Kathy J. Gunderson
Subject:	Quality Assurance Review
Project Name:	J. H. Baxter Wood Preserving Facility, Arlington, Washington Fourth Quarter Sampling 2001 and First Quarter Sampling 2002
Project Number:	201029.1013

1.0 Introduction

This memorandum presents the Level III validation of the water sample analyses listed in Table 1. With the exception of the polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF), the analyses were performed by Columbia Analytical Services (CAS), Inc., located in Kelso, Washington. The PCDD and PCDF analyses were performed by Triangle Laboratories, Inc. (TLI), located in Durham, North Carolina. Level III validation is defined as assessing data quality using the quality control results submitted by the laboratory. Raw data were not reviewed.

The criteria used to qualify data are from the Contract Laboratory Program National Functional Guidelines for Inorganic and Organic Data Review (USEPA 1994 and 1999), the EPA Region 10 Functional Guidelines for the Validation of High Resolution Mass Spectrometry Analysis of Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Data (EPA Region 10 2001), the analytical methods, or the professional judgment of the validation chemist.

Matrix spike, duplicate, and laboratory control sample results were not reported and were not requested for the analyses preformed by CAS. These results will be requested for all future sampling events.

Quality Assurance Review

J. H. Baxter Wood Preserving Facility, Arlington, Washington Fourth Quarter 2001 and First Quarter 2002 Sampling

Sample ID	Date Collected	CAS Laboratory ID	РСР	Fuels	Metals	Inorganics	Dioxin/Furan
L-1	12-17-01	K2109434-1	x	1	[[
L-2	12-17-01	K2109434-2	X	x			<u> </u>
L-3	12-17-01	K2109434-2 K2109434-2		1			X
L-3	1-15-02	TLI #56279r1	X	X			X
BXN-1	1-13-02						<u> </u>
BXN-2	1-8-02	K2200199-1			X	X	
BXN-2 BXN-3		K2200199-2			X	X	
	1-8-02	K2200199-3			X	X	
BXN-4	1-8-02	K2200199-4	·	<u> </u>	X	X	
BXN-5	1-8-02	K2200199-5			X	X	
BXN-6	1-8-02	K2200199-6			Х	Х	
BXS-1	1-14-02	K2200333-1 &	Х		Х	Х	
		K2200325-1					
BXS-2	1-14-02	K2200325-2			Х	Х	•
BXS-3	1-14-02	K2200325-3			X	x	··· ··· · · · · · · · · · · · · · · ·
BXS-4	1-14-02	K2200325-4			X	X	·····
BXS-5	1-14-02	K2200325-5			X	X	
BXS-6	1-14-02	K2200325-6			X	X	·
MW-2	1-15-02	K2200378-1	X		X	<u> </u>	
HCMW-6	1-15-02	K2200378-2	X		X	$\frac{x}{X}$	
HCMW-7	1-15-02	K2200378-3	X		X	X	
MW-A	1-15-02	K2200378-4	X		X	X	
MW-B	1-15-02	K2200378-5	X		X	<u> </u>	·····.
7-8	1-15-02	K2200371-1	X	X		<u> </u>	X
L-1	2-11-02	K2200945-1	<u> </u>	X		<u>A</u>	<u> </u>
L-2	2-11-02	K2200945-2	<u> </u>	X			X
L-3	2-11-02	K2200945-3	<u> </u>	X			<u> </u>
L-3A	2-11-02	K2200945-4	X	X			<u> </u>

Table 1Sample Data Reviewed

PCP: Pentachlorophenol by Method 8151 (USEPA 1996)

Fuels Semivolatile Petroleum Products by Method NWTPH-Dx (WDOE 1997)

Metals Dissolved arsenic by Method 7060A (USEPA 1996), dissolved barium, cadmium, calcium, copper, iron, magnesium, manganese, nickel potassium, sodium, and zinc by Method 6010B (USEPA 1996)

Inorganics: Alkalinity and bicarbonate alkalinity by Method 310.1 (USEPA 1999a), chloride and sulfate by Method 300.0, chemical oxygen demand by Method 410.2 (USEPA 1999a), conductivity by Method 120.1 (USEPA 1999a), anmonia by Method 350.1 (USEPA 1999a), nitrate and nitrite by Method 353.2 (USEPA 1999a), pH by Method 150.1 (USEPA 1999a), tannin and lignin by Method 5550B (APHA 1998), total Coliform by Method 9221B (APHA 1998), total dissolved solids by Method 160.1 (USEPA 1999a), total suspended solids by Method 160.2 (USEPA 1999a), and total organic carbon by Method 415.1 (USEPA 1999a)

Dioxin/Furan: PCDDs and PCDFs by Method 1613B (USEPA 1999a)

2.0 **Review of Pentachlorophenol Analyses**

2.1 Custody, Preservation, Holding Times, and Completeness – Acceptable with Discussion

Except as noted below, the samples were extracted and analyzed within the required holding times and the samples were properly preserved. Sample custody was maintained as required from sample collection to laboratory receipt. The reports are complete and contain results for all samples and tests requested on the chain-of-custody (COC) forms.

The CAS portions of the K2109434 and K2200371 reports are not paginated to ensure the reports are complete.

The temperature of the samples in delivery groups K2200333 and K2200378 was above the recommended temperature range of 2 to 6 $^{\circ}$ C at the time of laboratory receipt. The temperature range of the samples was 6.7 to 7.3 $^{\circ}$ C. Data qualifiers are not recommended.

The extraction of the samples collected 12-17-01 was preformed past the 7 day holding time. The samples were qualified as estimated (J) or estimated detection limit (UJ) as shown below.

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-1 (12-17-01)	Pentachlorophenol	J	Extraction holding time exceeded
L-2 (12-17-01)		UJ	
L-3 (12-17-01)		J	

2.2 Blank Analyses – Acceptable

2.2.1 Method Blanks

Method blanks were analyzed at the required frequency. Pentachlorophenol was not detected in the method blanks above the reporting limit.

2.2.2 Field Blanks

Samples MW-B and L-3A (2-11-02) were identified as field blanks. The field blanks do not contain reportable levels of pentachlorophenol.

2.3 Surrogate Analyses – Acceptable

Surrogate compounds were added to all samples and blanks. All percent recovery values are within the laboratory's control limits.

BaxterArlington 4Q01-1Q02-DV-memo.doc

2.4 Field Duplicates – Acceptable

Sample MW-A was identified as a field duplicate of sample MW-2. A relative percent difference (RPD) value could not be calculated because positive results were not reported for either sample.

2.5 **Overall Assessment of Data**

For sample L-3 (12-17-01), the percent difference between the analytical column results for pentachlorophenol is greater than the Method 8000B (USEPA 1996) criteria of 40%. The pentachlorophenol result of sample L-3 (12-17-01) has been qualified as estimated (J).

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-3 (12-17-01)	Pentachlorophenol	J	Duel column difference greater than 40%

The lack of matrix spike/matrix spike duplicate and laboratory control sample results limits the ability to define the accuracy and precision of the data set. Since the method blanks and surrogate recovery values are acceptable, the data are assumed to be acceptable.

The quality of the data is judged against the EPA guidance documents listed above. Upon consideration of the information presented here, the data are acceptable except where flagged with data qualifiers that modify the usefulness of the individual values.

3.0 Review of Semivolatile Petroleum Product Analyses

3.1 Custody, Preservation, Holding Times, and Completeness – Acceptable

The samples were extracted and analyzed within the required holding times, sample custody was maintained as required, and the samples were properly preserved. The reports are complete and contain results for all samples and tests requested on the COC forms.

3.2 Blank Analyses – Acceptable

3.2.1 Method Blanks

Method blanks were analyzed at the required frequency and target analytes were not detected above the reporting limits.

3.2.2 Field Blanks

Sample L-3A was identified as a field blank. Target analyses were not detected above the reporting limits.

3.3 Surrogate Analyses – Acceptable

Surrogate compounds were added to all samples and blanks as required. All percent recovery values are within the Method criteria of 50 to 150%.

3.4 Field Duplicates

The field duplicates were not analyzed for semivolatile petroleum products.

3.5 Overall Assessment of Data

The lack of matrix spike/matrix spike duplicate and laboratory control sample results limits the ability to define the accuracy and precision of the data set. Since the method blanks and surrogate recovery values are acceptable, the data are assumed to be acceptable.

The quality of the data is judged against the EPA guidance documents listed above. Upon consideration of the information presented here, the data are acceptable.

4.0 **Review of Metals Analyses**

4.1 Custody, Preservation, Holding Times, and Completeness – Acceptable

The samples were analyzed within the required holding times, sample custody was maintained as required, and the samples were properly preserved. The reports are complete and contain results for all samples and tests requested on the COC forms.

4.2 Blank Analyses – Acceptable

4.2.1 Method Blanks

Method blanks were analyzed at the required frequency and target analytes were not detected above the reporting limits.

4.2.2 Field Blanks

Samples BXN-6, BXS-5, and MW-B were identified as field blanks. The field blanks are free of target analytes above the reporting limits.

4.3 Field Duplicates – Acceptable

Three field duplicates are associated with the data. The precision of the field duplicates is acceptable as shown by the low RPD values listed in Table 2.

4.4 **Overall Assessment of Data**

The lack of matrix spike, duplicate, and laboratory control sample results limits the ability to define the accuracy and precision of the data set. Since the method blanks and field duplicates are acceptable, the data are assumed to be acceptable.

The quality of the data is judged against the EPA guidance documents listed above. Upon consideration of the information presented here, the data are acceptable.

5.0 Review of Inorganic Analyses

5.1 Custody, Preservation, Holding Times, and Completeness – Acceptable with Qualifications

The samples were analyzed within the required holding times and sample custody was maintained as required. Except as noted below, the samples were properly preserved. The reports are complete and contain results for all samples and tests requested on the COC forms.

The temperature of the samples in delivery groups K2200333 and K2200378 was above the recommended temperature range of 2 to 6 $^{\circ}$ C at the time of laboratory receipt. The temperature of the samples was 6.7 and 7.3 $^{\circ}$ C. Data qualifiers are not recommended.

The bicarbonate result of sample BXS-6 was incorrectly reported as ND. The laboratory was contacted and confirmed that the bicarbonate result is the same as the alkalinity result. The results page was corrected by the validation chemist and will be resubmitted by the laboratory.

The case narrative for report K2200199/K2200325 was resubmitted by the laboratory to define the X flag applied to the total Coliform results.

The sample bottles containing the total Coliform aliquots of samples BXN-1 and BXN-3 were not properly closed when they arrived at the laboratory. The laboratory did not analyze these samples for total Coliform.

The total Coliform analyses of samples BXS-1, BXS-2, BXS-3, BXS-5, and BXS-6 were preformed past the 30-hour holding time. Since all results were undetected, the samples were qualified as estimated detection limit (UJ).

Sample ID	Analyte	Qualification	Quality Control Exceedance
BXS-1	Total Coliform	UJ	Analysis holding time exceeded
BXS-2			Thatyons holding time executed
BXS-3			
BXS-5			
BXS-6			

5.2 Blank Analyses – Acceptable

5.2.1 Method Blanks

Method blanks were analyzed at the required frequency and target analytes were not detected above the reporting limits.

5.2.2 Field Blanks

Samples BXN-6, BXS-5, and MW-B were identified as field blanks. The field blanks are free of target analyses above the reporting limits.

5.3 Field Duplicates – Acceptable with Discussion

Three field duplicates are associated with the data. The RPD values of the field duplicate are listed in Table 2.

The RPD value of ammonia in field duplicate pair BXN-1/BXN-5 is high at 157%. Data qualifiers are not required because the results meet the alternative critical of less than five times the reporting limit and less than one reporting limit apart.

5.4 **Overall Assessment of Data**

The lack of matrix spike, duplicate, and laboratory control sample results limits the ability to define the accuracy and precision of the data set. Since the method blanks and field duplicates are acceptable, the data are assumed to be acceptable.

The quality of the data is judged against the EPA guidance documents listed above. Upon consideration of the information presented here, the data are acceptable.

6.0 Review of Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Analyses

6.1 Custody, Preservation, Holding Times, and Completeness – Acceptable

All samples were extracted and analyzed within the required holding times, all samples were received intact and were properly preserved, and sample custody was maintained as required. The reports are complete and contain results for all samples and tests requested on the COCs.

6.2 Blank Analyses – Acceptable with Qualifications

6.2.1 Method Blanks

Method blanks were analyzed at the required frequency. The method blanks are free of 2,3,7,8-substituted PCDDs and PCDFs as required by the Method.

The method blanks contained low levels of non-2,3,7,8-substituted PCDD and PCDF target analytes. Region 10 Functional Guidelines requires associated sample concentrations less than five times the blank concentration to be qualified as estimated detection limit (UJ). Sample concentrations greater than five times the blank concentration are not qualified. Associated sample results were qualified as shown in the following table.

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-1 (12-17-01)	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF	UJ	Result is less than 5 times the method blank concentration
L-2 (12-17-01)	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDF	UJ	Result is less than 5 times the method blank concentration
L-3 (1-15-02)	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8,9-OCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	IJ	Result is less than 5 times the method blank concentration
L-1 (2-11-02)	1,2,3,4,6,7,8-HpCDD	UJ	Result is less than 5 times the method blank concentration

BaxterArlington 4Q01-1Q02-DV-memo.doc

6.2.2 Field Blanks

Sample L-3A was identified as a field blank. The target analytes 1,2,3,4,6,7,8,9-OCDD and 1,2,3,4,7,8-HxCDF were detection in the field blank at 5.3 pg/L and 1.6 pg/L, respectively. Region 10 Functional Guidelines requires associated sample concentrations less than five times the blank concentration to be qualified as estimated detection limit (UJ). The associated samples were qualified as shown in the following table.

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-2 (2-11-02)	1,2,3,4,6,7,8,9-OCDD	UJ	Result is less than 5 times the field blank concentration

6.3 Isotope Dilution Internal Standard (Surrogate) Analyses – Acceptable with Qualifications

Labeled isotope dilution internal standard compounds were added to all samples, blanks, and QC samples as required. Except as noted below, all percent recovery values are within Method 1613B criteria.

Fourteen out of fifteen internal standard recovery values are below the Method criteria for sample L-3 (12-17-01). The recovery values range from 13.3 to 22.0%. Since the sample was recollected (L-3 collected 1-15-02), the original analysis has been rejected (qualified R).

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-3 (12-17-01)	All	R	Internal standard recovery below method criteria
			(Rejected in favor of reanalysis)

6.4 Instrument Recovery Internal Standard Analyses – Acceptable

Labeled instrument recovery internal standard compounds were added to all samples, blanks, and QC samples as required. All instrument recovery internal standards meet the Region 10 Functional Guidelines criteria.

6.5 Cleanup Recovery Internal Standard Analyses – Acceptable

The labeled cleanup recovery internal standard was added to all samples (and associated QC samples) that required cleanup. All cleanup recovery internal standards meet the Method 1613B criteria of 35 to 197%.

6.6 Compound Identification – Acceptable with Qualifications

Second column confirmational analyses of 2,3,7,8-TCDD and 2,3,7,8-TCDF positive results were preformed as required. The ratio of the integrated ion peaks were compared to the Method criteria and, except as noted below, all are acceptable.

2,3,7,8-TCDD was detected in the original analysis of sample 7-8. The sample was reanalyzed for confirmation on a dissimilar analytical column. As specified by the Region 10 Functional Guidelines, the primary analysis result has been rejected (qualified R) in favor of the non-detected confirmation result.

The ion abundance ratios of 2,3,4,6,7,8-HxCDF in sample L-1 (2-11-02) and 1,2,3,4,7,8-HxCDF in sample L-3A (2-11-02) are outside the Method 1613B criteria. The results for these analytes have been qualified as estimated detection limit (UJ).

The laboratory flagged the total TCDF and total PeCDF results of sample 7-8 X, indicating that coeluting interferences are contributing greater than 10% of the quantitated area. To alert the data user to the potential high bias to these results they have been qualified as estimated (J).

Sample ID	Analyte	Qualification	Quality Control Exceedance
7-8 (original analysis)	2,3,7,8-TCDD	R	Rejected in favor of confirmation analysis result
L-1 (2-11-02)	2,3,4,6,7,8-HxCDF	UJ	Ion abundance ratio outside method criteria
L-3A (2-11-02)	1,2,3,4,7,8-HxCDF	UJ	Ion abundance ratio outside method criteria
7-8	Total TCDF	J	Coeluting interference greater than 10% of total area
	Total PeCDF		

6.7 Ongoing Precision and Recovery Analyses – Acceptable

Ongoing precision and recovery samples were analyzed at the required frequency and all percent recovery values are within the Method criteria.

6.8 Field Duplicates

The field duplicates were not analyzed for PCDDs or PCDFs.

6.9 Overall Assessment of Data Useability

The laboratory reported several results in sample 7-8 that are above the calibration range. Ideally, the laboratory should have analyzed the sample at a dilution. All results that are above the calibration range have been qualified as estimated (J).

BaxterArlington 4Q01-1Q02-DV-memo.doc

Sample ID	Analyte	Qualification	Quality Control Exceedance
7-8	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF Total HpCDD	1	Result above the calibration range

The quality of the data is judged against the EPA guidance documents listed above. Upon consideration of the information presented here, the data are acceptable except where flagged with data qualifiers that modify the usefulness of the individual values. Results that are rejected are not useable for any purpose.

7.0 Definition of Data Qualifiers

7.1 Organic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are taken from *Contract Laboratory Program National Functional Guidelines for Organic Data Review* (USEPA 1999).

- U The analyte was analyzed for but not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the samples and meet quality control criteria. The presence or absence of the analyte cannot be verified.

7.2 Inorganic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are taken from Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994).

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
- R The data are unusable. (Note: Analyte may or may not be present.)

8.0 References

- EPA Region 10. 2001. Functional Guidelines for the Validation of High Resolution Mass Spectrometry Analysis of Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Data, Revision 5.0. EPA Region 10 Office of Environmental Assessment Quality Assurance Unit. July 16, 2001.
- APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. American Public Health Association. 1998.
- USEPA. 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. United States Environmental Protection Agency. Office of Solid Waste and Emergence Response. February 1994.
- USEPA. 1996. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) Third Edition, Updates I, II, IIA, IIB, and III. United States Environmental Protection Agency. Office of Solid Waste. December 1996.
- USEPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency Office of Emergency and Remedial Response. EPA540/R-99/008. October 1999.

BaxterArlington 4Q01-1Q02-DV-memo.doc

- USEPA. 1999a. Methods and Guidance for Analysis of Water, Version 2.0. United States Environmental Protection Agency Office of Science and Technology. EPA 821-C-99-004. CD ROM. June 1999.
- WDOE. 1997. Analytical Methods for Petroleum Hydrocarbons. Prepared by the Washington State Department of Ecology Toxics Cleanup Program and the Ecology Environmental Laboratory. June 1997.

Quality Assurance Review

J. H. Baxter Wood Preserving Facility, Arlington, Washington Fourth Quarter 2001 and First Quarter 2002 Sampling

Sample ID	Duplicate ID	Analyte	Sample Value	Duplicate Value	RPD
BXN-1	BXN-5	Barium	27.7	27.8	0.4
		Iron	4980	5250	5.3
		Manganese	1750	1740	0.6
		Nickel	32	27	17
		Chloride	14.4	14.2	1.4
		COD	8	9	12
		Conductivity	424	431	1.6
		Ammonia	0.07	0.58	157
		Nitrate & Nitrite	1.5	1.4	6.9
		pН	6.28	6.32	0.6
		Sulfate	27.4	26.6	3.0
		Tannin & lignin	0.6	0.5	18
-		TDS	272	257	5.7
•		TOC	2.1	2.2	4.6
BXS-1	BXS-6	Barium	27.1	27.2	0.4
		Manganese	464	470	1.3
		Nickel	27	22	20
		Zinc	14	< 10	NC
		Alkalinity	242	238	1.7
		Chloride	5.0	4.9	2.0
		COD	20	17	16
		Conductivity	471	474	0.6
		Bicarbonate	242	238	1.6
		Nitrate & Nitrite	0.2	0.3	40
		pН	6.17	6.14	0.5
		Sulfate	6.8	7.0	2.9
		Tannin & lignin	0.3	0.4	28
		TDS	275	246	11
		TOC	5.8	5.8	0
MW-2	MW-A	Calcium	11300	11000	2.7
		Magnesium	7170	6980	2.7
		Sodium	5690	5370	5.8

Table 2Field Duplicate Precision

RPD Relative percent difference

COD Chemical oxygen demand

TDS Total dissolved solids

TOC Total organic carbon

< The analyte was not detected at or above the reporting limit

NC Not calculable

Metals results are in ug/L

Inorganic results are in mg/L, except pH, which is in pH units

Sample ID	Analyte	Qualification	Quality Control Exceedance
L-1 (12-17-01)	Pentachlorophenol	J	Extraction holding time exceeded
L-2 (12-17-01)		UJ	
L-3 (12-17-01)		J	
L-3 (12-17-01)	Pentachlorophenol	J	Duel column difference greater than 40%
BXS-1	Total Coliform	UJ	Analysis holding time exceeded
BXS-2			
BXS-3			
BXS-5			
BXS-6			
L-1 (12-17-01)	1,2,3,4,6,7,8-HpCDD	UJ	Result is less than 5 times the method blank
	1,2,3,4,6,7,8,9-OCDD		concentration
	1,2,3,4,6,7,8,9-OCDF		
L-2 (12-17-01)	1,2,3,4,6,7,8-HpCDD	UJ	Result is less than 5 times the method blank
	1,2,3,4,6,7,8,9-OCDF		concentration
L-3 (1-15-02)	1,2,3,7,8-PeCDD	UJ	Result is less than 5 times the method blank
	1,2,3,4,7,8-HxCDD		concentration
	1,2,3,6,7,8-HxCDD		
	1,2,3,4,6,7,8,9-OCDD		
	1,2,3,4,7,8-HxCDF		
	1,2,3,6,7,8-HxCDF		
	2,3,4,6,7,8-HxCDF		
	1,2,3,4,6,7,8-HpCDF		
	1,2,3,4,7,8,9-HpCDF		
	1,2,3,4,6,7,8,9-OCDF		
L-1 (2-11-02)	1,2,3,4,6,7,8-HpCDD	UJ	Result is less than 5 times the method blank
			concentration
L-2 (2-11-02)	1,2,3,4,6,7,8,9-OCDD	UJ	Result is less than 5 times the field blank
			concentration
L-3 (12-17-01)	All PCDDs and	R	Internal standard recovery below method
-	PCDFs		criteria (Rejected in favor of reanalysis)
7-8 (original analysis)	2,3,7,8-TCDD	R	Rejected in favor of confirmation analysis
			result
L-1 (2-11-02)	2,3,4,6,7,8-HxCDF	UJ	Ion abundance ratio outside method criteria
L-3A (2-11-02)	1,2,3,4,7,8-HxCDF	UJ	Ion abundance ratio outside method criteria
7-8	Total TCDF	J	Coeluting interference greater than 10% of total
	Total PeCDF		area
7-8	1,2,3,4,6,7,8-HpCDD	J	Result above the calibration range
	1,2,3,4,6,7,8,9-OCDD		č
	1,2,3,4,6,7,8,9-OCDF		
	Total HpCDD		

Table 3Summary of Qualified Data

Analytes and qualifiers are only listed once when they apply to all samples.

Attachment 2

Laboratory Analytical Reports

February 22, 2002

Service Request No: K2200371

RueAnn Thomas J.H. Baxter Company 85 N Baxter Street Eugene, OR 97402

Re: Untreated Drains-Composite

Dear RueAnn:

Enclosed are the results of the sample(s) submitted to our laboratory on January 16, 2002. For your reference, these analyses have been assigned our service request number K2200371.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

The Dioxins/Furans analysis has been performed by Triangle Laboratories, Inc. The report is included in Appendix A.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

for

Mingta Lin Project Chemist

ML/II

Page 1 of _____

cc: Mary Larsen, J.H. Baxter Company (Arlington)

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 360/ 577-7222 • Fax 360/636-1068

Acronyms

	•
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

In._ ganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

JUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: Project: Sample Matrix:	J.H. Baxter & Company Untreated Drains-Composite Water		Service Request: Date Collected: Date Received: Date Extracted:	01/15/02 01/16/02
		ganic Parameters ts: mg/L (ppm)		
	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	pH (Units) 150.1 01/16/02	Solids, Total Suspended (TSS) 160.2 5 01/18/02	
Sample Name	Lab Code	τ.		
7-8 Method Blank	K2200371-001 K2200371-MB	6.53	480 ND KOP F 7-2	

Mil Fill _____ Date: 1/23/02 Approved By:

3ADW/061694

00371WET.DM1 - 3_Tests 01/23/02

 \mathcal{I}

Analytical Results

Client: Project:	J.H. Baxter & Company Untreated Drains-Composite	Service Request: Date Collected:	
Sample Matrix:	Water	Date Received:	

Diesel and Residual Range Organics

Sample Name:	7-8	Units: ug/L
Lab Code:	K2200371-001	Basis: NA
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	4400 Y	250	1	01/18/02	01/23/02	KWG0200529	
Residual Range Organics (RRO)	7200 O	500	1	01/18/02	01/23/02	KWG0200529	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	98	50-150	01/23/02	Acceptable	10099802
n-Triacontane	.91	50-150	01/23/02	Acceptable	•

Comments:

-

Page 1 of 1

Analytical Results

Client:	J.H. Baxter & Company
Project:	Untreated Drains-Composite
Sample Matrix:	Water

Service Request: K2200371 Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0200529-5	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U ND U	250 500	1	01/18/02 01/18/02	01/22/02 01/22/02	KWG0200529 KWG0200529	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	92	50-150	01/22/02	Acceptable	
n-Triacontane	89	50-150	01/22/02	Acceptable	

Comments:

∼``OLUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	
Project:	Untreated Drains-Composite	Date Collected:	
Sample Matrix:	Water	Date Received:	01/16/2002

Pentachlorophenol

Sample Name:	7-8	Units:	0
Lab Code:	K2200371-001	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	65 D	2.0	10	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	60	38-119	01/30/02	Acceptable	kp9.72

Comments:

COLUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company Untreated Drains-Composite Water	Service Request: Date Collected:	NA
Sumple matrix.	Walti	Date Received:	NA

Pentachlorophenol Sample Name: Method Blank Units: ug/L Lab Code: KWG0200644-4 Basis: NA **Extraction Method:** METHOD Level: Low **Analysis Method:** 8151M Dilution Date Date Extraction **Analyte Name** Result Q MRL Factor Extracted Analyzed Lot Pentachlorophenol ND U 0.20 1 01/21/02 01/30/02 KWG0200644

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	69	38-119	01/30/02	Acceptable

Comments:

Note

	al				CI	HA	IN	OF	= C	US	STO	DD	Y								SF	R#:	16	iW	371	
An Employee-Owned Compa	ny 1	317 South 13	th Ave. • K	elso, WA :	98626	• (360)) 577-7	222 •	(800)	695-72	22 • F	AX (36	50) 63	6-1068	3		PAG	E	1	_ OF				C #_		
PROJECT MANAGER COMPANY/ADDRESS 105201884 AVIINC PHONE # 3000425-2 SAMPLER'S SIGNATURE	LORTA	Drain Meye VE P VA 98	<u>s-Ce</u> r oBox i	305		Semivolation CONTAINED	Volatile Organics by GCA	Hydrocathy Bro	Fuel E. Diesel C below BTEX	W.H.CID Servini (FIQ)	PCB'S 164000000000000000000000000000000000000	Pesticides () Contract 1664 961	0 00000 000000000000000000000000000000	PALL Tetra BISIN 8151A	10. 8310 [PCPR	D JM - D	Cyanis below) Dissolved ales	Const Hex.Ch.	NH3-W CO, 130, PO, 1000	DOC: COD, Total, P. 105 4; F. NO, TOX 5 (circle) Total, P. TKi, Cie) 2,		1905 Dosol N-HOT.Y	/	There is a second se		/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	7 🦻	\ 8 8 8	128	$\left \frac{\tilde{z}}{\tilde{z}}\right $		Jō			₂ /ชี้รู้	D'HYA		{))) ()	Ø			$\left \right $	ぎん	Ŋ	/	REM	ARI
7-8	1-150	3:450	h]	Water									Х					\boxtimes			X	\mathbf{N}	1			
		ľ	•																			ľ				-
																					1					**
											-							1					<u> </u>			
																			<u> </u>							*****
																					<u> </u>					
· ·									· ·																	
																							 			
REPORT REQUIRE	: Method e, as S, MSD as Report	Р.О. # Bill To: РОВО	r	kużleo 7 77440	······	Tot Dissol *IND SPEC	ved Met ICATE CIAL II	ls: AI als: AI <u>STAT</u> NSTRI 5/Pt	As As EHY JCTIC	Sb Ba Sb B DROC DNS/C	a Be a Be CARBO OMMI	B Ca DN PR ENTS:	Cd OCEI		cr CL <u>AK</u> ال	J Fe	Pb I	Mg M	in Mo	o Ni	K Ag	Na		Sr Tl	Sn V Zr Sn V Zr CLE ONE	n
(includes all rav IV. CLP Deliverable V. EDD		Star Prov	dard (10-15 ide FAX Re uested Rep	sults	lays)		orph fa:		+nn ⁻	Tho	nas	e :	5ilí a	at	ael	Cle	ani	γ ² .								
RELINQUI	SHED BY:	L			RECE	IVED	BY;						REL	INQU	ISHED	BY:	<u></u>					BF	CEIVE	D BY:		
Signature	1-15-02 Date/Time	- 4:00p		an B	lait	k			653	-	Sign	ature	-		_	te/Tim	e			Signa	ture			Date/		
Printed Name	Firm	aujue.	Printe	DG d Name	ACK	F	irm	Ś			Print	ed Na	me		Fin	m				Printe	d Nam			Firm		

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

Project/Client AHBAP Work Order K22 00371	
Cooler received on 1/16/02 and opened on 1/16/02 by TBlack	
1. Were custody seals on outside of cooler? If yes, how many and where?	N N
2. Were seals intact and signature & date correct?	(Y) N
3. COC #	
Temperature of cooler(s) upon receipt: $2 \sqrt{1}$	
Temperature Blank:	
4. Were custody papers properly filled out (ink, signed, etc.)?	$\overline{\mathbf{Y}}_{\mathbf{N}}$
5. Type of packing material present brag- loose icen brags	
6. Did all bottles arrive in good condition (unbroken)?	() N
7. Were all bottle labels complete (<i>i.e.</i> analysis, preservation, etc.)?	
8. Did all bottle labels and tags agree with custody papers?	$(\mathbf{Y}) \mathbf{N}$
9. Were the correct types of bottles used for the tests indicated?	
10. Were all of the preserved bottles received at the lab with the appropriate pH?	-YN-
11. Were VOA vials checked for absence of air bubbles, and if present, noted below?	-Y-N-
12. Did the bottles originate from CAS/K or a branch laboratory?	(V) N
13. Are CWA Microbiology samples received with $> \frac{1}{2}$ the 24 hr. hold time remaining from collection?	<u>Y_N</u>
14. Was CL2/Residual negative?	Y N
Explain any discrepancies:	
	_

RESOLUTION: _____

Samples that required preservation or received out of temperature:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
				-		
	·	·				
			······			
	····-					

CRFREV.DOC12/24/01

CASE NARRATIVE

Analysis of Samples for the Presence of

Polychlorinated Dibenzo-*p*-Dioxins and Dibenzofurans by

High-Resolution Chromatography / High-Resolution Mass Spectrometry

Method 1613B (9/97)

Date:	February 4, 2002
Client ID:	Columbia Analytical Services
P.O. Number:	K2200371
TLI Project Number:	56465

This report should only be reproduced in full. Any partial reproduction of this report requires written permission from Triangle Laboratories, Inc.

Rev.11/19/97 WWW.TriangleLabs.com

5

Overview

The sample and associated QC samples were extracted and analyzed according to procedures described in EPA Method 1613B (September 1997). Any particular difficulties encountered during the sample handling by Triangle Laboratories will be discussed in the QC Remarks section below. This report contains results from only the 1613 dioxin/furan analysis of the water sample.

Quality Control Samples

A laboratory method blank and an ongoing precision and recovery (OPR) sample are extracted and analyzed with each batch of samples.

Quality Control Remarks

This analytical data has been released after being subjected to a series of inspections. General deviations from acceptable QC requirements are identified below. Specific QC issues associated with this particular project are:

Sample receipt: One water sample was received from Columbia Analytical Services in good condition on January 23, 2002 at 5°C and stored in a refrigerator at 4°C. The client's chain-of-custody indicated no chemical preservatives were utilized prior to shipment.

Sample Preparation Laboratory: None

Mass Spectrometry: None

Data Review: The analysis of the field sample exhibits the presence of saturated OCDD analyte signals (signals outside the dynamic range of the instrument). The affected analytes is flagged "S" on the quantitation report. The results for this analytes should be considered minimum estimates of the actual concentrations present in the sample.

General Comments: No 2,3,7,8-substituted target analytes were detected in the method blank above the target detection limit (TDL).

The detection limits in some samples may be above the Target Detection Limit due to Method 1613B reporting format which requires that GC peaks which do not meet QC criteria for ion-abundance ratio be reported in the detection limit.

The analytical data presented in this report are consistent with the guidelines of Method 1613B. Any exceptions have been discussed in the QC Remarks section of this case narrative with emphasis on their effect on the data. Should Columbia Analytical Services

have any questions or comments regarding this data package, please feel free to contact our Project Scientist, Mary McDonald, at 919/544-5729 ext. 4021.

For Triangle Laboratories, Inc.,

Released by,

Kennith Varley Kenneth Varley

•

Report Preparation Chemist

The total number of pages in the data package is: 360.

An Employee-Owned Compo	COI S ^{INC} Brny	1317 South 1	13th Ave	Kalaa 1844		ΗA													,		S	R#:	<u></u> C	200	135
PROJECT NAME		1317 South 1	ISTITAVE, • 1	Nelso, WA	98626	6 • (36)	D) 577-7	7222	(800)	695-7	222 •	FAX (360) 6	36-106	68			ΞE			F		C	C #	
PROJECT NUMBER							/ ,	/	1		/		$ \int $	T		7	7	T	7	T	24.9020 1 40X 10C	7		7	7
PROJECT MANAGER M	· /		-			/		81	BTEX	1	/		1	151		/	1 4	7	/	6	15	10	7/	/	/
COMPANY/ADDRESS	ingta	LIN					£ / E	ξ /		-1		SH	' n/		1	' /	alate.	/			۱ĕ	/ ନ୍ଦ୍ର	/ సె	/ /	/ /
Ľ /·	O. KOY	474	-			7\$	12			<u> </u>	× / 4	<u>88</u>	ers	N N	al l	7/		B /	la la		<i>₹</i> /	2] g	181		
Kel	50 - IV.	1. 984	62.6			7 <i>ई</i>		/_`						<u>8</u> /8	4		100	/ វ	5/4	Ê/a	` / `	۳/۱	a the second		
Kell PHONE # 360-501	- 334	FAX #			7	Semivolarii CONTAINE	Volatile Control by GC		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		100	/ ථ	10,00		GCMS 8310 SINC		10	/ ¹	100		/ ç	$\langle \rangle$	\mathbf{V}		/
SAMPLER'S SIGNATURE					\neg			58/3		<u></u>	46		H a	et a		N al	elon elon	01	10 201		10		r /	' /	' '
	1	1	T							20	e l'e	ticiel			s s					0 @/ : 0/	å /.				/
SAMPLE I.D.	DATE	TIME	LAB I.D.		/ ₹	<u> </u> "	/~%	$\frac{1}{\hat{x}}$	5/00)ð		္ရ / ရီ ရွ	\$/Š,	De la		<u></u> [] z z z	දී/දී	T /E	<u>ک</u> ایج	ن _م /۵	\$ / .	\mathbb{N}			
7-8	1/15/02	1545-		tho		ł	Volatile 0. 000 by GC.						ſ	1	$f^{}$	-	7	1	f	f^{-}	\leftarrow		/	/	/ F
																			┨───		\wedge		<u> </u>		
		2																ļ	ļ	<u> </u>					
	-													ļ											
*****																					1				
																	-+			-					
· •																							1		
REPORT REQUIREM	ENTO	INVOI	CE INFORI	MATION			1			[
I. Routine Report: N		P.O. #			_ [Circle v																		L-	
Blank, Surrogate,	as	Bill To: _			-	Tota	Metals	s: Al	As S	b Ba	Beł	B Ca	Cd	Co C	r Cu	Fe F	b M	g Mr	Mo	Ni K	< Ag	Na S	Se Sr	TI S	n V
required					- [a. Ai	As a	ю ва	ве	вса	Cđ	Co C	r Cu	Fe I	Ph M	la Mr	Mo	A1: 1			Se Sr	ті е	- V
II. Report Dup., MS,	MSD as	TURNARC	UND REQ	UIREME						11007	100		DCED	URE:	AK	CA	WI	NOR	HTWE	EST		R:	the second s		
		24 hr		48 hr.			· · ·	JINU	CHO	13/00	MME	NIS:			_									10010	
III. Data Validation R (includes all raw o	eport	5 Day					INI			Usl	me	had	. 1	61	5										
(V. CLP Deliverable F			dard (10-15 w		ys)		Fur	an.	5																
V. EDD	.sport	Provid	de FAX Resu	ilts																					
	•	Real	ested Repor	+ Dat-			C		I	~			,	r											
				i Date			<u> </u>	enf	· h) Tr	<i>iar</i>	1al-	2 1	a bs	1										
RELINQUISH	ED BX:D/	102 0440				ED B																			

56465		tical Servi	h. "1			
	101.	5, REVISION				alysis (c J 00771 2
K2200371 AQUEOUS 316-39-1A	Date Extracted:	01/25/2002		Spike File: ICal: ConCal:	UF5	61B2S 121B 20076
1.050 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a U007709 CGK		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Conc. (p	g/L) DL	F	latio	RT	RRT	Flags
14.6	R		0.89	27.23	1.001	
						Ē
135600 丁	-			41:49	0.999	SE_
10.0						
					1.001	
				30:31	1.000	JB_
			1.50	31:13	1.001	B
			1.22	33:56	1.000	
			1.23	34:03	1.000	
			1.18	34:31	1.000	
	2.1					
			1.03	37:01	1.000	
			1.06	38:36	1.000	
47030 J	~	i I	0.88	42:05	1.005	 E
Conc. (pg	/L) Number DL					Flags
100640 J	2					Ē
	_					
258 -	Q					37
258 J 1970 J	9 10					X
258 J 1970 J 14230	9 10 12					X X
	: 7-8 K2200371 AQUEOUS 316-39-1A 1.050 L n/a DB-5 Conc. (pr 14.6 250 756 2050 1590 57530 J 135600 J 18.3 44.6 50.0 412 290 557 ND 17390 907 47030 J	: 7-8 101. AQUEOUS 316-39-1A Date Received: Date Extracted: Date Analyzed: 1.050 L Dilution Factor: Blank File: DB-5 Main Pile: Analyst: Conc. (pg/L) DL 14.6 R 250 250 756 2050 1590 57530 J 135600 J 18.3 44.6 50.0 412 290 557 ND 2.1 17390 907 907 47030 J 78.1 8 954 11 11540 7	7-8 K2200371 AQUEOUS 316-39-1A Date Received: 01/23/2002 Date Extracted: 01/25/2002 Date Analyzed: 01/31/2002 1.050 L n/a Dilution Factor: n/a Blank File: U007709 Analyst: CGK Conc. (pg/L) DL 14.6 R 250 756 2050 1590 57530 J 135600 J 18.3 44.6 50.0 412 290 557 ND 18.3 44.6 50.0 412 290 557 ND 18.3 44.6 50.0 412 290 557 ND 18.3 44.6 50.0 412 290 557 ND 2.1 17390 907 47030 J 2.1 17390 907 47030 J 78.1 8 954 954 11 11540	T-8 A K2200371 AQUEOUS AQUEOUS Date Received: 01/23/2002 Date Analyzed: 01/25/2002 Date Analyzed: 01/31/2002 1.050 L Dilution Factor: n/a N/a Blank File: U007709 DB-5 Analyst: CGK Conc. (pg/L) DL Ratio 14.6 R 0.89 0.52 756 1.24 2050 1.25 13500 J 1.03 1.03 135600 J 0.97 1.03 44.6 1.49 1.23 1.23 57530 J 1.18 1.23 135600 J 1.03 1.23 557 1.18 1.03 1.03 907 1.06 47030 0.88 Conc. (pg/L) Number DL 78.1 8 954 11 11540 7 1 1	Toris, Revision B PCDD/PCD K2200371 Analysis Fil AQUEOUS Date Received: $01/23/2002$ Spike File: 316-39-1A Date Received: $01/25/2002$ ICal: Date Analyzed: $01/31/2002$ Concal: 1.050 L Dilution Factor: n/a % Moisture: DB-5 Analyst: CGK % Solids: Conc. (pg/L) DL Ratio RT 14.6 R 0.89 27:23 250 1.52 31:32 756 1.24 34:38 2050 1.25 34:44 1590 1.25 35:03 57530 3 1.03 38:04 135600 0 1.22 35:03 57730 3 1.03 38:04 135600 2.1 1.23 34:03 50.0 1.23 34:03 37:01 907 2.1 1.18 34:31 ND 2.1 1.18 34:31 ND 2.1 1.33 37:01	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Page 1 of 2

.

Triangle Laboratories, Inc.⊛ 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 19:55 02/01/2002

161B_PSR v2.04, LARS 6.25.04

104.402

intad. 10.55
TLI Project: Client Sample	56465 : 7-8	lumbia 1613, Rev	<u> </u>	cal Serv Tetra On	ly PC	DD/PCD nalysis Fi		•
Client Project: Sample Matrix: TLI ID:	K2200371 AQUEOUS 316-39-1A	Date E	xtracted:	01/23/2002 01/25/2002 02/01/2002		Spike File: ICal: ConCal:	SPC0 PF21 P020	
Sample Size: Dry Weight: GC Column:	1.050 L n/a DB-225	Dilutio Blank Analys		n/a U007709 ISY		% Moisture: % Lipid: % Solids:	: n/a n/a n/a	
Analytes	Co	nc. (pg/L)	DL		Ratio	RT	BBT	Flags
2,3,7,8-TCDF		ND	14.4					
Internal Standard	Co	nc. (pg/L)	% Recove	ery QC Lin	nits Ratio) AT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDF		946	49.7	29%-14	0% 0.78	3 23:28	1.052	
Recovery Standard	1				Ratio	RT		Flags
¹³ C ₁₂ -1,2,3,4-TCDD					0.81	22:18		

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 10:22 02/04/2002

ار lumbia Analytical Servir

TLI Project:56465Client Sample:7-8

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: U007712

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits Ratio RT	RRT Flags
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1020 1000 927 986 1130 2300 933 1000 1010 1000 1010 1060 1090 924 925 994 916	53.6 52.7 48.7 51.8 59.3 60.4 49.0 52.7 52.9 55.9 57.3 48.5 48.6 52.2 48.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.006

Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	173	91.0	42%-164%	27:23	1.007	

Recovery Standards	Ratio RT Flag:	,
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.82 27:12 1.25 35:03	

Data Reviewer: 02/01/2002

Page 2 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 19:55 02/01/2002 79

161B_PSR v2.04, LARS 6.25.04

6465 •8 0371 EOUS 9-1A	Date Rece			Toxicity Equiva Analysis File	1
EOUS		••••••••••••••••••••••••••••••••••••••			
	Date Extra Date Anal	acted:	01/23/02 01/25/02 01/31/02	Spike File: ICal: ConCal:	SP161B2S UF5121B UB20076
L		•	1 U007709 CGK	% Moisture: % Lipid: % Solids:	n/a n/a n/a
Conc. (pg	/L)	TEF		Equivalent	
14.6 250 756 2050 1590 57530 135600 LTD LTD 50.0 412 290 557 LTD 17390 907	x x x x x x x x x x x x x x x x x x x	1. 0.1 0.1 0.1 0.01	1 = = = = = = = = =	14.6 250 75.6 205.0 159.0 575.30 13.5600 25.0 41.2 29.0 55.7 173.90 9.07	
	14.6 250 756 2050 1590 57530 135600 LTD LTD LTD 50.0 412 290 557 LTD 17390	L Dilution F Blank File Analyst: Conc. (pg/L) 14.6 x 250 x 756 x 2050 x 1590 x 57530 x 135600 x LTD x LTD x LTD x 50.0 x 412 x 290 x 557 x LTD x 17390 x 907 x	L Dilution Factor: Blank File: Analyst: Conc. (pg/L) TEF 14.6 x 1. 250 x 1. 756 x 0.1 2050 x 0.1 2050 x 0.1 1590 x 0.1 1590 x 0.1 57530 x 0.01 135600 x 0.000 LTD x 0.1 LTD x 0.1 LTD x 0.1 290 x 0.1 557 x 0.1 557 x 0.1 LTD x 0.1 17390 x 0.01 907 x 0.01	L Dilution Factor: 1 Blank File: U007709 Analyst: U007709 CGK E E E I4.6 x 1. = 250 x 1. = 756 x 0.1 = 2050 x 0.1 = 1590 x 0.1 = 135600 x 0.0001 = LTD x 0.1 = 135600 x 0.05 = 412 x 0.1 = 290 x 0.1 = 135600 x 0.05 = 11D x 0.1 =	LDilution Factor:1% Moisture:Blank File:U007709% Lipid:Analyst:CGK% Solids:Conc. (pg/L)TEFEquivalent14.6x1.=250x1.=250x1.=250x1.=250x0.1=756x0.1=2050x0.1=1590x0.1=1590x0.1=57530x0.0001=135600x0.0001=135600x0.05=50.0x0.5=50.0x0.5=290x0.1=170x0.1=17390x0.1=17390x0.01=17390x0.01=907x0.01=

Total WHO Dioxin TEFs for Humans: 1632 pg/L

{...} indicates that the value is that of a Detection Limit. Note: LTD = Less Than Target Detection Limit

Page 1 of 1

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491 GRY_TEF v1.08, MILES 4.22.16

Toxicity Equivalents Report

TLI Project:	56465			
Sample:	7-8			
File:	U007712			
Analyte		Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD		14.6	1.0	14.60000
1,2,3,7,8-PeCDD		250	1.0	250.00000
1,2,3,4,7,8-HxCDD		756	0.1	75.60000
1,2,3,6,7,8-HxCDD		2050	0.1	205.00000
1,2,3,7,8,9-HxCDD		1590	0.1	159.00000
1,2,3,4,6,7,8-HpCDI		57530	0.01	575.30000
1,2,3,4,6,7,8,9-OCD	D	135600	0.0001	13.56000
2,3,7,8-TCDF		0	0.1	0.00000
1,2,3,7,8-PeCDF		0	0.05	0.00000
2,3,4,7,8-PeCDF		50.0	0.5	25.00000
1,2,3,4,7,8-HxCDF		412	0.1	41.20000
1,2,3,6,7,8-HxCDF		290	0.1	29.00000
2,3,4,6,7,8-HxCDF		557	0.1	55.70000
1,2,3,7,8,9-HxCDF		0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF		17390	0.01	173.90000
1,2,3,4,7,8,9-HpCDF		907	0.01	9.07000
1,2,3,4,6,7,8,9-OCDI	E	47030	0.0001	4.70300

Total WHO Dioxin TEFs for Humans

1631.63 pg/L

February 26, 2002

Service Request No: K2109434

Rue Ann Thomas J.H. Baxter Company 85 N Baxter Street Eugene, OR 97402

Re: J.H. Baxter & Co./Lysimeters

Dear Rue Ann:

Enclosed are the results of the sample(s) submitted to our laboratory on 12/20/01. For your reference, these analyses have been assigned our service request number K2109434.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

mingulin

Mingta Lin Project Chemist

ML/dj

Page 1 of _____

cc: Mary Larson (J.H. Baxter, Arlington)

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- **B** The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

,

•

COLUMBIA ANALYTICAL SERVICES, INC.

Client:J.H. Baxter & CompanyProject:LysimetersSample Matrix:Water

Service Request No.: Date Received:

K2109434 12/20/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 12/20/02. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel and Residual Range Organics by Method NWTPH-Dx

A sulfuric-acid/silica-gel cleanup on the sample extracts was requested on all samples. Since the analytes were not detected in the extracts without the cleanup, no further cleanup was performed.

No anomalies associated with the analysis were observed.

Pentachlorophenol by EPA Method 8151M

Holding Time Exceptions:

The preparation of all samples was initially performed on 12/21/01 within holding time. There was contamination from the extraction/derivitization procedures present in the extraction batch KWG0108630. The contamination was significant enough to prevent report of the original analysis. Efforts were made to re-extract the samples as soon as possible after the analytical system was back in control. However, re-extraction of the samples was performed past the recommended holding time. The results from the re-analysis have been reported.

Sample Confirmation Notes:

The confirmation comparison criterion of 40% difference for Pentachlorophenol was exceeded in sample L-3. The result is less than two times the MRL and precision data is not meaningful.

Dioxins/Furans by EPA Method 1613B

This analysis is performed by Triangle Laboratories, Inc (TLI). Narratives related to this analysis have been addressed in the TLI report (Appendix A).

Approved by_

mth

Date 2/26/02

OLUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	12/17/2001
Project:	J.H. Baxter & Co./Lysimeters	Date Collected:	
Sample Matrix:	Water	Date Received:	
•		Date Collected: Date Received:	

Diesel and Residual Range Organics

Sample Name:	L-1	Units:	U
Lab Code:	K2109434-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	420	1	12/22/01	12/26/01	KWG0108657	
Residual Range Organics (RRO)	ND U	840	1	12/22/01	12/26/01	KWG0108657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl	73	50-150	12/26/01	Acceptable	K024-3-22	
n-Triacontane	83	50-150	12/26/01	Acceptable		

.

÷

" "PLUMBIA ANALYTICAL SERVICES, INC.

Analytical Results

Client:	J.H. Baxter & Company	Service Request: K	2/17/2001
Project:	J.H. Baxter & Co./Lysimeters	Date Collected: 1	
Sample Matrix:	Water	Date Received: 1	

Diesel and Residual Range Organics

Sample Name:	L-2	Units:	Ç
Lab Code:	K2109434-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	470	1	12/22/01	12/26/01	KWG0108657	
Residual Range Organics (RRO)	ND U	930	1	12/22/01	12/26/01	KWG0108657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Ņote		
o-Terphenyl	73	50-150	12/26/01	Acceptable	Ko 4.3.2	
n-Triacontane	79	50-150	12/26/01	Acceptable	ş	

Comments:

.

OLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2109434

 Date Collected:
 12/17/2001

 Date Received:
 12/20/2001

Diesel and Residual Range Organics

Sample Name:	L-3	Units: ug/L
Lab Code:	K2109434-003	Basis: NA
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	450	1	12/22/01	12/26/01	KWG0108657	
Residual Range Organics (RRO)	ND U	900	· 1	12/22/01	12/26/01	KWG0108657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	, · ·	
o-Terphenyl n-Triacontane	76 81	50-150 50-150	12/26/01 12/26/01	Acceptable Acceptable		Kp43-2

Analytical Results

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units: ug/L
Lab Code:	KWG0108657-5	Basis: NA
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U ND U	250 500	1	12/22/01 12/22/01	12/26/01 12/26/01	KWG0108657 KWG0108657	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	77	50-150	12/26/01	Acceptable	
n-Triacontane	94	50-150	12/26/01	Acceptable	

.

Comments:

→LUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	
Project:	J.H. Baxter & Co./Lysimeters	Date Collected:	
Sample Matrix:	Water	Date Received:	

Pentachlorophenol

Sample Name:	L-1	Units: ug/L
Lab Code:	K2109434-001	Basis: NA
Extraction Method: Analysis Method:	METHOD 8151M	Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	0.49	J	0.20	1	01/10/02	01/25/02	KWG0200443	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	86	38-119	01/25/02	Acceptable	Ka 43.02

"OLUMBIA ANALYTICAL SERVICES, IN"

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2109434

 Date Collected:
 12/17/2001

 Date Received:
 12/20/2001

Pentachlorophenol

Sample Name:	L-2	Units:	0
Lab Code:	K2109434-002	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	NDUC	AJ 0.20	1	01/10/02	01/25/02	KWG0200443	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	88	38-119	01/25/02	Acceptable	Kp 4.7.02

"ULUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2109434

 Date Collected:
 12/17/2001

 Date Received:
 12/20/2001

Pentachlorophenol

Sample Name:	L-3	Units:	0
Lab Code:	K2109434-003	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M		

Analyte Name	Result Q	MRL	Dilution • Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	0.31 P J	0.20	1	01/10/02	01/25/02	KWG0200443	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	91	38-119	01/25/02	Acceptable	1023-2

"JLUMBIA ANALYTICAL SERVICES, D

Analytical Results

Client: Project:	J.H. Baxter & Company J.H. Baxter & Co./Lysimeters	Service Request Date Collected	
Sample Matrix:	Water		
		Date Received	NA

Pentachlorophenol Sample Name: Method Blank Units: ug/L Lab Code: . KWG0200443-4 Basis: NA **Extraction Method:** METHOD Level: Low **Analysis Method:** 8151M Dilution Date Date Extraction **Analyte Name** Result Q MRL Factor Extracted Analyzed Lot Note Pentachlorophenol ND U 0.20 1 01/10/02 01/25/02 KWG0200443

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	73	38-119	01/25/02	Acceptable

Analytice		CHAIN OF CUSTODY SR#: Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068 PAGE OF COC #																								
An Employee-Owned Compan	y .	317 South 1	3th Ave. • K	(elso, WA	98626	• (360)	577-7	222 •	(800)	695-72	222 •	FAX (360) 63	86-106	В		PAG	E		0	DF COC #					
PROJECT NONDER	Lysineters																	105 4. F. NO.	10C	1650 506 D	A I	The second		/		
Arlington Blog 435-21 SAMPLER'S SIGNATURE SAMPLE I.D.	te		<u>8223</u> 0 <u>4</u> 25- 1 LAB I.D.	303	NUMARY UT	Semivolatio	Volatile 0	Hydrocarth	Fuel Fire Piesel (OILW-HOID SCIERCO	PCB's 1 386/ PD	Pesticine Com	Chlorophy Chlerbick	PALLS Tetta	GCMS.C. 8310[] S		Cyanica Dial or Dial	DH. Const Hex	NH 3. N 50, 736, 736, 736, 736, 736, 736, 736, 736	DOC (circle)	3020 [] 40	- HEI-	The second	9	REMA	ARKS
L-1	12-17	10:15 Am		ubter	1							[X	1	[ſ		ſ	f	f	\bigtriangledown	\mathbf{f}	7	<u> </u>	f	
L-2	12-17	11:30 AM		Waler	12								$\mathbf{\nabla}$					1	1		Ŕ	\mathbf{k}	}			<u> </u>
L-3	12-17	12:350	n	Weter	12								\mathbb{K}								K	${\bigtriangledown}$	1			
												1														
	ļ																									
							1																			
											1															
:		•											•												•	
							ĺ																			
REPORT REQUIREM	Aethod as	INVOICE INFORMATION P.O. # Bill To: Total Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS:																								
III. Data Validation R (includes all raw o	lata)	48 hr. 5 Day Standard (10-15 working days) Provide FAX Results Results Results Results Results																								
IV. CLP Deliverable F	report	Prov	ride FAX Res	sults		At	h:	Rue	:An	nT	hom	هج														
		Rec	uested Repo	ort Date				Ma	ryL	ar	50n															
Signature		(2:300 log(co.	Signa	Fre h	RECE D DDK		<u>io</u> lur e/Time	i o As	80		Signa			NQUI		e/Time				Signatu				Date/Ti	me	
	Printed Name Firm Printed Name Firm					Printed Name Firm							Printed Name Firm			- 1										

Columbia Analytical Services Inc.											
	R11-2-1 91/34										
Project/ClientWork Order K21Work Order K21											
Cooler received on $12/20/01$ and opened on $12/20/01$ by $20/01$											
l.	Were custody seals on outside of cooler? (TRB)	(FESNO									
2	Were seals intact and signature & date correct?	KES TO									
3.	COC #	\bigcirc									
	Temperature of cooler(s) upon receipt: 3.1										
	Temperature Blank: <u>4.7</u>										
4 .	Were custody papers properly filled out (ink, signed, etc.)?	🗟 NO									
5.	Type of packing material present BURMO	- · .									
б.	Did all bottles arrive in good condition (unbroken)?	(C) NO									
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?	ES NO .									
8.	Did all bottle labels and tags agree with custody papers?	ES NO									
9.	Were the correct types of bottles used for the tests indicated?	ES NO									
10.	Were all of the preserved bottles received at the lab with the appropriate pH and/or Cl2/Res negative?	YES NO									
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?	YES NO									
12.	Did the bottles originate from CAS/K or a branch laboratory?	(YES NO									
Explain	any	discrepancies									

Samples that required preservation c	1	1		1		· · · · · · · · · · · · · · · · · · ·
Sample ID	Reagent	Volume	Lot Number	Bòttle Type	Rec'd out of Temperature	Initials
					:	
			· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·						
			·			
			·······			
	-					
· · · · · · · · · · · · · · · · · · ·	-					
		 	· · · · · · · · · · · · · · · · · · ·			
	_ <u></u>					

CRFREV.DOC9/28/01

. .

CASE NARRATIVE

Analysis of Samples for the Presence of

Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans by

High-Resolution Chromatography / High-Resolution Mass Spectrometry

Method 1613B (9/97)

Date:February 25, 2002Client ID:Columbia Analytical ServicesP.O. Number:K2109434TLI Project Number:56279 and 56279r1

This report should only be reproduced in full. Any partial reproduction of this report requires written permission from Triangle Laboratories, Inc.

Rev.11/19/97 WWW.TriangleLabs.com

÷

Overview

The samples and associated QC samples were extracted and analyzed according to procedures described in EPA Method 1613B (September 1997). Any particular difficulties encountered during the sample handling by Triangle Laboratories will be discussed in the QC Remarks section below. This report contains results from only the 1613 dioxin/furan analyses of the water samples.

Quality Control Samples

A laboratory method blank and an ongoing precision and recovery (OPR) sample are extracted and analyzed with each batch of samples.

Quality Control Remarks

This analytical data has been released after being subjected to a series of inspections. General deviations from acceptable QC requirements are identified below. Specific QC issues associated with this particular project are:

Sample receipt: Three water samples were received from Columbia Analytical Services in good condition on December 27, 2001 at 5.0°C and stored in a refrigerator at 4°C. The client's chain-of-custody did not indicate whether or not chemical preservatives were utilized prior to shipment. A replacement sample was received on January 23, 2002 for sample L-3 under project number 56466.

The sample bottles were only three-quarters full when received.

The sample identifications on the sample labels did not exactly match those for project 56279 on the client's chain of custody. The sample identifications on the sample labels were used for all reports and paperwork.

Sample Preparation Laboratory: None

Mass Spectrometry: None

Data Review: The samples under project 56279 were processed without the addition of a clean-up standard. The sample Lysimeter-3 from project 56279 has low recoveries for the internal standards. As a result, the detection limits for this sample are above the target detection limits. Sample L-3 from project 56279r1 has possible contamination from a laboratory source. However, the levels are all below the target detection limits. As per the client's request, both sets of data will be released.

The minimum levels for the field samples were not obtained because the method required sample volumes of 1.0 liter for each sample were not available for extraction.

General Comments: No 2,3,7,8-substituted target analytes were detected in the method blank above the target detection limit (TDL).

The analytical data presented in this report are consistent with the guidelines of Method 1613B. Any exceptions have been discussed in the QC Remarks section of this case narrative with emphasis on their effect on the data. Should Columbia Analytical Services have any questions or comments regarding this data package, please feel free to contact our Project Scientist, Mary McDonald, at (919) 544-5729 ext. 4021.

For Triangle Laboratories, Inc.,

Released by,

Kenth Jally

Kennefh Varley Report Preparation Chemist

The total number of pages in the data package is: $\frac{100}{100}$

Analytic					Cl		IN														SF	? #:	KZ	210	9434
An Employee-Owned Compar	איג זיער 15	317 South 10	3th Ave. • K	elso, WA s	98626	• (360)) 577-72	222 •	(800) 6	<u> </u>	22 • F	-AX (3	60) 636	6-1068		F	PAGE	Ξ		_ OF			_ cc)C #_	
PROJECT NAME								/	Τ	7	7	7	7	7.0	7	7	7	7	7	7	7	1	7	7	T T T
PROJECT NUMBER	Min	GTA L	IN			\neg	Volatile Or Difference by GCM.	o /	A A	/ /	!		1.	1514	/	Metals, Phenol		/ /	NH-03-10, CO, 302, PO, 7			2060	/ .		' / /
PROJECT MANAGER	С	AS				78	ූ / දු්										Palat				~ ~				
COMPANY/ADDRESS	O ROS	x 47	9			OF CONTAINERS	Volatile Or B270 Divis by GCAN	/ 8			10,	[8] [-]	s ler	51M		י ו				Sa a	40X 16.	§ / ,			
KELS O	WA	- 986	26		/			/ a %		in in				10	15		ia l	, , , ,	200	otal	/ð	، / : چ /	/		/ /
PHONE #		FAX #			7	بر بر بر	0 2 / 2 2 /		ร็อไ	ହୁଁ ଶ ଜୁଣ୍ଡ ପ	28 4 8 8 7 8		81 A /		101				00/	ନ୍ ଞ୍ଚି		ox V	'	' /	/
SAMPLER'S SIGNATURE					74	Volat						12 Cles			8 5	10			2 0 /C % ~ / 2		å /	$\frac{3}{2}$			/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX		Sem Sem				<u> </u>				Į ž	15	Neta See		Ha		S/ ð	\$/\`	-\			REMARKS
L -1	12/17	f	LAB I.D.	HZO			/				1 4	/~0	<u> </u>	\sim	1-4		/ <u> </u>	/	f	$\overline{/}$			{	{	KZ109434 - 001
L-2	12/17	1015		H20	1																X				
L-3:	111	1/30	·		/															<u> </u>	X				- 003
<u> </u>	12/17	1235		1720																	$ \times$				-003
													-							ļ	 	ļ			
· · · · · · · · · · · · · · · · · · ·																				ļ	ļ				
· · · · · · · · · · · · · · · · · · ·																			ļ			ļ			
																					<u> </u>				
																			-						
1 49								:				Ì													
	IENTS	INVO	ICE INFOF KZ109	MATION		Circle	which r	netals	are to	be anal	yzed:														
I. Routine Report:	Method	P.O. # _∠ Bill To:	CC107	737	-	Tot	ai Meta	is: Al	As S	Sb Ba	Be	В Са	Cd	Co C	Cr Cu	Fe	Pb N	/Ig M	n Mo	Ni	K Ag	Na	Se S	r TI s	Sn V Zn Hg
Blank Surrogate	e, as					Dissol	ved Meta	als: Al	As	Sb Ba	a 6e	B Ca	Cd	Co (Cr Ci	Fe	Pb N	Mg M	In Mo	o Ni	K Ag	j Na	Se S	Sr Tl	Sn V Zn Hg
II. Report Dup., MS	S MSD as					*INDI	CATE	STAT	EHY	DROC	ARBO	DN PF	OCE	DURE	: AK	CA	WI	NO	RHTW	/EST	OTH	ER:		_ (CIR	CLE ONE)
required	5, MOD 43	TURNAR 24 t		QUIREME	INTS	SPEC										•									
III. Data Validation	Report	241 5 Di		40 m.			J)iox	ins/	Fur	ans	by	E	PA I	613	ι. γ	Vo v	caω	da	ta	in	pac	ka	ge.	
(includes all raw	í I		ndard (10-15	working d	ays)			١				0			•								Ľ		
IV. CLP Deliverable Report Provide FAX Results																									
V. EDD Requested Report Date SENT-						SENTTOTRIANGLE																			
RELINQUIS	HED BY: (L	Λ		RECE			1	,	<u> </u>		•			(CHE1	- -			<u> </u>				OF 11 /		
Jan Black							1 D ?>	RELINQUISHED BY:						RECEIVED BY:											
Signature Buck Date/Time Signature Date/Time				2		Sign	ature			Dat	e/Tim	е		Signature Date/Time				Time							
Printed Name	, Firm		Printe	ed Námé-	/	Fi	łm				Print	ted Na	Ime	·····	Fin	n				Printe	d Nar	ne		Firm	

	Analytice	al				-										IU				Y JI PAGE		IEG		
г	An Employee-Owned Company	ע 1317 S	outh 13th Ave	e. • Kelso, WA 986	526 • (360) 577-	7222	• (800) T	695-73		FAX (360) (03	-1068							эте				<u></u>	
	PROJECT NAME PROJECT MANAGER COMPANY/ADDRESS SAMPLERS SIGNATURE	ROJECT MANAGER						1 3 m		/		/	/						/			/		
F		D 175	THE			NUMBER		1	/	/	/	/	/	/	/	/	/	/	/	/	/	/		ARKS
I.	 	DATE	TIME		HATHA		1	<i>i</i>		[/	/	/	((<u> </u>	(([([((
$^{\sim}$		1/5	<u>)900</u>	/	(I)											t				<u> </u>				
-																								
\mathbf{F}						<u> </u>										<u> </u>				1		1		
┝																								
ł						+										<u> </u>						<u> </u>		
-				·																				
╞													·									<u> </u>		
╞		+				<u> </u>																1		
\mathbf{h}						+																		
ł	TELINODISHED		 	ECEIVED BY:	TURN		UD REQ	JIREM	ENTS		REPOR	T REQI	UIREMI	ENTS		INVO	ICE INI	ORMA	TION:		}	S,	AMPLE RECE	IPT:
ł	Frank H	all a	Bi	Hum		-	48 h					ine Repo at (inclue		2MS		Ĵ	20	ゆう	8F		Chinai	\84.		
~	Signature	471	Signature	Hinghi			(10-15 w /erbal Pre	-			II. Repo MSD char	, as requi ged as s	uired, ma amples)	ay be	P.O.# Bill To				-0		i			
	Printed Name		Printed Na	The second	[Results	r Giudi i i i	янтнасту			III. Data	-	ion Repo	ort	Ì						Condi	tion:		
	Firm Date/Time	1530	Firm Date/Time	0 1200	Reques		FAX prelir ort Date _	ninary R	esults		IV. CLF			•		******					Lab N	o:[(2200	389
		<u>ον.</u>	T	ECEIVED BY:	SPF		NSTRU	JCTIC	NS/C		ENTS				ł						ł	********		
	RELINQUISHED	UT.	· ·			R	eola	emp	nt	Sa	mpl	e.	for	/ 0	As	la	ЬI	D:	K	210	94	34.	003.	
	Signature		Signature Printed N			Ĺ	/s.	use	He	S	r boH	le !	-+0	Cor	nple	te.	+he	an	aly	sb	of	thi	s sam	ple.
	Printed Name	<u> </u>	Firm				(D	isxi	ns/	' In	can.	6	2/2	20 A	16	13)	•		/		-			/
4	Firm Date/Time	;	Date/Time	8		()	(· /	4	_	$\overline{1}$	9 - 1 1.1.1		1	Í.	l.							
						2	270	<u>+</u>	l	<i>C</i> ,		N	77	74	<i>v</i>	A.K	FUX_							

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; 'PINK - retained by originator

	Colu	nbia Analy	ical Servi	ces			
TLI Project: Client Sample	56279 : Lysimeter-1	1613	, Revision	B PC Ai	CDD/PCDI nalysis File	F Anal e: W	lysis (c) 3 06407
Client Project: Sample Matrix: TLI ID:	Arlington Lysimete AQUEOUS 314-51-1	er Date Received: Date Extracted: Date Analyzed:	12/27/2001 12/28/2001 12/31/2001		Spike File: ICal: ConCal:	SP16 WF56 WB1	
Sample Size: Dry Weight: GC Column:	0.730 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a W306402 JSY		% Moisture: % Lipid: % Solids:	n/a n/a <0.1	
Analytes	Conc. (pg	/L) DL		Ratio	RT I	RT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	1.6 1.6 1.7					
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND	1.8 1.7		0.95	27.16	1.000	
1,2,3,4,6,7,8,9-OCDD	34.1 5			0.93 0.87		1.000 1.000	JB_ JB_
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND ND	1.3 1.3 1.0					
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	1.1 1.1 1.2					
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND	1.5 1.5 1.8					
1,2,3,4,6,7,8,9-OCDF	4.9 in			0.87	41:00	1.005	JB_
Totals	Conc. (pg	L) Number DL					Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND 5.9	5.0 8.3 8.4 2					
Total TCDF Total PeCDF Total HxCDF	ND ND	1.3 1.2					

Page 1 of 2

1.2

3.1

ND

ND

Total HxCDF

Total HpCDF

Printed: 13:22 02/25/2002

104.4.02

1618_PSR v2.04, LARS 6.25.04

TLI Project:56279Client Sample:Lysimeter-1

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: W306407

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits R	latio RT	RAT	Flags
 ¹³C₁₂-2,3,7,8-TCDD ¹³C₁₂-1,2,3,7,8-PeCDD ¹³C₁₂-1,2,3,4,7,8-HxCDD ¹³C₁₂-1,2,3,6,7,8-HxCDD ¹³C₁₂-1,2,3,4,6,7,8-HpCDD ¹³C₁₂-1,2,3,4,6,7,8,9-OCDD 	1810 2130 2110 2210 2940 6370	66.1 77.8 77.2 80.6 107 116	25%-181% 32%-141% 28%-130% 23%-140%	0.78 26:32 1.51 30:49 1.21 33:56 1.23 34:01 1.03 37:14 0.86 40:47	1.006 1.169 0.989 0.991 1.085 1.188	
${}^{13}C_{12}-2,3,7,8-TCDF$ ${}^{13}C_{12}-1,2,3,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1710 1910 2250 2300 2240 2060 2180 2440 2790	62.4 69.6 82.1 83.9 81.7 75.3 79.5 88.9 102	24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143%	0.7425:491.5029:461.5230:290.5033:150.5133:210.5033:490.5034:350.4436:120.4337:43	0.979 1.129 1.156 0.969 0.972 0.985 1.008 1.055 1.099	

Recovery Standards	Ratio RT Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.81 26:22

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 13:22 02/25/2002 130

Toxicity Equivalents Report

TLI Project:	56279
Sample:	Lysimeter-1
File:	W306407

Analyte	Conc. pg/L	TEF	Equivalant
2,3,7,8-TCDD			Equivalent
	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	3.2	0.01	0.03200
1,2,3,4,6,7,8,9-OCDD	34.1	0.0001	0.00341
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	4.9	0.0001	0.00049
		0.0001	0.00049

Total WHO Dioxin TEFs for Humans

0.036 pg/L

,

.

.

Toxicity Equivalents Report

TLI Project:	56279
Sample:	Lysimeter-1
File:	W306407

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDD	0	0.0001	0.00000
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	0	0.0001	0.00000

•

Total WHO Dioxin TEFs for Humans

0. pg/L

,

132

.

	k.lur	nbia Analy(ical Service		
TLI Project: Client Sample	56279 : Lysimeter-2	1613	, Revision B		DF Analysis (c) le: W306408
Client Project: Sample Matrix: TLI ID:	Arlington Lysimete AQUEOUS 314-51-2	Pr Date Received: Date Extracted: Date Analyzed:	12/27/2001 12/28/2001 12/31/2001	Spike File: ICal: ConCal:	SP161B2S WF5628B WB13063
Sample Size: Dry Weight: GC Column:	0.720 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a W306402 JSY	% Moistur % Lipid: % Solids:	e: n/a n/a <0.1
Analytes	Conc. (pg	/L) DL	Ra	tio RT	RRT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	ND ND ND ND 5.7 u 59.0 ND ND ND ND ND ND ND ND ND ND ND	1.5 1.4 4.7 1.7 1.6 J 1.4 1.2 1.0 1.0 1.0 1.0 1.4 2.0	0.	97 37:15 78 40:48 22 33:15	1.000 JB_ 1.000 JB_ 1.000 JB_ 1.000 J
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	ND 10.7 U	1.7	0.	96 40:59	1.005 JB_
Totais	Conc. (pg	/L) Number DL			Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND 5.7	1.5 6.8 13.1 1	:		
Total TCDF Total PeCDF Total HxCDF Total HxCDF	ND ND 3.1	3.2 2.2			

Page 1 of 2

1

161B_PSR v2.04, LARS 6.25.04

FOP 4.4-PL

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

4.6

Total HpCDF

Printed: 13:23 02/25/2002

TLI Project:56279Client Sample:Lysimeter-2

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **W306408**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio	RT	RAT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	1780	64.1	210 1270	0.70			
¹³ C ₁₂ -1,2,3,7,8-PeCDD	2230		31%-137%		26:32	1.006	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD		80.5	25%-181%		30:49	1.169	
	2100	75.8	32%-141%	1.23	33:56	0.988	_
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	2080	74.9	28%-130%	1.22	34:01	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	2820	101	23%-140%	1.01	37:14	1.084	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	5500	99.1	17%-157%		40:47	1.188	
¹³ C ₁₂ -2,3,7,8-TCDF	1670	60.3	29%-140%	0.75	25:49	0.979	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	2040	73.4	24%-185%	1.48	29:47	1.130	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	2380	85.6	21%-178%		30:29	1.156	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	2160	77.9	26%-152%	0.50			
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	2150	77.4	26%-123%			0.968	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	2050			0.51		0.971	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF		73.9	28%-136%	0.50		0.985	~
	2110	75.9	29%-147%	0.51	34:35	1.007	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	2220	80.1	28%-143%	0.43	36:12	1.054	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	2550	91.6	26%-138%	0.43	37:43	1.099	

Recovery Standards	Ratio RT Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.80 26:22

Data Reviewer: ______ 02/25/2002

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 13:23 02/55/3002

Toxicity Equivalents Report

TLI Project:	56279
Sample:	Lysimeter-2
File:	W306408

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	5.7	0.01	0.05700
1,2,3,4,6,7,8,9-OCDD	59	0.0001	0.00590
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	1.2	0.1	0.12000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	10.7	0.0001	0.00107

Total WHO Dioxin TEFs for Humans

0.184 pg/L

.

Toxicity Equivalents Report

TLI Project:	56279
Sample:	Lysimeter-2
File:	W306408

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDD	0	0.0001	0.00000
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

pg/L

0.

.

LI Project: Client Sample:	56279 Lysimeter-3	1613	, Revision B	PCDD/PCDF Analysis File	•
Client Project: Sample Matrix: TLI ID:	Arlington Lysimete AQUEOUS 314-51-3	r Date Received: Date Extracted: Date Analyzed:	12/27/2001 12/28/2001 01/07/2002	Spike File: ICal: ConCal:	SP161B2S TF5627B TB20067
Sample Size: Dry Weight: GC Column:	0.640 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a W306402 CRW	% Moisture: % Lipid: % Solids:	n/a n/a <0.1
Analytes	Conc. (pg	/L) DL	Rat	io RT F	RT Flag:

1,2,5,7,0-10010		23.1				
1,2,3,4,7,8-HxCDD	ND	20.7				
1,2,3,6,7,8-HxCDD	ND	22.0				
1,2,3,7,8,9-HxCDD	ND	21.3				<u> </u>
1,2,3,4,6,7,8-HpCDD	ND	27.5				
1,2,3,4,6,7,8,9-OCDD	435		0.88	40:37	1.000	
	•					
2,3,7,8-TCDF	NDR	15.7				
1,2,3,7,8-PeCDF	ND	17.6				
2,3,4,7,8-PeCDF	ND	14.5				
1,2,3,4,7,8-HxCDF	ND	13.3				
1,2,3,6,7,8-HxCDF	ND	13.6				
2,3,4,6,7,8-HxCDF	ND	13.6				
1,2,3,7,8,9-HxCDF	ND	20.7				
1,2,3,4,6,7,8-HpCDF	ND	18.4				
1,2,3,4,7,8,9-HpCDF	ND	22.4				
1,2,3,4,6,7,8,9-OCDF	NDV	83.2				J
	· •					

Totals	Conc. (pg/L) Number	DL	Flags
Total TCDD	ND	21.1	
Total PeCDD	ND	23.1	
Total HxCDD	ND	21.3	
Total HpCDD	ND	27.5	
Total TCDF	15.9 1		
Total PeCDF	ND	15.9	
Total HxCDF	ND	14.7	
Total HpCDF	ND	20.1	

Page 1 of 2

1618_PSR v2.04, LARS 6.25.04

Printed: 14:40 02/25/2002

100 4· 4-L

TLI Project:56279Client Sample:Lysimeter-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **T020076**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	446	14.3	31%-137%	0.79 26:11	1.008	***
¹³ C ₁₂ -1,2,3,7,8-PeCDD	503	16.1	25%-181%	1.58 30:22	1.169	***
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	543	17.4	32%-141%	1.10 33:28	0.988	***
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	564	18.1	28%-130%	1.25 33:33	0.991	***
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	688	22.0	23%-140%	1.08 36:51	1.088	***
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	1210	19.3	17%-157%	0.92 40:36	1.199	
¹³ C ₁₂ -2,3,7,8-TCDF	417	[13.3]	29%-140%	0.70 25:28	0.980	***
¹³ C ₁₂ -1,2,3,7,8-PeCDF	438	14.0	24%-185%	1.54 29:21	1.130	***
¹³ C ₁₂ -2,3,4,7,8-PeCDF	510	16.3	21%-178%	1.60 30:02	1.156	***
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	496	15.9	26%-152%	0.51 32:45	0.967	***
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	527	16.9	26%-123%	0.52 32:51	0.970	***
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	535	17.1	28%-136%	0.51 33:21	0.985	***
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	495	15.8	29%-147%	0.49 34:09	1.008	***
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	614	19.7	28%-143%	0.44 35:48	1.057	***
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	632	(20.2)	26%-138%	0.42 37:22	1.103	***

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.81 25:59 1.23 33:52	

Toxicity Equivalents Report

TLI Project:	56279
Sample:	Lysimeter-3
File:	T020076

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDD	435	0.0001	0.04350
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

0.044 pg/L

,

Note: This value is the same for TEFs without detection limits and for TEFs without detection limits and using 0 for all values less than the minimum levels. .

	Cofu	nbia Analy	1015:947	ices			
TLI Project:	56279r1	1613	, Revision	B P()F ∆na	lycic (a)
Client Sample	: Lysimeter-3		,		analysis F		
Client Project: Sample Matrix: TLI ID:	Arlington Lysimete AQUEOUS 316-40-1	er Date Received: Date Extracted: Date Analyzed:	01/23/2002 01/25/2002 01/31/2002		Spike File: ICal: ConCal:	UF5	51B2S 121B 0076
Sample Size: Dry Weight: GC Column:	0.950 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a U007709 CGK		% Moisture % Lipid: % Solids:	e: n/a n/a <0.1	
Analytes	Conc. (pg	/L) DL		Ratio	RT	RRT	Flags
2,3,7,8-TCDD	8.5			0.85	27:23	1.000	J
1,2,3,7,8-PeCDD	18.4 <i>V</i>	(2		1.57	31:31	1.000	JB_
1,2,3,4,7,8-HxCDD	17.7 U	2.		1.24	34:38	1.000	JB_
1,2,3,6,7,8-HxCDD	19.1 L	J		1.23	34:43	1.000	JB_
1,2,3,7,8,9-HxCDD	21.8			1.37	35:03	1.010	J
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	ND	17.3					J
1,2,3,4,0,7,0,3-0CDD	50.5 U	12		0.86	41:50	1.000	JB_
2,3,7,8-TCDF	8.0			0.00			
1,2,3,7,8-PeCDF	ND	21.0		0.89	26:42	1.001	J J
2,3,4,7,8-PeCDF	17.7	21.0		1 50	21.10	1 000	J
1,2,3,4,7,8-HxCDF	16.7 <i>u</i>	5		1.58 1.14	31:12 33:57	1.000	J
1,2,3,6,7,8-HxCDF	17.1 u			1.14	33:37 34:02	1.000	JB_
2,3,4,6,7,8-HxCDF	16.8 U			1.17	34:02 34:31	1.000 1.000	JB_
1,2,3,7,8,9-HxCDF	21.8	-		1.17	35:19	1.000	JB_ J
1,2,3,4,6,7,8-HpCDF	20.0 U	2.		0.91	37:01	1.000	JB_
1,2,3,4,7,8,9-HpCDF	18.0 u			0.93	38:36	1.000	JB_
1,2,3,4,6,7,8,9-OCDF	31.2 4	7		0.94	42:04	1.006	JB_
							—
Totals	Conc. (pg	L) Number DL					Elean

Iotais	Conc. (pg/L)	Numb	er DL	Flags
Total TCDD Total PeCDD Total HxCDD	8.5 24.3 63.2	1 3 4		
Total HpCDD	ND		21.1	
Total TCDF Total PeCDF Total HxCDF Total HpCDF	8.0 17.7 72.4 40.5	1 1 4 3		

Page 1 of 2

161B_PSR v2.04, LARS 6.25.04

Printed: 14:47 02/25/2002

404.4-C

TLI Project:56279r1Client Sample:Lysimeter-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **U007710**

Conc. (pg/L)	% Recovery	QC Limits	Ratio	RT	RAT	Flags
1280	60.9	31%-137%	078 2	7.73	1 007	
1360						
1320						
1390						
1370						
2320	55.0	17%-157%			1.194	
1210	57.5	29%-140%	078 2	6·41	0.081	
1190	56.7					
1350						
1490	70.6	26%-152%				
1510	71.5	26%-123%				
1400	66.7					
1410	67.2					
1300	61.9					
1340	63.8	26%-138%			1.101	
Conc. (pg/L)	% Recovery	QC Limits		at	RRT	Flags
150	71.2	42%-164%	2	7:23	1.007	
	1280 1360 1320 1390 1370 2320 1210 1190 1350 1490 1510 1400 1410 1300 1340 Conc. (pg/L.)	1280 60.9 1360 64.4 1320 62.6 1390 66.1 1370 65.2 2320 55.0 1210 57.5 1190 56.7 1350 64.0 1490 70.6 1510 71.5 1400 66.7 1410 67.2 1300 61.9 1340 63.8	1280 60.9 31%-137% 1360 64.4 25%-181% 1320 62.6 32%-141% 1390 66.1 28%-130% 1370 65.2 23%-140% 2320 55.0 17%-157% 1210 57.5 29%-140% 1390 66.7 24%-185% 1350 64.0 21%-178% 1490 70.6 26%-152% 1510 71.5 26%-123% 1400 66.7 28%-136% 1410 67.2 29%-147% 1300 61.9 28%-143% 1340 63.8 26%-138%	1280 60.9 31%-137% 0.78 2 1360 64.4 25%-181% 1.63 3 1320 62.6 32%-141% 1.33 3 1390 66.1 28%-130% 1.18 3 1370 65.2 23%-140% 1.05 3 2320 55.0 17%-157% 0.89 4 1210 57.5 29%-140% 0.78 2 1190 56.7 24%-185% 1.56 3 1350 64.0 21%-178% 1.57 3 1490 70.6 26%-152% 0.52 3 1510 71.5 26%-123% 0.52 3 1400 66.7 28%-136% 0.53 3 1410 67.2 29%-147% 0.53 3 1300 61.9 28%-138% 0.46 3 1340 63.8 26%-138% 0.46 3	1280 60.9 31%-137% 0.78 27:23 1360 64.4 25%-181% 1.63 31:31 1320 62.6 32%-141% 1.33 34:38 1390 66.1 28%-130% 1.18 34:42 1370 65.2 23%-140% 1.05 38:03 2320 55.0 17%-157% 0.89 41:49 1210 57.5 29%-140% 0.78 26:41 190 56.7 24%-185% 1.56 30:32 1350 64.0 21%-178% 1.57 31:12 1490 70.6 26%-152% 0.53 33:56 1510 71.5 26%-123% 0.52 34:02 1400 66.7 28%-136% 0.53 35:19 1300 61.9 28%-143% 0.46 37:00 1340 63.8 26%-138% 0.46 38:35	1280 60.9 31%-137% 0.78 27:23 1.007 1360 64.4 25%-181% 1.63 31:31 1.159 1320 62.6 32%-141% 1.33 34:38 0.989 1390 66.1 28%-130% 1.18 34:42 0.990 1370 65.2 23%-140% 1.05 38:03 1.086 2320 55.0 17%-157% 0.89 41:49 1.194 1210 57.5 29%-140% 0.78 26:41 0.981 1190 56.7 24%-185% 1.56 30:32 1.123 1350 64.0 21%-178% 1.57 31:12 1.147 1490 70.6 26%-152% 0.53 33:56 0.969 1510 71.5 26%-123% 0.52 34:02 0.971 1400 66.7 28%-136% 0.53 34:31 0.985 1410 67.2 29%-147% 0.53 35:19 1.008 1300 61.9 28%-143% 0.46 38:35 1.101

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.79 27:12 1.25 35:02	

Toxicity Equivalents Report

TLI Project:	56279r1
Sample:	Lysimeter-3
File:	U007710

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	8.5	1.0	8.50000
1,2,3,7,8-PeCDD	18.4	1.0	18.40000
1,2,3,4,7,8-HxCDD	17.7	0.1	1.77000
1,2,3,6,7,8-HxCDD	19.1	0.1	1.91000
1,2,3,7,8,9-HxCDD	21.8	0.1	2.18000
1,2,3,4,6,7,8-HpCDD	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDD	50.5	0.0001	0.00505
2,3,7,8-TCDF	8	0.1	0.80000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	17.7	0.5	8.85000
1,2,3,4,7,8-HxCDF	16.7	0.1	1.67000
1,2,3,6,7,8-HxCDF	17.1	0.1	1.71000
2,3,4,6,7,8-HxCDF	16.8	0.1	1.68000
1,2,3,7,8,9-HxCDF	21.8	0.1	2.18000
1,2,3,4,6,7,8-HpCDF	20	0.01	0.20000
1,2,3,4,7,8,9-HpCDF	18	0.01	0.18000
1,2,3,4,6,7,8,9-OCDF	31.2	0.0001	0.00312

Total WHO Dioxin TEFs for Humans

50.038 pg/L

.

Toxicity Equivalents Report

TLI Project:	56279r1
Sample:	Lysimeter-3
File:	U007710

Analyte	Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD	0	1.0	0.00000
1,2,3,7,8-PeCDD	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDD	0	0.0001	0.00000
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	0	0.1	0.00000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

pg/L

0.

.

March 4, 2002

Service Request No: K2200945

RuAnn Thomas J.H. Baxter Company 85 N Baxter Street Eugene, OR 97402

Re: J.H. Baxter & Co./Lysimeters

Dear RuAnn:

Enclosed are the results of the sample(s) submitted to our laboratory on 2/12/02. For your reference, these analyses have been assigned our service request number K2200945.

The analysis of Dioxins/Furans has been performed by Triangle Laboratories, Inc. (TLI). The TLI report is included in Appendix A.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

montulin

Mingta Lin Project Chemist

ML/dj

Page 1 of _____

cc: Mary Larson (J.H. Baxter, Arlington, WA)

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z. The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Columbia Analytical		CH	IAIN	OF (CUS	TOD	Y				ł		Sf	ת#:⊂	K2	2	0094
	South 13th Ave. • Kel	so, WA 98626 •	(360) 577-3	222 • (800) 695-722	2 • FAX (3	60) 636	-1068		PAGE		C)F	<u> </u>	_ CO(C #	, , , , , , , , , , , , , , , , , , , ,
PROJECT NAME J. H. Baylor PROJECT NUMBER PROJECT MANAGER OMO ATA COMPANY/ADDRESS	5 MELIER NE PO BOX DA 982-22 BLOO 435-2		TAINERS lics by C.	T = I				15140	GC/NS-SIA SIM D PAH D'S SIM D Merin Phenol	(See list below) Dissolved	PH Cond Chex-Chrom	NH-3, BOD, 504, PO, 10 13-N, COD, 785, TDS 4, F, NO DOC (direc. Total.r. Cerce) 2,	TOX 3020 [] 40V.	14-T-PH - 10500 5060	WOUND A	STRATE.	REMARKS
SAMPLE I.D. DATE	TIME LAB I.D.	MATRIX / Ž	10 / S	8/20/~		144/40		+		7-	\vdash		5	$\dot{\mathbf{A}}$	71	L	<u></u>
L-1 271-02	1:30.A	water 2					\diamond						$-\mathcal{K}$	₩	╊─┤		
L-2 271-021	11:00A	water 2					\Leftrightarrow						$- \varepsilon$	\mathbf{X}	\		
L-3 -11-021		Water 2					\Diamond						$- \mathbf{C}$	ЖÒ	┝──┤		
L-3A 2-11-02	Biusa	WATER 2					$\downarrow X$						$\rightarrow \rightarrow$	$+\!$	╄──┤		×
								╞──┼									
				+													
													<u> </u>				
REPORT REQUIREMENTS	INVOICE INFOR P.O. # BIII TO: IHBAR PO BOK LOT	set co	Total M Dissolved	Metais: Al A	s Sb B .s Sb B	a BeB(Ba BeB)	Ca Cd	Co C	Cr Cu F	e Pb	Mg M	In Mo	NIK	Ag Na		Sr Tl	Sn V Zn Hr Sn V Zn Hg
required	Eugene, on	-97440		TE STATE				DURE:	: AK	CA W	NO	RHTWE	ST OT	HER:_		_(CIF	CLE ONE)
II. Report Dup., MS, MSD as	TURNAROUND RE	QUIREMENTS															
required	24 hr 5 Day	48 hr.	Diob	n/Fu	an-	use m	eth	od ll	lel3	1 4	1	~					
(includes all raw data)	Standard (10-1)	5 working days)	Diorin/Furan-Use method 1613 NWTPH-DX - Please use Silica Gel Cleanup.														
IV. CLP Deliverable Report	Provide FAX Re		Attn: RocAnn Thomas														
V. EDD	Requested Re	port Date		-		rsor	-							•			
RELINQUISHED BY:			EIVED BY		102			LINQU	ISHED E	BY:				R	ECEIV	ED BY	•
Signature 271-02	a'oopm t	Proto 1	Date		<u> </u>	Signatu	ire		Date/	Time		S	ignature	•		Date	/Time
Signature <u>J.m. C.Ausson</u> <u>J.H.Bax</u> Printed Name Firm		ted Name	FONE Firm		BACT	Printed			Firm			P	rinted N	lame		Firm	BCOC #1_04

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

Project/Clier	at <u>AX Bacter</u> Work Order K22 0945	<
Cooler recei	ved on 2/12/12 and opened on 2/12/12 by Vylack	
1.	Were custody seals on outside of cooler? If yes, how many and where?	Ø №
2.	Were seals intact and signature & date correct?	X N
3.	COC #	
	Temperature of cooler(s) upon receipt:	<u> </u>
	Temperature Blank: 6.2	
4.	Were custody papers properly filled out (ink, signed, etc.)?	Y N
5.	Type of packing material present	\bigcirc
6.	Did all bottles arrive in good condition (unbroken)?	Y N
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?	N N
8.	Did all bottle labels and tags agree with custody papers?	Y N
9.	Were the correct types of bottles used for the tests indicated?	(Y) N
10.	Were all of the preserved bottles received at the lab with the appropriate pH?	-Y-N
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?	Y N-
12.	Did the bottles originate from CAS/K or a branch laboratory?	𝖓 N
13.	Are CWA Microbiology samples received with > $\frac{1}{2}$ the 24 hr. hold time remaining from collection?	-Y-N-
14.	Was CL2/Residual negative?	¥ N
Explain any	discrepancies:	
		-

RESOLUTION:

Samples that required preservation or received out of temperature:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
			· · · · · · · · · · · · · · · · · · ·			
			-			
						·····
	1	<u> </u>		<u> </u>	L.	0000

CRFREV.DOC12/24/01

COLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2200945

 Date Collected:
 02/11/2002

 Date Received:
 02/12/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	L-1	Units:	0
Lab Code:	K2200945-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND	U	250	1	02/15/02	02/21/02	KWG0201144	
Residual Range Organics (RRO)	ND	U	500	1	02/15/02	02/21/02	KWG0201144	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl n-Triacontane	80 82	50-150 50-150	02/21/02 02/21/02	Acceptable Acceptable	1899982	

Comments:

Page

1 of 1

ULUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company J.H. Baxter & Co./Lysimeters Water		Service Request: Date Collected:	02/11/2002
Sample Mattila.	water	•	Date Received:	02/12/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	L-2	Units:	Ģ
Lab Code:	K2200945-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	280	1	02/15/02	02/21/02	KWG0201144	
Residual Range Organics (RRO)	ND U	560	1	02/15/02	02/21/02	KWG0201144	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl	81	50-150	02/21/02	Acceptable	F0:472	
n-Triacontane	86	50-150	02/21/02	Acceptable	, , , , , , , , , , , , , , , , , , ,	

,

Comments:

.

. 1

•

00007

COLUMBIA ANALYTICAL SERVICES, IN-

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	02/11/2002
Project:	J.H. Baxter & Co./Lysimeters	Date Collected:	
Sample Matrix:	Water	Date Received:	

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	L-3	Units:	0
Lab Code:	K2200945-003	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	280	1	02/15/02	02/21/02	KWG0201144	
Residual Range Organics (RRO)	ND U	560	1	02/15/02	02/21/02	KWG0201144	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	82	50-150	02/21/02	Acceptable	Rp-4802
n-Triacontane	85	50-150	02/21/02	Acceptable	

Comments:

''ULUMBIA ANALYTICAL SERVICES, IN'

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company J.H. Baxter & Co./Lysimeters	Service Request: Date Collected:	
Sample Matrix:	Water	Date Received:	02/12/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	L-3A	Units:	•
Lab Code:	K2200945-004	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND ND	-	250 500	1 1	02/15/02 02/15/02	02/21/02 02/21/02	KWG0201144 KWG0201144	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl	74	50-150	02/21/02	Acceptable	Kp4 8-2_	
n-Triacontane	79	50-150	02/21/02	Acceptable	,	

Comments:

CULUMBIA ANALYTICAL SERVICES, INC.

Analytical Results

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0201144-3	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	- 1	02/15/02	02/20/02	KWG0201144	
Residual Range Organics (RRO)	ND U	500	1	02/15/02	02/20/02	KWG0201144	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	84	50-150	02/20/02	Acceptable	
n-Triacontane	89	50-150	02/20/02	Acceptable	

Comments:

,

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Results

K2200945 02/11/2002 02/12/2002

Pentachlorophenol

Sample Name:	L-1	Units:	•
Lab Code:	K2200945-001	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	02/14/02	02/16/02	KWG0201130	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	83	38-119	02/16/02	Acceptable	1094.8-2

Comments:

Form 1A - Organic

COLUMIDIA ANALYTICAL SERVICES, INC

Analytical Results

Pentachlorophenol

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Extraction Method: Analysis Method:	METHOD 8151M				1	Level: Low	
Sample Name: Lab Code:	L-2 K2200945-002					U nits: ug/L Basis: NA	

	······································		1 4000	L'Acteu	Analyzeu	Lot	Note
Pentachlorophenol	ND U	0.20	1	02/14/02	02/16/02	KWG0201130	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	78	38-119	02/16/02	Acceptable	1047-22

omments:

CULUNIDIA ANALY HUAL SERVICES, INC

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2200945

 Date Collected:
 02/11/2002

 Date Received:
 02/12/2002

Pentachlorophenol

Sample Name: Lab Code:	L-3 K2200945-003					Units: ug/L Basis: NA
Extraction Method: Analysis Method:	METHOD 8151M					Level: Low
			Dilution	Data	Data	E. 4

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Extraction Lot	Note
Pentachlorophenol	ND U	0.20	1	02/14/02	02/16/02	KWG0201130	Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	77	38-119	02/16/02	Acceptable	KP-48-2

comments:

00013

1 of 1

COLUMIDIA ANALY FICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

 Service Request:
 K2200945

 Date Collected:
 02/11/2002

 Date Received:
 02/12/2002

Pentachlorophenol

Sample Name: Lab Code:	L-3A K2200945-004						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M						Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	l	02/14/02	02/16/02	KWG0201130	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	86	38-119	02/16/02	Acceptable	19298-2

Comments:

00014

•

CULUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company
Project:	J.H. Baxter & Co./Lysimeters
Sample Matrix:	Water

Service Request: K2200945 Date Collected: NA Date Received: NA

Pentachlorophenol

Sample Name: Lab Code:	Method Blank KWG0201130-4					Units: ug/L	
Extraction Method: Analysis Method:	METHOD 8151M					Basis: NA Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND U	0.20	1	02/14/02	02/16/02	KWG0201130	Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	74	38-119	02/16/02	Acceptable

omments:

CASE NARRATIVE

Analysis of Samples for the Presence of

Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans by

High-Resolution Chromatography / High-Resolution Mass Spectrometry

Method 1613B (9/97)

		-
Date:	February 22, 2002	
Client ID:	Columbia Analytical Services	
P.O. Number:	K2200945	
TLI Project Number:	56653	

This report should only be reproduced in full. Any partial reproduction of this report requires written permission from Triangle Laboratories, Inc.

1

Rev.11/19/97 WWW.TriangleLabs.com

Overview

The samples and associated QC samples were extracted and analyzed according to procedures described in EPA Method 1613B (September 1997). Any particular difficulties encountered during the sample handling by Triangle Laboratories will be discussed in the QC Remarks section below. This report contains results from only the 1613 dioxin/furan analyses of four water samples.

Quality Control Samples

A laboratory method blank and an ongoing precision and recovery (OPR) sample are extracted and analyzed with each batch of samples.

Quality Control Remarks

This analytical data has been released after being subjected to a series of inspections. General deviations from acceptable QC requirements are identified below. Specific QC issues associated with this particular project are:

Sample receipt: Four water samples were received from Columbia Analytical Services in good condition on February 15, 2002 at 5.0°C and stored in a refrigerator at 4°C. The client's chain-of-custody did not indicate whether or not chemical preservatives were utilized prior to shipment.

Sample Preparation Laboratory: None

Mass Spectrometry: None

Data Review: The minimum levels for samples L-1, L-2, L-3, and L-3a were not obtained because the method required sample volumes of 1.0 liter per sample were not available for extraction.

General Comments: No 2,3,7,8-substituted target analytes were detected in the method blank above the target detection limit (TDL).

The analytical data presented in this report are consistent with the guidelines of Method 1613B. Any exceptions have been discussed in the QC Remarks section of this case narrative with emphasis on their effect on the data. Should Columbia Analytical Services have any questions or comments regarding this data package, please feel free to contact our Project Scientist, Mary McDonald, at (919) 544-5729, ext. 4021.

For Triangle Laboratories, Inc.,

Released by,

Jonley Kenneth Varley

Report Preparation Chemist

The total number of pages in the data package is: 149.

	Columbia					CH	AIN	0	FC	US	101	JY/	LAI										
	Analytical Services **	1217 50	with 13th Ave	. • Kelso, WA 986	26 • (360) 577	-7222	(800)	695-72	22 x 07	7• FA	X (360) 636-1	1068	D	ATE_	2	13	10	2	PAGE			OF
Γ	An Employee-Owned Company PROJECT NAME	1317 30		#										ANA		SIS F	REQ	UES	STEC	Э _.			
		ingto AS	à Lin			ERS		./	y														
	COMPANYADDRESS (HD BUX 47 KESO, UNA	9' - 986	26.			I NUMBER OF CONTAINERS		$\left \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right $	$\frac{1}{2}$	/ /	/	/ ,	/ ,	/ /	/	/ ,	/ ,	/ ,		/ ,	/ ,	$\left \right $	/ /
	PHONE: FAX:			R OF C		3	/									/							
+	SAMPLERS SIGNATURE		÷	LAB	SAMPLE	IUMBE		Ţ	/	/	/	/	/	/	/	/	/	/	/	/	/	/	REMARKS
ŀ	I.D.	DATE 2/11/2	TIME よのろ	I.D.	MATRIX IN			/	/(/		/	/	/		/						
ł	1-2 1	71100	1100		Ŵ	1																	
	1-30	HIL OC	1230 20844	-	W																		
	1-0a	711715	d 087:	<u> </u>																			
											<u></u>												
)																		<u> </u>				,
\neg	TELINOUISHEDE	Byn_	-	ECEIVED BY:			ND REQ			1		T REQ		L ENTS		INVC	ICE IN	FORMA	ATION:			S/	AMPLE RECEIPT:
	Superiore Brit	Kroc	Signature	Sunder		Standar	48 h d (10•15 w	orking d	ays)		II. Rep MSI	tine Repo ort (inclu D, as requ	des DUP uired, ma	ay be		Ki			145		1	-	
	Printed Wayle		Printéd N	I THE		Results					III. Dat (int	rged as a la Validat cludes Al	ion Repo I Raw Da	ort ata)							Condi	lion:	
	Firm 14 72 8 Date/Time	9430	Firm 2-15- Date/Tim		2 Reque		FAX prelir ort Date _	ninary F	lesults		IV. CL	P Deliver	able Rej	port							Lab N	o: H	2200945
			ECIAL	INSTRU Dia				ENTS		þ.	Ē	- PA	- 14	.13		No	.p.	gu/	da	for in dage			
					U.	~ · ·	- 1 F			·	ð						•			Pp	dage		
	Printed Name		Firm	lame				-															
þ	Date/Time		Date/Tin	ne		\leq	$\sum_{i=1}^{n}$	$a \downarrow$		f	-(- - (/ 1	a	<u>_h(</u>	\overline{a}	C	<u>_</u>						
- CL	<u> </u>						-201			+					J	in ad bu	origin	ator					LABCOC 11/0

	ł		nbia Analy	ical Serv	ic.			
TLI Project: Client Sample	56653 : L-1		1613	, Revisior		CDD/PCD nalysis Fil		lysis (c) 1 019803
Client Project: Sample Matrix: TLI ID:	K2200945 AQUEOUS 318-29-1		Date Received: Date Extracted: Date Analyzed:	02/15/02 02/18/02 02/22/02		Spike File: ICal: ConCal:	SP16 UF52 UB20	
Sample Size: Dry Weight: GC Column:	0.740 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a U019802 JSY		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Analytes	Co	nc. (pg	/L) DL		Ratio	RT	RRT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD		ND ND ND ND 4.4 45.9	1.6 1.7 2.2 2.2 2.0		1.16 0.90	37:11 41:42	0.979 1.000	 JB J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8,9-OCDF		ND ND ND ND 1.9 ND ND ND ND	1.3 1.1 0.9 1.4 1.8 (J 2.1 2.2 3.3 6.4		<u></u>	34:28	1.000	J

Totals	Conc. (pg/L)	Numbe	ar DL	 	Flags
Total TCDD	ND		1.6		
Total PeCDD	ND		3.9		
Total HxCDD	5.1	1	012		
Total HpCDD	4.4	1			
Total TCDF	3.0	1			
Total PeCDF	ND		1.0		<u></u>
Total HxCDF	1.9	1			
Total HpCDF	ND	_	4.4		
•			••••		

Page 1 of 2

161B_PSR v2.04, LARS 6.25.04

TLI Project:56653Client Sample:L-1

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **U019803**

Internal Standards	Conc. (pg/L)	% Recovery	96 Limits	Fallo AT	BRI	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	1390	51.5	31%-137%	0.79 27:18	1 000	<u></u>
¹³ C ₁₂ -1,2,3,7,8-PeCDD	2260	83.6	25%-181%	1.55 31:27	1.007	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1640	60.8	.32%-141%	1.33 31.27	1.160	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1720	63.5	28%-130%	1.24 34:33	0.988	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1450	53.7	23%-140%		0.990	<u> </u>
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	2850	52.8			1.086	
	20.50	52.0	17%-157%	0.89 41:42	1.193	
¹³ C ₁₂ -2,3,7,8-TCDF	1160	43.1	29%-140%	0.77 26:36	0.981	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1640	60.5	24%-185%	1.57 30:27	1.123	·
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1800	66.7	21%-178%	1.57 31:07	1.123	<u></u>
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1570	58.3	26%-152%	0.52 33:52	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1520	56.4	26%-123%	0.52 33:52	0.909	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1550	57.3	28%-136%	0.53 34:27	0.971	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1580	58.6	20 <i>%</i> -130 <i>%</i> 29%-147%	0.53 35:14	1.008	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1290	47.8	28%-143%	0.47 36:55	1.008	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1260	46.5	26%-138%	0.46 38:29	1.000	
	1200	10.5	2010-15010	0.40 30.29	1.101	• <u> </u>
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RRT	Flags
³⁷ CL-2,3,7,8-TCDD	177	65.4	42%-164%	27:18	1.007	
						•
Recovery Standards				Ratio RT		Flags

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.80 27:07 1.21 34:58	
012 12,53, 30,5 HACDD	1.21 34.30	<u> </u>

Page 2 of 2

Data Reviewer:

____02/22/02

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.[®] 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 17:05 02/22/02 78

Toxicity Equivalents Report

TLI Project:	56653		
Sample:	L-1		
File:	U019803		
Analyte		Conc. pg/L	TEF
2,3,7,8-TCDD		0	1.0
1,2,3,7,8-PeCDD		0	1.0
1,2,3,4,7,8-HxCDD		0	0.1
1,2,3,6,7,8-HxCDD		0	0.1

	0	1.0	0.00000
1,2,3,4,7,8-HxCDD	0	0.1	0.00000
1,2,3,6,7,8-HxCDD	0	0.1	0.00000
1,2,3,7,8,9-HxCDD	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDD	4.4	0.01	0.04400
1,2,3,4,6,7,8,9-OCDD	45.9	0.0001	0.00459
2,3,7,8-TCDF	0	0.1	0.00000
1,2,3,7,8-PeCDF	0	0.05	0.00000
2,3,4,7,8-PeCDF	0	0.5	0.00000
1,2,3,4,7,8-HxCDF	0	0.1	0.00000
1,2,3,6,7,8-HxCDF	0	0.1	0.00000
2,3,4,6,7,8-HxCDF	1.9	0.1	0.19000
1,2,3,7,8,9-HxCDF	0	0.1	0.00000
1,2,3,4,6,7,8-HpCDF	0	0.01	0.00000
1,2,3,4,7,8,9-HpCDF	0	0.01	0.00000
1,2,3,4,6,7,8,9-OCDF	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

0.239 pg/L

.

.

Equivalent

0.00000

0.00000

 $\mathbf{79}$

		umbia A	nalyfic		rice	
TLI Project:	56653				Toxicity Equiva	lents Report
Client Sample	: L-1				Analysis File	: U019803
Client Project: Sample Matrix: TLI ID:	K2200945 AQUEOUS 318-29-1	Date Rec Date Extr Date Ana	acted: 0	2/15/02 2/18/02 2/22/02	Spike File: ICal: ConCal:	SP161B2S UF5206B UB20197
Sample Size:	0.740 L	Dilution 1			% Moisture:	n/a
Dry Weight:	n/a	Blank Fil		J 019802	% Lipid:	n/a
GC Column:	DB-5	Analyst:	J	SY	% Solids:	n/a
Analytes	Conc.	(pg/L)	TEF		Equivalent	
2,3,7,8-TCDD		ГD х	1.	=		
1,2,3,7,8-PeCDD		ID x	1.	-		
1,2,3,4,7,8-HxCDD		TD x	0.1			
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD		TD x TD x	0.1	=		
1,2,3,4,6,7,8-HpCDD			0.1 0.01	= 		
1,2,3,4,6,7,8,9-OCDD		TD x TD x	0.001	=		
2,3,7,8-TCDF		TD x	0.0001	=		
1,2,3,7,8-PeCDF		TD x	0.05	-		
2,3,4,7,8-PeCDF	L	TD x	0.5	=		
1,2,3,4,7,8-HxCDF	L	lTD x	0.1	=		
1,2,3,6,7,8-HxCDF		TD x	0.1	=		
2,3,4,6,7,8-HxCDF		TD x	0.1	=		
1,2,3,7,8,9-HxCDF		TD x	0.1	=		
1,2,3,4,6,7,8-HpCDF		TD x	0.01	=		
1,2,3,4,7,8,9-HpCDF		TD x	0.01	=		
1,2,3,4,6,7,8,9-OCDF	Ľ	TD x	0.0001	=		

Total WHO Dioxin TEFs for Humans: 0. pg/L

.

.

{...} indicates that the value is that of a Detection Limit. Note: LTD = Less Than Target Detection Limit

Page 1 of 1

GRY_TEF v1.08, MILES 4.22.16

	C.		nbia Analyi	iteal Serv	14. ,			
TLI Project:	56653		1613	, Revision		CDD/PCDF		
Client Sample	: L -2				A	nalysis Fil	e: U(019804
Client Project: Sample Matrix: TLI ID:	K2200945 AQUEOUS 318-29-2		Date Received: Date Extracted: Date Analyzed:	02/15/02 02/18/02 02/22/02		Spike File: ICal: ConCal:	SP161 UF520 UB20	06B
Sample Size: Dry Weight: GC Column:	0.800 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a U019802 JSY		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Analytes	Conc	:. (pç	g/L) DL		Ratio	RT I	RT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD		ND ND ND ND	5.2 4.4 6.0 5.7					
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	:	ND ND 24.2	5.4 8.7 MJ		0.90	41:43	1.000	 J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		ND ND ND ND ND ND ND ND ND ND	4.3 3.5 2.7 3.8 4.2 3.8 5.4 5.5 6.8					
1,2,3,4,6,7,8,9-OCDF		ND	6.7					· · · · ·

Totals	Conc. (pg/L) Numl	ber DL	Flags
Total TCDD	ND	5.2	
Total PeCDD	ND	4.4	
Total HxCDD	ND	5.7	
Total HpCDD	ND	12.5	
Total TCDF	ND	4.3	
Total PeCDF	ND	3.0	
Total HxCDF	ND	4.2	
Total HpCDF	ND	6.0	

Page 1 of 2

Kgp 4.5 m

161B_PSR v2.04, LARS 6.25.04

TLI Project: 56653 Client Sample: L-2

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: U019804

Internal Standards	Conc. (pgA.)	% Recovery	GC Limits	Ratio RT	. Har	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	1490	59.4	31%-137%	0.81 27:18	1.006	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	2540	101	25%-181%	1.56 31:28	1.160	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1730	69.3	32%-141%	1.26 34:33	0.988	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1880	75.3	28%-130%	1.23 34:39	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1790	71.6	23%-140%	1.12 37:59	1.086	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	4070	81.4	17%-157%	0.89 41:42	1.193	
¹³ C ₁₂ -2,3,7,8-TCDF	1160	46.4	29%-140%	0.79 26:37	0.981	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1730	69.3	24%-185%	1.52 30:28	1.123	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	2030	81.3	21%-178%	1.58 31:08	1.147	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1650	66.1	26%-152%	0.52 33:52	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1660	66.3	26%-123%	0.53 33:58	0.971	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1750	70.1	28%-136%	0.52 34:27	0.985	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1760	70.6	29%-147%	0.52 35:14	1.008	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1550	62.0	28%-143%	0.45 36:54	1.055	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1680	67.0	26%-138%	0.48 38:30	1.101	

Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RRT	Flags
³⁷ CL-2,3,7,8-TCDD	179	71.5	42%-164%	27:20	1.007	

Recovery Standards	Ratio	RT Flags
¹³ C ₁₂ -1,2,3,4-TCDD	0.80	27:08
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	1.24	34:58

	(G)	
Data Reviewer:		02/22/02

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 15:48 02/22/02

	(<u>ur</u>	nbia Analy	ical Sen	vice	
TLI Project: Client Sample	56653 : L-2				Toxicity Equivalents Rep Analysis File: U0198	
Client Project: Sample Matrix: TLI ID:	K2200945 AQUEOUS 318-29-2		Date Received: Date Extracted: Date Analyzed:		Spike File: SP161B2S ICal: UF5206B ConCal: UB20197	
Sample Size: Dry Weight: GC Column:	0.800 L n/a DB-5		Dilution Factor: Blank File: Analyst:	1 U019802 JSY	% Moisture: n/a % Lipid: n/a % Solids: n/a	
Analytes	Co	onc. (pg	(/L) TE	F	Equivalent	
2,3,7,8-TCDD		LTD	x 1			
1,2,3,7,8-PeCDD		LTD	x 1	-		
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD		LTD LTD	x 0. x 0.			
1,2,3,7,8,9-HxCDD		LTD	x 0. x 0.	-		
1,2,3,4,6,7,8-HpCDD		LTD	x 0.0			
1,2,3,4,6,7,8,9-OCDD		LTD	x 0.00			
2,3,7,8-TCDF		LTD	x 0.	1 =		
1,2,3,7,8-PeCDF		LTD	x 0.0			
2,3,4,7,8-PeCDF		LTD	x 0.			
1,2,3,4,7,8-HxCDF		LTD	x 0.			
1,2,3,6,7,8-HxCDF		LTD	x 0.			
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		LTD LTD	x 0. x 0.			
1,2,3,4,6,7,8-HpCDF		LTD	x 0. x 0.0			
1,2,3,4,7,8,9-HpCDF		LTD	x 0.0			
1,2,3,4,6,7,8,9-OCDF		LTD	x 0.00			

Total WHO Dioxin TEFs for Humans: 0. pg/L

{...} indicates that the value is that of a Detection Limit. Note: LTD = Less Than Target Detection Limit

Page 1 of 1

GRY_TEF v1.08, MILES 4.22.16

Toxicity Equivalents Report

TLI Project:	56653			
Sample:	L-2			
File:	U019804			
Analyte		Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD		0	1.0	0.00000
1,2,3,7,8-PeCDD		0	1.0	0.00000
1,2,3,4,7,8-HxCDD		0	0.1	0.00000
1,2,3,6,7,8-HxCDD		0	0.1	0.00000
1,2,3,7,8,9-HxCDD		0	0.1	0.00000
1,2,3,4,6,7,8-HpCD	D	0	0.01	0.00000
1,2,3,4,6,7,8,9-000	D	24.2	0.0001	0.00242
2,3,7,8-TCDF		0	0.1	0.00000
1,2,3,7,8-PeCDF		0	0.05	0.00000
2,3,4,7,8-PeCDF		0	0.5	0.00000
1,2,3,4,7,8-HxCDF		0	0.1	0.00000
1,2,3,6,7,8-HxCDF		0	0.1	0.00000
2,3,4,6,7,8-HxCDF		0	0.1	0.00000
1,2,3,7,8,9-HxCDF		0	0.1	0.0000
1,2,3,4,6,7,8-HpCD	F	0	0.01	0.0000
1,2,3,4,7,8,9-HpCD	F	0	0.01	0.00000
1,2,3,4,6,7,8,9-00	DF	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

0.002 pg/L

Data Review By:

Calculated Noise Height: 3.18

Page No.	1	Listing	of	U 01980	041	3.dbf			
02/22/02		Matched	GC	Peaks	1	Ratio	/	Ret.	Time

Compound/

M_Z.... QC.Log Omit Why ..RT. OK Ratio Total.Area/Ht Area/Ht.Peak1 Area/Ht.Peak2 Rel.RT Compound.Name.. ID.. Flags.

TCDF			0.65-0.89			0.85	30~1.071	
304-306	DC	NL	Height	12.75	5.86	6.89	,0 1.0/1	
304-306	-		Peaks	0.00	5.00	0.05		
		-						
13C12-TCDF			0.65-0.89			. 0.94	15-1.133	
316-318	DC	NL.	Height	10.66	5.06	5.60		
			26:14 0.84	133.36	60.77	72.59	0.986	
			26:37 0.79	16,940.93	7,452.96		1.000 13С12-2378-ТС	DF ISO
			Height	4,416.27	1,947.01	2,469.26		
	DC	SN	27:48 RO 0.42	33.78			1.044	
	DC	SN	28:04 RO 3.35	18.22			1.054	
316-318		2	Peaks	17,074.29				
			A	bove: TCDF / TC	CDD Follows			
TCDD			0.65-0.89			0.9	04-1.042	
320-322	DC	NL	Height	7.53	3.80	3.73		
	DC	SN	25:33 0. 6 5	30.97			0.936	
	DC	SN	25:48 RO 1.03	8.83			0.945	
	DC	SN	26:03 0.78	13.62			0.954	
	DC	SN	28:10 RO 0.98	15.63			1.032	
320-322		0	Peaks	0.00				
37C1-TCDD						0.9	27-1.073	
328	DC	NL	Height	3. 43	3.43			
	DC	WL	24:44	12.05			0.906	
	DC	WL	25:00	4.92			0.916	
	DC	WL	25:10	11.35			0.922	
			25:20	23.23	23.23		0.928	
	DC	SN	25:29	11.02			0.933	
	DC	SN	25:39	10.98			0.940	
	DC	SN	26:37	4.33			0.975	
	DC	SN	26:46	8.51			0.980	
			27:03	11.37	11.37		0.991	
			27:20	1,648.78	1,648.78		1.001 37C1-TCDD	CLS
	DC		27:36	17.16			1.011	
	DC	SN	27:47	16.91			1.018	
	DC	SN		6.31			1.026	
	DC	SN	28:12	22.88			1.033	
	DC			10.12			1.039	
	DC	SN	28:29	8.10			1.043	
	DC DC	SN	28:35	5.59			1.047 1.054	
328	DC		28:46 3 Peaks	12.58 1,683.38			1.004	
320		-	J ICAND	T,003,30				
13C12-TCDD			0.65-0.89	9		0.9	21-1.067	
332-334	DC	NL	Height	20.54	13.73	6.81		

																A.

TLI Project:56653Client Sample:L-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: U019805

Client Project:	K2200945	Date Received:	02/18/02	Spike File:	SP161B2S
Sample Matrix:	AQUEOUS	Date Extracted:		ICal:	UF5206B
TLI ID:	318-29-3	Date Analyzed:		ConCal:	UB20197
Sample Size:	0.525 L	Dilution Factor:	n/a	% Moisture:	n/a
Dry Weight:	n/a	Blank File:	U019802	% Lipid:	n/a
GC Column:	DB-5	Analyst:	JSY	% Solids:	n/a

Analytes	Conc. (pg/L)	DL	Ratio	RT	RRT	Flags
2,3,7,8-TCDD	ND	2.6				
1,2,3,7,8-PeCDD	ND	2.7				
1,2,3,4,7,8-HxCDD	ND	3.5				
1,2,3,6,7,8-HxCDD	ND	3.6				
1,2,3,7,8,9-HxCDD	ND	3.3				
1,2,3,4,6,7,8-HpCDD	ND	6.1				
1,2,3,4,6,7,8,9-OCDD	54.4		0.95	41:43	1.000	
2,3,7,8-TCDF	ND	2.2				
1,2,3,7,8-PeCDF	ND	1.9				
2,3,4,7,8-PeCDF	ND	1.5				
1,2,3,4,7,8-HxCDF	ND	3.3				
1,2,3,6,7,8-HxCDF	ND	2.7				
2,3,4,6,7,8-HxCDF	ND	2.4				
1,2,3,7,8,9-HxCDF	ND	3.3				
1,2,3,4,6,7,8-HpCDF	ND	3.6				
1,2,3,4,7,8,9-HpCDF	ND	5.4				
1,2,3,4,6,7,8,9-OCDF	10.6		0.92	41:56	1.006	J

Totals	Conc. (pg/L)	Numbe	r DL	Flags
Total TCDD	` ND		2.6	
Total PeCDD	ND		6.2	
Total HxCDD	8.5	1		
Total HpCDD	ND		6.1	
Total TCDF	ND		4.3	
Total PeCDF	ND		1.7	And star person with
Total HxCDF	ND		3.3	
Total HpCDF	ND		4.2	

194.502

umbia Analytical Service

TLI Project:56653Client Sample:L-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **U019805**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT		Fags
¹³ C ₁₂ -2,3,7,8-TCDD	2090 •	54.7	31%-137%	0.80 27:18	1.007	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	3350	88.0	25%-181%	1.56 31:28	1.160	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	2500	65.5	32%-141%	1.31 34:33	0.988	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	2620	68.8	28%-130%	1.15 34:38	0.990	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	2300	60.3	23%-140%	1.08 37:58	1.086	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	4630	60.8	17%-157%	0.90 41:42	1.193	
¹³ C ₁₂ -2,3,7,8-TCDF	1640	43.1	29%-140%	0.78 26:37	0.982	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	2370	62.1	24%-185%	1.55 30:27	1.123	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	2720	71.5	21%-178%	1.57 31:08	1.148	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	2460	64.5	26%-152%	0.53 33:52	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	2300	60.3	26%-123%	0.53 33:57	0.971	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	2450	64.2	28%-136%	0.53 34:27	0.985	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	2410	63.4	29%-147%	0.52 35:14	1.008	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	2080	54.5	28%-143%	0.46 36:55	1.056	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1990	52.1	26%-138%	0.46 38:29	1.101	

Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	орт	Flags
³⁷ CL-2,3,7,8-TCDD	243	63.8	42%-164%	27:19	1.007	

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD	0.80 27:07	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	1.23 34:58	

Data Reviewer: ______ 02/22/02

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

	10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	0004 000000000	

TLI Project:56653Client Sample:L-3

Toxicity Equivalents Report Analysis File: U019805

Client Project:	K2200945	Date Received:	02/18/02	Spike File:	SP161B2S
Sample Matrix:	AQUEOUS	Date Extracted:		ICal:	UF5206B
TLI ID:	318-29-3	Date Analyzed:		ConCal:	UB20197
Sample Size:	0.525 L	Dilution Factor:	1	% Moisture:	n/a
Dry Weight:	n/a	Blank File:	U019802	% Lipid:	n/a
GC Column:	DB-5	Analyst:	JSY	% Solids:	n/a

Analytes	Conc. (pg/L)		TEF		Equivalent
2,3,7,8-TCDD	LTD	x	1.	±	
1,2,3,7,8-PeCDD	LTD	х	1.	=	
1,2,3,4,7,8-HxCDD	LTD	х	0.1		
1,2,3,6,7,8-HxCDD	LTD	х	0.1	=	
1,2,3,7,8,9-HxCDD	LTD	х	0.1	=	
1,2,3,4,6,7,8-HpCDD	LTD	x	0.01	=	
1,2,3,4,6,7,8,9-OCDD	LTD	x	0.0001	=	
2,3,7,8-TCDF	LTD	х	0.1	=	
1,2,3,7,8-PeCDF	LTD	х	0.05	=	
2,3,4,7,8-PeCDF	LTD	x	0.5	=	
1,2,3,4,7,8-HxCDF	LTD	x	0.1	=	
1,2,3,6,7,8-HxCDF	LTD	х	0.1	=	
2,3,4,6,7,8-HxCDF	LTD	х	0.1	=	
1,2,3,7,8,9-HxCDF	LTD	х	0.1	=	
1,2,3,4,6,7,8-HpCDF	LTD	х	0.01	=	•
1,2,3,4,7,8,9-HpCDF	LTD	x	0.01	=	
1,2,3,4,6,7,8,9-OCDF	LTD	x	0.0001	=	

Total WHO Dioxin TEFs for Humans: 0. pg/L

{...} indicates that the value is that of a Detection Limit. Note: LTD = Less Than Target Detection Limit

Page 1 of 1

GRY_TEF v1.08, MILES 4.22.16

Toxicity Equivalents Report

Conc. pg/L	TEF	Equivalent
0	1.0	0.00000
0	1.0	0.00000
0	0.1	0.00000
0	0.1	0.00000
0	0.1	0.00000
0	0.01	0.00000
54.4	0.0001	0.00544
0	0.1	0.00000
0	0.05	0.00000
0	0.5	0.00000
0	0.1	0.00000
0	0.1	0.0000
0	0.1	0.0000
0	0.1	0.00000
0	0.01	0.00000
0	0.01	0.00000
10.6	0.0001	0.00106
	0 0 0 0 0 0 54.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Total WHO Dioxin TEFs for Humans

.

0.007 pg/L

Data Review By:

Initial ... e... 2,22,02 The

Calculated Noise Height: 3.45

Page No.	1	Listing	of	U01980)51	B.dbf			
02/22/02		Matched	GC	Peaks	7	Ratio	7	Ret.	Time

Compound/

M_Z.... QC.Log Omit Why ..RT. OK Ratio Total.Area/Ht Area/Ht.Peak1 Area/Ht.Peak2 Rel.RT Compound.Name.. ID.. Flags.

TCDF				0.65-0.89			0.8	80-1.071	
304-306	DC	NL		Height	13.82	7.14	6.68		
А			25:55	RO 1.29	60.63	34.11		0.974	J
304-306		1	Peak		60.63	51111	20132	0.974	0
13C12-TCDF				0.65-0.89			0.9	45-1.133	
316-318	DC	NL		Height	11.52	4.98	6.54		
			26:14	RO 0.60	275.22	102.83	172.39	0.986	
			26:37	0.78	50,961.10	22,354.50		1.000 13C12~2378-TCDF	' ISO
				Height		6,129.85	7,999.81		
316-318		2	Peaks		51,236.32		·		
				Ab	ove: TCDF / TCI	D Follows			
TCDD				0.65-0.89			0.9	04-1.042	
320-322	DC	NL		Height	7.77	4.15	3.62		
	DC	SN	24:52	0.85	23.11			0.911 1368-TCDD	AN
	DC	SN	26:35	RO 2.56	82.73			0.974	
	DC	SN	26:51	RO 3.06	20.43		*	0.984	
320-322			Peaks		0.00				
37C1-TCDD							0.9	27-1.073	
328	DC	NL		Height	4.40	4.40			
	DC	WL	25:12		13.11			0.923	
	DC	SN	25:59		31.88			0.952	
			26:41		22.64	22.64		0.977	
	DC	SN	26:57		9.12			0.987	
	DC		27:04		12.23			0.991	
			27:19		4,770.02	4,770.02		1.001 37Cl-TCDD	CLS
			27:37		36.45	36.45		1.012	
	DC	SN	27:49		10.14	50.45		1.019	
	DC		27:53		12.49			1.021	
	DC		28:02		17.07			1.027	
	20		28:17		39.78	39.78		1.036	
	DC	GN	28:31		2.92	JJ.10		1.045	
	DC		28:32		3.05			1.045	
	DC		28:38		12.08			1.049	
328			Peaks		4,868.89			1.049	
		-			4,000.05				
13C12~TCDD				0.65-0.89			0.9	921-1.067	
332-334	DC	NL		Height	20.83	12.89	7.94		
			27:07	-	65,597.70	29,163.40	36,434,30	0.993 13C12-1234-TCD	D RS1
			27:18		42,474.20	18,867.00		1.000 13C12-2378-TCD	
				Height	11,705.37	5,204.07	6,501.30		
			27:51		94.47	41.24		1.020	
332-334		3		5.					
					d	<i>ک</i> ر			
					L	<i>S.</i> /			
					N2	1 m			
					<i>[</i> -,	Y.er			
						رد ``			
						5. *5. *			

Jumbia Analytical Services

TLI Project:56653Client Sample:L-3a

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **U019806**

Client Project:	K2200945	Date Received:	02/18/02	Spike File:	SP161B2S
Sample Matrix:	AQUEOUS	Date Extracted:		ICal:	UF5206B
TLI ID:	318-29-4	Date Analyzed:		ConCal:	UB20197
Sample Size:	0.945 L	Dilution Factor:	n/a	% Moisture:	n/a
Dry Weight:	n/a	Blank File:	U019802	% Lipid:	n/a
GC Column:	DB-5	Analyst:	JSY	% Solids:	n/a

Analytes	Conc. (pg/L)	DL	Ratio	RT	RRT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	ND ND ND ND ND 5.3	1.0 1.1 4.1 1.5 1.4 2.6	0.81	41:44	1.000	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	ND ND 1.6 UJ ND ND ND ND ND ND ND ND	0.9 0.8 0.7 1.0 1.0 1.4 1.4 1.9 2.1	1.42	33:53	1.000	J

Totals	Conc. (pg/L)	Numbe	er DL	1	Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 3.8 ND ND	1	3.6 11.8 2.6		
Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND 1.6 ND	1	0.9 0.7 1.6		

Page 1 of 2

161B_PSR v2.04, LARS 6.25.04

Printed: 16:16 02/22/02
Jumbia Analytical Services

TLI Project:56653Client Sample:L-3a

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: U019806

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
³ C ₁₂ -2,3,7,8-TCDD	1260	59.3	31%-137%	0.79 27:18	1.007	
³ C ₁₂ -1,2,3,7,8-PeCDD	2000	94.4	. 25%-181%	1.59 31:28	1.006	
³ C ₁₂ -1,2,3,4,7,8-HxCDD	1440	68.3	32%-141%	1.24 34:33	1.160	
³ C ₁₂ -1,2,3,6,7,8-HxCDD	1530	72.3	28%-130%	1.24 34:33	0.988	
³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1280	60.6	23%-140%	1.11 37:59	0.990	
³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	2780	65.6	17%-157%		1.086	
		05.0	1770-13770	0.90 41:43	1.193	
³ C ₁₂ -2,3,7,8-TCDF	1000	47.2	29%-140%	077 06.27	0.001	
³ C ₁₂ -1,2,3,7,8-PeCDF	1450	68.4	23%-140% 24%-185%	0.77 26:37	0.981	
³ C ₁₂ -2,3,4,7,8-PeCDF	1630	77.2	21%-178%	1.56 30:27	1.122	
³ C ₁₂ -1,2,3,4,7,8-HxCDF	1380	65.2	26%-152%	1.58 31:08	1.147	
³ C ₁₂ -1,2,3,6,7,8-HxCDF	1330	62.9	26%-123%	0.52 33:52	0.969	
³ C ₁₂ -2,3,4,6,7,8-HxCDF	1400	66.0	28%-136%	0.53 33:58	0.971	
⁶ C ₁₂ -1,2,3,7,8,9-HxCDF	1420	67.0	28 <i>%</i> -130% 29%-147%	0.52 34:27	0.985	
C ₁₂ -1,2,3,4,6,7,8-HpCDF	1200	56.8	29%-147% 28%-143%	0.52 35:14	1.008	
C ₁₂ -1,2,3,4,7,8,9-HpCDF	1190	56.3	28%-143% 26%-138%	0.45 36:56	1.056	
-		50.5	20%-138%	0.47 38:30	1.101	
Cleanup Standard	Conc. (pg/L)	% Daaaaaa	001			
	oone. (pg/c)	% Recovery	QC Limits	RT	RAT	Flags
CL-2,3,7,8-TCDD	147	69.7	42%-164%	27:19	1.007	

Recovery Standards	Ratio RT Fla	gs
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.80 27:08 1.23 34:58	-

Data Reviewer:	asm	02/22/02
		02/22/02

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.[®] 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

 $\begin{array}{c} \text{Printed: 16:16 } 02/22/02 \\ 159 \end{array}$

		lumber:	. an in		vices	
TLI Project: Client Sample	56653 2: L-3a				Toxicity Equivalents Repo Analysis File: U01980	
Client Project: Sample Matrix: TLI ID:	K2200945 AQUEOUS 318-29-4	Date Re Date Ex Date Ar	tracted:	02/15/02 02/18/02 02/22/02	Spike File: SP161B2S ICal: UF5206B ConCal: UB20197	
Sample Size: Dry Weight: GC Column:	0.945 L n/a DB-5	Dilution Blank F Analyst:	ile:	1 U019802 JSY	% Moisture: n/a % Lipid: n/a % Solids: n/a	
Analytes	Conc.	(pg/L)	TEI	=	Equivalent	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8,9-HyCDF 1,2,3,4,6,7,8,9-OCDF	L L L L L L L L L L L L L L L L L L L	D x D x D x	1. 0.1 0.1 0.01 0.00)1 = = = = = = = = = = = =		

and the second state of th

Total WHO Dioxin TEFs for Humans: 0. pg/L

{...} indicates that the value is that of a Detection Limit. Note: LTD = Less Than Target Detection Limit

Toxicity Equivalents Report

TLI Project: Sample:	56653 L-3a			
File:	U019806			
Analyte		Conc. pg/L	TEF	Equivalent
2,3,7,8-TCDD		0	1.0	0.00000
1,2,3,7,8-PeCDD		0	1.0	0.00000
1,2,3,4,7,8-HxCDD		0	0.1	0.00000
1,2,3,6,7,8-HxCDD		0	0.1	0.00000
1,2,3,7,8,9-HxCDD		0	0.1	0.00000
1,2,3,4,6,7,8-HpCD	D	0	0.01	0.00000
1,2,3,4,6,7,8,9-000	D	5.3	0.0001	0.00053
2,3,7,8-TCDF		0	0.1	0.00000
1,2,3,7,8-PeCDF		0	0.05	0.00000
2,3,4,7,8-PeCDF		0	0.5	0.00000
1,2,3,4,7,8-HxCDF		1.6	0.1	0.16000
1,2,3,6,7,8-HxCDF		0	0.1	0.00000
2,3,4,6,7,8-HxCDF		0	0.1	0.00000
1,2,3,7,8,9-HxCDF		0	0.1	0.00000
1,2,3,4,6,7,8-HpCD	F	0	0.01	0.00000
1,2,3,4,7,8,9-HpCD		0	0.01	0.00000
1,2,3,4,6,7,8,9-OCD	F	0	0.0001	0.00000

Total WHO Dioxin TEFs for Humans

0.161 pg/L

February 22, 2002

Service Request No: K2200333 K2200378

RueAnn Thomas J.H. Baxter Company 85 N Baxter Street Eugene, OR 97402

Re: Permit Monitoring Wells

Dear RueAnn:

Enclosed are the results of the sample(s) submitted to our laboratory on January 15, 2002. For your reference, these analyses have been assigned our service request number K2200333.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

- for

Mingta Lin Project Chemist

ML/ll

Page 1 of _27

cc: Mary Larsen, J.H. Baxter Company (Arlington)

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

BXS Wells

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:J.H. Baxter & CompanyProject:Permit Monitoring WellsSample Matrix:Water

Service Request:K2200333Date Collected:01/14/02Date Received:01/15/02Date Extracted:NADate Analyzed:01/17/02

Solids, Total Suspended (TSS) EPA Method 160.2 Units: mg/L (ppm)

Sample Name	Lab Code	MRL	Result
BXS-1	K2200333-001	5	ND
Method Blank	K2200333-MB	5	ND
		1994.1-	νζ.

Approved By: IAMRL/102594

Mil Fitt

Date: 1/23/02

MRL/102594

00333WET.DM1 - TSS 01/23/02

Page No.:

COL BIA ANALYTICAL SERVICES, 1

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client :J.H. Baxter & CompanyProject Name :Permit Monitoring WellsProject No. :NA

Service Request : K2200333

Sample Name :

BXS-1 Method Blank Lab Code :

K2200333-001 K2200333-MB

Burro (1 Approved By:

Date:

1/31/02

COLIMIBIA ANALYTICAL SERVICES, IMA.

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200333
Project Name :	Permit Monitoring Wells	Date Collected :	01/14/02
Project No. :	NA	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/30/02

Sample Name :	BXS-1	Units : ug/L (ppb)
Lab Code :	K2200333-001	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/31/02	47300	
Iron	6010B	20	01/31/02	ND	
Magnesium	6010B	20	01/31/02	29300	
Potassium	6010B	2000	01/31/02	2800	
Sodium	6010B	100	01/31/02	11400	
			Kq24.120	-	

COLIMBIA ANALYTICAL SERVICES, IMA

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200333
Project Name :	Permit Monitoring Wells	Date Collected :	NA
Project No. :	NA	Date Received :	NA
Matrix :	Water	Date Extracted :	01/30/02

Sample Name :	Method Blank	Units: ug/L (ppb)
Lab Code :	K2200333-MB	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/31/02	ND	
Iron	6010B	20	01/31/02	ND	
Magnesium	6010B	20	01/31/02	ND	
Potassium	6010B	2000	01/31/02	ND	
Sodium	6010B	100	01/31/02	ND	

COLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company	Service Request	: 01/14/2002
Project:	Permit Monitoring Wells	Date Collected	
Sample Matrix:	Water	Date Received	
Sample Name:	BXS-1	Pentachlorophenol	• ug/I

			Dilution	Date	Date	Extr	action	
Extraction Method: Analysis Method:	METHOD 8151M					Level:	Low	
Lab Code:	K2200333-001					Units: Basis:	U	

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Pentachlorophenol	37	0.20	1	01/18/02	01/27/02	KWG0200590	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	59	40-100	01/27/02	Acceptable	Kp 4.7.22	

COLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Project: Permit Monitoring Wells Date Collected: NA Sample Matrix: Water Date Received: NA Pentachlorophenol Units: ug/L Sample Name: Method Blank Units: ug/L Lab Code: KWG0200590-4 Basis: NA Extraction Method: METHOD Level: Low Analyte Name Result Q MRL Dilution Date Date Extraction	Pentachlorophenol	ND	U	0.20	1	01/18/02	01/27/02	KWG0200590	
Project: Permit Monitoring Wells Date Collected: NA Sample Matrix: Water Date Received: NA Pentachlorophenol Vater Units: ug/L Sample Name: Method Blank Units: ug/L Lab Code: KWG0200590-4 Basis: NA Extraction Method: METHOD Level: Low				and the second	Factor	Extracted	Analyzed	Lot	Note
Project: Permit Monitoring Wells Date Collected: NA Sample Matrix: Water Date Received: NA Pentachlorophenol Sample Name: Method Blank Units: ug/L							1	Level: Low	
Project:Permit Monitoring WellsDate Collected:NASample Matrix:WaterDate Received:NA	-								
Project: Permit Monitoring Wells Date Collected: NA				Pentachloropher	ıol				
Client: J.H. Baxter & Company Service Request: K2200333	-	•	•				Date Colle	ected: NA	333

Surrogate Name	%Rec	Limits	Analyzed	Note
4-Bromo-2,6-dichlorophenol	58	40-100	01/27/02	Acceptable

Comments:

•

mi T əmsN bət	<u>Prin</u>	ແມ	<u>iə</u>	emsN l	Printec		Str	_{آنس} ح	<u>1</u>	Tai	amen p	Printe	07777171		Printed Name
nature Date/Time	<u>IBIS</u>	emiT\eft	<u>D</u>	nte	Signat	00		m∏\əts I∫∫∫0		$\overline{\gamma}$	hie Lert		ogram		
RECEIVED BY:		D 87:	AQUISHE	в				BV:		BECE	Ň	"/			עט געדואסחוצו (
				٢	VOSU	א רש קנחיר	onm	,			ated ho	deA beteel	рея		
				5#U	140%	HWN	190y	INI	T4		stius	ea FAX Reg	voi9	Jeport	V. EDD V. EDD
						v	0	_	-	(svet	working c	iyerd (10-15 נא		(stat	(includes all raw o
											.14 8Þ		24 P	ebou	required III. Data Validation R
	SEWTHRON	K CA WI		TS: TS:		DOHOYH									II. Report Dup., MS,
6H UZ A US II JS OS ON 6V A		\sim	Co Cr C			8 qs s					<u>Uħħ</u> Ĺ	POL XO	20092		Blank, Surrogate, required
K Ag Na Se Sr TI Sn V ZN Hg	*	-1	co cr ci	C ^{si} Cq						2)PUEL	242.41.1 POI XO	- # .0.9 		I. Routine Report: N
					:pəzʎ	ens ed of	netals are	n doidw e	<u>Circle</u>		40ITAM			STNE	MERIODER REQUIREM
				$\left \right $											
						;									
													and an Inde		
				X							CHE CO		13:3000	ļ	1-SXS
СС СС 20 20 20 20 20 20 20 20 20 20 20 20 20	1 00 NO 00 NO 00 NHO 00 00 00 00 00 00 00 00 00 0		PARS	608 [] 608 [] Chlorophen			- As an a		Semivolanii.	NUMBED	XIATAM	.G.I 8AJ	TIME	DATE	SAMPLE I.D.
				17 8 Å			82901				55.08	-58h-	292		MULTELS STOWNINE
3					418.1	Deprint (2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2			<u> </u>			185	· JU	י משך הות אשריין
AOX 1850	4. Cond., Chon II. 4. Cond., Chon II. 5. 4. Coop. Coop. Fox. F. N. Coop. Total. F.	Thenous and the second		SHenbides	1/1/	Ingerprint (FIQ)	80210		HOF CONTAINERS		53		-	t N.E.	U.S.S. OZ S
					22 58		··· / .	GCM	⁸ /	213	5	`	3My	יר לימ <u>י</u> שייד	
₽ ₽ ₽	20 20		8151A		1884 1884 1964		' / `	/ /	<u> </u>	s]]∍		10	ter al	4' R+X	
# 2007 H				-9E9 (09E) ;		1			()					~	

	Columbia Analytical Services Inc. Cooler Receipt And Preservation Form	
Project/Clie	ent <u>BAXTER</u> Work Order K22 <u>erests</u>	00333
Cooler rece	ived on 1/15/02 and opened on 1/15/02 by AD	·····
1.	Were custody seals on outside of cooler? 67 If yes, how many and where?	N
2.	Were seals intact and signature & date correct?	$(\mathbf{y})_{\mathbf{N}}$
3.	coc #	
	Temperature of cooler(s) upon receipt: (7.3)	
	Temperature Blank:	
4.	Were custody papers properly filled out (ink, signed, etc.)?	Ø N
5.	Type of packing material present Nom	
6.	Did all bottles arrive in good condition (unbroken)?	ώρ N
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?	N N
8.	Did all bottle labels and tags agree with custody papers?	N N
9.	Were the correct types of bottles used for the tests indicated?	N N
10.	Were all of the preserved bottles received at the lab with the appropriate pH?	N N
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?	<u>Y_N_</u>
12.	Did the bottles originate from CAS/K or a branch laboratory?	🕐 N
13.	Are CWA Microbiology samples received with $> \frac{1}{2}$ the 24 hr. hold time remaining from collection?	4-N-
14.	Was CL2/Residual negative?	Y (N)
Explain any	discrepancies:	AP

RESOLUTION:

Somplos that manimal	management of an an an and a second	and of home on the set
Samples that required	preservation or received	I OUL OF LEMPERATURE:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
Au				AU	\times	(iei)
					·····	

0:1011 CRFREV.DOC12/24/01

MW Wells

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:J.H. Baxter & CompanyProject:Permit Monitoring WellsSample Matrix:Water

 Service Request:
 K2200378

 Date Collected:
 01/15/02

 Date Received:
 01/17/02

 Date Extracted:
 NA

 Date Analyzed:
 01/18/02

Solids, Total Suspended (TSS) EPA Method 160.2 Units: mg/L (ppm)

Sample Name	Lab Code	MRL	Result
MW-2	K2200378-001	5	ND
HCMW-6	K2200378-002	5	ND
HCMW-7	K2200378-003	5	730
MW-A	K2200378-004	5	ND
MW-B	K2200378-005	5	ND
Method Blank	K2200378-MB	5	ND
		1sparr	L

MA Fit

Approved By: IAMRL/102594

Date: 1/23/02

00378WET.DM1 - TSS 01/23/02

Page No.: 011012

COI **MBIA ANALYTICAL SERVICES,**

- Cover Page -**INORGANIC ANALYSIS DATA PACKAGE**

Client : **Project Name :** Project No. :

J.H. Baxter & Company Permit Monitoring Wells NA

Service Request: K2200378

<u>Sample Name :</u>	<u>Lab Code :</u>
MW-2	K2200378-001
HCMW-6	K2200378-002
HCMW-7	K2200378-003
MW-A	K2200378-004
MW-B	K2200378-005
Method Blank	K2200378-MB

Comments:

Approved By: _

of Buro

Date:

 $2|||\partial z$

COLUMBIA ANALYTICAL SERVICES, P.C.

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	01/15/02
Project No. :	NA	Date Received :	01/17/02
Matrix :	Water	Date Extracted :	01/22/02

Dissolved Metals

Sample Name :	MW-2	Units: ug/L (ppb)
Lab Code :	K2200378-001	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Note s
Calcium	6010B	50	01/29/02	11300	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	7170	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	5690	
			Kp422		

÷

COLUMBIA ANALYTICAL SERVICES, MC.

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	01/15/02
Project No. :	NA	Date Received :	01/17/02
Matrix :	Water	Date Extracted :	01/22/02

Sample Name :	HCMW-6	Units: ug/L (ppb)
Lab Code :	K2200378-002	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/29/02	10900	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	7160	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	4380	
			Kap48-2	-	

COL¹ TBIA ANALYTICAL SERVICES, J⁻⁻

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	01/15/02
Project No. :	NA	Date Received :	01/17/02
Matrix :	Water	Date Extracted :	01/22/02

Sample Name :	HCMW-7	Units : ug/L (ppb)
Lab Code :	K2200378-003	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/29/02	12600	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	7610	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	5300	
				Ryq ya	

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	01/15/02
Project No. :	NA	Date Received :	01/17/02
Matrix :	Water	Date Extracted :	01/22/02

Sample Name :	MW-A	Units: ug/L (ppb)
Lab Code :	K2200378-004	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/29/02	11000	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	6980	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	5370	
			KOPA 8-2	-	

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	01/15/02
Project No. :	NA	Date Received :	01/17/02
Matrix :	Water	Date Extracted :	01/22/02

Sample Name :	MW-B	Units: ug/L (ppb)
Lab Code :	K2200378-005	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Note s
Calcium	6010B	50	01/29/02	ND	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	ND	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	ND	
			Kopa 120	L.	

COLUMBIA ANALYTICAL SERVICES, PTC.

Analytical Report

Client :	J.H. Baxter & Company	Service Request :	K2200378
Project Name :	Permit Monitoring Wells	Date Collected :	NA
Project No. :	NA	Date Received :	NA
Matrix :	Water	Date Extracted :	01/22/02

Sample Name :	Method Blank	Units: ug/L (ppb)
Lab Code :	К2200378-МВ	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Calcium	6010B	50	01/29/02	ND	
Iron	6010B	20	01/29/02	ND	
Magnesium	6010B	20	01/29/02	ND	
Potassium	6010B	2000	01/29/02	ND	
Sodium	6010B	100	01/29/02	ND	

LUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company
Project:	Permit Monitoring Wells
Sample Matrix:	Water

 Service Request:
 K2200378

 Date Collected:
 01/15/2002

 Date Received:
 01/17/2002

Pentachlorophenol

Sample Name: Lab Code:	MW-2 K2200378-001						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M						Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	76	38-119	01/30/02	Acceptable	KP41-c	

COLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	
Project:	Permit Monitoring Wells	Date Collected: (01/15/2002
Sample Matrix:	Water	Date Received:	01/17/2002

Pentachlorophenol

Sample Name: Lab Code:	HCMW-6 K2200378-002						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M						Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	01/21/02	01/30/02	KWG0200644	<u> </u>

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	63	38-119	01/30/02	Acceptable	KP4 POL	

COLUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2200378
Project:	Permit Monitoring Wells	Date Collected:	01/15/2002
Sample Matrix:	Water	Date Received:	01/17/2002

Pentachlorophenol

Sample Name: Lab Code:	HCMW-7 K2200378-003						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	67	38-119	01/30/02	Acceptable	Kp48-2	

CALUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2200378
Project:	Permit Monitoring Wells	Date Collected:	01/15/2002
Sample Matrix:	Water	Date Received:	01/17/2002

Pentachlorophenol

Sample Name: Lab Code:	MW-A K2200378-004						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	68	38-119	01/30/02	Acceptable	194202	·······

ς.

Comments:

00023

✓ `LUMBIA ANALYTICAL SERVICES, IN

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2200378
Project:	Permit Monitoring Wells	Date Collected:	01/15/2002
Sample Matrix:	Water	Date Received:	01/17/2002

Pentachlorophenol

Sample Name: Lab Code:	MW-B K2200378-005						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	70	38-119	01/30/02	Acceptable	Kpgysz	

C'NUMBIA ANALYTICAL SERVICES, INC

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	NA
Project:	Permit Monitoring Wells	Date Collected:	
Sample Matrix:	Water	Date Received:	

Pentachlorophenol

Sample Name: Lab Code:	Method Blank KWG0200644-4			Units: ug/L Basis: NA			
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND U	0.20	1	01/21/02	01/30/02	KWG0200644	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	69	38-119	01/30/02	Acceptable	

Columbia Analytic					Cł	IAI	N O	FC	CUS	STO	DD	Y								SR	(#:	12	NO.	378
An Employee-Owned Company	INC.	17 South 13	th Ave. • Ke	lso, WA	98626	• (360)	577-7222	• (800)) 695-72	22 • F	FAX (360) 636-	-1068		P	AGE	E	[_ OF	1		_ co	C #	
PROJECT NAME PROJECT NUMBER PROJECT MANAGEB COMPANY/ADDRESS COMPANY/ADDRESS AT 1 (AGT PHONE # 235-3144 SAMPLER'S SIGNATURE	NTMO Drth staie	Ntorin Mayer PoB A 9	g well	5	MHEC -	Semicolatile CONTAINERS	Volatile Oganics by GCMS	orocarbons (*see hor BTEV)	D NWH HOD SOFT	13.1 000 MAPH 16.1	Pesticides/Hart Congenerc	Noropheness Blass	HS	GCMS SIN SIM [eas Torn	anico and a solution a	H. Cond Hex-China	12 N CS (201	10C (circle) Total P True (circle) 2, TOX 02	40X 162	[]905 []000			
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	<u> </u>		128/1	<u>``@</u>		14	<u> </u> 48	105		<u>S</u>	130	[0		<i> </i> ₹	12	<u> </u>	/	/	/	
Bx5-+	+			Water	13_			\pm				X			X		K	ᆍ_	<u> </u>		<u> </u>	ļ	<u> </u>	
MW-2	1-15-62	10:15m	1		3							X			Д		Д		ļ		ļ		ļ	·· 、
HCMW-5	Nol	UATE.			3							X			X		\times	╞	<u> </u>					
HCMW-LO		2:00pm	2		3				_			X			Д		X	ļ	ļ	ļ				
Hemw-7	1-15-02	11:30Am	2		3							\times			\ge		\ge					ļ	ļ	
MW-A	1-12-02	9:30Am	4		3							\times			\ge		\ge]						
mw-B	1-15-02	8:30AW	5	V	3							X			Х		Х						ļ	
-										:									ļ					
	_									ļ								ļ	<u> </u>					
										<u> </u>								ĺ						
REPORT REQUIRE L. Routine Report Blank, Surrogat required II. Report Dup., M	: Method e, as	P.O. # Bill To: <u>Po Bo</u> EUT	DICE INFOF J.H.Bax K. 1079 K. 079 K. 079 NOUND REA	€ 1 1 7144		Tota Dissolv *INDI		AI As AI As ATE H	Sb E Sb E IYDRO	a Be Ba Be CARB	B Ca B Ca ON PRO) Cd	Co (Cr Cu	F	Pb 🜔	N QN	In M	o Ni (K) Aç			Sr Tl	Sn V Zn Sn V Zr RCLE ONE
required24 hr48 hr. III. Data Validation Report (includes all raw data)5 Day Standard (10-15 working days)																								
IV. CLP Deliverable Report Provide FAX Results V. EDD				m	aru	Lars	sn	•																
•. 200		Re	quested Rep	ort Date				7																
	SHED BY:	7.41001	non -	- B	RECE	EIVED I	BY:	09	10-			REL	INQU	ISHED	BY:						RE	CEIV	ED BY	:
Signature	Date/Time	and the	Sign	ature	Nº 11	Da	ke/Time	- 1		Sig	nature			Dat	e/Tim	e			Signa	ature			Date	Time
Printed Name	Firm	U-1 (B),	Print	ed Name	<u>rc/</u>	- Fi	rm			Prin	nted Na	me		Firr	n				Printe	ed Nar	me		Firm	

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

Project/Cli	ent_J.H.Bater Work Order K22 003 78	
Cooler rece		
1.	Were custody seals on outside of cooler? If yes, how many and where? [Front	(Y) _N
2.	Were seals intact and signature & date correct?	N N
3.	coc# <u>4.399</u>	
	Temperature of cooler(s) upon receipt:	
	Temperature Blank:	
4.	Were custody papers properly filled out (ink, signed, etc.)?	𝖅 N
5.	Type of packing material present hwas - loogi ill on back	
6.	Did all bottles arrive in good condition (unbroken)?	N N
7.	Were all bottle labels complete (<i>i.e.</i> analysis, preservation, etc.)?	N N
8.	Did all bottle labels and tags agree with custody papers?	N N
9.	Were the correct types of bottles used for the tests indicated?	N 🕄
10.	Were all of the preserved bottles received at the lab with the appropriate pH?	N (Y)
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?	TN
12.	Did the bottles originate from CAS/K or a branch laboratory?	Θ N
13.	Are CWA Microbiology samples received with $> \frac{1}{2}$ the 24 hr. hold time remaining from collection?	YN
14.	Was CL2/Residual negative?	PN 45
Explain any	discrepancies:	_

RESOLUTION:

Samples that required preservation or received out of temperature:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
All Samples				-	_ i/	
~~~~~						
						<u> </u>

l



February 22, 2002

Service Request No: K2200325 K2200199

RueAnn Thomas J.H. Baxter Company 85 N Baxter Street Eugene, OR 97402

## Re: Arlington Plant Groundwater/BXS-WELLS/BXN-WELLS

Dear RueAnn:

Enclosed are the results of the sample(s) submitted to our laboratory on January 15, 2002. For your reference, these analyses have been assigned our service request numbers K2200325 and K2200199.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

**Columbia Analytical Services, Inc.** 

Mingta Lin Project Chemist

ML/ll

Page 1 of _____

cc: Mary Larsen, J.H. Baxter Company (Arlington)

Re britted 41002

#### COLUMBIA ANALYTICAL SERVICES, INC.

Client:	J.H. Baxter & Company	•	Service Request No.:	K2200325 K2200199
Project: Sample Matrix:	BXS Wells/BXN Wells Water		Date Received:	1/10, 15/02

#### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

#### Sample Receipt

Six BXN well six BXS well samples were received for analysis at Columbia Analytical Services on 1/10/02 and 1/15/02, respectively. The exceptions are also noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form, except that documented on the Cooler Receipt and Preservation form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

#### **Inorganic Parameters**

Selected samples were received past the recommended holding time for Total Coliform analysis. The sample results have been flagged "X" to indicate the holding time exceedance.

The Total Coliform sample containers for samples BXN-1 and BXN-3 were receipt opened. Analysis was not performed on these two samples since the sample condition was inappropriate for this analysis.

#### **Total and Dissolved Metals**

No anomalies associated with the analysis of these samples were observed.

Approved by_

30001

# Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

#### **Inorganic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

#### **Organic Data Qualifiers**

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.
# **BXS** Wells

### Analytical Report

Client:	J.H. Baxter & Company
Project:	BXS Wells-Landfill/BXS-WELLS
Sample Matrix:	Water

Service Request: K2200325 Date Collected: 1/14/02 Date Received: 1/15/02 Date Extracted: NA

Inorganic Parameters Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	<b>Alkalinity as</b> <b>CaCO3</b> 310.1 2 1/24/02	<b>Chloride</b> 300.0 0.2 1/16/02	Chemical Oxygen Demand (COD) 410.2 5 1/16/02	<b>Conductivity</b> (umhos/cm) 120.1 2 1/23/02	Bicarbonate as CaCO3 SM 2320 B 2 1/24/02
Sample Name	Lab Code					
BXS-1	K2200325-001	242	5.0	20	471	242
BXS-2	K2200325-002	466	6.1	41	842	466
BXS-3	K2200325-003	450	3.2	54	806	450
BXS-4	K2200325-004	96	2.0	7	192	96
BXS-5	K2200325-005	ND	ND	ND	ND	ND
BXS-6	K2200325-006	238	4.9	17	474	ND 238
Method Blank	K2200325-MB	ND	ND	ND	ND	ND
				im	1.1 .21	

194502

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

MMR Approved By:

5A5M/120294 00325WET.DM1 - 5Tests 1/29/02

Date: 12902

Page No.:

### Analytical Report

# Client:J.H. Baxter & CompanyProject:BXS Wells-Landfill/BXS-WELLSSample Matrix:Water

 Service Request:
 K2200325

 Date Collected:
 1/14/02

 Date Received:
 1/15/02

 Date Extracted:
 NA

### Inorganic Parameters Units: mg/L (ppm)

. · · ·	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	Ammonia as Nitrogen 350.1 0.05 1/17/02	Nitrate + Nitrite as Nitrogen 353.2 0.2 1/16/02	pH (Units) 150.1  1/15/02	Sulfate 300.0 0.2 1/16/02	<b>Tannin and</b> <b>Lignin</b> SM 5550B 0.2 1/17/02
Sample Name	Lab Code					
BXS-1	K2200325-001	ND	0.2	6.17	6.8	0.3
BXS-2	K2200325-002	ND	ND	6.34	0.3	1.3
BXS-3	K2200325-003	0.07	ND	6.45	0.7	9.9
BXS-4	K2200325-004	0.47	ND	8.03	1.1	0.5
BXS-5	K2200325-005	ND	ND	5.77	ND	ND
BXS-6	K2200325-006	ND	0.3	6.14	7.0	0.4
Method Blank	K2200325-MB	ND	ND		ND	ND
				194.5	1.02	

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

MMR Approved By:

5A5M/120294 00325WET.DM1 - 5Tests (2) 1/29/02

1/29/02 Date:



### Analytical Report

# Client:J.H. Baxter & CompanyProject:BXS Wells-Landfill/BXS-WELLSSample Matrix:Water

Service Request: K2200325 Date Collected: 1/14/02 Date Received: 1/15/02 Date Extracted: NA

Inorganic Parameters Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	Solids, Total Dissolved (TDS) 160.1 5 1/17/02	Carbon, Total Organic (TOC) 415.1 0.5 1/22/02
Sample Name	Lab Code		
BXS-1	K2200325-001	275	5.8
BXS-2	K2200325-002	428	13.5
BXS-3	K2200325-003	496	19.1
BXS-4	K2200325-004	136	1.0
BXS-5	K2200325-005	ND	ND
BXS-6	K2200325-006	246	5.8
Method Blank	K2200325-MB	ND	ND
			144 5 32

Approved By: ______

3ADW/061694 00325WET.DMI - 3_Tests 1/29/02

29/02 Date:

Page No. 01006

### Analytical Report

# Client:J.H. Baxter & CompanyProject:BXS Wells-Landfill/BXS-WELLSSample Matrix:Water

Service Request: K2200325 Date Collected: 1/14/02 Date Received: 1/15/02 Date Extracted: NA Date Analyzed: 1/15/02

### Coliform, Total SM 9221B Units: MPN/100 ml

Sample Name	Lab Code	MRL	Started		Result
BXS-1	K2200325-001	2	1520	hrs	ND (X) 45
BXS-2	K2200325-002	2	1520	hrs	ND (X)
BXS-3	K2200325-003	2	1520	h <b>r</b> s	ND (X)
BXS-4	K2200325-004	2	1520	hrs	ND
BXS-5	K2200325-005	2	1520	hrs	ND(X) UJ
BXS-6	K2200325-006	2	1520	hrs	ND (X) MJ

1874.5.02

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

Approved By: 1000

00325WET.DM1 - BactTC 1/29/02

1/29/02 Date:

Page No.; 0000

## COL. IBIA ANALYTICAL SERVICES, 1. ....

### - Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client : Project Name : Project No. :

J.H. Baxter & Company BXS Wells-Landfill BXS-WELLS Service Request: K2200325

<u>Sample Name :</u>	<u>Lab Code :</u>
BXS-1	K2200325-001
BXS-2	K2200325-002
BXS-3	K2200325-003
BXS-4	K2200325-004
BXS-5	K2200325-005
BXS-6	K2200325-006
Method Blank	K2200325-MB

Comments:

of Porno Approved By:

1/28/02

00008

### COL^{*} 'BIA ANALYTICAL SERVICES, I^{**}.

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-1
Lab Code :	K2200325-001

Units: ug/L (ppb) Basis: NA

.

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	27.1	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	ND	
Manganese	6010B	5.0	01/25/02	464	
Nickel	6010B	20	01/25/02	27	
Zinc	6010B	10	01/25/02	14	
			1824 102		

# 

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-2	Units: ug/L (ppb)
Lab Code :	K2200325-002	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	52.3	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	806	
Manganese	6010B	5.0	01/25/02	1500	
Nickel	6010B	20	01/25/02	39	
Zinc	6010B	10	01/25/02	11	
				1404122	

00010

.

# COL' BIA ANALYTICAL SERVICES, $\Gamma^* \sim 10^{-10}$

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-3
Lab Code :	K22003

K2200325-003

Units : ug/L (ppb) Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	6.0	
Barium	6010B	5.0	01/25/02	71.2	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	5760	
Manganese	6010B	5.0	01/25/02	15600	
Nickel	6010B	20	01/25/02	33	
Zinc	6010B	10	01/25/02	ND	
			Ko	0 A 9 31	

KOPAPOL

# COL^γ 'BIA ANALYTICAL SERVICES, Γ΄,

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-4	Units: ug/L (ppb)
Lab Code :	K2200325-004	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	27.1	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	50.0	
Manganese	6010B	5.0	01/25/02	127	
Nickel	6010B	20	01/25/02	ND	
Zinc	6010B	10	01/25/02	ND	
			KJ2 80	<u> </u>	

•

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-5	Units : ug/L (ppb)
Lab Code :	K2200325-005	<b>Basis :</b> NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	ND	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	ND	
Manganese	6010B	5.0	01/25/02	ND	
Nickel	6010B	20	01/25/02	ND	
Zinc	6010B	10	01/25/02	ND	
			100410		

00013

,

# COL^{*} "BIA ANALYTICAL SERVICES, I"

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	01/14/02
Project No. :	BXS-WELLS	Date Received :	01/15/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXS-6	Units: ug/L (ppb)
Lab Code :	K2200325-006	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	27.2	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	ND	
Manganese	6010B	5.0	01/25/02	470	
Nickel	6010B	20	01/25/02	22	
Zinc	6010B	10	01/25/02	ND	
			19400L		

# COLY "BIA ANALYTICAL SERVICES, I' ~.

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200325
Project Name :	BXS Wells-Landfill	Date Collected :	NA
Project No. :	BXS-WELLS	Date Received :	NA
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	Method Blank	Units : ug/L (ppb)
Lab Code :	K2200325-MB	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/23/02	ND	
Barium	6010B	5.0	01/25/02	ND	
Cadmium	6010B	5.0	01/25/02	ND	
Copper	6010B	10	01/25/02	ND	
Iron	6010B	20	01/25/02	ND	
Manganese	6010B	5.0	01/25/02	ND	
Nickel	6010B	20	01/25/02	ND	
Zinc	6010B	10	01/25/02	ND	
			koy d	102	

Columbia Analytica	d				CI	IAI	1 01	= C	US	STC	)D	Υ								SR	#: <u></u>	220	200	325
	ю. 13	317 South 13	th Ave. • Ke	elso, WA 9	8626	• (360) 57	7-7222 •	(800) (	695-72	22 • F	AX (36	636 (0	-1068		F	PAGE			OF	1		_ CO	C #	
PROJECT NAME H R	arter	tra.				<u> </u>	7	1	7	7	1	7		7	7	7	/	7	1	/	1	Τ	Π	
PROJECT NUMBER	Nolk-	land	fill.			$\neg$	191	BIEX	/ /	/ · ]		'	8151A[]	' /	/ /	/ _]	/		9	ମ /	2060	' /	้ฟ	/ / ㅋ
PROJECT MANAGER	L. M.	Con	<u>- 7 [ 14</u>			$\neg_{\mathscr{X}}$	/ <u>ج</u>			2						Lalet A						'È'	đ	
COMPANY/ADDRESS	St NE	F POZ	50x30	5		<u> </u>	τά s	D21 below		,			151M		7/ "		Ç ^µ o			ر ₆₆₆	³ /. (	7.9	17	/ /
Arlingtor	1 wh	- 983	23						Drint Sree		l g		8-30	0		6/	Lex 1		Total	Į∮	1.7	7.7	7 /	
2100 436 - 2146		EAX #	435-30	35	$\Box$				50	414			etal	101 101							-3	$\overline{\downarrow}$		
SAMPLER'S SIGNATURE	m					Semivolatile ONTAINERS	Volatile Organics Hydroc 260 []	Full Full F. Dissel Delow BTEX	W.H.		sticide	1000 1000 1000		SWS-	Netal Phenol	anide,				۶/ ۲/۲	Think I is all so	They call	/	/
SAMPLE I.D.	DATE	ТІМЕ	LAB I.D.	MATRIX	<u>  ₹</u>		28/20	5/00	<u>jo </u>		48	105		/ଙ୍କୁ	1 Se	0	Var	R.		$( \downarrow )$	ĬĊ	1	L	REMARKS
BXS-1	1-1402	12:30pm	1	water	4										Д		X	X	- - -	A	Д			
BXS-2	1-14-02	2:0000	2		4		• •								Х		Д	Х		Д	Х			
BKS-3	1-14-02	2:3000	3		4										Х		Х	Х		Х	Х			
Bxs-4		3:3000	Ч		4										$\boxtimes$		X	imes		Х	$\boxtimes$			
BKS-5		1:300m	5		4										Х		$\ge$	imes		Х	$\boxtimes$			
BXS-6		11:30A	6	$\mathbf{V}$	4										Х		$\times$	imes		$\times$	X			
				:																				
			••••••••••••••••••••••••••••••••••••••					-																
								:																
	ENTS	INVO			1	Circle wh	nich metal	s are to	be ana	alyzed:														
<u> </u>		P.O. # _	J.H.Bak	Lest co		Total I	Vietals: A	l As	Sb B	a Be	в Са	Cd	Co (	Or Cu	J Fe	Pb M	lg M	n Mo	Ni I	< Ag	Na	Se S	r TI S	Sn V Zn Hg
Blank, Surrogate		POBO	x1079-	]		Dissolved	Metals:	N (AS)	Sb (B	Be Be	вСа	G	Co	Cr Ĉi	<b>XFD</b>	Pb N	Ag (M	Мо	Ni	K Ag	Na	Se S	ir Ti	Sn V Zn ⁷ Hg
required		Euger	real 9	1440			ATE STA		_															CLE ONE)
II. Report Dup., MS required	, MSD as		OUND REC		ENTS	SPECIA	AL INSTR	NUCTIO	DNS/C	OMM	ENTS	:												
III. Data Validation F	Report	24 I		48 hr.																				
(includes all raw	•		ay ndard (10-15	working	davs)		^																	
IV. CLP Deliverable	Report		vide FAX Re			Attv	r. Ruc Mc	An	1 Th	oma	S													
V. EDD		[ 	·				MC	infl	ass	$\delta m$														
		Re	quested Rep	ort Date		<u> </u>		-										1						_
		41700		N	RECI	EIVED BY	1: 5)0Z	-12:				REL	INQU	IISHE	D BY:						RE	CEIVE	ED BY:	
Signature	Date/Time	. 4130p	Signa	atture of			Time	· · · · ~		Sigr	nature			Da	ite/Tim	ie			Signa	ture			Date/	Time
Printed Name	J.H. Bak	ajco-	H	A A A		Firm	en	$\overline{)}$	•	Prin	ted Na	ame		Fi	rm				Printe	d Nar	ne		Firm	

BCOC #1 04/01

Project/Client $BATTER$ Work Order K22 $00375$ Cooler received on $1/15/02$ and opened on $1/15/02$ by $00375$ 1.       Were custody seals on outside of cooler? If yes, how many and where? $6776$	
1. Were custody seals on outside of cooler? $67$	) _N
	$\mathcal{P}_{\mathbf{N}}$
2. Were seals intact and signature & date correct?	
3. COC #	
Temperature of cooler(s) upon receipt: $(7.3)$	
Temperature Blank:	
4. Were custody papers properly filled out (ink, signed, etc.)?	) N
5. Type of packing material present	
6. Did all bottles arrive in good condition (unbroken)?	Ν
7. Were all bottle labels complete ( <i>i.e.</i> analysis, preservation, etc.)?	Ν
8. Did all bottle labels and tags agree with custody papers?	N
9. Were the correct types of bottles used for the tests indicated?	) N
10. Were all of the preserved bottles received at the lab with the appropriate pH?	Ν
11. Were VOA vials checked for absence of air bubbles, and if present, noted below?	<u>N</u>
12. Did the bottles originate from CAS/K or a branch laboratory?	N
13. Are CWA Microbiology samples received with > $\frac{1}{2}$ the 24 hr. hold time remaining from collection?	- <u>N</u>
14. Was CL2/Residual negative?	
Explain any discrepancies:	<u> </u>

# RESOLUTION: ____

Samples	that	required	preser	ation	or	received	out of	temperati	ire:
			*	C					

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
AU				AU	$\times$	un)
				·,		
						00017

CRFREV.DOC12/24/01

# **BXN Wells**

### Analytical Report

Client:J.H. Baxter & CompanyProject:J.H. Baxter & Co./BXN-WELLSSample Matrix:Water

 Service Request:
 K2200199

 Date Collected:
 1/8/02

 Date Received:
 1/10/02

 Date Extracted:
 NA

Inorganic Parameters Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	<b>Chloride</b> 300.0 0.2 1/11/02	<b>Chemical</b> <b>Oxygen</b> <b>Demand</b> <b>(COD)</b> 410.2 5 1/15/02	<b>Conductivity</b> (umhos/cm) 120.1 2 1/14/02	<b>Ammonia as</b> <b>Nitrogen</b> 350.3 0.05 1/24/02	Nitrite/Nitrat e as Nitrogen 353.2 0.2 1/14/02
Sample Name	Lab Code					
BXN-1	K2200199-001	14.4	8	424	0.07	1.5
BXN-2	K2200199-002	11.4	6	227	0.05	2.0
BXN-3	K2200199-003	15.4	54	687	0.56	ND
BXN-4	K2200199-004	48.7	32	766	11.7	6.2
BXN-5	K2200199-005	14.2	9	431	0.58	1.4
BXN-6	K2200199-006	ND	ND	NĎ	ND	ND
Method Blank	K2200199-MB	ND	ND	ND	ND	ND

FQA.S.rL

Approved By: _

5A5M/120294 00199WET.DM1 - 5Tests 1/24/02

MISI

Date: 1/25/02

(111)18

### Analytical Report

Client:J.H. Baxter & CompanyProject:J.H. Baxter & Co./BXN-WELLSSample Matrix:Water

 Service Request:
 K2200199

 Date Collected:
 1/8/02

 Date Received:
 1/10/02

 Date Extracted:
 NA

Inorganic Parameters Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	pH (Units) 150.1  1/9/02	Sulfate 300.0 0.2 1/11/02	<b>Tannin and</b> <b>Lignin</b> SM 5550 B 0.2 1/17/02	Solids, Total Dissolved (TDS) 160.1 5 1/11/02	Carbon, Total Organic 415.1 0.5 1/21/02
Sample Name	Lab Code					
BXN-1	K2200199-001	6.28	27.4	0.6	272	2.1
BXN-2	K2200199-002	6.29	17.7	0.3	159	1.0
BXN-3	K2200199-003	6.62	10.7	5.3	416	15.1
BXN-4	K2200199-004	6.70	17.1	5.0	400	8.8
BXN-5	K2200199-005	6.32	26.6	0.5	257	2.2
BXN-6	K2200199-006	6.22	ND	ND	<10 i	ND
Method Blank	K2200199-MB	-	ND	ND	ND	ND

KOP 4 5. -2

MA Fith

Date: 1/25/02

Page No.:

### Analytical Report

# Client:J.H. Baxter & CompanyProject:J.H. Baxter & Co./BXN-WELLSSample Matrix:Water

Service Request: K2200199 Date Collected: 1/8/02 Date Received: 1/10/02 Date Extracted: NA Date Analyzed: 1/10/02

### Coliform, Total SM 9221B Units: MPN/100 ml

Sample Name	Lab Code	MRL	Started		Result
BXN-1	K2200199-001	2	1310	hrs	-
BXN-2	K2200199-002	2	1310	hrs	900
BXN-3	K2200199-003	2	1310	hrs	-
BXN-4	K2200199-004	2	1310	hrs	ND
BXN-5	K2200199-005	2	1310	hrs	2
BXN-6	K2200199-006	2	1310	hrs	ND
			144	15. n	

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

Mil Fit

_Date: 1/25/02

Page No.:

# COL. BIA ANALYTICAL SERVICES, Inc.

### - Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client : Project Name : Project No. :

J.H. Baxter & Company J.H. Baxter & Co. BXN-WELLS

Service Request : K2200199

<u>Sample Name :</u>	<u>Lab Code :</u>
BXN-1	K2200199-001
BXN-2	K2200199-002
BXN-3	K2200199-003
BXN-4	K2200199-004
BXN-5	K2200199-005
BXN-6	K2200199-006
Method Blank	K2200199-MB

Comments:

of Bruno Approved By: _

Date:

1/25/02

# COLI BIA ANALYTICAL SERVICES, IT

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
<b>Project Name :</b>	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-1	Units : ug/L (ppb)
Lab Code :	K2200199-001	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	27.7	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	ND	
Iron	6010B	20	01/23/02	4980	
Manganese	6010B	5.0	01/23/02	1750	
Nickel	6010B	20	01/23/02	32	
Zinc	6010B	10	01/23/02	ND	
			KOPA POL		

# COLY VBIA ANALYTICAL SERVICES, J ~.

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-2
Lab Code :	K22001

K2200199-002

Units : ug/L (ppb) Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Note s
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	8.5	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	ND	
Iron	6010B	20	01/23/02	ND	
Manganese	6010B	5.0	01/23/02	916	
Nickel	6010B	20	01/23/02	21	
Zinc	6010B	10	01/23/02	ND	
			100473	»_	

# COL^{*} 'BIA ANALYTICAL SERVICES, J^{*} ^{*}.

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-3	Units : ug/L (ppb)
Lab Code :	K2200199-003	<b>Basis :</b> NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/22/02	21.4	
Barium	6010B	5.0	01/23/02	145	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	ND	
Iron	6010B	20	01/23/02	42400	
Manganese	6010B	5.0	01/23/02	4830	
Nickel	6010B	20	01/23/02	35	
Zinc	6010B	10	01/23/02	ND	
			K0997	≥ટ	

# COLY BIA ANALYTICAL SERVICES, I'

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-4	Units: ug/L (ppb)
Lab Code :	K2200199-004	Basis : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	17 <b>9</b>	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	17.3	
Iron	6010B	20	01/23/02	39.4	
Manganese	6010B	5.0	01/23/02	9090	
Nickel	6010B	20	01/23/02	85	
Zinc	6010B	10	01/23/02	ND	
			1000		

# COLY 'BIA ANALYTICAL SERVICES, IP' ~

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-5	Units : ug/L (ppb)
Lab Code :	K2200199-005	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	27.8	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	ND	
Iron	6010 <b>B</b>	20	01/23/02	5250	
Manganese	6010B	5.0	01/23/02	1740	
Nickel	6010B	20	01/23/02	27	
Zinc	6010B	10	01/23/02	ND	
			1004 1-2		

## COL¹ BIA ANALYTICAL SERVICES, P⁻⁻,

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	01/08/02
Project No. :	BXN-WELLS	Date Received :	01/10/02
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	BXN-6	Units: ug/L (ppb)
Lab Code :	K2200199-006	Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Notes
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	ND	
Cadmium	6010B	5.0	01/23/02	ND	
Соррег	6010B	10	01/23/02	ND	
Iron	6010B	20	01/23/02	ND	
Manganese	6010B	5.0	01/23/02	ND	
Nickel	6010B	20	01/23/02	ND	
Zinc	6010B	10	01/23/02	ND	
			KA23 43	JZ	

# COL/- 'BIA ANALYTICAL SERVICES, P'--

### **Analytical Report**

Client :	J.H. Baxter & Company	Service Request :	K2200199
Project Name :	J.H. Baxter & Co.	Date Collected :	NA
Project No. :	BXN-WELLS	Date Received :	NA
Matrix :	Water	Date Extracted :	01/21/02

### **Dissolved Metals**

Sample Name :	Method Blank	Units : ug/L (ppb)
Lab Code :	K2200199-MB	<b>Basis</b> : NA

Analyte	Analysis Method	MRL	Date Analyzed	Result	Result Note s
Arsenic	7060A	5.0	01/22/02	ND	
Barium	6010B	5.0	01/23/02	ND	
Cadmium	6010B	5.0	01/23/02	ND	
Copper	6010B	10	01/23/02	ND	
Iron	6010B	20	01/23/02	ND	
Manganese	6010B	5.0	01/23/02	ND	
Nickel	6010B	20	01/23/02	ND	
Zinc	6010B	10	01/23/02	ND	

Columbia Analytical			С	HAIN	OF	CUS	бто	DY				1		SR#	: K	2200	0199	129 1929
An Employee-Owned Company	1317 South 13th	Ave. • Kelso	, WA 98626	• (360) 577-	7222 • (8	00) 695-72	22 • FA	K (360) 630	6-1068		PAGE		_ OF			COC #_		<u> </u>
PROJECT NAME J. H. Baxt PROJECT NUMBER BXX WE PROJECT MANAGER COMPANY/ADDRESS	Merer	ndfill		EHS C	acins	ow) BTEX	664 SGT		4 0 8151A 0		intraenes []	<u></u>		20 J	1 506 []	Sig		10
Arlington, WA PHONE # 360 435 -2146 SAMPLER'S SIGNATURE	<u>JE 10</u> - 9822	Box 3	5	Semivolatile OF CONTAINERS	024 11 00 00 00 00 00 00 00 00 00 00 00 00	I Fuel Fingesel     Diesel     Diesel     BTE       I MW.HCID     Bernint (FIO)       Oil & Gr     Screen	11040000000000000000000000000000000000	ides/Herbioides	Tetra - 8151	GCMS.SIM SIM C	list below) Desort	Here Here Children		3020 □ 40X 1650 □	inter to	Shirt and		
SAMPLE I.D. DATE	TIME	LAB I.D. M									80/ 3 /	EE AS	ы <u>ў</u>	12	1/4	' /	/ REMARKS	
				f f	+7	-	$f \uparrow f$		<u>í í</u>	ŤŇ	1 1	Хľх	1		х́Г		1	7
	Z IlicoAm	V					+			$-\kappa$	┦─₭	$\mathbf{X}$	署──	KX*	$\checkmark$			
	2 10:00Am	3	4							$- \mathbf{O}$	┥┝	X	<del>\</del>	KX	$\Rightarrow$			
	212:00pm	·····	++4						+	-	<del>⊁</del> − ⊀	X	ᡟ──	K¥	$\Im$			
	z 1:30pm	Ч	4							-	<u>-</u>	×	>	$\bigotimes$	$\Leftrightarrow$			
BKN-5 1-80	2 9:00.Am	5	4						ļ	-	┟─┟	${\times}$	<del>\</del>	K	Ă+			_
BXN-6 1-00	z Bizatin	6	V 4							$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		$X \mid X$		$\bowtie$	쓰			
								•										
													-					
REPORT REQUIREMENTS	PO.#	CE INFORM		Circle whic					<u> </u>	<u>I</u>	<u> </u>	I	_ <b>_</b>	L			<u></u>	
i _X I. Routine Report: Method	Bill To:	H. Barte	1760										-				Sn V Zn Hg	
Blank, Surrogate, as required	Pobox	(10197	1110									day of human and an					Sn V Zn Hg	
II. Report Dup., MS, MSD a		C OR 97		*INDICAT					DURE:	AK C	A WI	NORHT	WEST	OTHE	:R:	(CI	RCLE ONE)	
required	24 h		IREMENT: 18 hr.	SPECIAL	INSTRU	CTIONS/	COMME	NTS:										
III. Data Validation Report	24 m		10 m.															
(includes all raw data)		., dard (10-15 wo	orking days)	A11	Q	an Thi	DMas											
IV. CLP Deliverable Report		ide FAX Resul		Attn:	NOCH		~" <del>~</del> ~~~ ` \^</td <td></td>											
V. EDD					NW	yw												
		uested Report				I					_	- T						
A RELINQUISHED BY				EIVED BY:	1			RE	LINQUI	SHED BY	':				REC	EIVED B	Υ:	
Signature Date/Ti	<u>2 2pm</u>	Signate	fage	2 <u>/ // C</u> Date/	0   0   Time	1058	Signa	iture		Date/Ti	me		Signa	ature		Dat	e/Time	
TimClawson TH 30 Printed Name Firm		1 11	7AJ NT	Firm	CA	5	_	d Name		Firm			_	ed Nam	he	Fin		
	•	minied	ivame	<b>L</b> 100		1	r'ante	a name		1 10111			1 11110				••	

.

	Columbia Analytical Services Inc.
	Cooler Receipt And Preservation Form
Project/Clie	nt It Baxtes Work Order K22 0199
Cooler recei	ved on [-[0-0] and opened on [(0-0] by
1.	Were custody seals on outside of cooler? I Front_
2.	Were seals intact and signature & date correct?
3.	coc #
	Temperature of cooler(s) upon receipt: $\frac{1}{2}$
	Temperature Blank: $132$
4.	Were custody papers properly filled out (ink, signed, etc.)?
5.	Type of packing material present (l, Water
6.	Did all bottles arrive in good condition (unbroken)?
7.	Were all bottle labels complete ( <i>i.e.</i> analysis, preservation, etc.)?
8.	Did all bottle labels and tags agree with custody papers?
9.	Were the correct types of bottles used for the tests indicated?
10.	Were all of the preserved bottles received at the lab with the appropriate pH?
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?
12.	Did the bottles originate from CAS/K or a branch laboratory?
13.	Are CWA Microbiology samples received with > $\frac{1}{2}$ the 24 hr. hold time remaining from collection? Y (N)
14.	Was CL2/Residual negative?
Explain any	discrepancies: On tor BXAII EDINE In COULAR A SP
TOOL	tor BX-3_Openled & (ooler (ame open.)
XS	imple contained, perid all zy hr tests
-RESOLUT	TONDAST hold.

Samples that required preservation or received out of temperature:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
	<u> </u>					
			· · · · ·			
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	. <u> </u>					
		· · · · · · · · · · · · · · · · · · ·				
					· <u>····</u>	

U11930 CRFREV.DOC12/24/01