

28-E-1.1

April 2, 1998

RECEIVED

Jeanne Tran Department of Ecology Northwest Regional Office 3190 160th Ave., S.E. Bellevue, WA 98008-5442

APR 06 1998

DEPT. OF ECOLOGY

RE: NPDES Permit No. WA-003142-9 - Dioxin/Furan Study

Dear Ms. Tran:

Enclosed please find the completed Dioxin/Furan study report for J.H. Baxter's Arlington, Washington facility. This report includes information and data from two sampling events, during which both storm water and pentachlorophenol treating solution samples were collected for analysis.

The submission of the NPDES permit renewal application will closely follow your receipt of this report. The final storm water analytical results have been received and the application will be completed and submitted next week.

In the interim, if you have any questions regarding this report, please do not hesitate to contact me at (650) 349-0201.

Sincerely.

Caroline Martin

Environmental and Safety Manager

J.H. Baxter & Co.

cc: Georgia Baxter, Thomas Orthmeyer

Enclosure

J.H. Baxter & Co. Arlington, Washington

Prepared in accordance with NPDES Permit No. WA-003142-9

Prepared By: Caroline Martin Environmental and Safety Manager J.H. Baxter & Co. San Mateo, CA

Submitted: April 2, 1998

DIOXIN/FURAN STUDY

J.H. Baxter & Co. Arlington, Washington

Table of Contents

1.0.	Introduction	1
2.0	Magnitude and Duration of Storm Events	1
3.0	Sample Collection and Quality Control	1
4.0	Sample Transport and Analysis	2
Table	A: Summary of Results	A-1
Table	B: Summary of Lab Spike Results	B-1
Apper	ndix A: NPDES instructions for the Dioxin/Furan report	
Apper	ndix B: Original data from September 18, 1997 sampling	
Apper	ndix C: Revised data from September 18, 1997 sampling	
Anner	ndix D: Original data from January 18, 1998 sampling	

1.0 Introduction:

In accordance with NPDES permit #WA-003142-9, J.H. Baxter conducted a Dioxin/Furan study of the storm water and pentachlorophenol (penta) treating solution at the Arlington, Washington facility. This report summarizes the collection procedures, analytical methods and laboratory results, as instructed on pages 17-19 of the permit (See the appendices of this report). The two sampling events were conducted on September 18, 1997 and January 8, 1998, and conformed to requirements set forth by the Department of Ecology.

Each sampling event consisted of sampling storm water from a significant storm event in the French drains located in the facility's treated wood storage area (drains13, 14, 23, 24, and 25). Samples from drains 13 and 14 were composited. A composite sample of the penta treating solution was also collected from the three on-site work tanks.

The remainder of this report is organized in the following manner. Section 2.0 of this report describes the magnitude and duration of the sampled storm events. Section 3.0 presents a description of the sampling procedures employed, along with the procedures for quality assurance and control. Section 4.0 contains information on how samples were transported and analyzed, and includes a summary table (Table 1) of the results. Supporting laboratory results are included in the appendix.

2.0 Magnitude and Duration of Storm Events:

The first storm event during which samples were collected took place on September 18, 1998. The magnitude of this storm event was 0.85 inches and lasted for 12 hours. The preceding significant storm event was a 0.55-inch storm that lasted 7.5 hours on September 16, 1997.

The second storm event that was sampled took place on January 8, 1998, and measured 0.20 inches and lasted for four hours. The preceding significant storm event was a 0.5 inch storm that lasted six hours on January 6, 1998.

3.0 Sample Collection and Quality Control:

Over the course of the four-year permit cycle, there has been a significant decrease in the natural permeability of site soil. This is due in large part to the quantities of silt have mobilized with the storm water and have sealed the top layer of the soil around the French drains. In order to prevent the silt from entering and clogging the French drains, filtration fabrics have been placed over each drain. These fabrics clog with silt rather quickly and create large puddles of standing water over the drains.

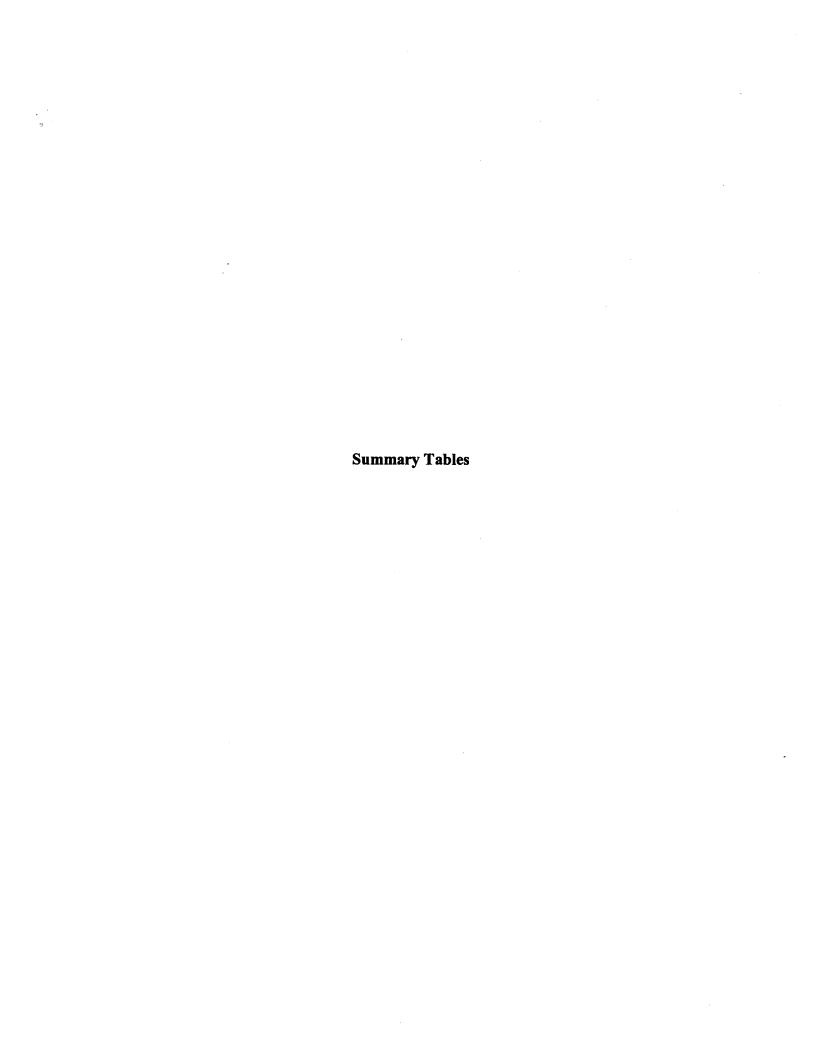
Ideally, storm water samples would be collected from the metal buckets that have been installed under the filter fabric of each drain. However, since these buckets are inaccessible, samples were collected by scooping the ponded water that stands above the entrance of the drain.

The five drains sampled as part of this study were 13, 14, 23, 24 and 25, all of which are located in the treated wood storage area (Parcel A). Samples from drains 13 and 14 were composited as allowed by the permit. A duplicate sample of this composite (labeled Drain #30) was collected and sent to the lab for quality control purposes.

Dedicated plastic one-quart measuring cups were used to extract the samples from the standing water above each drain. Prior to collection, all cups were decontaminated. The sampler on staff donned decontaminated rubber boots and new protective surgical gloves to prevent the possibility of cross-contamination. Samples were collected from the top of each drain, while taking care not to activate sediment. Sample bottles were filled directly from the plastic cup. The sampler's boots were decontaminated and surgical gloves replaced before proceeding to the next drain.

A composite sample of the pentachlorophenol treating solution was also collected. The components of the treating solution are base oil at approximately 95% by weight and pentachlorophenol at 5%. There are three solution tanks (or work tanks) used on-site, labeled Tanks 7, 8 and 13. Each tank is connected to the facility filter press. One half gallon of each solution was collected from each tank in new plastic jars, as the solution was transferred to the filter press. The staff sampler wore the appropriate personal protective equipment to avoid cross contamination and maintain safety from exposure. The sample volumes were combined in a separate, new plastic bucket to make up a total composite volume of approximately 1.5 gallons. Samples bottles were filled directly from the bucket.

Duplicate back-up samples were collected of each drain's storm water and the treating solution, and kept refrigerated on site, to be used in the event of bottle breakage or the laboratory's need for additional sample.


4.0 Sample Transport and Analysis

Once all samples were collected, the full bottles were placed in coolers with ice. The sealed coolers were shipped over night to Columbia Analytical Services in Kelso, Washington via Greyhound lines. Once received at Columbia, the bottles designated for dioxin and furan analysis were shipped to Ionics laboratory in Houston, Texas. Phenol and PAH testing were completed in Kelso.

The following analytical methods were employed:

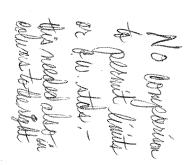
- EPA methods 3580B/8151 Modified for the analysis of 2,4,6-Trichlorophenol, total Tetrachlorophenols and Pentachlorophenol.
- EPA methods 3580A/8310 for the analysis for PAHs.
- EPA Method 1613 for the dioxin and furan analysis.

Table A of this report summarizes the analytical results, while Table B, per the request of Ecology, lists the results of the dioxin and furan lab spike tests. It should be noted that the dioxin and furan results of the first-round composite sample from drains 13 and 14 were "Non-Detect" for every single constituent. These results did not coincide with those received for the duplicate of that sample (labeled Drain #30), which indicated detectable levels of several constituents. Consequently, the back-up duplicate sample from those drains, was submitted to confirm whether dioxin was present or absent. The back-up results matched those of the Drain #30 sample, and therefore, have been included on Table A.

Table A: Dioxin/Furan Study on Stormwater and Treating Solution

J.H. Baxter & Co. - Arlington, WA

NPDES Permit #WA-0031429


Units: PPB for Stormwater, PPM for Treating Solution

Dioxins/Furans

		13&	:14		23	3	24	ļ.	25	5	Treating	Solution
Date	18-Sep-97	Duplicate	8-Jan-98	Duplicate	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98
Total TCDD	ND	0.0003	ND	ND	ND	ND	ND	0.0002	0.0002	ND	ND	ND
Total PeCDD	0.0028	0.0040	0.0018	0.0020	ND	0.0008	ND	0.0031	0.0027	0.0012	ND	0.0003
Total HxCDD	0.0604	0.0549	0.0789	0.0547	ND	0.0260	ND	0.0609	0.0362	0.0399	0.1250	0.1076
Total HpCDF	0.3607	0.2873	0.7461	0.6155	ND	0.1909	0.0025	0.3112	0.2150	0.1869	2.4613	20.0536
Total OCDD	1.1441	0.9859	4.0162	1.2925	ND	0.3944	0.0138	0.7494	0.6347	0.4786	0.6547	72.5483
Total TCDF	ND	0.0008	0.0003	0.0004	0.0005	ND	ND	ND	0.0005	0.0003	ND	ND
Total PeCDF	0.0087	0.0126	0.0122	0.0076	ND	0.0133	ND	0.0126	0.0087	0.0043	0.3540	0.0012
Total HxCDF	0.0982	0.0628	0.0994	0.0862	ND	0.0207	ND	0.0644	0.0376	0.0253	0.0306	1.4951
Total HpCDF	0.1680	0.1516	0.4199	0.3734	ND	0.0892	0.0009	0.1819	0.0861	0.0825	3.2488	23.7346
Total OCDD	0.1113	0.1202	0.5449	0.1848	ND	0.0678	0.0007	0.1132	0.0666	0.0646	0.1780	35.3426

Phenols

		13&	14		23	3	24	ļ	25	5	Treating	Solution
Date	18-Sep-97	Duplicate	8-Jan-98	Duplicate	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98
2,4,6-Trichlorophenol	ND	ND	ND	ND	<50	ND	<50	<5	<50	<5	<3000	<600
Total Tetrachlorophenols	2.30	2.50	4.00	5.10	<50	8.70	<50	10.00	<50	7.00	<6000	<600
Pentachlorophenol	74.00	88.00	130.00	140.00	720.00	250.00	780.00	550.00	340.00	180.00	<47000	<18000

Table A: Dioxin/Furan Study on Stormwater and Treating Solution

J.H. Baxter & Co. - Arlington, WA

NPDES Permit #WA-0031429

Units: PPB for Stormwater, PPM for Treating Solution

PAHs

		13&	:14		23	3	24	l	25	5	Treating	Solution
Date	18-Sep-97	Duplicate	8-Jan-98	Duplicate	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98	18-Sep-97	8-Jan-98
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.45	ND
Acenaphthylene	<3	ND	ND	ND	ND	ND	<11	ND	ND	ND	<0.1	ND
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.03	ND
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	1.39
Phenanthrene	0.2	0.2	2	ND	<0.4	ND	<0.5	ND	ND	ND	3.4	ND
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.03	ND
Fluoranthene	0.3	0.3	5.1	3.3	ND	ND	ND	ND	ND	ND	<0.08	ND
Pyrene	0.5	0.4	6.8	ND	ND	ND	ND	ND	ND	ND	<1.3	ND
Benzo(a)anthracene	ND	ND	0.9	1.1	ND	ND	ND	ND	ND	ND	<0.01	ND
Chrysene	0.2	0.2	1.2	1.6	ND	ND	ND	0.3	ND	ND	< 0.06	ND
Benzo(b)fluoranthene	0.6	0.3	1.4	1.9	ND	ND	ND	0.3	ND	ND	< 0.02	ND
Benzo(k)fluoranthene	0.1	0.1	0.6	0.8	ND	ND	ND	0.1	ND	ND	< 0.01	ND
Benzo(a)pyrene	0.1	0.1	1.3	1.6	ND	ND	ND	0.2	ND	ND	<0.01	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND
Benzo(ghi)perylene	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND	< 0.02	ND
Indeno(1,2,3-cd)pyrene	0.2	0.2	ND	1.2	ND	ND	ND	0.2	ND	ND	<0.01	ND

Table B: Dioxin/Furan Study on Stormwater and Treating Solution
J.H. Baxter & Co. - Arlington, WA
As Required by NPDES WA-0031429

Lab Spike Information

Coincident Sampling Date	9/18/97 (13	&14 only)	9/18/97 (All	others)	Date		
Labeled Compounds	Conc. (PPB)	% Rec.	Conc. (PPB)	% Rec.	Conc. (PPB)	% Rec.	
13C12-2,3,7,8-TCDD	0.0022	110.4%	0.0014	69.8%	0.0018	88.8	
13C12-1,2,3,7,8-PeCDD	0.0017	83.3%	0.0015	75.2%	0.0014	72.4	
13C12-1,2,3,4,7,8-HxCDD	0.0026	127.9%	0.0024	118.1%	0.0023	116.9	
13C12-1,2,3,6,7,8-HxCDD	0.0022	107.6%	0.0023	115.6%	0.0020	99.1	
13C12-1,2,3,4,6,7,8-HpCD	0.0017	60.3%	0.0012	59.2%	0.0013	65.1	
13C12-OCDD	0.0019	41.8%	0.0017	42.9%	0.0014	34.1	
	·						
13C12-2,3,7,8-TCDF	0.0022	108.1%	0.0020	101.7%	0.0019	93.4	
13C12-1,2,3,7,8-PeCDF	0.0020	99.7%	0.0022	110.5%	0.0019	94.4	
13C12-2,3,4,7,8-PeCDF	0.0017	83.9%	0.0018	90.0%	0.0016	80	
13C12-1,2,3,4,7,8-HxCDF	0.0024	121.1%	0.0022	111.6%	0.0022	111.7	
13C12-1,2,3,6,7,8-HxCDF	0.0020	100.5%	0.0021	106.2%	0.0019	96.5	
13C12-2,3,4,6,7,8-HxCDF	0.0019	95.4%	0.0020	101.0%	0.0019	96.8	
13C12-1,2,3,7,8,9-HxCDF	0.0016	78.9%	0.0015	75.1%	0.0017	84	
13C12-1,2,3,4,6,7,8-HpCD	0.0013	65.4%	0.0012	59.8%	0.0012	60.2	
13C12-1,2,3,4,7,8,9-HpCD	0.0010	51.3%	0.0010	49.5%	0.0011	57.2	

Mo J. S. on

gloricordry

w/in Q Q.

halds another

column w/info

	·		
·	Appendix A: NPDES ins	tructions for the Dioxin/Fu	ran report
			,

S6. SOLID WASTE DISPOSAL: (continued)

B. Leachate

The Permittee shall not permit leachate from their solid waste material to enter state ground or surface waters without providing all known, available, and reasonable methods of treatment, nor allow such leachate to cause any adverse effect on state ground or surface waters. The Permittee shall apply for a permit or permit modification as may be required for such discharges.

C. Solid Waste Control Plan

The Permittee shall submit a Solid Waste Control Plan to the Department no later than 180 days from the effective date of this permit for review. This Plan shall include all solid wastes with the exception of those solid wastes regulated by Chapter 173-303 WAC (Dangerous Waste Regulations). The Plan shall include at a minimum a description of the source, generation rate, and disposal methods of these solid wastes. This Plan shall not be at variance with any approved local solid waste management plan.

The Permittee shall comply with the Plan as submitted to the Department. Any proposed revision or modification of the submitted Solid Waste Control Plan must be submitted to the Department for review. The Permittee shall comply with any Solid Waste Control Plan modifications. The Solid Waste Control Plan shall be deemed approved upon submission to the Department unless notified to the contrary by the Department. The Permittee shall submit an update of the Solid Waste Control Plan with the application for permit renewal 180 days prior to the expiration date of the permit.

S7. DIOXIN AND FURAN STUDY

A. <u>Dioxin and Furan Analysis of Treating Solutions</u>

In the fourth year of the permit, the Permittee shall conduct chemical analyses of representative samples of PCP treating solutions and treated product area storm water for french drains numbered 13, 14, 23, 24, and 25. Only samples collected from french drains numbered 13 and 14 may be composited.

The Permittee shall conduct chemical analyses in accordance with protocols, monitoring requirements, and QA/QC procedures specified in this section. PCP treating solutions and treated product storage area storm water samples shall be analyzed for:

Chlorophenol;

2,4,6-Trichlorophenol 2,3,4,6-Tetrachlorophenol Pentachlorophenol

Page 18 of 28 Permit No. WA-003142-9

S7. DIOXIN AND FURAN STUDY (continued):

Polynuclear Aromatic Hydrocarbons;

Naphthalene Acenaphthene Phenanthrene

Fluoranthene Benzo(a)anthracene

Benzo(b)fluoranthene Benzo(a)pyrene Benzo(ghi)perylene Acenaphthylene

Flourene
Anthracene
Pyrene
Chrysene

Benzo(k)fluoranthene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene

Dioxins and Furans;

2,3,7,8-Tetrachlorodibenzo-p-dioxin

Tetrachlorodibenzo-p-dioxins

Pentachlorodibenzo-p-dioxins

Hexachlorodibenzo-p-dioxins

Heptachlorodibenzo-p-dioxins

Octachlorodibenzo-p-dioxins

Tetrachlorodibenzofurans

Pentachlorodibenzofurans

Hexachlorodibenzofurans

Heptachlorodibenzofurans

Octachlorodibenzofurans

B. Monitoring Requirements

1. Two representative grab samples of PCP treating solutions shall be analyzed for the compounds in S5.A. above. Samples shall be representative in age and concentration of treating solutions in use at the facility.

In the event that several different concentrations of PCP treating solutions are in use, a composite sample may be collected provided that it is representative of the average age of the solutions in use. The two samples shall be collected a minimum of two months apart. Sample collection, storage and analysis shall follow the protocols in S5.C. below.

2. Two grab samples of storm water runoff shall be collected from the treated wood storage yard from french drains numbered 13, 14, 23, 24, and 25. Only samples collected from french drains numbered 13 and 14 may be composited.

One of the samples shall be from the first measurable storm event (greater than 0.1 inches of rainfall) of the season, beginning in the fourth year. The storm season (in the fourth year) is defined, for the purposes of this permit, as September through August.

S7. DIOXIN AND FURAN STUDY (continued):

In the event that the first storm event of the season does not produce sufficient runoff to sample, the first storm event of the season producing sufficient runoff shall be sampled.

The second storm water grab sample shall be collected during the months of December, January or February (in the fourth year of this permit) and shall be collected from a discharge resulting from a storm event that is greater than 0.1 inches in magnitude and that occurs at least 48 hours from the previously measurable (greater than 0.1 inch rainfall) storm event. Both storm water grab samples shall be taken during the first 60 minutes of discharge. Sample collection, storage and analysis shall follow the protocols in S5.C. below.

3. The results of the Dioxin and Furan Study shall be submitted to the Department with the permit renewal application. The report shall include: quality assurance and quality control procedures for sample collection; transport and analysis; for storm water samples the magnitude and duration of the storm event sampled, the time since the last storm event and the magnitude of the last storm event.

C. Protocols

- 1. Sampling for dioxins and furans shall be in accordance with appendix B of the <u>USEPA/Paper Industry Cooperative Dioxin Screening Study</u> (EPA 440/1-88-025, March 1988).
- 2. In accordance with 40 CFR 122.41(j)(4), dioxins and furans shall be analyzed using either:

EPA Method 1613: Tetra- through Octa- chlorinated Dioxins and Furans by Isotope Dilution; or

NCASI Procedures for the Preparation and Isomer Specific Analysis of Pulp and Paper Industry Samples for 2,3,7,8-TCDD and 2,3,7,8-TCDF: Technical Bulletin No 551; or

an equivalent method approved in advance by the Department.

S8. SPILL PLAN

Within six months after the effective date of this permit, the Permittee shall submit to the Department a Spill Control Plan for the prevention, containment, and control of spills or unplanned discharges of: 1) oil and petroleum products,

·		•		
Appendix B: Origina	al data from Septe	ember 18, 1997 :	sampling	

October 30, 1997

Service Request No: K9706849

Caroline Martin 1700 El Camino Real PO Box 5902 San Mateo, CA 94402-0902

Re: Drain Water

Dear Caroline:

Enclosed are the results of the sample(s) submitted to our laboratory on September 19, 1997. For your reference, these analyses have been assigned our service request number K9706849.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 220.

Respectfully submitted,

Columbia Analytical Services, Inc.

Teena Jones

Project Chemist

TJ/bf

Page 1 of

cc: Tom Orthmere (J.H. Baxter & Co.)

2/0/E77 7000 . For 140/414 41

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client:

J.H.Baxter & Company

Project:

Drain Water

Service Request No.:

K9706849

Date Received:

19-Sept-97

Sample Matrix:

Water and Oil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Due to matrix interference the phenol surrogate in samples Drain 23, Drain 24, Drain 25, and Treat Soln 1, the aromatic surrogate in Treat Soln 1 were diluted below detection limits.

All EPA recommended holding times have been met for analyses in this sample delivery group.

Samples were submitted to Ionics International for Dioxin and Furan analysis and those results are included in Appendix A.

Analytical Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9706849

Date Collected: 9/18/97

Date Received: 9/19/97

Date Extracted: NA

Inorganic Parameters
Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	pH (units) 150.1 - 9/18/97	Solids, Total Suspended (TSS) 160.2 5 9/25/97
Sample Name	Lab Code		
Drains 13/44	K9706849-001	7.97	1020
Drain 23	K9706849-002	6.94	113
Drain 24	K9706849-003	6.80	260
in 25	K9706849-004	7.06	260
rain 30	K9706849-005	7.71	890
Drains 10-22	K9706849-006	7.09	640
Method Blank	K9706849-MB	-	ND

Approved By:

1013197

Page No.:

Analytical Report

Cuent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9706849

Date Collected: 9/18/97 Date Received: 9/19/97

Date Extracted: 10/3/97 Date Analyzed: 10/3/97

Oil and Grease EPA Method 413.1 Units: mg/L (ppm)

Sample Name	Lab Code	MRL	Result
Drains 13/44	K9706849-001	5	ND
Drain 23	K9706849-002	5	ND
Drain 24	K9706849-003	5	ND
Drain 25	K9706849-004	5	ND
Drain 30	K9706849-005	5	ND
Drains 10-22	K9706849-006	5	10
Method Blank	K971003-MB	5	ND

Approved By:	The	Date:	16/17
			•

Analytical Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9706849

Date Collected: 9/18/97 Date Received: 9/19/97

Date Extracted: 9/22/97

Polynuclear Aromatic Hydrocarbons EPA Methods 3520B/610 Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Drains 13/44 K9706849-001 10/2/97	Drain 23 K9706849-002 10/3/97	Drain 24 K9706849-003 10/3/97
Analyte	MRL			
Naphthalene	1	ND	ND	ND
Acenaphthylene	1	<3(B)	ND	<11(B)
Acenaphthene	1	ND	ND	ND
Fluorene	0.2	ND	ND	ND
enanthrene	0.1	0.2	<0.4(B)	<0.5(B)
athracene	0.1	ND	ND	ND
Fluoranthene	0.2	0.3	ND	ND
Pyrene	0.2	0.5	0.2	ND
Benz(a)anthracene	0.1	ND	ND	ND
Chrysene	0.1	0.2	ND	ND
Benzo(b)fluoranthene	0.2	0.3	ND	ND
Benzo(k)fluoranthene	0.1	0.1	ND	ND
Benzo(a)pyrene	0.1	0.1	ND	ND
Dibenz(a,h)anthracene	0.1	ND	ND	ND
Benzo(g,h,i)perylene	0.2	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.1	0.2	ND	ND

The MRL is elevated because of matrix interferences. В

Approved By:

3522/120594 06849SVG.JS1 - 1-3 10/8/97

Analytical Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

06849SVG.JS1 - 4-6 10/8/97

Service Request: K9706849

Date Collected: 9/18/97 Date Received: 9/19/97

Date Extracted: 9/22/97

Polynuclear Aromatic Hydrocarbons **EPA Methods 3520B/610** Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Drain 25 K9706849-004 10/3/97	Drain 30 K9706849-005 10/3/97	Drains 10-22 K9706849-006 10/3/97
Analyte	MRL			
Naphthalene	1	ND	ND	ND
Acenaphthylene	1	ND	ND	ND
Acenaphthene	1	ND	ND	ND
Fluorene	0.2	ND	ND	ND
enanthrene	0.1	ND	0.2	ND
nthracene	0.1	ND	ND	ND
Fluoranthene	0.2	ND	0.3	ND
Pyrene	0.2	ND	0.4	ND
Benz(a)anthracene	0.1	ND	ND	ND
Chrysene	0.1	ND	0.2	ND
Benzo(b)fluoranthene	0.2	ND	0.3	ND
Benzo(k)fluoranthene	0.1	ND	0.1	ND
Benzo(a)pyrene	0.1	ND	0.1	ND
Dibenz(a,h)anthracene	0.1	ND	ND	ND
Benzo(g,h,i)perylene	0.2	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.1	ND	0.2	ND

Date: ___ Approved By: 3522/120594

00006

Analytical Report

Jient:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9706849

Date Collected: NA Date Received: NA Date Extracted: 9/22/97

Polynuclear Aromatic Hydrocarbons EPA Methods 3520B/610 Units: ug/L (ppb)

Method Blank Sample Name: Lab Code: K970922-WB Date Analyzed: 10/2/97

MRL Analyte ND Naphthalene 1 ND 1 Acenaphthylene ND Acenaphthene 1 0.2 ND Fluorene ND henanthrene 0.1 ND 0.1 nthracene ND 0.2 Fluoranthene 0.2 ND Pyrene Benz(a)anthracene 0.1 ND 0.1 ND Chrysene ND Benzo(b)fluoranthene 0.2 Benzo(k)fluoranthene 0.1 ND ND 0.1 Benzo(a)pyrene ND Dibenz(a,h)anthracene 0.1 0.2 ND Benzo(g,h,i)perylene ND 0.1 Indeno(1,2,3-cd)pyrene

10/9/97 Date: Approved By: 3\$22/120594

06849SVGJS1 - MB 10/8/97

Analytical Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Oil

Service Request: K9706849

Date Collected: 9/18/97 Date Received: 9/19/97 Date Extracted: 10/1/97

Polynuclear Aromatic Hydrocarbons EPA Methods 3580A/8310 Units: mg/Kg (ppm)

	Î	le Name: .ab Code: Analyzed:	Treating Soln I K9706849-007(C) 10/3/97	Method Blank K971001-OB 10/3/97
Analyte	MRL			
Naphthalene	10		<450(D)	ND
Acenaphthylene	10	•	<100	ND
Acenaphthene	10		<30(D)	ND
Fluorene	2		1300	ND
[©] henanthrene	1		3400	ND
Anthracene	1		<30(D)	ND
Fluoranthene	2		<80(D)	ND
Pyrene	2		<1300(D)	ND
Benz(a)anthracene	1		<10	ND
Chrysene	1		<60(D)	ND
Benzo(b)fluoranthene	2		<20	ND
Benzo(k)fluoranthene	1		<10	ND
Benzo(a)pyrene	1		<10	ND
Dibenz(a,h)anthracene	1		<10	ND
Benzo(g,h,i)perylene	2		<20	ND
Indeno(1,2,3-cd)pyrene	1		<10	ND

 \mathbf{C}

The MRL is elevated because the sample required diluting.

D

The MRL is elevated because of matrix interferences and because the sample required diluting.

Approved By:

06849SVG.JS2 - 1,MB 10/9/97

QA/QC Report

client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9706849

Date Collected: 9/18/97

Date Received: 9/19/97

Date Extracted: 9/22/97 Date Analyzed: 10/2-3/97

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons EPA Methods 3520B/610

Canada Nama	Lab Code	Percent Recovery p-Terphenyl
Sample Name	Lab Code	p-respion;
Drains 13/44	K9706849-001	52
Drain 23	K9706849-002	53
Drain 24	K9706849-003	36
Drain 25	K9706849-004	36
Drain 30	K9706849-005	51
Drains 10-22	K9706849-006	58
Method Blank	K970922-WB	97

CAS Acceptance Limits: 35-110

Approved By: SUR 1/120594 06849SVG.JS1 - SUR I 10/8/97

QA/QC Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Oil

Service Request: K9706849

Date Collected: 9/18/97 Date Received: 9/19/97

Date Extracted: 10/1/97 Date Analyzed: 10/3/97

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons EPA Methods 3580A/8310

Sample Name	Lab Code	Percent Recovery p-Terphenyl
Treating Soln I	K9706849-007	NA
Method Blank	K971001-OB	94

CAS Acceptance Limits: 35-110

NA

Not Applicable; see case narrative.

Approved By: SURI/120594 06849SVG.JS2 - SUR1 10/9/97

PP-0-010

Analytical Report

waent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9706849

Date Collected: 9/18/97

Date Received: 9/19/97
Date Extracted: 9/25/97

Date Analyzed: 9/26/97

Chlorinated Phenols EPA Methods 8151 Modified Units: µg/L (ppb) and of

	Analyte: Method Reporting Limit:	2,4,6-Trichlorophenol 0.5	Total Tetrachlorophenols 0.5	Pentachlorophenol 0.5
Sample Name	Lab Code			
Drains 13/44	K9706849-001	ND	2.3	74
Drain 23	K9706849-002	<50(C)	<50(C)	720
Drain 24	K9706849-003	<50(C)	<50(C)	78 0
Drain 25	K9706849-004	<50(C)	<50(C)	340
Drain 30	K9706849-005	ND	2.5	88
ains 10-22	K9706849-006	ND	2.7	18
thod Blank	K970925-WB	ND	ND	ND

The MRL is elevated because the sample required diluting.

Approved By:

 \mathbf{C}

3A/1086849SVG.BT1 - p-t-tri 10/3/97

Date: /0/6/

00011

Analytical Report

Chent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Oil

Service Request: K9706849

Date Collected: 9/18/97
Date Received: 9/19/97

Date Extracted: 10/1/97 Date Analyzed: 10/6/97

Chlorinated Phenols
EPA Methods 3580B/8151 Modified

Units: mg/Kg (ppm)

	Analyte: Method Reporting Limit:	2,4,6-Trichlorophenol 0.005	Total Tetrachlorophenols 0.005	Pentachlorophenol 0.005
Sample Name	Lab Code			
Treating Soln I Method Blank	K9706849-007 K971001-SB	<3000(C) ND	<6000(C) ND	47000 ND

The MRL is elevated because the sample required diluting.

3A/102094 06849SVG.BT2 - &t&tri 10/16/97

 \mathbf{c}

QA/QC Report

ુiient:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9706849

Date Collected: 9/18/97

Date Received: 9/19/97

Date Extracted: 9/25/97 Date Analyzed: 9/26/97

Surrogate Recovery Summary **Chlorinated Phenols** EPA Methods 8151 Modified

		Percent Recovery
Sample Name	Lab Code	4-Bromo-2,6-dichlorophenol
Drains 13/44	K9706849-001	88
Drain 23	K9706849-002	NA
Drain 24	K9706849-003	NA
Drain 25	K9706849-004	NA
Drain 30	K9706849-005	91
Drains 10-22	K9706849-006	88
Method Blank	K970925-WB	84

CAS Acceptance Limits: 42-122

QA/QC Report

.ent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Oil

Service Request: K9706849

Date Collected: 9/18/97

Date Received: 9/19/97

Date Extracted: 10/1/97
Date Analyzed: 10/6/97

Surrogate Recovery Summary
Chlorinated Phenols
EPA Methods 3580B/8151 Modified

Percent Recovery

Sample Name

Lab Code

4-Bromo-2,6-dichlorophenol

Treating Soln I Method Blank K9706849-007

NA

K971001-SB

36

CAS Acceptance Limits: NA

Approved By:

068495VG.BT2 - sur 10/16/97

______Date: 10/21/97

Appendix A

INTERNATIONAL, INC.

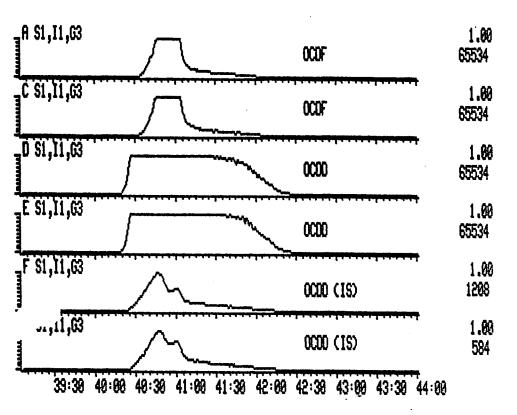
10655 Richmond Avenue, Suite 150 Houston, Texas 77042 (713) 972-1037 Fax: (713) 784-1152 (800) 4-DIOXIN

October 20, 1997

Ionics International Project 97-1037 CAS Project K97-6849 CAS P.O. 1885

This project consisted of five water samples and an oil sample.

The oil sample was found to contain analytes at concentrations well above the upper end of the linear calibration range, some of them high enough to saturate the mass spectrometer preamplifier. The most abundant analyte was OCDD, and a set of chromatograms illustrating the effect is enclosed. In addition to saturating the preamplifier, the native OCDD made an isotopic contribution to OCDD internal standard channels (elevating the areas of the internal standard peaks). Thus, the reported values for OCDD and OCDF are low because (i) the upper portion of the peak could not be integrated, and (ii) the peak areas for the OCDD internal standards were elevated. We estimate that the total dioxin/furan concentration is in excess of 15 ppm, and suggest that dilution and reanalysis of the oil extract is unlikely to afford valid data.


Similarly, sample "Drain 25" had a total dioxin/furan content above 1 ppb and we do not recommend that dilution and reanalysis be performed.

The oil sample was batched with a Method Blank and a Lab Spike. The Method Blank was analyzed immediately before the oil sample, and the Lab Spike immediately after. There was some carry-over from the sample to the Lab Spike, so reported values for the analytes are elevated.

Please note that the concentrations of analytes in the oil sample are reported as ppt (even though the units for the blank and lab spike are ppq). This is not an error; some of the numbers expressed in ppq would not fit in our reporting spreadsheet cells.

treat sol

27 17-0CT-97 15:09 70-2508 (EI+) Sus:1613 R: 441.7428 B: 442.9728 C: 443.7399 D: 457.7377 E: 459.7348 :11-73-6

Columbia Analytical Services

PROJECT: 97-1073 FILE: A10671

LAB ID.: 11-73-1

PCDD/PCDF SUMMARY REPORT

PO: 1885

SAMPLE: Drains13/44

	SAMPLE	DATA		QUALITY ASS	URANCE DA	TA
SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limits
2,3,7,8-TCDD	ND	2.4	ND	193.6	97%	50-15 0
1,2,3,7,8-PeCDD	ND	17.8	ND	964.0	96%	50-150
1,2,3,4,7,8-HxCDD	ND	21.3	ND	1107.2	111%	50-150
1,2,3,6,7,8-HxCDD	ND	18.0	ND	1043.4	104%	50-150
1,2,3,7,8,9-HxCDD	ND	20.0	ND	1021.7	102%	50-150
1,2,3,4,6,7,8-HpCDD	ND	29.2	ND	1236.9	124%	5 0-150
OCDD	ND	12.7	ND	1882.1	94%	50-150
2,3,7,8-TCDF	ND	7.4	ND	271.0	135%	50-150
1,2,3,7,8-PeCDF	ND	21.7	ND	1108.9	111%	50-150
2,3,4,7,8-PeCDF	ND	13.5	ND	1188.8	119%	50-150
1,2,3,4,7,8-HxCDF	ND	25 .1	ND	1006.0	101%	50-150
1,2,3,6,7,8-HxCDF	ND	15.5	ND	1004.6	100%	50-150
2,3,4,6,7,8-HxCDF	ND	. 13.4	ND	1057.7	106%	50-150
1,2,3,7,8,9-HxCDF	ND	29.4	ND	978.1	98%	50-150
1,2,3,4,6,7,8-HpCDF	ND	13.3	ND	1181.6	118%	50-150
1,2,3,4,7,8,9-HpCDF	ND	21.2	ND	1100.8	110%	50-150
OCDF	ND	17.2	ND	1867.7	93%	50-150
4						

ONC (PPC	TOTAL ANALYTES	DL (PPQ)	Definitions:	
,			CONC -	The concentration, given in parts per trillion (ppt) or
ND	TOTAL TCDD	2.4		parts per quadrition (ppq).
ND	TOTAL PeCDD	17.8	DL —	The detection limit, given in parts per trillion
ND	TOTAL HXCDD	21.3		(ppt), parts per quadrillion (ppq), or in picograms (pg).
ND	TOTAL HpCDD	 29.2	BLANK	The concentration of the blank.
ND	TOTAL OCDD	12.7	MS (PPQ)	The concentration of Matrix Spike recovered.
			MS (%) -	The percent recovery of the Matrix Spike.
ND	TOTAL TCDF	7.4	QC Limits —	lonics International, Inc. uses these advisory limits.
ND	TOTAL PeCDF	21.7	ND -	(Non-Detect) The concentration of the analyte is less
ND	TOTAL HXCDF	29.4		than the detection limit.
ND	TOTAL HpCDF	21.2	NR -	(Not Reportable) The spike concentration is less than
ND	TOTAL OCDF	17.2		the concentration in the unspiked matrix sample.

TOTAL DIOXINS/FURANS: ND

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

Phone: (713) 972-1037 Fax: (713) 784-1152 (700) 18

Columbia Analytical Services

PROJECT: 97-1073 FILE:

A10671 11-73-1

PCDD/PCDF ANALYSIS REPORT

PO: 1885

SAMPLE: Drains13/44

PROJECT ID/P.O.: SAMPLE ORIGIN: SAMPLE MATRIX:

SAMPLE SIZE:

LAB ID.:

1685 NA Water 1

DATE COLLECTED: 9/18/97 DATE RECEIVED: 9/25/97 DATE EXTRACTED: 9/25/97 DATE ANALYZED: DATE PROCESSED: 10/20/97

ACCESSION NO: 11-73-1 RETCHECK: A10668 CONCAL: A10669 ICAL: A050797

METHOD: 1613

DL (PPQ) SPECIFIC ANALYTES CONC (PPQ) RATIO RT (min) FLAGS 2,3,7,8-TCDD U 17.8 U 1,2,3,7,8-PeCDD ND U ND 21.3 1,2,3,4,7,8-HxCDD U 18.0 ND 1,2,3,6,7,8-HxCDD U ND 20.0 1,2,3,7,8,9-HxCDD ND U 1,2,3,4,6,7,8-HpCDD 29.2 U OCDD ND 12.7 2,3,7,8-TCDF ND 7.4 U ND U 1,2,3,7,8-PeCDF 21.7 Ü ND 13.5 2,3,4,7,8-PeCDF U ND 25.1 1,2,3,4,7,8-HxCDF U ND 15.5 1,2,3,6,7,8-HxCDF ND u 2,3,4,6,7,8-HxCDF 13.4 U 1,2,3,7,8,9-HxCDF ND 29.4 13.3 ND U 1,2,3,4,6,7,8-HpCDF Ü ND 21.2 1,2,3,4,7,8,9-HpCDF ND 17.2 U **OCDF**

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	2.4	_	υ
TOTAL PeCDD	0	ND	17.8		U
TOTAL HxCDD	0	ND	21.3	-	U
TOTAL HpCDD	0	ND	29.2	_	U
TOTAL TCDF	.0	ND	7.4		U
TOTAL PeCDF	0	ND	-21.7	_	U
TOTAL HxCDF	0	ND	29.4	-	U
TOTAL HpCDF	0	ND	21.2	_	U

DATA REVIEWER:

10/20/97

Columbia Analytical Services

PROJECT: 97-1073 FILE: A10671 LAB ID.: 11-73-1

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885 SAMPLE: Drains13/44

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-1
AMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
AMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
AMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED	10/20/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	2168.9	108.4	0.76	22:29	•
13C12-1,2,3,7,8-PeCDD	1481.7	74.1	1.54	27:05	•
13C12-1,2,3,4,7,8-HxCDD	1673.3	83.7	1.35	31:36	
13C12-1,2,3,6,7,8-HxCDD	1542.7	77.1	1.32	31:44	•
13C12-1,2,3,4,6,7,8-HpCDD	911.0	45.5	1.08	36:13	-
13C12-OCDD	733.8	18.3	0.82	40:43	ΥΥ
13C12-2,3,7,8-TCDF	2150.1	107.5	0.81	21:51	-
13C12-1,2,3,7,8-PeCDF	1975.1	8.89	1.64	25:52	
13C12-2,3,4,7,8-PeCDF	1684.4	84.2	1.61	26:42	
13C12-1,2,3,4,7,8-HxCDF	1680.8	84.0	0.53	30:33	-
13C12-1,2,3,6,7,8-HxCDF	1494.8	74.7	0.52	30:42	-
13C12-2,3,4,6,7,8-HxCDF	1403.4	70.2	0.52	31:28	•
13C12-1,2,3,7,8,9-HxCDF	1631.8	81.6	0.50	32:29	
13C12-1,2,3,4,6,7,8-HpCDF	799.2	40.0	0.42	34:50	
13C12-1,2,3,4,7,8,9-HpCDF	876.9	43.8	0.46	36:51	-

NTERNAL STANDARDS	RATIO	RT	FLAGS
. •			
13C12-1,2,3,4-TCDD	0.80	22:18	-
13C12-1,2,3,7,8,9-HxCDD	1.35	32:10	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	1007.3	125.9	22:29	•
370171000				

Flags

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- The analyte was identified in the analysis at a secondary distrion factor.
- RO lons used for identification are out of ratio
- 6 The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal-to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

 The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per triffion (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
 - RT -- The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

Phone: (713) 972-1037 Fax: (713) 784-1152

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

FILE: LAB ID.: A10671 11-73-1

SAMPLE: Drains13/44

PROJECT ID/P.O.: DATE COLLECTED: 9/16/97 ACCESSION NO: 11-73-1 SAMPLE ORIGIN: NA DATE RECEIVED: 9/25/97 RETCHECK: A10668 SAMPLE MATRIX: DATE EXTRACTED: 9/25/97 CONCAL: A10669 SAMPLE SIZE: DATE ANALYZED: 10/10/97 ICAL: A050797 DATE PROCESSED: 10/20/97 METHOD: 1613

SPECIFIC ANALYTES	CONC (PPQ)		TEF	TEF CONC (PPQ)		
2,3,7,8-TCDD	ND	x	1		-	
1,2,3,7,8-PeCDD	ND	×	0.5	<u> </u>	•	
1,2,3,4,7,8-HxCDD	ND	×	0.1	E	•	
1,2,3,6,7,8-HxCDD	ND	×	0.1	=	•	
1,2,3,7,8,9-HxCDD	ND	×	0.1		•	
1,2,3,4,6,7,8-HpCDD	ND	x	0.01	E	•	
OCDD	ND	×	0.001	=	-	
2,3,7,8-TCDF	ND	x .	0.1		•	
1,2,3,7,8-PeCDF	ND	×	0.05	=	•	
2,3,4,7,8-PeCDF	ND	x	0.5		-	
1,2,3,4,7,8-HxCDF	ND	x	0.1	=	•	
1,2,3,6,7,8-HxCDF	ND ND	x	0.1	=	-	
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	•	
1,2,3,7,8,9-HxCDF	ND	×	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	ND	×	0.01	=	•	
1,2,3,4,7,8,9-HpCDF	ND	×	0.01	E	•	
OCDF	ND	X	0.001	£	•	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

PROJECT: 97-1073 FILE: A10674

LAB ID.: 11-73-2

PCDD/PCDF SUMMARY REPORT

PO: 1885

SAMPLE: Drain 23

	SAMPLE	DATA		QUALITY ASSI	URANCE DA	TA
SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limite
2,3,7,8-TCDD	ND	2.4	ND	193.6	97%	E0 150
1,2,3,7,8-PeCDD	ND	17.8	ND	964.0	96%	50-150 50-150
1,2,3,4,7,8-HxCDD	ND	21.3	ND	1107.2	111%	
1,2,3,6,7,8-HxCDD	ND	18.0	ND	1043.4	104%	50-150 50-150
1,2,3,7,8,9-HxCDD	ND	20.0	ND	1021.7	102%	50-150
1,2,3,4,6,7,8-HpCDD	ND	29.2	ND	1236.9	124%	50-150 50-150
OCDD	ND	12.7	ND	1882.1	94%	50-150
2,3,7,8-TCDF	256.2	7.4	ND	271.0	135%	50.450
1,2,3,7,8-PeCDF	ND	21.7	ND	1108.9	111%	50-150
2,3,4,7,8-PeCDF	ND	13.5	ND	1188.8	119%	50-150
1,2,3,4,7,8-HxCDF	ND	25.1	ND	1006.0	101%	50-150
1,2,3,6,7,8-HxCDF	ND	15.5	ND	1004.6	100%	50-150
2,3,4,6,7,8-HxCDF	ND	13.4	ND	1057.7	106%	50-150
1,2,3,7,8,9-HxCDF	ND	29.4	ND	978.1	98%	50-150
1,2,3,4,6,7,8-HpCDF	ND	13.3	ND	1181.6		50-150
1,2,3,4,7,8,9-HpCDF	ND	21.2	ND	1100.8	118%	50-150
OCDF	ND	17.2	ND	1867.7	110% _. 93%	50-150 50-150

TOTAL ANALYTES	CONC (PPQ)	DL (PPQ)	Definitions:
TOTAL TCDD TOTAL PeCDD TOTAL HxCDD TOTAL HpCDD	ND ND ND ND	2.4 17.8 21.3 - 29.2	CONC — The concentration, given in parts per trillion (ppt) or parts per quadrillion (ppq). DL — The detection limit, given in parts per trillion (ppt), parts per quadrillion (ppq), or in picograms (pg). BLANK — The concentration of the blank.
TOTAL OCDD	ND	12.7	MS (PPQ) — The concentration of Matrix Spike recovered. MS (%) — The percent recovery of the Matrix Spike.
TOTAL TCDF TOTAL PeCDF TOTAL HxCDF TOTAL HpCDF TOTAL OCDF	480.4 ND ND ND ND	7.4 21.7 29.4 21.2 17.2	QC Limits — tonics international, inc. uses these advisory limits. ND — (Non-Detect) The concentration of the analyte is less than the detection limit. NR — (Not Reportable) The spike concentration is less than the concentration in the unspiked matrix sample.

TOTAL DIOXINS/FURANS: 480.37 PPQ

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 25.62 PPQ

PROJECT: 97-1073 FILE:

LAB ID.:

A10674 11-73-2 PCDD/PCDF ANALYSIS REPORT

PO: 1885

SAMPLE: Drain 23

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-2
SAMPLE ORIGIN:	NA	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	ND	2.4	•		U
1,2,3,7,8-PeCDD	ND	17.8	•		U
1,2,3,4,7,8-HxCDD	ND	21.3	•		U
1,2,3,6,7,8-HxCDD	ND	18.0			U
1,2,3,7,8,9-HxCDD	ND	20.0	•		U
1,2,3,4,6,7,8-HpCDD	ND	29.2	•		U
OCDD	ND	12.7	•		U
2,3,7,8-TCDF	256.2	7.4	0.69	22:18	
1,2,3,7,8-PeCDF	ND	21.7	•		U
2,3,4,7,8-PeCDF	ND	13.5	•		U
1,2,3,4,7,8-HxCDF	ND	25.1	•		U
1,2,3,6,7,8-HxCDF	ND	15.5	•		U
2,3,4,6,7,8-HxCDF	ND	13.4	•		U
1,2,3,7,8,9-HxCDF	ND	29.4	•		U
1,2,3,4,6,7,8-HpCDF	ND	13.3	•		U
1,2,3,4,7,8,9-HpCDF	ND	21.2	-		U
OCDF	ND	17.2	•		U

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	2.4	-	U
TOTAL PeCDD	. 0	ND	17.8	_	U
TOTAL HXCDD	0	ND	21.3	_	U
TOTAL HpCDD	0	ND	29.2	_	U
TOTAL TCDF	.5	480.4	7.4	_	
TOTAL PeCDF	0	ND	_21.7	-	U
TOTAL HxCDF	0	ND	29.4	_	U
TOTAL HpCDF	0_	ND	21.2		U
DATA REVIEWER:	gun M	Bun	10/20/97		

PROJECT: 97-1073 FILE: A10674

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: 11-73-2

SAMPLE: Drain 23

PROJECT ID/P.O.:	1885		DATE COLLECTED:	9/16/97	ACCESSION NO:	11-73-2
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
			DATE PROCESSED	10/20/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1385.7	69.3	0.82	22:54	-
13C12-1,2,3,7,8-PeCDD	952.8	47.6	1.44	27:22	-
13C12-1,2,3,4,7,8-HxCDD	3767.1	188.4	1.15	31:56	Y
13C12-1,2,3,6,7,8-HxCDD	2829.3	141.5	1.36	32:03	
13C12-1,2,3,4,6,7,8-HpCDD	1415.6	70.8	1.23	36:17	
13C12-OCDD	1286.9	32.2	0.94	40:49	-
13C12-2,3,7,8-TCDF	1447.6	72.4	0.82	22:17	
13G12-1,2,3,7,8-PeCDF	1167.2	58.4	1.57	26:12	•
13C12-2,3,4,7,8-PeCDF	854.0	42.7	1.67	26:59	•
13C12-1,2,3,4,7,8-HxCDF	4094.7	204.7	0.53	30:51	Y
13C12-1,2,3,6,7,8-HxCDF	3169.2	158.5	0.56	31:00	Y
13C12-2,3,4,6,7,8-HxCDF	2495.8	124.8	0.51	31:48	•
13C12-1,2,3,7,8,9-HxCDF	2735.8	136.8	0.48	32:43	-
13C12-1,2,3,4,6,7,8-HpCDF	1389.0	69.4	0.44	34:56	•
13C12-1,2,3,4,7,8,9-HpCDF	1442.1	72.1	0.42	36:54	-

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.84	22:35	-
13C12-1,2,3,7,8,9-HxCDD	1.31	32:27	•

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	653.1	81.6	22:55	-

Flags

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- The analyte was identified in the analysis at a secondary dilution factor.
- RO lons used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the eignal-to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

 Y — The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per trillion (ppt).
 - DL The detection first based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in pioograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the
 - confirmation and quantitation ions.

 RT The retention time of an analyte.
 - HO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

FILE: LAB ID.: A10674 11-73-2

SAMPLE: Drain 23

PROJECT ID/P.O.:	1885		DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-2
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	CONC (PPQ)		TEF CONC (PPQ)		
2,3,7,8-TCDD	ND	x	1	= '	•	
1,2,3,7,8-PeCDD	ND	×	0.5	E	-	
1,2,3,4,7,8-HxCDD	ND	x	0.1	· E	•	
1,2,3,6,7,8-HxCDD	ND	x	0.1	=	•	
1,2,3,7,8,9-HxCDD	ND	×	0.1	=	•	
1,2,3,4,6,7,8-HpCDD	ND	x	0.01	=	•	
OCDD	ND	x	0.001	E .	-	
2,3,7,8-TCDF	256.2	x	0.1	=	25.62	
1,2,3,7,8-PeCDF	ND	x	0.05	=	•	
2,3,4,7,8-PeCDF	· ND	x	0.5	=	•	
1,2,3,4,7,8-HxCDF	ND	x	0.1	=	•	
1,2,3,6,7,8-HxCDF	ND	x	0.1	=	•	
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	•	
1,2,3,7,8,9-HxCDF	ND	×	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	ND	x	0.01	=	•	
1,2,3,4,7,8,9-HpCDF	ND	x	0.01	=	-	_
OCDF	ND	×	0.001	=	•	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 25.62 PPQ

PROJECT: 97-1073 FILE:

LAB ID.:

A10675 11-73-3 PCDD/PCDF SUMMARY REPORT

PO: 1885

SAMPLE: Drain 24

	SAMPLE	DATA		QUALITY ASS	URANCE DA	TA
SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limits
2,3,7,8-TCDD	ND	2.4	ND	193.6	97%	50-150
1,2,3,7,8-PeCDD	ND	17.8	ND	964.0	96%	50-150
1,2,3,4,7,8-HxCDD	ND	21.3	ND	1107.2	111%	50-150
1,2,3,6,7,8-HxCDD	ND	18.0	ND	1043.4	104%	50-150
1,2,3,7,8,9-HxCDD	ND	20.0	ND	1021.7	102%	50-150
1,2,3,4,6,7,8-HpCDD	1683.7	29.2	ND	1236.9	124%	50-150
OCDD	13814.0	12.7	ND	1882.1	94%	50-150
2,3,7,8-TCDF	ND	7.4	ND	271.0	135%	50-150
1,2,3,7,8-PeCDF	ND ND	21.7	ND	1108.9	111%	5 0-150
2,3,4,7,8-PeCDF	ND	13.5	ND	1188.8	119%	50-150
1,2,3,4,7,8-HxCDF	ND	25.1	- ND	1006.0	101%	50-150
1,2,3,6,7,8-HxCDF	ND	15.5	ND	1004.6	100%	50-150
2,3,4,6,7,8-HxCDF	ND	13.4	ND	1057.7	106%	50-150
1,2,3,7,8,9-HxCDF	ND	29.4	ND	978.1	98%	50-150
1,2,3,4,6,7,8-HpCDF	202.0	13.3	ND	1181.6	118%	50-150
1,2,3,4,7,8,9-HpCDF	13.6	21.2	ND	1100.8	110%	50-150
OCDF	742.0	17.2	ND	1867.7	93%	50-150

TOTAL ANALYTES	CONC (PPQ)	DL (PPQ)	Definitions:	
			CONC —	The concentration, given in parts per trillion (ppt) or
TOTAL TCDD	ND	2.4		parts per quadrillion (ppq).
TOTAL PeCDD	ND	17.8	DL —	The detection limit, given in parts per trillion
TOTAL HXCDD	ND	21.3		(ppt), parts per quadrillion (ppq), or in picograms (pg).
TOTAL HpCDD	2526.3	29.2	BLANK —	The concentration of the blank.
TOTAL OCDD	13814.0	12.7	MS (PPQ) —	The concentration of Matrix Spike recovered.
			MS (%)	The percent recovery of the Matrix Spike.
TOTAL TCDF	ND	7.4	QC Limits —	tonics International, Inc. uses these advisory limits.
TOTAL PeCDF	ND	21.7	ND —	(Non-Detect) The concentration of the analyte is less
TOTAL HXCDF	ND	29.4	·	than the detection limit.
TOTAL HpCDF	851.2	21.2	NR —	(Not Reportable) The spike concentration is less than
TOTAL OCDF	742.0	17.2		the concentration in the unspiked matrix sample.
		•		

TOTAL DIOXINS/FURANS: 17933.58 PPQ

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 33.55 PPQ

PROJECT: 97-1073 FILE:

A10675

PCDD/PCDF ANALYSIS REPORT

PO: 1885

LAB ID.: 11-73-3 SAMPLE: Drain 24

PROJECT ID/P.O.: DATE COLLECTED: 9/18/97 ACCESSION NO: 11-73-3 1885 9/25/97 SAMPLE ORIGIN: NA DATE RECEIVED: RETCHECK: A10668 SAMPLE MATRIX: Water DATE EXTRACTED: 9/25/97 CONCAL: A10669 10/10/97 SAMPLE SIZE: DATE ANALYZED: ICAL: A050797 DATE PROCESSED: 10/20/97 METHOD: 1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	ND	2.4	•		U
1,2,3,7,8-PeCDD	ND	17.8	•		U
1,2,3,4,7,8-HxCDD	ND	21.3	•		U
1,2,3,6,7,8-HxCDD	ND	18.0	•	· · ·	U
1,2,3,7,8,9-HxCDD	ND	20.0	•		U
1,2,3,4,6,7,8-HpCDD	1683.7	29.2	1.06	36:05	
OCDD	13814.0	12.7	0.89	40:35	
2,3,7,8-TCDF	ND	7.4	•		U
1,2,3,7,8-PeCDF	ND	21.7	•		U
2,3,4,7,8-PeCDF	ND	13.5	•		U
1,2,3,4,7,8-HxCDF	ND .	25.1	•		Ü
1,2,3,6,7,8-HxCDF	ND	15.5	-		U
2,3,4,6,7,8-HxCDF	ND	13.4	-		U
1,2,3,7,8,9-HxCDF	ND	29.4	-		U
1,2,3,4,6,7,8-HpCDF	202.0	13.3	0.96	34:38	
1,2,3,4,7,8,9-HpCDF	13.6	21.2	0.41	36:45	J
OCDF	742.0	17.2	0.88	40:47	

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	2.4		U
TOTAL PeCDD	0	ND	17.8	_	U
TOTAL HXCDD	0	ND	21.3	_	U
TOTAL HpCDD	2	2526.3	29.2	_	
TOTAL TCDF	· 0	ND	7.4		U
TOTAL PeCDF	0	ND	- 21.7		U
TOTAL HxCDF	0	ND	29.4	-	U
TOTAL HpCDF	3	851.2,	21.2	_	
	~ ·				

DATA REVIEWER:

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073 FILE: A10675

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: 11-73-3

SAMPLE: Drain 24

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-3
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1735.1	86.8	0.79	22:21	•
13C12-1,2,3,7,8-PeCDD	1388.6	69.4	1.68	26:57	-
13C12-1,2,3,4,7,8-HxCDD	1948.0	97.4	1.42	31:20	-
13C12-1,2,3,6,7,8-HxCDD	1380.2	69.0	1.17	31:27	
13C12-1,2,3,4,6,7,8-HpCDD	941.3	47.1	1.04	36:04	
13C12-OCDD	1266.3	31.7	0.93	40:33	•
13C12-2,3,7,8-TCDF	1893.5	94.7	0.79	21:44	•
13C12-1,2,3,7,8-PeCDF	1578.6	78.9	1.54	25:46	•
13C12-2,3,4,7,8-PeCDF	1517.7	75.9	1.69	26:33	
13C12-1,2,3,4,7,8-HxCDF	1943.3	97.2	0.53	30:18	-
13C12-1,2,3,6,7,8-HxCDF	1545.8	77.3	0.53	30:27	-
13C12-2,3,4,6,7,8-HxCDF	1840.8	92.0	0.50	31:10	
13C12-1,2,3,7,8,9-HxCDF	1539.8	77.0	0.56	32:16	•
13C12-1,2,3,4,6,7,8-HpCDF	905.2	45.3	0.46	34:37	
13C12-1,2,3,4,7,8,9-HpCDF	888.9	44.4	0.48	36:42	•

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.79	22:11	-
13C12-1,2,3,7,8,9-HxCDD	1.34	31:54	•

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	833.6	104.2	22:22	

Flage

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection fimit.
- The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- RO lons used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the foss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

 The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parte per trillion (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quedrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the
 - confirmation and quantitation ions.

 RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the relention time window.
- % REC The percent recovery of the indicated standard

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

A10675

SAMPLE: Drain 24

FILE: LAB ID.: 11-73-3

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-3
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

PECIFIC ANALYTES	CONC (PPQ)		TEF	TE	F CONC (PPQ)	
2,3,7,8-TCDD	ND	×	1	=	•	
1,2,3,7,8-PeCDD	ND	x	0.5	=	•	
1,2,3,4,7,8-HxCDD	ND	x	0.1	=	-	
1,2,3,6,7,8-HxCDD	ND	x	0.1	E	•	
1,2,3,7,8,9-HxCDD	ND	×	0.1	-	•	
1,2,3,4,6,7,8-HpCDD	1683.7	x	0.01	=	16.84	
OCDD	13814.0	x	0.001	E	13.81	
2,3,7,8-TCDF	ND	×	0.1	2	•	
1,2,3,7,8-PeCDF	ND	x	0.05	E .		
2,3,4,7,8-PeCDF	ND	×	0.5	Ε		
1,2,3,4,7,8-HxCDF	ND	x	0.1	ε		
1,2,3,6,7,8-HxCDF	ND	x	0.1	F		
2,3,4,6,7,8-HxCDF	ND	x	0.1	. =	•	
1,2,3,7,8,9-HxCDF	ND .	x	0.1	=	-	
1,2,3,4,6,7,8-HpCDF	202.0	×	0.01	=	2.02	
1,2,3,4,7,8,9-HpCDF	13.6	x	0.01		0.14	
OCDF	742.0	×	0.001	=	0.74	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 33.55 PPQ

PROJECT: 97-1073

PCDD/PCDF SUMMARY REPORT

PO: 1885

SAMPLE: Drain 25

FILE: A10676 LAB ID.: 11-73-4

	SAMPLE	DATA		QUALITY ASSI	URANCE DA	TA
SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limits
2,3,7,8-TCDD	4 6.1	2.4	ND	193.6	97%	50-150
1,2,3,7,8-PeCDD	870.4	17.8	ND	964.0	96%	50-150
1,2,3,4,7,8-HxCDD	2414.1	21.3	ND .	1107.2	111%	50-150
1,2,3,6,7,8-HxCDD	5712.0	18.0	ND	1043.4	104%	50-150
1,2,3,7,8,9-HxCDD	5185.8	20.0	ND	1021.7	102%	50-150
1,2,3,4,6,7,8-HpCDD	115711.1	29.2	ND	1236.9	124%	50-150
OCDD	634659.3	12.7	ND	1882.1	94%	50-150
2,3,7,8-TCDF	50.4	7.4	ND	271.0	135%	50-150
1,2,3,7,8-PeCDF	74.8	21.7	ND	1108.9	- 111%	50-150
2,3,4,7,8-PeCDF	161.0	13.5	ND	1188.8	119%	50 -150
1,2,3,4,7,8-HxCDF	867.5	25.1	ND	1006.0	101%	50-150
1,2,3,6,7,8-HxCDF	650.9	15.5	ND	1004.6	100%	50-150
2,3,4,6,7,8-HxCDF	1588.4	13.4	ND	1057.7	106%	50-150
1,2,3,7,8,9-HxCDF	ND	29.4	ND	978.1	98%	50-150
1,2,3,4,6,7,8-HpCDF	19466.1	13.3	ND	1181.6	118%	50-15 0
1,2,3,4,7,8,9-HpCDF	1631.6	21.2	ND	1100.8	110%	50-150
OCDF	66649.5	17.2	ND	1867.7	93%	50-150

	Definitions:	DL (PPQ)	CONC (PPQ)	TOTAL ANALYTES
ntration, given in parts per trillion (ppt) or	CONC 1			
uadrillion (ppq).		2.4	196.3	TOTAL TCDD
ion limit, given in parts per trillion	DL 1	17.8	2714.9	TOTAL PeCDD
per quadrillion (ppq), or in picograms (pç	(21.3	36206.8	TOTAL HxCDD
ntration of the blank.	BLANK —	29.2	214952.8	TOTAL HpCDD
ntration of Matrix Splike recovered.	MS (PPQ) —	12.7	634659.3	TOTAL OCDD
nt recovery of the Matrix Spike.	M\$ (%) —			
mational, Inc. uses these advisory limits.	QC Limits	7.4	457.5	TOTAL TCDF
ct) The concentration of the analyte is les	ND —	21.7	8676.0	TOTAL PeCDF
staction limit.	,	29.4	37607.8	TOTAL HxCDF
rtable) The spike concentration is less the	NR —	21.2	86145.4	TOTAL HPCDF
ntration in the unspiked matrix sample.		17.2	66649.5	TOTAL OCDF

TOTAL DIOXINS/FURANS: 1088266.34 PPQ

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 4281.84 PPQ

PROJECT: 97-1073 FILE:

A10676 11-73-4 PCDD/PCDF ANALYSIS REPORT

PO: 1885

SAMPLE: Drain 25

PROJECT ID/P.O.: SAMPLE ORIGIN: SAMPLE MATRIX: SAMPLE SIZE:

LAB ID.:

1885 NA Water DATE COLLECTED: 9/18/97 9/25/97 DATE RECEIVED: DATE EXTRACTED: 9/25/97 10/10/97 DATE ANALYZED: DATE PROCESSED: 10/20/97

ACCESSION NO: 11-73-4 RETCHECK: A10668 CONCAL: A10669 ICAL: A050797 METHOD: 1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAGS
					
2,3,7,8-TCDD	46.1	2.4	0.74	22:25	
1,2,3,7,8-PeCDD	870.4	17.8	1.77	27:02	
1,2,3,4,7,8-HxCDD	2414.1	21.3	1.20	31:24	
1,2,3,6,7,8-HxCDD	5712.0	18.0	1.22	31:32	
1,2,3,7,8,9-HxCDD	5185.8	20.0	1.24	31:59	
1,2,3,4,6,7,8-HpCDD	115711.1	29.2	1.02	36:08	E
OCDD	634659.3	12.7	0.92	40:39	E
2,3,7,8-TCDF	50.4	7.4	0.86	21:49	
1,2,3,7,8-PeCDF	74.8	21.7	1.33	25:50	
2,3,4,7,8-PeCDF	161.0	13.5	1.89	26:38	
1,2,3,4,7,8-HxCDF	867.5	25.1	1.18	30:23	
1,2,3,6,7,8-HxCDF	650.9	15.5	1.08	30:32	
2,3,4,6,7,8-HxCDF	1588.4	13.4	1.10	31:13	
1,2,3,7,8,9-HxCDF	ND	29.4	•		U
1,2,3,4,6,7,8-HpCDF	19466.1	13.3	1.02	34:43	
1,2,3,4,7,8,9-HpCDF	1631.6	21.2	1.06	36:45	
OCDF	66649.5	17.2	0.89	40:50	E

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	6	196.3	2.4		· · · · · · · · · · · · · · · · · · ·
TOTAL PeCDD	8	2714.9	17.8	_	
TOTAL HxCDD	6	36206.8	21.3	-	Ε
TOTAL HpCDD	2	214952.8	29.2	_	E
TOTAL TCDF	. 9	457.5	7.4	_	
TOTAL PeCDF	11	8676.0	~ 21.7	_	
TOTAL HXCDF	9	37607.8	29.4		E
TOTAL HpCDF	4	86145.4	21.2	_	Ε

DATA REVIEWER:

PROJECT: 97-1073 A10676

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

SAMPLE: Drain 25

FILE: LAB ID.: 11-73-4

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-4
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

LABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1747.2	87.4	0.80	22:24	•
13C12-1,2,3,7,8-PeCDD	1388.9	69.4	1.52	27:00	-
13C12-1,2,3,4,7,8-HxCDD	1977.9	98.9	1.33	31:23	-
13C12-1,2,3,6,7,8-HxCDD	1393.8	69.7	1,31	31:31	
13C12-1,2,3,4,6,7,8-HpCDD	855.5	42.8	1.02	36:07	
13C12-OCDD	1266.0	31.7	1.08	40:38	-
13C12-2,3,7,8-TCDF	1848.9	92.4	0.82	21:48	•
13C12-1,2,3,7,8-PeCDF	1633.1	81.7	1.59	25:48	•
13C12-2,3,4,7,8-PeCDF	1373.0	68.6	1.63	26:37	-
13C12-1,2,3,4,7,8-HxCDF	2220.1	111.0	0.52	30:23	
13C12-1,2,3,6,7,8-HxCDF	1519.2	76.0	0.52	30:31	
13C12-2,3,4,6,7,8-HxCDF	1639.6	82.0	0.52	31:15	<u> </u>
13C12-1,2,3,7,8,9-HxCDF	1684.8	84.2	0.53	32:21	
13C12-1,2,3,4,6,7,8-HpCDF	924.6	46.2	0.50	34:42	-
13C12-1,2,3,4,7,8,9-HpCDF	885.2	44.3	0.48	36:45	•

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.77	22:14	•
13C12-1,2,3,7,8,9-HxCDD	1.33	31:59	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	804.2	100.5	22:25	
	•			

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- RO lons used for identification are out of ratio
- 5 The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

 \mathbf{Y} — The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per trillion (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
 - RT The retention time of an analyte
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

Phone: (713) 972-1037 Fax: (713) 784 19187 3 2

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

FILE: LAB ID.: A10676 11-73-4

SAMPLE: Drain 25

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-4
SAMPLE ORIGIN:	NA	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	CONC (PPQ)		TEF CONC (PPQ)		
2,3,7,8-TCDD	46.1	x	1	£	46.09	
1,2,3,7,8-PeCDD	870.4	x	0.5	*	435.2	
1,2,3,4,7,8-HxCDD	2414.1	x	0.1	*	241.41	
1,2,3,6,7,8-HxCDD	5712.0	×	0.1	=	571.2	
1,2,3,7,8,9-HxCDD	5185.8	x	0.1	E	518.58	
1,2,3,4,6,7,8-HpCDD	115711.1	x	0.01	E	1157.11	
OCDD	634659.3	х	0.001	=	634.66	
2,3,7,8-TCDF	50.4	×	0.1	×	5.04	
1,2,3,7,8-PeCDF	74.8	x	0.05	=	3.74	
2,3,4,7,8-PeCDF	161.0	x	0.5	=	80.5	
1,2,3,4,7,8-HxCDF	867.5	x	0.1	=	86.75	
1,2,3,6,7,8-HxCDF	650.9	x	0.1	=	65.09	
2,3,4,6,7,8-HxCDF	1588.4	x	0.1	=	158.84	
1,2,3,7,8,9-HxCDF	ND	x	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	19466.1	x	0.01	=	194.66	
1,2,3,4,7,8,9-HpCDF	1631.6	х	0.01	=	16.32	
OCDF	66649.5	x	0.001	=	66.65	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 4281.84 PPQ

PROJECT: 97-1073 FILE:

LAB ID.:

SPECIFIC ANALYTES

A10677 11-73-5 PCDD/PCDF SUMMARY REPORT

QUALITY ASSURANCE DATA

PO: 1885

SAMPLE: Drain 30

SAMPLE DATA

CONC (PPQ)

DL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limits
2.4	ND	193.6	97%	50-150
17.8	ND	964.0	96%	50-150
21.3	ND	1107.2	111%	50-150
			40.00	

2,3,7,8-TCDD	64.3	2.4	ND	193.6	97%	50-150
1,2,3,7,8-PeCDD	1417.1	17.8	ND	964.0	96%	50-150
1,2,3,4,7,8-HxCDD	3583.4	21.3	ND	1107.2	111%	50-150
1,2,3,6,7,8-HxCDD	8317.3	18.0	ND	1043.4	104%	50-150
1,2,3,7,8,9-HxCDD	9938.8	20.0	ND	1021.7	102%	50-150
1,2,3,4,6,7,8-HpCDD	154404.3	29.2	ND	1236.9	124%	50-150
OCDD	985885.0	12.7	ND	1882.1	94%	50-150
2,3,7,8-TCDF	50.7	7.4	ND	271.0	135%	50-150
1,2,3,7,8-PeCDF	72.7	21.7	ND	1108.9	111%	50-150
2,3,4,7,8-PeCDF	171.4	13.5	ND	1188.8	119%	50-150
1,2,3,4,7,8-HxCDF	1316.2	25.1	ND	1006.0	101%	50-1 50
1,2,3,6,7,8-HxCDF	1851.7	15.5	ND	1004.6	100%	50-150
2,3,4,6,7,8-HxCDF	2787.3	13.4	ND	1057.7	106%	5 0-150
1,2,3,7,8,9-HxCDF	ND	29.4	ND	978.1	98%	50-150
1,2,3,4,6,7,8-HpCDF	35497.9	13.3	ND	1181.6	118%	50-150
1,2,3,4,7,8,9-HpCDF	2902.1	21.2	ND	1100.8	110%	50-150
OCDF	120244.1	17.2	ND	1867.7	93%	5 0-150

TOTAL ANALYTES	CONC (PPQ)	DL (PPQ)	Definitions:
			CONC — The concentration, given in parts per trillion (ppt) or
TOTAL TCDD	320.3	2.4	parts per quadrillion (ppq).
TOTAL PeCDD	3984.7	17.8	DL — The detection limit, given in parts per trillion
TOTAL HxCDD	54914.2	21.3	(ppt), parts per quadrillion (ppq), or in picograms (pg).
TOTAL HpCDD	287283.2	29.2	BLANK — The concentration of the blank.
TOTAL OCDD	985885.0	12.7	MS (PPQ) — The concentration of Matrix Splke recovered.
			MS (%) — The percent recovery of the Matrix Spike.
TOTAL TCDF	775.7	7.4	QC Limits — tonics international, inc. uses these advisory limits.
TOTAL PeCDF	12565.3	21.7	ND — (Non-Detect) The concentration of the analyte is less
TOTAL HxCDF	62807.4	29.4	than the detection limit.
TOTAL HpCDF	151552.9	21.2	NR — (Not Reportable) The spike concentration is less than
TOTAL OCDF	120244.1	17.2	the concentration in the unspiked matrix sample.

TOTAL DIOXINS/FURANS: 1680332.82 PPQ

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 6680.95 PPQ

PROJECT: 97-1073 FILE: A10677 LAB ID.: 11-73-5 PCDD/PCDF ANALYSIS REPORT

PO: 1885

SAMPLE: Drain 30

PROJECT ID/P.O.:	1885		DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-5
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	64.3	2.4	0.86	22:30	
1,2,3,7,8-PeCDD	1417.1	17.8	1.76	27:05	
1,2,3,4,7,8-HxCDD	3583.4	21.3	1.34	31:33	
1,2,3,6,7,8-HxCDD	8317.3	18.0	1.26	31:40	
1,2,3,7,8,9-HxCDD	9938.8	20.0	1.26	32:06	
1,2,3,4,6,7,8-HpCDD	154404.3	29.2	1.02	36:11	Ę
OCDD	985885.0	12.7	0.89	40:43	E
2,3,7,8-TCDF	50.7	7.4	0.90	21:53	
1,2,3,7,8-PeCDF	72.7	21.7	1.66	25:52	
2,3,4,7,8-PeCDF	171.4	13.5	1.96	26:41	
1,2,3,4,7,8-HxCDF	1316.2	25.1	1.36	30:29	
1,2,3,6,7,8-HxCDF	1851.7	15.5	1.21	30:39	
2,3,4,6,7,8-HxCDF	2787.3	13.4	1.43	31:20	
1,2,3,7,8,9-HxCDF	ND	29.4	•		U
1,2,3,4,6,7,8-HpCDF	35497.9	13.3	1.09	34:46	E
1,2,3,4,7,8,9-HpCDF	2902.1	21.2	1.09	36:49	<u> </u>
OCDF	120244.1	17.2	0.90	40:54	E

NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
6	320.3	2.4		
8	3984.7	17.8	-	
8	54914.2	21.3	-	E
2	287283.2	29.2		E
. 9	775.7	7.4		
7	12565.3	- 21.7	_	
8	62807.4	29.4	-	E
4	151552.9	21.2	_	E
	6 8 8 2	6 320.3 8 3984.7 8 54914.2 2 287283.2 9 775.7 7 12565.3 8 62807.4	6 320.3 2.4 8 3984.7 17.8 8 54914.2 21.3 2 287283.2 29.2 9 775.7 7.4 7 12565.3 - 21.7 8 62807.4 29.4	6 320.3 2.4 — 8 3984.7 17.8 — 8 54914.2 21.3 — 2 287283.2 29.2 — 9 775.7 7.4 — 7 12565.3 21.7 — 8 62807.4 29.4 —

DATA REVIEWER:

10/20/97

PROJECT: 97-1073 FILE: A10677

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: 11-73-5

SAMPLE: Drain 30

PROJECT ID/P.O.:	1885		DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-5
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

LABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1811.9	90.6	0.82	22:29	
13C12-1,2,3,7,8-PeCDD	1129.1	56.5	1.46	27:04	
13C12-1,2,3,4,7,8-HxCDD	1540.1	77.0	1.32	31:32	
13C12-1,2,3,6,7,8-HxCDD	1153.5	57.7	1.33	31:39	
13C12-1,2,3,4,6,7,8-HpCDD	699.8	35.0	1.17	36:11	•
13C12-OCDD	1017.1	25.4	1.13	40:42	•
13C12-2,3,7,8-TCDF	1897.0	94.9	0.81	21:51	•
13C12-1,2,3,7,8-PeCDF	1357.6	67.9	1.54	25:51	•
13C12-2,3,4,7,8-PeCDF	1228.0	61.4	1.75	26:40	
13C12-1,2,3,4,7,8-HxCDF	1652.6	82.6	0.53	30:29	
13C12-1,2,3,6,7,8-HxCDF	1302.5	65.1	0.54	30:37	-
13C12-2,3,4,6,7,8-HxCDF	1267.9	63.4	0.53	31:23	•
13C12-1,2,3,7,8,9-HxCDF	1438.0	71.9	0.50	32:25	•
13C12-1,2,3,4,6,7,8-HpCDF	704.2	35.2	0.39	34:45	-
13C12-1,2,3,4,7,8,9-HpCDF	758.3	37.9	0.47	36:48	•

NTERNAL STANDARDS	RATIO	RT	FLAGS
•			
13C12-1,2,3,4-TCDD	0.78	22:18	•
13C12-1,2,3,7,8,9-HxCDD	1.32	32:06	

CONC (PPQ)	% REC.	RT	FLAGS
847.8	. 106.0	22:30	•
		847.8 106.0	847.8 106.0 22:30

Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- The analyte was identified in the analysis at a secondary clistical factor
- RO lons used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to tha loss of COCI dki not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadritio (ppq) or parts per trition (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
 - RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC -- The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

SAMPLE: Drain 30

FILE: A10677 LAB ID.: 11-73-5

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-5
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
	•	DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)		TEF	T	EF CONC (PPQ)	
2,3,7,8-TCDD	64.3	x	1	=	64.34	
1,2,3,7,8-PeCDD	1417.1	x	0.5	=	708.57	
1,2,3,4,7,8-HxCDD	3583.4	X.	0.1	=	358.34	
1,2,3,6,7,8-HxCDD	8317.3	x	0.1	=	831.73	
1,2,3,7,8,9-HxCDD	9938.8	x	0.1	=	993.88	·
1,2,3,4,6,7,8-HpCDD	154404.3	x	0.01	=	1544.04	
OCDD	985885.0	X	0.001		985.89	
2,3,7,8-TCDF	50.7	x	0.1	=	5.07	
1,2,3,7,8-PeCDF	72.7	×	0.05		3.63	
2,3,4,7,8-PeCDF	171.4	x	0.5	=	85.7	
1,2,3,4,7,8-HxCDF	1316.2	x	0.1	=	131.62	
1,2,3,6,7,8-HxCDF	1851.7	x	0.1	=	185.17	
2,3,4,6,7,8-HxCDF	2787.3	x	0.1	=	278.73	
1,2,3,7,8,9-HxCDF	ND	×	0.1	*	•	
1,2,3,4,6,7,8-HpCDF	35497.9	×	0.01	=	354.98	
1,2,3,4,7,8,9-HpCDF	2902.1	x	0.01	=	29.02	
OCDF	120244.1	x	0.001	=	120.24	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 6680.95 PPQ

PROJECT: 97-1073 FILE: A10727

LAB ID.:

A10727 11-73-6 PCDD/PCDF SUMMARY REPORT

PO: 1885

SAMPLE: Treating Soln. 1

044401 = 04=4	
SAMPLE DATA	QUALITY ASSURANCE DATA

					511171110E DA	
SPECIFIC ANALYTES	CONC (PPT)	DL (PPT)	BLANK (PPT)	LS (PPQ)	LS (%)	QC Limits
2,3,7,8-TCDD	ND	0.5	ND			50-150
1,2,3,7,8-PeCDD	ND	0.5	ND			50-150
1,2,3,4,7,8-HxCDD	ND	1.1	ND			50-150
1,2,3,6,7,8-HxCDD	52317.4	1.2	ND			50-150
1,2,3,7,8,9-HxCDD	3631.6	1.0	ND			50-150
1,2,3,4,6,7,8-HpCDD	912299.3	0.7	ND			50-150
OCDD	654658.3	3.9	ND			50-150
2,3,7,8-TCDF	ND	0.4	ND			50-150
1,2,3,7,8-PeCDF	326358.9	1.0	ND			50-150
2,3,4,7,8-PeCDF	27627.3	0.7	ND			50-150
1,2,3,4,7,8-HxCDF	13073.5	0.7	ND			50-150
1,2,3,6,7,8-HxCDF	ND	0.7	ND			50-150
2,3,4,6,7,8-HxCDF	17494.2	1.2	ND			50-150
1,2,3,7,8,9-HxCDF	ND	2.4	ND			50-150
1,2,3,4,6,7,8-HpCDF	566689.2	4.5	ND			50-150
1,2,3,4,7,8,9-HpCDF	88726.9	1.5	ND			50-150
OCDF	178012.9	4.4	ND			50-150

	Definitions:	DL (PPT)	CONC (PPT)	TOTAL ANALYTES
The concentration, given in parts per trillion (ppt) or	CONC -			
parts per quadrillion (ppq).		0.5	ND	TOTAL TCDD
The detection limit, given in parts per trillion	DL —	0.5	ND	TOTAL PeCDD
(ppt), parts per quadrillion (ppq), or in picograms (pg).		1.2	124951.7	TOTAL HXCDD
The concentration of the blank.	BLANK	0.7	2561306.9	TOTAL HPCDD
The concentration of Matrix Spike recovered.	MS (PPQ) -	3.9	654658.3	TOTAL OCDD
The percent recovery of the Matrix Spike.	MS (%) —			
lonics International, Inc. uses these advisory limits.	QC Limits —	0.4	ND	TOTAL TCDF
(Non-Detect) The concentration of the analyte is less	ND -	1.0	353986.1	TOTAL PeCDF
than the detection limit.		2.4	30567.7	TOTAL HXCDF
(Not Reportable) The spike concentration is less than	NR	4.5	3248820.5	TOTAL HpCDF
the concentration in the unspiked matrix sample.		4.4	178012.9	TOTAL OCDF

TOTAL DIOXINS/FURANS: 7152304.17 PPT

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 55293.06 PPT

PROJECT: 97-1073 FILE: A10727 LAB ID.: 11-73-6 PCDD/PCDF ANALYSIS REPORT

PO: 1885

SAMPLE: Treating Soln. 1

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	ACCESSION NO:	11-73-6
SAMPLE ORIGIN:	NA	DATE RECEIVED:	9/25/97	RETCHECK:	A10721
SAMPLE MATRIX:	Oil	DATE EXTRACTED:	9/29/97	CONCAL:	A10722
SAMPLE SIZE:	1.08	g DATE ANALYZED:	10/17/97	ICAL:	A050797
	•	DATE PROCESSED:	10/19/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPT)	DL (PPT)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	ND	0.5	-		υ
1,2,3,7,8-PeCDD	ND	0.5	-		U
1,2,3,4,7,8-HxCDD	ND	1.1	•		U
1,2,3,6,7,8-HxCDD	52317.4	1.2	1.24	31:20	E
1,2,3,7,8,9-HxCDD	3631.6	1.0	1.28	31:48	
1,2,3,4,6,7,8-HpCDD	912299.3	0.7	0.99	35:58	E
OCDD	654658.3	3.9	0.95	40:30	E
2,3,7,8-TCDF	ND ND	0.4	•		U
1,2,3,7,8-PeCDF	326358.9	1.0	1.01	34:32	E
2,3,4,7,8-PeCDF	27627.3	0.7	0.99	36:38	E
1,2,3,4,7,8-HxCDF	13073.5	0.7	1.21	30:14	
1,2,3,6,7,8-HxCDF	ND	0.7	-		U
2,3,4,6,7,8-HxCDF	17494.2	1.2	1.17	31:02	
1,2,3,7,8,9-HxCDF	ND	2.4	-		U
1,2,3,4,6,7,8-HpCDF	566689.2	4.5	1.01	34:32	E
1,2,3,4,7,8,9-HpCDF	88726.9	1.5	0.99	36:38	E
OCDF	178012.9	4.4	0.92	40:48	E

TOTAL ANALYTES	NO	CONC (PPT)	DL (PPT)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	0.5	_	U
TOTAL PeCDD	0	ND	0.5	-	U
TOTAL HxCDD	5	124951.7	1.2	<u> </u>	E
TOTAL HpCDD	2	2561306.9	0.7		Е
TOTAL TCDF	. 0	. ND	0.4	<u></u>	U
TOTAL PeCDF	0	353986.1	` 1.0	_	E
TOTAL HxCDF	2	30567.7	2.4	-	E
TOTAL HpCDF	3	3248820.5	4.5	_	E
			<u> </u>		

DATA REVIEWER:

سے 10/20/97

telet, sol. 5 pp 11 0/F

PROJECT: 97-1073 FILE: A10727

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: 11-73-6

SAMPLE: Treating Soln. 1

PROJECT ID/P.O.:	1885	DATE COLLECTED:	9/18/97	_ ACCESSION NO:	11-73-6
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	9/25/97	RETCHECK:	A10721
SAMPLE MATRIX:	Oil	DATE EXTRACTED:	9/29/97	CONCAL:	A10722
SAMPLE SIZE:	1.08 g	DATE ANALYZED:	10/17/97	ICAL:	A050797
		DATE PROCESSED:	10/19/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPT)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	391.7	21.2	0.79	22:26	Y
13C12-1,2,3,7,8-PeCDD	414.1	22.4	1.63	26:55	Υ
13C12-1,2,3,4,7,8-HxCDD	761.4	41.1	1.37	31:12	•
13C12-1,2,3,6,7,8-HxCDD	699.4	37.8	1.34	31:19	•
13C12-1,2,3,4,6,7,8-HpCDD	1010,3	54.6	1.13	36:00	
13C12-OCDD	31599.8	853.2	1.86	40:47	Y
13C12-2,3,7,8-TCDF	235.5	12.7	0.82	21:51	Y
13C12-1,2,3,7,8-PeCDF	502.4	27.1	1.45	25:46	•
13C12-2,3,4,7,8-PeCDF	307.6	16.6	1.52	26:32	Y
13C12-1,2,3,4,7,8-HxCDF	780.5	42.1	0.57	30:13	-
13C12-1,2,3,6,7,8-HxCDF	618.6	33.4	0.54	30:21	•
13C12-2,3,4,6,7,8-HxCDF	334.3	18.1	0.58	31:04	Υ.
13C12-1,2,3,7,8,9-HxCDF	472.5	25.5	0.55	32:10	•
13C12-1,2,3,4,6,7,8-HpCDF	747.0	40.3	1.16	34:32	
13C12-1,2,3,4,7,8,9-HpCDF	313.4	16.9	0.61	36:38	Y

NTERNAL STANDARDS	RATIO	RT	FLAGS
. •			
13C12-1,2,3,4-TCDD	0.78	22:15	_
13C12-1,2,3,7,8,9-HxCDD	1.36	31:47	-

CLEANUP STANDARD	CONC (PPT)	% REC.	RT	FLAGS
37CH-TCDD	150.6	20.3	22:27	Y

Flage:

- U The compound was analyzed for but not detected at or above the detection limit.
- J -- The analyte was detected at concentrations between the calibrated range and the detection limit.
- The analyte was detected at concentrations greater than the calibrated range.
- B -- The analyte was found in the associated blank.
- D -- The analyte was identified in the analysis at a secondary
- RO lons used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCOD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- χ An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per trillion (ppt).
 - DL. The detection limit based on a 2.5:1 signal-to-noise criterts, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
 - RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

PO: 1885

FILE: LAB ID.: A10727 11-73-6

SAMPLE: Treating Soln. 1

PROJECT ID/P.O.: DATE COLLECTED: ACCESSION NO: 11-73-6 SAMPLE ORIGIN: N/A DATE RECEIVED: 9/25/97 RETCHECK: A10721 SAMPLE MATRIX: DATE EXTRACTED: 9/29/97 CONCAL: A10722 SAMPLE SIZE: 1.08 DATE ANALYZED: 10/17/97 ICAL: A050797 DATE PROCESSED: METHOD: 1613 10/19/97

SPECIFIC ANALYTES	CONC (PPT)		TEF		EF CONC (PPT)	
2,3,7,8-TCDD	ND	x	1	8	•	
1,2,3,7,8-PeCDD	ND	x	0.5	E	•	
1,2,3,4,7,8-HxCDD	ND	x	0.1	E	•	
1,2,3,6,7,8-HxCDD	52317.4	x	0.1	E	5231.74	
1,2,3,7,8,9-HxCDD	3631.6	x	0.1	=	363.16	
1,2,3,4,6,7,8-HpCDD	912299.3	x	0.01		9122.99	
OCDD	654658.3	×	0.001	=	654.66	
2,3,7,8-TCDF	ND	x	0.1	E	•	
1,2,3,7,8-PeCDF	326358.9	x	0.05	F	16317.94	
2,3,4,7,8-PeCDF	27627.3	x	0.5	=	13813.63	
1,2,3,4,7,8-HxCDF	13073.5	x	0.1	E	1307.35	
1,2,3,6,7,8-HxCDF	. ND	x	0.1	=	•	
2,3,4,6,7,8-HxCDF	17494.2	x	0.1	=	1749.42	
1,2,3,7,8,9-HxCDF	ND	x	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	566689.2	x	0.01	=	5666.89	
1,2,3,4,7,8,9-HpCDF	88726.9	x	0.01	=	887.27	
OCDF	178012.9	x	0.001	E	178.01	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 55293.06 PPT

PROJECT: 97-1073

PCDD/PCDF ANALYSIS REPORT

PO: 1885

FILE:

A10670

SAMPLE: Method Blank

LAB ID.: DFBLK B3-104

PROJECT ID/P.O.:	1885	DATE COLLECTED:	N/A	ACCESSION NO:	DFBLK B3-104
SAMPLE ORIGIN:	NA	DATE RECEIVED:	NA	RETCHECK:	A10668
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	ND	2.4	•		U
1,2,3,7,8-PeCDD	ND	17.8	-		U
1,2,3,4,7,8-HxCDD	ND	21.3	•		U
1,2,3,6,7,8-HxCDD	ND	18.0	•		U
1,2,3,7,8,9-HxCDD	ND	20.0	•		U
1,2,3,4,6,7,8-HpCDD	ND	29.2	-		U
OCDD	ND	12.7	•		U
2,3,7,8-TCDF	ND	7.4	•		U
1,2,3,7,8-PeCDF	ND	21.7	•		U
2,3,4,7,8-PeCDF	ND	13.5	•		U
1,2,3,4,7,8-HxCDF	ND	25.1	-		U
1,2,3,6,7,8-HxCDF	ND	15.5	•		U
2,3,4,6,7,8-HxCDF	ND	13.4	•		U
1,2,3,7,8,9-HxCDF	ND	29.4	-		U
1,2,3,4,6,7,8-HpCDF	ND	13.3	-	· · · · · · · · · · · · · · · · · · ·	U
1,2,3,4,7,8,9-HpCDF	ND	21.2	•	· · · · · · · · · · · · · · · · · · ·	U
OCDF	, ND	17.2	•		U

NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
0	ND	2.4		U
0	ND	17.8		U
0	ND	21.3		U
0	ND	29.2	_	U
0	ND	7.4	_	U
0	ND	` 21.7	_	U
0	ND	29.4	_	U
0	ND	21.2		U
	0 0 0 0	0 ND	0 ND 2.4 0 ND 17.8 0 ND 21.3 0 ND 29.2 0 ND 7.4 0 ND 21.7 0 ND 29.4	0 ND 2.4 — 0 ND 17.8 — 0 ND 21.3 — 0 ND 29.2 — 0 ND 7.4 — 0 ND 21.7 — 0 ND 29.4 —

DATA REVIEWER:

.10/20/97

PROJECT: 97-1073 FILE:

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.:

A10670 **DFBLK B3-104**

SAMPLE: Method Blank

ACCESSION NO: DFBLK B3-104 DATE COLLECTED: N/A PROJECT ID/P.O.: 1885 RETCHECK: A10668 DATE RECEIVED: NA SAMPLE ORIGIN: N/A CONCAL: A10669 DATE EXTRACTED: 9/25/97 SAMPLE MATRIX: Water ICAL: A050797 DATE ANALYZED: 10/10/97 SAMPLE SIZE: DATE PROCESSED: 10/20/97 METHOD: 1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1506.6	75.3	0.79	22:21	•
13C12-1,2,3,7,8-PeCDD	1598.8	79.9	1.62	26:55	-
13C12-1,2,3,4,7,8-HxCDD	2022.8	101.1	1.32	31:17	-
13C12-1,2,3,6,7,8-HxCDD	2037.4	101.9	1.31	31:24	•
13C12-1,2,3,4,6,7,8-HpCDD	1324.6	66.2	1.18	36:01	-
13C12-OCDD	2801.1	70.0	0.89	40:30	•
13C12-2,3,7,8-TCDF	1981.4	99.1	0.79	21:45	
13C12-1,2,3,7,8-PeCDF	1727.3	86.4	1.56	25:45	-
13C12-2,3,4,7,8-PeCDF	1656.6	82.8	1.55	26:32	•
13C12-1,2,3,4,7,8-HxCDF	1637.8	81.9	0.51	30:15	_
13C12-1,2,3,6,7,8-HxCDF	1817.2	90.9	0.52	30:24	-
13C12-2,3,4,6,7,8-HxCDF	2463.8	123.2	0.51	31:06	
13C12-1,2,3,7,8,9-HxCDF	1460.1	73.0	0.50	32:15	-
13C12-1,2,3,4,6,7,8-HpCDF	1227.5	61.4	0.41	34:34	
13C12-1,2,3,4,7,8,9-HpCDF	1101.4	55.1	0.44	36:39	•

INTERNAL STANDARDS	RATIO	RT	FLAGS
	0.700	22:11	
13C12-1,2,3,4-TCDD 13C12-1,2,3,7,8,9-HxCDD	0.79 1.28	31:52	

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	623.5	77.9	22:22	
	•			

- U The compound was analyzed for but not detected at or above the detection limit.
- J --- The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- RO long used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- $\mathbf{X} \longrightarrow \mathbf{A}\mathbf{n}$ interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks

advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per trillion (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- confirmation and quantitation ions.
 - RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073 FILE: A10672 PCDD/PCDF ANALYSIS REPORT

PO: 1885

LAB ID.:

A10672 LS B3-104

SAMPLE: Lab Spike

PROJECT ID/P.O.:	1885		DATE COLLECTED:	N/A	ACCESSION NO:	LS B3-104
SAMPLE ORIGIN:	NA		DATE RECEIVED:	N/A	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min) FLAG
				-
2,3,7,8-TCDD	193.6	2.4	0.84	22:20
1,2,3,7,8-PeCDD	964.0	17.8	1.66	26:56
1,2,3,4,7,8-HxCDD	1107.2	21.3	1.29	31:18
1,2,3,6,7,8-HxCDD	1043.4	18.0	1.05	31:25
1,2,3,7,8,9-HxCDD	1021.7	20.0	1.39	31:53
1,2,3,4,6,7,8-HpCDD	1236.9	29.2	1.03	36:03
OCDD	1882.1	12.7	0.90	40:31
2,3,7,8-TCDF	271.0	7.4	0.77	21:45
1,2,3,7,8-PeCDF	1108.9	21.7	1.55	25:43
2,3,4,7,8-PeCDF	1188.8	13.5	1.61	26:32
1,2,3,4,7,8-HxCDF	1006.0	25.1	1.27	30:16
1,2,3,6,7,8-HxCDF	1004.6	15.5	1.07	30:25
2,3,4,6,7,8-HxCDF	1057.7	13.4	1.21	31:08
1,2,3,7,8,9-HxCDF	978.1	29.4	1.17	32:16
1,2,3,4,6,7,8-HpCDF	1181.6	13.3	1.04	34:36
1,2,3,4,7,8,9-HpCDF	1100.8	21.2	1.07	36:41
OCDF	1867.7	17.2	0.94	40:44

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	1	193.6	2.4		
TOTAL PeCDD	1	964.0	17.8	-	
TOTAL HXCDD	3	3172.4	21.3	_	
TOTAL HpCDD	1	1236.9	29.2		
TOTAL TCDF	-1	271.0	7.4		
TOTAL PeCDF	2	2297.7	`21.7	-	
TOTAL HxCDF	4	4046.4	29.4	-	
TOTAL HpCDF	2	2282.4	21.2	-	

DATA REVIEWER:

AMA

10/20/97

PROJECT: 97-1073 FILE: A10672 PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: LS B3-104

SAMPLE: Lab Spike

PROJECT ID/P.O.:	1885		DATE COLLECTED:	N/A	ACCESSION NO:	LS B3-104
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	NA	RETCHECK:	A10668
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/25/97	CONCAL:	A10669
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/10/97	ICAL:	A050797
		*	DATE PROCESSED:	10/20/97	METHOD:	1613

LABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1459.2	73.0	0.79	22:20	•
13C12-1,2,3,7,8-PeCDD	1694.4	84.7	1.60	26:55	•
13C12-1,2,3,4,7,8-HxCDD	2621.0	131.1	1.22	31:17	-
13C12-1,2,3,6,7,8-HxCDD	2192.7	109.6	1.28	31:24	
13C12-1,2,3,4,6,7,8-HpCDD	1580.3	79.0	1.23	36:02	•
13C12-OCDD	2174.2	54.4	0.94	40:31	•
13C12-2,3,7,8-TCDF	1907.8	95.4	0.80	21:44	•
13C12-1,2,3,7,8-PeCDF	1812.3	90.6	1.64	25:42	-
13C12-2,3,4,7,8-PeCDF	1763.3	88.2	1.59	26:31	-
13C12-1,2,3,4,7,8-HxCDF	2427.0	121.3	0.47	30:15	-
13C12-1,2,3,6,7,8-HxCDF	2092.4	104.6	0.58	30:24	-
13C12-2,3,4,6,7,8-HxCDF	2063.9	103.2	0.50	31:07	
13C12-1,2,3,7,8,9-HxCDF	1717.6	85.9	0.55	32:15	-
13C12-1,2,3,4,6,7,8-HpCDF	1521.8	76.1	0.42	34:35	•
13C12-1,2,3,4,7,8,9-HpCDF	1477.7	73.9	0.40	36:40	-

NTERNAL STANDARDS	RATIO	RT	FLAGS
. •			
13C12-1,2,3,4-TCDD	0.80	22:10	•
13C12-1,2,3,7,8,9-HxCDD	1.19	31:52	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	605.0	75.6	22:21	-

Flegs

- U The compound was analyzed for but not detected at or above the detection limit.
- The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B -- The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- RO lons used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal-to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillio (ppq) or parts per trillion (ppt).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trittion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation lons.
 - RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073

PCDD/PCDF ANALYSIS REPORT

PO: 1885

FILE: LAB ID.: A10726

DFBLK B3-107

SAMPLE: Method Blank

DATE COLLECTED: N/A ACCESSION NO: DFBLK B3-107 PROJECT ID/P.O.: 1885 N/A SAMPLE ORIGIN: N/A DATE RECEIVED: RETCHECK: A10721 SAMPLE MATRIX: Water DATE EXTRACTED: 9/29/97 CONCAL: A10722 SAMPLE SIZE: DATE ANALYZED: 10/17/97 ICAL: A050797 DATE PROCESSED: 10/20/97 METHOD: 1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min)	FLAG
2,3,7,8-TCDD	ND	0.5	-		U
1,2,3,7,8-PeCDD	ND	0.5	•		U
1,2,3,4,7,8-HxCDD	ND	1.1	- .		U
1,2,3,6,7,8-HxCDD	ND	1.2	•		U
1,2,3,7,8,9-HxCDD	ND	1.0	•		U
1,2,3,4,6,7,8-HpCDD	ND	0.7	-		U
OCDD	ND	3.9	• '		U
2,3,7,8-TCDF	ND	0.4	•		U
1,2,3,7,8-PeCDF	ND	1.0	-		U
2,3,4,7,8-PeCDF	ND	0.7	-		U
1,2,3,4,7,8-HxCDF	ND	0.7	•		U
1,2,3,6,7,8-HxCDF	ND	0.7	•		U
2,3,4,6,7,8-HxCDF	ND	1.2	-		U
1,2,3,7,8,9-HxCDF	ND	2.4	•		U
1,2,3,4,6,7,8-HpCDF	ND	4.5			U
1,2,3,4,7,8,9-HpCDF	ND	1.5	-		Ü
OCDF	ND	4.4	-		U

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	0.5	_	U
TOTAL PeCDD	0	ND	0.5	_ ·	U
TOTAL HxCDD	0	ND	1.2	-	U
TOTAL HpCDD	0	ND	0.7	_	U
TOTAL TCDF	0	ND	0.4	-	· U
TOTAL PeCDF	0	ND ·	1.0	-	U
TOTAL HxCDF	0	ND	2.4	-	U
TOTAL HpCDF	0	ND	4.5		U
	1				

DATA REVIEWER:

10/20/97

PROJECT: 97-1073

PCDD/PCDF QUALITY CONTROL REPORT

FILE:

A10726

PO: 1885 **SAMPLE: Method Blank**

LAB ID.: **DFBLK B3-107**

PROJECT ID/P.O.:	1885		DATE COLLECTED:	NA	ACCESSION NO:	DFBLK B3-107
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	N/A	RETCHECK:	A10721
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/29/97	CONCAL:	A10722
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/17/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1459.9	73.0	0.81	22:14	•
13C12-1,2,3,7,8-PeCDD	1520.9	76.0	1.61	26:49	•
13C12-1,2,3,4,7,8-HxCDD	2186.6	109.3	1.34	31:09	-
13C12-1,2,3,6,7,8-HxCDD	1986.9	99.3	1,33	31:16	•
13C12-1,2,3,4,6,7,8-HpCDD	1324.9	66.2	1.00	35:55	•
13C12-OCDD	1826.6	45.7	0.95	40:25	•
13C12-2,3,7,8-TCDF	1697.6	84.9	0.81	21:38	
13C12-1,2,3,7,8-PeCDF	1992.1	9 9.6	1.56	25:36	•
13C12-2,3,4,7,8-PeCDF	1599.7	80.0	1.70	26:25	•
13C12-1,2,3,4,7,8-HxCDF	1988.1	99.4	0.52	30:08	•
13C12-1,2,3,6,7,8-HxCDF	2297.3	114.9	0.54	30:17	_
13C12-2,3,4,6,7,8-HxCDF	1892.7	94.6	0.50	30:59	
13C12-1,2,3,7,8,9-HxCDF	1362.6	68.1	0.50	32:07	-
13C12-1,2,3,4,6,7,8-HpCDF	1348.1	67.4	0.45	34:28	
13C12-1,2,3,4,7,8,9-HpCDF	1003.3	50.2	0.49	36:33	-

NTERNAL STANDARDS	RATIO	RT .	FLAGS
•			
13C12-1,2,3,4-TCDD	0.76	22:05	-
13C12-1,2,3,7,8,9-HxCDD	1.27	31:44	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	603.0	75.4	22:15	

Flags:

U	The compound was analyzed for but not detected at or
	shows the detection limit

J - The analyte was detected at concentrations between the calibrated range and the detection limit.

E -- The analyte was detected at concentrations greater than the calibrated range.

B - The analyte was found in the associated blank.

D - The analyte was identified in the analysis at a secondary dilution factor.

RO - lons used for identification are out of ratio

S - The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1

X - An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks. Y — The recovery of the indicated standard is outside of QC

Definitions:

CONC — The concentration, given in parts per quadrillio (ppq) or parts per trittion (ppt).

DL - The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).

RATIO - The ratio of the low- to high-mass ion areas for the

confirmation and quantitation ions. RT — The retention time of an analyte.

NO - The total number of peaks identified as analytes within the retention time window.

% REC — The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

PROJECT: 97-1073 FILE: A10728 PCDD/PCDF ANALYSIS REPORT

PO: 1885

LAB ID.:

LS B3-107

SAMPLE: Lab Spike

PROJECT ID/P.O.:	1885		DATE COLLECTED:	N/A	ACCESSION NO:	LS B3-107
SAMPLE ORIGIN:	N/A		DATE RECEIVED:	N/A	RETCHECK:	A10721
SAMPLE MATRIX:	Water		DATE EXTRACTED:	9/29/97	CONCAL:	A10722
SAMPLE SIZE:	1	L	DATE ANALYZED:	10/17/97	ICAL:	A050797
			DATE PROCESSED:	10/20/97	METHOD:	1613

SPECIFIC ANALYTES	CONC (PPQ)	DL (PPQ)	RATIO	RT (min) FLAG
2,3,7,8-TCDD	290.9	0.5	0.79	22:15
1,2,3,7,8-PeCDD	1139.7	0.5	1.88	26:49
1,2,3,4,7,8-HxCDD	1167.1	1,1	1.28	31:11
1,2,3,6,7,8-HxCDD	1080.7	1.2	1.30	31:17
1,2,3,7,8,9-HxCDD	1039.0	1.0	1.39	31:46
1,2,3,4,6,7,8-HpCDD	4230.7	0.7	1.01	35:54
OCDD	19259.1	3.9	0.91	40:27
2,3,7,8-TCDF	282.4	0.4	0.74	21:39
1,2,3,7,8-PeCDF	1120.9	1.0	1.68	25:37
2,3,4,7,8-PeCDF	1170.7	0.7	1.60	26:26
1,2,3,4,7,8-HxCDF	1069.3	0.7	1.25	30:09
1,2,3,6,7,8-HxCDF	967.0	0.7	1.17	30:18
2,3,4,6,7,8-HxCDF	1005.1	1.2	1.12	31:01
1,2,3,7,8,9-HxCDF	1448.9	2.4	1.11	32:08
1,2,3,4,6,7,8-HpCDF	2861.3	4.5	1.20	34:28
1,2,3,4,7,8,9-HpCDF	1502.2	1.5	1.09	36:33
OCDF	3349.9	4.4	0.92	40:39

TOTAL ANALYTES	NO	CONC (PPQ)	DL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	1	ND	0.5		U
TOTAL PeCDD	1	ND	0.5		U
TOTAL HxCDD	3	ND	1.2	-	U
TOTAL HpCDD	1	ND	0.7	-	. U
TOTAL TCDF	· 1	ND	0.4	_	U
TOTAL PeCDF	2	ND	` 1.0	_	Ú
TOTAL HXCDF	4	ND	2.4		U
TOTAL HpCDF	2	ND	4.5	_	U
	1				

DATA REVIEWER:

AMA

10/20/97

PROJECT: 97-1073 FILE: A10728

PCDD/PCDF QUALITY CONTROL REPORT

PO: 1885

LAB ID.: LS B3-107

SAMPLE: Lab Spike

PROJECT ID/P.O.:	1885	DATE COLLECTED:	NA	_ ACCESSION NO:	LS 83-107
SAMPLE ORIGIN:	N/A	DATE RECEIVED:	N/A	RETCHECK:	A10721
SAMPLE MATRIX:	Water	DATE EXTRACTED:	9/29/97	CONCAL:	A10722
SAMPLE SIZE:	1 L	DATE ANALYZED:	10/17/97	_ KAL:	A050797
	· · · · · · · · · · · · · · · · · · ·	DATE PROCESSED:	10/20/97	METHOD:	1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1395.3	69.8	0.80	22:14	•
13C12-1,2,3,7,8-PeCDD	1504.7	75.2	1.64	26:48	
13C12-1,2,3,4,7,8-HxCDD	2362.5	118.1	1.29	31:10	•
13C12-1,2,3,6,7,8-HxCDD	2311.1	115.6	1.25	31:17	-
13C12-1,2,3,4,6,7,8-HpCDD	1183.8	59.2	1.05	35:55	•
13C12-OCDD	1714.4	42.9	0.92	40:27	-
13C12-2,3,7,8-TCDF	2034.8	101.7	0.82	21:38	•
13C12-1,2,3,7,8-PeCDF	2210.8	110.5	1.66	25:36	-
13C12-2,3,4,7,8-PeCDF	1800.9	90.0	1.66	26:25	•
13C12-1,2,3,4,7,8-HxCDF	2231.5	111.6	0.51	30:08	-
13C12-1,2,3,6,7,8-HxCDF	2124.8	106.2	0.51	30:17	-
13C12-2,3,4,6,7,8-HxCDF	2019.3	101.0	0.53	31:00	
13C12-1,2,3,7,8,9-HxCDF	1501.1	75.1	0.51	32:07	•
13C12-1,2,3,4,6,7,8-HpCDF	1196.9	59.8	0.46	34:28	-
13C12-1,2,3,4,7,8,9-HpCDF	989.1	49.5	0.43	36:33	

TERNAL STANDARDS	RATIO	RT	FLAG		
13C12-1.2.3,4-TCDD	0.82	22:04	-		
13C12-1,2,3,7,8,9-HxCDD	1.21	31:45	-		

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	633.7	79.2	22:15	•

Flage

- The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- RO lone used for identification are out of ratio
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

- CONC The concentration, given in parts per quadrillo (ppq) or parts per triflion (cott).
 - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
 - RT The retention time of an analyte.
 - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

IONICS INTERNATIONAL, INC.

',runi	ľ	ì
--------	---	---

, sinoi	tical					CI	VIIAT	Uľ	O,	210	ווטי	LA	DU	אחי	il Yi	u!	MIN	IAL	101	3 r	IL	JUE	٠ ' •	LOU	TIAI
		317 South 13	th Ave. • Kelso, W	/A 98626	3 • (360)	577-7	222 • (80	0) 695		FAX (3	60) 636	-1068	(DATE_	9/18	3/0	77		PAGE		1	c			
PROJECT NAME THB	ALTER	2¢C0.	DRAID	Wa	TER	ļ							AN	ALY:	SIS I	REC)UE:	STE)					<u>@</u>	
	on	Orth	MERE						/ /	atiles /	/ / /s	8 8 8 7 0	? /	/ 0/	/}		' /				 ₽			KAMIS	
COMPANY/ADDRESS	THE	BAKTE				CONTAINERS		/ g /			Salte	W 18	/	E 0						`/.	165040	> /		\$	
<u>6520 188</u>	311 3	ST. N	<u>.E</u>			Ě				3/	8.70 to 0.		ွာန်		\&\&\	1000	\chi_{\chi_{2}}			88	\/e		3/14	7	
Arlington,	WA		360-435-	-216	6	٦ ک			\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					10 /	8	<i>b</i> /.	7	3 6 8	10 J		20/) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	/ *		
SAMPLERS SIGNATURE	Lin	~ 000	uson			NUMBER OF		80 80 80 80 80 80 80	20 5 20 5 30 0 0 5 30 0 0 5 30 0 0 5 30 0 0 5 30 0 0 5 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 10 S				\$ 0 K	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o lo				ز/غ	#/	XX/		
SAMPLE I.D.	DATE	TIME	LAB I.D.		MPLE TRIX	NOM	Baseneuxod GCNS 625000000		601/8010 or Aromatic IV	7048 FP 84	TPHGas 1.0 eun Hydroarbons Gas Gas Br. 194 i 8.1 Garbons	PHAL	EX	Ne la	Metal List B	A Soliday	O STORES	N 1/2 NO. 10 10 10 10 10 10 10 10 10 10 10 10 10	Total Organical	2	1/2		REM	IARKS	
PHEICHIAN	9/18/9	9:30A	ı	WK	TER	5									{	X	X			X	\boxtimes	X			
RAIN 23	1/18/17	10:154	2			5										\searrow	\boxtimes			\boxtimes	\boxtimes	X			_
) RAIN 24	1/18/97	10:45A	3			5										X,	X			X	X	\triangleright	<u> </u>		
PRAIN 25	9/18H	11:15A	4			5				<u> </u>					[X	\boxtimes			\searrow	\boxtimes	\nearrow			
124IN 30	9/18/9	8:304	<u> </u>			5									{	\geq	\boxtimes]	X	\geq	\swarrow			
1Rainsid-22	91idan	1,000	b	<u>\</u>	/	4									[\boxtimes	\ge		[\leq	\geq		<u> </u>		
ZEATING SOLNI	9/18/97	1300	7	oil	Boente	3														\succeq	\geq	\bowtie	1		_
<u> </u>	'		,																			-			_
																						ļ	<u> </u>		_
					T			1							127/01/		00144					44015	RECEIP	\T.	_
RELINQUISHED BY		A R	ECEIVED BY:		1		D REQUIRE 48 hr		1 1		T REQU ine Repor		NIS		INVOIC	JE INF	UHMA	HON:			3	AMPLE	RECEIP	11;	
gnature 1		Signature	K. Hawn				10-15 working			MSD	rt (include , as requi	red, may	IS. be	P.O.#		Ω.			_	Shippin	-				_
Printed Name	<u> </u>	Printed Na	ime			rovide Ve esults	erbal Prelimin	ary		char	ged as sa Validatio	mples)	i	Bill To.) B	ACP Conc.	XIE 59	R4 02		Shippin Condition	•				-
118197 2131	000	Firm		<u> </u>			X preliminary	/ Results		(incl	udes All f Deliverat	Raw Data)	54	ม M	A-TE	න .	C.A							-
Jate/Time	MA	Date/Time	7 160	<i></i>	Requeste		•			IV. OLF	Pentelar	ne i ichoi	`	ÆTT	N. 10	,AD	94	407 7 M	2	Lab No:	:k	(97-	-680	49	-
	<u>1</u>				 					1	/ \ \ =	1_			at h	53	TATE!	1 1 11		<u>~~</u>		11	7. 7	- 11	-1 :

RELINQUISHED BY:	RECEIVED BY:	SPECIAL INSTRUCTIONS/COMMENTS WATER OVERALL PRATABLUZE FOR 2, 4,6, TRICKLOS
		P P Remot MRI of 1,0ppb-Enol, 23,4,6, TERECHIENEPH
Signature	Signature	(1). TLEASE REPORT THE OLAND PERFECHERA PHENO!
Printed Name	Printed Name	DI PLEASE USE EPA METHOD 1613: TETRA-Through
Firm	Firm	Octachlonated Dioxins and Furans By Isotope
Date/Time	Date/Time	NOTE: CONCENTION OF PCP. PAH AND PLETTHAN STORMWATOR

Appendix C: Revised data from September 18, 1997 sampling

March 10, 1998

Service Request No: K9708446

Caroline Martin
J.H. Baxter Company
1700 El Camino Real
P.O. Box 5902
San Mateo, CA 94402-0902

Re: J. H. Baxter & Co. Drain Water

Dear Caroline:

Enclosed are the results of the sample(s) submitted to our laboratory on November 13, 1997. For your reference, these analyses have been assigned our service request number K9708446.

This sample was a duplicate from CAS service request K9706849-001. The dioxin analysis was performed by Ionics Corporation and the results are included herein. We apologize for the delay.

Please call if you have any questions. My extension is 260.

Respectfully submitted,

Columbia Analytical Services, Inc.

Teena Jones
Teena Jones

Project Chemist

TJ/sm

Page 1 of 10

PROJECT: 97-1144 FILE: J22545 LAB ID.: 12-44-1 PCDD/PCDF SUMMARY REPORT REFERENCE: K978446 SAMPLE: Drains #13,14

SAMPLE DATA

QUAL	ITY	ASSU	RANG	CE D	ΔΤΔ

		GOVELLI VOO	CHANCE DA	·IA
Q) MDL (PPQ)	BLANK (PPQ)	LS (PPQ)	LS (%)	QC Limits
2.4	ND	168.7	84%	50-150
17.8	ND	842.7	84%	50-150
21.3	ND	866.2	87%	50-150
18.0	ND	944.3	94%	50-150
20.0	ND	911.3	91%	50-150
2 29.2	ND	1081.4	108%	50-150
.5 12.7	ND	1926.4	96%	50-150
7.4	ND	194.1	97%	50-150
21.7	ND	956.9	96%	50-150
13.5	ND	988.0	99%	50-150
25.1	ND	935.8	94%	50-150
15.5	ND	904.0	90%	50-150
13.4	ND	929.0	93%	50-150
29.4	ND	940.0	94%	50-150
13.3	ND	965.7	97%	50-150
21.2	ND	1070.4	107%	50-150
2 17.2	ND	1771.1	89%	50-150
	21.2	21.2 ND	21.2 ND 1070.4	21.2 ND 1070.4 107%

TOTAL ANALYTES	CONC (PPQ)	MDL (PPQ)	Definitions:	
			CONC - The	concentration, given in parts per trillion (ppt) or
TOTAL TCDD	•	2.4	part	s per quadrillion (ppq).
TOTAL PeCDD	2769.5	17.8	EDL — The	estimated detection limit, given in parts per trillion
TOTAL HxCDD	60394.0	21.3	(ppt)), parts per quadrillion (ppq), or in picograms (pg).
TOTAL HpCDD	360713.2	29.2	BLANK - The	concentration of the blank.
TOTAL OCDD	1144070.5	12.7	MS (PPQ) - The	concentration of Matrix Spike recovered.
			MS (%) — The	percent recovery of the Matrix Spike.
TOTAL TCDF	•	7.4	QC Limits — Ionid	cs International, Inc. uses these advisory limits.
TOTAL PeCDF	8731.7	21.7	ND (Nor	n-Detect) The concentration of the analyte is less
TOTAL HxCDF	98164.8	29.4	than	the detection limit.
TOTAL HpCDF	168022.6	21.2	NR — (Not	t Reportable) The spike concentration is less than
TOTAL OCDF	111305.2	17.2	the	concentration in the unspiked matrix sample.

TOTAL DIOXINS/FURANS: 1954171.54 PPQ

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 6634.68 PPQ

PROJECT: 97-1144 FILE: J22545 LAB ID.: 12-44-1 PCDD/PCDF ANALYSIS REPORT REFERENCE: K978446 SAMPLE: Drains #13,14

Project ID/P.O.: Sample origin: Sample matrix:

Sample size:

K978446 CAS WATER

1 L

Date collected:
Date received:
Date extracted:

Date analyzed:

Date processed:

N/A 11/18/98 11/20/98 12/1/97 12/9/98 Accession No.: 12-44-1
RTWin / Col Pfm: J22537
Beginning CCAL: J22538
Ending CCAL: J22547
Initial CAL: J082396

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	-	-	2.4	• ·		U
1,2,3,7,8-PeCDD	-	1376.9	17.8	1.58	25:47	
1,2,3,4,7,8-HxCDD	•	4615.3	21.3	1.33	30:23	
1,2,3,6,7,8-HxCDD	•	5717.9	18.0	1.29	30:28	
1,2,3,7,8,9-HxCDD	•	7351.9	20.0	1.22	30:54	·
1,2,3,4,6,7,8-HpCDD	-	205823.2	29.2	1.04	34:28	E
OCDD	•	1144070.5	12.7	0.89	38:42	E
2,3,7,8-TCDF	•	•	7.4			U
1,2,3,7,8-PeCDF	•	118.9	21.7	1.62	24:51	
2,3,4,7,8-PeCDF	•	132.3	13.5	1.56	25:29	
1,2,3,4,7,8-HxCDF	•	1184.5	25.1	1.43	29:13	
1,2,3,6,7,8-HxCDF		1298.2	15.5	1.12	29:13	
2,3,4,6,7,8-HxCDF	•	1159.5	13.4	1.37	30:17	
1,2,3,7,8,9-HxCDF	-	-	29.4	-		U
1,2,3,4,6,7,8-HpCDF	-	39733.9	13.3	1.06	33:13	E
1,2,3,4,7,8,9-HpCDF	-	3048.2	21.2	1.09	35:03	
OCDF	-	111305.2	17.2	0.91	38:53	

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	•	2.4	_	U
TOTAL PeCDD	4	2769.5	17.8	_	
TOTAL HxCDD	8	60394.0	21.3		Е
TOTAL HpCDD	2	360713.2	29.2		E
TOTAL TCDF	0	_	7.4		U
TOTAL PeCDF	6	8731.7	21.7	_	· · · · · · · · · · · · · · · · · · ·
TOTAL HxCDF	10	98164.8	29.4		É
TOTAL HpCDF	3	168022.6	21.2		E

DATA REVIEWER:

2/26/98

PROJECT: 97-1144 FILE: J22545

LAB ID.:

J22545 12-44-1 PCDD/PCDF QUALITY CONTROL REPORT

REFERENCE: K978446 SAMPLE: Drains #13,14

Date collected: Project ID/P.O.: K978446 N/A Accession No.: 12-44-1 Sample origin: CAS 11/18/98 RTWin / Col Pfm: J22537 Date received: Sample matrix: WATER Date extracted: Beginning CCAL: J22538 11/20/98 Ending CCAL: J22547 Sample size: 1 L 12/1/97 Date analyzed: Date processed: 12/9/98 Initial CAL: J082396

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	819.2	41.0	0.69	21:33	-
13C12-1,2,3,7,8-PeCDD	1153.6	57.7	1.53	25:46	-
13C12-1,2,3,4,7,8-HxCDD	1782.1	89.1	1.09	30:21	•
13C12-1,2,3,6,7,8-HxCDD	1203.7	60.2	1.28	30:27	-
13C12-1,2,3,4,6,7,8-HpCDD	2309.6	115.5	1.06	34:27	•
13C12-OCDD	2116.8	52.9	0.77	38:41	-
13C12-2,3,7,8-TCDF	1228.5	61.4	0.79	20:56	-
13C12-1,2,3,7,8-PeCDF	1202.0	60.1	1.61	24:50	-
13C12-2,3,4,7,8-PeCDF	1117.7	55.9	1.64	25:27	•
13C12-1,2,3,4,7,8-HxCDF	1911.5	95.6	0.54	29:11	•
13C12-1,2,3,6,7,8-HxCDF	1558.2	77.9	0.52	29:13	-
13C12-2,3,4,6,7,8-HxCDF	1091.6	54.6	0.59	30:17	•
13C12-1,2,3,7,8,9-HxCDF	1723.3	86.2	0.52	31:10	•
13C12-1,2,3,4,6,7,8-HpCDF	2077.5	103.9	0.48	33:12	-
13C12-1,2,3,4,7,8,9-HpCDF	2431.1	121.6	0.49	35:02	-

13C12-1,2,3,4-TCDD 13C12-1,2,3,7,8,9-HxCDD	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.79	21:12	
13C12-1,2,3,7,8,9-HxCDD	1.17	30:53	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CH-TCDD	859.6	107.5	21:34	

Flags:

U —	The compound was analyzed for but not detected at or
	above the detection limit

J — The analyte was detected at concentrations between the calibrated range and the detection limit.

 The analyte was detected at concentrations greater than the calibrated range.

B - The analyte was found in the associated blank.

D — The analyte was identified in the analysis at a secondary dilution factor.

RO - lons used for identification are out of ratio QC limits.

S — The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1

X — An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
 IONICS INTERNATIONAL, INC.

 The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

CONC — The concentration, given in parts per quadrillion (ppq) or parts per trillion (ppt).

EDL — Estimated detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).

RATIO — The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.

RT - The retention time of an analyte.

NO — The total number of peaks identified as analytes within the retention time window.

REC — The percent recovery of the Indicated standard.
 EMPC — Estimated Maximum Possible Concentration.

MADIE PEAKS. EMPC —
NICS INTERNATIONAL, INC.
(800) 4-DIOXIN

PROJECT: 97-1144 FILE: J22545 LAB ID.: 12-44-1

PCDD/PCDF TOXICITY EQUIVALENCE REPORT **REFERENCE: K978446** SAMPLE: Drains #13,14

Project ID/P.O.: K978446 Sample origin: Sample matrix:

CAS WATER Date collected: Date received: Date extracted:

N/A 11/18/98 11/20/98 12/1/97

Accession No.: 12-44-1 RTWin / Col Pfm: J22537 Beginning CCAL: J22538

Ending CCAL: J22547 Initial CAL: J082396

Sample size: <u>1 L</u> Date analyzed:

Date processed: 12/9/98

SPECIFIC ANALYTES	CONC (PPQ)		TEF	1	EF CONC (PPQ)	
2,3,7,8-TCDD	0.0	X	1	=	-	
1,2,3,7,8-PeCDD	1376.9	x	0.5	=	688.45	
1,2,3,4,7,8-HxCDD	4615.3	х	0.1	=	461.53	_
1,2,3,6,7,8-HxCDD	5717.9	X	0.1	=	571.79	
1,2,3,7,8,9-HxCDD	7351.9	X	0.1	=	735.19	
1,2,3,4,6,7,8-HpCDD	205823.2	х	0.01	=	2058.23	
OCDD	1144070.5	х	0.001	=	1144.07	

2,3,7,8-TCDF	0.0	X	0.1	=	•	
1,2,3,7,8-PeCDF	118.9	X	0.05	=	5.94	
2,3,4,7,8-PeCDF	132.3	X	0.5	=	66.13	_
1,2,3,4,7,8-HxCDF	1184.5	Х	0.1	=	118.45	
1,2,3,6,7,8-HxCDF	1298.2	X	0.1	=	129.82	
2,3,4,6,7,8-HxCDF	1159.5	X	0.1	=	115.95	
1,2,3,7,8,9-HxCDF	0.0	x	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	39733.9	х	0.01	=	397.34	_
1,2,3,4,7,8,9-HpCDF	3048.2	X	0.01	=	30.48	
OCDF	111305.2	X	0.001	=	111.31	

TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 6634.68 PPQ

PROJECT: 97-1138 FILE: J22877

LAB ID.: DFBLK B3-147

1 L

PCDD/PCDF ANALYSIS REPORT REFERENCE: K978446

SAMPLE: METHOD BLANK

Project ID/P.O.: Sample origin: Sample matrix:

Sample size:

K978446 N/A WATER Date collected:
Date received:
Date extracted:

Date analyzed:

Date processed:

N/A N/A 11/20/97 1/19/98

1/23/98

Accession No.: DFBLK B3-147

RTWin / Col Pfm: J22868
Beginning CCAL: J22869
Ending CCAL: J22878
Initial CAL: J082396

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	-	-	2.4	•		U
1,2,3,7,8-PeCDD	-	•	17.8	-		U
1,2,3,4,7,8-HxCDD	•		21.3	•		U
1,2,3,6,7,8-HxCDD	•	-	18.0	•		U
1,2,3,7,8,9-HxCDD	•	•	20.0	-		U
1,2,3,4,6,7,8-HpCDD	•		29.2	-		Ú
OCDD	-	-	12.7	-		U
2,3,7,8-TCDF	•	•	7.4	•	<u></u>	U
1,2,3,7,8-PeCDF	-	-	21.7	-		U
2,3,4,7,8-PeCDF	-	-	13.5	-		U
1,2,3,4,7,8-HxCDF	-	-	25.1	-		U
1,2,3,6,7,8-HxCDF	-	_	15.5	•		U
2,3,4,6,7,8-HxCDF	-	_	13.4	•		U
1,2,3,7,8,9-HxCDF	-	•	29.4	•		U
1,2,3,4,6,7,8-HpCDF	-	-	13.3	-		U
1,2,3,4,7,8,9-HpCDF	•	•	21.2	•		U
OCDF	-	•	17.2	•		U

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	-	2.4	<u> </u>	U
TOTAL PeCDD	0	•	17.8		U
TOTAL HxCDD	0	•	21.3		U
TOTAL HpCDD	0	•	29.2		U
TOTAL TCDF	0	. •	7.4		U
TOTAL PeCDF	0	•	21.7		U
TOTAL HxCDF	0	-	29.4	-	U
TOTAL HPCDF	0	-	21.2		U

DATA REVIEWER:

bru sh

2/26/98

PROJECT: 97-1138 FILE: J22877

LAB ID.:

DFBLK B3-147

PCDD/PCDF QUALITY CONTROL REPORT REFERENCE: K978446

SAMPLE: METHOD BLANK

Project ID/P.O.: K978446 Date collected: N/A Accession No.: DFBLK B3-147 Sample origin: N/A Date received: N/A RTWin / Col Pfm: J22868 Sample matrix: WATER Date extracted: 11/20/97 Beginning CCAL: J22869 Sample size: 1 L Date analyzed: 1/19/98 Ending CCAL: J22878 Date processed: 1/23/98 Initial CAL: J082396

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1537.6	76.9	0.77	19:31	-
13C12-1,2,3,7,8-PeCDD	1628.0	81.4	1.73	23:53	•
13C12-1,2,3,4,7,8-HxCDD	2314.6	115.7	1.11	28:07	-
13C12-1,2,3,6,7,8-HxCDD	1644.7	82.2	1.30	28:14	-
13C12-1,2,3,4,6,7,8-HpCDD	1687.9	84.4	1.05	32:43	-
13C12-OCDD	3148.1	78.7	0.78	36:58	-
13C12-2,3,7,8-TCDF	1444.6	72.2	0.78	18:55	-
13C12-1,2,3,7,8-PeCDF	1795.2	89.8	1.67	22:42	-
13C12-2,3,4,7,8-PeCDF	1349.9	67.5	1.61	23:30	-
13C12-1,2,3,4,7,8-HxCDF	2450.0	122.5	0.50	27:07	-
13C12-1,2,3,6,7,8-HxCDF	1352.7	67.6	0.51	27:15	-
13C12-2,3,4,6,7,8-HxCDF	1656.8	82.8	0.50	27:57	•
13C12-1,2,3,7,8,9-HxCDF	1658.9	82.9	0.49	29:01	•
13C12-1,2,3,4,6,7,8-HpCDF	1405.6	70.3	0.42	31:19	-
13C12-1,2,3,4,7,8,9-HpCDF	1654.7	82.7	0.46	33:18	-

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.75	19:21	-
13C12-1,2,3,7,8,9-HxCDD	1.30	28:41	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CI4-TCDD	694.2	86.8	19:31	-

Flags:

••				
	U-	 The compound was analyzed for but not detected at or 	Y —	The recovery of the indicated standard is outside of QC
		above the detection limit.		advisory limits.
	J -	 The analyte was detected at concentrations between the 	Definitions:	
		calibrated range and the detection limit.	CONC —	The concentration, given in parts per quadrillion (ppq) or
	E -	- The analyte was detected at concentrations greater than		parts per trillion (ppt).
		the calibrated range.	EDL —	Estimated detection limit based on a 2.5:1 signal-to-noise
	В -	 The analyte was found in the associated blank. 		criteria, given in parts per quadrillion (ppq), parts per
	D -	The analyte was identified in the analysis at a secondary		trillion (ppt), or in picograms (pg).
		dilution factor.	ratio —	The ratio of the low- to high-mass ion areas for the
F	10 -	 lons used for identification are out of ratio QC limits. 		confirmation and quantitation lons.
	S -	The analyte in question is, in the opinion of the reviewer, a	RT —	The retention time of an analyte.
		PCDD/PCDF, evan though the fragment ion due to the loss	NO	The total number of peaks identified as analytes
		of COCI did not meet the signal- to-noise ratio criterion of 2.5:1		within the retention time window.

retention window that may obscure otherwise detectable peaks. EMI
IONICS INTERNATIONAL, INC.
(800) 4-DIOXIN

Phone: (713) 972-1037 Fax: (713) 784-1152

% REC — The percent recovery of the indicated standard.

EMPC — Estimated Maximum Possible Concentration.

An interferent peak or peaks were observed within the

PROJECT: 97-1138 FILE: J22858 LAB ID.: LS B3-147

PCDD/PCDF ANALYSIS REPORT **REFERENCE: K978446 SAMPLE: LAB SPIKE**

Project ID/P.O.: Sample origin: Sample matrix:

Sample size:

K978446 N/A WATER

1 L

Date collected: Date received: Date extracted:

Date analyzed:

Date processed:

N/A N/A 11/20/97 1/19/98 1/20/98

Accession No.: LS B3-147 RTWin / Col Pfm: J22854 Beginning CCAL: J22855 Ending CCAL: J22859

Initial CAL: J082396

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min) FLAGS
2,3,7,8-TCDD	-	168.7	2.4	0.77	20:59
1,2,3,7,8-PeCDD	_	842.7	17.8	1.66	25:28
1,2,3,4,7,8-HxCDD	-	866.2	21.3	1.33	29:46
1,2,3,6,7,8-HxCDD	-	944.3	18.0	1.11	29:54
1,2,3,7,8,9-HxCDD	•	911.3	20.0	1.41	30:20
1,2,3,4,6,7,8-HpCDD	-	1081.4	29.2	0.92	34:27
OCDD	-	1926.4	12.7	0.90	38:46
2,3,7,8-TCDF	-	194.1	7.4	0.68	20:22
1,2,3,7,8-PeCDF	•	956.9	21.7	1.72	24:15
2,3,4,7,8-PeCDF	-	988.0	13.5	1.58	25:05
1,2,3,4,7,8-HxCDF	-	935.8	25.1	1.23	28:46
1,2,3,6,7,8-HxCDF	-	904.0	15.5	1.24	28:54
2,3,4,6,7,8-HxCDF	•	929.0	13.4	1.22	29:37
1,2,3,7,8,9-HxCDF	•	940.0	29.4	1.25	30:43
1,2,3,4,6,7,8-HpCDF	-	965.7	13.3	0.98	33:02
1,2,3,4,7,8,9-HpCDF	-	1070.4	21.2	1.01	35:04
OCDF	-	1771.1	17.2	0.89	38:56

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	1	168.7	2.4		
TOTAL PeCDD	1	842.7	17.8	_	
TOTAL HXCDD	3	2721.9	21.3	-	
TOTAL HpCDD	1	1081.4	29.2	_	
TOTAL TCDF	1	194.1	7.4	_	
TOTAL PeCDF	2	1945.0	21.7		
TOTAL HXCDF	4	3708.8	29.4		
TOTAL HPCDF	2	2036.0	21.2	-	
	<i></i>		, <u></u> -	· · · · · · · · · · · · · · · · · · ·	
DATA REVIEWER:	1 1	Mune	2/26/98		
AVA C	for de	- Marin	2/20/90		
AWA					

1/20/98

PROJECT: 97-1138 FILE: J22858 LAB ID.: LS B3-147

PCDD/PCDF QUALITY CONTROL REPORT REFERENCE: K978446

SAMPLE: LAB SPIKE

Project ID/P.O.: K978446 Sample origin: N/A Sample matrix: WATER Sample size: 1 L

Date collected: Date received: N/A Date extracted: 11/20/97 Date analyzed: 1/19/98

Date processed:

Accession No.: LS B3-147 RTWin / Col Pfm: J22854 Beginning CCAL: J22855 Ending CCAL: J22859 Initial CAL: J082396

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	2208.4	110.4	0.78	20:56	
13C12-1,2,3,7,8-PeCDD	1665.1	83.3	1.67	25:27	-
13C12-1,2,3,4,7,8-HxCDD	2557.4	127.9	1.31	29:46	_
13C12-1,2,3,6,7,8-HxCDD	2151.6	107.6	1.36	29:52	•
13C12-1,2,3,4,6,7,8-HpCDD	1206.7	60.3	0.97	34:26	
13C12-OCDD	1672.8	41.8	0.87	38:44	-
13C12-2,3,7,8-TCDF	2162.4	108.1	0.79	20:21	
13C12-1,2,3,7,8-PeCDF	1993.9	99.7	1.75	24:15	-
13C12-2,3,4,7,8-PeCDF	1677.0	83.9	1.71	25:04	•
13C12-1,2,3,4,7,8-HxCDF	2422.3	121.1	0.49	28:44	_
13C12-1,2,3,6,7,8-HxCDF	2009.8	100.5	0.47	28:53	-
13C12-2,3,4,6,7,8-HxCDF	1908.6	95.4	0.49	29:36	
13C12-1,2,3,7,8,9-HxCDF	1578.3	78.9	0.52	30:42	•
13C12-1,2,3,4,6,7,8-HpCDF	1307.0	65.4	0.45	33:01	-
13C12-1,2,3,4,7,8,9-HpCDF	1025.3	51.3	0.47	35:03	

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.79	20:46	-
13C12-1,2,3,7,8,9-HxCDD	1.35	30:20	-

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CI4-TCDD	896.4	112.1	20:57	-

Flags:

U - The compound was analyzed for but not detected at or above the detection limit.

The analyte was detected at concentrations between the calibrated range and the detection limit.

E — The analyte was detected at concentrations greater than the calibrated range.

B — The analyte was found in the associated blank.

D — The analyte was identified in the analysis at a secondary dilution factor.

RO — lons used for identification are out of ratio QC limits.

S - The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1

X - An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.

IONICS INTERNATIONAL, INC.

Y -- The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

CONC — The concentration, given in parts per quadrillion (ppq) or parts per trillion (ppt).

EDL -Estimated detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).

RATIO - The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.

RT -- The retention time of an analyte.

NO - The total number of peaks Identified as analytes within the retention time window.

% REC — The percent recovery of the Indicated standard. EMPC -- Estimated Maximum Possible Concentration.

(800) 4-DIOXIN

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Service		17 South 13t	h Ave. • Kelso, W/	A 98626 • (206) 577-7	222 • ((800) 6	95-722	2 • FA	AX (20	6) 636-	1068	0	ATE_	11-	12	-9	7	PAGE		<u>l</u>	OF L	
PROJECT NAME TIH	3 AV-110	p L C	D.# DRAW	11 Jane	×								ANA	ALYS	SIS F	REQ	UES	STE	>			\cap	¢
PROJECT MANAGER T		•	MEUER	a when			7	Hails 6240 601/801/16240		<u>s</u> /	TPHGasBTE 10 Water	<u> </u>	ş /	_/		\$	$\overline{}$	7	Total Oganica Trivi, Tr	y /	0/		4
COMPANY/ADDRESS J	,,,,	3 AXTE	1		ERS				15/2/2		log.	15 8 15 15 15 15 15 15 15 15 15 15 15 15 15	³ /		Pess	Į (1] } }	$\frac{1}{2}$	(650A)	3 / /	4
6520 188I	7,51	- N.	E	<u> </u>	CONTAINERS		anics	/			18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	188	/ 8		Semi Pest/		/	O ₄	(d.	80			
ARUNATON, WA, 98223 PHONE 435-2146				2141		/		38	4%	ีย ช /	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	iğ Xo		B	0/) Sip Sip	/ /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ofal			<u> </u>	
CAMPIERO SIGNATURE		$\alpha \wedge$	JEHONE 12	<u> </u>	10						100	E S	E E		70407 John Jago			3 6			\$		ļ
SAMPLERS SIGNATURE	NVV				NUMBER	Base/Neu/Ze		Halogenated 62				100		Arciba ORHCIDA Melalu	Metals (total VOAC) Semi Pe		5		Total Organical		SWA		l
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	Ž	# S	ૄૺૄ૿ૼૢૺ	18 J	\dig \dig \dig \dig \dig \dig \dig \dig	S. S.	15 Sep. 1	15.00 E	EZ		List e	\displaystart	<u>₹</u> Ş	VE SI	EE C	(Q)	<u> </u>	REMARK	s
DRAIDS#13474	9 18 9	9:304	}	WATER	l															\boxtimes			
															,								
RELINQUISHED BY	Y:	<i>l</i> , ' l	ECEIVED BY:		IAROU						T REQL		ENTS		INVO	ICE INF	ORMA	TION:			S	AMPLE RECEIPT:	
Signature Clark	m_	Signature	y. Reno-	V	24 hr Standard			- 1		II. Repo	ine Repo ort (includ	ies DUP	MS.	P.O.#						Shippii	ng VIA:		
Printed Name	oN	Printed No	MA. COWA	*/V '	Provide \		_			char	, as requ ged as s	amples)			刊	BA	ΜŒ	RH	Co	Shippii	ng #:		
T.H. BAXTER	alo	Firm	TAS		Results				**********	III. Data (incl	a Validatio ludes All	on Repo Raw Da	ita)	40	150	OX:	590 EQ	<u> </u>		Condit	tion:		
	opm	Date/Time		· > -	Provide F sted Repo	•	ninary R	esults		IV. CLP	Delivera	able Rep	ort	54		C	744	107	2	Lab No	0:	4446	
Date/Time							IOTIO	NO/00	NAN 45	NTC.					N;C					211	<u>س،</u>	· · ·	
RELINQUISHED B	Y:	F	ECEIVED BY:	SPE	UIAL II	NO IHI	۱۱۱ تاد سیم میر	N5/UC	MME K	. F	P	4	ME	77	he	10	ol3	3;`	R	TRA	4 #	irough By	
Signature		Signature		$-\nu$. 1 <i>L</i>	<i>军</i> 元 上	ے۔ ۱ _)	، حرب حراب	نەر	<u>آ</u> ر.	-,-,-	1	\tilde{v}	NO X	(IN	ر ر	<u>a</u> n	لم	C+ >6	2 12	NG	Bu	
Printed Name		Printed Na	ame		ن 	TAC	In	OK	0N	, (· = 1	,		,0 /	.,.	ا م		, 4 1		MT	,	P-1	
Firm		Firm	· · · · · · · · · · · · · · · · · · ·	_	LS	ot	of	モ	\mathcal{U}	hle	JTI	DV	٦۵										
Date/Time		Date/Time	9				•																
				ı																			

Appendix D: Original da	ita from January 18, 1998 sam	pling

March 18, 1998

Service Request No: K9800155

Caroline Martin J. H. Baxter 6520 188th Street NE Arlington, WA 98223

Re: Drain Water Project

Dear Caroline:

Enclosed are the results of the sample(s) submitted to our laboratory on January 9, 1998. For your reference, these analyses have been assigned our service request number K9800155.

Dioxin analyses were performed at Ionics International and preliminary results may be found in Appendix A. A final report will follow under separate cover.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Résults apply only to the samples analyzed.

Please call if you have any questions. My extension is 260.

Respectfully submitted,

Columbia Analytical Services, Inc.

Teena Jones

Project Chemist

TJ/sm

Page 1 of

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

, ent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98

Date Received: 1/9/98

Date Extracted: NA

Inorganic Parameters Units: mg/L (ppm)

	Analyte: EPA Method: Method Reporting Limit: Date Analyzed:	pH (units) 150.1 - 1/9/98	Solids, Total Suspended (TSS) 160.2 5 1/15/98
Sample Name	Lab Code		
Drains #13 + 14	K9800155-001	7.69	676
Drain #23	K9800155-002	7.20	98
Drain #24	K9800155-003	7.30	282
Drain #25	K9800155-004	7.43	62
ain #30	K9800155-005	7.63	412
rains #10-22	K9800155-006	7.61	6700
Method Blank	K9800155-MB	-	ND

Munelle Ritola 3ADW/061694 00155WET.MRI - 3_Tests 1/20/98

Date: <u>1/20/98</u>

00003 Page No.:

Analytical Report

_aient:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Water

Service Request: K9800155

Date Collected: 1/8/98 Date Received: 1/9/98 Date Extracted: 1/23/98 Date Analyzed: 1/23/98

Oil and Grease EPA Method 413.1 Units: mg/L (ppm)

Sample Name	Lab Code	MRL	Result
Drains #13 + 14	K9800155-001	5	ND
Drain #23	K9800155-002	5	5
Drain #24	K9800155-003	5	5
Drain #25	K9800155-004	5	5
Drain #30	K9800155-005	5	5
Drains #10-22	K9800155-006	5	13
Method Blank	K980123-MB	5	ND

Mosel Agens Mosel With Mosel With Mosel 13 ppm

Date: 1/26/98 Approved By: _____

IAMRL/102594 00155PHC.BW1 - 413w 1/26/98

Page No.:

Analytical Report

ent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98 **Date Received:** 1/9/98

Date Extracted: 1/13/98
Date Analyzed: 1/24/98

Chlorinated Phenols EPA Methods 8151 Modified Units: μg/L (ppb)

			Total	
	Analyte:	2,4,6-Trichlorophenol	Tetrachlorophenols	Pentachlorophenol
	Method Reporting Limit:	1.0	1.0	1.0
Sample Name	Lab Code			
Drains #13 + 14	K9800155-001	ND	4	130
Drain #23	K9800155-002	ND	8.7	250
Drain #24	K9800155-003	<5(D)	10	550
Drain #25	K9800155-004	<5(D)	7	180
Drain #30	K9800155-005	ND	5.1	140
Drains #10-22	K9800155-006	ND	1.9	27.7
'hod Blank	K980113-WB	ND	ND	ND

The MRL is elevated because of matrix interferences and because the sample required diluting.

Approved By: MManthe

Date: 2/2/98

3A/102094 00155SVG.AY1 - p-t-tri 2/2/98

D

D--- M-

QA/QC Report

lient:

J.H. Baxter & Company

Project:

Drain Water Sample Matrix: Water

Service Request: K9800155

Date Collected: 1/8/98 Date Received: 1/9/98 Date Extracted: 1/13/98

Date Analyzed: 1/24/98

Surrogate Recovery Summary **Chlorinated Phenols** EPA Methods 8151 Modified

Sample Name	Lab Code	Percent Recovery 4-Bromo-2,6-dichlorophenol
Drains #13 + 14	K9800155-001	76
Drain #23	K9800155-002	79
Drain #24	K9800155-003	70
Drain #25	K9800155-004	74
Drain #30	K9800155-005	89
Drains #10-22	K9800155-006	79
Method Blank	K980113-WB	59

CAS Acceptance Limits: 42-122

Approved By: MManthe

Date: 2/2/98

SUR1/111594 00155SVG.AY1 - sur 2/2/98

Analytical Report

.nt:

J. H. Baxter & Company

Project:

Drain Water

Service Request: K9800155

Date Collected: 1/8/98

Sample Matrix:

Water

Date Received: 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drains #13 + 14

EPA 3520B

Units: ug/L (ppb)

Lab Code: Test Notes:

K9800155-001

Basis: NA

Prep **Analysis Dilution** Date Date Result Method Analyte Method **MRL** Factor Extracted Analyzed Result **Notes** Naphthalene EPA 3520B 610 1 1 1/14/98 ND 1/23/98 Acenaphthylene EPA 3520B 610 1 1 1/14/98 1/23/98 ND Acenaphthene EPA 3520B 610 1 1 1/14/98 1/23/98 ND Fluorene EPA 3520B 610 0.2 1 1/14/98 1/23/98 ND Phenanthrene 0.1 1 EPA 3520B 610 1/14/98 1/23/98 2.0 ^nthracene EPA 3520B 610 0.1 1 1/14/98 1/23/98 ND ranthene EPA 3520B 610 0.2 1 1/14/98 1/23/98 5.1 10 r vrene EPA 3520B 610 0.2 1/14/98 1/23/98 6.8 Benz(a)anthracene EPA 3520B 610 0.1 1 1/14/98 1/23/98 0.9 0.1 1 Chrysene **EPA 3520B** 610 1/14/98 1/23/98 1.2 Benzo(b)fluoranthene 610 0.2 1 EPA 3520B 1/14/98 1/23/98 1.4 Benzo(k)fluoranthene EPA 3520B 610 0.1 1 1/14/98 1/23/98 0.6 610 0.1 1 Benzo(a)pyrene **EPA 3520B** 1/14/98 1/23/98 1.3 0.2 1 Dibenz(a,h)anthracene 610 1/14/98 1/23/98 EPA 3520B ND В Benzo(g,h,i)perylene EPA 3520B 610 0.2 1 1/14/98 1/23/98 8.0

0.2

1

1/14/98

1/23/98

ND

В

В

The MRL is elevated because of matrix interferences.

610

Date: 1/30/98 Approved By: 1522/052595

Indeno(1,2,3-cd)pyrene

Analytical Report

.nt:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98
Date Received: 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drain #23

Lab Code:

K9800155-002

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthylene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Phenanthrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
ranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
ı ,ıene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Dibenz(a,h)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(g,h,i)perylene	EPA 3520B	610	2	1	1/14/98	1/23/98	ND	В
Indeno(1,2,3-cd)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	

В

The MRL is elevated because of matrix interferences.

Approved By:

1822/052595

_Date: 1/30/98

Analytical Report

Client:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98 **Date Received:** 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drain #24

Lab Code:

K9800155-003

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
						y		
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthylene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Phenanthrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
thracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
.oranthene	EPA 3520B	610	0.4	1	1/14/98	1/23/98	ND	В
Pyrene	EPA 3520B	610	0.5	1	1/14/98	1/23/98	ND	В
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.3	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	0.3	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.1	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.2	
Dibenz(a,h)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(g,h,i)perylene	EPA 3520B	610	2	1	1/14/98	1/23/98	ND	В
Indeno(1,2,3-cd)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.2	

The MRL is elevated because of matrix interferences.

Approved By: _

IS22/052595

В

Date: 2/23/98

Analytical Report

∡ent:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98 Date Received: 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drain #25

Lab Code:

Test Notes:

Units: ug/L (ppb) K9800155-004 Basis: NA

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	MRL Factor I	Extracted	Analyzed	Result	Notes
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthylene	EPA 3520B	610	7	1	1/14/98	1/23/98	ND	В
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Phenanthrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
`nthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
ranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Pyrene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Dibenz(a,h)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(g,h,i)perylene	EPA 3520B	610	2	1	1/14/98	1/23/98	ND	В
Indeno(1,2,3-cd)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	

В

The MRL is elevated because of matrix interferences.

Approved By: 1S22/052595

Analytical Report

_aent:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98 **Date Received:** 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drain #30

Lab Code:

K9800155-005

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthylene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Phenanthrene	EPA 3520B	610	3	1	1/14/98	1/23/98	ND	В
'¬thracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
oranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	3.3	
Pyrene	EPA 3520B	610	5	1	1/14/98	1/23/98	ND	В
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	1.1	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	1.6	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	1.9	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.8	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	1.6	
Dibenz(a,h)anthracene	EPA 3520B	610	0.3	1	1/14/98	1/23/98	ND	В
Benzo(g,h,i)perylene	EPA 3520B	610	2	1	1/14/98	1/23/98	ND	В
Indeno(1,2,3-cd)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	1.2	

В

The MRL is elevated because of matrix interferences.

Approved By:

1S22/052595

Date: 130 98

Analytical Report

_aent:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Water

Service Request: K9800155

Date Collected: 1/8/98 **Date Received:** 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Drains #10-22

Lab Code:

K9800155-006

EPA 3520B

EPA 3520B

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthylene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Phenanthrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.2	
'hracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
ranthene	EPA 3520B	610	0.3	1	1/14/98	1/23/98	ND	В
Pyrene	EPA 3520B	610	1	1	1/14/98	1/23/98	ND	В
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	0.1	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/23/98	ND	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
Dibenz(a,h)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/23/98	ND	
			_					

2

0.1

1

1/14/98

1/14/98

1/23/98

1/23/98

ND

ND

В

В

The MRL is elevated because of matrix interferences.

610

610

Approved By:

Benzo(g,h,i)perylene

Indeno(1,2,3-cd)pyrene

1822/052595

Date: 1 30 (8

Analytical Report

.ent:

J. H. Baxter & Company

Service Request: K9800155

Project:

Drain Water

Date Collected: NA

Sample Matrix:

Water

Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

K980114-WB

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3520B	610	1	1	1/14/98	1/22/98	ND	
Acenaphthylene	EPA 3520B	610	1	1	1/14/98	1/22/98	ND	
Acenaphthene	EPA 3520B	610	1	1	1/14/98	1/22/98	ND	
Fluorene	EPA 3520B	610	0.2	1	1/14/98	1/22/98	ND	
Phenanthrene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
thracene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
ranthene	EPA 3520B	610	0.2	1	1/14/98	1/22/98	ND	
Ругепе	EPA 3520B	610	0.2	1	1/14/98	1/22/98	ND	
Benz(a)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
Chrysene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
Benzo(b)fluoranthene	EPA 3520B	610	0.2	1	1/14/98	1/22/98	ND	
Benzo(k)fluoranthene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
Benzo(a)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
Dibenz(a,h)anthracene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	
Benzo(g,h,i)perylene	EPA 3520B	610	0.2	1	1/14/98	1/22/98	ND	
Indeno(1,2,3-cd)pyrene	EPA 3520B	610	0.1	1	1/14/98	1/22/98	ND	

Approved By: ______

Date: 1/30/98

1822/052595

QA/QC Report

Cuent:

J. H. Baxter & Company

Project: Sample Matrix: Drain Water

Water

Service Request: K9800155

Date Collected: 1/8/98

Date Received: 1/9/98 **Date Extracted:** 1/14/98

Date Analyzed: 1/22-1/23/98

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Prep Method:

EPA 3520B

AnalysisMethod:

610

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	p-Terphenyl
Drains #13 + 14	K9800155-001		94
Drain #23	K9800155-002		92
Drain #24	K9800155-003		93
Drain #25	K9800155-004		85
Drain #30	K9800155-005		106
Drains #10-22	K9800155-006		7 6
Method Blank	K980114-WB		102

CAS Acceptance Limits:

35-110

TREATING SOLUTION

Analytical Report

.ent:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Oil

Service Request: K9800155

Date Collected: 1/8/98

Date Received: 1/9/98 Date Extracted: 1/15/98

Date Analyzed: 1/24/98

Chlorinated Phenols EPA Methods 8151 Modified Units: µg/Kg (ppb)

Total

100

Analyte: Method Reporting Limit:

2,4,6-Trichlorophenol 100

Tetrachlorophenols

Pentachlorophenol

100

Sample Name

Lab Code

Treating Solu. Method Blank K9800155-007 K980115-OB

<600,000(D) ND

<600,000(D) ND

18000000

ND

The MRL is elevated because of matrix interferences and because the sample required diluting.

Mmanthe Approved By:

D

3A/102094 00155SVG.AY2 - p-t-tri 2/2/98

_____ Date: <u>2298</u>

QA/QC Report

Client:

J.H. Baxter & Company

Project:

Drain Water

Sample Matrix: Oil

Service Request: K9800155 Date Collected: 1/8/98 Date Received: 1/9/98

Date Extracted: 1/15/98 Date Analyzed: 1/24/98

Surrogate Recovery Summary **Chlorinated Phenols** EPA Methods 8151 Modified

Percent Recovery

Sample Name

Lab Code

4-Bromo-2,6-dichlorophenol

Treating Solu. Method Blank K9800155-007

NA

K980115-OB

41

CAS Acceptance Limits:

NA

NA

Not Applicable due to dilution.

Approved By:

SUR1/111594 00155SVG.AY2 - sur 2/24/98 Date: 1/14/97

Analytical Report

. .at:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Oil

Service Request: K9800155

Date Collected: 1/8/98
Date Received: 1/9/98

Polynuclear Aromatic Hydrocarbons

Sample Name:

Treating Solu.

Lab Code:

K9800155-007

Test Notes:

D

Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3580A	610	400	100	1/15/98	1/23/98	ND	
Acenaphthylene	EPA 3580A	610	50	100	1/15/98	1/23/98	ND	
Acenaphthene	EPA 3580A	610	50	100	1/15/98	1/23/98	ND	
Fluorene	EPA 3580A	610	100	100	1/15/98	1/23/98	1390	
Phenanthrene	EPA 3580A	610	1200	1000	1/15/98	1/23/98	ND	
thracene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
anthene	EPA 3580A	610	10	100	1/15/98	1/23/98	ND	
Pyrene	EPA 3580A	610	10	100	1/15/98	1/23/98	ND	
Benz(a)anthracene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
Chrysene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
Benzo(b)fluoranthene	EPA 3580A	610	10	100	1/15/98	1/23/98	ND	
Benzo(k)fluoranthene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
Benzo(a)pyrene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
Dibenz(a,h)anthracene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	
Benzo(g,h,i)perylene	EPA 3580A	610	10	100	1/15/98	1/23/98	ND	
Indeno(1,2,3-cd)pyrene	EPA 3580A	610	5	100	1/15/98	1/23/98	ND	

D

The MRL is elevated because of matrix interferences and because the sample required diluting.

Approved By:

LS22/052595

Date: 1/2 9/ 98

Analytical Report

د..ent:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Oil

Service Request: K9800155

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

K980115-OB

Test Notes:

Units: ug/L (ppb)
Basis: NA

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
Naphthalene	EPA 3580A	610	5	1	1/15/98	1/23/98	ND	
Acenaphthylene	EPA 3580A	610	5	1	1/15/98	1/23/98	ND .	
Acenaphthene	EPA 3580A	610	5	1	1/15/98	1/23/98	ND	
Fluorene	EPA 3580A	610	1	1	1/15/98	1/23/98	ND	
Phenanthrene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
racene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
ınthene	EPA 3580A	610	1	1	1/15/98	1/23/98	ND	
Ругепе	EPA 3580A	610	1	1	1/15/98	1/23/98	ND	
Benz(a)anthracene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
Chrysene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
Benzo(b)fluoranthene	EPA 3580A	610	1	1	1/15/98	1/23/98	ND	
Benzo(k)fluoranthene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
Benzo(a)pyrene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
Dibenz(a,h)anthracene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	
Benzo(g,h,i)perylene	EPA 3580A	610	1	1	1/15/98	1/23/98	ND	
Indeno(1,2,3-cd)pyrene	EPA 3580A	610	0.5	1	1/15/98	1/23/98	ND	

Approved By: 1822/052595

Date: 1/28/98

QA/QC Report

€uent:

J. H. Baxter & Company

Project:

Drain Water

Sample Matrix:

Oil

Service Request: K9800155

Date Collected: 1/8/98 **Date Received:** 1/9/98

Date Extracted: 1/15/98

Date Analyzed: 1/23/98

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Prep Method:

EPA 3580A

AnalysisMethod:

610

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent Recovery p-Terphenyl
Treating Solu.	K9800155-007		NA
Method Blank	K980115-OB		97

CAS Acceptance Limits:

35-110

NA

Not Applicable due to dilution.

Approved By: Date: $\frac{2}{7}\frac{4}{9}$

SUR 1/052595 00155SVG.BT2 - SUR 1 2/24/98

G.B.I.2 - SURI. 122476

APPENDIX A OUTSIDE LABORATORY RESULTS

PROJECT: 98-1194 FILE:

J23143 12-94-1 PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155 SAMPLE: Drains #13 &14

Project ID/P.O.: Sample origin: Sample matrix:

Sample size:

LAB ID.:

K98-0155 CAS WATER 1 L

Date collected: Date received: Date extracted:

Date analyzed:

Date processed:

1/8/98 1/15/98 1/16/98 3/5/98 3/7/98

Accession No.: 12-94-1 RTWin / Col Pfm: J23138 Beginning CCAL: J23139

> Ending CCAL: J23150 Initial CAL: 1613

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2.3,7,8-TCDD		•	2.4	-		U
1,2,3,7,8-PeCDD	-	1011.3	17.8	1.59	28:58	
1,2,3.4,7,8-HxCDD		3822.1	21.3	1.29	33:35	
1,2,3,6,7,8-HxCDD	-	11648.5	18.0	1.35	33:42	
1,2,3,7,8,9-HxCDD	+	11663.8	20.0	1.30	34:07	
1,2,3,4,6,7,8-HpCDD	·	429315.8	29.2	1.05	38:06	E
OCDD		4016164.2	12.7	0.89	42:48	E
2,3,7,8-TCDF	-	•	7.4	*		U
1,2,3.7,8-PeCDF	-	•	21.7	-		U
2,3,4,7,8-PeCDF	l-	-	13.5	-		U
1,2,3,4,7,8-HxCDF	-	1011.5	25.1	1.33	32:30	
1,2,3,6,7,8-HxCDF	j-	2094.8	15.5	1.39	32:38	
2,3,4,6,7,8-HxCDF		1863.1	13.4	1.20	33:23	
1,2,3,7,8,9-HxCDF		•	29.4	-		U
1,2,3,4,6,7,8-HpCDF	•	95637.7	13.3	1.05	36:43	E
1,2,3,4,7,8,9-HpCDF		4181.8	21.2	1.08	38:45	-
OCDF	-	544877.8	17.2	0.89	43:03	E

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TODD	0	•	2.4		U
TOTAL PeCDD	3	1794.0	17.8		
TOTAL HXCDD	8	78863.3	21.3		Ε
TOTAL HPCDD	2	746103.5	29.2	-	E
TOTAL TCDF	<u>.</u>	329.7	7.4		
TOTAL PeCDF	4	12177.4	21.7	_	
TOTAL HXCDF	5	99373.5	29.4		E
TOTAL HPCDF		419940.5	21.2	-	E

DATA REVIEWER:

AMA

PROJECT: 98-1194

LAB ID.:

A10979 12-94-2 PCDD/PCDF ANALYSIS REPORT

REFERENCE: K98-0155 SAMPLE: Drains #23

Project IO/P.O.:

Sample size:

Sample origin: Sample matrix:

K98-0155 CAS WATER 1 L

Date collected: Date received: Date extracted:

Date analyzed:

1/8/98 1/15/98 1/16/98 2/27/98

Accession No.: 12-94-2 RTWIn / Col Pfm: A10976 Beginning CCAL: A10977

Concal: A050797

Date processed:

3/3/98

Method: 1613

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD			2.4	•		U.
1,2,3,7,8-PeCDD	+	273.0	17.8	1,71	23:18	
1,2,3,4,7,8-HxCDD	Ļ	2773.7	21,3	1.10	27:36	
1,2,3,6,7,8-HxCDD	-	4581.3	18,0	1.32	27:44	
1,2,3,7,8,9-HxCDD		5147.4	20.0	1.35	28:10	
1,2,3,4,6,7,8-HpCDD		85674.4	29.2	1,11	32:21	E
OCDD		394351.0	12.7	0.88	36:55	E
2,3,7,8-TCDF	ļ	=	7,4			U
1,2,3,7,8-PeCDF		750.8	21.7	1.74	22:07	<u>~</u>
2,3,4,7,8-PeCDF	•	• • .	13.5	-		U
1,2,3,4,7,8-HxCDF	-	•	25.1	-	• • • • • • • • • • • • • • • • • • • •	U
1,2,3,6,7,8-HxCDF			15.5	-		Ü
2,3,4,6,7,8-HxCDF		•	13.4	•		U
1,2,3,7,8,9-HxCDF	1	•	29.4	-		Ú ~
1,2,3,4,6,7,8-HpCDF		16196.8	13.3	1.07	30:52	
1,2,3,4,7,8,9-HpCDF		-	21.2	•		Ü
OCDF		67842.8	17.2	0.90	37:03	· · · · · · · · · · · · · · · · · · ·

TOTAL ANALYTES	NO I	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD		•	2.4		<u>-</u>
TOTAL PeCDD	5	762.8	17.8		
TOTAL HXCDD	8	26006.1	21.3		Ĕ
TOTAL HPCDD	2	190915.2	29.2	_	Ē
TOTAL TODE	0	•	7.4		
TOTAL PeCDF	· 5	13301.3	21.7	-	·
TOTAL HXCDF	12	20654.6	29.4		Ē
TOTAL HPCDF	2	89248.5	21.2	_	Ë

DATA REVIEWER:

AMA

3/8/98

PROJECT: 98-1194 FILE: A10980 LAB ID.: 12-94-3

PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155

SAMPLE: Drain #24

Project ID/P.O.: Sample origin: Sample matrix:

Sample size:

K98-0155 CAS WATER Date collected: 1/8/3
Date received: 1/15
Date extracted: 1/16

Date analyzed:

Date processed:

1/8/98 1/15/98 1/16/98 2/27/98 Accession No.: 12-94-3
RTWin / Col Pfm: A10976
Beginning CCAL: A10977

Concal: A050797 Method: 1613

PECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	AT (min)	FLAGS
2,3,7,8-TCDD		29.6	2.4	0.68	18:55	
1.2,3,7,8-PeCDD	-	681.7	17.8	1.64	23:22	
1,2,3,4,7,8-HxCDD		3133.6	21.3	1.32	27:46	**
1,2,3,6,7,8-HxCDD	,	14728.8	18.0	1.31	27:54	
1,2,3,7,8,9-HxCDD		13322.4	20.0	1.29	28:18	
1,2,3,4,6,7,8-HpCDD		194781.3	29.2	1.03	32:33	Ę
OCDD		749444.9	12.7	0.90	37:32	E
2,3,7,8-TCDF	<u> </u>		7.4	•		U
1,2,3,7,8-PeCDF	;	1289.0	21.7	1.53	22:08	
2.3,4,7,8-PeCDF	÷	•	13.5	-		๊ บ่
1,2,3,4,7,8-HxCDF	:	-	25.1	-		Ü
1,2,3,6,7,8-HxCDF		•	15.5	-		U
2.3,4,6,7,8-HxCDF	. *	•	13.4	•		U
1,2,3,7,8,9-HxCDF	F	•	29.4	-	•	U
1,2,3,4,6,7,8-HpCDF		43499.2	13.3	1.07	31:04	E
1,2,3,4,7,8,9-HpCDF	,	•	21,2	•		U
OCDF	Ė	113183.7	17.2	1.02	37:34	

TOTAL ANALYTÉS	. NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLÁGS
TOTAL TODO	<u> </u>	000 7			
TOTAL TCDD	· y	229.7	2.4		
TOTAL PeCDD	7	3111.2	17.8	<u> </u>	
TOTAL HXCDD	5	60909.7	21.3	_	E
TOTAL HPCDD	2	311186.5	29.2		Ē
TOTAL TCDF	0	•	7.4	-	U
TOTAL PeCDF	9	12580:4	21.7		_
TOTAL HXCDF	16	64416.8	29.4	_	Ē
TOTAL HPCDF	3	181922.2	21.2		Ë
	:				

DATA REVIEWER:

3/9/98

AMA

PROJECT: 98-1194

FILE: LAB ID.: A10981 12-94-4

PCDD/PCDF ANALYSIS REPORT

REFERENCE: K98-0155 SAMPLE: Drain #25

Project ID/P.O.:

Sample origin: Sample matrix: Sample size:

K98-0155

CAS WATER 1 L

Date collected:

Date received: Date extracted: 1/8/98 1/15/98 1/16/98

2/27/98 Date analyzed: 3/3/98 Date processed:

Accession No.: 12-94-4

RTWin / Col Pfm: A10976 Beginning CCAL: A10977

Concal: A050797 Method: 1613

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2.3.7.8-TCDD	-	•	2.4	•		U
1,2,3,7,8-PeCDD		360.2	17.8	1.48	23:23	
1,2,3,4.7.8-HxCDD	÷	1190.9	21.3	1.26	27:42	
1,2,3,6,7,8-HxCDD	į.	7132.2	18.0	1.23	27:49	
1,2,3,7,8,9-HxCDD	+	7262.1	20.0	1.38	28:16	
1,2,3,4,6,7,8-HpCDD		106341.8	29.2	1.04	32:31	E.
OCDD		478616.5	12.7	0.94	37:19	E
2,3,7,6-TCDF		•	7.4	-		U
1,2,3,7,8-PeCDF	•	•	21.7	•		U
2,3,4,7,8-PeCDF	-	. •	13.5	•		Ū
1,2,3,4,7,8-HxCDF	•	2812.7	25.1	1 .3 3	26:39	
1,2,3,6,7,8-HxCDF			15.5			U
2,3,4,6,7,8-HxCDF	÷		13.4	-		U
1,2,3,7,8,9-HxCDF	,	•	29.4	•		U
1,2,3,4,6,7,8-HpCDF		21380.1	13.3	1.06	31:02	Ε
1,2,3,4.7.8,9-HpCDF		4650.6	21.2	1.05	33:04	
OCDF	·	64550.4	17.2	0.91	37:26	

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0		2.4		U
TOTAL PeCDD	5	1226.6	17.8		
TOTAL HXCDD	6	39898.0	21.3		E
TOTAL HPCDD	2	186942.2	29.2		E
TOTAL TCDF	3	313.7	7.4		
TOTAL PeCDF	.6	4294.6	21.7		
TOTAL HXCDF	6	25303.6	29.4		E
TOTAL HOCDF	ß	82518.4	21.2		E

DATA REVIEWER: AMA

3/9/98

PROJECT: 98-1194 J23142 FILE: LAB ID.: 12-94-5

PCDD/PCDF QUALITY CONTROL REPORT REFERENCE: K98-0155

SAMPLE: Drain #30

Project ID/P.O.: K98-0155 Sample origin: CAS Sample matrix: WATER Sample size:

Date collected: 1/8/98 Date received: 1/15/98 Date extracted: 1/16/98 Date analyzed: 3/5/98 Date processed: 3/7/98

Accession No.: 12-94-5 RTWin / Col Pfm: J23138 Beginning CCAL: J23139 Initial ICAL: J082393 Method: 1613

LABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3.7,8-TCDD	1471.3	73.6	0.74	24:14	
13C12-1,2,3,7,8-PeCDD	753.7	37.7	1.70	28:57	Y
13C12-1,2,3,4,7,8-HxCDD	1566.7	78.3	1.29	33:36	•
13C12-1,2,3,6,7,8-HxCDD	1357.5	67.9	1.40	33:44	-
13C12-1,2,3,4,6,7,8-HpCDD	644.5	32.2	1.14	38:06	Y
13C12-OCDD	1875.3	46.9	0.80	42:49	•
13C12-2,3,7,8-TCDF	1660.5	83.0	0.76	23:36	-
13C12-1,2,3,7,8-PeCDF	1164.4	58.2	1.72	27:43	+
13C12-2,3,4,7,8-PeCDF	835.4	41.8	1.72	28:33	•
13C12-1,2,3,4,7,8-HxCDF	1378,3	68.9	0.52	32:31	-
13C12-1,2,3,6,7,8-HxCDF	1216.3	60.8	0.51	32:40	•
13C12-2,3,4,6,7,8-HxCDF	1339.3	67.0	0.44	33:28	•
13C12-1,2,3,7,8,9-HxCDF	1404.7	70.2	0.53	34:24	-
13C12-1,2,3,4,6,7,8-HpCDF	718.9	35.9	0.45	36:43	Y
13C12-1,2,3,4,7,8,9-HpCDF	475.7	23.8	0.47	38;45	Y

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.77	24:03	•
13C12-1,2,3,7,8,9-HxCDD	1.25	34:09	•

CONC (PPQ)	% REC.	·	RT	FLAGS
684.1	85.5		24:15	•

Flags:

U - The compound was analyzed for but not detected at or above the detection limit.

J — The analyte was detected at concentrations between the calibrated range and the detection limit.

E - The analyte was detected at concentrations greater than the callbrated range.

B — The analyte was found in the essociated blank.

D - The analyte was identified in the analysis at a secondary dilution factor.

RO - lone used for identification are out of ratio QC limits.

S - The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1

X - An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks

IONICS INTERNATIONAL, INC. (800) 4-DIOXIN

Y - The recovery of the indicated standard is outside of QC advisory limits.

Definitions:

CONC - The concentration, given in parts per quadrillion (ppq) or parts per trillion (ppt).

EDL — Estimated detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per quadrillion (ppq), parts per trillion (ppt), or in picograms (pg).

RATIO - The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.

RT - The retention time of an analyte.

The total number of peaks identified as analytes within the retention time window.

% REC -The percent recovery of the indicated standard.

EMPC — Estimated Meximum Possible Concentration.

Phone: (713) 972-1037 Fax: (713) 784-1152

PROJECT: 98-1194

PCDD/PCDF TOXICITY EQUIVALENCE REPORT

REFERENCE: K98-0155 SAMPLE: Drain #30

J23142 FILE: LAB ID .: 12-94-5

Project ID/P.O.: K98-0155 Date collected: 1/8/98 Accession No.: 12-94-5 Sample origin: CAS 1/15/98 RTWin / Col Pfm: J23138 Date received: Beginning CCAL: J23139 Initial ICAL: J082393 Sample matrix: WATER 1/16/98 Date extracted: Sample size: Date analyzed: 3/5/98 Date processed: 3/7/98 Method: 1613

SPECIFIC ANALYTES	CONC (PPQ)		TEF	<u>T</u>	EF CONC (PPQ)	
2,3,7,8-TCDD	0.0	x	1	=	•	
1,2,3,7,8-PeCDD	763.3	х	0.5	=	381.66	
1,2,3,4,7,8-HxCDD	2718.4	×	0.1	=	271.84	
1,2,3,6,7,8-HxCDD	8651.9	X	0.1	=	865.19	
1,2,3,7,8,9-HxCDD	8764.0	X	0.1	=	876.4	
1,2,3,4,6,7,8-HpCDD	357390.0	X	0.01	=	3573.9	
OCDD	1292467.0	X	0.001	=	1292.47	
2,3,7,8-TCDF	0.0	X	0.1	=	•	
1,2,3,7,8-PeCDF	0.0	X	0.05	=	•	
2,3,4,7,8-PeCDF	0.0	X	0.5	=	•	
1,2,3,4,7,8-HxCDF	1707.4	X	0.1	=	170.74	
1,2,3,6,7,8-HxCDF	1797.1	X	0.1	=	179.71	
2,3,4,6,7,8-HxCDF	1613.3	X	0.1	=	161.33	
1,2,3,7,8,9-HxCDF	0.0	X	0.1	=	-	
1,2,3,4,6,7,8-HpCDF	74647.1	X	0.01	=	746.47	
1,2,3,4,7,8,9-HpCDF	7240.5	X	0.01	=	72.41	
OCDF	184839.8	X	0.001	=	184.84	

Phone: (713) 972-1027 Fax: (713) 784-1152

PROJECT: 98-1194 FILE: J23142 LAB ID.: 12-94-5 PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155 SAMPLE: Drain #30

Project ID/P.O.: Sample orlgin: Sample matrix:

Semple size:

K98-0155
CAS
WATER
1 L

Date collected:
Date received:
Date extracted:
Date analyzed:

Date processed:

1/8/98 1/15/98 1/16/98 3/6/98 3/7/98 Accession No.: 12-94-5
RTWIn / Col Pfm: J23138
Beginning CCAL: J23139
Initial ICAL: J082393

Method: 1613

SPECIFIC ANALYTES	EMPC (PPQ)	CONC (PPQ)	MDL (PPQ)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD		•	2.4	•		U
1,2,3,7,8-PeCDD	-	763.3	17.8	1.76	28:58	
1,2,3,4,7,8-HxCDD		2718.4	21.3	1.30	33:37	
1,2,3,6,7,8-HxCDD	•	8651.9	18.0	1.27	33:45	
1,2,3,7,8,9-HxCDD	•	8764.0	20.0	1.28	34:10	
1,2,3,4,6,7,8-HpCDD	•	357390.0	29.2	1,20	38:07	Ē
OCDD	•	1292467.0	12.7	0.90	42:50	E
2,3,7,8-TCDF		• ,	7.4	•		U
1,2,3,7,8-PeCDF	-	-	21.7	•		U
2,3,4,7,8-PeCDF	•	-	13.5	•		U
1,2,3,4,7,8-HxCDF	•	1707.4	25.1	1.28	32:32	
1,2,3,6,7,8-HxCDF		1797.1	15.5	1.25	32:37	
2,3,4,6,7,8-HxCDF	-	1613.3	13.4	1.32	33:26	
1,2,3,7,8,9-HxCDF	•	•	29.4	•		Ü
1,2,3,4,6,7,8-HpCDF	•	74647.1	13.3	1.05	36:44	E
1,2,3,4,7,8,9-HpCDF	•	7240.5	21.2	1.15	37:01	
OCDF	-	184839.8	17.2	0.90	43:05	

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TODD	0	•	2.4	_	U
TOTAL PeCDD	4	1953.5	17.8		
TOTAL HXCDD	6	54700.0	21.3	_	E
TOTAL HOODD	2	615500.6	29.2	_	E
TOTAL TCDF	4	383.1	7.4		
TOTAL PeCDF	4	7585.8	21.7		
TOTAL HXCDF	5	86241.4	29.4	-	Ε
TOTAL HPCDF	4	373356.9	21.2		E

DATA REVIEWER:

3/26/98

AMA

Phone: (713) 972-1037 Fax: (713) 784-1152

PROJECT: 98-1194 FILE: J23141 LAB ID.: 12-94-6

PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155 SAMPLE: Treating Solv.

Project ID/P.O.:
Sample origin:
Sample matrix:
Sample size:

K98-0155 CAS OIL 1 g Date collected: 1/8/98
Date received: 1/15/98
Date extracted: 1/16/98
Date analyzed: 3/5/98

Date processed:

1/8/98 1/15/98 1/16/98 3/5/98 3/7/98 Accession No.: 12-94-6
RTWin / Col Pfm: J23136
Beginning CCAL: J23139
Ending CCAL: J23150
Initial CAL: 1613

SPECIFIC ANALYTES	EMPC (PPT)	CONC (PPT)	MDL (PPT)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	•	· · · · · · · · · · · · · · · · · · ·	0.6	•	· · · · · · · · · · · · · · · · · · ·	
1,2,3,7,8-PeCDD	-	-	1.6	-	·•	U
1,2,3,4,7,8-HxCDD	-	•	1.2	**************************************		
1,2,3,6,7,8-HxCDD			1.3	•		<u>.</u>
1,2,3,7,8,9-HxCDD	-	6488.6	1.7	1.36	33:53	
1,2,3,4,6,7,8-HpCDD	-	7936597.3	1.9	1.01	38:08	E
OCDD		72548305.9	21.4	0.89	43:02	E
2,3,7,8-TCDF	•	-	0.7	•		U
1,2,3,7,8-PeCDF	:		1.3	•	· · · · · · · · · · · · · · · · · · ·	U
2,3,4,7,8-PeCDF		82.2	1.8	1.40	28:30	
1,2,3,4,7,8-HxCDF	<u> </u>	19515.9	1.5	1.27	32:17	
1,2,3,6,7,8-HxCDF	•	11163.2	1.3	1.26	33:07	
2,3,4,6,7,8-HxCDF	<u>.</u>	•	1.1	_		U
1,2,3.7,8,9-HxCDF	-	-	1.6	-		U
1,2,3,4,6,7,8-HpCDF	-	164686.4	2.4	1.06	38:45	E
1,2,3,4,7,8,9-HpCDF	*	•	8.0	•		Ū
OCDF	• •	35342557.0	2.6	1.01	43:13	Ε

TOTAL ANALYTES	NO	CONC (PPT)	MDL (PPT)	RT WINDOW (min)	FLAGS
TOTAL TODD	· · · · · · · · · · · · · · · · · · ·	•	0.6		
TOTAL PeCDD	2	343.6	1.6	_	
TOTAL HXCDD	5	107610.0	1.7		E
TOTAL HPCDD	2	20053622.2	1.9		É
TOTAL TCDF	0	•	0.7		Ū
TOTAL PeCDF	2	1197.2	1.8		
TOTAL HXCDF	7	1495050.7	1.6	_	E
TOTAL HPCDF	4	23734561.7	2.4	-	Ë
	1				

DATA REVIEWER:

3/8/98

AMA

Project ID/P.O.:

Sample origin:

Sample matrix:

Sample size:

Columbia Analytical Services

PROJECT: 98-1194 FILE: J23146 PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155

SAMPLE: Lab Spike

FILE: J23146 LAB ID.: LS B3-181

> K98-0155 Date collected: N/A Accession No.: LS B3-181 N/A RTWin / Col Pfm: J23138 CAS Date received: Beginning CCAL: J23139 1/16/98 Water Date extracted: Initial ICAL: J082396 3/5/98 1 L Date analyzed: Method: 1613 3/16/98 Date processed:

RT (min) **FLAGS** EMPC (PPQ) CONC (PPQ) MDL (PPQ) RATIO SPECIFIC ANALYTES 24:07 2.4 0.87 2,3,7,8-TCDD 190.6 942.4 17.8 1.73 28:50 1,2,3,7,8-PeCDD 818.2 21.3 1,18 33:15 1,2,3,4,7,8-HxCDD 1.32 33:23 896.4 18.0 1,2,3,6,7,8-HxCDD 805.3 20.0 1.13 33:51 1,2,3,7,8,9-HxCDD 1114.9 29.2 1.00 38:00 1,2,3,4,6,7,8-HpCDD 2016.8 12.7 0.79 42:39 _ OCDD 23:28 2,3,7,8-TCDF 182.1 7.4 0.80 1004.0 21.7 1.74 27:37 1,2,3,7,8-PeCDF 28:26 1025.4 1.69 13.5 2,3,4,7,8-PeCDF 1.26 32:14 1072.3 25.1 1,2,3,4,7,8-HxCDF • 942.8 15.5 1.27 32:23 1,2,3,6,7,8-HxCDF 930.4 13.4 1.24 33:06 2,3,4,6,7,8-HxCDF . 857.8 29.4 1.28 34:15 1,2,3,7,8,9-HxCDF 36:35 13.3 1.17 1084.0 1,2,3,4,6,7,8-HpCDF . 1,2,3,4,7,8,9-HpCDF 859.1 21.2 1.14 38:40 0.97 42:54 1863.0 17.2 OCDF

TOTAL ANALYTES	NO	CONC (PPQ)	MDL (PPQ)	RT WINDOW (min)	FLAGS
TOTAL TCDD	1	190.6	2.4		<u> </u>
TOTAL PeCDD	1	942.4	17.8	_	
TOTAL HxCDD	3	2519.9	21.3		
TOTAL HPCDD	11	1114.9	29.2	-	
TOTAL TCDF	1	182.1	7.4	-	
TOTAL PeCDF	2	2029.4	21.7		
TOTAL HXCDF	4	3803.2	29.4		
TOTAL HPCDF	2	1943.1	21.2		

DATA REVIEWER: 3/26/98

PROJECT: 98-1194 FILE: J23146 LAB ID.: LS B3-181 PCDD/PCDF QUALITY CONTROL REPORT REFERENCE: K98-0155

SAMPLE: Lab Spike

Project ID/P.O.: K98-0155 Sample origin: CAS Sample matrix: Water Sample size: 1 L

Date collected: Date received: N/A 1/16/98 Date extracted: 3/5/98 Date analyzed: Date processed: 3/16/98

Accession No.: LS B3-181 RTWin / Col Pfm: J23138 Beginning CCAL: J23139 Initial ICAL: J082396 Method: 1613

ABELED COMPOUNDS	CONC (PPQ)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1292.8	64.6	0.77	24:06	-
13C12-1,2,3,7,8-PeCDD	950.7	47.5	1.62	28:49	
13C12-1,2,3,4,7,8-HxCDD	2646.6	132.3	1.31	33:14	
13C12-1,2,3,6,7,8-HxCDD	2172.4	108.6	1.33	33:22	
13C12-1,2,3.4,6,7,8-HpCDD	735.1	36.8	0.97	38:00	Υ
13C12-OCDD	601.5	15.0	1.01	42:38	Y
13C12-2,3.7,8-TCDF	1802.0	90.1	0.80	23:28	
13C12-1,2,3,7,8-PeCDF	1430.7	71.5	1.66	27:36	-
13C12-2,3,4,7,8-PeCDF	1172.0	58.6	1.68	28:25	
13C12-1,2,3,4,7,8-HxCDF	2619.8	131.0	0.44	32:14	•
13C12-1,2,3,6,7,8-HxCDF	2514.9	125.7	0.46	32:22	•
13C12-2,3,4,6,7,8-HxCDF	2253.4	112.7	0.47	33:05	•
13C12-1,2,3,7,8,9-HxCDF	1445.9	72.3	0.46	34:14	
13C12-1,2,3,4.6,7,8-HpCDF	921.6	46.1	0.41	36:34	•
13C12-1,2,3,4,7,8,9-HpCDF	745.4	37.3	0,46	38:39	Y

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.78	23:56	-
13C12-1,2,3,7,8,9-HxCDD	1.39	33:50	•

CLEANUP STANDARD	CONC (PPQ)	% REC.	RT	FLAGS
37CI4-TCDD	521.0	65.1	24:07	•
37CI4-1CDD	321.0	05.1		

Flags:

U — The compound was analyzed for but not detected at or above the detection limit.

The analyte was detected at concentrations between the calibrated range and the detection limit.

The analyte was detected at concentrations greater than the calibrated range.

B — The analyte was found in the associated blank.

D - The analyte was identified in the analysis at a secondary dilution factor.

RO — lons used for identification are out of ratio QC limits.

S - The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI dld not meet the signal- to-noise ratio criterion of 2.5:1

X - An imprferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks

IONICS INTERNATIONAL, INC. (800) 4-DIOXIN

Y - The recovery of the indicated standard is outside of QC

Definitions:

The concentration, given in parts per quadrillion (ppq) or CONC parts per triflion (ppt).

Estimated detection limit based on a 2.5:1 signal-to-noise EDL -criterie, given in parts per quadrillion (ppq), perts per trittion (ppt), or in picograms (pg).

RATIO — The ratio of the low- to high-mass ion areas for the

confirmation and quantitation lons. RT - The retention time of an analyte

The total number of peaks identified as analytes NO within the retention time window.

The percent recovery of the indicated standard. % REC ---

EMPC — Estimated Maximum Possible Concentration.

Phone: (713) 972-1037 Fax: (713) 784-1152 LAB ID.:

Columbia Analytical Services

PROJECT: 98-1194 FILE: J23148

LS B3-182

PCDD/PCDF ANALYSIS REPORT REFERENCE: K98-0155

SAMPLE: Lab Spike

Accession No.: LS B3-182 Project ID/P.O.: K98-0155 Date collected: N/A RTWin / Col Pfm: J23138 Sample orlgin: CAS Date received: N/A Beginning CCAL: J23139 Sample matrix: Oil Date extracted: 1/16/98 1 g Date analyzed: 3/5/98 Sample size:

Initial ICAL: J082396 Date processed: 3/16/98 Method: 1613

SPECIFIC ANALYTES	EMPC (PPT)	CONC (PPT)	MDL (PPT)	RATIO	RT (min) FLAGS
2,3,7,8-TCDD	•	164.8	0.6	0.76	24:07
1,2,3,7.8-PeCDD	•	860.1	1.6	1.73	28:49
1,2,3,4,7,8-HxCDD	•	924.6	1.2	1.13	33:15
1,2,3,6,7,8-HxCDD	-	880.6	1.3	1.41	33:22
1,2,3,7,8,9-HxCDD	•	849.0	1.7	1.25	33:50
1,2,3,4,6,7,8-HpCDD	•	912.4	1.9	1.20	38:00
OCDD		1647.2	21.4	0.81	43:01
2,3,7,8-TCDF	•	189.4	0.7	0.71	23:28
1,2,3,7,8-PeCDF	•	960.2	1.3	1.62	27:36
2,3,4,7,8-PeCDF	•	1021.0	1.8	1.58	28:25
1,2,3,4,7,8-HxCDF	•	928.2	1.5	1.20	32:14
1,2,3,6,7,8-HxCDF	-	927.1	1.3	1.20	32:22
2,3,4,6,7,8-HxCDF	•	943.5	1.1	1.23	33:05
1,2,3,7,8,9-HxCDF	•	895.9	1.6	1.18	34:14
1,2,3,4,6,7,8-HpCDF	-	913.4	2.4	1.08	3 6:35
1,2,3,4,7,8,9-HpCDF	•	982.2	0.8	0.98	38:39
OCDF	-	1677.4	2,6	0.83	42:53

TOTAL ANALYTES TOTAL TODD	ИО	CONC (PPT)	MDL (PPT)	RT WINDOW (min)	FLAGS
	1	164.8	0.6	_	
TOTAL PeCDD	1	860.1	1.6		
TOTAL HXCDD	3	2654.2	1.7	_	
TOTAL HPCDD	11	912.4	1.9		
TOTAL TCDF	1	189.4	0.7		
TOTAL PeCDF	2	1981.2	1.8		
TOTAL HXCDF	4	3694.7	1.6		
TOTAL HOCDF	2	1895.5	2.4	_	

DATA REVIEWER:		3/26/98
7	NMA	

Phone: (713) 972-1037 Fax: (713) 784-1152

PROJECT: 98-1194 FILE: J23148 PCDD/PCDF QUALITY CONTROL REPORT

REFERENCE: K98-0155 SAMPLE: Lab Spike

LAB ID.: LS B3-182
Project ID/P.O.: K98-0155

1 g

Sample origin: CAS

Sample matrix: Oil

Sample size:

Date collected: N/A
Date received: N/A
Date extracted: 1/16/98
Date analyzed: 3/5/98
Date processed: 3/16/98

Accession No.: LS B3-182
RTWin / Col Pfm: J23138
Beginning CCAL: J23139
Initial ICAL: J082396
Method: 1613

ABELED COMPOUNDS	CONC (PPT)	% REC.	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDD	1776.1	88.8	0.74	24:06	•
13C12-1,2,3,7,8-PeCDD	1447.7	72.4	1.70	28:48	•
13C12-1,2,3,4,7,8-HxCDD	2338.5	116.9	1.24	33:14	
13C12-1,2,3,6,7,8-HxCDD	1982.1	99.1	1.32	33:21	
13C12-1,2,3,4,6,7,8-HpCDD	1301,2	65.1	1.03	37:59	•
13C12-OCDD	1362.7	34.1	0.93	43:00	Y
13C12-2,3,7,8-TCDF	1867.8	93.4	0.80	23:27	-
13C12-1,2,3,7,8-PeCDF	1888.5	94.4	1.70	27:35	
13C12-2,3,4,7,8-PeCDF	1600.8	80.0	1.66	28:24	-
13C12-1,2,3,4,7,8-HxCDF	2233.4	111.7	0.46	32:13	-
13C12-1,2,3,6,7,8-HxCDF	1930.1	96.5	0,48	32:21	-
13C12-2,3,4,6,7,8-HxCDF	1935.4	96.8	0.47	33:04	•
13C12-1,2,3,7,8,9-HxCDF	1679.4	84.0	0.46	34:14	
13C12-1,2,3,4,6,7,8-HpCDF	1203.2	60.2	0.42	36:34	•
13C12-1,2,3,4,7,8,9-HpCDF	1143.4	57.2	0.39	38:39	

NTERNAL STANDARDS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	0.82	23:56	
13C12-1,2,3,7,8,9-HxCDD	1.27	33:49	+

CLEANUP STANDARD	CONC (PPT)	% REC.	RT	FLAGS
37CI4-TCDD	722.4	90.3	24:07	

Flags:

 The compound was analyzed for but not detected at or above the detection limit.

J — The analyte was detected at concentrations between the calibrated range and the detection fimit.

 The analyte was detected at concentrations greater than the calibrated range.

8 — The analyte was found in the associated blank.

D — The analyte was identified in the analysis at a secondary dilution factor.

RO - lone used for identification are out of ratio QC limits.

S — The analyse in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the lose of COCI did not meet the signal- to-noise ratio criterion of 2.5:1

X — An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks RATIO — The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.

RT — The retention time of an analyte.

Definitions:

CONC -

EDL -

NO — The total number of peeks identified as enalytes

trillion (ppt), or in picograms (pg).

Y — The recovery of the Indicated standard is outside of QC

The concentration, given in parts per quadrillion (ppq) or

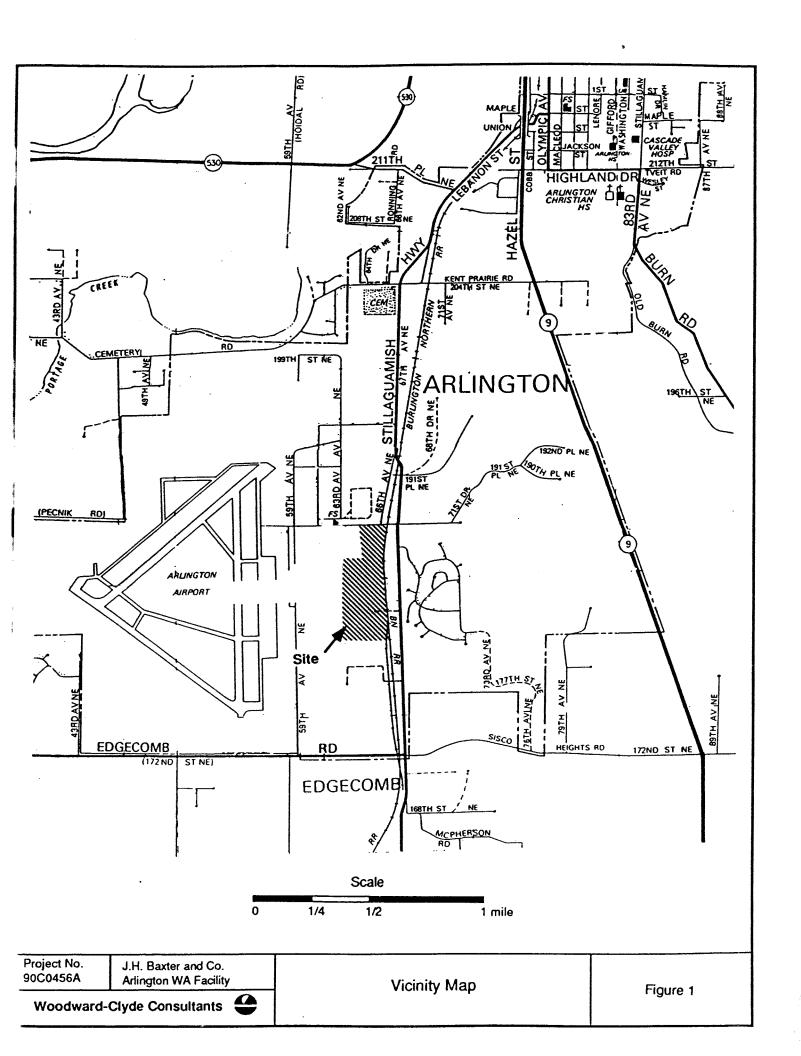
Estimated detection limit based on a 2.5:1 signal-to-noise

criteria, given in parts per quadrillion (ppq), parts per

within the retention time window.

**REC — The percent recovery of the indicates.

parts per trillion (ppt).


REC — The percent recovery of the indicated standard.
 EMPC — Estimated Maximum Possible Concentration.

APPENDIX B CHAIN OF CUSTODY INFORMATION

C bia lytical services me

CHAIN OF STODY/LABORATORY ANALYSIS REQUEST FORM

Ser vice	PS ^{rrc.} 1 3	317 South 13t	h Ave. • Kelso, W	A 98626	• (360) 5	577-72	22 • ((800) 6	95-72	22 • F	AX (36	60) 636	-1068	ſ	DATE_	上	<u>8-</u>	98	<u> </u>	PAGE			OF_		_
PROJECT NAME J. H.	R	ALCO O	-CO. Sto	2 hal	1/4/	R	<u>, </u>								ALY:	sis	REC	UES	STEC)]
PROJECT MANAGER	O M	Moth	MERE	-1410		i		7	7			7,	20.6	ş /		/;	\$/	7	W		3 /	او	-	1601	
COMPANY/ADDRESS	. H.	BAKT	= L()	n.		NER				10/10/10		od i	15/41/2015		ORING Can C		Jep (34	W.	/ 5		\mathcal{Y}_{i}^{s}	T2 25.48 20.00	
6520 18	3277	5	N.E.	میدا		MTA		ganica	/	Solati		87		5		Ž Š		(5			SE SE	3/	73	15	
FAX		PHONE	360-435-	4		OF CONTAINERS		50 98 98	88	400	/sg /				[g /	₽/	/පි රේ /	7/				(B)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	
SAMPLERS SIGNATURE	Jim	Clai	JZ em			ERO	Veu/A	8,0	18 / 28 / 28 / 28 / 28 / 28 / 28 / 28 /	2 8			BTE 015					5/5) Joani		0/0	$p/\frac{1}{2}$		
SAMPLE I.D.	DATE	TIME	LAB 1.D.	SAM MAT		NUMBER		Volatile Original Section of GCANGS	2 10 10 10 10 10 10 10 10 10 10 10 10 10	Pesticides O 2/00 Colors		TPHGasBTH41810 arbon	THE BTEX 503080	THE THE WAS	Mersia Constitution	Metals (forz. VOAG Semi Pe	TO BOOK	OF THE STATE OF TH		10 10 10 10 10 10 10 10 10 10 10 10 10 1	75	Se S	1 0 P	PEMARKS	
DRAINS#134 14	1-8	1:000m			TER	5	_										X				X	X	X	/	1
DRAIN# 23	1-8	12:300	2	V //		5											X	X			X	X	X		
DRAIN#24	1-8	1:300	3			5											X	\times			\times	\times	X		
DRAW#25	1-8	2:000	Ч			5											\boxtimes	\boxtimes			X]	\boxtimes	X,		
DRAW# 30	1-8	12'0m	ζ			5											\nearrow	X			X	凶	X		_
DAMINS#10-22	1-8	233	L		_	4											X	X			\leq	X			4
TREATING, Solu	1-8	3100p	7	OIL!	SORN	3															$\prec \downarrow$	\bowtie	X,		4
		1																					,		-
																									\dashv
- DEL MOUIONED B	V.	, ,	ECEIVED BY:		TURNA	ROUND	BEOL	IIREME	NTS	F	REPOR	T REQL	JIREME	NTS		INVO	CE INF	ORMA	TION:		I		MPLE R	ECEIPT:	\dashv
RELINQUISHED BY		(10.5)	6		24	hr	48 hr.	·	5 day	X	I. Routi	ne Repo	rt												
Signature JAWS		Signature	k HOW	.,	X Sta	indard (1 ovide Ver			iys)		MŚD	rt (includ , as requi ged as sa	ired, ma		P.O.#	7.0	RA	η£R.	41		Shipping Shipping	-			
Printed Name		Printed Na (A	me К	88		vide vei sults	idai Prei	nimary			III. Data	Validation	on Repor		126	4B	ox:	591	2	_	Conditio	,			
Time		Firm 1 ()1()9 9	8 1 0'	3988)	vide FA	•	inary Re	sults		•	Delivera		,	5n/	ه ۲۲		0,6			J ab No	· · ·	416 - 1	OLC 5	
Date/Time	/ '	Date/Time	Щ		Fiequested	Report	t Date								ATT: CAROLINE MARKULL ANALYZE FOR 2. 4, LO TRICK OR APHENO 2. 3, 4, 6-TELVAC HERO PHENOCIAND PENTA (P)								4		
RELINQUISHED BY	Y:	R	ECEIVED BY:		PECIA DPLA	AL INS	STRU ER	CTIOI Eddi	NS/CC	DMME }^	NTS:	of 1		ob). —	HNA LI3.1	1421	e fo Telu	r 2 achi	,4,4 200	o TR	ichl neli	ORA!	chenol, Dentherlar	A-
S ignature		Signature	- E		300	~~		-1-	FO	N V	ME	/h~	1	13		, C-4	מל	Tho		h /	\\ _+		.	Pheno	
Printed Name		Printed Na	me		D 1 1 7	レンスト	5 L	ンフC ルム	، ۱۰ ا	FUR	LAN) 5	Bu	Īs.	oto	ρ €	Di	1U+	104	7' 7'	۱ جورب	<u>የ</u> ርያ	HOR	INMED	
E m		Firm																							-
Date/Time		Date/Time			1001	C E	01	P	Pi	P	HA	U 1 L	N 1	171	4	11P	VC VR	MU	CN	NC En	hE	<u>(C (</u>	-010C	ENTRATIO	T .
					L				• •				1/0	010	<u> </u>	<u> </u>	<u> ,, (c. 1</u>	<u> </u>	/F)	CIC	UD	CK	V11)	1-71(F+(1))	_1

