J.H. BAXTER & CO., a California Limited Partnership

Centrel Flos Drt Barter- driinston WNO 053B23014 (t=W 6.3 - Prosvec) Peports

July 15, 2002

Ms. Kim Ogle, RCRA Project Manager United States EPA, Region 10 1200 Sixth Avenue Seattle, WA 98101

Subject: July 15, 2002 Progress Report J. H. Baxter Arlington Facility Docket No. RCRA-10-2001-0086

Dear Ms. Ogle:

This letter provides the July 15, 2002 progress report for work completed under the Administrative Order on Consent (AOC) for the J. H. Baxter (Baxter) facility during the period June 15 to July 15, 2002.

Significant Developments This Period

This section discusses significant developments for the referenced reporting period, including actions performed and any problems encountered relative to work required by the AOC. Significant developments that occurred on this project during this reporting period are outlined below:

- Initiation of the stormwater pilot study, including installation of the portable stormwater treatment system, occurred during the last week of June. The initial pilot study was conducted on stormwater collected from the Untreated Wood Storage Area.
- Baxter received a Approval with Modification, Partial Disapproval and Conditions of Approval on the May 15, 2002, Revision 2, Site Investigation Work Plan from the United States Environmental Protection Agency (EPA) Region 10 by letter dated July 8, 2002.

Anticipated Developments Next Period

This section discusses developments anticipated during the next reporting period.

• Baxter will conduct the sampling of the offsite drinking water wells during the week of July 15, 2002.

- Continuation of the stormwater pilot study, including treatment of stormwater collected from the treated wood storage area. Laboratory data from the pilot study will be validated and submitted as it becomes available.
- Drawings and specifications for the proposed Loading Area Apron Modifications & Stormwater Control System will be sent to EPA and Washington State Department of Ecology (Ecology) for review.
- A meeting has been scheduled for July 18, 2002 with EPA, Ecology, the City of Arlington, and Baxter to discuss outstanding issues related to the long-term Site Stormwater Management and the Site Investigation.
- Review of the laboratory Standard Operating Procedures for analytical methods to be performed during the Site Investigation is ongoing and will be completed in the next reporting period.

Anticipated Problems and Problem Resolution

This section discusses anticipated problems, and planned resolution of past or anticipated problems.

As discussed in previous progress reports, implementation of the Excess Stormwater Management Plan continues to be problematic. For example, the stormwater pilot study has been initiated and Baxter has submitted the Excess Stormwater Management Workplan Amendment. In addition, Baxter has retained ERI for stormwater treatment facility design and Shapiro for assistance in preparing a submitting a NPDES permit application. Baxter also has met with EPA, Ecology and the City of Arlington on possible solutions and has scheduled another meeting for July 18th.

• Stormwater management at the facility will be carefully coordinated with the site investigation and potential corrective actions. For example, characterization of the site in areas of the facility that may be paved for purposes of managing stormwater should be complete prior to paving. In addition, if corrective measures (e.g. removal actions) are necessary in areas at the facility to be paved, these actions should also be completed prior to paving. EPA and Ecology will be advised of any conflicts that may require consultation.

Other Information

Any other information relevant to the Order is discussed in this section, including results of any sampling or testing completed within the reporting period.

• The quarterly Discharge Monitoring Report for the State Waste Discharge Permit (SWDP) was submitted to Ecology on June 17, 2002.

- In accordance with the SWDP, Baxter will be performing quarterly sampling of groundwater monitoring Wells BXS-1, MW-2, HCMW-5, HCMW-6, and HCMW-7 in July 2002. Baxter will also be sampling the carbon units and all of the landfill monitoring wells in July 2002.
- Baxter will be presenting Ecology with a closure plan for closing all remaining storm drains in the Untreated Pole Storage Area.
- Between April 24, 2002 and May 14, 2002, Baxter received laboratory reports from the State Waste Discharge Permit (SWDP) groundwater monitoring wells, lysimeter, carbon units, and untreated drain sampling event completed in April 2002.
- A quality assurance review was conducted on data collected during the April 2002 SWDP lysimeter, carbon units, and drain sampling event. The quality assurance review is provided as Attachment 1. Laboratory reports are provided as Attachment 2.

Certification

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to evaluate the information submitted. I certify that the information contained in or accompanying this submittal is true, accurate and complete. As to those identified portions(s) of this submittal for which I cannot personally verify the accuracy, I certify that this submittal and all attachments were prepared in accordance with procedures designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those directly responsible for gathering the information, or the immediate supervisor of such person(s), the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: KueAn Homas

Name:	RueAnn Thomas
Title:	Environmental Programs Director
Date:	July 15, 2002

We trust this letter meets the intent of the Progress Report per Paragraph 71 of the AOC. If you have any questions, please contact me at (541) 689-3801.

Sincerely,

Kue An Hhoma

RueAnn Thomas Environmental Programs Director

cc: Jeanne Tran, Ecology Dean Yasuda, Ecology
Georgia Baxter, J. H. Baxter & Co. Mary Larson, J. H. Baxter & Co. Sara Beth Watson, Steptoe and Johnson Les Brewer, Premier Environmental Services, LLC.

Attachment 1

Quality Assurance Review

Memorandum

Date:	July 12, 2002
То:	J. Stephen Barnett, Premier Environmental Services, Inc.
From:	Kathy J. Gunderson, Validation Chemist
Subject:	Quality Assurance Review
Project:	J. H. Baxter Wood Preserving Facility, Arlington, Washington
Sampling Dates:	March 5, April 8, 9, 10, and 11, 2002
Project Number:	201029-1013

1.0 Introduction

This memorandum presents the Level III validation of the water sample analyses listed in Table 1. With the exception of the polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF), the analyses were performed by Columbia Analytical Services, Inc., located in Kelso, Washington. The PCDD and PCDF analyses were performed by Triangle Laboratories, Inc., located in Durham, North Carolina. The criteria used to qualify data are from the *Contract Laboratory Program National Functional Guidelines for Inorganic and Organic Data Review* (USEPA 1994 and 1999), the *EPA Region 10 Functional Guidelines for the Validation of High Resolution Mass Spectrometry Analysis of Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Data* (EPA Region 10 2001), the analytical methods, or the professional judgment of the validation chemist. The following laboratory deliverables were reviewed during the validation process:

- Chain-of-custody (COC) documentation to assess holding times and verify report completeness
- Laboratory quality control (QC) sample results, including method blanks, surrogate spikes, laboratory control sample/laboratory control sample duplicates (LCS/LCSDs), matrix spike/matrix spike duplicates (MS/MSDs), and laboratory duplicates
- Analytical results to verify reporting limits
- Field QC samples for field blank contamination and field duplicate precision

In addition, the data quality indicators of precision, accuracy, representativeness, comparability, and completeness are evaluated. The qualified data are summarized in a table at the end of this memo. Data qualifier flags have been added to the sample results

in the original reports and the toxicity equivalent quotient (TEQ) of 2,3,7,8-TCDD table prepared by Premier Environmental Services.

Sample ID	Date Collected	Laboratory Sample ID	PCP	TPH-D	Metals	Inorganics	Dioxin/Furan
Drain 7	3-5-02	K2201400-001	Х	Х		X	·····
Drain 8	3-5-02	K2201400-002	Х	Х		x	
Drain 7	4-8-02	K2202230-001	Х	х		x	
Drain 8	4-8-02	K2202230-002	X	х		X	
BXN-1	4-9-02	K2202244-001			Х	х	
BXN-2	4-9-02	K2202244-002			Х	X	
BXN-3	4-9-02	K2202244-003			X	X	
BXN-4	4-9-02	K2202244-004			Х	Х	
BXN-5	4-9-02	K2202244-005			Х	X	
BXN-6	4-9-02	K2202244-006			X	X	
Tank 1	4-8-02	K2202249-001	Х				
Tank 2	4-8-02	K2202249-002	Х				
Tank 3	4-8-02	K2202249-003	Х				
MW-1	4-10-02	K2202307-001	Х		Х	X	х
MW-2	4-10-02	K2202307-002	X		Х	Х	х
MW-3	4-10-02	K2202307-003	X		Х	Х	X
HCMW-6	4-10-02	K2202307-004	Х		Х	X	X
HCMW-7	4-10-02	K2202307-005	Х		Х	Х	х
MWA	4-10-02	K2202307-006	Х		Х	X	X
MWB	4-10-02	K2202307-007	Х		Х	Х	х
L-1	4-10-02	K2202308-001	X	х			х
L-3	4-10-02	K2202308-002	Х	X			х
L-3A	4-10-02	K2202308-003	X	Х			х
BXS-1	4-11-02	K2202353-001	Х		Х	X	х
BXS-2	4-11-02	K2202353-002	Х		Х	Х	х
BXS-3	4-11-02	K2202353-003	Х		Х	Х	Х
BXS-4	4-11-02	K2202353-004	Х		Х	Х	х
BXS-5	4-11-02	K2202353-005	Х		Х	Х	х
BXS-6	4-11-02	K2202353-006	Х		Х	X	X
PCP:		ol by Method 8151 (U			· · ·	• · · · · · · · · · · · · · · · · · · ·	
TPH-D:		roleum Products by M					
Metals	Dissolved arseni	ic by Method 7060A (I	JSEPA 199	6), dissolved	barium, cadı	nium, calcium, co	opper, iron,

 Table 1—Sample Data Reviewed

Metals Dissolved arsenic by Method 7060A (USEPA 1996), dissolved barium, cadmium, calcium, copper, iron, magnesium, manganese, nickel potassium, sodium, and zinc by Method 6010B (USEPA 1996) Inorganics: Alkalinity by Method 310.1 (USEPA 1999a), chloride and sulfate by Method 300.0, chemical oxygen demand by Method 410 2 (USEPA 1000r) are dustinity by Method 120 1 (USEPA 1000r)

Method 410.2 (USEPA 1999a), conductivity by Method 120.1 (USEPA 1999a), ammonia by Method 350.3 (USEPA 1999a), nitrate and nitrite by Method 353.2 (USEPA 1999a), pH by Method 150.1 (USEPA 1999a), tannin and lignin by Method 5550B (APHA 1998), total Coliform by Method 9221B (APHA 1998), total dissolved solids by Method 160.1 (USEPA 1999a), total suspended solids by Method 160.2 (USEPA 1999a), and total organic carbon by Method 415.1 (USEPA 1999a)

2

Dioxin/Furan: PCDDs and PCDFs by Method 1613B (USEPA 1999a)

2.0 Data Validation

2.1 Custody, Preservation, and Completeness – Acceptable with Discussion

Sample custody was maintained as required. Except as noted below, all samples were received intact and were properly preserved. The reports are complete and contain results for all samples and tests requested on the COCs.

- The temperature of the samples in sample delivery groups (SDGs) K2202307, K2202308, K2202230, and K2202249 were received at Columbia Analytical Services above the recommended temperature range of 2 to 6 °C. The temperature of the samples was 10 to 12°C. Data qualifiers are not recommended.
- The temperature of the samples in SDG K2202353 was received at Triangle Laboratories above the recommended temperature range. The temperature of the samples was 7 °C. Data qualifiers are not recommended.
- The QC results were missing from the SDG K2201400 data package. The missing forms were resubmitted by Columbia Analytical Services.
- The PCDD/PCDF aliquot of field blank sample L-3A was lost during transit to Triangle Laboratories. It was not replaced.

2.2 Pentachlorophenol Analyses by Method 8151

2.2.1 Holding Times – Acceptable

The samples were extracted and analyzed within the required holding time.

2.2.2 Blank Analyses – Acceptable

2.2.2.1 Method Blanks

Method blanks were analyzed at the required frequency and pentachlorophenol was not detected above the reporting limit.

2.2.2.2 Field Blanks

Samples MWB, L-3A and BXS-5 were identified as field blanks. Pentachlorophenol was not detected above the reporting limit in any field blank.

2.2.3 Surrogate Analyses – Acceptable

Surrogate compounds were added to all samples, blanks, and QC samples as required. All recovery values are within the laboratory's control limits.

2.2.4 Matrix Spike/Matrix Spike Duplicate Analyses – Acceptable with Discussion

Except as noted below, MS/MSDs were analyzed as required. All percent recovery and relative percent difference (RPD) values are within the laboratory's control limits.

• The laboratory did not report MSD results with the samples in SDG K2201400. Data qualifiers are not recommended because the matrix spike and laboratory control sample are acceptable.

2.2.5 Laboratory Control Sample Analyses – Acceptable

Laboratory control samples were analyzed as required and all percent recovery values are within the laboratory's control limits.

2.2.6 Field Duplicates – Acceptable

Sample MWA was identified as a field duplicate of sample MW2 and sample BXS-6 was identified as a field duplicate of sample BXS-1. RPD values could not be calculated for field duplicate set MW2/MWA because positive results were not reported for either sample. The precision of field duplicate set BXS-1/BXS-6 is acceptable as shown by the low RPD value listed in Table 2.

2.2.7 Overall Assessment of Data Useability

The precision of the data in SDG K2201400 is unknown. Since the laboratory did not analyze matrix spike duplicates or sample duplicates and field duplicates were not collected with these samples, the precision of the data set cannot be determined.

The useability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here, the data are acceptable.

2.3 Semivolatile Petroleum Hydrocarbon Analyses by Method NWTPH-Dx

2.3.1 Holding Times – Acceptable

The samples were extracted and analyzed within the required holding times.

2.3.2 Blank Analyses – Acceptable

2.3.2.1 Method Blanks

Method blanks were analyzed at the required frequency and target analytes were not detected above the reporting limits.

2.3.2.2 Field Blanks

Field blank sample L-3A was analyzed for semivolatile petroleum hydrocarbons. Semivolatile petroleum hydrocarbons were not detected above the reporting limits.

2.3.3 Surrogate Analyses – Acceptable

Surrogate compounds were added to all samples, blanks, and QC samples as required. All recovery values are within the method criteria of 50 to 150%.

2.3.4 Sample Duplicate Analyses – Acceptable with Discussion

Except as noted below, sample duplicates were analyzed as required. (Matrix spikes are not required by the method.) All RPD values are within the laboratory's control limits.

• The laboratory did not report duplicate results with SDG K2202308 due to insufficient sample volume. Data qualifiers are not required because the acceptable LCS/LCSD demonstrates the analytical system is in control and the acceptable surrogate recoveries demonstrate that matrix effects are minimal.

2.3.5 Laboratory Control Sample Analyses – Acceptable

Laboratory control samples and laboratory control sample duplicates were analyzed as required. All percent recovery and RPD values are within the laboratory's control limits.

2.3.6 Field Duplicates

The field duplicates were not analyzed for semivolatile petroleum hydrocarbons.

2.3.7 Overall Assessment of Data Useability

The useability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here, the data are acceptable.

2.4 Dissolved Metals Analyses

2.4.1 Holding Times – Acceptable

The samples were analyzed within the required holding time.

2.4.2 Blank Analyses – Acceptable with Qualifications

2.4.2.1 Method Blanks

Method blanks were analyzed at the required frequency and, except as noted below, target analytes were not detected above the reporting limits.

• Dissolved calcium and zinc were detected in the method blank associated with SDG K2202353 at 0.06 mg/L and 0.01 mg/L, respectively. Data qualifiers are not required because either the associated sample results are greater than five times the method blank concentration or calcium and zinc were not detected in the associated samples.

5

2.4.2.2 Field Blanks

Samples BXN-6, MWB, and BXS-5 were identified as field blanks. Except as noted below, target analytes were not detected above the reporting limits in the field blanks.

Dissolved zinc was detected in field blank sample BXN-6 at 14.2 µg/L. Functional Guidelines prescribes three qualifications schemes for blank contamination, (1) associated sample concentrations greater than the action level (5 times the blank concentration) are not qualified, (2) associated sample concentrations less than the action level and greater than the reporting limit are qualified as undetected (U) at the reported value, and (3) associated sample concentrations less than the action level and less than the reporting limit are qualified as undetected (U) at the reported value, and less than the reporting limit are qualified as undetected (U) at the reporting limit. Only one sample required qualification as shown below.

Sample ID	Analyte	Qualification	Quality Control Exceedance
BXN-5	Dissolved Zinc	U at reported value	Result is greater than the reporting limit and
			less than 5 times the field blank level

2.4.3 Duplicate Sample Analyses – Acceptable

Sample duplicates were analyzed at the required frequency. All RPD values are within Functional Guidelines criteria.

2.4.4 Matrix Spike Analyses – Acceptable

Matrix spike analyses were reported at the required frequency and all percent recovery values are within Functional Guidelines criteria.

2.4.5 Laboratory Control Sample Analyses – Acceptable

Laboratory control samples were reported at the required frequency. All percent recovery values are within Functional Guidelines criteria.

2.4.6 Field Duplicates – Acceptable

Sample MWA was identified as a field duplicate of sample MW2 and sample BXS-6 was identified as a field duplicate of sample BXS-1 and sample BXN-5 was identified as a field duplicate of sample BXN-1. The precision of field duplicates is acceptable as shown by the low RPD values listed in Table 2.

2.4.7 Overall Assessment of Data Useability

The useability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here, the data are acceptable, except where flagged with data qualifiers that modify the usefulness of the individual values.

2.5 Inorganic Analyses

2.5.1 Holding Times – Acceptable with Qualifications

The samples were analyzed within the required holding times, with the exceptions noted below.

The pH analyses of the samples in SDGs K2202230, K2202244, and K2202353 were performed past the 24-hour hold time. The total Coliform analyses of the samples in SDGs K2202244 and K2202353 were preformed past the 30-hour holding time. Positive results were qualified as estimated (J) and undetected results were qualified as estimated detection limit (UJ) as shown below.

Sample ID	Analyte	Qualification	Quality Control Exceedance
Drain 7 (4-8-02)	pН	J	Analysis holding time exceeded
Drain 8 (4-8-02)	pH	J	Analysis holding time exceeded
BXN-1	pH	J	Analysis holding time exceeded
BXN-2	pН	J	Analysis holding time exceeded
BXN-3	pН	J	Analysis holding time exceeded
BXN-4	pН	J	Analysis holding time exceeded
BXN-5	pH	J	Analysis holding time exceeded
BXN-6	pH	J	Analysis holding time exceeded
BXN-1	Total Coliform	J	Analysis holding time exceeded
BXN-2	Total Coliform	J	Analysis holding time exceeded
BXN-3	Total Coliform	UJ	Analysis holding time exceeded
BXN-4	Total Coliform	J	Analysis holding time exceeded
BXN-5	Total Coliform	J	Analysis holding time exceeded
BXN-6	Total Coliform	UJ	Analysis holding time exceeded
BXS-1	pН	J	Analysis holding time exceeded
BXS-2	pН	J	Analysis holding time exceeded
BXS-3	pН	J	Analysis holding time exceeded
BXS-4	pН	J	Analysis holding time exceeded
BXS-5	pH	J	Analysis holding time exceeded
BXS-6	pH	J	Analysis holding time exceeded
BXS-1	Total Coliform	UJ	Analysis holding time exceeded
BXS-2	Total Coliform	ŬJ -	Analysis holding time exceeded
BXS-3	Total Coliform	UJ	Analysis holding time exceeded
BXS-4	Total Coliform	UJ	Analysis holding time exceeded
BXS-5	Total Coliform	UJ	Analysis holding time exceeded
BXS-6	Total Coliform	UJ	Analysis holding time exceeded

2.5.2 Blank Analyses – Acceptable with Discussion

2.5.2.1 Method Blanks

Method blanks were analyzed at the required frequency and target analytes were not detected above the reporting limits.

2.5.2.2 Field Blanks

Samples BXN-6, MWB, and BXS-5 were identified as field blanks. Except as noted below, target analytes were not detected above the reporting limits in the field blanks.

7

• Conductivity and pH were detected in the field blank sample BXS-5 and pH was detected in field blank sample BXN-6 at levels above the reporting limits. Data qualifiers are not required for conductivity because the associated sample concentrations are greater than five times the field blank concentration. Data qualifiers are not required for pH because it is a physical property.

2.5.3 Duplicate Sample Analyses – Acceptable

Sample duplicates were analyzed at the required frequency. All RPD values are within laboratory's control limits.

2.5.4 Matrix Spike Analyses – Acceptable with Qualifications

Matrix spike analyses were preformed at the required frequency. Except as noted below, all percent recovery values are within the laboratory's control limits.

The ammonia recovery value for the spiked analysis of sample BXS-1 is below the laboratory's control limits at 46%. Since ammonia was not detected in sample BXS-1, the detection limit was qualified as estimated (UJ).

Sample ID	Analyte	Qualification	Quality Control Exceedance
BXS-1	Ammonia	UJ	MS recovery below laboratory control limits

2.5.5 Laboratory Control Sample Analyses – Acceptable

Laboratory control samples were reported at the required frequency. All percent recovery values are within the laboratory's control limits.

2.5.6 Field Duplicates – Acceptable with Qualifications

Sample MWA was identified as a field duplicate of sample MW2 and sample BXS-6 was identified as a field duplicate of sample BXS-1 and sample BXN-5 was identified as a field duplicate of sample BXN-1. The precision criterion for field duplicates is RPD values less than or equal to 35. With the exceptions noted below, the precision of field duplicates is acceptable.

- The RPD value of tannin and lignin in field duplicate pair BXS-1/BXS-6 is above the criterion at 40%. Data qualifiers are not required because the results are less than five times the reporting limit.
- The RPD values of ammonia and total Coliform in field duplicate pair BXN-1/BXN-5 are above the criterion at 95% and 99%, respectively. Data qualifiers are not required for ammonia because the results are less than five times the reporting limit. The total Coliform results have been qualified as estimated (J).

Sample ID	Analyte	Qualification	Quality Control Exceedance
BXN-1	Total Coliform	J	Field duplicate RPD > 35
BXN-5	Total Coliform	J	Field duplicate RPD > 35

2.5.7 Overall Assessment of Data Useability

The useability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here, the data are acceptable, except where flagged with data qualifiers that modify the usefulness of the individual values.

2.6 Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Analyses

2.6.1 Holding Times – Acceptable

All samples were extracted and analyzed within the required holding times.

2.6.2 Blank Analyses – Acceptable with Qualifications

2.6.2.1 Method Blanks

Method blanks were analyzed at the required frequency. The method blanks are free of 2,3,7,8-substituted PCDDs and PCDFs as required by the Method.

• The method blanks contained low levels of non-2,3,7,8-substituted PCDD and PCDF target analytes. Region 10 Functional Guidelines requires associated sample concentrations less than five times the blank concentration to be qualified as estimated detection limit (UJ). Sample concentrations greater than five times the blank concentration are not qualified. Associated sample results were qualified as shown in the following table.

Sample ID	Analyte	Qualification	Quality Control Exceedance
MW-2	1,2,3,4,7,8-HxCDF	UJ	Result is less than 5 times the method blank level
HCMW-6	1,2,3,4,6,7,8-HpCDD	UJ	Result is less than 5 times the method blank level
L-1	1,2,3,4,6,7,8,9-OCDD	UJ	Result is less than 5 times the method blank level
L-1	1,2,3,4,7,8-HxCDF	UJ	Result is less than 5 times the method blank level
L-1	1,2,3,4,6,7,8,9-OCDF	UJ	Result is less than 5 times the method blank level
L-3	1,2,3,4,6,7,8,9-OCDF	UJ	Result is less than 5 times the method blank level
BXS-2	1,2,3,7,8,9-HxCDD	UJ	Result is less than 5 times the method blank level
BXS-2	1,2,3,4,7,8-HxCDF	UJ	Result is less than 5 times the method blank level
BXS-2	2,3,4,6,7,8-HxCDF	UJ	Result is less than 5 times the method blank level
BXS-2	1,2,3,7,8,9-HxCDF	UJ	Result is less than 5 times the method blank level

2.6.2.2 Field Blanks

Samples MWB and BXS-5 were identified as a field blank. Except as noted below, target analytes were not detected in the field blanks.

9

• The target analytes 1,2,3,4,6,7,8,9-OCDD, 1,2,3,4,6,7,8-HpCDF, and 1,2,3,4,6,7,8,9-OCDF were detected in field blank sample MWB at 40.6 pg/L, 1.5 pg/L, and 5.5 pg/L, respectively. Region 10 Functional Guidelines requires associated sample concentrations less than five times the blank concentration to be qualified as estimated detection limit (UJ). The associated samples were qualified as shown in the following table.

Sample ID	Analyte	Qualification	Quality Control Exceedance
HCMW-6	1,2,3,4,6,7,8,9-OCDD	UJ	Result is less than 5 times the field blank concentration
HCMW-6	1,2,3,4,6,7,8-HpCDF	UJ	Result is less than 5 times the field blank concentration
HCMW-6	1,2,3,4,6,7,8,9-OCDF	UJ	Result is less than 5 times the field blank concentration
MW3	1,2,3,4,6,7,8,9-OCDD	UJ	Result is less than 5 times the field blank concentration

2.6.3 Isotope Dilution Internal Standard (Surrogate) Analyses – Acceptable

Labeled isotope dilution internal standard compounds were added to all samples, blanks, and QC samples as required. All percent recovery values are within Method 1613B criteria.

2.6.4 Cleanup Recovery Internal Standard Analyses – Acceptable with Discussion

Except as noted below, the labeled cleanup recovery internal standard was added to all samples (and associated QC samples) that required cleanup. All cleanup recovery internal standards meet the Method 1613B criteria of 35 to 197%.

• A labeled cleanup recovery internal standard was not added to sample BXS-4, even though cleanup was performed. Data qualifiers are not required because the isotope dilution internal standards are acceptable.

2.6.5 Compound Identification – Acceptable with Qualifications

Except as noted below, second column confirmational analysis of 2,3,7,8-TCDF positive results were preformed as required. The ratio of the integrated ion peaks were compared to the Method criteria and are acceptable.

- 2,3,7,8-TCDF was detected in the sample MW1. The result was not confirmed by analysis on a dissimilar analytical column. Triangle Laboratories was contacted and replied that since the result is below the method minimum level, it did not require confirmation. Due to the probability of a false positive result, the 2,3,7,8-TCDF result of sample MW1 has been qualified as estimated detection limit (UJ).
- The laboratory flagged the results of several samples "X", indicating that coeluting interferences are contributing greater than 10% of the

Sample ID	Analyte Qualification Quality Control		Quality Control Exceedance
MW1	2,3,7,8-TCDF	UJ	Result not confirmed
MW1	Total TCDF	J	Analytical interference greater than 10%
MW1	Total PeCDF	J	Analytical interference greater than 10%
MW1	Total HxCDF	J	Analytical interference greater than 10%
MW2	Total HxCDF	J	Analytical interference greater than 10%
HCMW7	Total HxCDF	J	Analytical interference greater than 10%
MWA	Total HxCDF	J	Analytical interference greater than 10%
MWA	Total HpCDF	J	Analytical interference greater than 10%
BXS-2	Total PeCDF	J	Analytical interference greater than 10%
BXS-3	Total TCDF	J	Analytical interference greater than 10%

quantitated area. To alert the data user to the potential high bias of these results, they have been qualified as estimated (J).

2.6.6 Ongoing Precision and Recovery Analyses – Acceptable

Ongoing precision and recovery samples were analyzed at the required frequency and all percent recovery values are within the Method criteria.

2.6.7 Field Duplicates

Sample MWA was identified as a field duplicate of sample MW2 and sample BXS-6 was identified as a field duplicate of sample BXS-1. The precision criterion for field duplicates is RPD values less than or equal to 35. With the exceptions noted below, the precision of field duplicates is acceptable.

- The RPD values of 1,2,3,7,8,9-HxCDD and 2,3,4,6,7,8-HxCDF in field duplicate pair MW2/MWA are above the criterion at 56 and 44%, respectively. Data qualifiers are not required because the results are less than five times the reporting limit.
- The RPD values of 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8,9-OCDD in field duplicate pair BXS-1/BXS-6 are above the criterion at 91 and 144%, respectively. The 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8,9-OCDD results of both samples have been qualified as estimated (J).

Sample ID	Analyte	Qualification	Quality Control Exceedance
BXS-1	1,2,3,4,6,7,8-HpCDD	J	Field duplicate RPD > 35
BXS-6	1,2,3,4,6,7,8-HpCDD	J	Field duplicate RPD > 35
BXS-1	1,2,3,4,6,7,8,9-OCDD	J	Field duplicate RPD > 35
BXS-6	1,2,3,4,6,7,8,9-OCDD	J	Field duplicate RPD > 35

2.6.8 Overall Assessment of Data Useability

The useability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here, the data are acceptable, except where flagged with data qualifiers that modify the usefulness of the individual values.

3.0 Assessment of Data Quality Objectives

3.1 Precision

Precision is a measure of the mutual agreement among individual measurements of the same property, under prescribed similar conditions. Precision is determined through analysis of MS/MSDs, sample duplicates, LCS/LCSDs, and field duplicate samples. Duplicate samples are evaluated for precision in terms of relative percent difference. Relative percent difference is defined as the difference between the duplicate results divided by the mean and expressed as a percent.

The precision of the semivolatile petroleum hydrocarbons (diesel range organics) and metals data is very good. The RPD values of the sample duplicates, LCS/LCSDs, and field duplicates are acceptable.

The precision of the pentachlorophenol data is acceptable, with the following discussion. The precision of the untreated drain samples collected 3-5-02 is unknown because the laboratory did not analyze matrix spike duplicates or sample duplicates and field duplicates were not collected. The RPD values of the MS/MSDs, LCS/LCSDs, and field duplicates are acceptable.

The precision of the inorganic data is acceptable, with the following exceptions. The total Coliform results of samples BXN-1 and BXN-5 are imprecise as shown by the high field duplicate RPD value. The high field duplicate RPD values for tannin and lignin and ammonia do not affect the data because the sample results are less than five times the reporting limit. The RPD values of the sample duplicates are acceptable.

The precision of the PCDD and PCDF data is acceptable, with the following exceptions. The 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8,9-OCDD results of samples BXS-1 and BXS-6 are imprecise as shown by the high field duplicate RPD values. RPD values of results less than five times the reporting limit do not affect the precision of the data.

3.2 Accuracy

Accuracy is the degree of agreement between a measurement and the accepted reference or true value. The level of accuracy is determined by examination of surrogates, MS/MSDs, LCS/LCSDs, method blanks, and field blanks. The surrogate, matrix spike, and laboratory control sample recovery values were compared to the laboratory's control limits or Functional Guidelines criteria. Method and field blanks are analyzed to identify compounds that could be introduced during the sampling, laboratory extraction, or analysis phase (i.e., laboratory contaminates) and lead to inaccurate results.

The accuracy of the pentachlorophenol and semivolatile petroleum hydrocarbons (diesel range organics) data is very good. All surrogate, MS, MSD, LCS, and LCSD recovery values are acceptable and the method blanks and field blank are free of contamination.

The accuracy of the metals data is acceptable. One method blank and one field blank contained reportable levels of target analytes. The impact of the blank contamination has been minimized by the proper use of data qualifiers as prescribed by Functional Guidelines. Qualifying contaminates in the associated samples as undetected when their concentration is less than five times the blank concentration minimizes the possibility of false positive results. All MS and LCS recovery values are acceptable.

The accuracy of the inorganics data is acceptable, with one exception. The ammonia result of sample BXS-1 is biased low as shown by the low matrix spike recovery value. Conductively was detected in one field blank and pH was detected in two field blanks. The data are not impacted because the associated sample conductivity results are greater than five times the field blank level. The pH results of the field blanks are not indicative of contamination because pH is a physical properly of water. The LCS recovery values are acceptable and the method blanks are free of contamination.

The accuracy of the PCDF and PCDD data is acceptable. The method blanks and one field blank contained reportable levels of target analytes. The impact of the blank contamination has been minimized by the proper use of data qualifiers as prescribed by EPA Region 10 Functional Guidelines. Qualifying contaminates in the associated samples as undetected when their concentration is less than five times the blank concentration minimizes the possibility of false positive results. The surrogate and ongoing precision and accuracy recovery values are acceptable.

3.3 Representativeness

Representativeness is the extent to which the data reflect the actual contaminate levels present in the samples. Representativeness is assessed through method and field blanks, and proper preservation and handling. Method and field blank analyses allow for the detection of artifacts that may be reported as false positive results. Proper sample preservation and handling ensure that sample results reflect the actual sample concentrations.

The data are assumed to be representative, with the exception of results from analyses that were performed past the holding time. Since the results of tests performed past the holding time may not be representative, they were qualified as estimated. The sample receipt temperatures above 6° C do not impact the representativeness of the data set because the samples were properly handled when received at the laboratories. The method blank and field blank contamination does not impact the representativeness of the data because the procedures in Functional Guidelines were followed to minimize the impact of the blank contamination.

3.4 Comparability

Comparability is a measure of how easily the data set can be compared and combined with other data sets. The data are assumed to be comparable since standard EPA methods were used to analyze the samples, the method QC criteria were generally met, and routine detection limits were reported.

3.5 Completeness

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples that were submitted to the laboratory for analysis. Valid results are results that are determined to be usable during the data validation review process.

The completeness of this data set is 97.5%. The completeness is less than 100% because one field blank (sample L-3A) was not analyzed for PCDD/PCDF.

4.0 Data Qualifier Definitions

4.1 Inorganic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are taken from Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994a).

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
- R The data are unusable. (Note: Analyte may or may not be present)

4.2 Organic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are taken from Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999).

- U The analyte was analyzed for but not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the samples and meet quality control criteria. The presence or absence of the analyte cannot be verified.

5.0 References

APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. American Public Health Association. 1998.

EPA Region 10. 2001. Functional Guidelines for the Validation of High Resolution Mass Spectrometry Analysis of Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran Data, Revision 5.0. EPA Region 10 Office of Environmental Assessment Quality Assurance Unit. July 16, 2001.

USEPA. 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. United States Environmental Protection Agency. Office of Solid Waste and Emergence Response. February 1994.

USEPA. 1996. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) Third Edition, Updates I, II, IIA, IIB, and III. United States Environmental Protection Agency. Office of Solid Waste. December 1996.

USEPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency Office of Emergency and Remedial Response. EPA540/R-99/008. October 1999.

USEPA. 1999a. Methods and Guidance for Analysis of Water, Version 2.0. United States Environmental Protection Agency Office of Science and Technology. EPA 821-C-99-004. CD ROM. June 1999.

WDOE. 1997. Analytical Methods for Petroleum Hydrocarbons. Prepared by the Washington State Department of Ecology Toxics Cleanup Program and the Ecology Environmental Laboratory. June 1997.

Sample ID	Duplicate ID	Analyte	Sample Value	Duplicate Value	RPD
BXN-1	BXN-5	Dissolved Barium	45.8	46.6	1.7
		Dissolved Iron	- 2080	2130	2.4
		Dissolved Manganese	1940	1980	2.0
		Dissolved Nickel	54.0	56.9	5.2
		Chloride	11.7	11.8	0.8
		Chemical Oxygen Demand	23	24	4.2
		Conductivity	664	672	1.2
		Ammonia	0.05	0.14	95
		pH	6.29	6.35	0.9
		Sulfate	23.5	22.7	3.5
		Tannin and Lignin	3.1	3.7	18
		Total Dissolved Solids	490	384	24
		Total Organic Carbon	8.1	8.4	3.6
		Total Coliform	27	80	99
MW2	MWA	Dissolved Calcium	11,900	12,400	4.1
		Dissolved Magnesium	7590	7830	3.2
		Dissolved Sodium	5930	6070	2.3
		1,2,3,6,7,8-HxCDD	3.9	< 5.3	NC
		1,2,3,7,8,9-HxCDD	3.2	5.7	56
		1,2,3,4,6,7,8-HpCDD	115	101	13
		1,2,3,4,6,7,8,9-OCDD	1250	1060	16
		2,3,4,6,7,8-HxCDF	1.4	2.2	44
		1,2,3,7,8,9-HxCDF	1.6	< 4.6	NC
		1,2,3,4,6,7,8-HpCDF	19.0	17.3	9.4
		1,2,3,4,7,8,9-HpCDF	3.4	4.2	21
		1,2,3,4,6,7,8,9-OCDF	97.5	87.2	11
		1,2,3,4,7,8-HxCDD	< 1.6	2.4	NC
		1,2,3,6,7,8-HxCDF	<1.0	2.4	NC
DVO 1	DVO				
BXS-1	BXS-6	Pentachlorophenol	22	22	0
		Dissolved Barium	24	23	4.2
		Dissolved Manganese	362	353	2.5
		Dissolved Copper	< 10	10	NC
		Dissolved Calcium	41,400	41,400	0
		Dissolved Magnesium	27,400	27,400	0
		Dissolved Potassium	2330	2360	1.3
		Dissolved Sodium	10,500	10,500	0
		Sulfate	7.9	8.1	2.5
		Chloride	5.7	5.9	3.4
		Nitrate/Nitrite	1.1	1.1	0
		Tannin and Lignin	0.4	0.6	40
		Total Organic Carbon	6.4	6.4	0
		Chemical Oxygen Demand	14	16	13
		Alkalinity	214	206	3.9
		Total Dissolved Solids	356	302	16
		Conductivity	443	445	0.4
		pH	6.00	6.06	1.0
		1,2,3,4,6,7,8-HpCDD	15.7	5.9	91
		1,2,3,4,6,7,8,9-OCDD	242	39.4	144

Table 2—Field Duplicate Precision

RPD Relative percent difference

Semivolatile organic and metals results are in ug/L; PCDD and PCDF results are in pg/L

Chloride, COD, ammonia, nitrate/nitrite, sulfate, tannin & lignin, total dissolved solids, TOC, and alkalinity results are in mg/L Conductivity results are in umohms/cm; pH results are in pH units, total Coliform results are in MPN/100 mL

16

Sample ID	Analyte	Qualifier	Reason for Qualification
BXN-5	Dissolved Zinc	U at reported value	Result > reporting limit $\& < 5 X$ the field blank
Drain 7 (4-8-02)	pH	J	Analysis holding time exceeded
Drain 8 (4-8-02)	pH	J	Analysis holding time exceeded
BXN-1	pH	J	Analysis holding time exceeded
BXN-2	pH	J	Analysis holding time exceeded
BXN-3	pH	J	Analysis holding time exceeded
BXN-4	pH	J	Analysis holding time exceeded
BXN-5	pH	J	Analysis holding time exceeded
BXN-6	pH	J	Analysis holding time exceeded
BXN-1	Total Coliform	J	Analysis holding time exceeded
BXN-2	Total Coliform	Ĵ	Analysis holding time exceeded
BXN-3	Total Coliform	ŬĴ	Analysis holding time exceeded
BXN-4	Total Coliform	J	Analysis holding time exceeded
BXN-5	Total Coliform	J	Analysis holding time exceeded
BXN-6	Total Coliform	ŪJ	Analysis holding time exceeded
BXS-1	pH	J	Analysis holding time exceeded
BXS-2	pH	J	Analysis holding time exceeded
BXS-3	рH pH	J	Analysis holding time exceeded
		J	
BXS-4	pH		Analysis holding time exceeded
BXS-5	pH	J	Analysis holding time exceeded
BXS-6	pH	J	Analysis holding time exceeded
BXS-1	Total Coliform	UJ	Analysis holding time exceeded
BXS-2	Total Coliform	UJ	Analysis holding time exceeded
BXS-3	Total Coliform	UJ	Analysis holding time exceeded
BXS-4	Total Coliform	UJ	Analysis holding time exceeded
BXS-5	Total Coliform	UJ	Analysis holding time exceeded
BXS-6	Total Coliform	UJ	Analysis holding time exceeded
BXS-1	Ammonia	UJ	MS recovery below laboratory control limits
BXN-1	Total Coliform	J	Field duplicate RPD > 35
BXN-5	Total Coliform	J	Field duplicate RPD > 35
MW-2	1,2,3,4,7,8-HxCDF	UJ	Result is < 5 times the method blank level
HCMW-6	1,2,3,4,6,7,8-HpCDD	UJ	Result is < 5 times the method blank level
L-1	1,2,3,4,6,7,8,9-OCDD	UJ	Result is < 5 times the method blank level
L-1	1,2,3,4,7,8-HxCDF	UJ	Result is < 5 times the method blank level
L-1	1,2,3,4,6,7,8,9-OCDF	UJ	Result is < 5 times the method blank level
L-3	1,2,3,4,6,7,8,9-OCDF	UJ	Result is < 5 times the method blank level
BXS-2	1,2,3,7,8,9-HxCDD	UJ	Result is < 5 times the method blank level
BXS-2	1,2,3,4,7,8-HxCDF	UJ	Result is < 5 times the method blank level
BXS-2	2,3,4,6,7,8-HxCDF	UJ	Result is < 5 times the method blank level
BXS-2	1,2,3,7,8,9-HxCDF	UJ	Result is < 5 times the method blank level
HCMW-6	1,2,3,4,6,7,8,9-OCDD	UJ	Result is < 5 times the field blank concentration
HCMW-6	1,2,3,4,6,7,8-HpCDF	UJ	Result is < 5 times the field blank concentration
HCMW-6	1,2,3,4,6,7,8,9-OCDF	UJ	Result is < 5 times the field blank concentration
MW3	1,2,3,4,6,7,8,9-OCDD	UJ	Result is < 5 times the field blank concentration
MW1	2,3,7,8-TCDF	UJ	Result not confirmed
MW1	Total TCDF	J	Analytical interference greater than 10%
MW1	Total PeCDF	J	Analytical interference greater than 10%
MW1	Total HxCDF	J	Analytical interference greater than 10%
MW2	Total HxCDF	J	Analytical interference greater than 10%
HCMW7	Total HxCDF	J	Analytical interference greater than 10%
MWA	Total HxCDF	J	Analytical interference greater than 10%
MWA	Total HpCDF	J	Analytical interference greater than 10%
1+# FF & #	i cui iipedi	J	mary four morrerence greater man 1070

Table 3-Summary of Qualified Data

Data Quality Assurance Review J. H. Baxter Wood Preserving Facility, Arlington, Washington

Sample ID	Analyte	Qualifier	Reason for Qualification
BXS-2	Total PeCDF	J	Analytical interference greater than 10%
BXS-3	Total TCDF	J	Analytical interference greater than 10%
BXS-1	1,2,3,4,6,7,8-HpCDD	J	Field duplicate RPD > 35
BXS-6	1,2,3,4,6,7,8-HpCDD	J	Field duplicate RPD > 35
BXS-1	1,2,3,4,6,7,8,9-OCDD	J	Field duplicate RPD > 35
BXS-6	1,2,3,4,6,7,8,9-OCDD	J	Field duplicate RPD > 35

	EPA		-									
	Quantitation		MW 2	MW 2	MW A	MW A	MW B	MW B	MW-3	MW-3	BXS-1	BXS-1
Analyte name	Limit (pg/L)	TEF	04/10/2002	TEQ	04/10/2002	TEQ		TEQ	04/10/2002	TEQ	04/11/2002	TEQ
2,3,7,8-TCDD	10		1.4 U	0	1.2 U	0	2.4 U		1.8	- 1	1.8	0
1,2,3,7,8-PeCDD	50	1.0	1.5 U	0	2.5 U	0		0	1.8	0	1.8	0
1,2,3,4,7,8-HxCDD	50	0.1	1.6 U	0	2.4 J	0	2.0 U	Ō	1.6	0	1.7	0
1,2,3,6,7,8-HxCDD	50	0.1	3.9 J	0	5.3 U	0		Ō	1.7 U	0	<u>ــ</u>	0
1,2,3,7,8,9-HxCDD	50	0.1	3.2 J	0	5.7 J	0	2.0 U	0	1.6	0	1.6	0
1,2,3,4,6,7,8-HpCDD	50	0.01	115	1.15	101	1.01		ō	2.5	0		0
1,2,3,4,6,7,8,9-OCDD	100	0.0001	1250	0.125	1060	0.106		0	20.7	0		0.0242
2,3,7,8-TCDF	10	0.1	1.1 U	0	0.9 U	0	1.7 U	0	1.4	0		0
1,2,3,7,8-PeCDF	50	0.05	1.3 U	0	2.2 U	0	2.2 U	0	1.5	0		0
2,3,4,7,8-PeCDF	50	0.5	1.1 U	0	2.0 U	0		Ö	1.1	0		0
1,2,3,4,7,8-HxCDF	50	0.1	2.3 UJ	0	2.5 U	0	1.4 U	0	1.1 U	0	1.0 U	0
1,2,3,6,7,8-HxCDF	50	0.1	1.1 U	0	2.1 J	0		0	1.2	0		0
1,2,3,7,8,9-HxCDF	50	0.1	1.6 J	0	4.6 U	0		0	1.5	0		0
2,3,4,6,7,8-HxCDF	50	0.1	1.4 J	0	2.2 J	0		0	1.0	0		0
1,2,3,4,6,7,8-HpCDF	50	0.01	19.0 J	0	17.3 J	0	1.5 J	0	1.5	0		0
1,2,3,4,7,8,9-HpCDF	50	0.01	3.4 J	0	4.2 J	0	2.3 U	o	2.1	0		0
1,2,3,4,6,7,8,9-OCDF	100	0.0001	97.5 J	0	87.2 J	0	5.5 J	0	3.1	0		0
Total TEQ				1.28		1.12		0		0		0.024
Total TCDD	10		1.4 U		1.2 U		2.4 U				1.8 U	
Total PeCDD	50		1.5 U		2.5 U		2.3 U				1.8 U	
Total HxCDD	50		19.1		10.6		2.0 U				1.6 U	
Total HpCDD	50		194		169		4.7				25.5	
Total TCDF	10		1.1 U		0.9 U		1.7 U				1.4 U	
Total PeCDF	50		9.3		6.9		2.0 U				1.4 U	
Total HxCDF	50		51.1 J		49.1 J		1.4 U		1.1 U		1.9 U	
Total HpCDF	50		66.3		62.6 J		3.7	-			12.8	

Dioxin/furan results and calculated 2,3,7,8-TCE

Notes: U - not detected at detection limit shown J - estimated concentration B - detected in blank

	EPA Minimum Quantitation	WHO	BXS-2	BXS-2	BXS-3	BXS-3	BXS-4	BXS-4	BXS-5	BXS-5	BXS-6	BXS-6
Analyte name	Limit (pg/L)	Ę	4/11/2002	TEQ	04/11/2002	TEQ	04/11/2002	TEQ	04/11/2002	TEQ	04/11/2002	TEQ
2,3,7,8-TCDD	10	1.0	1.6J	0	1.3 U	0	1.9 U			- 1	0.9 U	
1,2,3,7,8-PeCDD	50	1.0	1.6J	0	1.3 U	0	1.8 U	0		0	0.9 U	
1,2,3,4,7,8-HxCDD	50	0.1	<2.1	0		0	1.6 U	0	1.4 U	0	0.8 U	0
1,2,3,6,7,8-HxCDD	50	0.1	2.7J	0	1.3 U	0	1.7 U	0	1.4	0	0.9 U	
1,2,3,7,8,9-HxCDD	50	0.1	2.4 UJ	0	1.2 U	0	1.6 U	0	1.4	0	0.8 U	
1,2,3,4,6,7,8-HpCDD	50	0.01	54.1	0.541	11.2 J	0	8.3 U	0	2.3	0	5.9 J	
1,2,3,4,6,7,8,9-OCDD	100	0,0001	961	0.0961	115	0.0115		0	3.3	0	39,3 J	
2,3,7,8-TCDF	10	0.1	<1.8	0	0.9 U	0	1.4 U	0	1.2	0	0.7 U	
1,2,3,7,8-PeCDF	50	0.05	< 3, 1	0	1.1 U	0	1.7 U	0	1.3 U	0	0.8 U	
2,3,4,7,8-PeCDF	50	0.5	2.2J	0	0.9 U	0	1.2 U	0	1.0	0	0.6 U	
1,2,3,4,7,8-HxCDF	50	0.1	2.9 UJ	0	1.9 U	0	3.5 U	0	1.0	0	0.6 U	
1,2,3,6,7,8-HxCDF	50	0.1	<1.9	0	0.8 U	0	2.7 U	ō	 	0	0.6 U	
1,2,3,7,8,9-HxCDF	50	<u>0</u> 1	1.8 UJ	0	1.0 U	0	1.4 U	0	1.3	0	0.7 U	
2,3,4,6,7,8-HxCDF	50	0.1	1.7 UJ	Ö	2.1 J	0	2.0 U	0	0.8	0	0.5 U	
1,2,3,4,6,7,8-HpCDF	50	0.01	18.2J	0	2.5 U	0	2.9 U	0	1.3	0	0.8 U	
1,2,3,4,7,8,9-HpCDF	50	0.01	<2.9	0	1.4 U	0	1.9 U	0	1.7	0	1.0 U	
1,2,3,4,6,7,8,9-OCDF	100	0.0001	86.4J	0	15,9 U	0	13.5 J	0	2.7	0	4.4 U	
Total TEQ				0.637		0.012		Ō		0		
Total TCDD	10		7		1.3 U		1.9 U		1.5 U		0.9 U	
Total PeCDD	50		12.1		1.3 U		1.8 U		1.7 U		0.9 U	
Total HxCDD	50		7.6		5.6 U		1.6 U		1,4 C		14.3 U	
Total HpCDD	50		85.1		11.2		8.3 U				5.9	
Total TCDF	10		<4.2		11.3 J		1.4 U				0.7 U	
Total PeCDF	50		3.7 J		4.7		1.5 U		1.1 U		0.7 U	
Total HxCDF	50		22.2		3.7		8.2 U				0.6 U	
Total HnCDF	50		60.9		8.1 U		2.9 U	÷			3.3	

Dioxin/furan results and calculated 2,3,7,8-TC

Notes: U - not detected at detection limit shown J - estimated concentration B - detected in blank

.

												And the second se
	EPA Minimum											
•	Quantitation	VH0	HCMW 6	0	HCMW 7	HCMW 7		} <u>-</u>	L-3	55	MW 1	MW 1
Analyte name	Limit (pg/L)	TEF	04/10/2002	TEQ	04/10/2002	TEQ	04/10/2002	TEQ	04/10/2002	1		TEQ
2,3,7,8-TCDD	10	1.0	0.8 U	0	1.8 U	0	1.9 U	~	2,1 U	0		0
1,2,3,7,8-PeCDD	50	1.0	0.9 U	0	4.5 U	0	1.8 U	~		0		0
1,2,3,4,7,8-HxCDD	50	0.1	4.6 U	0	5.1 J	0	4.2 UJ	0) 1.9 U	0		0
1,2,3,6,7,8-HxCDD	50	0.1	0.8 U	0	10.1 J	0	1.6 U	~		0		0
1,2,3,7,8,9-HxCDD	50	0.1	0.8 U	0	10.4 J	0	1.5 U	~		0	11.3 J	0
1,2,3,4,6,7,8-HpCDD	50	0.01	5.5 UJ	0	251	2.51	2.8 UJ	~		0		12.1
1,2,3,4,6,7,8,9-OCDD	100	0.0001	56.3 UJ	0	3200	0.32	21.1 UJ	~		0		0.928
2,3,7,8-TCDF	10	0.1	0.7 U	0	2.9 U	0	1.5 U	~		0	2.7 UJ	0
1,2,3,7,8-PeCDF	50	0.05	0.8 U	0	4.2 J	0	1.5 U	~		0		0
2,3,4,7,8-PeCDF	50	0.5	0.6 U	0	3.7 U	0	1.1 U	~		0		0
1,2,3,4,7,8-HxCDF	50	0.1	0.6 U	0	6.7 JB	0	1.9 UJ	~		0	16.8 JB	0
1,2,3,6,7,8-HxCDF	50	0.1	0.6 U	0	6.0 U	0	1.1 U	~		0		0
1,2,3,7,8,9-HxCDF	50	0.1	0.7 U	0	6.5 J	0	1.3 U	-		0		0
2,3,4,6,7,8-HxCDF	50	0.1	0.5 U	0	5.5 J	0	0.9 U	~		0		0
1,2,3,4,6,7,8-HpCDF	50	0.01	1.7 UJ	0	67	0.67	2.3 UJ	~		0		1.92
1,2,3,4,7,8,9-HpCDF	50	0.01	1.0 U	0	9.7 J	0	1.7 U	~) 2.2 U	0		0
1,2,3,4,6,7,8,9-OCDF	100	0.0001	7.7 UJ	0	270	0.027	5,8 UJ	0) 18.9 UJ	0	439	0.0439
Total TEQ				0		3.53				0		15.0
Total TCDD	10		2.2 U		1.8 U		1.9 U		2.1 U		1.1 U	
Total PeCDD	50		0.9 U		7.1 U		1.8 U		2.3 U		3.3 3	
Total HxCDD	50		8.2 U		38.9		13.3 U		15.7 U		127	
Total HpCDD	50		5.5		436		5.2 U		15.8		2010	
Total TCDF	10		2.3 U		6.7 U		1.5 U		1.7 U		5.3 J	
Total PeCDF	50		0.7 U		14		1.3 U		1.5 U		54.6 J	
Total HxCDF	50		0.6 U		93.7 J		1.9		1.4 U		465 J	
Total HpCDF	50		1.7		208		2.3 U		5.3		782	

Dioxin/furan results and calculated 2,3,7,8-TCDD TEQs for Arlington, WA

Notes: U - not detected at detection limit shown J - estimated concentration B - detected in blank

Attachment 2

Laboratory Analytical Reports

Analytical Report

Client: Project: Sample Matrix:	J.H. Baxter & Company Arlington Plant Groundwater/BXS-WELLS Water		Service Request: Date Collected: Date Received:	04/11/02
		Sulfate		
Prep Method: Analysis Method: Test Notes:	NONE 300.0		Units: Basis:	mg/L (ppm) NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	1.0	5	NA	04/15/02	7.9	
BXS-2	K2202353-002	0.2	1	NA	04/15/02	0.5	
BXS-3	K2202353-003	0.2	1	NA	04/15/02	0.3	
BXS-4	K2202353-004	0.2	1	NA	04/15/02	1.6	
BXS-5	K2202353-005	0.2	1	NA	04/15/02	ND	
BXS-6	K2202353-006	0.4	2	NA	04/15/02	8.1	
Method Blank	K2202353-MB	0.2	1	NA	04/15/02	ND	
				150	p624-2		

Dit

Approved By: 1A/020597p

00007

Date: 4/29/02

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/02
Sample Matrix:	Water	Date Received:	04/12/02

Chloride

Prep Method:NONEAnalysis Method:300.0Test Notes:

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	1.0	5	NA	04/15/02	5.7	
BXS-2	K2202353-002	0.4	2	NA	04/15/02	6.3	
BXS-3	K2202353-003	0.2	1	NA	04/15/02	2.9	
BXS-4	K2202353-004	0.2	1	NA	04/15/02	2.0	
BXS-5	K2202353-005	0.2	1	NA	04/15/02	ND	
BXS-6	K2202353-006	0.4	2	NA	04/15/02	5.9	
Method Blank	K2202353-MB	0.2	1	NA	04/15/02	ND	
					NODPSi	102	

mil Ditt

4/29/02 Date:

02353WET.EL1 - SAMPLE 04/29/02

Approved By: 1A/020597p

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	
Sample Matrix:	Water	Date Received:	04/12/02

Nitrate+Nitrite as Nitrogen

Prep Method:	NONE
Analysis Method:	353.2
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	0.2	 1	NA	04/15/02	1.1	
BXS-2	K2202353-002	0.2	1	NA	04/15/02	ND	
BXS-3	K2202353-003	0.2	1	NA	04/15/02	ND	
BXS-4	K2202353-004	0.2	1	NA	04/15/02	ND	
BXS-5	K2202353-005	0.2	1	NA	04/15/02	ND	
BXS-6	K2202353-006	0.2	1	NA	04/15/02	1.1	
Method Blank	K2202353-MB	0.2	1	NA	04/15/02	ND	
				k	a 27407		

Kap Tozure

Approved By:

IA/020597p

Date: 4/29/02

Mil Fit

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected: 04/11/02
Sample Matrix:	Water	Date Received: 04/12/02
-		

Ammonia as Nitrogen

Prep Method:	NONE
Analysis Method:	350.1
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	0.05	1	NA	04/15/02	ND UT	
BXS-2	K2202353-002	0.05	1	NA	04/15/02	ND	
BXS-3	K2202353-003	0.05	1	NA	04/15/02	0.19	
BXS-4	K2202353-004	0.05	1	NA	04/15/02	0.38	
BXS-5	K2202353-005	0.05	1	NA	04/15/02	ND	
BXS-6	K2202353-006	0.05	1	NA	04/15/02	ND	
Method Blank	K2202353-MB	0.05	. 1	NA	04/15/02	ND	
					KPb 2420	L	

Mil Ditt Date: 4/29/02

Approved By: 1A/020597p

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353	
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected: 04/11/02	
Sample Matrix:	Water	Date Received: 04/12/02	

Tannin and Lignin

Prep Method:	NONE
Analysis Method:	SM 5550B
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	0.2	1	NA	04/17/02	0.4	
BXS-2	K2202353-002	0.2	1	NA	04/17/02	1.5	
BXS-3	K2202353-003	1.0	5	NA	04/17/02	10.9	
BXS-4	K2202353-004	0.2	1	NA	04/17/02	0.5	
BXS-5	K2202353-005	0.2	1	NA	04/17/02	ND	
BXS-6	K2202353-006	0.2	1	NA	04/17/02	0.6	
Method Blank	K2202353-MB	0.2	1	NA	04/17/02	ND	
					Kp ba	2472	

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

Mil Fill

Approved By: 1A/020597p

02353WET.EL5 - SAMPLE 04/29/02

00027

Date: 4/29/02

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected: 04/11/02
Sample Matrix:	Water	Date Received: 04/12/02

Carbon, Total Organic

Prep Method:	NONE
Analysis Method:	415.1
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	0.5	1	NA	04/26/02	6.4	
BXS-2	K2202353-002	0.5	1	NA	04/26/02	14.2	
BXS-3	K2202353-003	0.5	1	NA	04/26/02	23.0	
BXS-4	K2202353-004	0.5	1	NA	04/26/02	1.0	
BXS-5	K2202353-005	0.5	1	NA	04/26/02	ND	
BXS-6	K2202353-006	0.5	1	NA	04/26/02	6.4	
Method Blank	K2202353-MB	0.5	1	NA	04/25/02	ND	
					Kpilz	yor	

Approved By: 1A/020597p

Wil Ditt Date: <u>4/29/02</u>

02353WET.EL6 - SAMPLE 04/29/02

00032

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected: 04/11/02
Sample Matrix:	Water	Date Received: 04/12/02

Chemical Oxygen Demand (COD)

Prep Method:	NONE
Analysis Method:	410.2
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	5	1	NA	04/17/02	14	
BXS-2	K2202353-002	5	i	NA	04/17/02	36	
BXS-3	K2202353-003	5	1	NA	04/17/02	59	
BXS-4	K2202353-004	5	1	NA	04/17/02	19	
BXS-5	K2202353-005	5	1	NA	04/17/02	ND	
BXS-6	K2202353-006	5	1	NA	04/17/02	16	
Method Blank	K2202353-MB	5	1	NA	04/17/02	ND	
					Kap ba	aloc_	

Mil Ditt 4/29/02 Date: ____

Approved By: 1A/020597p

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected: 04/11/02
Sample Matrix:	Water	Date Received: 04/12/02

Alkalinity as CaCO3, Total

Prep Method:	NONE
Analysis Method:	310.1
Test Notes:	

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	2	1	NA	04/16/02	214	
BXS-2	K2202353-002	2	1	NA	04/16/02	472	
BXS-3	K2202353-003	2	1	NA	04/16/02	438	
BXS-4	K2202353-004	2	1	NA	04/16/02	92	
BXS-5	K2202353-005	2	1	NA	04/16/02	ND	
BXS-6	K2202353-006	2	1	NA	04/16/02	206	
Method Blank	K2202353-MB	2	1	NA	04/16/02	ND	
					Kaphava	<u>ک</u>	

Approved By:

_____Date: <u>4/29/02</u>

1 A/020597p

02353WET.EL8 - SAMPLE 04/29/02

00041 Page No.:

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/02
Sample Matrix:	Water	Date Received:	04/12/02

Solids, Total Dissolved (TDS)

Prep Method: Analysis Method: Test Notes:	NONE 160.1						Units: r Basis: N	ng/L (ppm) NA
Sample Name		Lab Code	MRI	Dilution	Date Extracted	Date Analyzed	Result	Result Notes

Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
BXS-1	K2202353-001	5	l	NA	04/17/02	356	
BXS-2	K2202353-002	5	1	NA	04/17/02	584	
BXS-3	K2202353-003	5	1	NA	04/17/02	520	
BXS-4	K2202353-004	5	1	NA	04/17/02	167	
BXS-5	K2202353-005	5	1	NA	04/17/02	ND	
BXS-6	K2202353-006	5	1 1	NA	04/17/02	302	
Method Blank	K2202353-MB	5	1	NA	04/17/02	ND	
					Карьси	-2	

Mil Fitt

______ Date: 4/29/02

Approved By:

1A/020597p
Analytical Report

Conductivity

Prep Method: NONE Analysis Method: 120.1 Test Notes:

Units: µmhos/cm Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	2	1	NA	04/20/02	443	
BXS-2	K2202353-002	2	1	NA	04/20/02	863	
BXS-3	K2202353-003	2	1	NA	04/20/02	804	
BXS-4	K2202353-004	2	1	NA	04/20/02	192	
BXS-5	K2202353-005	2	1	NA	04/20/02	2	
BXS-6	K2202353-006	2	1	NA	04/20/02	445	
Method Blank	K2202353-MB	2	1	NA	04/20/02	ND	
					KA296EU	32	

Mil Ditt

00047

Date: 4/29/02

Approved By:

02353WET.E11 - SAMPLE 04/29/02

Page No.:

Analytical Report

Client:	J.H. Baxter & Company	Servic
Project:	Arlington Plant Groundwater/BXS-WELLS	Date
Sample Matrix:	Water	Date

Service Request:K2202353Date Collected:04/11/02Date Received:04/12/02

pН

Prep Method:NONEAnalysis Method:150.1Test Notes:150.1

Units: pH UNITS Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001		1	NA	04/12/02	6.00 丁	x
BXS-2	K2202353-002		1	NA	04/12/02	6.32	x
BXS-3	K2202353-003	-	1	NA	04/12/02	6.60	x
BXS-4	K2202353-004		1	NA	04/12/02	8.02	x
BXS-5	K2202353-005		1	NA	04/12/02	5.91	x
BXS-6	K2202353-006		1	NA	04/12/02	6.06	x
					KADI	, eur	

Mil Ditt Approved By:

I A/020597p

00050

Date: <u>4/29/02</u>

Analytical Report

Client:J.H. Baxter & CompanyProject:Arlington Plant Groundwater/BXS-WELLSSample Matrix:Water

Service Request: K2202353 Date Collected: 04/11/02 Date Received: 04/12/02 Date Extracted: NA Date Analyzed: 04/12/02

Coliform, Total SM 9221B Units: MPN/100 ml

			Time Test	
Sample Name	Lab Code	MRL	Started	Result
BXS-1	K2202353-001	2	1740 hrs	NDX UJ
BXS-2	K2202353-002	2	1740 hrs	2
BXS-4	K2202353-004	2	1740 hrs	1
BXS-5	K2202353-005	2	1740 hrs	
BXS-6	K2202353-006	2	1740 hrs	1
			1000 borre	-

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

Approved By: BACT/102194 Mil Fith

Date: 4/29/02

00053 Page No.:

02353WET.E13 - BactTC 04/29/02

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-1

Lab Code: K2202353-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	0.05	1	4/18/02	4/22/02	41.4		
Iron	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Magnesium	6010B	0.02	1	4/18/02	4/22/02	27.4		
Potassium	6010B	2.000	1	4/18/02	4/22/02	2.330	1	
Sodium	6010B	0.1	1	4/18/02	4/22/02	10.5		
 				<u> </u>		leva e		

196242

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-2

Lab Code: K2202353-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	0.05	1 .	4/18/02	4/22/02	81.8		
Iron	6010B	0.02	1	4/18/02	4/22/02	0.64		
Magnesium	6010B	0.02	1	4/18/02	4/22/02	65.6		
Potassium	6010B	2.000	1	4/18/02	4/22/02	4.070		
Sodium	6010B	0.1	1	4/18/02	4/22/02	8.9		
· · ·	1		<u> </u>	L <u>e de la constante de la cons</u> tante de la constante de la constan		1922402	-	

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-3

Lab Code: K2202353-003 DISS

0B 0.05	1	4/18/02	4/22/02	92.8		
					7	
B 0.02	1	4/18/02	4/22/02	19.6		
DB 0.02	1	4/18/02	4/22/02	46.7		
B 2.000	1	4/18/02	4/22/02	12.3		
DB 0.1	1	4/18/02	4/22/02	5.1		
	DB 2.000	DB 2.000 1	DB 2.000 1 4/18/02	DB 2.000 1 4/18/02 4/22/02 DB 0.1 1 4/18/02 4/22/02	DB 2.000 1 4/18/02 4/22/02 12.3	DB 2.000 1 4/18/02 4/22/02 12.3 DB 0.1 1 4/18/02 4/22/02 5.1

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-4

Lab Code: K2202353-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	0.05	1	4/18/02	4/22/02	19.0		ĺ
Iron	6010B	0.02	1	4/18/02	4/22/02	0.04		l
Magnesium	6010B	0.02	1	4/18/02	4/22/02	8.10		<u> </u>
Potassium	6010B	2.000	1	4/18/02	4/22/02	2.640		
Sodium	6010B	0.1	1 1	4/18/02	4/22/02	7.1		
	استوجعت متبعي ومتأوين							

Kapbalar

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company	Service Request:
Project No.	: BXS-WELLS	Date Collected:
Project Nam	e: Arlington Plant Groundwater	Date Received
Matrix:	WATER	Units:

ervice Request: K2202353 Date Collected: 04/11/02 Date Received: 04/12/02 Units: MG/L Basis: NA

Sample Name: BXS-5

Lab Code: K2202353-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010B	0.05	1	4/18/02	4/22/02	0.05	U	
Iron	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Magnesium	6010B	0.02	1	4/18/02	4/22/02	0.02	U	ĺ
Potassium	6010B	2.000	1 1	4/18/02	4/22/02	2.000	ט	
Sodium	6010B	0.1	1 1	4/18/02	4/22/02	0.1	U	
	ليصبح فيتعاد والمستحية والمستحية				DI	222 Delas		

Repterse

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-6

Lab Code: K2202353-006 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	ע
Calcium	6010B	0.05	1	4/18/02	4/22/02	41.4		
Iron	6010B	0.02	1	4/18/02	4/22/02	0.02	ש	
Magnesium	6010B	0.02	1	4/18/02	4/22/02	27.4		
Potassium	6010B	2.000	1	4/18/02	4/22/02	2.360		
Sodium	6010B	0.1	1 1	4/18/02	4/22/02	10.5	I	

Kpbein

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202353
Project: Sample Matrix:	Arlington Plant Groundwater/BXS-WELLS Water	Date Collected: 04/11/02
Sample Matrix.	Water	Date Received: 04/12/02

Solids, Total Suspended (TSS)

Prep Method:NONEAnalysis Method:160.2Test Notes:160.2

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXS-1	K2202353-001	20	1	NA	04/17/02	ND	· · · · · · · · · · · · · · · · · · ·
BXS-2	K2202353-002	5	1	NA	04/17/02	75	
BXS-3	K2202353-003	5	1	NA	04/17/02	65	
BXS-4	K2202353-004	5	1	NA	04/17/02	180	
BXS-5	K2202353-005	5	1	NA	04/17/02	ND	
BXS-6	K2202353-006	5	1	NA	04/17/02	ND	
Method Blank	K2202353-MB	5	1	NA	04/17/02	ND	
					Kep 6.	2J-~<	

Mil Ditt Date: 4/29/02

Approved By: 1A/020597p

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project No.:	BXS-WELLS	Date Collected:	04/11/02
Project Name:	Arlington Plant Groundwater	Date Received:	04/12/02
Matrix:	WATER	Units:	MG/L
		Basis:	NA

Sample Name: BXS-1

Lab Code: K2202353-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	7060A	0.005	1	4/18/02	4/19/02	0.005	υ	
Barium	6010B	0.005	1	4/18/02	4/22/02	0.024		
Cadmium	6010B	0.005	1	4/18/02	4/22/02	0.005	υ	
Copper	6010B	0.01	1	4/18/02	4/22/02	0.01	U	
Iron	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Manganese	6010B	0.005	1	4/18/02	4/22/02	0.362		
Nickel	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Zinc	6010B	0.01	1 1	4/18/02	4/22/02	0.01	υ	

19623-2

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXS-WELLS Project Name: Arlington Plant Groundwater Matrix: WATER

Service Request: K2202353 Date Collected: 04/11/02 Date Received: 04/12/02 Units: MG/L Basis: NA

Sample Name: BXS-2

Lab Code: K2202353-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	7060A	0.005	1	4/18/02	4/19/02	0.005	U	: :
Barium	6010B	0.005	1	4/18/02	4/22/02	0.047		
Cadmium	6010B	0.005	1	4/18/02	4/22/02	0.005	υ	
Copper	6010B	0.01	1	4/18/02	4/22/02	0.01	U	
Iron	6010B	0.02	1	4/18/02	4/22/02	0.64		
Manganese	6010B	0.005	1	4/18/02	4/22/02	1.430		
Nickel	6010B	0.02	1	4/18/02	4/22/02	0.04		
Zinc	6010B	0.01	1	4/18/02	4/22/02	0.01	υ	

Rp 623-2

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-3

Lab Code: K2202353-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	7060A	0.005	1	4/18/02	4/19/02	0.014		
Barium	6010B	0.005	1	4/18/02	4/22/02	0.099	[[
Cadmium	6010B	0.005	1	4/18/02	4/22/02	0.005	U	
Copper	6010B	0.01	1	4/18/02	4/22/02	0.01	U	[
Iron	6010B	0.02	1	4/18/02	4/22/02	19.6		
Manganese	6010B	0.005	1	4/18/02	4/22/02	15.6		
Nickel	6010B	0.02	1	4/18/02	4/22/02	0.02		
Zinc	6010B	0.01	1 1	4/18/02	4/22/02	0.01	U	[

150 623 72

% Solids: 0.0

.

Comments:

00013

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	BXS-WELLS
Project Name:	Arlington Plant Groundwater
Matrix:	WATER

Service Request:	K2202353
Date Collected:	04/11/02
Date Received:	04/12/02
Units:	MG/L
Basis:	NA

Sample Name: BXS-4

Lab Code: K2202353-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	۰Q
Arsenic	7060A	0.005	1	4/18/02	4/19/02	0.005		
Barium	6010B	0.005	1	4/18/02	4/22/02	0.026	1	<u> </u>
Cadmium	6010B	0.005	1	4/18/02	4/22/02	0.005	υ	
Copper	6010B	0.01	1	4/18/02	4/22/02	0.01	U	
Iron	6010B	0.02	1	4/18/02	4/22/02	0.04		<u> </u>
Manganese	6010B	0.005	1	4/18/02	4/22/02	0.112		r
Nickel	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Zinc	6010B	0.01	1	4/18/02	4/22/02	0.01	_	İ

Rp623.2

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project No.:	BXS-WELLS	Date Collected:	04/11/02
Project Name:	Arlington Plant Groundwater	Date Received:	04/12/02
Matrix:	WATER	Units:	MG/L
		Basis:	NA

s.

Sample Name: BXS-5

Lab Code: K2202353-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	7060A	0.005	1	4/18/02	4/19/02	0.005	U	
Barium	6010B	0.005	1	4/18/02	4/22/02	0.005	U	Γ
Cadmium	6010B	0.005	1	4/18/02	4/22/02	0.005	U	
Copper	6010B	0.01	1	4/18/02	4/22/02	0.01	U	
Iron	6010B	0.02	1	4/18/02	4/22/02	0.02	U	
Manganese	6010B	0.005	1	4/18/02	4/22/02	0.005	υ	[
Nickel	6010B	0.02	1 1	4/18/02	4/22/02	0.02	υ	İ T
Zinc	6010B	0.01	1	4/18/02	4/22/02	0.01	U	[

Kep 6. J. ~

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXS-WELLS Project Name: Arlington Plant Groundwater Matrix: WATER

Service Request: K2202353 Date Collected: 04/11/02 Date Received: 04/12/02 Units: MG/L Basis: NA

Sample Name: BXS-6

Lab Code: K2202353-006 DISS

·	· · · · · · · · · · · · · · · · · · ·		a an an an an air an an an an an an an an an an an an an	· · · · · · · · · · · · · · · · · · ·			
Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
7060A	0.005	1	4/18/02	4/19/02	0.005	υ	
6010B	0.005	1	4/18/02	4/22/02	0.023		
6010B	0.005	1	4/18/02	4/22/02	0.005	υ	
6010B	0.01	1	4/18/02	4/22/02	0.01		
6010B	0.02	1	4/18/02	4/22/02	0.02	ט	
6010B	0.005	1	4/18/02	4/22/02	0.353		
6010B	0.02	1	4/18/02	4/22/02	0.02	U	
6010B	0.01	1	4/18/02	4/22/02	0.01	U	
	Method 7060A 6010B 6010B 6010B 6010B 6010B 6010B	Method MRL 7060A 0.005 6010B 0.005 6010B 0.005 6010B 0.01 6010B 0.02 6010B 0.005	Method MRL Factor 7060A 0.005 1 6010B 0.01 1 6010B 0.02 1 6010B 0.005 1 6010B 0.02 1	Method MRL Factor Extracted 7060A 0.005 1 4/18/02 6010B 0.005 1 4/18/02 6010B 0.005 1 4/18/02 6010B 0.005 1 4/18/02 6010B 0.01 1 4/18/02 6010B 0.02 1 4/18/02 6010B 0.005 1 4/18/02 6010B 0.005 1 4/18/02 6010B 0.02 1 4/18/02 6010B 0.02 1 4/18/02	Method MRL Factor Extracted Analyzed 7060A 0.005 1 4/18/02 4/19/02 6010B 0.005 1 4/18/02 4/22/02 6010B 0.005 1 4/18/02 4/22/02 6010B 0.005 1 4/18/02 4/22/02 6010B 0.01 1 4/18/02 4/22/02 6010B 0.02 1 4/18/02 4/22/02 6010B 0.005 1 4/18/02 4/22/02 6010B 0.002 1 4/18/02 4/22/02 6010B 0.005 1 4/18/02 4/22/02 6010B 0.005 1 4/18/02 4/22/02	Method MRL Factor Extracted Analyzed Result 7060A 0.005 1 4/18/02 4/19/02 0.005 6010B 0.005 1 4/18/02 4/22/02 0.023 6010B 0.005 1 4/18/02 4/22/02 0.023 6010B 0.005 1 4/18/02 4/22/02 0.005 6010B 0.01 1 4/18/02 4/22/02 0.01 6010B 0.02 1 4/18/02 4/22/02 0.02 6010B 0.02 1 4/18/02 4/22/02 0.02 6010B 0.005 1 4/18/02 4/22/02 0.02 6010B 0.005 1 4/18/02 4/22/02 0.353 6010B 0.02 1 4/18/02 4/22/02 0.02	Method MRL Factor Extracted Analyzed Result C 7060A 0.005 1 4/18/02 4/19/02 0.005 U 6010B 0.005 1 4/18/02 4/22/02 0.023 U 6010B 0.005 1 4/18/02 4/22/02 0.005 U 6010B 0.005 1 4/18/02 4/22/02 0.005 U 6010B 0.01 1 4/18/02 4/22/02 0.01 U 6010B 0.02 1 4/18/02 4/22/02 0.02 U 6010B 0.02 1 4/18/02 4/22/02 0.02 U 6010B 0.005 1 4/18/02 4/22/02 0.353 U 6010B 0.02 1 4/18/02 4/22/02 0.02 U

Kp6:25-2

& Solids: 0.0

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Sample Name: Lab Code:	BXS-1 K2202353-001					U nits: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M				I	Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note

0.20

22

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	78	38-119	04/19/02	Acceptable	Kp 6 24-22

1

04/15/02

04/19/02

KWG0202449

Comments:

Pentachlorophenol

Merged

Form 1A - Organic

SuperSet Reference:

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Sample Name: Lab Code:	BXS-2 K2202353-002		Units: Basis:	•
Extraction Method: Analysis Method:	METHOD 8151M]	Level:	Low

Analyte Name	Result	Q MRL	Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	0.28	0.20	1	04/15/02	04/19/02	KWG0202449	******

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	65	38-119	04/19/02	Acceptable	Ap62422	· ·
· · ·						

Comments:

Merced

00045

1 of

1

Page

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Sample Name:	BXS-3	Units:	•
Lab Code:	K2202353-003	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND U	0.20	1	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	74	38-119	04/19/02	Acceptable	Rebelle	<u></u>

Comments:

Margad

Form 1A - Organic

0016706 SumerCat Reference

 ${}_{Page} 0 0_1 0_0 4 6_1$

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Pentachlorophenol	0.23		0.20	1	04/15/02	04/19/02	KWG0202449	r 1.81
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Sample Name: Lab Code:	BXS-4 K2202353-004						Units: ug/L Basis: NA	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	69	38-119	04/19/02	Acceptable	Kep 6 24 or	

Comments:

Mornad

SuperSet Reference:

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Sample Name: Lab Code:	BXS-5 K2202353-005						U nits: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M]	L evel: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromo-2,6-dichlorophenol	77	38-119	04/19/02	Acceptable	KAP 624-C	-

Comments:

Margad

SuperSet Reference:

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2202353
Project:	Arlington Plant Groundwater/BXS-WELLS	Date Collected:	04/11/2002
Sample Matrix:	Water	Date Received:	04/12/2002

Pentachlorophenol

Sample Name: Lab Code:	BXS-6 K2202353-006						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	22		0.20	1	04/15/02	04/19/02	KWG0202449	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note				

Reporter

SuperCat Deferences

4-Bromo-2,6-dichlorophenol	78	38-119	04/19/02	Acceptable	

Comments:

. .

		undunun andre side at series	<u>, and a side a</u>		içiçiləi				
	TLI Project: Client Sample	57144 BXS-1		1613	, Revision	B PC A	CDD/PCD nalysis Fi		lysis (c) 0 21850
	Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-1A		Date Received: Date Extracted: Date Analyzed:	04/18/2002 04/23/2002 04/26/2002		Spike File: ICal: ConCal:	SP16 TF51 TB21	
	Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD		% Moisture: % Lipid: % Solids:		
	Analytes	Co	nc. (pg	/L) DL		Ratio	RT	DOT]
	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		ND ND ND ND 15.7 J 242 J ND ND ND ND ND ND ND ND ND ND ND ND ND	1.8 1.8 1.7 1.7 1.6		1.20 0.87	37:25	1.000 1.000	Flags
	Totals	Con	ic. (pg/l	.) Number DL					
]	Fotal TCDD Fotal PeCDD Fotal HxCDD Fotal HpCDD		ND ND ND 25.5	1.8 1.8 1.6 2					Flags
Т Т	otal TCDF otal PeCDF otal HxCDF otal HpCDF		ND ND ND 12.8	1.4 1.4 1.9 1					

Page 1 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

161B_PSR v2.04, LARS 6.25.04

Kybz3-2

Printed: 12:12 04/27/2002

00746

Columbia Analytical Services

TLI Project: 57144 Client Sample: BXS-1

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **T021850**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
$^{13}C_{12}$ -2,3,7,8-TCDD $^{13}C_{12}$ -1,2,3,7,8-PeCDD $^{13}C_{12}$ -1,2,3,4,7,8-HxCDD $^{13}C_{12}$ -1,2,3,6,7,8-HxCDD $^{13}C_{12}$ -1,2,3,4,6,7,8-HpCDD $^{13}C_{12}$ -1,2,3,4,6,7,8,9-OCDD	935 1180 1210 1290 1460 2990	48.6 61.5 62.9 67.0 75.8 77.8	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157%	0.80 26:44 1.49 30:59 1.20 34:05 1.21 34:10 1.03 37:25 0.86 41:02	1.007 1.167 0.988 0.991 1.085 1.190	
${}^{13}C_{12}-2,3,7,8-TCDF$ ${}^{13}C_{12}-1,2,3,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	843 949 1100 1060 1080 1440 1250 1300 1420	43.8 49.4 57.0 54.9 55.9 74.8 65.2 67.4 73.8	29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.7426:011.5529:581.5630:390.5133:230.5033:290.5233:590.5034:440.4236:220.4137:54	0.980 1.129 1.154 0.968 0.971 0.986 1.007 1.055 1.099	

	Conc. (pg/L)	% Recovery	QC Limits	RT	RHT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	118	61.2	42%-164%	26:45	1.008	
Recovery Stendarda					•	

receivery standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD		
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.80 26:33	
	1.19 34:29	

Data Reviewer:	04	4/27/2002
	Page 2 of 2	161B_PSR v2.04, LARS 6.25.04
boratorias Inc.		Ray Log Stat

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 12:12 04/27/2002

73

00147

			iuuniu	ic: Con	itti			
TLI Project: Client Sample	57144r1 : BXS-2		1613	, Revisior		CDD/PCD nalysis Fil		· · · · · · · · · · · · · · · · · · ·
Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-2B	Dat	e Received: e Extracted: e Analyzed:	04/18/2002 05/01/2002 05/06/2002		Spike File: ICal: ConCal:	SP16 UF53 UB58	07B
Sample Size: Dry Weight: GC Column:	1.000 L n/a DB-5	Bla	ution Factor: nk File: llyst:	n/a U058502 JLD	. <u></u>	% Moisture: % Lipid: % Solids:	n/a n/a n/a	· · · · · · · · · · · · · · · · · · ·
Analytes	Conc.	(pg/L)	DL:		Ratio	ŔŢ	RRT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	1. 1. NI	6	2.1		0.85 1.58	26:37 30:54	1.002 1.001	J J
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	2. 2.	7 4 Ц Ј	2.1		1.40 1.20	34:08 34:27	1.000 1.010	J
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	54. 961	1			0.98 0.88	37:23 40:55	1.000 1.000	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	NI NI	5	1.8 3.1		1.60	20.22		
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	NI	9 KJ	1.9		1.69 1.19	30:33 33:21	1.001 1.000	1 1
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF		8 ИЈ 7 ИЈ 2			1.31 1.18 0.99	33:56 34:42 36:20	1.000 1.000 1.000	1 1
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	NI 86.4)	2.9		0.90	41:08	1.005	J
Totals	Conc.	(pg/L)	Number DL					Flags
Total TCDD Total PeCDD	1.0 12.		1 4				· .	
Total HxCDD Total HpCDD	7.0	6	3 2					
Total TCDF Total PeCDF Total HxCDF	NE 3.7 22.2	75	4.2 2 7					x

Page 1 of 2

3

60.9

161B_PSR v2.04, LARS 6.25.04

65

Total HpCDF

Printed: 15:58 05/07/2002

00068

R\$16.2422

TLI Project: 57144r1 Client Sample: BXS-2

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: U058503

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio	RT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	1050	52.3	31%-137%	0.80	26:34	1.006	·
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1440	71.8	25%-181%	1.57	30:53	1.170	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1160	58.1	32%-141%	1.25	34:02	0.989	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1240	62.1	28%-130%	1.24	34:07	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1060	53.2	23%-140%	1.09	37:22	1.086	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	2220	55.5	17%-157%	0.89	40:55	1.189	
¹³ C ₁₂ -2,3,7,8-TCDF	1020	50.9	29%-140%	0.78	25:52	0.980	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1200	60.1	24%-185%	1.58	29:50	1.130	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1230	61.3	21%-178%	1.59	30:32	1.157	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1140	56.9	26%-152%	0.52	33:21	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1150	57.5	26%-123%	0.52	33:26	0.971	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1200	60.0	28%-136%	0.52	33:55	0.985	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1030	51.4	29%-147%	0.52	34:41	1.008	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1010	50.6	28%-143%	0.45	36:19	1.055	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	928	46.4	26%-138%	0.46	37:51	1.100	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits		RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	153	76.7	42%-164%		26:35	1.007	· · · · · · · · · · · · · · · · · · ·
Recovery Standards				Ratio	RT		Flags
¹³ C ₁₂ -1,2,3,4-TCDD			in for internet and the second second second second second second second second second second second second se	0.82	26:24	anna an tha tha an an an an an an an an an an an an an	····
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD					34:25		

Data Reviewer:	K.	05/07/2002	
----------------	----	------------	--

161B_PSR v2.04, LARS 6.25.04

66

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 15:58 05/07/2002

196242

01069 .

			<u>ilianear</u> ty	ittistigu	(eq:e			
TLI Project: Client Sample	57144		-	, Revision	B PC	CDD/PCD Analysis Fi	F Anal le: T	ysis (c) 0 21852
Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-3A		Date Received: Date Extracted: Date Analyzed:	04/18/2002 04/23/2002 04/27/2002		Spike File: ICal: ConCal:	SP16 TF51 TB21	21B
Sample Size: Dry Weight: GC Column:	1.050 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Analytes	Co	onc. (pg	/L) DL		Ratio	RT	RRT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF		ND ND ND ND 11.2 115 ND ND ND ND	1.3 1.3 1.2 1.3 1.2 0.9 1.1 0.9 1.9		1.15 0.88	37:25 41:03	1.000 1.000	J
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		ND 2.1 ND ND ND ND	0.8 1.0 2.5 1.4 15.9		1.39	33:58	1.000	J
Totals		nc. (•g	L. Number Pl					
Total TCDD Total PeCDD Total HxCDD Total HpCDD		ND ND ND 11.2	1.3 1.3 5.6 1			·		
Total TCDF Total PeCDF Total HxCDF Total HpCDF		11.3 J 4.7 3.7 ND	1 1 2 8.1					x

Page 1 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

 $\begin{array}{c} \text{Printed: 12:12 04/27/2002} \\ 00170 96 \end{array}$

Columbia Annivital Starites:

TLI Project: 57144 Client Sample: BXS-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021852

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio	RT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	994	50.0	019 10-2				
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1170	52.2	31%-137%		26:44	1.007	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1190	61.4	25%-181%	1.48		1.167	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD		62.7	32%-141%		34:05	0.988	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1280	67.2	28%-130%		34:09	0.990	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	1460	76.9	23%-140%	1.03	37:24	1.085	
012 1,2,3,4,0,7,0,9-0CDD	3140	82.6	17%-157%	0.87	41:02	1.190	
¹³ C ₁₂ -2,3,7,8-TCDF	902	47.2	000 1000	~ ~ ·			
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1010	47.3	29%-140%		26:01	0.980	·
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1110	52.9	24%-185%		29:57	1.128	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF		58.2	21%-178%		30:39	1.154	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1070	56.3	26%-152%	0.50	33:23	0.968	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1090	57.1	26%-123%	0.50	33:29	0.971	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1380	72.4	28%-136%	0.51	33:58	0.985	
	1210	63.6	29%-147%	0.51	34:44	1.007	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1330	69.9	28%-143%	0.41	36:22	1.055	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1390	73.1	26%-138%	0.41	37:54	1.099	
		-					
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits		RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	142	74.7	42%-164%		26:45	1.008	

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.83 26:33 1.20 34:29	

Data Reviewer:

04/27/2002

196252

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 12:12 04/27/2002 00171 97

				alet Beliat				
TLI Project: Client Sample	57144 : BXS-4		1613	, Revision		CDD/PCD analysis Fi		
Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-4A		Date Received: Date Extracted: Date Analyzed:	04/18/2002 04/23/2002 04/27/2002		Spike File: ICal: ConCal:	SP16 TF51 TB21	21 B
Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Analytes	Co	nc, (p	a/L) DL		Ratio	RT	art	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,4,6,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		ND ND ND ND ND 83.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	$ \begin{array}{c} 1.9\\ 1.8\\ 1.6\\ 1.7\\ 1.6\\ 8.3\\ \end{array} $ 1.4 1.7 1.2 3.5 2.7 2.0 1.4 2.9 1.9		0.97	41:02	1.000	J
					0.76	41:16	1.006	J
Tolais	ભા		lla) : Stimber : Die					Flags :
Total TCDD Total PeCDD Total HxCDD Total HpCDD		ND ND ND ND	1.9 1.8 1.6 8.3					
Total TCDF Total PeCDF Total HxCDF Total HpCDF		ND ND ND ND	1.4 1.5 8.2 2.9					

Page 1 of 2

Trlangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491 Fop 6232

 $\begin{array}{r} \text{Printed: 12:12 04/27/2002} \\ 00193 \end{array}$

161B_PSR v2.04, LARS 6.25.04

Columns Anni Marcel Associety

TLI Project: 57144 Client Sample: BXS-4

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **T021853**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits Ratio RT	RAT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD ¹³ C ₁₂ -1,2,3,7,8-PeCDD ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD ¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD ¹³ C ₁₂ -2,3,7,8-TCDF	750 957 1000 1050 1250 2770 678	39.0 49.7 52.1 54.6 64.9 72.1 35.2	31%-137% 0.80 26:44 25%-181% 1.46 30:59 32%-141% 1.21 34:05 28%-130% 1.21 34:10 23%-140% 1.03 37:25 17%-157% 0.85 41:02 29%-140% 0.74 26:01	1.007 1.167 0.988 0.991	
${}^{13}C_{12}$ -1,2,3,7,8-PeCDF ${}^{13}C_{12}$ -2,3,4,7,8-PeCDF ${}^{13}C_{12}$ -1,2,3,4,7,8-HxCDF ${}^{13}C_{12}$ -1,2,3,6,7,8-HxCDF ${}^{13}C_{12}$ -2,3,4,6,7,8-HxCDF ${}^{13}C_{12}$ -1,2,3,7,8,9-HxCDF ${}^{13}C_{12}$ -1,2,3,4,6,7,8-HpCDF ${}^{13}C_{12}$ -1,2,3,4,7,8,9-HpCDF	744 890 830 859 1220 1010 1080 1210	38.7 46.3 43.2 44.7 63.5 52.7 56.2 63.0	24%-185% 1.54 29:57 21%-178% 1.52 30:39 26%-152% 0.51 33:23 26%-123% 0.51 33:58 29%-147% 0.51 34:44 28%-143% 0.41 36:22 26%-138% 0.41 37:54	1.128 1.154 0.968 0.971 0.985 1.007 1.055 1.099	

% Recovery

QC Limits

³⁷Cl₄-2,3,7,8-TCDD

Cleanup Standard

Interference

Conc. (pg/L)

Recovery Standards

¹³C₁₂-1,2,3,4-TCDD ¹³C₁₂-1,2,3,7,8,9-HxCDD

Ratio RT 0.83 26:33 1.20 34:29

21

FRI

Plags

Flags

Data Reviewer: _

04/27/2002

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 12:12 04/27/2002

00194 120

pbz32

<u>Columba Antyini Savia</u>:

TLI Project: Client Sample	57144 : BXS-5		1613	, Revision I	B PCDD/PCDF Analysis File	Analysis (c) e: T021854
Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-5A		Date Received: Date Extracted: Date Analyzed:	04/18/2002 04/23/2002 04/27/2002	Spike File: ICal: ConCal:	SP161B2S TF5121B TB21845
Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD	% Moisture: % Lipid: % Solids:	n/a n/a n/a
Analytes	C o	F & P	9/L) DL		1810 - 17 - 7	IPT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD		ND ND ND ND ND ND ND	1.5 1.7 1.4 1.4 1.4 2.3 3.3			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		ND ND ND ND ND ND ND ND ND ND ND	1.2 1.3 1.0 1.0 1.1 0.8 1.3 1.3 1.7			
1,2,3,4,6,7,8,9-OCDF		ND	2.7			

Totals	Conc. (pg/L) Nu	mber DL	Flags
Total TCDD	ND	1.5	
Total PeCDD	ND	1.7	
Total HxCDD	ND	1.4	
Total HpCDD	ND	2.3	
Total TCDF	ND	1.2	
Total PeCDF	ND	1.1	
Total HxCDF	ND	1.0	
Total HpCDF	ND	1.5	Annual Second

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491 Page 1 of 2

161B_PSR v2.04, LARS 6.25.04

K920232

Columbia Analytical Stervices

TLI Project:57144Client Sample:BXS-5

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021854

Internal Standards	Sone (pa/l.)	* Flecovery	QC LIMIS	9610: HT		- Filian
¹³ C ₁₂ -2,3,7,8-TCDD	1010	52.5	31%-137%	0.80 26:44	1.007	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1250	65.1	25%-181%	1.49 30:58	1.166	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1260	65.4	32%-141%	1.14 34:04	0.988	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1360	70.8	28%-130%	1.24 34:09	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1400	72.8	23%-140%	1.03 37:24	1.085	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	2830	73.7	17%-157%	0.86 41:02	1.191	
¹³ C ₁₂ -2,3,7,8-TCDF	922	48.0	29%-140%	0.73 26:01	0.980	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1010	52.5	24%-185%	1.55 29:57	1.128	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1210	63.0	21%-178%	1.55 30:39	1.154	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1060	55.3	26%-152%	0.51 33:23	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1130	58.7	26%-123%	0.50 33:29	0.971	·
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1460	75.8	28%-136%	0.51 33:58	0.985	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1290	66.8	29%-147%	0.51 34:43	1.007	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1290	67.0	28%-143%	0.42 36:21	1.055	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1450	75.3	26%-138%	0.42 37:53	1.099	

Cleanup Standard	Conc. (pg/L)	tti 🛠 Recovery	QC Límits	271 2		-Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	261	135	42%-164%	26:44	1.007	·

Recovery Standards	Ratio RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.82 26:33 1.19 34:28	

Data Reviewer:

.

04/27/2002

1925272

Page 2 of 2

Jan

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 12:12 04/27/2002 0021743

TLI Project: Client Sample	57144		mbia Analy 1613		BP	CDD/PCD Analysis Fi		alysis T0218
Client Project: Sample Matrix: TLI ID:	K2202353 AQUEOUS 323-25-6A		Date Received: Date Extracted: Date Analyzed:	04/18/2002 04/23/2002 04/27/2002		Spike File: ICal: ConCal:	SP1 TF5	61B2S 121B 21845
Sample Size: Dry Weight: GC Column:	1.050 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD		% Moisture: % Lipid: % Solids:		
Analytes	Co	nc. (pg	/L) DL		Ratio	AT	RAT	
,3,7,8-TCDD		ND	0.9	-			uur.	Flags
,2,3,7,8-PeCDD		ND	0.9					
2,3,4,7,8-HxCDD		ND	0.8					-
2,3,6,7,8-HxCDD		ND	0.9					
2,3,7,8,9-HxCDD		ND	0.8					
2,3,4,6,7,8-HpCDD 2,3,4,6,7,8,9-OCDD		5.9 J			0.98	37:25	1 000	
~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		39.3 丁			0.89		1.000	1
3,7,8-TCDF					0.05	+1.0J	1.000	J
2,3,7,8-PeCDF		ND	0.7					
3,4,7,8-PeCDF		ND	0.8					
2,3,4,7,8-HxCDF		ND ND	0.6					
2,3,6,7,8-HxCDF	,	ND	0.6					
3,4,6,7,8-HxCDF		ND ND	0.6					
2,3,7,8,9-HxCDF		ND	0.5 0.7					
2,3,4,6,7,8-HpCDF		ND	0.7					
2,3,4,7,8,9-HpCDF		ND	1.0					
2,3,4,6,7,8,9-OCDF		ND	4.4					
			T.T					

TOTALS	Conc. (pg/L) Number DL	FIL OF
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 0.9 ND 0.9 ND 14.3 5.9 1	Flags
Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND 0.7 ND 0.7 ND 0.6 3.3 1	

Page 1 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491 161B_PSR v2.04, LARS 6.25.04

Columbia Analytical Services

TLI Project: 57144 Client Sample: BXS-6

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021855

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1070 1290 1330 1470 1630 3500 957 1030 1210 1190 1230 1600 1420 1470 1620	56.2 67.9 69.6 77.4 85.3 91.8 50.2 54.0 63.5 62.5 64.6 84.0 74.7 77.2 85.2	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.80 26:44 1.50 30:59 1.20 34:05 1.21 34:09 1.04 37:25 0.86 41:02 0.73 26:01 1.53 29:57 1.52 30:39 0.51 33:23 0.51 33:29 0.51 33:58 0.50 34:44 0.42 36:22 0.41 37:54	1.007 1.167 0.988 0.990 1.085 1.190 0.980 1.128 1.154 0.968 0.971 0.985 1.007 1.055 1.099	

Cleanup Standard	Conc. (pg/L)	% Recovery	CC Limits	RT	RAT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	139	72.7	42%-164%	26:45	1.008	
Recovery Standards			Ra	tio RT		Flags
¹³ C ₁₂ -1,2,3,4-TCDD			0	.81 26:33		

Page 2 of 2

¹³C₁₂-1,2,3,7,8,9-HxCDD

04/27/2002

1.19 34:29

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

KA26232

Printed 12 2 04/27/2002 164

Analytical Results

Client:	J.H. Baxter & Company
Project:	Lysimeters
Sample Matrix:	Water

 Service Request:
 K2202308

 Date Collected:
 04/10/2002

 Date Received:
 04/11/2002

Diesel and Residual Range Organics

Sample Name: Lab Code:	L-1 K2202308-001	Units:	ug/L
Extraction Method:	EPA 3510C	Basis:	
Analysis Method:	NWTPH-Dx	Level:	

Analyte Name Diesel Range Organics (DRO)	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	N Fada
Residual Range Organics (RRO)	270 ND	Y U	250 500	1 1	04/17/02 04/17/02	04/17/02 04/17/02	KWG0202525 KWG0202525	Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
n-Triacontane	90 82	50-150 50-150	04/17/02 04/17/02	Acceptable Acceptable	Kp 6.23-2

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	J.H. Baxter & Company
Project: Sample Matrix:	Lysimeters
Sample Matrix:	Water

 Service Request:
 K2202308

 Date Collected:
 04/10/2002

 Date Received:
 04/11/2002

Diesel and Residual Range Organics

Sample Name: Lab Code:	L-3 K2202308-002	Units: u	•
Extraction Method:	EPA 3510C	Basis: N	-
Analysis Method:	NWTPH-Dx	Level: L	

Analyte Name Diesel Range Organics (DRO) Residual Range Organics (RRO)	Result Q ND U ND U	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
		U U	250 500	1	04/17/02 04/17/02	04/17/02 04/17/02	KWG0202525 KWG0202525	THOLE

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	88	50-150	04/17/02	Acceptable	100 623.2
n-Triacontane	79	50-150	04/17/02	Acceptable	

Comments:

Merged

Form 1A - Organic
Analytical Results

Client:	J.H. Baxter & Company
Project:	Lysimeters
Sample Matrix:	Water

 Service Request:
 K2202308

 Date Collected:
 04/10/2002

 Date Received:
 04/11/2002

Diesel and Residual Range Organics

Sample Name: Lab Code:	L-3A K2202308-003	Units:	ug/L
Extraction Method:	EPA 3510C	Basis:	NA
Analysis Method:	NWTPH-Dx	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U ND U	250 500	1 1	04/17/02 04/17/02	04/17/02 04/17/02	Lot KWG0202525 KWG0202525	Note

. . .

Surrogate Name o-Terphenyl	%Rec	Control Limits	Date Analyzed	Note	
n-Triacontane	85 78	50-150 50-150	04/17/02 04/17/02	Acceptable Acceptable	Kg 6:23.2

Comments:

Analytical Results

				Analytical Resu	ılts					
Client: Project: Sample Matrix:	J.H. Baxter & Lysimeters Water	Compar	у				Service Re Date Col Date Rec	lected:	K22023 04/10/2 04/11/2	002
н., н., н., н., н., н., н., н., н., н.,				Pentachloroph	enol					
Sample Name: Lab Code:	L-1 K2202308-00	1						Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	METHOD 8151M							Level:		
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed		action .ot	Note
Pentachlorophenol		ND	Ui	0.22	1	04/15/02	04/19/02)202449	Note
Surrogate Name		%Rec	Control Limits	Date Analyzed	Ňote					
4-Bromo-2,6-dichloroph	enol	76	38-119	04/19/02	Acceptable	<u>, , , , , , , , , , , , , , , , , , , </u>	kpt	73.0	2	

Comments:

Merged

. 1... .1.70

				Analytical Resu	lts					
Client: Project: Sample Matrix:	J.H. Baxter & Lysimeters Water	company					Service Re Date Coll Date Rec	lected:	K22023 04/10/2 04/11/2	2002
				Pentachlorophe	enol					
Sample Name: Lab Code:	L-3 K2202308-0(02						Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	METHOD 8151M							Level:		
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed		action Lot	Note
Pentachlorophenol		ND	U	0.20	1	04/15/02	04/19/02		0202449	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Note					
4-Bromo-2,6-dichloroph	enol	77	38-119	04/19/02	Acceptable		KD 62	3.2		

Acceptable

Comments:

Merged

Form 1A - Organic

10623.22

Analytical Results

				Pentachlorophe	enol				
Sample Name: Lab Code:	L-3A K2202308-00)3 .						U <mark>nits:</mark> ug Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M		'n				I	.evel: Lo	w
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extract Lot	ion Note
Pentachlorophenol		ND	U	0.20	1	04/15/02	04/19/02	KWG0202	2449
Surrogate Name		%Rec	Control Limits	Date Analyzed	Note				

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

TLI Project:			mbia Analy					
Client Sample	57135 :: L-1		1613	, Revision	n B PC	CDD/PCD analysis Fi		alysis (c) T021841
Client Project: Sample Matrix: TLI ID:	n/a AQUEOUS 323-16-1		Date Received: Date Extracted: Date Analyzed:			Spike File: ICal: ConCal:	TF5	161B22 5121B 21829
Sample Size: Dry Weight: GC Column:	1.000 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a U050803 JMM		% Moisture % Lipid: % Solids:	: n/a n/a n/a	
Analytes	Co	nc. (pç	1/L) DL		Ratio	RT	RRT	Flags
2,3,7,8-TCDD		ND	1.9			· · · · · · · · · · · · · · · · · · ·		
1,2,3,7,8-PeCDD		ND	1.8					
1,2,3,4,7,8-HxCDD		ND	4.2					J
1,2,3,6,7,8-HxCDD		ND	1.6					J
1,2,3,7,8,9-HxCDD		ND	1.5					
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD		ND	2.8					J
1,2,3,4,0,7,8,9-OCDD		21.1 G	プ		0.79	41:02	1.000	JB_
2,3,7,8-TCDF		ND						-
1,2,3,7,8-PeCDF		ND	1.5					
2,3,4,7,8-PeCDF		ND	1.5					
ーラングラインロード ひししれ								
1,2,3,4,7,8-HxCDF			J		1 1 2	00.05	1	
		1.9 U	J		1.13	33:25	1.000	JB_
1,2,3,4,7,8-HxCDF		1.9 U ND	J 1.1		1.13	33:25	1.000	
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		1.9 V ND ND	J 1.1 0.9		1.13	33:25	1.000	·
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF		1.9 U ND	J 1.1 0.9 1.3		1.13	33:25	1.000	·
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		1.9 W ND ND ND	J 1.1 0.9		1.13	33:25	1.000	
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF		1.9 U ND ND ND ND	J 1.1 0.9 1.3 2.3 1.7		1.13 0.86	33:25 41:16	1.000	·
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	Cor	1.9 W ND ND ND ND ND	J 1.1 0.9 1.3 2.3 1.7					J

TUIDIS	Conc. (pg/L)	Number DL	Flags
Total TCDD	ND	1.9	
Total PeCDD	ND	1.8	
Total HxCDD	ND	13.3	
Total HpCDD	ND	5.2	
Total TCDF	ND	1.5	
Total PeCDF	ND	1.3	
Total HxCDF	1.9	1	
Total HpCDF	ND	2.3	

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

161B_PSR v2.04; LARS 6.25.04

74

Kp 623.02

Printed: 15:11 04/28/02

Columbia Analytical Services

TLI Project:57135Client Sample:L-1

-

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021841

0.82 26:33

1.20 34:29

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio	RT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	790	39.5	31%-137%	0.83	26:44	1 007	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1120	56.2	25%-181%		31:00	1.007	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1170	58.7	32%-141%		34:05	1.168	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1230	61.4	28%-130%		34:10	0.988	·
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1450	72.6	23%-140%		37:25	0.991	·
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	2990	72.0	17%-157%		41:03	1.085 1.190	
			1, 10 15770	0.07	41.05	1.150	
¹³ C ₁₂ -2,3,7,8-TCDF	703	35.2	29%-140%	0.72	26.01	0.980	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	864	43.2	24%-185%		29:58	1.129	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	998	49.9	21%-178%		30:39	1.154	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1000	50.2	26%-152%		33:24	0.969	· · · · · · · · · · · · · · · · · · ·
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	999	50.0	26%-123%	0.52		0.971	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1340	66.8	28%-136%	0.52		0.986	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1200	60.0	29%-147%	0.51		1.007	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1320	66.1	28%-143%	0.44		1.055	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1410	70.5	26%-138%	0.43		1.100	·
Cleanup Standard	Cone (nell)	04 P					
	Conc. (pg/L)	% Recovery	QC Limits		RT	RRT	Flags
³⁷ CL-2,3,7,8-TCDD	114	56.9	42%-164%		26:45	1.008	
Recovery Standards							
				Ratio	RT		Flags
¹³ C ₁₂ -1.2.3.4-TCDD							

¹³C₁₂-1,2,3,4-TCDD ¹³C₁₂-1,2,3,7,8,9-HxCDD

Data Reviewer:	_ 04/28/02	
		. '

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

159623.2

Triangle Laboratories, Inc.⊚ 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 15:11 04/28/02

TLI Project: Client Sample	57135 : L-3	•	161	3, Revisior		CDD/PCD nalysis Fi		sis (c 2185 6
Client Project: Sample Matrix: TLI ID:	n/a AQUEOUS 323-16-2		Date Received: Date Extracted Date Analyzed	04/22/2002		Spike File: ICal: ConCal:	SP161B TF5121 TB2184	B
Sample Size: Dry Weight: GC Column:	1.000 L n/a DB-5		Dilution Factor Blank File: Analyst:	: n/a U050803 JLD		% Moisture: % Lipid: % Solids:	n/a n/a n/a	
Analytes	G		l.)D(Fato.	BT	707 F	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD		ND ND ND ND 8.7 116	2.1 2.3 1.9 1.9 1.8		1.07 0.88	37:24 41:04	1.000 1.000	 J B
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	•	ND ND ND ND ND ND	1.7 1.8 1.3 1.4 1.3 1.1 1.6					 J
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		ND ND 18.9 UJ	1.6 2.2		0.91	41:15	1.005	 JB_
Totals	Co	nc. (pg/	.) Number Di					
Total TCDD Total PeCDD Total HxCDD Total HpCDD		ND ND ND 15.8	2. 2.: 15.: 2	1 3				ags
Total TCDF Total PeCDF Total HxCDF Total HpCDF		ND ND ND 5.3	2 1.1 1.3 1.4	5			-	

Page 1 of 2

Triangle Laboratories, Inc. 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

161B_PSR v2.04, LARS 6.25.04

Kp623.2

Printed: 15:59 04/27/2002

00145 98

TLI Project:57135Client Sample:L-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021856

Internal Standards		** Recovery	- OC Limits	Fatio : FT .: 1		-Eggi
¹³ C ₁₂ -2,3,7,8-TCDD	872	43.6	31%-137%	0.81 26:44	1.007	
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1120	56.1	25%-181%	1.49 31:00	1.168	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1200	59.8	32%-141%	1.18 34:05	0.988	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1360	68.1	28%-130%	1.19 34:10	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	1530	76.3	23%-140%	1.01 37:25	1.085	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	3190	79.9	17%-157%	0.86 41:03	1.190	
¹³ C ₁₂ -2,3,7,8-TCDF	760	38.0	29%-140%	0.73 26:02	0.981	
¹³ C ₁₂ -1,2,3,7,8-PeCDF	914	45.7	24%-185%	1.50 29:58	1.129	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1080	54.1	21%-178%	1.54 30:39	1.129	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1080	53.8	26%-152%	0.51 33:24	0.969	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1120	56.0	26%-123%	0.50 33:29	0.909	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	1410	70.3	28%-136%	0.50 33:59	0.971	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1240	62.1	29%-147%	0.51 33:39	0.980	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1370	68.3	28%-143%	0.42 36:23	1.007	<u></u> ,
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1420	71.0	26%-138%	0.41 37:54	1.099	
Cleanup Standard	Conce (ngd).	% Recovery	- Celimis:		aar .	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	113	56.3	42%-164%	26:45	1.008	

Recovery Standards	Ratio RT Flags	
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	0.82 26:33	

Page 2 of 2	161B_PSR v2.04, LARS 6.25.04
Data Reviewer: 04/27/2002	

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 15:59 04/27/2002

Analytical Report

Client:J.H. Baxter & CompanyProject:MW Wells-PermitSample Matrix:Water

Service Request: K2202307 Date Collected: 4/10/02 Date Received: 4/11/02

,

Solids, Total Suspended (TSS)

Prep Method:NONEAnalysis Method:160.2Test Notes:160.2

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW I	K2202307-001	5	1	NA	4/17/02	258	
MW 2	K2202307-002	5	- 1	NA	4/17/02	ND	
MW 3	K2202307-003	5	l	NA	4/17/02	ND	
HCMW 6	K2202307-004	5	1	NA	4/17/02	7	
HCMW 7	K2202307-005	5	1	NA	4/17/02	1550	
MW A	K2202307-006	5	1	NA	4/17/02	ND	
MW B	K2202307-007	5	1	NA	4/17/02	ND	,
Method Blank	K2202307-MB	5	1	NA	4/17/02	ND	
					KOP 6.22	36	

Mil Fit

4/22/02 Date:

00007 Page No.:

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request: K2202307 Date Collected: 04/10/02 Date Received: 04/11/02 Units: µG/L Basis: NA

Sample Name: MW 1

Lab Code: K2202307-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c	Q
Calcium	6010B	50	1	4/16/02	4/22/02	13300		
Iron	6010B	20	1	4/16/02	4/22/02	20	υ	
Magnesium	6010B	20	1	4/16/02	4/22/02	7920		
Potassium	6010B	2000	1	4/16/02	4/22/02	2000	ri I	
Sodium	6010B	100	1 1	4/16/02	4/22/02	4450		

KOP 6-22-2

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	J.H. Baxter & Company
Project No.:	NA
Project Name:	MW Wells-Permit
Matrix:	WATER

Service Request:	K2202307
Date Collected:	04/10/02
Date Received:	04/11/02
Units:	µG/L
Basis:	NA

Sample Name: MW 2

Lab Code: K2202307-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	50	1	4/16/02	4/22/02	11900		
Iron	6010B	20	1	4/16/02	4/22/02	20		
Magnesium	6010B	20	1	4/16/02	4/22/02	7580		
Potassium	6010B	2000	1	4/16/02	4/22/02	2000		<u> </u>
Sodium	6010B	100	1	4/16/02	4/22/02	5930		

KOP 62202

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request: K2202307 Date Collected: 04/10/02 Date Received: 04/11/02 Units: µG/L Basis: NA

Sample Name: MW 3

Lab Code: K2202307-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	50	1	4/16/02	4/22/02	11800		
Iron	6010B	20	1	4/16/02	4/22/02	20	U	
Magnesium	6010B	20	1	4/16/02	4/22/02	8030		
Potassium	6010B	2000	1	4/16/02	4/22/02	2000	тт	-
Sodium	6010B	100	1 1	4/16/02	4/22/02	5630		

1806.55.32

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request: K2202307 Date Collected: 04/10/02 Date Received: 04/11/02 Units: µG/L Basis: NA

Sample Name: HCMW 6

Lab Code: K2202307-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	50	1	4/16/02	4/22/02	13100		
Iron	6010B	20	1	4/16/02	4/22/02		U	
Magnesium	6010B	20	1	4/16/02	4/22/02	8570		
Potassium	6010B	2000	1	4/16/02	4/22/02	2000		<u>,</u>
Sodium	6010B	100	1	4/16/02	4/22/02	4910		;

Kpb.cz.or

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request: K2202307 Date Collected: 04/10/02 Date Received: 04/11/02 Units: µG/L Basis: NA

Sample Name: HCMW 7

Lab Code: K2202307-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	50	1	4/16/02	4/22/02	12600		
Iron	6010B	20	1	4/16/02	4/22/02	20	1 11	,
Magnesium	6010B	20	1	4/16/02	4/22/02	7730		ľ
Potassium	6010B	2000	1	4/16/02	4/22/02		U	
Sodium	6010B	100	1	4/16/02	4/22/02	5790		

KOpbze-e

% Solids: 0.0

Comments: Dissolved Metals

00015

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request: K2202307 Date Collected: 04/10/02 Date Received: 04/11/02 Units: µG/L Basis: NA

Sample Name: MW A

Lab Code: K2202307-006 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010B	50	1	4/16/02	4/22/02	10400		
Iron	6010B	20	1	4/16/02	4/22/02	12400		-
Magnesium	6010B	20	1	4/16/02	4/22/02	20		
Potassium	6010B	2000	1	4/16/02	4/22/02	7830		
Sodium	6010B	100	1 1	4/16/02	4/22/02	2000 6070	U	

Kpbzer

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: NA Project Name: MW Wells-Permit Matrix: WATER

Service Request:	K2202307
Date Collected:	04/10/02
Date Received:	04/11/02
Units:	µG/L
Basis:	NA

Sample Name: MW B

Lab Code: K2202307-007 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010B	50	1	4/16/02	4/22/02	50		·
Iron	6010B	20	1	4/16/02	4/22/02	20		
Magnesium	6010B	20	1	4/16/02	4/22/02	20		<u> </u>
Potassium	6010B	2000	1 1	4/16/02	4/22/02			
Sodium	6010B	100	1 1	4/16/02	4/22/02		U	-

Apperur

% Solids: 0.0

Analytical Results

Client:J.H. Baxter & CompanyService Request:KZProject:MW Wells-PermitDate Collected:04Sample Matrix:WaterDate Received:04	04/10/2002
---	------------

Pentachlorophenol

Sample Name: Lab Code:	MW 1 K2202307-001					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M					Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND U	0.20	1	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	78	38-119	04/19/02	Acceptable	Repberry

Comments:

			Analytical R	esults				
Client: Project: Sample Matrix:	J.H. Baxter & Compar MW Wells-Permit Water	ıy				Service Req Date Colle Date Rece	ected: 0	\$2202307 14/10/2002 14/11/2002
			Pentachloro	phenol				
Sample Name: Lab Code:	MW 2 K2202307-002							g/L IA
	METHOD 8151M						ævel: L	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extrac Lot	
Pentachlorophenol	ND	U	0.20	1	04/15/02	04/19/02	KWG020	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	75	38-119	04/19/02	Acceptable	Kpbrec

Comments:

Merged

1 of 1

Page

Analytical Results

Client:J.H. Baxter & CompanyProject:MW Wells-PermitSample Matrix:Water	Service Request: Date Collected: Date Received:	04/10/2002
--	---	------------

Pentachlorophenol

Sample Name: Lab Code:	MW 3 K2202307-003					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 8151M					Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	270 D	1.0	5	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	71	38-119	04/19/02	Acceptable	Kybezze

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

Analytical Results

Pentachlorophenol	ND U	0.20	1	04/15/02	04/19/02	KWG0202449	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Extraction Method: Analysis Method:	METHOD 8151M					evel: Low	
Sample Name: Lab Code:	HCMW 6 K2202307-004					Inits: ug/L Basis: NA	
		Pentachlorop	bhenol				
Client: Project: Sample Matrix:	J.H. Baxter & Company MW Wells-Permit Water				Service Req Date Colle Date Rece	cted: 04/10/2	002

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	82	38-119	04/19/02	Acceptable	kpbeere

Comments:

Form 1A - Organic

•

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	04/10/2002
Project:	MW Wells-Permit	Date Collected:	
Sample Matrix:	Water	Date Received:	

Pentachlorophenol

Extraction Method: METHOD	Level: Low
Sample Name:HCMW 7Lab Code:K2202307-005	Units: ug/L Basis: NA

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Pentachlorophenol	0.43	0.20	. 1	04/15/02	04/19/02	KWG0202449	<u></u>

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	63	38-119	04/19/02	Acceptable	Appler .

Comments:

Merged

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	04/10/2002
Project:	MW Wells-Permit	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Matrix:	Water	Date Received:	04/11/2002

Pentachlorophenol

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Extraction Method: Analysis Method:	METHOD 8151M				1	Level: Low	
Sample Name: Lab Code:	MW A K2202307-006					Units: ug/L Basis: NA	

				LAUMOUU	maryzeu	LAUL	INOLE
Pentachlorophenol	ND U	0.20	1	04115/00	0.411.0.100	TITLE CORDER STOR	
	ND 0	0.20	1	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	77	38-119	04/19/02	Acceptable	KAPPEZZ

Comments:

Merged

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company MW Wells-Permit Water	Service Request: Date Collected: Date Received:	04/10/2002
	,		

Pentachlorophenol

Sample Name:	MW B	Units:	-
Lab Code:	K2202307-007	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	ND	U	0.20	1	04/15/02	04/19/02	KWG0202449	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	79	38-119	04/19/02	Acceptable	Replicer.

Comments:

Merged

TLI Project: Client Sample		161 7-001	3, Revisio	on B P	CDD/PC Analysis	CDF An File:	alysis (T0218 3
Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-1-1	Date Received Date Extracted Date Analyzed	: 04/17/2002	2	Spike Fil ICal: ConCal:	e: SP1 TF5	61B22 5121B
Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5	Dilution Factor Blank File: Analyst:			% Moistu % Lipid: % Solids:	ire: n/a n/a	1829
Analytes	Conc. (p	J/L) DL					
2,3,7,8-TCDD				Ratio	RT	RRT.	Flags
1,2,3,7,8-PeCDD	ND	1.1					· · · · · ·
1,2,3,4,7,8-HxCDD	3.3 ND			1.44	30:59	1.001	
1,2,3,6,7,8-HxCDD	40.1	3.7			00.09	1.001	J
1,2,3,7,8,9-HxCDD	11.3			1.20	34:10	1.000	T
1,2,3,4,6,7,8-HpCDD	1210			1.07	34:28	1.009	1
1,2,3,4,6,7,8,9-OCDD	9280			1.02	37:25	1.000	J
2,3,7,8-TCDF				0.85	41:02	1.000	
1,2,3,7,8-PeCDF	2.7 U	テ					
2,3,4,7,8-PeCDF	ND	3.8		0.65	26:01	1.001	J
1,2,3,4,7,8-HxCDF	ND	3.8				÷	
1,2,3,6,7,8-HxCDF	16.8			105			
2,3,4,6,7,8-HxCDF	7.2			1.25	33:23	1.000	JB_
1,2,3,7,8,9-HxCDF	10.0			1.16 1.29	33:29	1.000	
1,2,3,4,6,7,8-HpCDF	4.0			1.29	33:57	1.000	1 1 1
1,2,3,4,7,8,9-HpCDF	192			1.03	34:44	1.000	J
1,2,3,4,6,7,8,9-OCDF	15.4			0.96	36:22 37:55	1.000	·
· · ·	439			0.90	41:14	1.000	<u> </u>
					41.14	1.005	
Totals	Conc. (pg/L) Number DL					
otal TCDD							Flags
otal PeCDD	ND	1.1					
otal HxCDD	3.3	1					
otal HpCDD	127	5					
	2010	2					
otal TCDF							
otal PeCDF	5.3 J	2					
otal HxCDF	54.6 了	5					X X X
otal HpCDF	465 J	9					X

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Page 1 of 2

1802 7-11-2

161B_PSR v2.04, LARS 6.25.04

Printed: 16:15 04/20101243

75

Columbia Analytical Services

TLI Project: 57120 Client Sample: MW 1/K2202307-001

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021833

Internal Standards	Conc. (pg/L)	% Recover	/ QC Limits	Ratio RT	BAT	Flags
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-1,2,3,7,8-TCDF$ ${}^{13}C_{12}-2,3,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$	1040 1180 1260 1320 1480 3220 900 927 997 1080 1080 1080 1440 1230 1290 1410	54.3 61.2 65.3 68.4 77.0 83.6 46.8 48.2 51.9 56.0 56.3 74.7 64.0 67.0 73.5	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.81 26:43 1.45 30:58 1.21 34:04 1.21 34:09 1.01 37:24 0.87 41:02 0.72 26:00 1.59 29:57 1.59 30:39 0.51 33:23 0.51 33:28 0.51 33:58 0.52 34:43 0.44 36:22 0.43 37:54	$\begin{array}{c} 1.007\\ 1.167\\ 0.988\\ 0.991\\ 1.085\\ 1.191\\ \end{array}$	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	BAT	
³⁷ Cl ₄ -2,3,7,8-TCDD	123	63.8	42%-164%	26:44	1.008	Flags
Recovery Standards ¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				atio FT 0.83 26:32 1.21 34:28		Flags

Data Reviewer:

04/26/2002

Page 2 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 16:15 04020/20024 $\mathbf{76}$

161B_PSR v2.04, LARS 6.25.04

TLI Project: Client Sample	57120 MW 2/K	220230	7_00.7	1613	3, Revisio	n B P	CDD/PC	DF An	alysis
Client Project:	J.H.Baxter		-002				Analysis]	File: '	Г0218
Sample Matrix: TLI ID:	AQUEOUS 323-1-2		Date]	Received: Extracted: Analyzed:	04/16/2002 04/17/2002 04/26/2002		Spike File ICal: ConCal:	TF5	61B22 121B
Sample Size: Dry Weight: GC Column:	1.020 L n/a DB-5		Diluti Blank Analy				% Moistur % Lipid: % Solids:		1829
Analytes	c	onc. (pg	/L)	DL		Flatilo	RT		
2,3,7,8-TCDD		ND					. ni	RAT	Flags
,2,3,7,8-PeCDD		ND	٩,	1.4					
,2,3,4,7,8-HxCDD		ND		1.5					
,2,3,6,7,8-HxCDD		3.9		1.6					
,2,3,7,8,9-HxCDD		3.9				1.34	34:10	1.000	. .
2,3,4,6,7,8-HpCDD		5.2 115				1.41	34:28	1.000	1
2,3,4,6,7,8,9-OCDD						1.02	37:25	1.009	
		1250				0.84	41:03	1.000	·
3,7,8-TCDF							41.05	1.000	
2,3,7,8-PeCDF		ND		1.1					
3,4,7,8-PeCDF		ND		1.3					
2,3,4,7,8-HxCDF		ND		1.1					
2,3,6,7,8-HxCDF		2.3 U	1			1.24	22.04		
4,6,7,8-HxCDF		ND		1.1		1.24	33:24	1.000	JB_
2,3,7,8,9-HxCDF		1.4				1 14	00 50		
,3,4,6,7,8-HpCDF		1.6				1.14	33:58	1.000	J
,3,4,7,8,9-HpCDF		19.0				1.27	34:44	1.000	J
,3,4,6,7,8,9-OCDF		3.4				1.00	36:23	1.000	J
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		97.5				1.14	37:55	1.000	J
						0.88	41:14	1.005	J
otais	Con	ic. (pg/L) Nur	iber DL					
al TCDD									Flags
al PeCDD		ND		1.4					
al HxCDD		ND		1.5					
al HpCDD		19.1	4						
p001	1	94	2						-
d TCDF									
l PeCDF		ND		1.1					
l HxCDF		9.3	2	***					
d HpCDF		51.1 7	8						 x
a thene		56.3	3						

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

3

Page 1 of 2

1902 7-11-22

161B_PSR v2.04, LARS 6.25.04

<u>x</u>___

Columbia Analytical Services

TLI Project: 57120 Client Sample: MW 2/K2202307-002

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **T021834**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-2,3,7,8-TCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1260 1510 1590 1730 1880 3990 1110 1200 1310 1380 1380 1380 1380 1380 1650 1660 1840	64.3 77.0 81.2 88.3 95.7 102 56.4 61.3 66.8 70.5 70.5 95.6 84.4 84.7 94.0	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.80 26:44 1.45 30:59 1.15 34:05 1.27 34:09 1.02 37:25 0.87 41:02 0.72 26:01 1.56 29:58 1.61 30:39 0.51 33:23 0.50 33:29 0.51 33:58 0.51 34:44 0.43 36:22 0.44 0.45 54	1.007 1.167 0.988 0.990 1.085 1.190 0.980 1.129 1.154 0.968 0.971 0.985 1.007 1.055	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	0.44 37:54 RT	1.099 RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	141	71.9	42%-164%	26:44	1.007	
Recovery Standards ¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				Ratio RT 0.82 26:33		Flags
				1.20 34:29		

Data Reviewer: _

____ 04/26/2002

Page 2 of 2

Cto

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 16:15 04/26/2002

00172

TLI Project: Client Sample	57120 e: HCMW 6/K22	umbia Anal 161 02307-004	vtical Serv 3, Revision	BP		DF An: File:	alysis (c) F021835
Client Project: Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-1-4	Date Received Date Extracted Date Analyzed	: 04/17/2002		Spike File: ICal: ConCal:	SP1 TF5	61B22 121B
Sample Size: Dry Weight: GC Column:	1.010 L n/ą DB-5	Dilution Factor Blank File: Analyst:			% Moisture % Lipid: % Solids:		1829
Analytes	Conc. (p	g/L) DL					
2,3,7,8-TCDD				Tatio	RT	RAT	Flags
1,2,3,7,8-PeCDD	ND	0.8					
1,2,3,4,7,8-HxCDD	ND	0.9					
1,2,3,6,7,8-HxCDD	ND	4.6					·······
1,2,3,7,8,9-HxCDD	ND	0.8					
1,2,3,4,6,7,8-HpCDD	ND	0.8					
1,2,3,4,6,7,8,9-OCDD	5.5	uj-					·
-1-10,7,0,7,0,9-0CDD	56.3 c	(J		1.00	37:25	1.000	JB_
2,3,7,8-TCDF	-			0.77	41:03	1.000	лв_
1,2,3,7,8-PeCDF	ND	0.7					·••
2,3,4,7,8-PeCDF	ND	0.8			•		
1,2,3,4,7,8-HxCDF	ND	0.6					
1,2,3,6,7,8-HxCDF	ND	0.6					
234678 U-CDF	ND	0.6					******
2,3,4,6,7,8-HxCDF	ND	0.5					
1,2,3,7,8,9-HxCDF	ND	0.7					
1,2,3,4,6,7,8-HpCDF	1.7 U	J.					
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	ND	1.0	1	.04	36:24	1.000	<u>1</u>
-12,2,4,0,7,8,9-OCDF	7.7 00	r					-
			0	.96	41:17	1.006	<u>1</u>
Totais	Conc. (pg/	13 85					
Total TCDD		L) Number DL					Flags
Total PeCDD	ND						and a
Total HxCDD	ND	2.2					
Total HpCDD	ND	0.9					
	5.5	8.2 1					
Total TCDF	-	▲ .					
Total PeCDF	ND	0.0					
	ND	2.3					
Total HxCDF	ND	0.7					
Total HpCDF	1.7	0.6					
		1					

Page 1 of 2 **Triangle Laboratories, Inc.**® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

1907.1102

161B_PSR v2.04, LARS 6.25.04

00199 Printed: 16:15 04/26/2002 131 TLI Project: 57120 Client Sample: HCMW 6/K2202307-004

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021835

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio AT	RRT	Flags
¹³ C ₁₂ -2,3,7,8-TCDD	1140	57.7	019 1059			
¹³ C ₁₂ -1,2,3,7,8-PeCDD	1330	57.7	31%-137%	0.81 26:44	1.007	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	1440	67.4	25%-181%	1.44 31:00	1.168	-
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	1710	72.7	32%-141%	1.21 34:05	0.988	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD		86.1	28%-130%	1.21 34:10	0.991	
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	1750	88.3	23%-140%	1.02 37:25	1.085	
C12-1,2,3,4,0,7,8,9-OCDD	3550	89.7	17%-157%	0.86 41:02	1.190	
¹³ C ₁₂ -2,3,7,8-TCDF	994	50.2	000 1400			
¹³ C ₁₂ -1,2,3,7,8-PeCDF	1090		29%-140%	0.73 26:01	0.980	
¹³ C ₁₂ -2,3,4,7,8-PeCDF	1220	55.1	24%-185%	1.56 29:58	1.129	
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	1220	61.9	21%-178%	1.56 30:39	1.154	
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	1240	62.6	26%-152%	0.51 33:24	0.969	
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF		63.5	26%-123%	0.50 33:29	0.971	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	1680	85.1	28%-136%	0.51 33:59	0.986	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	1550	78.4	29%-147%	0.50 34:44	1.007	
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	1550	78.2	28%-143%	0.43 36:23	1.055	
C12-1,2,3,4,7,0,3-npCDF	1710	86.3	26%-138%	0.43 37:55	1.100	
				<u></u>		
Cleanup Standard	Conc. (pg/L)	% Recovery	OC Limits	RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	128	64.5	42%-164%	26:45	1.008	

Recovery Standards	Ratio RT Flags
¹³ C ₁₂ -1,2,3,4-TCDD	0.83 26:33
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	1.20 34:29

	5
Data Reviewer:	 1

04/26/2002

Page 2 of 2

k

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

00200 Printed: 16:15 04/26

	Coli	umbia Analy	tical Services		
TLI Project:	57120		A A A A A A A A A A A A A A A A A A A		
Client Sample	: HCMW 7/K220	1613 02307-005	3, Revision B P	CDD/PCD Analysis Fi	F Analysis (c) le: T021836
Client Project: Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-1-5	Date Received: Date Extracted: Date Analyzed:	04/16/2002 04/17/2002	Spike File: ICal: ConCal:	SP161B22 TF5121B
Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5	Dilution Factor: Blank File: Analyst:		% Moisture: % Lipid: % Solids:	TB21829 n/a n/a < 0.1
Analytes	Conc. (p	g/L) DL	2 -11		
2,3,7,8-TCDD			Ratio	RT P	RT Flags
1,2,3,7,8-PeCDD	ND ND	1.8			
1,2,3,4,7,8-HxCDD	5.1	4.5			
1,2,3,6,7,8-HxCDD	10.1		1.19	34:07	1.001 J
1,2,3,7,8,9-HxCDD	10.1	·	1.28		1.001 J 1.000 J 1.009 J
1,2,3,4,6,7,8-HpCDD	251		1.20		1.009 J
1,2,3,4,6,7,8,9-OCDD	3200	<i>*</i>	0.99		1.000
	5200		0.84	44	1.000
2,3,7,8-TCDF	ND				
1,2,3,7,8-PeCDF	4.2	2.9			
2,3,4,7,8-PeCDF	4.2 ND		1.55	29:59 1	.001 J
1,2,3,4,7,8-HxCDF	6.7	3.7			.001 J_
1,2,3,6,7,8-HxCDF	ND		1.17	33:24 1	.000 18
2,3,4,6,7,8-HxCDF	5.5	6.0			.000 JB_
1,2,3,7,8,9-HxCDF	6.5		1.12	33:59 1	.000 J
1,2,3,4,6,7,8-HpCDF	67.0		1.17		.000 1 .000 1
1,2,3,4,7,8,9-HpCDF	9.7		1.04		.000 000.
1,2,3,4,6,7,8,9-OCDF	270		1.12		.000 <u>J</u>
	270		0.88		.005
			,	1.	
Totals	Conc. (pg/	L) Number DL			
Total TCDD					Flags
Total PeCDD	ND	1.8			
Total HxCDD	ND	. 7.1			
Total HpCDD	38.9	4			
•	436	2			
Total TCDF	s				
Total PeCDF	ND	6.7			
Total HxCDF	14.0	3			
Total HpCDF	93.7 🕁	9			 x
· ·	208	4			X

Page 1 of 2

Triangle Laboratories, Inc.®
2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

5

15027-11-22

161B_PSR v2.04, LARS 6.25.04

x____

00227 Printed: 16:15 04/26/2002 159

Columbia Analytical Services

TLI Project: 57120 Client Sample: HCMW 7/K2202307-005

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021836

Internal Standards	Conc. (pg/L)	% Recover	/ QC Limits	Ratio RT	000	
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-1,2,3,7,8-TCDF$ ${}^{13}C_{12}-1,2,3,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	821 933 985 1070 1140 2320 744 770 814 863 876 1130 980 1010 1050	42.7 48.5 51.2 55.7 59.0 60.3 38.7 40.0 42.3 44.9 45.6 58.5 50.9 52.6 54.8	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.80 26:44 1.45 31:00 1.26 34:05 1.16 34:10 1.03 37:25 0.87 41:03 0.73 26:01 1.56 29:58 1.57 30:39 0.51 33:24 0.51 33:30 0.51 33:59 0.51 34:44 0.43 36:23 0.44 37:55	RFT 1.007 1.168 0.988 0.991 1.085 1.190 0.980 1.129 1.154 0.969 0.971 0.986 1.007 1.055 1.100	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RAT	Flags
³⁷ CL-2,3,7,8-TCDD	96.6	50.2	42%-164%	26:45	1.008	
Recovery Standards			F	latio RT		Film
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				0.82 26:33 1.21 34:29		Flags

Data Reviewer:	* -	
Duta Keviewer:	two	04/26/2002

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

00228 Printed: 16:15 04/26/2002

TLI Project: Client Sample	57120	1613	tical Services 3, Revision B I		OF Analysis (c) ile: T021837
Client Project: Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-1-6	Date Received: Date Extracted: Date Analyzed:	04/16/2002 04/17/2002 04/26/2002	Spike File: ICal: ConCal:	
Sample Size: Dry Weight: GC Column:	1.000 L n/a DB-5	Dilution Factor: Blank File: Analyst:	n/a T021832 JMM	% Moisture % Lipid: % Solids:	
Analytes	Conc. (p	g/L) DL	Dett		
2,3,7,8-TCDD			Ratio	RT	RRT Flags
1,2,3,7,8-PeCDD	ND	1.2			
1,2,3,4,7,8-HxCDD	ND	2.5			
1,2,3,6,7,8-HxCDD	2.4		1.22	34:05	1 000
1,2,3,7,8,9-HxCDD	ND	5.3		J4.0J	1.000 J
1,2,3,4,6,7,8-HpCDD	5.7		1.17	34:29	1.000 -
1,2,3,4,6,7,8,9-OCDD	101		1.04	37:25	1.009 J 1.000
-,-,o,,,o,,,o,,-OCDD	1060		0.84	41:03	the second second second second second second second second second second second second second second second s
2,3,7,8-TCDF				41.05	1.000
1,2,3,7,8-PeCDF	ND	0.9			
2,3,4,7,8-PeCDF	ND	2.2			
1,2,3,4,7,8-HxCDF	ND	2.0			
1,2,3,6,7,8-HxCDF	ND	2.5			•
2,3,4,6,7,8-HxCDF	2.1		1.31	33:29	1.000 J
1,2,3,7,8,9-HxCDF	2.2		1.42	33:58	1.000 J 1.000 J
1,2,3,4,6,7,8-HpCDF	ND	4.6			1.000 J
1,2,3,4,7,8,9-HpCDF	17.3 4.2		0.93	36:23	1.000 J
1,2,3,4,6,7,8,9-OCDF	4.2 87.2		1.08	37:54	1.000 J 1.000 J
	07.2		0.86	41:15	1.005 J
	-				
Totais	Conc. (pg	L) Number DL			F1
Total TCDD					Flags
Total PeCDD	ND	1.2			
Total HxCDD	ND	2.5			and the summer
Total HpCDD	10.6	3			
and the second s	169	2			
Total TCDF	ND	0.0		4	
	110				

Total TCDFND0.9Total PeCDF6.92Total HxCDF49.1 T6Total HpCDF62.6 T4

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491 Page 1 of 2

KGD 7-11 22 1618_PSR v2.04, LARS 6.25.04

x____ x___

Printed: 16:15 04/26/2002 190

Columbia: Analytical Services

TLI Project: 57120 Client Sample: MW A/K2202307-006

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: **T021837**

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,7,8-TCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,7,8,9-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1110 1330 1560 1660 1750 3700 992 1080 1240 1260 1230 1770 1560 1590 1960	55.3 66.7 78.0 82.8 87.4 92.4 49.6 54.0 61.9 62.8 61.6 88.3 78.1 79.3 98.0	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.81 26:44 1.42 30:59 1.20 34:05 1.21 34:10 1.02 37:25 0.86 41:02 0.72 26:00 1.58 29:57 1.57 30:39 0.50 33:23 0.51 33:29 0.51 33:58 0.50 34:44 0.43 36:22 0.43 37:54	1.007 1.167 0.989 0.991 1.086 1.191 0.979 1.128 1.154 0.969 0.971 0.985 1.008 1.055 1.100	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	121	60.7	42%-164%	26:44	1.007	

Hecovery Standards	Ratio RT Flags
¹³ C ₁₂ -1,2,3,4-TCDD	0.82 26:33
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	1.20 34:28

Data Reviewer:

___ 04/26/2002

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

0 0 2 5 9 Printed: 16:15 04/26/2002

191

	C	olina	ibia Analy	tical Serv	ices	2.5		
TLI Project: Client Sample	57120		1613		BF	CDD/PCD Analysis Fi	F Ar le:	alysis (c) T021838
Client Project: Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-1-7	1	Date Received: Date Extracted: Date Analyzed:	04/16/2002 04/17/2002 04/26/2002		Spike File: ICal: ConCal:	SP TF	161B22 5121B 21829
Sample Size: Dry Weight: GC Column:	1.040 L n/a DB-5	E	Dilution Factor: Blank File: Analyst:	n/a T021832 JMM		% Moisture: % Lipid: % Solids:		
Analytes	Cong). (pg/L) DL		Ratio	RT I	HAT]
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.4 2.3 2.0 2.0 2.8 1.7 1.4 1.5 1.1 1.8		0.86		1.001	Flags
<u>1,2,3,4,6,7,8-HpCDF</u> 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	<u>1</u> N	5 D 5	2.3		1.06 0.80		.000	J
					0.80	41:14 1	.005	J

Totals	Conc. (pg/L) Number DL	THE .
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 2.4 ND 2.3 ND 2.0 4.7 1	Flags
Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND1.7ND2.0ND1.43.72	

Page 1 of 2

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, I Phone: (919) 544-5729 • Fax: (9	North Osuall arms	

161B_PSR v2.04, LARS 6.25.04

00285

Printed: 16:15 04/26/2002

KOD7-11-2

Columbia Analytical Services

TLI Project: 57120 Client Sample: MW B/K2202307-007

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021838

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RRT	Flags
 ¹³C₁₂-2,3,7,8-TCDD ¹³C₁₂-1,2,3,7,8-PeCDD ¹³C₁₂-1,2,3,4,7,8-HxCDD ¹³C₁₂-1,2,3,6,7,8-HxCDD 	765 983 1120 1220	39.8 51.1 58.2	31%-137% 25%-181% 32%-141%	0.81 26:44 1.45 30:59 1.21 34:05	1.007 1.167 0.988	
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD ¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD	1220 1380 3090	63.5 71.9 80.4	28%-130% 23%-140% 17%-157%	1.21 34:10 1.02 37:25 0.86 41:02	0.991 1.085 1.190	
$^{13}C_{12}-2,3,7,8-TCDF$ $^{13}C_{12}-1,2,3,7,8-PeCDF$ $^{13}C_{12}-2,3,4,7,8-PeCDF$ $^{13}C_{12}-1,2,3,4,7,8-HxCDF$ $^{13}C_{12}-1,2,3,6,7,8-HxCDF$ $^{13}C_{12}-2,3,4,6,7,8-HxCDF$ $^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ $^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ $^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	695 721 839 942 943 1330 1150 1250 1340	36.1 37.5 43.6 49.0 49.0 69.0 59.7 65.2 69.8	29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.7226:011.5729:581.6230:390.5133:230.5133:580.5134:440.4436:220.4237:55	0.980 1.129 1.154 0.968 0.971 0.985 1.007 1.055 1.100	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	RRT	Flags
³⁷ Cl ₄ -2,3,7,8-TCDD	117	60.7	42%-164%	26:45	1.008	
Recovery Standards				Ratio RT		Flags
¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD				0.83 26:33		

¹³C₁₂-1,2,3,7,8,9-HxCDD

Data Reviewer: 04/26/2002

Page 2 of 2

1.19 34:29

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc.® 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

00286 Printed: 16:15 04/26/2002 218

		j	
2		ŝ	
	è	ĩ	
	1		
		ŝ	
ł.			
		ŝ	
	٥,		
ľ	2	ŝ	
	2	ï	
2	i		
	2	í	
		Ċ	
1	è	ŝ	
	5	ř	
	2	1	
	2	8	
ŝ			
ŝ	8	¢	
ŝ		ŝ	
	ŝ		
	¢	ľ	
i,	ł	ŝ	
ŝ	2	ŝ	
5	ŝ	Ì	
	i,	Ì	
	ł	2	
2	2	i	
		ł	
	2	Ż	
	ŝ	2	
ſ	1	ĥ	
	ŝ	ŝ	
	ŝ	í	
į,	l	ł	
5	ŝ	ŝ	
	2	į	
ł	ì	ł	
		ġ	
1	į,	ł	
	ŝ	l	
ŝ	ŝ	j	
ľ	b		
1		×.	
	b		
K	ŝ	l	
ŝ	2	2	
ł,		Ļ	
2	ŝ	į	
1	2	ļ	
j	v	ł	
1			
ſ	ì	l	
Ľ	2	í	
		ľ	
ć	é	ġ	
2		ŝ	
	1	ŝ	
z	ŝ	ì	
ŝ	ź	i	
1	2	ł	
	l	ì	
2	Ā	è	
		Ì	
ŝ	ŝ	l	
	ł.		
Ĵ	ş	l	
ŝ,		2	
1	í		
ſ		į	
		Ż	
ŝ	2	j	
		ř	
		ł	
2	P	ŝ	
	Z		
l	k	2	
e,	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2	ŝ	
à	ŝ	Ì	
	1		
ż	ź	Ľ	
ÿ	2	1	
ŝ	ê	Ċ,	
ł	Z	å	
ä	ř		
à	Y	ç	
e	K	ý	
Y	ñ	ŝ	
2	ź	ģ	
ŝ	ż	2	
j	e)	ļ	
ſ	ł.		
ŝ	ŝ	ļ,	
2	C	2	
à	2	į	

	TLI Project: Client Sample	57120A : MW-3		1613	, Revision	B P(A	CDD/PCD analysis Fil		lysis (c) [0218 48
	Client Project: Sample Matrix: TLI ID:	J.H.Baxter AQUEOUS 323-51-1		Date Received: Date Extracted: Date Analyzed:	04/19/2002 04/23/2002 04/26/2002	• ••••••••••••••••••••••••••••••••••••	Spike File: ICal: ConCal:	SP16 TF51 TB2	
	Sample Size: Dry Weight: GC Column:	1.030 L n/a DB-5		Dilution Factor: Blank File: Analyst:	n/a T021847 JLD		% Moisture: % Lipid: % Solids:	n/a n/a <0.1	
	Analytes	Con	લ્ટ (છલ	/L) DL		Ratio	RT	RT.	
	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2		1.4 1.5 1.1 1.1 1.2 1.0		0.93		1.000	Flags
1	,2,3,4,6,7,8-HpCDF ,2,3,4,7,8,9-HpCDF ,2,3,4,6,7,8,9-OCDF	ן ז	00000000000000000000000000000000000000	1.5 1.5 2.1 3.1					

lotais	Conc. (pg/L) Nt	Imber DL	Flaga
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	1.8 1.8 1.6 2.5	
Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	1.4 1.3 1.1 1.7	

Page 1 of 2

Committee Astaly deal Stewices

TLI Project: 5 Client Sample: N

57120A MW-3

1613, Revision B PCDD/PCDF Analysis (c) Analysis File: T021848

Internal Standards	Conc. (pg/L)	% Recovery	QC Limits	Ratio RT	RAT	Fig
${}^{13}C_{12}-2,3,7,8-TCDD$ ${}^{13}C_{12}-1,2,3,7,8-PeCDD$ ${}^{13}C_{12}-1,2,3,4,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDD$ ${}^{13}C_{12}-1,2,3,4,6,7,8,9-OCDD$ ${}^{13}C_{12}-2,3,7,8-TCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-PeCDF$ ${}^{13}C_{12}-2,3,4,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HxCDF$ ${}^{13}C_{12}-1,2,3,4,6,7,8-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$ ${}^{13}C_{12}-1,2,3,4,7,8,9-HpCDF$	1040 1330 1410 1560 1650 3360 897 1040 1220 1230 1250 1630 1430 1510 1560	53.4 68.6 72.5 80.1 85.0 86.6 46.2 53.6 62.8 63.6 64.3 83.8 73.5 77.8 80.3	31%-137% 25%-181% 32%-141% 28%-130% 23%-140% 17%-157% 29%-140% 24%-185% 21%-178% 26%-152% 26%-123% 28%-136% 29%-147% 28%-143% 26%-138%	0.81 26:44 1.50 30:59 1.26 34:04 1.15 34:09 1.05 37:24 0.87 41:02 0.74 26:01 1.56 29:57 1.54 30:39 0.51 33:23 0.50 33:28 0.51 33:58 0.51 34:43 0.42 36:21 0.41 37:54	1.007 1.167 0.988 0.991 1.085 1.191 0.980 1.128 1.154 0.969 0.971 0.985 1.007 1.055 1.100	
Cleanup Standard	Conc. (pg/L)	% Recovery	QC Limits	RT	BRT	Flags
³⁷ CL-2,3,7,8-TCDD	122	62.7	42%-164%	26:44	1.007	
Recovery Standards ¹³ C ₁₂ -1,2,3,4-TCDD ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD			F	Ratic RT 0.80 26:33 1.20 34:28		Flags

Data Reviewer: _______ \1/4

04/27/2002

Page 2 of 2

161B_PSR v2.04, LARS 6.25.04

Triangle Laboratories, Inc. 2445 S. Alston Ave. • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

00380 Printed: 14:02 04/27/2002

Analytical Results

		Analytical Results			
Client: Project: Sample Matrix:	J.H. Baxter & Company Carbon Units Water	Date Co	ollected:	K2202249 04/08/2002 04/09/2002	
		Pentachlorophenol			
Sample Name:	Tank 1		I Inite.	wаЛ	

Lab Code:	K2202249-001	Units: Basis:	- 0
Extraction Method: Analysis Method:	METHOD 8151M	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	1100 D	20	100	04/11/02	04/19/02	KWG0202388	TNOLE

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	93	38-119	04/19/02	Acceptable	Kp 611902

omments:

han thé

Merged

Form 1A - Organic

Page 1 of 1 SuperSet Reference: DD16086

00011

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	04/08/2002
Project:	Carbon Units	Date Collected:	
Sample Matrix:	Water	Date Received:	

Pentachlorophenol

Sample Name: Lab Code:	Tank 2 K2202249-002					Units: Basis:	•	
Extraction Method: Analysis Method:	METHOD 8151M					Level:		
		ı	Dilution	Data	Data	Bud		

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Pentachlorophenol	62 D	2.0	10	04/11/02	04/19/02	KWG0202388	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Bromo-2,6-dichlorophenol	77	38-119	04/19/02	Acceptable	KP618-2

omments:

Merged

Form 1A - Organic

Page SuperSet Reference: DD16006

000

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company Carbon Units Water		Service Request: Date Collected: Date Received:	04/08/2002	
		Pentachlorophenol			

Sample Name:	Tank 3	Units:	•
Lab Code:	K2202249-003	Basis:	
Extraction Method: Analysis Method:	METHOD 8151M	Level:	

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	5.2	0.20	1	04/11/02	04/19/02	KWG0202388	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Bromo-2,6-dichlorophenol	84	38-119	04/19/02	Acceptable	Septra-

omments:

Merged

Form IA - Organic

SuperSet Reference:

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected:	4/9/02
Sample Matrix:	Water	Date Received:	4/10/02

Chloride

Prep Method: NONE Analysis Method: 300.0 Test Notes: Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-I	K2202244-001	1.0	5	NA	4/11/02	11.7	
BXN-2	K2202244-002	4.0	20	NA	4/11/02	42.2	
BXN-3	K2202244-003	1.0	5	NA	4/11/02	9.2	
BXN-4	K2202244-004	4.0	20	NA	4/11/02	86.3	
BXN-5	K2202244-005	1.0	5	NA	4/11/02	11.8	
BXN-6	K2202244-006	0.2	1	NA	4/11/02	ND	
Method Blank	K2202244-MB	0.2	1	NA	4/11/02	ND ,	
				KQ-	16-18-2		

Approved By: _

1A/020597p 02244WET MR1 - SAMPLE 4/24/02

4/24/2 Date:

Page No. . () (n

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected:	4/9/02
Sample Matrix:	Water	Date Received:	4/10/02

Chemical Oxygen Demand (COD)

Prep Method:	NONE	
Analysis Method:	410.2	
Test Notes:		

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-1	K2202244-001	5	l	NA	4/11/02	23	
BXN-2	K2202244-002	5	1	NA	4/11/02	5	
BXN-3	K2202244-003	5	1	NA	4/11/02	34	
BXN-4	K2202244-004	5	1	NA	4/11/02	58	
BXN-5	K2202244-005	5	1	NA	4/11/02	24	
BXN-6	K2202244-006	5	1	NA	4/11/02	ND	
Method Blank	K2202244-MB	5	1	NA	4/11/02	ND	
					Kop bin	1-2	

_Date: 4/24/02

010

Units: mg/L (ppm)

Basis: NA

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected: 4/9/02
Sample Matrix:	Water	Date Received: 4/10/02

Conductivity

~

Prep Method:NONEAnalysis Method:120.1Test Notes:

Units: uMHOS/cm Basis: NA

.

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-1	K2202244-001	2	1	NA	4/20/02	664	
BXN-2	K2202244-002	2	1	NA	4/20/02	410	
BXN-3	K2202244-003	2	1	NA	4/20/02	741	
BXN-4	K2202244-004	2	1	NA	4/20/02	944	
BXN-5	K2202244-005	2	1	NA	4/20/02	672	
BXN-6	K2202244-006	2	1	NA	4/20/02	ND	
Method Blank	K2202244-MB	2	1	NA	4/20/02	ND	
					1961802	-	

Approved By:

1A/020597p 02244WET MR3 - SAMPLE 4/24/02

Date: 4/24/2

≥а≝е 6 () () ()

Analytical Report

Client:	J.H. Baxter & Company	Service Requ
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collec
Sample Matrix:	Water	Date Receiv

Ammonia as Nitrogen

Prep Method:	NONE
Analysis Method:	350.3
Test Notes:	

Service Request:K2202244Date Collected:4/9/02Date Received:4/10/02

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result · Notes
BXN-I	K2202244-001	0.05	.1	NA	4/15/02	0.05	
BXN-2	K2202244-002	0.05	I	NA	4/15/02	0.15	
BXN-3	K2202244-003	0.05	l	NA	4/15/02	0.25	
BXN-4	K2202244-004	0.05	l	NÁ	4/15/02	8.27	
BXN-5	K2202244-005	0.05	L .	NA	4/15/02	0.14	
BXN-6	K2202244-006	0.05	1	NA	4/15/02	ND	
Method Blank	K2202244-MB	0.05	. 1	NA	4/15/02	ND	
· ·					K4 6182	_	

Approved By:

1A/020597p 02244WET MR4 - SAMPLE 4/24/02

_____ Date: ______ **____**___ **____**____

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K23	202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected: 4/9/	/02
Sample Matrix:	Water	Date Received: 4/10	0/02

Nitrate+Nitrite as Nitrogen

Prep Method:NONEAnalysis Method:353.2Test Notes:

Units: mg/L (ppm) Basis: NA

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
BXN-1	K2202244-001	0.2	1	NA	4/12/02	ND	
BXN-2	K2202244-002	0.2	1	NA	4/12/02	0.8	
BXN-3	K2202244-003	0.2	- 1	NA	4/12/02	ND	
BXN-4	K2202244-004	1.0	5	NA	4/12/02	11.6	
BXN-5	K2202244-005	0.2	1	NA	4/12/02	ND	
BXN-6	K2202244-006	0.2	1	NA	4/12/02	ND	
Method Blank	K2202244-MB	0.2	1	NA	4/12/02	ND	
Method Blank	K2202244-MB	0.2	L	NA	4/12/02	ND	
					100 610-2		

11

Approved By: _

1A/020597p 02244WET.MR5 - SAMPLE 4/24/02

Date: 4/24/02

U1102

Analytical Report

Client:	J.H. Baxter & Company	Service Request: K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected: 4/9/02
Sample Matrix:	Water	Date Received: 4/10/02

pН

Prep Method:NONEAnalysis Method:150.1Test Notes:

Units: pH UNITS Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-1	K2202244-001		1	NA	4/10/02	6.29 T	x
BXN-2	K2202244-002		1	NA	4/10/02	6.13	Х
BXN-3	K2202244-003		1	NA	4/10/02	6.46	Х
BXN-4	K2202244-004		1	NA	4/10/02	6.21	Х
BXN-5	K2202244-005		I	NA	4/10/02	6.35	Х
BXN-6	K2202244-006		1	NA	4/10/02	5.59 🗸 -	Х
					190618	'ar	

Approved By:

02244wet.mr6 - SAMPLE 5/6/02

1*A/*020597p

5/6/02 Date:

017729

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected:	4/9/02
Sample Matrix:	Water	Date Received:	4/10/02

Sulfate

Prep Method: NONE Analysis Method: 300.0 Test Notes: Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-1	K2202244-001	1.0	5	NA	4/11/02	23.5	
BXN-2	K2202244-002	1.0	5	NA	4/11/02	13.1	
BXN-3	K2202244-003	1.0	5	NA	4/11/02	8.1	
BXN-4	K2202244-004	1.0	5	NA	4/11/02	20.9	
BXN-5	K2202244-005	1.0	õ	NA	4/11/02	22.7	
BXN-6	K2202244-006	0.2	1	NA	4/11/02	ND	**
Method Blank	K2202244-MB	0.2	. 1	NA	4/11/02	ND	
				ķ	pur.		

Approved By:

1A/020597p 02244WET MR7 - SAMPLE 4/24/02

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected:	4/9/02
Sample Matrix:	Water	Date Received:	4/10/02

Tannin and Lignin

Prep Method: NONE Analysis Method: SM 5550B Test Notes:

Units: mg/L (ppm) Basis: NA

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
BXN-1	K2202244-001	0.2	1	NA	4/12/02	3.1	
BXN-2	K2202244-002	0.2	1	NA	4/12/02	1.3	
BXN-3	K2202244-003	1.0	5	ŇA	4/12/02	9.8	
BXN-4	K2202244-004	0.4	2	NA	4/12/02	8.2	
BXN-5	K2202244-005	0.2	1	NA	4/12/02	3.7	
BXN-6	K2202244-006	0.2	1	NA	4/12/02	ND	
Method Blank	K2202244-MB	0.2	I.	NA	4/12/02	ND	
				k	op 61 92		

SM

Standard Methods for the Examination of Water and Wastewater, 19th Ed., 1995.

Approved By:

1A/020597p 02244WET.MR8 - SAMPLE 4/24/02

4/2/12 Date:

(h) 37

Analytical Report

Client:	J.H. Baxter & Company	Service Request:	K2202244
Project:	BXN Wells-Landfill/BXN-WELLS	Date Collected:	4/9/02
Sample Matrix:	Water	Date Received:	4/10/02
	Solids, Total Dissolved (TDS)	1	

Prep Method:	NONE	Units: mg/L (ppm)
Analysis Method:	160.1	Basis: NA
Test Notes:		

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-1	K2202244-001	5	1	NA	4/11/02	490	
BXN-2	K2202244-002	5	I	NA	4/11/02	257	
BXN-3	K2202244-003	5	1	NA	4/11/02	532	
BXN-4	K2202244-004	5	1	NA	4/11/02	632	
BXN-5	K2202244-005	5	i i	NA	4/11/02	384	
BXN-6	K2202244-006	5	1	NA	4/11/02	ND	
Method Blank	K2202244-MB	5	l	NA	4/11/02	ND	
				Kapt	182		

Approved By:

1A/020597p 02244WET.MR9 - SAMPLE 4/24/02 Date: 424/02

Analytical Report

Client:	J.H. Baxter & Company
Project:	BXN Wells-Landfill/BXN-WELLS
Sample Matrix:	Water

Service Request: K2202244 Date Collected: 4/9/02 Date Received: 4/10/02

Carbon, Total Organic

Prep Method: NONE Analysis Method: 415.1 Test Notes: Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
BXN-i	K2202244-001	0.5	i	NA	4/22/02	8.1	
BXN-2	K2202244-002	0.5	1	NA	4/22/02	1.5	
BXN-3	K2202244-003	0.5	1	NA	4/22/02	9.1	
BXN-4	K2202244-004	0.5	1	NA	4/22/02	18.7	
BXN-5	K2202244-005	0.5	l	NA	4/22/02	8.4	
BXN-6	K2202244-006	0.5	1	NA	4/22/02	ND	
Method Blank	K2202244-MB	0.5	I	NA	4/22/02	ND	
					1900	-	

Approved By:

LA/020597p 02244WET.M10 - SAMPLE 4/24/02 Date: 4/24/12

Page No () () () 15

Analytical Report

Client:	J.H. Baxter & Company
Project:	BXN Wells-Landfill/BXN-WELLS
Sample Matrix:	Water

Service Request: K2202244 Date Collected: 4/9/02 Date Received: 4/10/02

Coliform, Total

Prep Method:	NONE
Analysis Method:	SM 9221B
Test Notes:	

Units: MPN/100ml Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracte	Date Analyzed	Time Test Started		Result	Result Notes
BXN-I	K2202244-001	2	1	NA	4/10/02	1230	hrs	27 5	X
BXN-2	K2202244-002	2	L	NA	4/10/02	1230	hrs	50 J	Х
BXN-3	K2202244-003	2	1	NA	4/10/02	1230	hrs	ND NJ	Х
BXN-4	K2202244-004	2	1	NA	4/10/02	1230	hrs	2 5	
BXN-5	K2202244-005	2	1	NA	4/10/02	1230	hrs	80 丁	X
BXN-6	K2202244-006	2	1	NA	4/10/02	1230	hrs	ND UJ	

Kop 61802

SM

Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

Approved By: ____

1A/052595 02244WET M11 - Sample 4/24/02 _____ Date: ______ 4/24/02

() () () 50

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER

Service Request:	K2202244
Date Collected:	04/09/02
Date Received:	04/10/02
Units:	µG/L
Basis:	NA

Sample Name: BXN-1

Lab Code: K2202244-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	7060A	5.0	1	4/15/02	4/16/02	5.0	U	
Barium	6010B	5.0	1	4/15/02	4/19/02	45.8		l
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	υ	[
Copper	6010B	10	1	4/15/02	4/19/02	10	υ	
Iron	6010B	20	1	4/15/02	4/19/02	2080		
Manganese	6010B	5.0	1	4/15/02	4/19/02	1940		
Nickel	6010B	20	1	4/15/02	4/19/02	54.0		
Zinc	6010B	10	1 1	4/15/02	4/19/02	10	υ	

KAD 61 182

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER Service Request: K2202244 Date Collected: 04/09/02 Date Received: 04/10/02 Units: µG/L Basis: NA

Sample Name: BXN-2

Lab Code: K2202244-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Arsenic	7060A	5.0	1	4/15/02	4/16/02	5.0	U	
Barium	6010B	5.0	1	4/15/02	4/19/02	16.3		
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	U	
Copper	6010B	10	1	4/15/02	4/19/02	10	U	
Iron	6010B	20	1 1	4/15/02	4/19/02	20	U	
Manganese	6010B	5.0	1 1	4/15/02	4/19/02	2400		
Nickel	6010B	20	1 1	4/15/02	4/19/02	40.5		
Zinc	6010B	10	1	4/15/02	4/19/02	10	U	

K9061802

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER

Service Request:	K2202244
Date Collected:	04/09/02
Date Received:	04/10/02
Units:	µG∕L
Basis:	NA

Sample Name: BXN-3

Lab Code: K2202244-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	7060A	5.0	1	4/15/02	4/16/02	19.5		
Barium	6010B	5.0	1	4/15/02	4/19/02	118		
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	ט	
Copper	6010B	10	1	4/15/02	4/19/02	10	U	
Iron	6010B	20	1	4/15/02	4/19/02	40400		
Manganese	6010B	5.0	1	4/15/02	4/19/02	5550		
Nickel	6010B	20	1 1	4/15/02	4/19/02	41.5		Γ
Zinc	6010B	10	1	4/15/02	4/19/02	10	U	

Kep 6182

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER

Service Request:	K2202244
Date Collected:	04/09/02
Date Received:	04/10/02
Units:	µG/L
Basis:	NA

Sample Name: BXN-4

Lab Code: K2202244-004 DISS

	Analysis		Dilution	Date	Date	ł		l
Analyte	Method	MRL	Factor	Extracted	Analyzed	Result	C	Q
Arsenic	7060A	5.0	1	4/15/02	4/16/02	5.0	υ	
Barium	6010B	5.0	1	4/15/02	4/19/02	197		
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	υ	
Copper	6010B	10	1	4/15/02	4/19/02	25.8		
Iron	6010B	20	1	4/15/02	4/19/02	50.5		
Manganese	6010B	5.0	1	4/15/02	4/19/02	7430		
Nickel	6010B	20	1	4/15/02	4/19/02	106		
Zinc	6010B	10	1 1	4/15/02	4/19/02	10	U	

10061802

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER

Service Request:	K2202244
Date Collected:	04/09/02
Date Received:	04/10/02
Units:	µG/L
Basis:	NA

Sample Name: BXN-5

Lab Code: K2202244-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Arsenic	7060 A	5.0	1	4/15/02	4/16/02	5.0	U	
Barium	6010B	5.0	1	4/15/02	4/19/02	46.6		
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	σ	
Copper	6010B	10	1	4/15/02	4/19/02	10	U	
Iron	6010B	20	1	4/15/02	4/19/02	2130		
Manganese	6010B	5.0	1	4/15/02	4/19/02	1980		
Nickel	6010B	20	1	4/15/02	4/19/02	56.9		
Zinc	6010B	10	1	4/15/02	4/19/02	38.6		

Kp61802

§ Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client: J.H. Baxter & Company Project No.: BXN-WELLS Project Name: BXN Wells-Landfill Matrix: WATER

Service Request:	K2202244
Date Collected:	04/09/02
Date Received:	04/10/02
Units:	µG/L
Basis:	NA

Sample Name: BXN-6

Lab Code: K2202244-006 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C .	Q
Arsenic	7060A	5.0	1	4/15/02	4/16/02	5.0	υ	
Barium	6010B	5.0	1	4/15/02	4/19/02	5.0	U	
Cadmium	6010B	5.0	1	4/15/02	4/19/02	5.0	U	
Copper	6010B	10	1	4/15/02	4/19/02	10	U	
Iron	6010B	20	1	4/15/02	4/19/02	20	ប	
Manganese	6010B	5.0	1	4/15/02	4/19/02	5.0	U	
Nickel	6010B	20	1	4/15/02	4/19/02	20	υ	
Zinc	6010B	10	1 1	4/15/02	4/19/02	(14.2	J	

Kopbisa_

% Solids: 0.0

Comments:

Analytical Report

Client: Project: Sample Matrix:	J.H. Baxter & Company Untreated Drains Water	Service Request: Date Collected: Date Received:	4/8/2002
	Solids, 7	Total Suspended (TSS)	
Prep Method:	NONE		

Prep Method:	NONE
Analysis Method: Test Notes:	160.2
1000110103.	

Units: mg/L (ppm) Basis: NA

Sampie Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Drain 7 Drain 8 Method Blank	K2202230-001 K2202230-002 K2202230-MB	5 5 5	1 J 1	NA NA NA	4/10/2002 4/10/2002 4/10/2002 6-18-2	472 380 ND	

Approved By:

I A/020597p

Date: 4/17/02

00007 Page No.:

02230WET.EL1 - SAMPLE 4/16/2002

Analytical Report

Client: Project: Sample Matrix:	J.H. Baxter & Company Untreated Drains Water	Date (K2202230 4/8/2002 4/9/2002				
		pH	[
Prep Method: Analysis Method: Test Notes:	NONE 150.1					Units: Basis:	pH UNITS NA
Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Drain 7 Drain 8	K2202230-001 K2202230-002		1 1	NA NA	4/9/2002 4/9/2002	6.55 J 5.88 J	- 144 <u>-</u>

1000-18-2

	\bigwedge	
pproved By:		Date: 41.710
020597p		

Apj 1A/0;

02230WET.EL2 - SAMPLE 4/16/2002

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Comp Untreated Drains Water	any		90113		Service R Date Col Date Re	lected: 04/08	/2002
			Pentachloroph	enol				
Sample Name: Lab Code:	Drain 7 K2202230-001						Units: ug/L	
Extraction Method: Analysis Method:	METHOD 8151M						Basis: NA Level: Low	
Analyte Name	Resul	t Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	•
Pentachlorophenol	7.8	3	0.20	1	04/11/02	04/19/02	KWG0202388	Note
urrogate Name	%Rec	Control Limits	Date Analyzed	Note				
-Bromo-2,6-dichlorophe	nol 89	38-119	04/19/02	Acceptable		rep 6	18-2_	

mments:

Form 1A - Organic

00014

SuperSet Reference:

COLUMBIA ANAL I HUAL SERVICES, INC.

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter Untreated D Water	& Compa rains	ny		suns		Service R Date Co Date Re	llected:	K2202: 04/08/2 04/09/2	2002
			,	Pentachloroph	ienol					
Sample Name: Lab Code:	Drain 8 K2202230-0	02						Units:		
Extraction Method: Analysis Method:	METHOD 8151M							Basis: Level:		
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date		action	
Pentachlorophenol		9.5		0.20	1	04/11/02	Analyzed 04/19/02		ot 202388	Note
Surrogate Name		%Rec	Control Limits	Date Analyzed	Note					
l-Bromo-2,6-dichlorophe	nol	102	38-119	04/19/02	Acceptable		Kgp bi	802		

mments:

Merged

Form 1A - Organic

Analytical Results

Client:	J.H. Baxter & Company
Project:	Untreated Drains
Sample Matrix:	Water

 Service Request:
 K2202230

 Date Collected:
 04/08/2002

 Date Received:
 04/09/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	Drain 7	Units:	-
Lab Code:	K2202230-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	

Analyte Name Diesel Range Organics (DRO)	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Residual Range Organics (RRO)	860 H 4400 O	270 530	1 1	04/10/02 04/10/02	04/15/02 04/15/02	KWG0202326 KWG0202326	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	96	50-150	04/15/02	Acceptable	19061802
n-Triacontane	91	50-150	04/15/02	Acceptable	

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	J.H. Baxter & Company
Project:	Untreated Drains
Sample Matrix:	Water

 Service Request:
 K2202230

 Date Collected:
 04/08/2002

 Date Received:
 04/09/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	Drain 8	Units: ug/L
Lab Code:	K2202230-002	Basis: NA
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	880 H	250	1	04/10/02	04/15/02	KWG0202326	
(RRO)	4500 O	500	1	04/10/02	04/15/02	KWG0202326	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	91	50-150	04/15/02	Acceptable	Kop 61802
n-Triacontane	86	50-150	04/15/02	Acceptable	

Comments:

Merged

Form 1A - Organic

0004(

Analytical Report

Client:J.H. Baxter & CompanyProject:Untreated DrainsSample Matrix:Water

Service Request: K2201400 Date Collected: 3/5/2002 Date Received: 3/5/2002 Date Extracted: NA

Inorganic Parameters

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	pH (unit) 150.1 3/5/2002	Solids, Total Suspended (mg/L) 160.2 5 3/7/2002
Sample Name	Lab Code		
Drain 7	K2201400-001	6.98	86
Drain 8	K2201400-002	6.45	248
Method Blank	K2201400-MB	.	ND
			1827.5.02

Approved By: 3ADW/061694

.

mt

3/26/02 Date: _

Analytical Results

Client:	J.H. Baxter & Company	Service Request:	K2201400
Project:	Untreated Drains	Date Collected:	03/05/2002
Sample Matrix:	Water	Date Received:	03/05/2002

Diesel and Residual Range Organics - Silica Gel Treated

Sample Name:	Drain 8	Units:	-
Lab Code:	K2201400-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	480 H	250	1	03/12/02	03/15/02	KWG0201647	
Residual Range Organics (RRO)	2000 O	500	1	03/12/02	03/15/02	KWG0201647	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	81	50-150	03/15/02	Acceptable	Kg 7.5=2
n-Triacontane	86	50-150	03/15/02	Acceptable	

Comments:

00006

Analytical Results

Client: Project: Sample Matrix:	J.H. Baxter & Company Untreated Drains Water	Service Request: K2201400 Date Collected: 03/05/2002 Date Received: 03/05/2002	
Sample Name:	Pentachloroph	enol	

Lab Code:	K2201400-001	Units: Basis:	0
Extraction Method: Analysis Method:	METHOD 8151M	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Pentachlorophenol	11	0.20	1	03/12/02	03/18/02	KWG0201654	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	79	38-119	03/18/02	Acceptable	K\$ 7.5-2

Comments:

Merged

Form 1A - Organic

				Analytical Resul	lts					
Client: Project: Sample Matrix:	J.H. Baxter & Untreated Drai Water					Service Reque Date Collect Date Receiv		ected:	ed: 03/05/2002	
:				Pentachlorophe	enol					
Sample Name: Lab Code:	Drain 8 K2201400-002							Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	METHOD 8151M]	Level:	Low	
Analyte Name	Result Q		•	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		Note
Pentachlorophenol		9.0	-	0.20	1	03/12/02	03/18/02		0201654	
Surrogate Name	9	%Rec	Control Limits	Date Analyzed	Note					
4-Bromo-2,6-dichloroph		85	38-119	03/18/02	Acceptable		\$715-1	<u> </u>		<u> </u>

Comments:

93369