

ADDITIONAL INVESTIGATION REPORT

Building C at Woodinville West Business Park Woodinville, Washington Facility/Site #36189742 Cleanup Site #16672

October 12, 2023

Prepared for

Woodinville CD, LLC c/o Fox Rothschild LLP 1001 Fourth Avenue, Suite 4500 Seattle, Washington 98154-1065

Additional Investigation Report Building C at Woodinville West Business Park Woodinville, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by: _____ Sierra Mott

Document reviewed by: _____ Mike Staton, LG

Date: October 12, 2023 Project No.: 1789002.010

File path: P:\1789\002.010\R\Additional Investigation Report\Landau_Woodinville Add Inv Rpt_10-12-23.docx

Project Coordinator: LJL

Additional Investigation Report Building C at Woodinville West Business Park

This page intentionally left blank.

ii

TABLE OF CONTENTS

					Page
1.0		Intro	odu	ction	1-1
	1.1		Des	scription of Subject Property	1-1
	1.2		Pre	vious Investigations	1-2
	1.3		Add	ditional Investigation Scope and Objectives	1-4
	1.4		Ent	ry into Voluntary Cleanup Program	1-4
2.0		Add	itio	nal Investigation Activities	2-1
	2.1		Ma	pping of Drainage Infrastructure	2-1
	2.2		Dri	ling and Soil Sampling	2-1
	2.3		We	ll Installation	2-2
	2.4		Soi	Sampling for Laboratory Analyses	2-2
	2.5	,	Gro	oundwater Monitoring	2-3
	2.6	,	Sur	face Water Sampling	2-3
	2.7	,	Wa	ste Disposal	2-4
3.0		Resu	ılts.		3-1
	3.1		Soi	Sample Analytical Results	3-1
	3.2		Gro	oundwater	3-1
		3.2	.1	Groundwater Sample Analytical Results	3-1
		3.2	.2	Groundwater Monitoring Results	3-1
	3.3		Sur	face Water Sample Analytical Results	3-2
4.0		Natı	ure a	and Extent of Contamination	4-1
	4.1		For	mer Dry-Cleaning Machine Area	4-1
		4.1	.1	Soil	4-1
		4.1	.2	Groundwater	4-1
	4.2		Oil	/Water Separator Area	4-2
		4.2	.1	Soil	4-2
		4.2	.2	Groundwater	4-2
5.0		Revi	sior	s to Recommended Remedial Action Alternative: Enhanced RDC	5-1
	5.1		Pre	-Remediation Activities	5-1
	5.2		Sol	ution Injection	5-1
	5.3		Gro	oundwater Monitoring	5-2
	5.4		Est	mated Cost	5-2
6.0		Con	clus	ions	6-1
7.0		Use	of T	his Report	7-1
8.0		Refe	eren	ces	8-1

FIGURES

Figure	Title
1	Subject Property Location Map
2	Soil, Groundwater, and Surface Water Investigation Locations
3	Estimated Areas of Vinyl Chloride-Impacted Groundwater in 2023
4	Shallow Groundwater Elevation Contour Map—June 7, 2023
5	Shallow Groundwater Elevation Contour Map—August 1, 2023
6	Estimated Areas of HVOC-Impacted Soil
7	Surface Water Sample Locations
8	Revised Alternative 1—Enhanced Reductive Dechlorination
	TABLES
Table	Title
1	Drilling and Monitoring Well Installation and Sampling Matrix
2	Groundwater Sampling Field Parameter Measurements
3	Soil Sample Analytical Results
4	Groundwater Sample Analytical Results
5	Groundwater Monitoring Data
6	Surface Water Sample Analytical Results
7	Revised Cost Estimate for Alternative 1—Enhanced Reductive Dechlorination
	APPENDICES
Appendix	Title
Α	Soil Boring Logs
В	Groundwater and Surface Water Collection Forms

Laboratory Reports

С

LIST OF ABBREVIATIONS AND ACRONYMS

11g/l	micrograms per liter
	micrograms per cubic meter
	Apex Laboratories, Inc.
•	
	below ground surface
	cis-1,2-dichloroethene
	contaminant of concern
	CODA Consulting Group
	Coit Services
	conceptual site model
	Washington State Department of Ecology
•	Environmental Information Management
	US Environmental Protection Agency
	environmental site assessment
	focused feasibility study
	feet, foot
	halogenated volatile organic compound
	Landau Associates, Inc.
mg/kg	milligrams per kilogram
	method reporting limit
MTCA	Model Toxics Control Act
mV	millivolt
NAVD88	North American Vertical Datum of 1988
ORP	oxidation-reduction potential
PCE	tetrachloroethene
PID	photoionization detector
PVC	polyvinyl chloride
RDC	reductive dechlorination
RI	remedial investigation
Seattle Pump	Seattle Pump and Equipment Co.
SF	square feet
SIM	selected ion monitoring
SLR	SLR International Corporation
Subject Property	Woodinville West Business Park Building C
TCE	trichloroethene
VC	vinyl chloride
VCP	Ecology's Voluntary Cleanup Program
VOC	volatile organic compound

Additional Investigation Report Building C at Woodinville West Business Park

This page intentionally left blank.

1.0 INTRODUCTION

On behalf of Woodinville CD, LLC, the former owner of the Building C property (the Subject Property) of the Woodinville West Business Park, Landau Associates, Inc. (Landau) has prepared this report to present the results of an additional investigation designed to supplement the remedial investigation (RI) and focused feasibility study (FFS) activities completed by SLR International Corporation (SLR) at the Subject Property. The Subject Property is located at 16750 Woodinville-Redmond Road NE in Woodinville, Washington, as shown on Figure 1. Based on the additional investigation results, this report also updates the recommended remedial alternative from the FFS.

1.1 Description of Subject Property

The Subject Property is located at the northern portion of the Woodinville West Business Park, at 16750 Woodinville-Redmond Road Northeast (see Figure 1). The business park consists of an approximately 9.76-acre property (King County parcel No. 0926059084), which is located within an industrial area at the southwestern part of Woodinville. Based on a previous review of online King County Assessor records (SLR 2023), a timeline of the Subject Property owners, including the dates that the property was acquired, is provided below:

- December 2021—Terreno Woodinville II LLC & Terreno Realty Corporation
- July 2020—Woodinville CD, LLC
- June 2015—Woodinville West LLC
- January 2006—Everything Else LLC
- March 1995—Wilcoxon Family Limited Partners
- December 1994—Robert and Marjorie Wilcoxon
- December 1994—Intrawest Properties Partnership.

The Subject Property is developed with a 19,000-square foot (SF) warehouse (designated as Building C). The building was constructed in 1999. Building C contains three suites (C-101, C-102, and C-103) that are currently occupied by the following tenants:

- Suite C-101—Seattle Pump and Equipment Co. (Seattle Pump) provides water pump, high-pressure industrial cleaning equipment, sprayers, "jetters," and pipe cleaning equipment sales, rentals, and repairs. Prior to Seattle Pump, Wincraft, a former tenant, conducted screen and sign printing operations in Suite C-101. Wincraft reportedly used trichloroethene (TCE) in its operations, and during a Phase I Environmental Site Assessment (ESA) in 2008, waste from the print washing operations was observed discharging directly to a floor drain in the print washing area. The floor drain is reportedly connected to the Subject Property's sanitary sewer system (Adapt 2008).
- Suite C-102—Intertek PSI is a construction project services and concrete testing company.
 Before relocating to Suite C-103, Coit Services (Coit) occupied C-102. Coit cleans residential and commercial air ducts, area rugs, carpets, upholstery, and other products, and also provides fire, smoke, and water damage restoration services. Coit formerly operated a dry-cleaning machine

along the east wall of Suite C-102 that used tetrachloroethene (PCE) between approximately 1999 and 2007. An underground oil/water separator and a catch basin that is plumbed to the separator are located within a partially bermed area that is outside a roll-up door of Suite C-102. The approximate locations of the former dry-cleaning machine and the oil/water separator are shown on Figure 2.

• Suite C-103 is occupied by Coit.

The Subject Property is bounded to the north by a large office/warehouse building that is occupied by a utility locating service, a biotechnology research company, a specialty metal and titanium supplier to the aerospace industry, and an engineering firm; to the west by a former railroad right-of-way (ROW) currently owned by King County Parks, beyond which is the Woodinville-Redmond Road ROW and a manufacturer of commercial marine deck hatches; to the east by the Sammamish River, beyond which is the Sammamish River Trail and Woodin Creek Park; and to the south by Building D of the Woodinville West Business Park, which is a large warehouse occupied by a manufacturer of a powdered drink mix and an electrical contractor business.

1.2 Previous Investigations

In November 2019 and December 2021, Phase II ESAs were conducted by AECOM and CODA Consulting Group (CODA), respectively, at the Subject Property as part of environmental and transactional due diligence activities. The AECOM assessment consisted of drilling and sampling five soil borings (GP-1 through GP-5) and installing and sampling a temporary well in each boring. The CODA assessment consisted of drilling and sampling 12 soil borings (B-1 through B-12) and installing and sampling temporary wells in 10 of the borings (B-1 through B-9 and B-11). The approximate locations of the 2019 and 2021 soil borings are shown on Figure 2. The results of the assessments showed that shallow soil samples (up to 7 feet [ft] below ground surface [bgs]) collected from soil borings (B-11, GP-4, and GP-5), located near the former dry-cleaning machine in Suite C-102, contained PCE concentrations (0.092 to 0.14 milligrams per kilogram [mg/kg]) above the Washington State Department of Ecology's (Ecology's) Model Toxics Control Act (MTCA) Method A cleanup level (0.05 mg/kg). Groundwater samples collected from temporary wells installed in soil borings located near the former dry-cleaning machine (borings B-11 and GP-4), near the oil/water separator (borings B-7 and GP-3), and to the northeast of Building C in an apparent downgradient direction (boring B-4) contained vinyl chloride (VC) concentrations (0.35 to 5.45 micrograms per liter [μg/L]) above the Method A cleanup level (0.2 μg/L; AECOM 2019, CODA 2021).1

In December 2021, CODA also installed sub-slab soil vapor points in borings B-10 and B-12, collected soil vapor samples from the points, and collected six indoor air samples (A-01 through A-04, A-06, and A-07) within Building C, as well as two exterior ambient air samples (A-05 and A 08), to assess the potential soil vapor intrusion risks at the Subject Property. The sub-slab soil vapor sample collected near the former dry-cleaning machine (from B-12) contained PCE, TCE, and VC concentrations (615, 70.2, and 81.3 micrograms per cubic meter $[\mu g/m^3]$, respectively) above the MTCA Method B sub-slab soil gas

1-2

¹ Groundwater sample analytical results from temporary wells are often biased high due to the presence of suspended solids in the samples and may not be representative of actual groundwater conditions.

screening levels (320, 11, and 9.5 μ g/m³, respectively). However, the indoor air samples collected in the building did not contain PCE, TCE, or VC concentrations above either the Method B indoor air cleanup levels or the laboratory's method reporting limits (MRLs). The 2021 soil vapor and indoor air sample locations are shown on Figure 3 of SLR's RI/FFS Report.

From April 2022 through January 2023, SLR conducted RI activities at the Subject Property that included the drilling and sampling of 14 soil borings (designated MW-1 through MW-9 and SB-1 through SB-5) and completing borings MW-1 through MW-9 as groundwater monitoring wells. The locations of the soil borings and monitoring wells are shown on Figure 2. The soil sample analytical results from this investigation and the previous assessments at the Subject Property area show that PCE concentrations greater than the MTCA Method A cleanup level and cis-1,2-dichloroethene (cis-1,2-DCE) and VC concentrations greater than the Method B cleanup levels occur at the former dry-cleaning machine area, and cis-1,2-DCE concentrations greater than the Method B cleanup level occur at the oil/water separator area (SLR 2023). Following this sampling, the lateral extents of the PCE-, cis-1,2-DCE-, and VC-impacted soil at the former dry-cleaning machine area was delineated in all directions, except to the east-northeast. The impacted soil at the former dry-cleaning machine area does not extend to a depth greater than 22.5 ft bgs, and the vertical extents have been delineated. The lateral extents of the cis-1,2-DCE-impacted soil at the oil/water separator area were only delineated to the west. The impacted soil at the oil/water separator area were only delineated to the vertical extents were not delineated.

To monitor any seasonal effects on the groundwater flow directions and the halogenated volatile organic compound (HVOC) concentrations in the groundwater, SLR conducted four quarterly groundwater sampling events at the Subject Property from April 2022 through January 2023. Based on the groundwater monitoring data collected from monitoring wells MW-1, MW-2, and MW-3 during 2022 and early 2023, the groundwater table was present at depths from approximately 8.7 to 16.5 ft bgs. From April 2022 through January 2023, the groundwater table seasonally fluctuated up to 2.94 ft. The seasonal groundwater elevation fluctuations may be at least partly due to hydrologic influence of the neighboring Sammamish River; the location of the Sammamish River is shown on Figure 2. In January 2023, following installation of MW-4 through MW-9, groundwater monitoring results indicated that the general flow direction of the shallow groundwater is to the east-northeast, toward the river (SLR 2023).

The groundwater sample analytical results from the 2022 and 2023 monitoring events at the Subject Property show that there are two areas that contain VC concentrations greater than the MTCA Method A cleanup level (SLR 2023). The areas of VC-impacted groundwater appear to originate at the former dry-cleaning machine area (the southern VC plume) and at the oil/water separator area (the northern VC plume); and the impacts extend to the northeast of both of these source areas. The lateral extents of the northern VC plume were only delineated to the west and southwest with properly developed groundwater monitoring wells. The lateral extents of the southern VC plume were delineated to the west, southwest, and east-northeast directions with properly developed wells. The vertical extents of the VC-impacted groundwater were not delineated at either plume area.

To assess any seasonal affects, account for temporal variability, and to further evaluate the potential vapor intrusion risks within Building C, SLR collected two indoor air samples (designated IA-1 and IA-2) from office spaces within Suites C-101 and C-102 in July 2022. The indoor air sample analytical results showed that none of the samples contained analytes at concentrations above either the MTCA Method B indoor air cleanup levels or the laboratory's MRLs (SLR 2023). Based on the results of the 2021 and 2022 indoor air sampling events, the potential risks associated with the impacted soil vapors beneath Building C appear to be low.

After completing the RI, SLR conducted an FFS to develop and evaluate three potential remedial action alternatives for the Subject Property. The primary objectives for the remedial action are to reduce the HVOC concentrations in the soil and groundwater to below the MTCA Method A or Method B cleanup levels, and to obtain a no further action opinion from Ecology. Based on the results of a disproportionate cost analysis, Alternative 1, which consisted of enhanced reductive dechlorination (RDC), was the recommended alternative (SLR 2023).

1.3 Additional Investigation Scope and Objectives

Based on the results of the RI and the previous investigations, Landau conducted an additional investigation at the Subject Property and surrounding area from May through August 2023 to try to resolve the following data gaps:

- The eastern-northeastern extent of the PCE-, cis-1,2-DCE-, and VC-impacted soil at the former dry-cleaning machine area had not been delineated.
- The northern, southern, and eastern extents of the cis-1,2-DCE-impacted soil at the oil/water separator area had not been delineated.
- The vertical extent of the cis-1,2-DCE-impacted soil at the oil/water separator area had not been delineated.
- The southeastern and northern extents of the southern VC plume had not been delineated.
- The vertical extent of the southern VC plume had not been defined.
- The northern, northeastern, eastern-northeastern, and southeastern extents of the northern VC plume had not been delineated.
- The vertical extent of the northern VC plume had not been defined.

Section 2.0 of this report documents the additional investigation activities that were completed to address these data gaps.

1.4 Entry into Voluntary Cleanup Program

On June 20, 2023, Landau formally applied for entry into Ecology's Voluntary Cleanup Program (VCP) in order to obtain Ecology's opinion regarding the recommended remedial alternative for the site. At the time of the submittal, we knew that additional investigation work was required to meet Ecology's requirements for remedial investigations, and that this report would supplement the previously submitted information prior to Ecology's VCP review. Landau submitted all of the previous analytical and

Additional Investigation Report Building C at Woodinville West Business Park

monitoring data into Ecology's Environmental Information Management (EIM) database on June 26, 2023, and the data from the additional investigation activities will be submitted into the EIM database by October 13, 2023.

1-5

2.0 ADDITIONAL INVESTIGATION ACTIVITIES

To address the data gaps identified in Section 1.3, the additional investigation activities are described below. Cascade Drilling (Cascade) of Woodinville Washington, drilled and sampled a total of 11 soil borings (SB-6, SB-7, SB-8, DMW-1, DMW-2, and MW-10 through MW-15) at the Subject Property, and eight of the borings were completed as properly constructed shallow groundwater monitoring wells (MW-10 through MW-15) and deep groundwater monitoring wells (DMW-1 and DMW-2). The initial drilling and well installation work was conducted on May 22 through 24 and June 1, 2023. After installation, Cascade developed the wells by using surging and pumping methods. Landau conducted a groundwater monitoring event on June 7 and 8, 2023. Following the receipt of the June groundwater sample analytical results, monitoring well MW-15 was drilled and installed on July 28, 2023, to try to delineate the downgradient (east-northeast) extent of the northern VC plume. Landau collected a groundwater sample from MW-15 and measured the depths to groundwater in all of the monitoring wells at the Subject Property on August 1, 2023. Following receipt of the groundwater sample analytical results from MW-15, Landau collected seven surface water samples (SW-1 through SW-7) from the neighboring Sammamish River on August 24, 2023. Descriptions of sampling locations and methods are described in the sections below, and a drilling and sampling matrix is included as Table 1.

In addition to the work described above, Applied Professional Services (APS) conducted a non-conductible locate of the underground drainage piping at and near the oil/water separator. The objectives of the work were to identify the source of the fluid to the separator and to map the stormwater drainage lines to the north of Building C. All of the investigation work that was not performed directly by Landau personnel was conducted under the direction of a Landau geologist.

2.1 Mapping of Drainage Infrastructure

On May 22, 2023, APS visually inspected the oil/water separator and the stormwater catch basins located less than 120 ft to the north of Building C, and located and marked the underground drainage piping in that area by running a steel tape through each pipe and conducting a magnetic survey to trace the tape. The drainpipe from the stormwater catch basin located to the south of the oil/water separator is the only influent line into the separator. The effluent line from the separator runs approximately 6 ft to the northwest to a piping tee, and then runs in both the southwest and northeast directions. There is one drain line that runs from inside the building (in Suite C-102) to a stormwater catch basin to the north of the building. The mapped drainage lines, catch basins, containment berm, and oil/water separator tank are shown on Figure 2.

2.2 Drilling and Soil Sampling

Prior to conducting the drilling activities, private and public utility locates were conducted to identify and mark any underground utilities near the drilling locations. Pre-drilling utility clearance was completed at all the drilling locations to a depth of approximately 5 ft bgs by using a vacuum truck and air-knife methods.

Cascade drilled and sampled the soil borings by using a hydraulic push-probe rig or a hollow-stem auger rig. The depths of the borings ranged from approximately 18 to 52.5 ft bgs. During the drilling of the borings, soil samples were collected on a continuous basis by using disposable acetate liners within the drill rods or at approximate 5-ft intervals by using a split-spoon sampler. Landau personnel screened each soil sample for the potential presence of HVOCs by using visual appearance, odors, and photoionization detector (PID) readings. The soil lithology, field screening results, and moisture content in each boring are included on the soil boring logs presented in Appendix A.

2.3 Well Installation

After drilling and sampling, Cascade over-drilled borings at MW-10 through MW-15, DMW-1, and DMW-2 by using hollow-stem auger methods and completed each boring as a shallow groundwater monitoring well (MW-10 through MW-15) or a deep groundwater monitoring well (DMW-1 and DMW-2). Each of the shallow groundwater monitoring wells was constructed with 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing and a 15-ft-long screen (0.010-inch-wide slots) that were installed at depths that intercepted the groundwater table. The 15-ft-long screen allows for the known seasonal groundwater elevation fluctuations. Cascade constructed each of the deep groundwater monitoring wells (DMW-1 and DMW-2) with 2-inch-diameter Schedule 40 PVC casing and a 5-ft-long screen (0.010-inch-wide slots) that was installed at the bottom of the perched groundwater zone (encountered at approximately 48.5 and 49 ft bgs at DMW-1 and DMW-2, respectively).

A filter pack consisting of 10/20 Colorado® silica sand or equivalent extends from at least 6 inches below the bottom screen slot to at least 6 inches above the uppermost screen slot. A hydrated bentonite chip seal was installed above the filter pack to approximately 1 ft bgs, and a traffic-rated steel monument was installed (in concrete) flush with the ground surface to protect each well. The well construction details are presented on the soil boring logs in Appendix A. After installation, Cascade developed each of the newly installed wells by using surging and pumping methods to ensure hydraulic continuity between the well screen and formation materials. Signature Surveying of Shoreline, Washington, surveyed the ground surface and top-of-casing elevations of the wells relative to the North American Vertical Datum of 1988 (NAVD88).

2.4 Soil Sampling for Laboratory Analyses

Based on the objectives detailed in Section 1.3, selected soil samples were collected from borings SB-6, SB-7, SB-8, DMW-1, DMW-2, MW-10, and MW-11 for laboratory analysis. Because there was no field evidence of contamination in any of the borings, the selected soil samples were collected at the depth (or depths) that corresponded to the depth(s) of the known nearby soil contamination. Based on the soil sample analytical results, additional deeper soil samples from boring DMW-1 were also analyzed. The soil samples were submitted to Apex Laboratories (Apex) in Tigard, Oregon, for analysis of full-list volatile organic compounds (VOCs) by US Environmental Protection Agency (EPA) Method 8260D (including VC by EPA Method 8260D selected ion monitoring [SIM]).

2.5 Groundwater Monitoring

Prior to each groundwater sampling event, Landau personnel measured the depths to groundwater in all monitoring wells at the site by using an electronic water level indicator. Landau conducted a Subject Property-wide groundwater monitoring event at the 16 existing and newly installed monitoring wells on June 7 and 8, 2023 (at least 72 hours after the development of each of the newly installed monitoring wells). As mentioned above, MW-15 was subsequently installed and a groundwater sample was collected on August 1, 2023. Landau used a peristaltic pump with new tubing to purge and sample each of the wells at the Subject Property by using low-flow pumping methods. The pump intake was set at approximately 2 ft below the groundwater level in each of the shallow wells, and at approximately 2 ft below the top of the screen in each of the deep wells. During the purging of each well, the pH, conductivity, temperature, oxidation-reduction potential (ORP), and dissolved oxygen of the extracted water were measured. After stabilization of the field parameter measurements, one groundwater sample was collected from each well. The groundwater samples were submitted to Apex for analysis of full-list VOCs by EPA Method 8260D. Copies of the groundwater sample collection forms from the June monitoring event and the sampling of MW-15 are presented in Appendix B. The groundwater sample field parameter measurements are presented in Table 2.

2.6 Surface Water Sampling

Based on the analytical results of the groundwater sample from shallow well MW-15, Landau conducted a surface water sampling event on August 24, 2023, from the Sammamish River to assess if the northern VC plume extended into the river. A total of seven surface water samples (SW-1 through SW-7) were collected for laboratory analysis. One sample was collected approximately 200 ft upstream from the southern VC groundwater plume, one sample was collected approximately 200 ft downstream of the northern VC groundwater plume, and four samples were evenly distributed at approximate 20-ft intervals adjacent to the northern VC plume. Even though the groundwater sample analytical results indicate that the southern VC plume does not extend to the river, Landau also collected a surface water sample to the east-northeast of the southern VC plume. The locations of the surface water samples are shown on Figure 2.

Each sample was collected at the midway point between the centerline of the river, as defined by the location of the thalweg, and the western riverbank at the water's edge, as this is the portion of the river most likely to be impacted by influx of potentially contaminated groundwater to the river. The samples were collected at a depth of approximately 6 inches above the riverbed in order to minimize the dilution of groundwater discharge by upgradient river water.

The sample locations were accessed via a canoe fitted with outriggers for stability. Each sample was collected using a peristaltic pump and new, disposable polyethylene tubing. The tubing was attached to a weighted measuring tape, the end of which was attached to an approximately 14-inch-diameter, negatively buoyant, plastic plate that was lowered to the sediment surface to allow for sampling at a consistent 6-inches above the riverbed.

Surface water was purged for approximately 2 minutes before collecting the sample volume. If turbid, additional water volume was purged until the water had cleared. Water quality parameters recorded before sample volume collection included pH, temperature, and conductivity. The surface water samples were submitted to Apex for analysis of full-list VOCs by EPA Method 8260D. Copies of the surface water sample collection forms are presented in Appendix B.

2.7 Waste Disposal

The soil generated by the drilling activities and the wastewater generated from the decontamination of the drilling and sampling equipment, as well as the development of the monitoring wells, was temporarily stored at the Subject Property in properly labeled 55-gallon drums, pending off-site disposal at licensed facilities. A total of 26 55-gallon drums of soil cuttings and decontamination/development wastewater were disposed as non-hazardous waste on September 25, 2023.

3.0 RESULTS

The soil, groundwater, and surface water analytical results and the groundwater monitoring results are presented below. Copies of the laboratory reports from this investigation are included in Appendix C.

3.1 Soil Sample Analytical Results

The soil sample analytical results from this investigation showed that the samples collected from boring DMW-1, at depths of approximately 10 and 20 ft bgs, contained cis-1,2-DCE concentrations (0.023 and 0.058 mg/kg) that exceeded the MTCA Method B cleanup level based on protection of groundwater in the saturated zone (0.0052 mg/kg). The deepest soil sample from DMW-1, collected at a depth of approximately 47.5 ft bgs, was analyzed outside the analytical method's required holding time, and the results are not usable. The soil samples from borings DMW-2, MW-10, MW-11, SB-6, SB-7, and SB-8 did not contain analyte concentrations above either the MRLs or the Method A or B cleanup levels. The soil sample analytical results from this investigation and the previous investigations at the Subject Property are presented in Table 3.

3.2 Groundwater

3.2.1 Groundwater Sample Analytical Results

The groundwater sample analytical results from the June/August 2023 sampling events showed that the samples collected from shallow monitoring wells MW-2, MW-4, MW-8, MW-9, MW-13, MW-14, and MW-15 contained VC concentrations (1.19, 1.85, 0.86, 0.36 [estimated value], 1.34, 1.52, and 0.22 μ g/L, respectively) that exceeded the MTCA Method A cleanup level (0.20 μ g/L). The groundwater samples from the other shallow monitoring wells and the deep monitoring wells did not contain any VOC analyte concentrations above either the MRLs or the MTCA Method A or B cleanup levels; however, the MRL for VC (0.40 μ g/L) exceeded the Method A cleanup level. The June/August 2023 VC concentrations are presented on Figure 3. The groundwater sample analytical results from this investigation, as well as the previous investigations, are presented in Table 4.

3.2.2 Groundwater Monitoring Results

On June 7, 2023, the depths to groundwater in the shallow monitoring wells (MW-1 through MW-14) ranged from 10.60 to 15.49 ft below the top of each well casing. Based on the well survey elevations, the groundwater elevations in the wells ranged from 20.13 to 21.10 ft above the NAVD88 datum. On August 1, 2023, the depths to groundwater in the shallow monitoring wells ranged from 12.04 to 16.49 ft below the top of each well casing, and the groundwater elevations ranged from 18.10 to 21.12 ft above the NAVD88 datum. Based on the groundwater elevations on June 7 and August 1, 2023, the general shallow groundwater flow direction beneath the Subject Property area was to the east-northeast. Groundwater elevation contour maps of the data collected on June 7 and August 1, 2023, are presented on Figures 4 and 5, respectively.

On June 7, 2023, the depths to groundwater in deep groundwater monitoring wells DMW-1 and DMW-2 were 15.88 and 11.01 ft, respectively. Based on the well survey elevations, the groundwater elevations

in DMW-1 and DMW-2 were 20.52 and 20.92 ft above the NAVD88 datum, respectively. On August 1, 2023, the depths to groundwater in DMW-1 and DMW-2 were 16.54 and 11.73 ft, respectively, and the groundwater elevations were 19.86 and 20.20 ft above the NAVD88 datum, respectively. The depth to groundwater measurements and the groundwater elevations In the monitoring wells during the June and August 2023 groundwater monitoring events, as well as the previous groundwater monitoring events, are presented in Table 5.

3.3 Surface Water Sample Analytical Results

The surface water sample analytical results from this investigation are presented in Table 6. The results showed that none of the samples contained VOC analyte concentrations greater than the MRLs.

4.0 NATURE AND EXTENT OF CONTAMINATION

As described in SLR's conceptual site model (CSM; SLR 2023), the soil and groundwater contaminants of concern (COCs) at the site are chlorinated solvents (PCE and daughter products cis-1,2 DCE and VC) associated with the previous dry-cleaning operations in Suite C-102. The sources of contamination appear to be releases of PCE at the former dry-cleaning machine area in Suite C-102 and releases of PCE or a daughter product such as cis-1,2-DCE from the underground oil/water separator or the associated storm drain catch basin or line that drain into the separator.

The soil COCs are PCE, cis-1,2-DCE, and VC, and the only groundwater COC is VC. Therefore, the PCE, cis-1,2-DCE, and VC concentrations were used to evaluate the extents of the HVOC-impacted soil at the site, and the VC concentrations were used to evaluate the extents of the HVOC-impacted groundwater.

4.1 Former Dry-Cleaning Machine Area

4.1.1 Soil

The soil sample analytical results from this investigation and the previous assessments at the Subject Property show that PCE concentrations greater than the MTCA Method A cleanup level and cis-1,2-DCE and VC concentrations greater than the Method B cleanup levels occur at the former dry-cleaning machine area. The horizontal extents of the HVOC-impacted soil at the former dry-cleaning machine area have been delineated in all directions. The vertical extents of the impacted soil have been delineated, except at DMW-1 where the deepest sample, collected at a depth of approximately 47.5 ft bgs, was analyzed outside the analytical method's required holding time. Shallower soil samples from DMW-1, collected at depths of approximately 10 and 20 ft bgs, contained cis-1,2-DCE concentrations greater than the MTCA Method B cleanup levels based on protection of groundwater. Because the groundwater sample from deep well DMW-1, which is screened from approximately 42.5 to 47.5 ft bgs, did not contain detectable HVOC concentrations, it appears that the soil at the bottom of boring DMW-1 does not contain cis-1,2-DCE concentrations greater than the Method B cleanup level. The estimated area of HVOC-impacted soil at the former dry-cleaning machine area is shown on Figure 6.

4.1.2 Groundwater

The groundwater sample analytical results from this investigation and the previous assessments at the Subject Property area indicated that the southern VC plume has been delineated in all directions (see Figure 3). The lack of detected VOC analytes in the groundwater sample from deep well DMW-1 indicates that the HVOC-impacted groundwater does not extend to the bottom of the perched groundwater zone and that the vertical extent of the HVOC-impacted groundwater has been defined. The lack of detectable VOC analytes in surface water sample SW-2 provides further evidence that the southern VC plume does not extend to the Sammamish River. The locations of SW-2 and the estimated downgradient extent of the southern VC plume are shown on Figure 7.

4-1

4.2 Oil/Water Separator Area

4.2.1 Soil

The soil sample analytical results from this investigation and the previous assessments at the Subject Property indicate that there is a localized area near the oil/water separator where cis-1,2-DCE concentrations exceed the MTCA Method B cleanup level. The lateral extents of the impacted soil have been delineated in all directions and the vertical extent has been defined. The soil sample analytical results from boring DMW-2 indicate that the impacted soil does not extend to 20 ft bgs. The estimated area of HVOC-impacted soil at the oil/water separator area is shown on Figure 6.

4.2.2 Groundwater

The groundwater sample analytical results from this investigation and the previous assessments at the Subject Property indicated that the northern VC plume has been delineated in all directions, except in the downgradient direction (east-northeast). Because the groundwater sample from downgradient well MW-15 contained a VC concentration (0.22 μ g/L) that slightly exceeded the Method A cleanup level (0.20 μ g/L), four surface water samples (SW-3 through SW-6) were collected directly downgradient of the northern VC plume. Based on the lack of detectable HVOC concentrations in any of those surface water samples, it appears that the plume does not extend to the river and that the downgradient extent has been delineated. The estimated area of the northern VC plume and the locations of the surface water samples are shown on Figures 3 and 7.

5.0 REVISIONS TO RECOMMENDED REMEDIAL ACTION ALTERNATIVE: ENHANCED RDC

After completing the RI, SLR conducted an FFS to develop and evaluate three potential remedial action alternatives for the site. The primary objectives for the remedial action are to reduce the HVOC concentrations in the soil and groundwater to below the MTCA Method A or Method B cleanup levels, and to obtain a no further action opinion from Ecology. Based on the results of a disproportionate cost analysis, Alternative 1, which consists of enhanced RDC, was the recommended alternative (SLR 2023).

Alternative 1 would include the injection of emulsified soybean oil and bioaugmentation solution to produce subsurface conditions that stimulate anaerobic RDC of the remaining HVOCs in the soil and groundwater at the site. After the injections have been completed, the RDC performance in the groundwater would be monitored until the MTCA Method A or Method B cleanup levels are met. After meeting the groundwater cleanup levels, a confirmation soil boring would be drilled in the vicinity of previous boring GP-4 to verify that the remaining PCE concentrations in the soil are below the Method A cleanup level. The cis-1,2-DCE and VC concentrations in the soil exceed MTCA Method B cleanup levels based on protection of groundwater, so an empirical demonstration (groundwater concentrations below the cleanup levels) would be used to show that the remaining cis-1,2-DCE and VC concentrations in the soil are protective of human health and the environment.

Based on the results of this additional investigation, Landau has updated the description of Alternative 1 from the FFS and has updated the estimated cost for Alternative 1 (see Table 7).

5.1 Pre-Remediation Activities

The FFS recommends the advancement and sampling of additional borings and wells to address the data gaps identified in Section 1.3 of this report. The results of this additional investigation complete the additional data gathering needed to proceed with the remedial action.

To evaluate the effectiveness of the injection of an emulsified soybean oil and bioaugmentation solution, an injection pilot test will be conducted to evaluate the dechlorination rate, the radius of injection influence, and the design parameters for a full-scale system.

5.2 Solution Injection

The areas of HVOC-impacted soil and groundwater at the site would be remediated by RDC, and a soybean oil and bioaugmentation solution would be injected into the subsurface to stimulate the RDC. A licensed well driller would use direct-push drilling methods to advance borings to depths of approximately 20 ft bgs. The solution would be injected into each of the borings at depths of approximately 7 to 20 ft bgs, and at locations with known shallow soil contamination, the solution would also be injected from approximately 2 to 7 ft bgs. The borings would be spaced at an assumed injection radius of influence of approximately 20 ft (see Figure 8). A total of 27 injection borings would be located within the impacted areas; however, the spacing and number of the injection borings may be modified

based on the results of the injection pilot test, as well as physical constraints such as trees, utilities, and the fence around the stormwater detention basin.

For cost-estimating purposes, SLR assumed that emulsified soybean oil would be mixed with a bioaugmentation solution such as SiREM's KB-1, Regenesis' BDI Plus, or another Dehalococcoides culture to provide sufficiently large microorganism populations for RDC to proceed rapidly. Initial calculations estimate that a total of approximately 233,680 gallons of the soybean oil and bioaugmentation solution would be required to create a sufficient anaerobic environment within the target treatment areas. A full round of injections is expected to take 49 days based on an assumed injection flow rate of 5 gallons per minute per injection point, and injection into an average of two points at a time. SLR and Landau have assumed that only one round of solution injections would be required.

5.3 Groundwater Monitoring

The groundwater at the Subject Property would be monitored over a period of approximately 2 years to assess the effectiveness of the remedial action and to monitor the RDC of the remaining groundwater COC concentrations. The groundwater monitoring events would be conducted on a quarterly basis.

During each groundwater monitoring event, the depths to groundwater would be measured in all 15 shallow groundwater monitoring wells and two deep groundwater monitoring wells at the Subject Property. A groundwater sample would be collected from each of the wells by using a peristaltic pump with new tubing (low-flow sampling methods). The samples would be submitted to Apex for analysis for full-list VOCs by EPA Method 8260D (including VC by EPA Method 8260D SIM). Additionally, the samples from MW-1, MW-2, MW-4, MW-8, MW-9, MW-13, MW-14, and MW-15 would be analyzed for dissolved ethene by Method RSK 175 on an annual basis to monitor the progress of the final dechlorination stage of VC. The locations of the monitoring wells are shown on Figure 8.

5.4 Estimated Cost

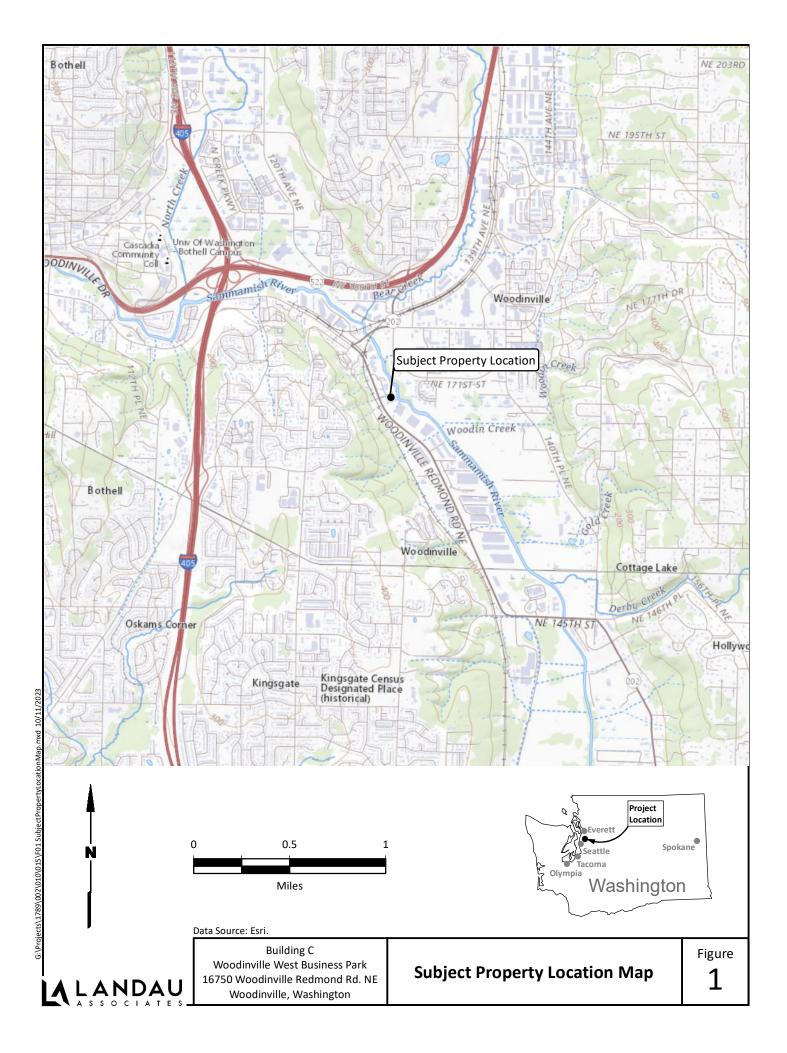
Based on the larger area of the northern VC plume, the proposed number of borings to inject the soybean oil and bioaugmentation solution increased from 11 to 27, and the total volume of injected solution increased from 96,000 to 233,680 gallons. Based on the updated scope of work for Alternative 1, Landau revised the estimated cost. As shown in Table 7, the revised estimated cost to complete Alternative 1 is \$1,120,000.

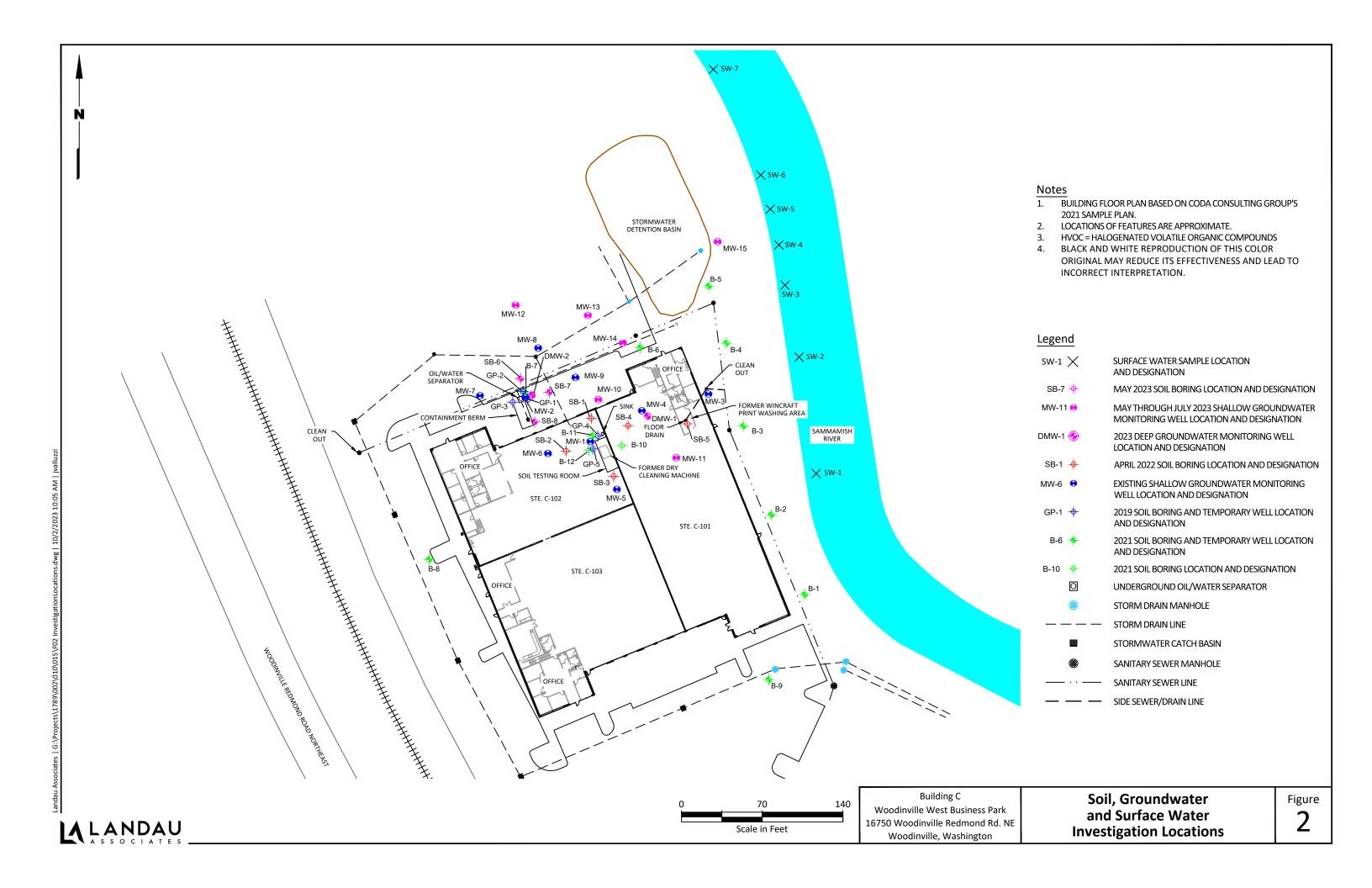
6.0 CONCLUSIONS

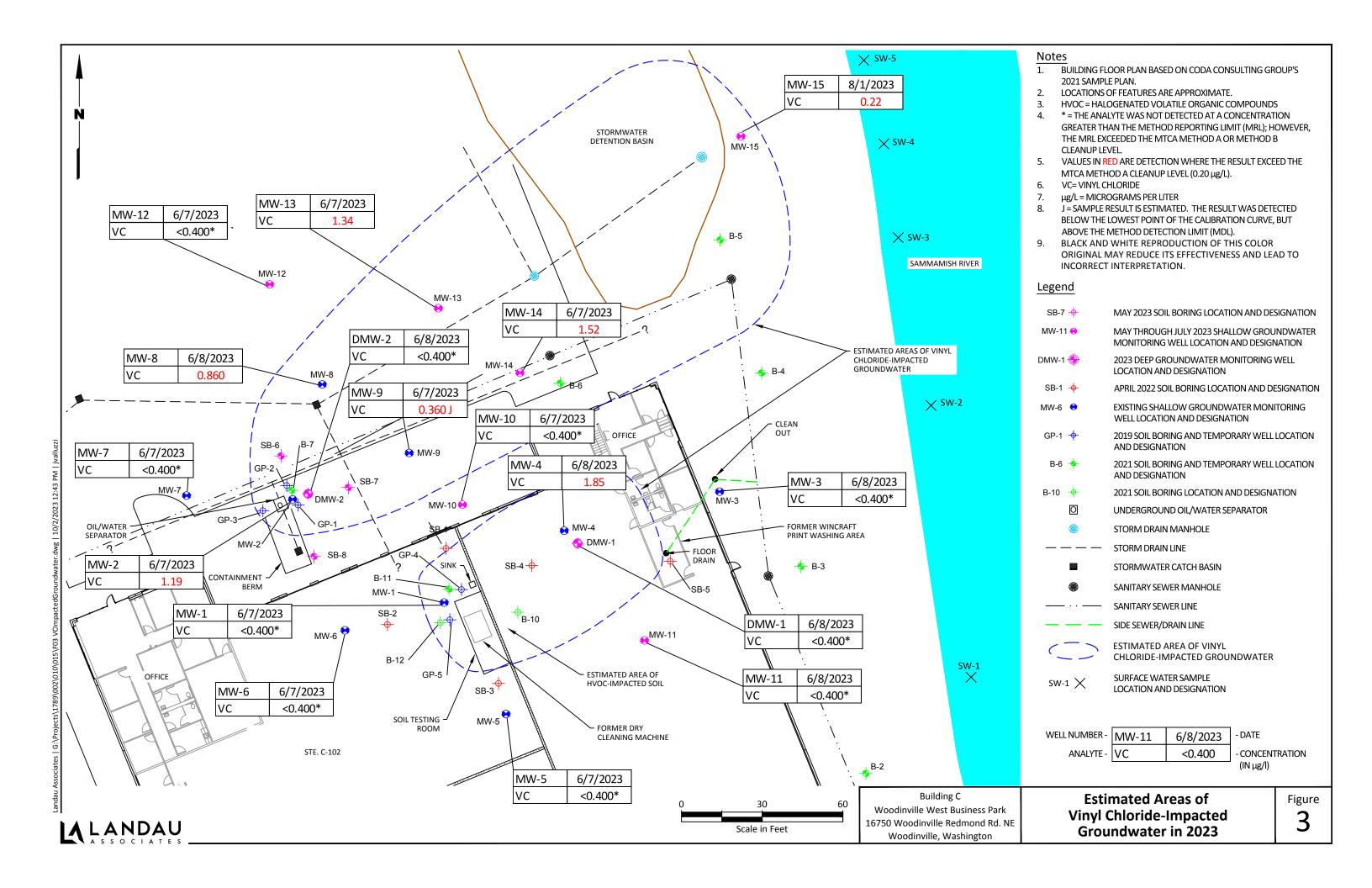
From May 2023 through August 2023, Landau conducted an additional investigation at the Subject Property and surrounding area to try to resolve the remaining data gaps listed in Section 1.3. After evaluating the additional investigation results, Landau updated the recommended remedial alternative (Alternative 1—Enhanced RDC) in SLR's FFS and revised the cost estimate for that alternative. Based on the results of the additional investigation and the previous assessments at the Subject Property area, Landau presents the following conclusions:

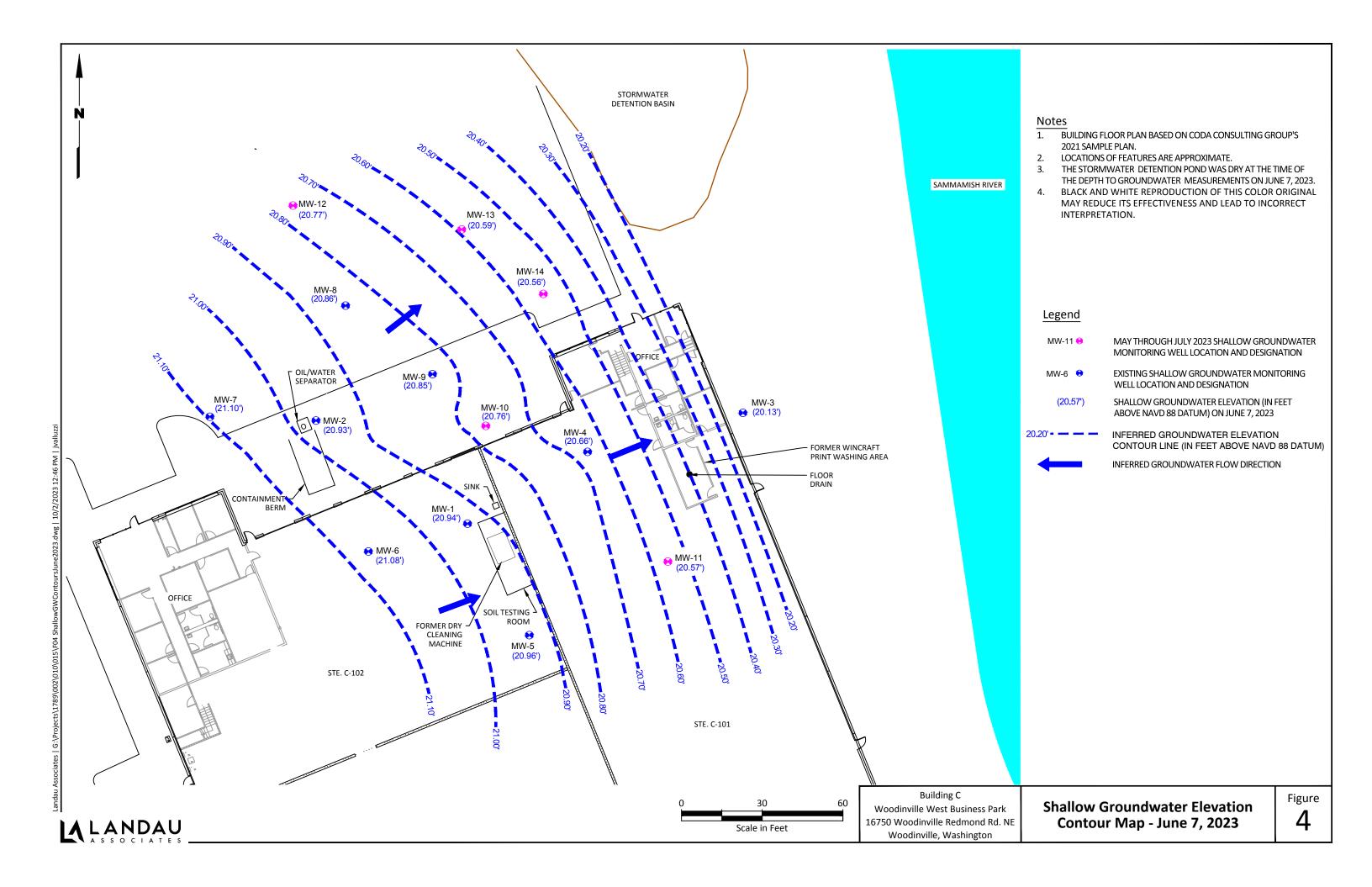
- Based on the areas of HVOC-impacted soil and groundwater at the Subject Property area, the sources of the contamination appear to be previous releases of PCE at the former dry-cleaning machine area and previous releases of PCE or a daughter product, such as cis-1,2-DCE, from the underground oil/water separator or the associated storm drain catch basin or line that drain into the separator. The former dry-cleaning machine was located at the eastern end of Suite C-102. The oil/water separator and associated catch basin are located within a partially bermed area outside a roll-up door of Suite C-102 (see Figure 2). For the oil/water separator or the associated catch basin or line to be a source of HVOC contamination, used dry cleaning solvents appear to have been poured into the bermed area that drained into the separator.
- Coit discontinued the use of dry-cleaning solvents that contained PCE in 2007; therefore, the sources of the HVOC-impacted soil and groundwater at the former dry-cleaning machine area and the oil/water separator area were eliminated 16 years ago.
- Based on the results of this investigation and the previous assessments, there are two areas of soil beneath the Subject Property that contain HVOC concentrations (PCE, cis-1,2-DCE, and/or VC) greater than the MTCA Method A or Method B cleanup levels. The lateral and vertical extents of the HVOC-impacted soil at the oil/water separator area have been delineated, and the lateral extents of the HVOC-impacted soil at the former dry-cleaning machine area have been defined. The vertical extents of the impacted soil at the former dry-cleaning machine area have been delineated, except at DMW-1. The cis-1,2-DCE-impacted soil at DMW-1 extends below 20 ft bgs; however, because the groundwater sample from deep well DMW-1, which is screened at depths of approximately 42.5 to 47.5 ft bgs, did not contain detectable HVOC concentrations, it appears that the soil at the bottom of boring DMW-1 does not contain cis-1,2-DCE concentrations greater than the Method B cleanup level, which is based on protection of groundwater. The estimated areas of HVOC-impacted soil at the oil/water separator area and the former dry-cleaning machine area are shown on Figure 6.
- VC is the only groundwater COC at the site, and VC concentrations greater than the Method A
 groundwater cleanup level occur in the shallow groundwater at the former dry-cleaning
 machine area (the southern VC plume) and at the oil/water separator area (the northern VC
 plume). Both plumes extend to the east-northeast (hydraulically downgradient) of the source
 areas, and the lateral extents of the plumes have been delineated. Surface water sampling was
 required to demonstrate that the northern VC plume does not extend to the Sammamish River.
 The estimated areas of the VC-impacted groundwater are shown on Figure 3.
- The groundwater elevations during the previous groundwater monitoring events at the Subject Property area indicate that the shallow groundwater flow direction is consistently to the eastnortheast, toward the Sammamish River.

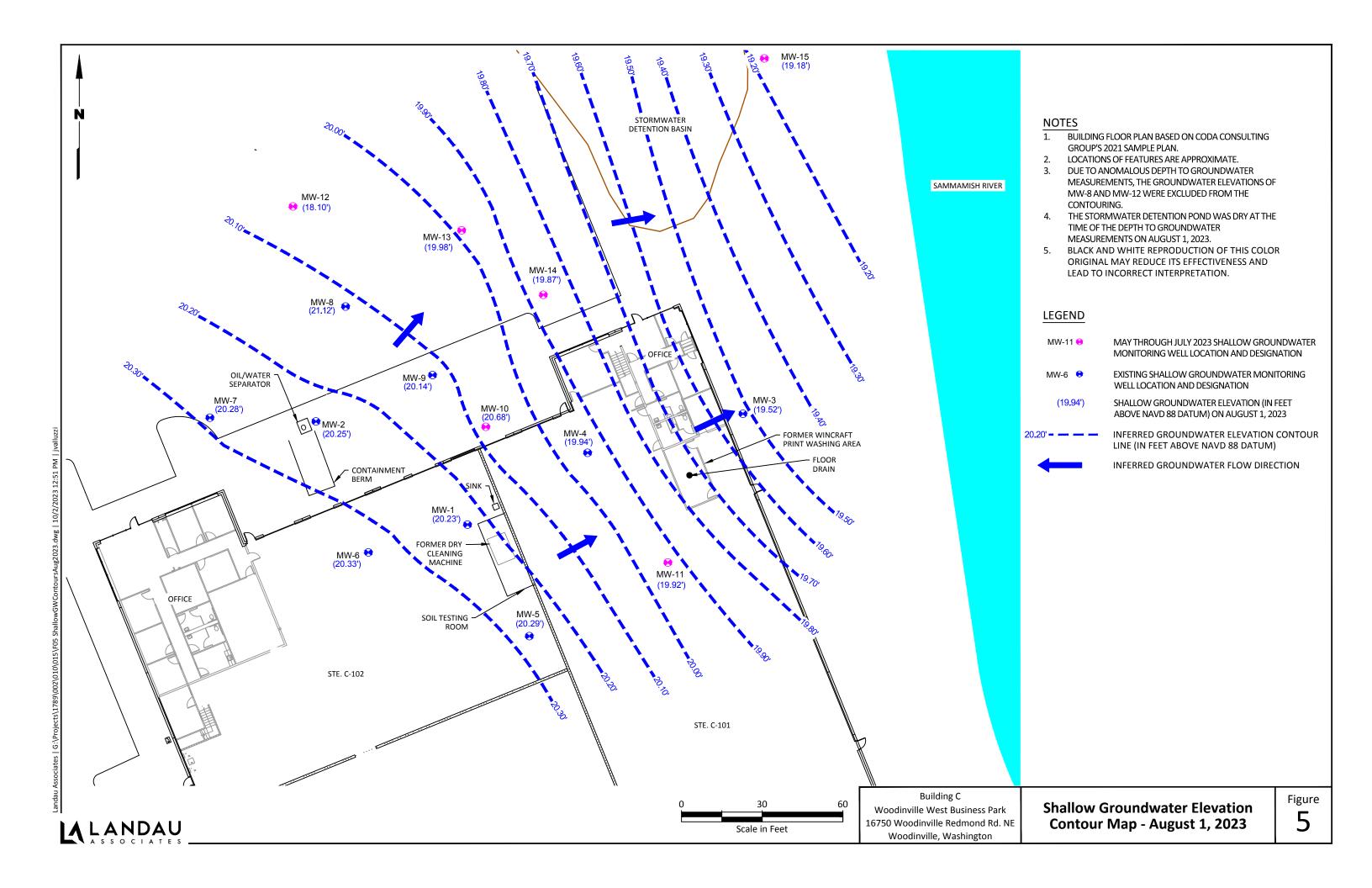
Additional Investigation Report Building C at Woodinville West Business Park

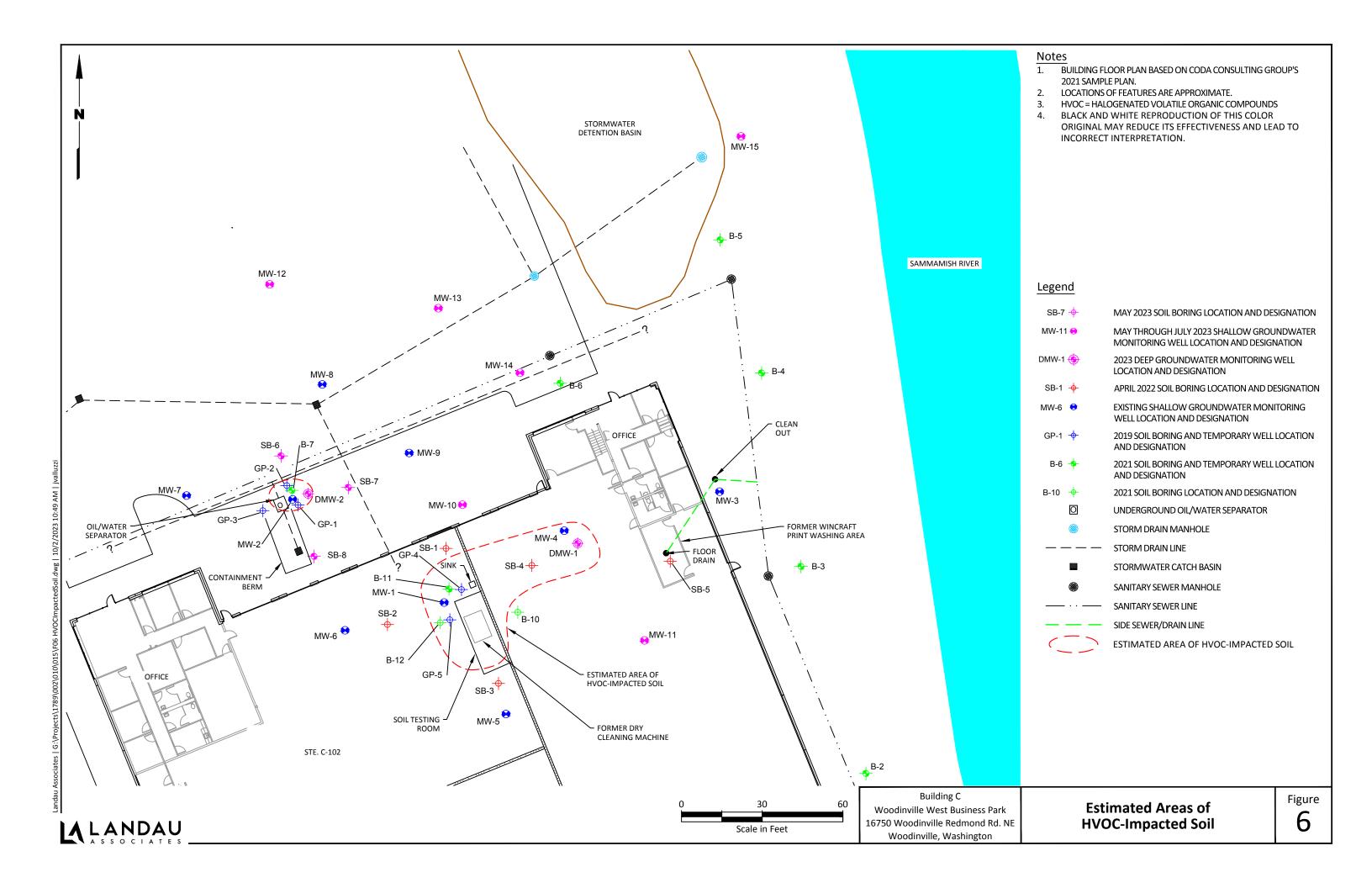

- The presence of cis-1,2-DCE and VC in the soil and VC in the shallow groundwater (VC is the only groundwater COC) demonstrate that RDC and natural attenuation of the HVOCs are occurring in the soil and groundwater at the site.
- Enhanced RDC (Alternative 1 of the FFS) is still the recommended remediation alternative for the site; however, pilot testing is required to evaluate the effectiveness of the injected emulsified soybean oil and bioaugmentation solution, and the radius of injection influence. The updated estimated cost for Alternative 1 is \$1,120,000.

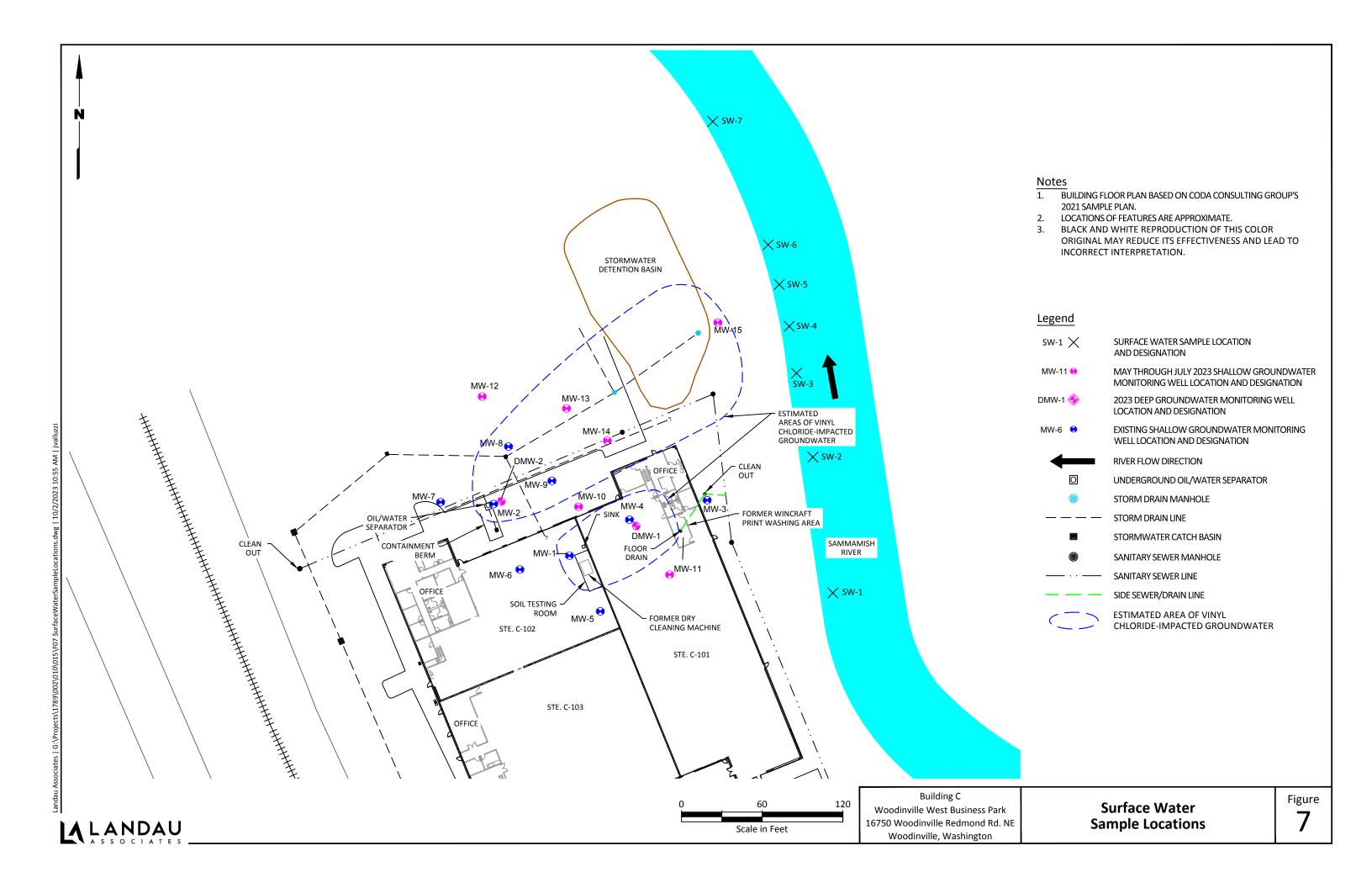

7.0 USE OF THIS REPORT


This report has been prepared for the exclusive use of Woodinville CD, LLC and applicable regulatory agencies for specific application to the investigation at Building C of the Woodinville West Business Park. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau, shall be at the user's sole risk. Landau warrants that within the limitations of the scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions at this project. Landau makes no other warranty, either express or implied.


8.0 REFERENCES


- Adapt. 2008. Phase I Environment Site Assessment, Woodinville Buildings, 16650, 16750, 16928, 16932 Woodinville Redmond Road NE, Woodinville, Washington 98072. Adapt Engineering, Inc. March 20.
- AECOM. 2019. Phase II Environmental Site Assessment, Woodinville West Business Park, Building C, 16750 Redmond-Woodinville Road Northeast, Woodinville, Washington. December 16.
- CODA. 2021. Phase II Indoor Air Quality and Subsurface Assessment, Industrial Building, 16750 Woodinville Redmond Road, Woodinville, WA. CODA Consulting Group. December 29.
- SLR. 2023. Remedial Investigation and Focused Feasibility Study Report, Building C at Woodinville West Business Park, 16750 Woodinville-Redmond Road NE, Woodinville, Washington, Facility/Site #36189742, Cleanup Site #16672. SLR International Corporation. February.





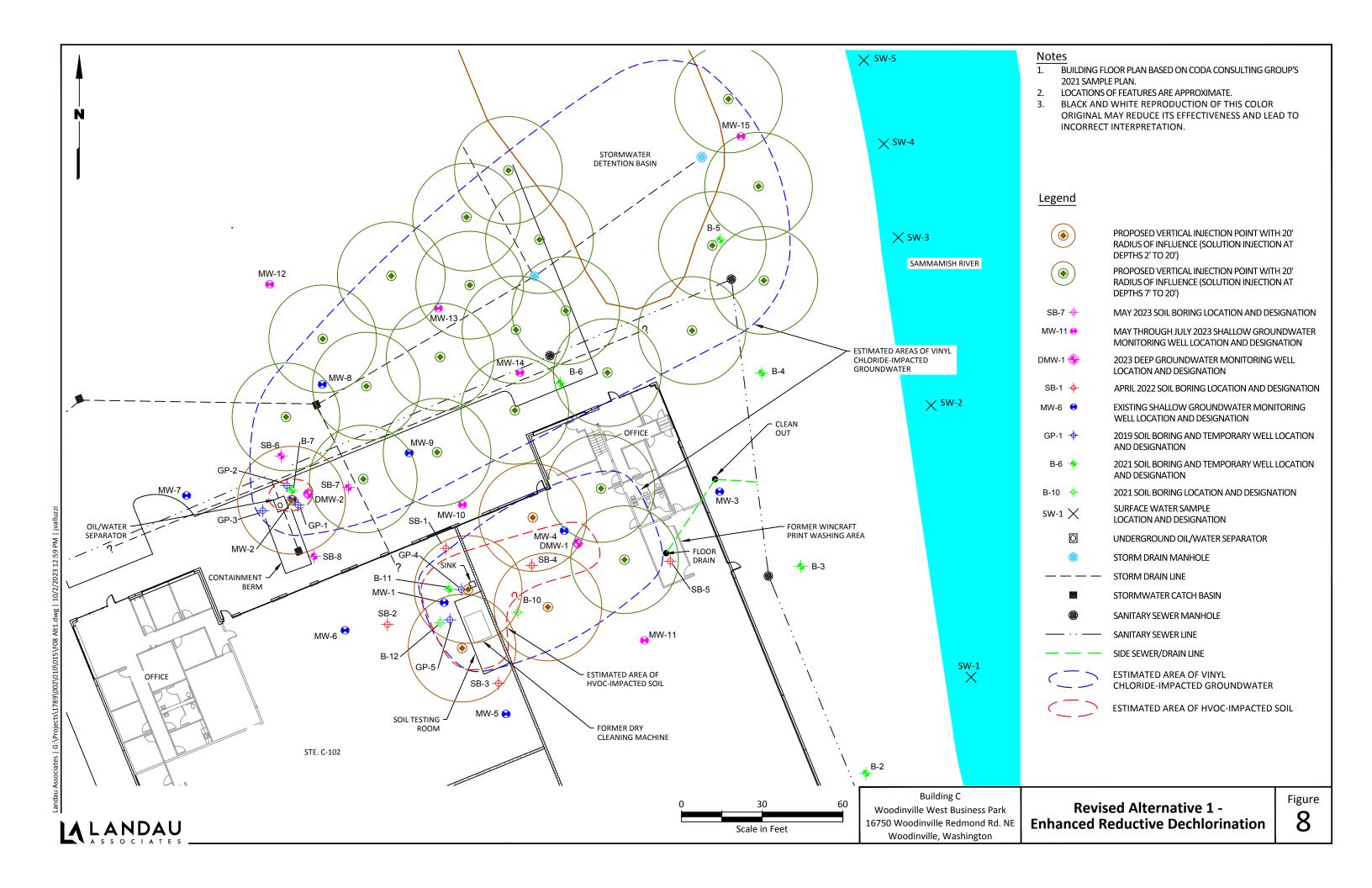


Table 1 Drilling and Monitoring Well Installation and Sampling Matrix Building C at Woodinville West Business Park Woodinville, Washington

Location ID	Description	Exploration Type	Total Exploration Depth (ft)	Well Screen Depth(s) (ft)	Soil Sample Depth(s) for Laboratory Analysis (ft)
DMW-1	East-Northeast of estimate impacted soil area in Suite C-101.	Soil Boring/Deep Monitoring Well	50 ft	42.5 to 47.5 ft	10 ft, 20 ft, and 47.5 ft
DMW-2	Define vertical extent of northern VC plume.	Soil Boring/Deep Monitoring Well	52.5 ft	44 to 49 ft	20 ft
SB-6	North of estimated impacted soil at oil/water separator area.	Soil Boring	20 ft		13 ft
SB-7	East of estimated impacted soil at oil/water separator area.	Soil Boring	20 ft		12 ft
SB-8	South of estimated impacted soil at oil/water separator area.	Soil Boring	20 ft		13 ft
MW-10	Northwest of estimated plume area. Northern side of the building inline with the dividing wall between Suite C-102 and 103.	Soil Boring/Shallow Monitoring Well	19 ft	4 to 19 ft	7 ft and 12 ft
MW-11	Southeast of estimated plume area.	Soil Boring/Shallow Monitoring Well	23 ft	8 to 23 ft	5 ft
MW-12	North of estimated plume area.	Soil Boring/Shallow Monitoring Well	19 ft	4 to 19 ft	
MW-13	Northeast of estimated plume area.	Soil Boring/Shallow Monitoring Well	18 ft	3 to 18 ft	
MW-14	East-northeast of estimated plume area.	Soil Boring/Shallow Monitoring Well	19 ft	4 to 19 ft	
MW-15	East of detention pond.	Soil Boring/Shallow Monitoring Well	20 ft	5 to 20 ft	

Notes:

(a) For deep groundwater wells, well screens were installed immediately above the top of the first unsaturated fine-grained unit that occurs at the base of the perched groundwater zone.

Abbreviations and Acronyms:

ft = feet (distance below ground surface)

ID = identification

Table 2 Groundwater Sampling Field Parameter Measurements Building C at Woodinville West Business Park Woodinville, Washington

Well Number	Date Measured	Approximate Total Purge Volume (gallons)	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	рН	Redox Potential (mV)	
Shallow Groundwater Monitoring Wells								
MW-1	04/12/22	1.25	15.5	0.33	0.65	7.14	232.2	
	07/13/22	1.50	15.7	0.27	0.14	5.89	10.8	
	10/12/22	1.75	15.6	0.29	0.08	6.47	26.2	
	01/09/23	2.00	15.9	0.38	0.43	6.61	23.7	
	06/07/23	1.50	15.8	0.29	4.82	6.66	77.1	
MW-2	04/12/22	1.50	9.80	0.30	0.74	6.74	229.9	
	07/13/22	1.00	14.0	0.33	0.12	6.19	8.90	
	10/12/22	1.75	14.3	0.26	0.05	6.51	24.9	
	01/09/23	1.25	8.60	0.31	0.94	6.75	15.8	
	06/07/23	1.25	13.3	0.27	0.59	6.85	-27.3	
MW-3	04/12/22	1.50	14.2	0.40	0.79	6.67	243.4	
	07/13/22	1.25	15.8	0.39	0.07	6.23	1.70	
	10/12/22	1.75	15.4	0.33	0.06	6.42	30.2	
	01/09/23	1.25	14.3	0.29	0.06	6.42	33.7	
	06/08/23	1.25	15.2	0.41	1.20	6.65	18.7	
MW-4	01/09/23	1.25	15.7	0.63	0.10	6.35	37.6	
	06/08/23	1.50	15.1	0.35	1.11	6.49	8.8	
MW-5	01/10/23	1.75	15.4	0.33	0.06	6.50	29.3	
	06/07/23	1.50	15.2	0.24	1.57	6.54	37.4	
MW-6	01/10/23	1.50	15.8	0.38	0.12	6.68	20.2	
	06/07/23	1.75	15.4	0.27	2.25	6.68	53.5	
MW-7	01/10/23	1.00	12.7	0.40	0.13	6.55	27.0	
	06/07/23	1.75	13.0	0.25	1.26	6.86	-13.8	
MW-8	01/09/23	1.50	12.3	1.67	0.26	6.22	44.3	
	06/08/23	1.50	12.9	0.44	0.57	6.62	-11.4	
MW-9	01/09/23	1.75	12.8	0.61	0.60	6.63	22.6	
	06/07/23	1.50	13.9	0.32	1.86	7.02	-31.6	
MW-10	06/07/23	1.50	13.8	0.30	0.58	6.70	-7.1	
MW-11	06/08/23	1.00	15.1	0.29	0.48	6.71	-4.7	
MW-12	06/07/23	1.50	14.2	0.35	1.56	6.67	-14.3	
MW-13	06/07/23	1.75	15.1	0.35	2.12	6.78	-37.7	
MW-14	06/07/23	1.50	13.5	0.26	0.41	7.11	-41.7	
MW-15	08/01/23	1.75	13.6	0.30	0.48	6.63	118.8	
Deep Groundwater Monitoring Wells								
DMW-1	06/08/23	1.50	14.6	0.37	0.31	7.93	-56.0	
DMW-2	06/08/23	2.00	13.4	0.45	0.83	7.96	-59.6	

Notes:

Field parameter measurements in this table were the final measurements prior to collecting each groundwater sample.

Abbreviations and Acronyms:

°C = degrees Celsius mg/L = milligrams per liter mS/cm = milliSiemens per centimeter mV = millivolts

Table 3 Soil Sample Analytical Results Building C at Woodinville West Business Park Woodinville, Washington

					1		Vol	atiles (mg/kg I	; SW-846 826 I	0D/8260D SIN	/)	1	1		
6.11				Cis-1,2- Dichloroethene		Chlorotoluene			one (MEK)	rans-1,2- Dichloroethene	Japhthalene	chloroethene	richloroethene TCE)	ʻinyl Chloride	Xylenes
Soil		Approximate Sample Depth		,2- oro	sue	oro	one	enzene	Butanone	s-1,2 oro	ıtha		loro	Chl	×
Boring Number	Sample ID	(feet)	Sample Date	Cis-1,2- Dichlor	oluene	두	cetone	enz	-Bu	Frans-1,2 Dichloroe	laph	etra PCE)	rrichl TCE)	'inyl	otal
110		(1000)	Jumpie Juse	0.079°/			4		- 2	0.52°/				0.0017 ^c /	<u> </u>
		MTCA Me	thod A Cleanup Levels ^a	0.0052 ^d	7.0	1,600 ^b	72,000 ^b	0.03	48,000 ^b	0.32 / 0.032 ^d	5.0	0.05	0.03	0.0017 / 0.00009 ^d	9.0
2023 Landau Investigat	ion			0.0002	7.0	1,000	72,000	0.00	.0,000	0.002	3.0	0.00	0.00	0.0000	3.0
	DMW-1-10	10	06/02/23	0.0233 J	<0.0631	<0.0631	<1.26	<0.0126	<0.631	<0.0315	<0.126	<0.0315	<0.0315 ^e	<0.0126 ^e	<0.0631 ^f
DMW-1	DMW-1-20	20	06/02/23	0.0578	<0.0722	<0.0722	<1.44	<0.0144	<0.722	<0.0361 ^e	<0.144	<0.0361	<0.0361 ^e	<0.0361 ^e	<0.0722 ^f
	DMW-1-47.5	47.5	06/02/23	R	R	R	R	R	R	R	R	R	R	R	R
DMW-2	DMW-2-20	20	05/23/23	<0.0297 ^e	<0.0594	<0.0594	<1.19	<0.0119	<0.594	<0.0297	<0.119	<0.0297	<0.0297	<0.0119 ^e	<0.0594 ^f
MW-10	MW-10-12	12	05/23/23	<0.0384 ^e	<0.0767	<0.0767	<1.53	<0.0153	<0.767	<0.0384 ^e	<0.153	<0.0384	<0.0384 ^e	<0.0153 ^e	<0.0767 ^f
	MW-10-7	7	05/23/23	<0.0340	<0.0679	<0.0679	<1.36	<0.0136	<0.679	<0.0340	<0.136	<0.0340	<0.0340 ^e	<0.0136 ^e	<0.0679 ^f
MW-11	MW-11-5	5	06/01/23	0.0224 J	<0.0621	<0.0621	<1.24	<0.0124	<0.621	<0.0311	<0.124	<0.0311	<0.0311	<0.0124 ^e	<0.0621 ^f
SB-6	SB-6-13	13	05/23/23	<0.0447 ^e	<0.0893	<0.0893	<1.79	<0.0179	<0.893	<0.0447 ^e	<0.179	<0.0447	<0.0447 ^e	<0.0165 ^e	<0.0893 ^f
SB-7	SB-7-12	12	05/23/23	<0.0456 ^e	<0.0912	<0.0912	<1.82	<0.0182	<0.912	<0.0456 ^e	<0.182	<0.0456	<0.0456 ^e	<0.0182 ^e	<0.0912 ^f
SB-8	SB-8-13	13	05/23/23	<0.0315 ^e	<0.0630	<0.0630	<1.26	<0.0126	<0.630	<0.0315	<0.126	<0.0315	<0.0315e	<0.0126 ^e	<0.0630 ^f
2022 SLR Investigation								T	T .	T			1		
SB-1	SB-1-4.5'-5.0'	4.5-5.0	04/08/22	<0.027	<0.058	<0.055	<1.10	<0.011	<0.55	<0.027	<0.11	<0.027	<0.027	<0.027 ^e	
SB-2	SB-2-4.0'-4.5'	4.0-4.5	04/08/22	<0.032	<0.063	<0.063	<1.26	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^e	<0.032 ^e	
SB-3	SB-3-6.0'-6.5'	6.0-6.5	04/08/22	<0.032	<0.063	<0.063	<1.27	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^e	<0.032 ^e	
SB-4	SB-4-4.0'-4.5'	4.0-4.5	04/07/22	0.26	<0.053	<0.053	<1.06	<0.011	<0.53	<0.027	<0.11	<0.027	<0.027	<0.027 ^e	
	SB-4-16.0'-16.5'	16.0-16.5	04/07/22	<0.033 ^e	<0.067	<0.067	<1.33	<0.013	<0.67	<0.033 ^e	<0.13	<0.033	<0.033 ^e	<0.033 ^e	
SB-5	SB-5-4.5'-5.0'	4.5-5.0	04/07/22	<0.026	<0.052	<0.052	<1.03	<0.010	<0.52	<0.026	<0.10	<0.026	<0.026	<0.026 ^e	
MW-1	MW-1-13.0'-13.5'	13.0-13.5	04/07/22	0.11	<0.069	<0.069	<1.37	<0.014	<0.69	<0.034 ^e	<0.14	<0.034	<0.034 ^e	<0.034 ^e	
	MW-1-22.5'-23.0'	22.5-23.0	04/07/22	<0.032 ^e	<0.063	<0.063	<1.26	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^e	<0.032 ^e	
MW-2	MW-2-6.0'-6.5'	6.0-6.5	04/06/22	<0.039	<0.077	<0.077	<1.54	<0.015	<0.77	<0.039	<0.15	<0.039	<0.039 ^e	<0.039 ^e	
MW-3 2021 CODA Assessment	MW-3-8.5'-9.0'	8.5-9.0	04/06/22	<0.048 ^e	<0.096	<0.096	<1.93	<0.019	<0.96	<0.048 ^e	<0.19	<0.048	<0.048 ^e	<0.048 ^e	
B-1	B1	10-15	12/09/21	<0.009 ^e	<0.017	<0.009	0.17	<0.003	0.37	<0.017	<0.043	<0.009	<0.003	<0.009 ^e	<0.022
B-2	B2	10-15	12/09/21	<0.017 ^e	<0.017	<0.017	<0.33	<0.007	0.56	<0.017	<0.043	<0.003	<0.007	<0.017 ^e	<0.044
B-3	B3	10-15	12/09/21	<0.006 ^e	<0.011	<0.006	<0.11	<0.002	<0.22	<0.011	<0.028	<0.006	<0.002	<0.006 ^e	<0.015
B-4	B4	10-15	12/09/21	<0.005	<0.011	<0.005	<0.11	<0.002	<0.21	<0.011	<0.026	<0.005	<0.002	<0.005 ^e	<0.014
B-5	B5	10-15	12/09/21	<0.005	<0.010	<0.005	<0.10	<0.002	0.17	<0.010	<0.025	<0.005	<0.002	<0.005 ^e	<0.013
B-6	B6	10-15	12/09/21	<0.009 ^e	<0.018	<0.009	<0.18	<0.004	0.36	<0.018	<0.044	<0.009	<0.004	<0.009 ^e	<0.023
B-7	B7	10-15	12/09/21	0.33	0.017	<0.025	0.77	0.011	1.30	<0.050 ^e	<0.12	<0.025	<0.010	<0.025 ^e	<0.064
B-8	B8	10-15	12/09/21	<0.018 ^e	<0.035	<0.018	0.36	<0.007	<0.71	<0.035 ^e	<0.089	<0.018	<0.007	<0.018 ^e	<0.046
B-9	В9	10-15	12/09/21	<0.010 ^e	<0.021	<0.010	0.18	<0.004	0.48	<0.021	<0.052	<0.010	<0.004	<0.010 ^e	<0.027
	B10-1	0-5	11/30/21	0.067	0.015	<0.005	<0.10	<0.002	<0.21	0.004	0.013	<0.005	<0.002	<0.005 ^e	0.002
B-10	B10-2	10-15	11/30/21	<0.008 ^e	<0.016	<0.008	0.15	<0.003	0.35	<0.016	<0.040	<0.008	<0.003	<0.008 ^e	<0.021
D 44	B11-1	0-5	12/10/21	0.004	<0.008	<0.004	<0.080	<0.002	<0.16	<0.008	<0.020	0.14	0.005	<0.004 ^e	<0.010
B-11	B11-2	10-15	12/10/21	0.13	0.003	<0.005	<0.091	<0.002	<0.18	0.003	<0.023	0.003	<0.002	0.007	<0.012
B-12	B12-1	0-5	12/10/21	0.27	0.009	<0.005	<0.092	<0.002	<0.18	0.014	0.01	<0.005	<0.002	<0.005 ^e	0.003
5 12	B12-2	10-15	12/10/21	0.15	0.014	<0.010	0.17	<0.004	0.42	0.009	<0.049	<0.010	<0.004	<0.010 ^e	<0.025

Table 3

Soil Sample Analytical Results Building C at Woodinville West Business Park Woodinville, Washington

				Volatiles (mg/kg; SW-846 8260D/8260D SIM)											
					I	I	VOI.	atiles (mg/ kg	; 3VV-040 0200	0D/ 8200D 3III	/1)			1	
Soil Boring Number	Sample ID	Approximate Sample Depth (feet)	Sample Date	Cis-1,2- Dichloroethene	Toluene	2-Chlorotoluene	Acetone	Benzene	2-Butanone (MEK)	Trans-1,2- Dichloroethene	Naphthalene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Vinyl Chloride	Total Xylenes
				0.079 ^c /						0.52 ^c /				0.0017°/	
		MTCA Me	ethod A Cleanup Levels ^a	0.0052 ^d	7.0	1,600 ^b	72,000 ^b	0.03	48,000 ^b	0.032 ^d	5.0	0.05	0.03	0.00009 ^d	9.0
2019 AECOM Assessme	ent														
GP-1	GP-1-3	3	11/16/19	<0.017		<0.021				<0.017		<0.021	<0.017	<0.021 ^e	
01 1	GP-1-8	8	11/16/19	<0.025		<0.031				<0.025		<0.031	<0.025	<0.031 ^e	
GP-2	GP-2-4	4	11/16/19	<0.024		<0.030				<0.024		<0.030	<0.024	<0.030h	
GF-Z	GP-2-9.5	9.5	11/16/19	<0.044 ^e		0.12				<0.044 ^e		<0.055 ^e	<0.044 ^e	<0.055 ^e	
GP-3	GP-3-3.5	3.5	11/16/19	<0.021		<0.026				<0.021		<0.026	<0.021	<0.026 ^e	
di-5	GP-3-10.5	10.5	11/16/19	<0.022 ^e		<0.028				<0.022		<0.028	<0.022	<0.028 ^e	
GP-4	GP-4-7	7	11/16/19	0.038		<0.028				<0.023		0.092	<0.023	<0.028 ^e	
GP-4	GP-4-12	12	11/16/19	0.23		<0.032				<0.026		<0.032	<0.026	<0.032 ^e	
GP-5	GP-5-6	6	11/16/19	0.13		<0.032				<0.025		0.13	<0.025	<0.032 ^e	
GP-5	GP-5-13	13	11/16/19	0.13		<0.031		-		<0.025	-	<0.031	<0.025	<0.031 ^e	

Notes:

This table only includes the analytes that were detected in at least one soil sample and have MTCA Method A or Method B soil cleanup levels.

Green shading indicates detected analyte exceeds one or more applicable cleanup level.

Based on the 2022 and 2023 groundwater monitoring data, the vadose zone beneath the subject property area extends to a depth of approximately 8.7 feet below ground surface (bgs).

- J = Estimated result. The laboratory stated that the result was detected below the lowest point of the calibration curve, but above the specified method detection limit (MDL).
- R = The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- ^a Chapter 173-340 WAC, Model Toxics Control Act Statute and Regulation, Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses. Revised November 2007.
- b Method B cleanup level used because a Method A level is not established. Standard formula values, direct contact Method B soil cleanup levels as published in Ecology's Cleanup Level and Risk Calculation (CLARC) online database (January 2023).
- ^c Method B cleanup level used because a Method A level is not established. Standard formula values, protection of groundwater in the vadose zone Method B soil cleanup level as published in Ecology's CLARC online database (January 2023). The protection of groundwater in the vadose zone values were only applied to soil samples collected at depths of less than 8.7 feet bgs.
- d Method B cleanup level used because a Method A level is not established. Standard formula values, protection of groundwater in the saturated zone Method B soil cleanup level as published in Ecology's CLARC online database (January 2023).

 The protection of groundwater in the saturated zone values were only applied to the soil samples collected at depths greater than 8.7 feet bgs.
- e The analyte was not detected at a concentration greater than the method reporting limit (MRL); however, the MRL exceeded the MTCA Method A or Method B cleanup level.
- fm,p-Xylene and o-xylene were reported for this sample; the sum of detected concentrations are displayed, or in cases where both results were non-detect, the MRL for m,p-xylene is displayed (the higher of the two MRLs).

Abbreviations and Acronyms:

-- = not analyzed

ID = Identification

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

SIM = selected ion monitoring

Table 4
Groundwater Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

			Volatiles (μg/L; SW-846 8260C/D/8260C SIM/8260D SIM)								
Well Number	Sample ID	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2- Dichloroethene	Vinyl Chloride	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes
	MTCA Method	A Cleanup Levels ^a	5.0	5.0	16 ^b	0.20	1.40 ^b	160 ^b	5.0	700	1,000
Shallow Groundw	ater Monitoring Wells										
MW-1	MW-1-0422	04/12/22	<0.40	<0.40	<0.40	0.27	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-1-0722	07/12/22	0.20	<0.40	<0.40	0.052	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-1-1022	10/12/22	<0.40	<0.40	<0.40	0.036	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-1-0123	01/09/23	<0.40	<0.40	<0.40	0.38	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-1-0623	06/07/23	< 0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-2	MW-2-0422	04/12/22	<0.40	<0.40	0.65	0.085	<1.00	4.04	0.44	0.74	2.87
	MW-2-0722	07/12/22	<0.40	<0.40	0.51	0.21	<1.00	2.58	0.26	0.58	1.70
	MW-2-1022	10/12/22	<0.40	<0.40	<0.40	0.93	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-2-0123	01/09/23	< 0.40	<0.40	0.46	0.10	<1.00	1.70	0.15 ^d	<0.50	0.51
	MW-2-0623	06/07/23	< 0.400	<0.400	<0.400	1.19	<1.00	0.730 J	<0.200	<0.500	0.270 J ^f
MW-3	MW-3-0422	04/12/22	<0.40	<0.40	<0.40	<0.020	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-0722	07/12/22	<0.40	<0.40	<0.40	0.028	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-1022	10/12/22	<0.40	<0.40	<0.40	0.054	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-0123	01/09/23	<0.40	<0.40	<0.40	<0.010	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-0623	06/08/23	< 0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-4	MW-4-0123	01/09/23	<0.40	<0.40	0.95	9.83	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-4-0623	06/08/23	< 0.400	< 0.400	0.440	1.85	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-5	MW-5-0123	01/10/23	<0.40	<0.40	<0.40	< 0.010	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-5-0623	06/07/23	<0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-6	MW-6-0123	01/10/23	<0.40	<0.40	<0.40	<0.010	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-6-0623	06/07/23	<0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-7	MW-7-0123	01/10/23	<0.40	<0.40	1.19	0.045	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-7-0623	06/07/23	<0.400	<0.400	1.50	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f

Table 4
Groundwater Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

			Volatiles (μg/L; SW-846 8260C/D/8260C SIM/8260D SIM)								
Well Number	Sample ID	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Gis-1,2- Dichloroethene	Vinyl Chloride	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes
	MTCA Method	A Cleanup Levels ^a	5.0	5.0	16 ^b	0.20	1.40 ^b	160 ^b	5.0	700	1,000
MW-8	MW-8-0123	01/09/23	<0.40	<0.40	<0.40	1.01	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-8-0623	06/08/23	<0.400	<0.400	0.220 J	0.860	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-9	MW-9-0123	01/09/23	<0.40	<0.40	0.24	1.61	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-9-0623	06/07/23	<0.400	<0.400	<0.400	0.360 J	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-10	MW-10-0623	06/07/23	<0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-11	MW-11-0623	06/08/23	<0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-12	MW-12-0623	06/07/23	<0.400	<0.400	<0.400	<0.400 ^e	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-13	MW-13-0623	06/07/23	<0.400	<0.400	<0.400	1.34	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-14	MW-14-0623	06/07/23	<0.400	<0.400	<0.400	1.52	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
MW-15	MW-15-0823	08/01/23	<0.400	<0.400	<0.400	0.220	<1.00	<1.00	<0.200	<0.500	<1.00 ^f
Deep Groundwate	er Monitoring Wells										
DMW-1	DMW-1-0623	06/08/23	<0.400	<0.400	<0.400	<0.400 ^e	0.730 J	<1.00	<0.200	<0.500	<1.00 ^f
DMW-2	DMW-2-0623	06/08/23	<0.400	<0.400	<0.400	<0.400 ^e	0.600 J	<1.00	<0.200	<0.500	<1.00 ^f
2021 Temporary V	Vells										
B-1	B1-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-2	B2-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-3	B3-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-4	B4-W*	12/09/21	<1.00	<1.00	0.31	0.44 ^c	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-5	B5-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-6	B6-W*	12/09/21	<1.00	<1.00	0.16	<1.00 ^e	<5.00 ^e	<1.00	<1.00	<1.00	<3.00
B-7	B7-W*	12/09/21	<1.00	<1.00	2.44	1.55 ^c	<5.00	0.20	<1.00	<1.00	<3.00
B-8	B8-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00	<1.00	<1.00	<1.00	<3.00
B-9	B9-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ^e	<5.00	<1.00	<1.00	<1.00	<3.00
B-11	B11-W*	12/09/21	0.40	<1.00	0.37	2.99 ^c	<5.00	<1.00	<1.00	<1.00	<3.00

Table 4 Groundwater Sample Analytical Results Building C at Woodinville West Business Park Woodinville, Washington

				Volatiles (μg/L; SW-846 8260C/D/8260C SIM/8260D SIM)								
Well Number	Sample ID	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2- Dichloroethene	Vinyl Chloride	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes	
	MTCA Method	A Cleanup Levels ^a	5.0	5.0	16 ^b	0.20	1.40 ^b	160 ^b	5.0	700	1,000	
2019 Temporary V	Wells											
GP-1	GP-1-W*	11/16/19	<1.00	<0.50	2.05	<0.20	<1.00	4.81				
GP-2	GP-2-W*	11/16/19	<1.00	<0.50	<1.00	<0.20	<1.00	<1.00				
GP-3	GP-3-W*	11/16/19	<1.00	<0.50	<1.00	0.35 ^c	<1.00	<1.00		1		
GP-4	GP-4-W*	11/16/19	1.04	<0.50	7.62	5.45 ^c	2.95	<1.00				
GP-5	GP-5-W*	11/16/19	<1.00	<0.50	<1.00	<0.20	<1.00	<1.00				

Notes:

This table only includes the volatile organic compound (VOC) analytes that were detected in at least one sample and that have MTCA cleanup levels. Green shading indicates detected analyte exceeds the applicable cleanup level.

Abbreviations and Acronyms:

-- = not analyzed MTCA = Model Toxics Control Act

µg/L = micrograms per liter SIM = selected ion monitoring

ID = Identification

^{*} Groundwater sample was collected from a temporary well.

^a Ecology's Model Toxics Control Act (MTCA) Cleanup Regulation (Chapter 173-340 WAC), Table 720-1, Method A Cleanup Levels.

b Method B cleanup level used because Method A level is not established. Method B cleanup level as published on Ecology's Cleanup Level and Risk Calculation (CLARC) online database (January 2023).

^c Sample collected from temporary well and may be biased high.

d Sample result is estimated. The result was detected below the lowest point of the calibration curve, but above the method detection limit (MDL).

e The analyte was not detected at a concentration greater than the method reporting limit (MRL); however, the MRL exceeded the MTCA Method A or Method B cleanup level.

fm,p-Xylene and o-xylene were reported for this sample; the sum of detected concentrations are displayed, or in cases where both results were non-detect, the MRL for m,p-xylene is displayed (the higher of the two MRLs).

Table 5 Groundwater Monitoring Data Building C at Woodinville West Business Park Woodinville, Washington

Well Number	Approximate Depth of Well Screen (feet)	Top of Casing Elevation (feet) ^a	Date Measured	Depth to Groundwater (feet) ^b	Groundwater Elevation (feet)
	vater Monitoring We		Date Measured	(icet)	(icct)
MW-1	2.8 to 22.8	36.43	04/12/22	14.07	22.36
	2.0 to 22.0	33.13	07/12/22	15.28	21.15
			10/12/22	16.54	19.89
			01/09/23	13.67	22.76
			06/07/23	15.49	20.94
			08/01/23	16.20	20.23
MW-2	2.7 to 22.7	32.09	04/12/22	9.61	22.48
			07/12/22	10.84	21.25
			10/12/22	12.12	19.97
			01/09/23	9.18	22.91
			06/07/23	11.16	20.93
			08/01/23	11.84	20.25
MW-3	3 to 23	35.35	04/12/22	13.94	21.41
			07/12/22	15.08	20.27
			10/12/22	16.01	19.34
			01/09/23	13.50	21.85
			06/07/23	15.22	20.13
			08/01/23	15.84	19.51
			01/09/23	13.52	22.44
MW-4	2.5 to 22.5	35.96	06/07/23	15.30	20.66
			08/01/23	16.02	19.94
			01/09/23	13.56	22.74
MW-5	2.4 to 22.4	36.30	06/07/23	15.34	20.96
			08/01/23	16.11	20.19
			01/09/23	13.47	22.93
MW-6	2.4 to 22.4	36.40	06/07/23	15.32	21.08
			08/01/23	16.07	20.33
			01/09/23	10.22	23.01
MW-7	3 to 23	33.23	06/07/23	12.13	21.10
			08/01/23	12.95	20.28
			01/09/23	8.70	22.76
MW-8	3 to 23	31.46	06/07/23	10.60	20.86
			08/01/23	10.34	21.12
			01/09/23	9.30	22.69
MW-9	2 to 22	31.99	06/07/23	11.14	20.85
			08/01/23	11.85	20.14
MW-10	4 to 19	32.12	06/07/23	11.36	20.76
10100 10	7.013	32.12	08/01/23	12.04	20.08

Table 5 Groundwater Monitoring Data Building C at Woodinville West Business Park Woodinville, Washington

Well Number	Approximate Depth of Well Screen (feet)	Top of Casing Elevation (feet) ^a	Date Measured	Depth to Groundwater (feet) ^b	Groundwater Elevation (feet)
MW-11	8 to 23	36.41	06/07/23	15.84	20.57
10100-11	8 (0 23	30.41	08/01/23	16.49	19.92
MW-12	4 to 19	33.11	06/07/23	12.34	20.77
10100-12	4 (0 19	55.11	08/01/23	15.01	18.10
MW-13	3 to 18	32.20	06/07/23	11.61	20.59
10100-12	3 (0 16	32.20	08/01/23	12.25	19.95
MW-14	4 to 19	33.15	06/07/23	12.59	20.56
10100-14	4 (0 19	33.13	08/01/23	13.28	20.56
MW-15	5 to 20	33.18	08/01/23	14.00	19.18
Deep Groundwat	er Monitoring Wells				
DMW-1	42.5 to 48.5	36.40	06/07/23	15.88	20.52
DIVIVO-T	42.3 (0 46.3	30.40	08/01/23	16.54	19.86
DMW-2	44 to 49	31.93	06/07/23	11.01	20.92
DIVIVV-2	44 (0 49	31.93	08/01/23	11.73	20.20

Notes:

 $^{^{\}rm a}$ Elevations surveyed relative to the NAVD 88 vertical datum.

^b Depth below top of well casing.

Table 6 Surface Water Sample Analytical Results Building C at Woodinville West Business Park Woodinville, Washington

				Volatiles (μg/L; SW-846 8260D/8260D SIM)								
Surface Water Sampling Location	Sample ID	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2- Dichloroethene	Vinyl Chloride	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes	
	Surface Water	Screening Levels ^a	2.40	0.30	NL	0.02	56	NL	0.44	12	NL	
SW-1	SW-1-5.1FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-2	SW-2-6.5FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-3	SW-3-4.8FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-4	SW-4-5.3FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-5	SW-5-4.8FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-6	SW-6-4.2FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	
SW-7	SW-7-6.3FT-082423	08/24/23	<0.400	<0.200 ^b	<0.400	<0.0200	<1.00	<1.00	<0.200	<0.500	<1.00 ^c	

Notes:

This table includes the volatile organic compound (VOC) analytes that were detected in at least one groundwater sample and that have MTCA cleanup levels. Green shading indicates detected analyte exceeds the applicable cleanup level.

Abbreviations and Acronyms:

μg/L = micrograms per liter

ARAR = applicable or relevant and appropriate requirements

ID = Identification

MTCA = Model Toxics Control Act
NL = not listed
SIM = selected ion monitoring

^a Lower of MTCA Method B and ARAR freshwater surface water screening levels as published on Ecology's Cleanup Level and Risk Calculation (CLARC) online database (August 2023).

^b Result is reported to the method detection limit (MDL).

^c m,p-Xylene and o-xylene were reported for this sample; the sum of detected concentrations are displayed, or in cases where both results were non-detect, the MRL for m,p-xylene is displayed (the higher of the two MRLs).

Table 7

Cost Estimate for Alternative 1 - Enhanced Reductive Dechlorination Building C at Woodinville West Business Park Woodinville, Washington

Remedy Components:

Solution Injections

- Inject 233,680 gallons of emulsified soybean oil and bioaugmentation solution into subsurface via 27 temporary injection points at depths from approximately 7 to 20 feet bgs (from 2 to 20 feet at locations with known shallow soil contamination). Assumes one round of solution injections required to effectively stimulate reductive dechlorination (RDC).

Groundwater Monitoring

- Groundwater monitoring of 15 shallow and 2 deep monitoring wells for 2 years on a quarterly basis. Analytical testing for full-list VOCs by EPA Method 8260D (including vinyl chloride by 8260D SIM) and annual testing from eight selected wells for dissolved ethene.

Remedial Action Component	Units	No. of Units	Units	Cost	Total Cost
Pre-Remediation Activities					
Permitting	LS	1	\$10,000	\$10,000	
Injection Solution Pilot Testing	LS	1	\$30,000	\$30,000	
					\$40,000
Soybean Oil and Bioaugmentation Solution Injections					
Drilling and Installation of Temporary Injection Points	LS	1	\$86,000	\$86,000	
Soybean Oil and Bioaugmentation Solution	LS	1	\$311,580	\$311,580	
Solution Mixing and Injection Contractor	LS	1	\$249,300	\$249,300	
					\$646,880
Subtotal					\$686,880
Contingency	20%				\$137,376
Project Management	3%				\$20,606
Design	5%				\$34,344
Construction Oversight and Reporting	15%			_	\$103,032
Remedial Action Subtotal (Rounded to Nearest \$10,000)					\$980,000
Groundwater Monitoring					
Quarterly groundwater sampling and reporting (yr. 1)		1	\$61,200	\$61,200	
Quarterly groundwater sampling, reporting, and project closure activities (yr. 2)		1	\$81,200	\$81,200	
NPV ¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000)					\$140,000
REMEDIAL ACTION ESTIMATED TOTAL (Rounded to Nearest \$10,000)					\$1,120,000

Footnote:

¹Net present value (NPV) is based on a 2.5 percent discount rate for a 20-year period, as per OMB Circular No. A-94 (Executive Office of the President, Office of Management and Budget, 2022 Discount Rates memo dated March 15, 2022).

Soil Boring Logs

Soil Classification System

USCS

	MAJOR DIVISIONS			LETTER SYMBOL ⁽¹⁾	TYPICAL DESCRIPTIONS (2)(3)
1.00	GRAVEL AND GRAVELLY SOIL	CLEAN GRAVEL (Little or no fines)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GW GP	Well-graded gravel; gravel/sand mixture(s); little or no fines Poorly graded gravel; gravel/sand mixture(s); little or no fines
COARSE-GRAINED SOIL (More than 50% of material is arger than No. 200 sieve size)	(More than 50% of coarse fraction	GRAVEL WITH FINES		GM	Silty gravel; gravel/sand/silt mixture(s)
COARSE-GRAINED (More than 50% of mat arger than No. 200 siev	retained on No. 4 sieve)	(Appreciable amount of fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
E-GF an 50% in No.	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
ARS ore tha	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
	(More than 50% of coarse fraction passed	SAND WITH FINES		SM	Silty sand; sand/silt mixture(s)
	through No. 4 sieve)	(Appreciable amount of fines)		sc	Clayey sand; sand/clay mixture(s)
J jal	SILT A	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
SOIL materia	(Liquid limi	t less than 50)		CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay
INEC No of nan N size)		•		OL	Organic silt; organic, silty clay of low plasticity
GRA an 50 aller tl	SILT A	ND CLAY		МН	Inorganic silt; micaceous or diatomaceous fine sand
FINE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)	(Liquid limit o	(Liquid limit greater than 50)		СН	Inorganic clay of high plasticity; fat clay
<u> </u>		,		ОН	Organic clay of medium to high plasticity; organic silt
	HIGHLY ORGA		PT	Peat; humus; swamp soil with high organic content	

5445454		40 50	
OTHER MATERIALS	SYMBOL	SYMBOL	TYPICAL DESCRIPTIONS
	GRAPHIC	LETTER	

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement
ROCK	RK	Rock (See Rock Classification)
WOOD	WD	Wood, lumber, wood chips
DEBRIS	DB	Construction debris, garbage

NOTES:

- 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
- 2. Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
- 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

> 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc. Primary Constituent:

Secondary Constituents: > 30% and $\leq 50\%$ - "very gravelly," "very sandy," "very silty," etc.

> 15% and ≤ 30% - "gravelly," "sandy," "silty," etc.

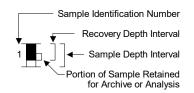
Additional Constituents: > 5% and $\leq 15\%$ - "with gravel," "with sand," "with silt," etc.

5% - "trace gravel," "trace sand," "trace silt," etc., or not noted.

Woodinville West Business Park, Building C Woodinville, WA

Soil Classification System and Key

Figure (1 of 2)

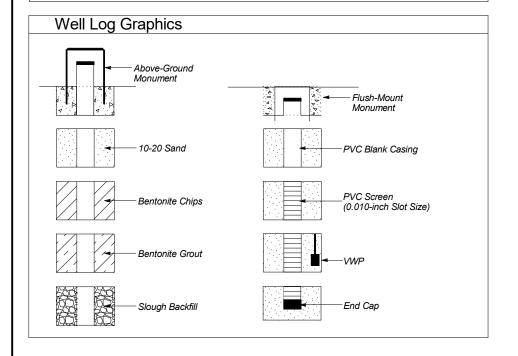

Drilling and Sampling Key

SAMPLER TYPE

SAMPLE NUMBER & INTERVAL

Code Description

- a 3.25-inch O.D., 2.42-inch I.D. Split Spoon
- b 2.00-inch O.D., 1.50-inch I.D. Split Spoon
- c Shelby Tube
- d Grab Sample
- e Single-Tube Core Barrel
- f Double-Tube Core Barrel
- g Other See text if applicable
- 1 300-lb Hammer, 30-inch Drop
- 2 140-lb Hammer, 30-inch Drop
- 3 Pushed
- 4 Rotosonic
- 5 Air Rotary (Rock)
- 6 Wash Rotary (Rock)
- 7 Other See text if applicable


Field and Lab Test Data

Code	Description
PP = 1.0	Pocket Penetrometer, tsf
TV = 0.5	Torvane, tsf
PID = 100	Photoionization Detector VOC screening, ppm
W = 10	Moisture Content, %
D = 120	Dry Density, pcf
-200 = 60	Material smaller than No. 200 sieve, %
GS	Grain Size - See separate figure for data
AL	Atterberg Limits - See separate figure for data
VST	Vane Shear Test
GT	Other Geotechnical Testing
CA	Chemical Analysis

Groundwater

- Approximate water elevation at other time(s). When multiple water levels are obtained other than ATD, only a representative range is shown. See text for additional information.

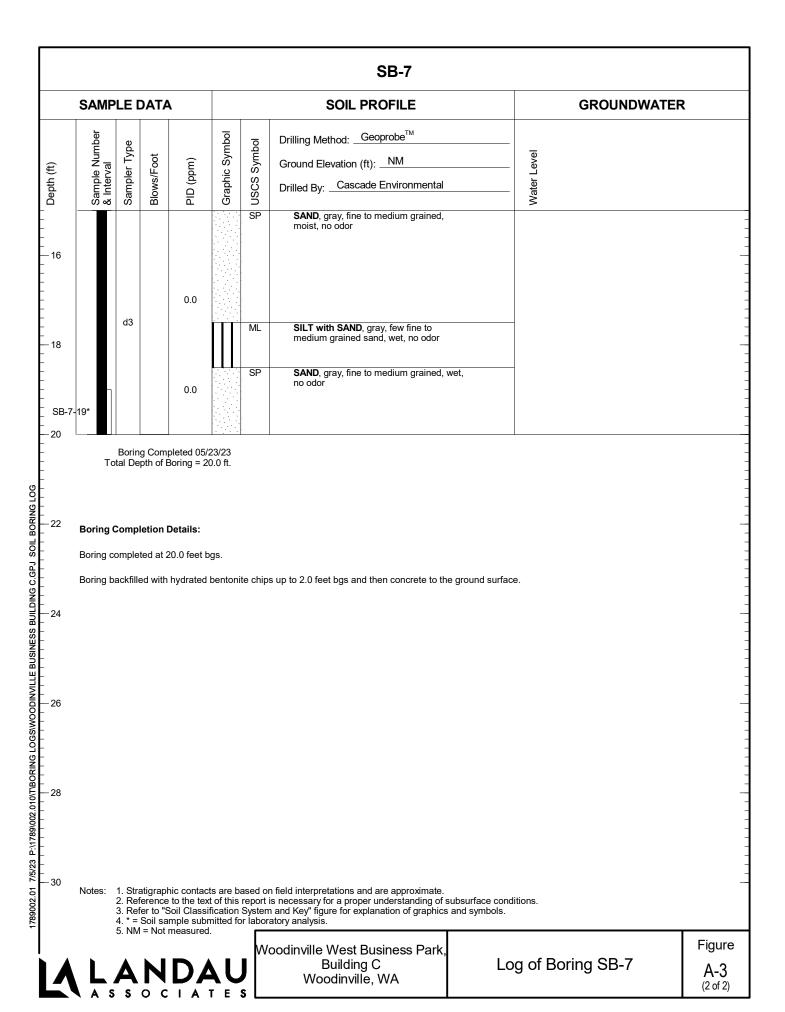
Note: Groundwater levels can fluctuate due to precipitation, seasonal conditions, and other factors.

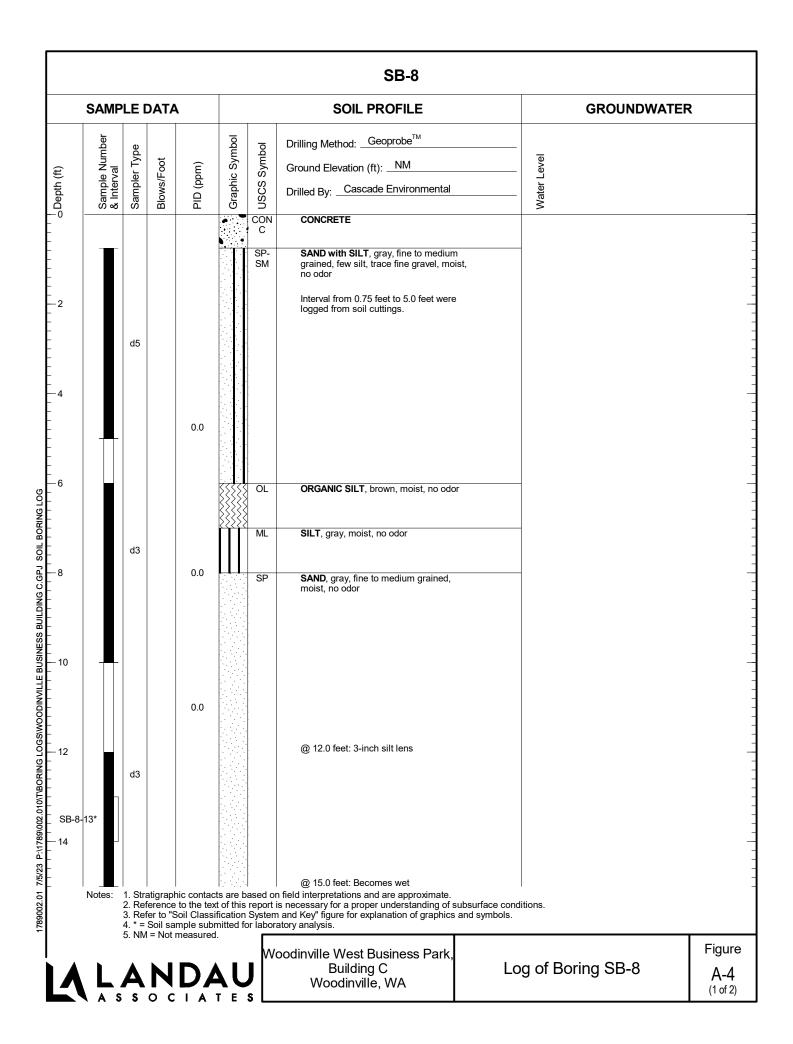
Woodinville West Business Park, Building C Woodinville, WA

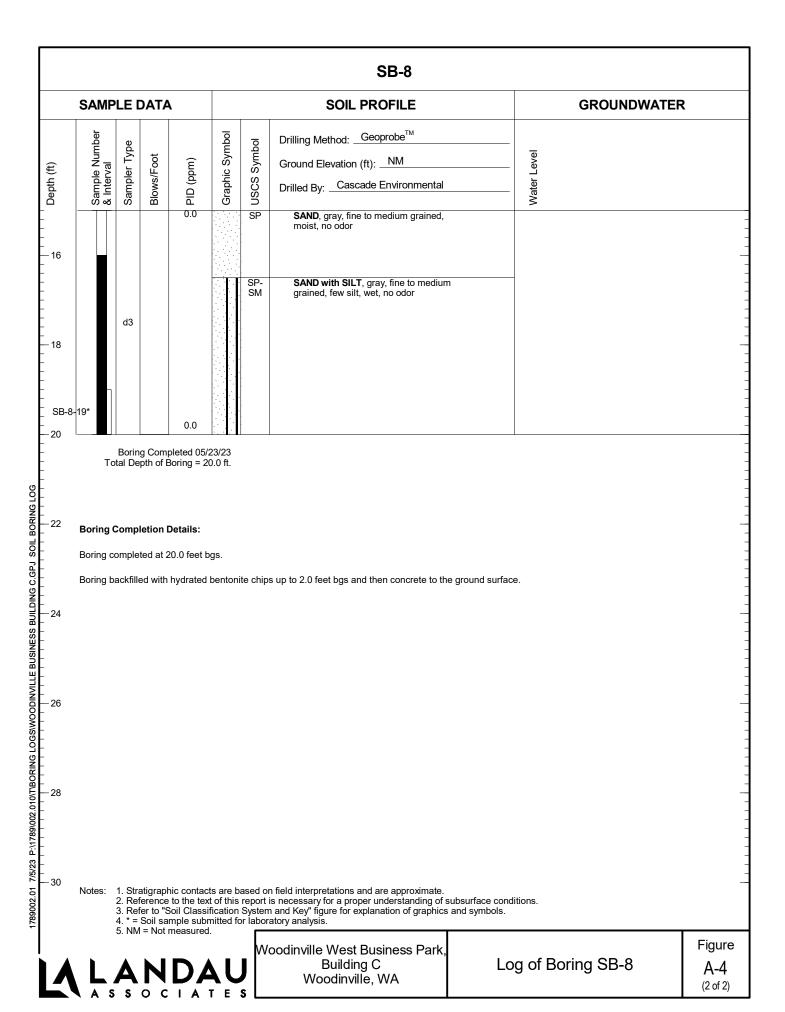
Soil Classification System and Key Figure **A-1**

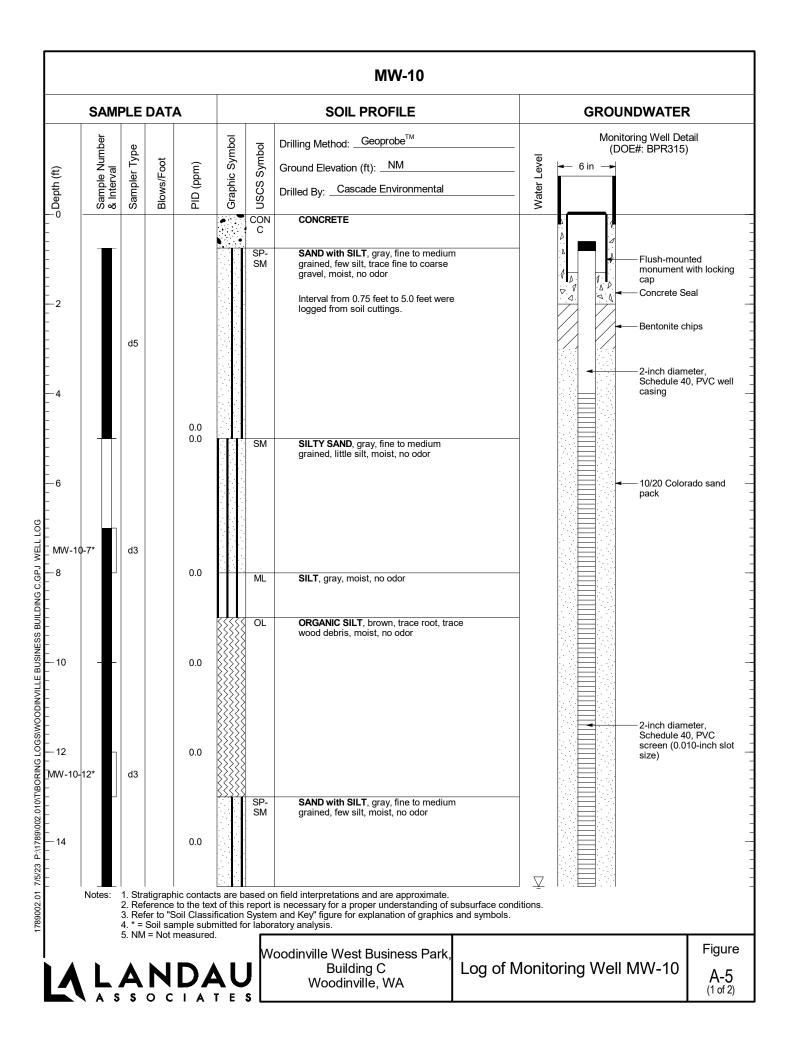
SAMPLE DATA				Α		SOIL PROFILE	GROUNDWATER
	Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	Drilled By: Cascade Environmental	Water Level
					A(P- SAND with SILT, gray, fine to medium	
		d5			M	SILT, gray, trace roots, moist, no odor Interval from 0.75 feet to 5.0 feet were logged from soil cuttings.	
;	-	-		0.0			
		d3		0.0			
0	-	-		0.0	SF	P- SAND with SILT, gray- brown, fine to	
2		d3			SF	M grained, few silt, moist, no odor	dor
SB-6- 4	13*			0.0	SI	SAND, gray, fine to medium grained, trace silt, moist, no odor @ 14.0 feet: Becomes wet	Σ
l	Notes:	2. Re 3. Re 4. * =	eference efer to " = Soil sa	e to the tex Soil Class	kt of this repo ification Sys mitted for lal	d on field interpretations and are approximate. ort is necessary for a proper understanding of sum and Key" figure for explanation of graphics a poratory analysis.	
A	L	Α	Ν	DA	V U	Woodinville West Business Park, Building C Woodinville, WA	Log of Boring SB-6

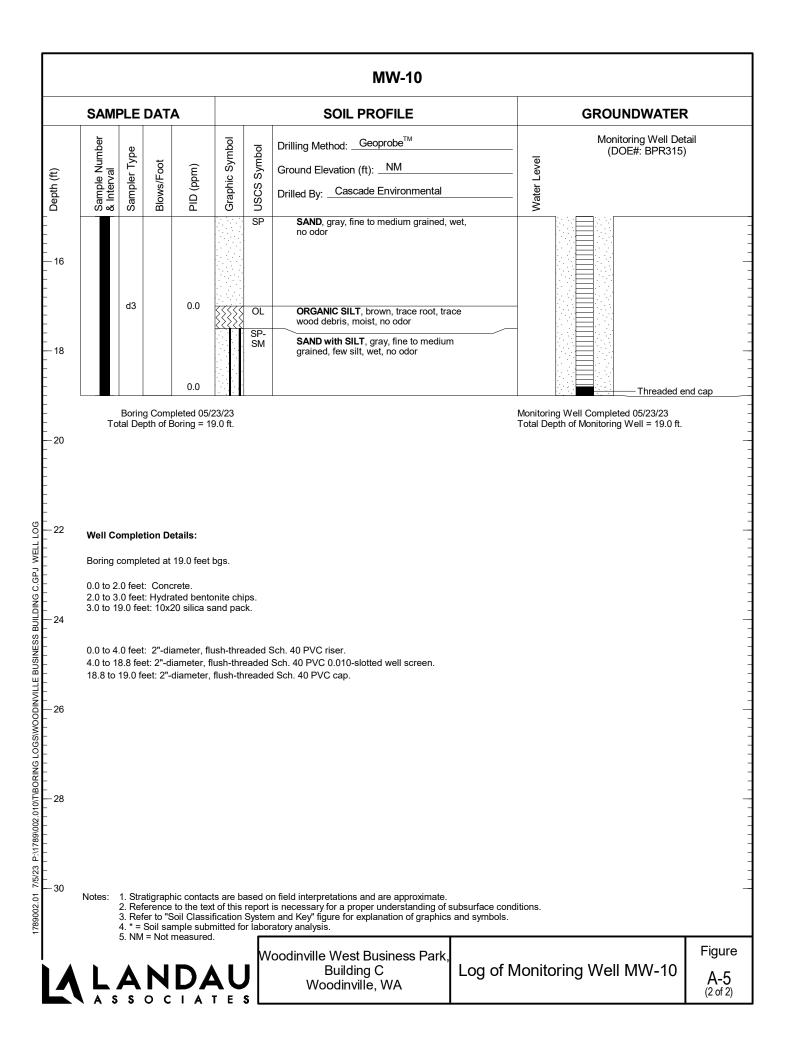
a p				1			SOIL PROFILE	GROUNDWATER
Sample Ni	& Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft):NM Drilled By:Cascade Environmental	Water Level
			_	0.0		OL SP- SM	ORGANIC SILT, brown, moist, no odor SAND with SILT, gray, fine to medium grained, few silt, wet, no odor ORGANIC SILT, brown, moist, no odor	
		d3		0.0		SP- SM	SAND with SILT, gray, fine to medium grained, few silt, wet, no odor SAND, gray, fine to medium grained, wet, no odor	
	E Tota	Boring al Dep	g Comp oth of B	0.0 bleted 05 Boring = 2	/23/23 20.0 ft.			
	_	-		Details:	bgs.			
Borii	ng bao	ckfille	ed with	hydrated	l bentoni	te chip	s up to 2.0 feet bgs and then concrete to the ground	d surface.

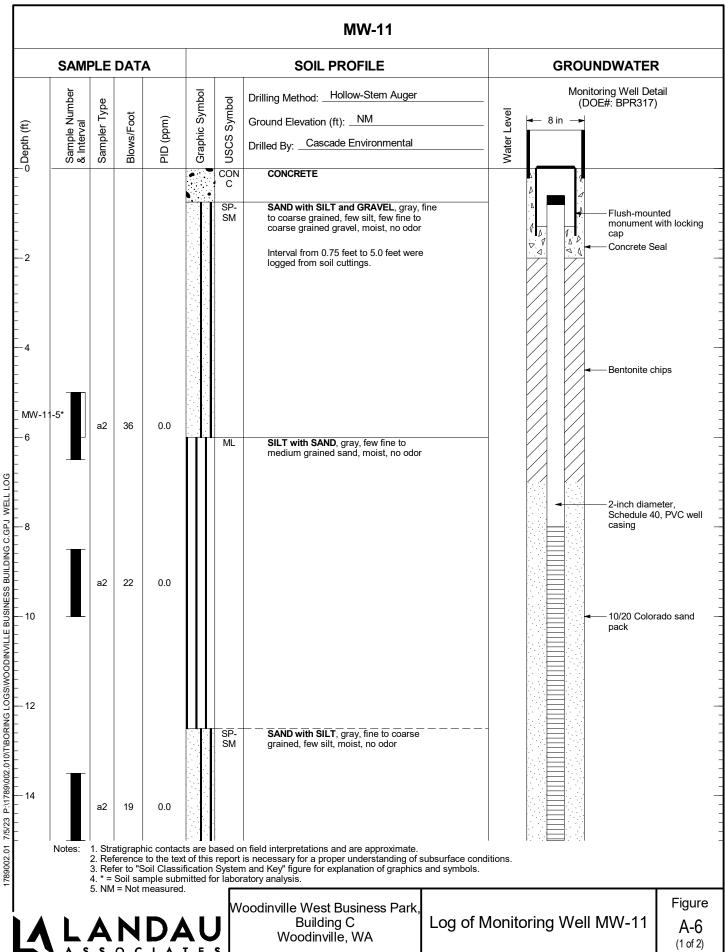

LALANDAU

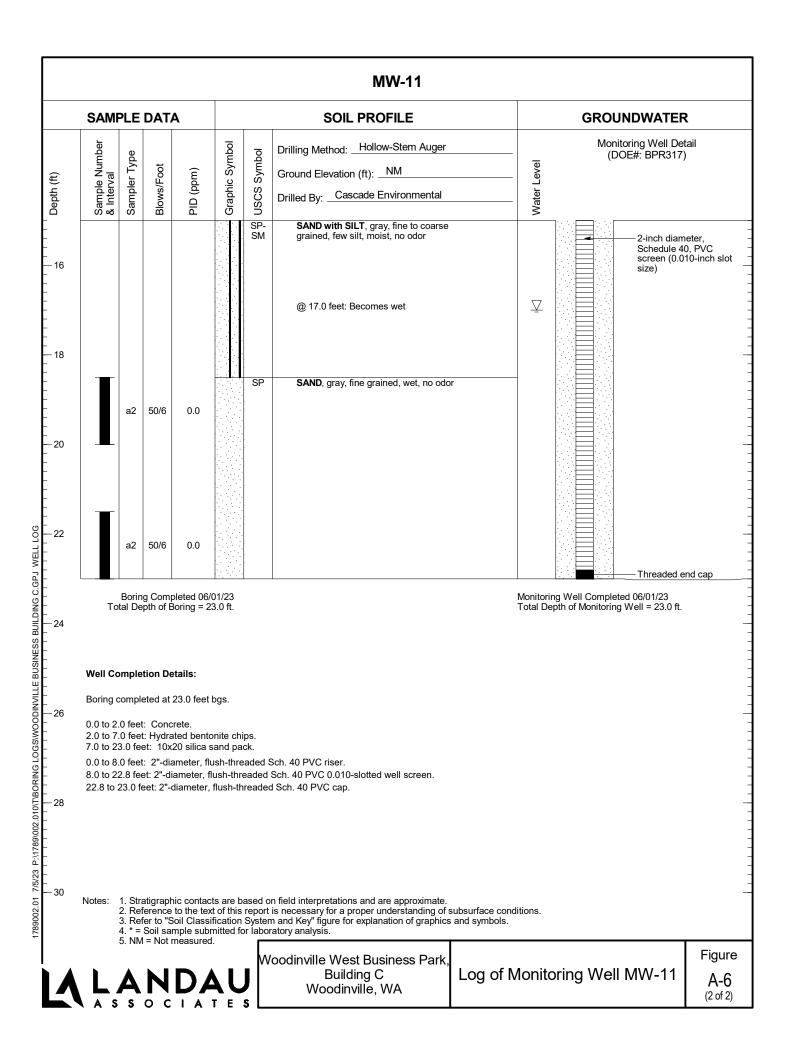

Woodinville West Business Park, Building C Woodinville, WA

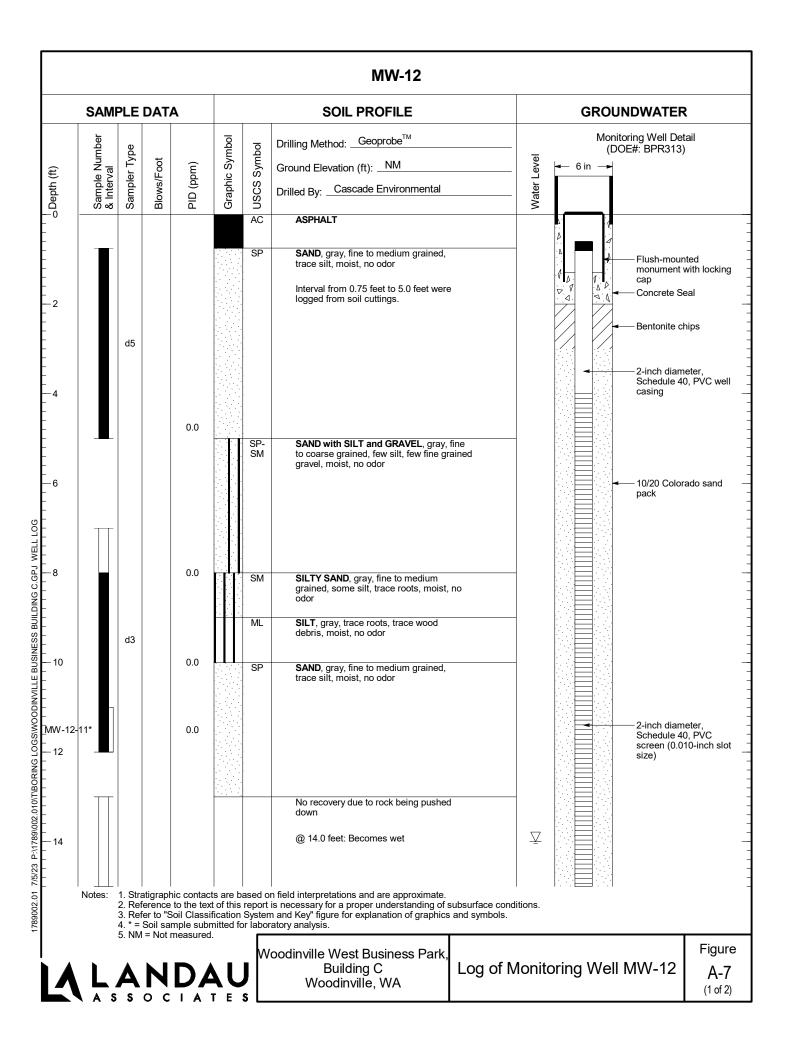

Log of Boring SB-6

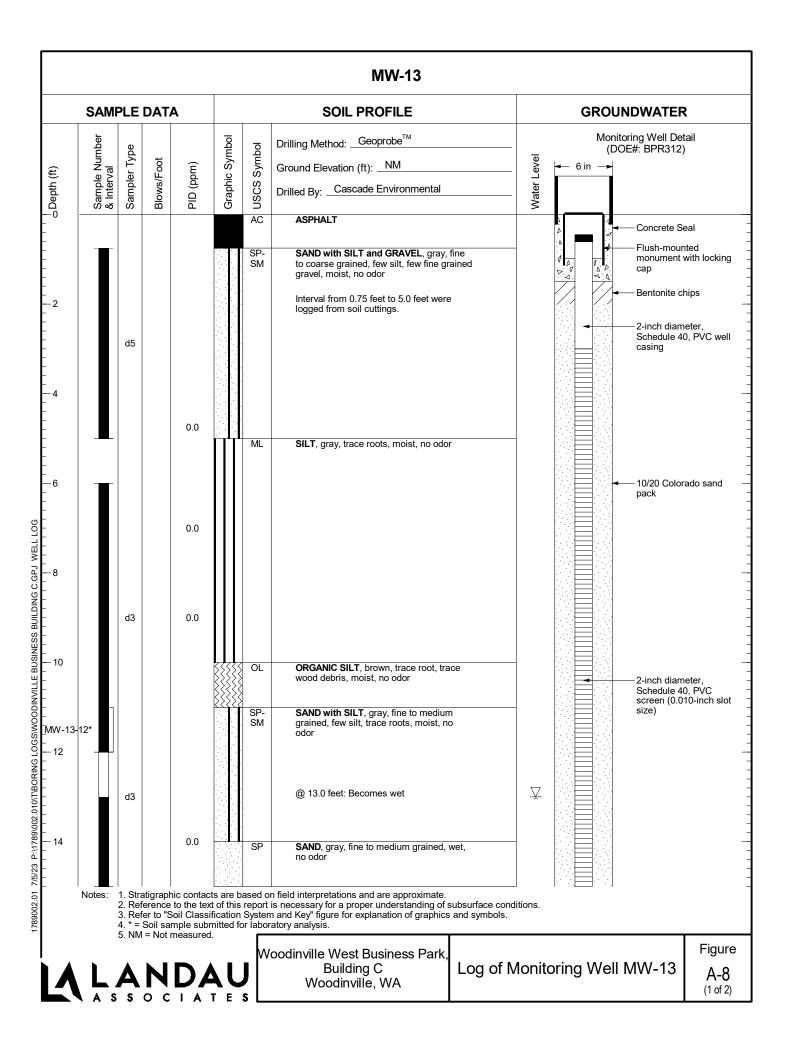

Figure A-2 (2 of 2)

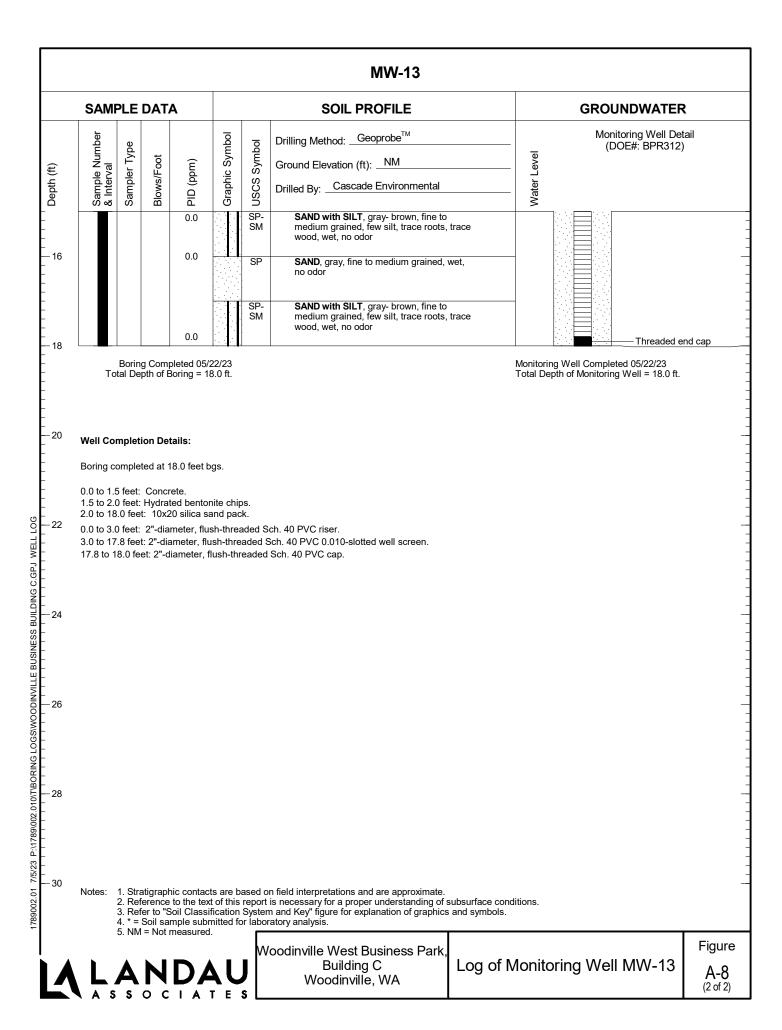

B-7-12* d3 SP-SAND with SILT, gray- brown, fine to medium grained, few organic silt, moist, no odor SP SAND, gray, fine to medium grained, moist, no odor	SAMPLE DATA					SOIL PROFILE		GROUNDWATER	
A SAND with SILT, gray, fine to medium grained, few silt, trace roots, moist, no odor laterval from 0.75 feet to 5.0 feet were logged from soil cuttings. SM SILTY SAND, gray, fine to medium grained, some silt, moist, no odor grained, some silt, moist, no odor silt, gray, moist, no odor Q 9.5 feet. 3-inch sand lens O O ORGANIC SILT, gray, moist, no odor Q 9.5 feet. 3-inch sand lens SM SILTY Gray, moist, no odor grained, some silt, moist, no odor Q 9.5 feet. 3-inch sand lens O O ORGANIC SILT, gray-brown, fine to medium grained, few organic silt, moist, no odor medium grained, few organic silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the feet of the specific silt, moist, no odor gray for the specific silt, mois	Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Ground Elevation (ft): NM	Water Level	
d3 O.0 SM SILTY SAND, gray, fine to medium grained, moist, no odor linterval from 0.75 feet to 5.0 feet were logged from soil cuttings. SM SILTY SAND, gray, fine to medium grained, some silt, moist, no odor OL ORGANIC SILT, gray, moist, no odor @ 9.5 feet: 3-inch sand lens O.0 ORGANIC SILT, gray, moist, no odor @ 9.5 feet: 3-inch sand lens SP SAND with SILT, gray-brown, fine to medium grained, moist, no odor moist, no odor with gray fine to medium grained, few organic silt, moist, no odor moist, no odor moist, no odor with gray fine to medium grained, few organic silt, moist, no odor with gray fine to medium grained, moist, no odor gray fine to medium grained, fine to medium grained, moist, no odor gray fine gray fine gray fine gray fine gray gray gray gray fine gray gray gray gray gray gray gray gray							CONCRETE		
grained, some silt, moist, no odor OL ORGANIC SILT, brown, moist, no odor ORGANIC SILT, brown, moist, no odor ORGANIC SILT, brown, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, few organic silt, moist, no odor SP SAND, gray, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, few organic silt, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, fine to medium grained, moist, no odor ORGANIC SILT, gray-brown, moist, no odor		d5		0.0			grained, few silt, trace roots, moist, no odor Interval from 0.75 feet to 5.0 feet were		
@ 9.5 feet: 3-inch sand lens @ 9.5 feet: 3-inch sand lens SP- SAND with SILT, gray- brown, fine to medium grained, few organic silt, moist, no odor SP-7-12* 4 0.0 SP SAND, gray, fine to medium grained, moist, no odor @ 14.0 feet: 2-inch organic silt lens with wood debris @ 15.0 feet: Becomes wet Notes: 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. 4. * = Soil sample submitted for laboratory analysis.		d3		0.0			grained, some silt, moist, no odor		
SB-7-12* 0.0 SM medium grained, few organic silt, moist, no odor SP SAND, gray, fine to medium grained, moist, no odor 0.0 @ 14.0 feet: 2-inch organic silt lens with wood debris 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. 4. *= Soil sample submitted for laboratory analysis.	0 -			0.0		OL			
Notes: 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. 4. *= Soil sample submitted for laboratory analysis.	3 B-7-12*	d3		0.0			medium grained, few organic silt, moist	no	
Notes: 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. 4. *= Soil sample submitted for laboratory analysis.					11	SP			
Notes: 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. 4. * = Soil sample submitted for laboratory analysis.	4			0.0			@ 14.0 feet: 2-inch organic silt lens with wood debris		
 Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols. * = Soil sample submitted for laboratory analysis. 	Notes:	2. Re	ference t	o the tex	ct of this re	port i	n field interpretations and are approximate. is necessary for a proper understanding of sul		
		3. Re 4. * =	fer to "So Soil sam	oil Classi ople subi	ification Symitted for	ystem	n and Key" figure for explanation of graphics a		

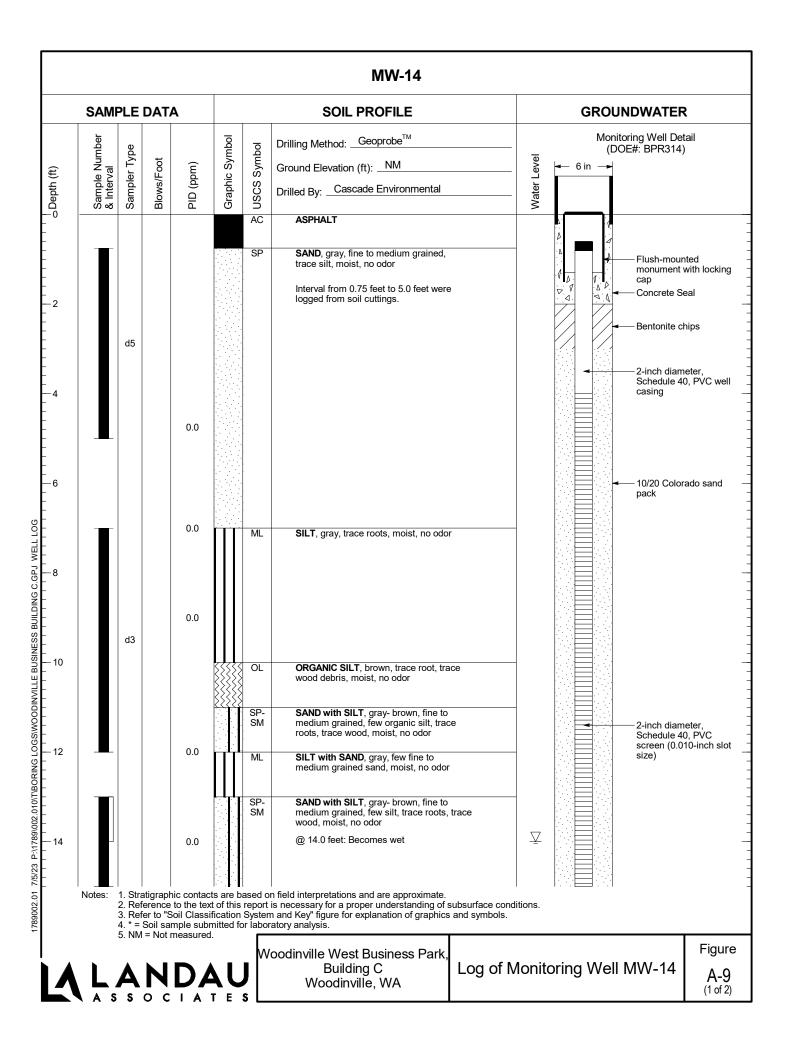


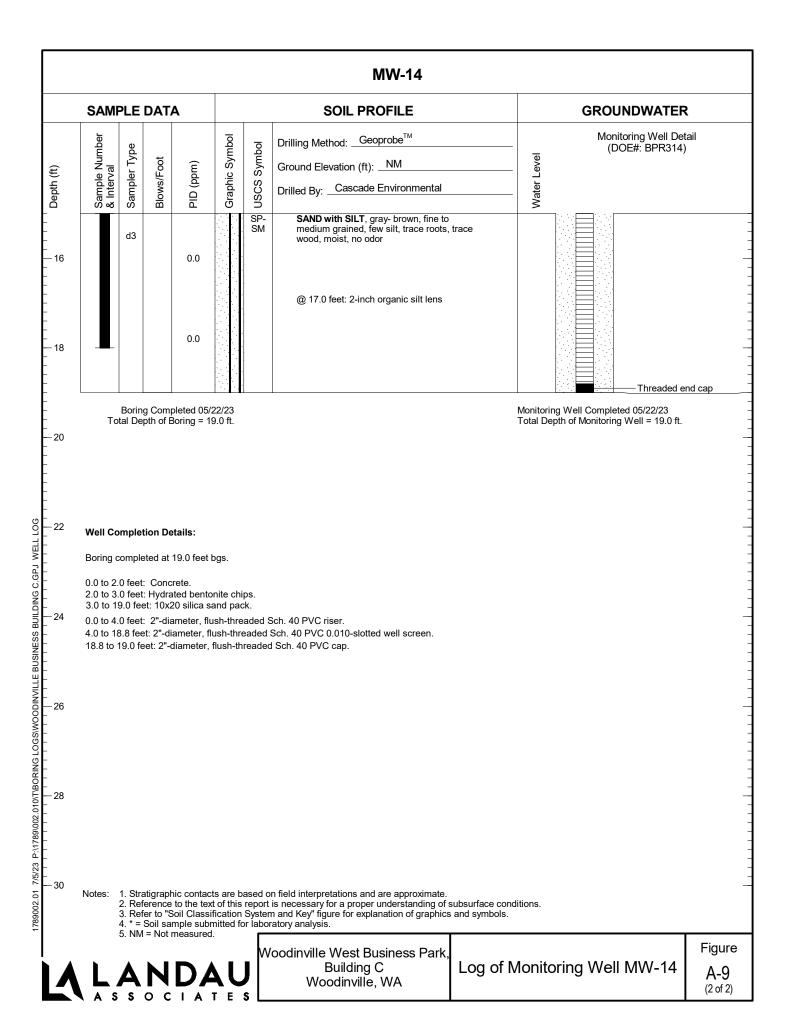


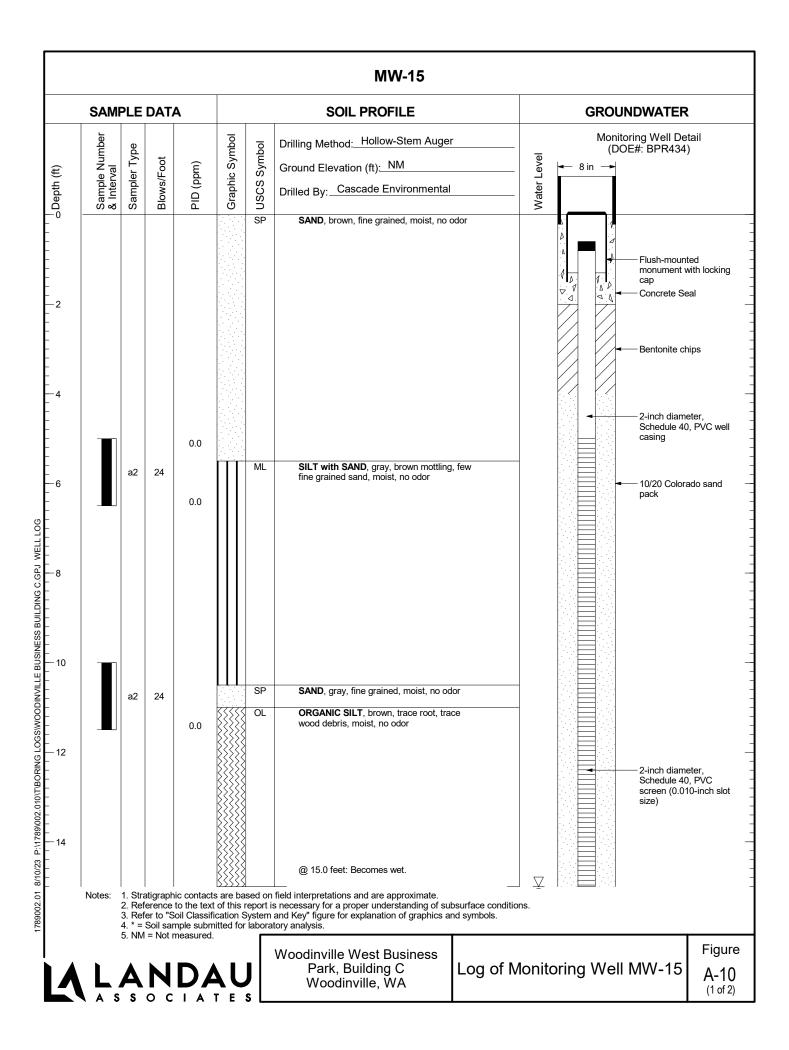


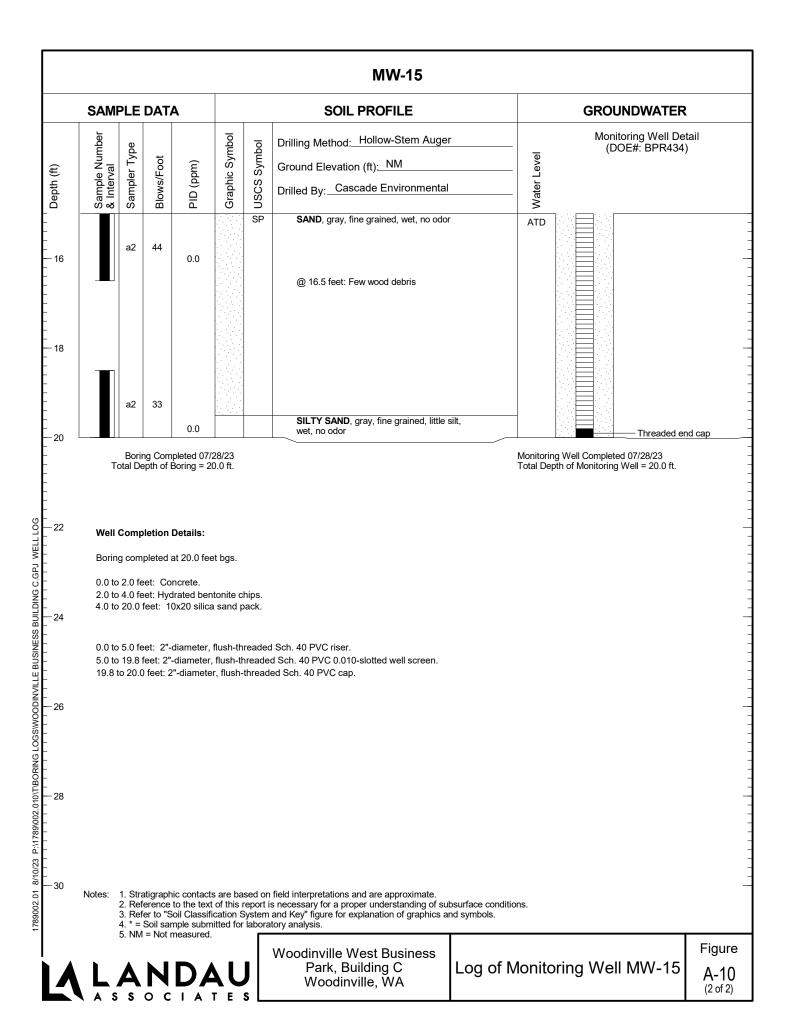


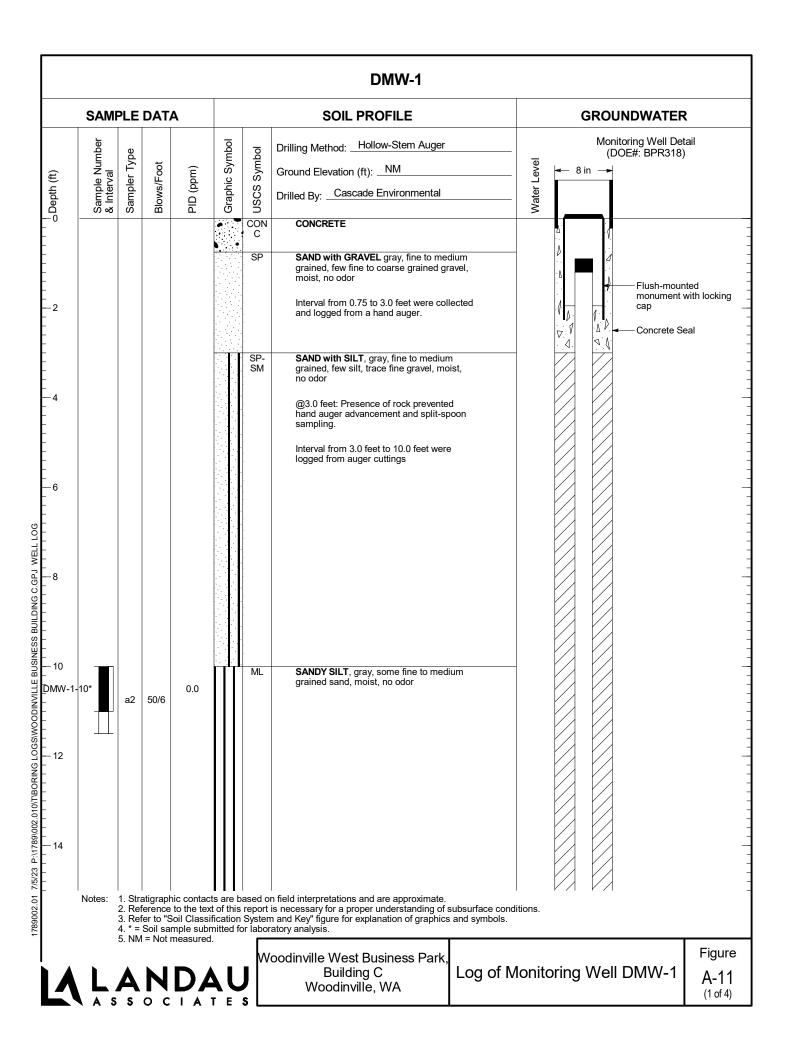


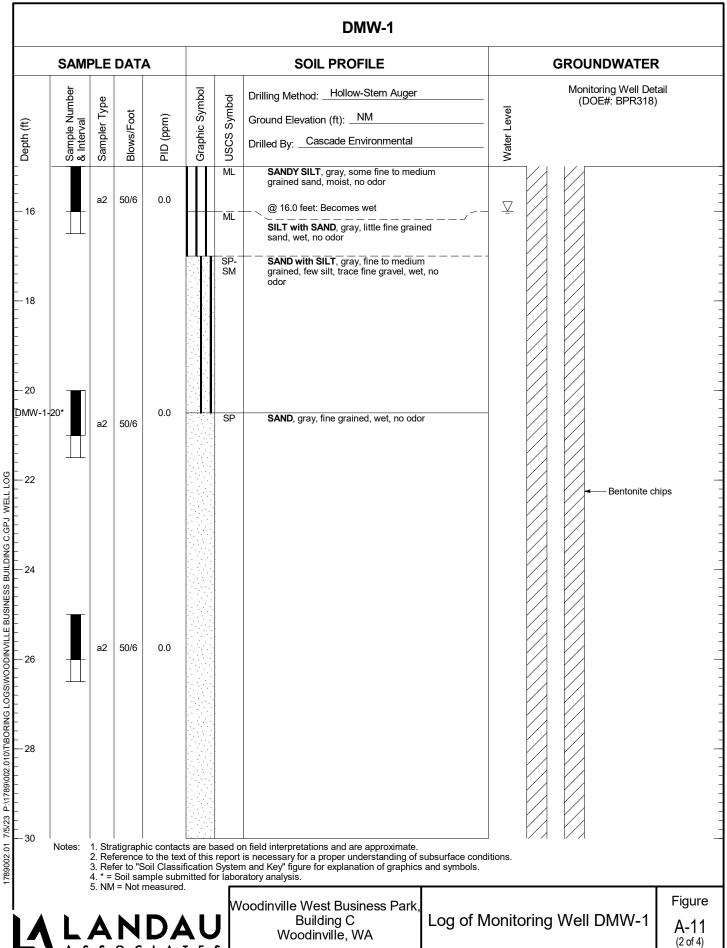


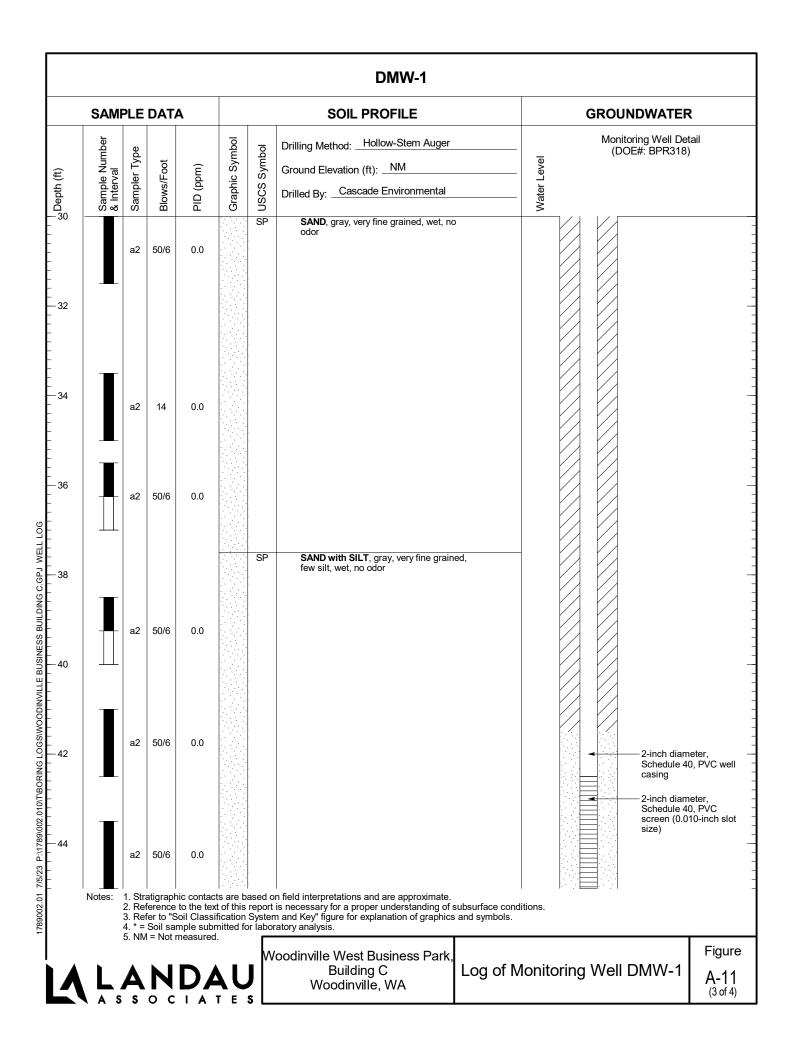


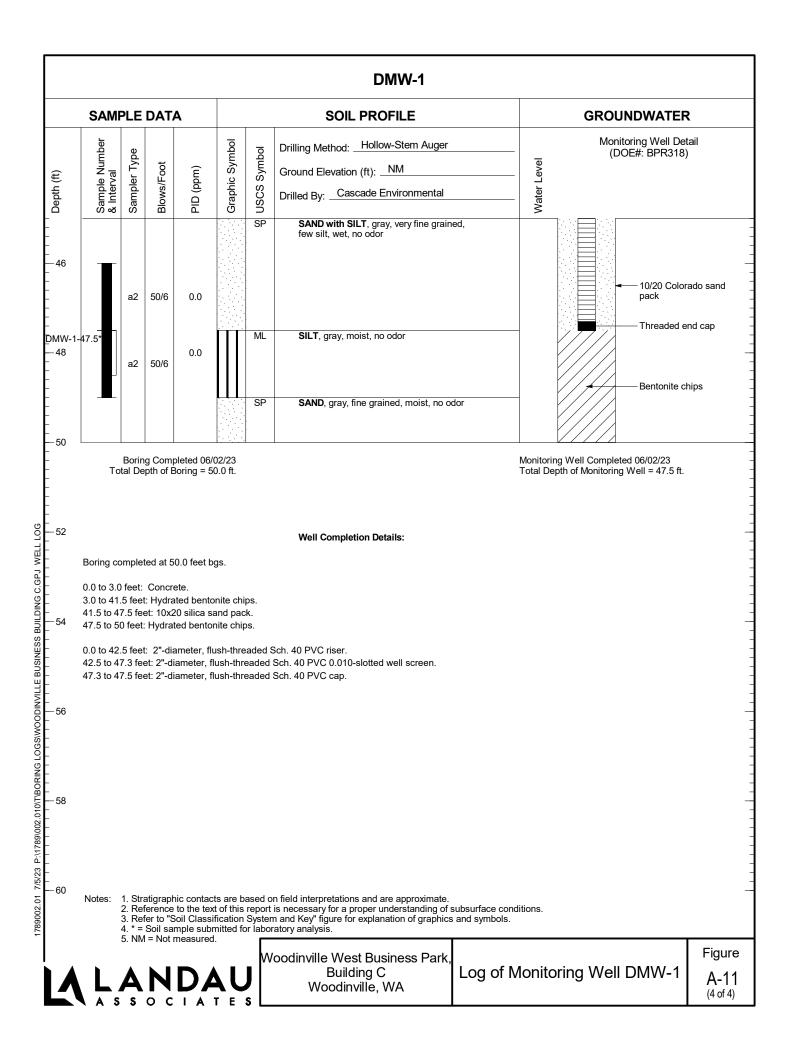

	SAMI	PLE	DATA	Δ			SOIL PROFILE	GROUNDWATER				
	Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe TM Ground Elevation (ft): NM Drilled By: Cascade Environmental	Monitoring Well Detail (DOE#: BPR313)				
ì		d3					No recovery due to rock being pushedown	d Signature of the state of the				
8								Threaded end o				
0	То	Boring tal De	g Comp oth of B	oleted 05/: Boring = 19	22/23 9.0 ft.			Monitoring Well Completed 05/22/23 Total Depth of Monitoring Well = 19.0 ft.				
2	Well Co	-			ogs							
4	Boring completed at 19.0 feet bgs. 0.0 to 2.0 feet: Concrete. 2.0 to 3.0 feet: Hydrated bentonite chips. 3.0 to 19.0 feet: 10x20 silica sand pack. 0.0 to 4.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 4.0 to 18.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 18.8 to 19.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.											
6												
3												
)		2. Ref 3. Ref 4. * =	erence er to "S Soil sar	to the tex oil Classi	t of this fication nitted fo	report Syster	n field interpretations and are approximate. is necessary for a proper understanding of n and Key" figure for explanation of graphics atory analysis.	subsurface conditions.				

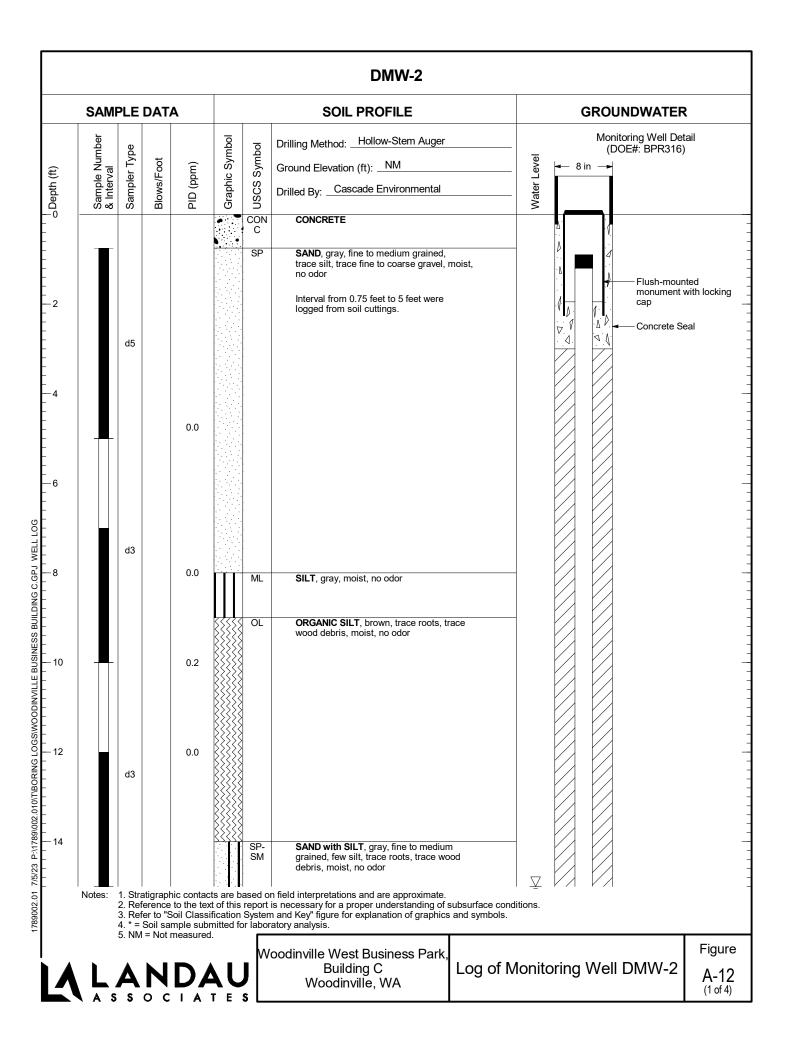


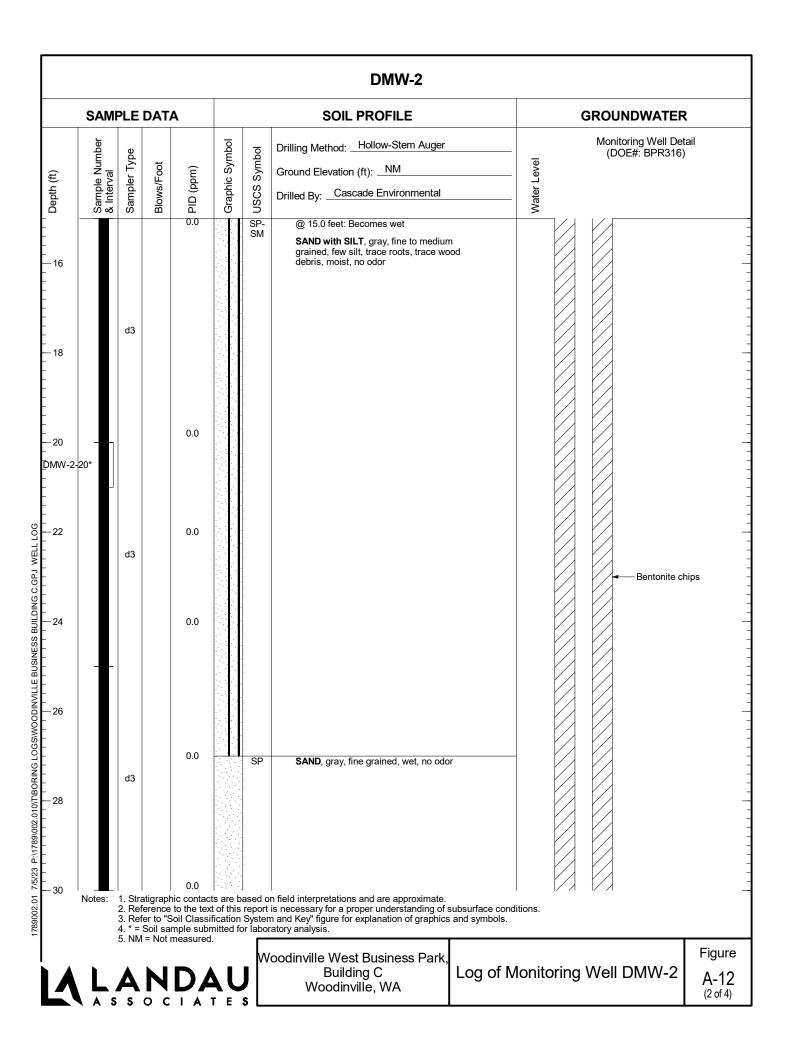


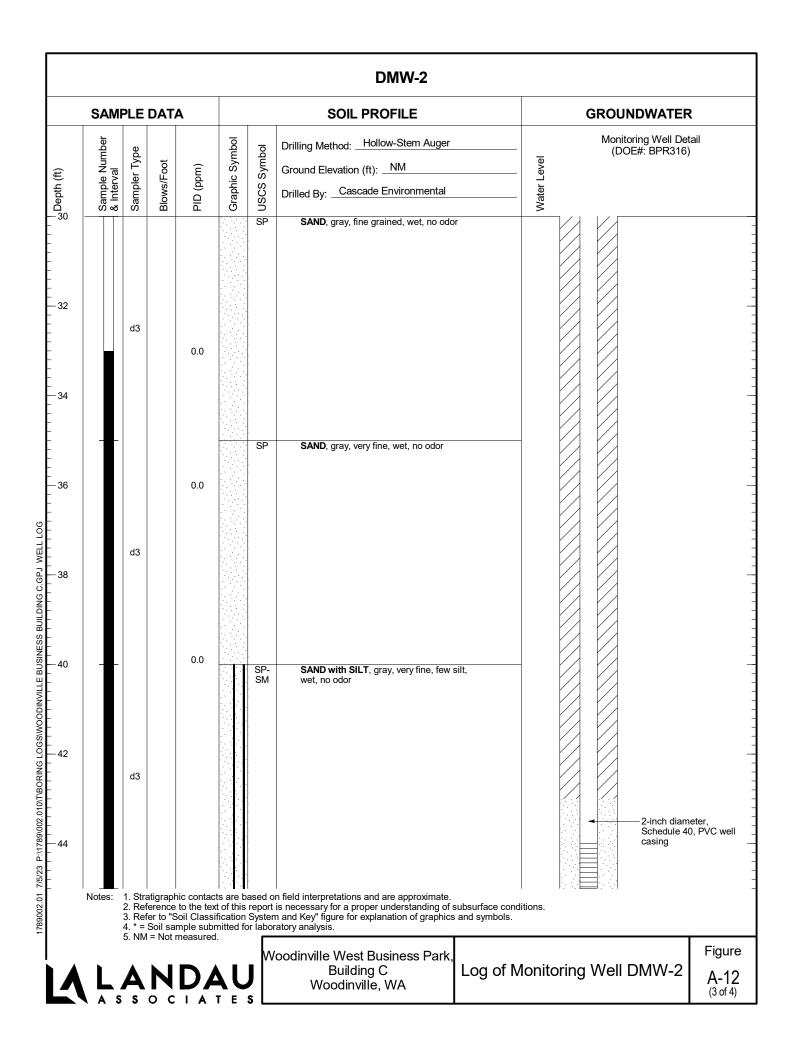


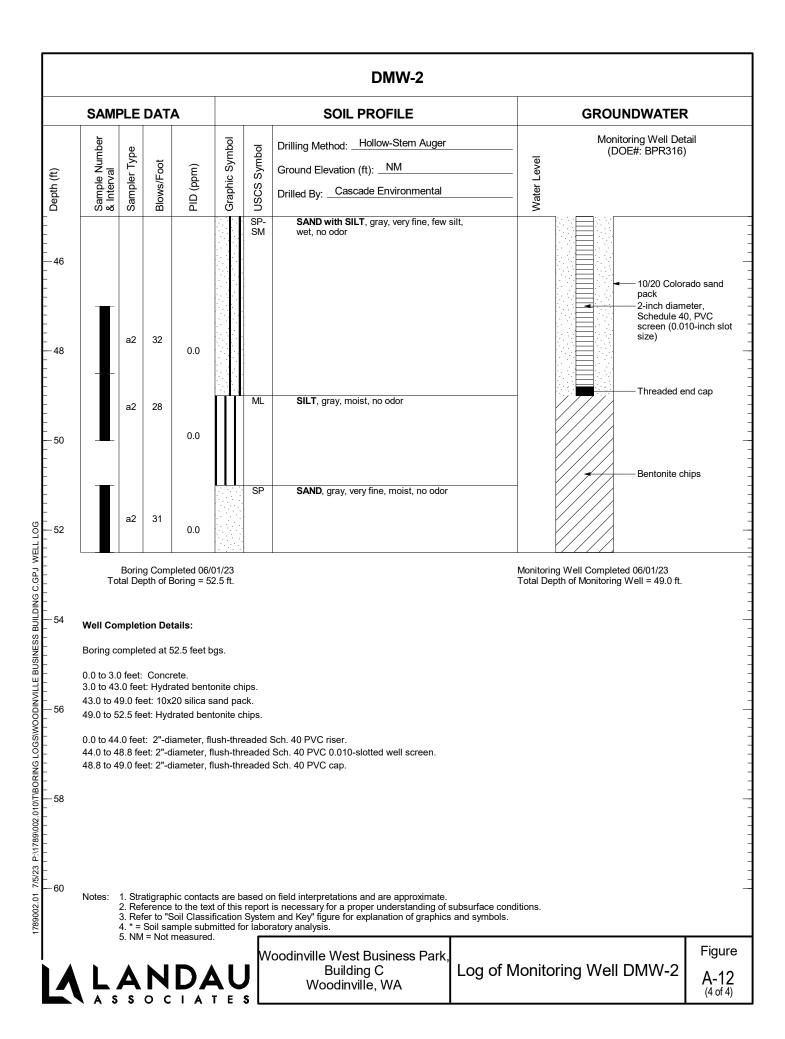












Groundwater and Surface Water Collection Forms

Project Name:										
Event:	Groundwat	ter sampling					Well Name:			MW-
Veather:							Sample ID:			MW-1-0623
Al Representati	ve:	Spencer Lo					Date:	6/7/2023	Time:	
VELL INFORMA	TION & PUI	RGE DATA								
Top of Scree	n Depth (ft):	3				Well Secure	P No	✓ Yes D	amaged?	✓ No Yes
DTW After Cap						Describe:				
Sta	atic DTW (ft):	15.49	- Time:	913	Flow-T	hru Cell Vol.:		WLM No.:	3	
Begin Purge (Date,				End Purge	(Date/Time):	6/7 /2023	3/	Gallon	s Purged:	1. 10
Water Disposal:		gal drum		age tank	Gro		Other:			
	Temp	DO	Cond		ORP	Turbidity	DTW	Purge V		
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)	flow-thru		Comments/ Observation
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	No)	1
(000)	16.9	7.03	312.8	7.54	134.1		15.50	yes		plear
1003	15:9	4.85	297.7	6.74	125.1		15.50	yes		Ver
1006	15.8	4.68	295.5		116,0		15.50	yes		clear
1009	15.8	4.62	295.6		108.1		15.50	yes	N 53	Chear
1012	5.8	4.48	243.4	6.65	96.1		15.50	Ves		Clery
10 15	15.8	4.43	293 4	6.65	94.1		15.50	7e5		Clear
1019	15.8	4,82	794.0	6:66	194		15.50	Yes		Cled
									+	
									10 p	
		8		Pump	Type	Peristatlic				
Collection Method	d: Stainless Steel	Bailer	PVC Alconox Wash		Type; Teflon Tap Rinse		Polyethylene DI Water		Other Dedicated	✓ Dedicated
Collection Method Material: Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe		Teflon					
Collection Method Material: Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe sheen, etc.):	sequence);	Teflon					
Collection Method Material: Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe	sequence);	Teflon					
Decon Procedure: Sample Descriptio	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe sheen, etc.):	sequence);	Teflon				Dedicated	
Collection Method Material: Decon Procedure: Sample Description	d: Stainless Steel	Bailer color, odor, s At-ke	PVC Alconox Wash Other (describe sheen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description	d: Stainless Steel	Bailer color, odor, s At-ke	PVC Alconox Wash Other (describe sheen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Sample Medicate	d: Stainless Steel	Bailer color, odor, s At-ke	PVC Alconox Wash Other (describe sheen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2	d: Stainless Steel	Bailer color, odor, s At-ke	PVC Alconox Wash Other (describe sheen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3	d: Stainless Steel	Bailer color, odor, s At-ke	PVC Alconox Wash Other (describe sheen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average	stainless Steel	color, odor, s	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm)	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel	color, odor, s Atake DO (mg/L)	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm)	pH pH	ORP (mV)	Turbidity (NTU)	DI Water DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, of le i Temp (°C) Analysis Re (8260) (82	color, odor, s Ateke DO (mg/L) equested (Circ	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) cle/Bold Appl 010) (8020)	pH cable Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, of e Temp (°C) Analysis Re (8260) (82 (NWTPH-G)	color, odor, s Atrike DO (mg/L) quested (Circ 60D-SIM) 28	PVC Alconox Wash Other (describesheen, etc.): At 17 Cond (uS/cm) Ele/Bold Appl 010) (8020) (BETX) (NV	pH icable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Cample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, of e Temp (°C) Analysis Re (8260) (82 (NWTPH-G) (8270) (PA	color, odor, s At-ke DO (mg/L) quested (Circ 60D-SIM) 28 (NWTPH-Gx IH) (8081) (PVC Alconox Wash Other (describesheen, etc.): At 17 Cond (uS/cm) Ele/Bold Appl 010) (8020)) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID) Grease)	ORP (mV) Short List) (NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Cample Description Replicate 1 2 3 4 Average Bottles	Analysis Re [8260] (82 [NWTPH-G] [PH] (Conc	color, odor, s Afrike DO (mg/L) quested (Circ 60D-SIM) 88 (NWTPH-Gx iH) (8081) (ductivity) (TE	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Cle/Bold Appl 010) (8020) (BETX) (NV (8141) (Oil & OS) (TSS) (B	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Cample Description Replicate 1 2 3 4 Average Bottles	Analysis Re [8260] (82 (NWTPH-G) (PH) (COD) (TO	color, odor, s Afeke DO (mg/L) quested (Circ 60D-SIM) 88 (NWTPH-Gx iH) (8081) (ductivity) (TEC) (Total PO-	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Cle/Bold Appl 010) (8020)) (BETX) (NV (8141) (Oil & OS) (TSS) (B	pH pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (82 (NWTPH-G) (PH) (Condition) (Total Cyan	color, odor, s Afeke DO (mg/L) quested (Circ 60D-SIM) (8081) (8081) (4000) (Total PO- ide) (WAD Color)	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Cle/Bold Appl 010) (8020)) (BETX) (NV (8141) (Oil & OS) (TSS) (BC) 4) (Total Kieryanide) (Fre	pH pH (icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (82 (NWTPH-G) (PH) (Condition) (Total Cyan	color, odor, s Afeke DO (mg/L) quested (Circ 60D-SIM) (8081) (8081) (4000) (Total PO- ide) (WAD Color)	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Cle/Bold Appl 010) (8020)) (BETX) (NV (8141) (Oil & OS) (TSS) (B	pH pH (icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (*C) Analysis Re (*C) Analysis Re (*C)	color, odor, s Ateke DO (mg/L) quested (Circ 60D-SIM) 8 (NWTPH-Gx iH) (8081) (ductivity) (TE C) (Total PO- ide) (WAD C)) (Total 6020	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Cle/Bold Appl 010) (8020)) (BETX) (NV (8141) (Oil & OS) (TSS) (BC) 4) (Total Kieryanide) (Fre	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average	Analysis Re (*C) Analysis Re (*C) Analysis Re (*C)	color, odor, s Ateke DO (mg/L) quested (Circ 60D-SIM) 8 (NWTPH-Gx iH) (8081) (ductivity) (TE C) (Total PO- ide) (WAD C)) (Total 6020	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Ile/Bold Appl 010) (8020) () (BETX) (NV (8141) (Oil & OS) (TSS) (Beta) () (Total Kiedyanide) (Frei	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles \$40mL HCI VOAs	Analysis Re (*C) Analysis Re (*C) (*C) Analysis Re (*E) (*C) (color, odor, s Ateke DO (mg/L) quested (Circ 60D-SIM) 8 (NWTPH-Gx iH) (8081) (ductivity) (TE C) (Total PO- ide) (WAD C)) (Total 6020	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Ile/Bold Appl 010) (8020) () (BETX) (NV (8141) (Oil & OS) (TSS) (Beta) () (Total Kiedyanide) (Frei	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 340mL HCI VOAs	Analysis Re (*C) Analysis Re (*C) (*C) Analysis Re (*E) (*C) (color, odor, s Ateke DO (mg/L) quested (Circ 60D-SIM) 8 (NWTPH-Gx iH) (8081) (ductivity) (TE C) (Total PO- ide) (WAD C)) (Total 6020	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Ile/Bold Appl 010) (8020) () (BETX) (NV (8141) (Oil & OS) (TSS) (Beta) () (Total Kiedyanide) (Fred) (Diss 6010)	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (*C) Analysis Re (*C) (*C) Analysis Re (*E) (*C) (color, odor, s Ateke DO (mg/L) quested (Circ 60D-SIM) 8 (NWTPH-Gx iH) (8081) (ductivity) (TE C) (Total PO- ide) (WAD C)) (Total 6020	PVC Alconox Wash Other (describesheen, etc.): Af 17. Cond (uS/cm) Ile/Bold Appl 010) (8020) () (BETX) (NV (8141) (Oil & OS) (TSS) (Beta) () (Total Kiedyanide) (Fred) (Diss 6010)	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalini) (NH3) (N	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺

Project Name:	Woodinville	Business P	ark				ct Number:		1789	002.010.014
Event:	Groundwat	er sampling				,	Well Name:			MW-2
Weather:							Sample ID:			MW-2 -0623
Al Representat	ive:	Spencer Lo					Date:	6/1/2023	Time:	
VELL INFORMA	TION & PUR	GE DATA								
Top of Scree	en Depth (ft):	3			-	Well Secure?	? No	✓ Yes Da	amaged?	✓ No Yes
DTW After Cap	Opened (ft):		Time:			Describe:				
	atic DTW (ft):		Time:	908	Flow-T	hru Cell Vol.:		WLM No.:	3	
Begin Purge (Date		6/ 7/2023	•				3/			1.75
				•				•		
Water Disposal:	24	gal drum	S 20 10	age tank	☐ Gro	At 14 (20) 20 (20)	Other;			
	Temp	DO	Cond		ORP	Turbidity	DTW	Purge Vo		
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)	flow-thru	-	Comments/ Observation
Stabilization ->		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/I		/1
1554 -	16.2	1.81	365	6.62	9.7		11.10	yes		Clar
1230	13.5	141	281.4	6.71	-4.0	ļ	11.10	Yes		Cleans
1233	13,4	130	279.7	6.79	-11.7		11.10	Ves		Gear
1236	13.3	.27	769.0	6.80	-17.5		11.10	405		Clear
1234	13.3	140	268,5	6.83	-1117		11.10	Ne5		Clark
1242	13.3	.59	269.7	6.85	-27.3		11.10	115		Clear
	11.	***						1		
							Ì			
						1				
					-					
	<u> </u>				-			d 1/4		
SAMPLE COLLE	CTION DATA									
Material: Decon Procedure Sample Descripti	on (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Tap Rinse	7	DI Water		Dedicate	ď
	San	rple in	take o	+ 13	.5					
DBasta	Temp	00	Cond	-u	ORP	Turbidity	DTW	Time	Com	ments/Observations/Fe ²⁺
Replicate	(°C)	(mg/L)	(uS/cm)	pH	(mV)	(NTU)	(ft)	Tille	Com	ments/Observations/re
1										
2										
3										
4										
Average										
Bottles	Analusis Da	quested (Circ	lo/Bold Appl	icablel				January 1		
					Short List\	VOC Booing	29 (ic+)			
5 40mL HCI VOA										
	_			WTPH-HCID)	(NAN I SH-DX)	(NWTPH-DX	W/SGC)			
		H) (8081) (da come months.	-1
	_			OD) (Turbidi			:O3) (CI) (SC	04) (NO3)	(NO2)_(I	F)
	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger	1)- (NH3)- (N	O3/NO2)		-		
	(Total Cyan	ide) (WAD C	yanide) (Fre	e Cyanide)						
	(Total 6010	(Total 6020) (Diss 6010) (Diss 6020) (Total 74	71)				
		ls) (Dissolve								
		* ** !====	-, -,							
76-	-					100			9	
Duplicate Sampl	e ID:									<u> </u>
Comments:					- 223					
Signature:	12		- 6	0	11 12	011	Date	6.	7.2	3
	0				8 8					

Project Name:	Woodinvill	e Business P	ark			Proje	ct Number:		1/890	02.010.014	
Event:	Groundwa	ter sampling				'	Well Name:			MW-3	
Weather:						,	Sample ID:			MW- 3- 0	.13
Al Representati	ive:	Spencer Lo					Date:	6/8/2023	Time:		
WELL INFORMA	TION & PUI	RGE DATA									
Top of Scree	n Depth (ft):	3				Well Secure?	☐ No	✓ Yes	Damaged?	✓ No	Yes
DTW After Cap	Opened (ft):		Time:			Describe:					
Sta	atic DTW (ft):	15.22		846	Flow-T	hru Cell Vol.:		WLM No.	: 3	181	
Begin Purge (Date		6/8 /2023		End Purge						1.2594	\
				-				- 00.110	13 1 01800	1 - 2 - 1 - 1	
Water Disposal:		gal drum		rage tank	Gro		Other:				
	Temp	DO	Cond		ORP	Turbidity	DTW		Vol. ≥ 1		
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)		u cell vol.	Comments/	Observations
Stabilization →		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes	/No)	//	
919	16-8	1.42	426.2	7.44	37.1		15.34	-		apar	
922	15.3	0.54	402.9	6 74	39.3		15.34	ļ		Clear	
925	15.3	0.44	404.1	L-68_	30-8		15.39	1		Clear	
928	15.2	0-38	405.6	648	26-4		15.39			clear	
931	15.2	1.47	407.6	6.67	22.8		15.39			year	
934	15.2	1.20	409.8	6.65	18.7		15.39	T		Clear	
								T			
		7		1							
					t			†			
		1	1		,						
Collection Metho	d: Stainless Stee	Bailer	PVC	_	Teflon		Polyethylene		Other	✓ Dedicate	ed
Collection Methor Material: Decon Procedure	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe theen, etc.):	e sequence):	Teflon Tap Rinse		Polyethylene DI Water		Other Dedicated		ed
Collection Methor Material: Decon Procedure Sample Description	d: Stainless Stee con (turbidity,	Bailer	PVC Alconox Wash Other (describe theen, etc.): ake on	e sequence):	Teflon Tap Rinse	7	DI Water		Dedicated	1	
SAMPLE COLLECTION Collection Method Material: Decon Procedure Sample Description Replicate	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe theen, etc.):	e sequence):	Teflon Tap Rinse				Dedicated		
Collection Methor Material: Decon Procedure Sample Description	d: Stainless Stee	Bailer Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): Take a	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Methor Material: Decon Procedure Sample Description	d: Stainless Stee	Bailer Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): Take a	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Methor Material: Decon Procedure Sample Description Replicate	d: Stainless Stee	Bailer Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): Take a	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2	d: Stainless Stee	Bailer Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): Take a	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3	d: Stainless Stee	Bailer Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): Take a	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average	d: Stainless Stee	color, odor, s	PVC Alconox Wash Other (describe theen, etc.): A Ke on Cond (uS/cm)	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	1	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee : on (turbidity, Same Temp (°C) Analysis Re	color, odor, s DO (mg/L)	PVC Alconox Wash Other (describe theen, etc.): A ke on Cond (uS/cm)	e sequence): † 17.5 pH	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	1	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average	d: Stainless Stee : on (turbidity, Same Temp (°C) Analysis Re	color, odor, s DO (mg/L) equested (Circ	PVC Alconox Wash Other (describe theen, etc.): A ke on Cond (uS/cm) Le/Bold Appl D10) (8020)	e sequence): † 17 : pH iicable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	1	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee Temp (*C) Analysis Re (NWTPH-G	color, odor, s (mg/L) quested (Circ 60D-SIM) 88	PVC Alconox Wash Other (describence): Alconox Wash Cond (uS/cm) Alconox Wash Cond (uS/cm) Alconox Wash Cond (uS/cm) Alconox Wash Cond (uS/cm) (uS/cm)	e sequence): † 17.1 pH licable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	1	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee : Temp (°C) Analysis Res (8260) (82 (NWTPH-G) (8270) (PA	color, odor, s DO (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (PVC Alconox Wash Other (describence): A Le M Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NI 8141) (Oil 8	e sequence): 7 17.5 pH licable) (Boeing VOC WTPH-HCID)	ORP (mV)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee in (turbidity, See (*C) Analysis Re is (8260) (82 (NWTPH-G) (8270) (PA) (pH) (Cone	color, odor, s DO (mg/L) quested (Circ 60D-SIM) 80 (NWTPH-Gx H) (8081) (ductivity) (TO	PVC Alconox Wash Other (describe theen, etc.): Alcono (uS/cm) Cond (uS/cm) Ile/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil 8	e sequence): † 17.5 pH icable)	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (82 (NWTPH-G) (COD) (TO	color, odor, s Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): A Cond (uS/cm) Ale/Bold Appl D10) (8020)) (BETX) (NY 8141) (Oil 8 DS) (TSS) (B	e sequence): # 17.5 pH licable) (Boeing VOC WTPH-HCID) a Grease) OD} (Turbidi dahl Nitrogen	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (82 (NWTPH-G) (COD) (TO	color, odor, s DO (mg/L) quested (Circ 60D-SIM) 80 (NWTPH-Gx H) (8081) (ductivity) (TO	PVC Alconox Wash Other (describe theen, etc.): A Cond (uS/cm) Ale/Bold Appl D10) (8020)) (BETX) (NY 8141) (Oil 8 DS) (TSS) (B	e sequence): † 17.5 pH licable) (Boeing VOC WTPH-HCID) a Grease) OD} (Turbidi dahl Nitrogen	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee con (turbidity, Femp (*C) Analysis Re s (8260) (82 (NWTPH-G (RE270) (PA (pH) (Cond (COD) (TO	color, odor, s DO (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) (le/Bold Appl 010) (8020)) (BETX) (NI 8141) (Oil 8 0S) (TSS) (B 4) (Total Kie yanide) (Free	e sequence): † 17.5 pH licable) (Boeing VOC WTPH-HCID) a Grease) OD} (Turbidi dahl Nitrogen	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee in (turbidity, Same Temp (°C) Analysis Re s (8260) (82 (NWTPH-G (8270) (PA (pH) (Cone (COD) (Total Cyan (Total 6010)	color, odor, s DO (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) le/Bold Appl (20) (8020) (BETX) (NI (8141) (Oil 8 (90)) (TSS) (B (90)) (TSS) (B (90)) (Diss 6010) (Diss 6010)	e sequence): † 17.4 pH iicable (Boeing VOC WTPH-HCID) Grease (OD) (Turbidi dahl Nitrogen (Possible Cyanide) (Diss 6020) (Diss 6020)	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee in (turbidity, Same Temp (°C) Analysis Re s (8260) (82 (NWTPH-G (8270) (PA (pH) (Cone (COD) (Total Cyan (Total 6010)	color, odor, s po (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) le/Bold Appl (20) (8020) (BETX) (NI (8141) (Oil 8 (90)) (TSS) (B (90)) (TSS) (B (90)) (Diss 6010) (Diss 6010)	e sequence): † 17.4 pH iicable (Boeing VOC WTPH-HCID) Grease (OD) (Turbidi dahl Nitrogen (Possible Cyanide) (Diss 6020) (Diss 6020)	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Res (8260) (8270) (PA (COD) (Total Goto) (Total Meta)	color, odor, s po (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) le/Bold Appl (20) (8020) (BETX) (NI (8141) (Oil 8 (90)) (TSS) (B (90)) (TSS) (B (90)) (Diss 6010) (Diss 6010)	e sequence): † 17.4 pH iicable (Boeing VOC WTPH-HCID) Grease (OD) (Turbidi dahl Nitrogen (Possible Cyanide) (Diss 6020) (Diss 6020)	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Res (8260) (8270) (PA (COD) (Total Goto) (Total Meta)	color, odor, s po (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) le/Bold Appl (20) (8020) (BETX) (NI (8141) (Oil 8 (90)) (TSS) (B (90)) (TSS) (B (90)) (Diss 6010) (Diss 6010)	e sequence): † 17.4 pH iicable (Boeing VOC WTPH-HCID) Grease (OD) (Turbidi dahl Nitrogen (Possible Cyanide) (Diss 6020) (Diss 6020)	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comm	nents/Observ	
Collection Method Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Res (8260) (8270) (PA (COD) (Total Goto) (Total Meta)	color, odor, s po (mg/L) quested (Circ 60D-SIM) 86 (NWTPH-Gx H) (8081) (ductivity) (TC C) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Alconod (uS/cm) Cond (uS/cm) le/Bold Appl (20) (8020) (BETX) (NI (8141) (Oil 8 (90)) (TSS) (B (90)) (TSS) (B (90)) (Diss 6010) (Diss 6010)	e sequence): † 17.4 pH iicable (Boeing VOC WTPH-HCID) Grease (OD) (Turbidi dahl Nitrogen (Possible Cyanide) (Diss 6020) (Diss 6020)	ORP (mV) Short List) ((NWTPH-Dx) Sty) (Alkalinia) (NH3) (N	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time O4) (NO3)	Comm	nents/Observ	

Project Name:	Woodinvill						ct Number:		17050	002.010.014
Event:	Groundwa	ter sampling					Well Name:			MW-4
Weather:							Sample ID:			MW-4-0623
Al Representati	ive:	Spencer Lo					Date:	6/8/2023	Time:	
WELL INFORMA	TION & PU	RGE DATA								
Top of Scree	n Depth (ft):	3				Well Secure	No No	✓ Yes D	amaged?	✓ No Yes
DTW After Cap			Time:			Describe:	275			
Ca-	-+i- DT\4//f+)	15.30	Time:	949	Flow T				3	
										150
Begin Purge (Date				-			3/ 	- Gallon	s Purgea:	1.50
Water Disposal:	✓ 55	-gal drum	Stor	age tank	Gro	und	Other:			
	Temp	00	Cond		ORP	Turbidity	DTW	Purge V		
Time	(°C)	(mg/L)	(µS/cm)	pН	(mV)	(NTU)	(ft)	flow-thru	cell vol.	Comments/ Observations
Stabilization →		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	No)	
988	18.2	1.03	383.0		53.2		15.43	yes_		Ugar
1001	15.2	0.42	367.4	640	31.0		15.41	yes		dpar
1004	15.2	0.68	363.8	6.43	24.0		15.41	yeς		Clear
1007	15.2	0.86	306.1	6.49	18:4		15.41	res		clear
1010	15.1	0.99	361.1	6.48	14.5		15.41	yes		dear
1013	15.1	1.06	258.8	6.49			15.41	705		Clear
1016	15.1	1.11	354.6	6.49	3.8		15.41	yes		Clear
				1						
						1				
									+	
						1	•			
CANADIE COLLE	CTION DATA	·								
SAMPLE COLLEC	CTION DATA	Α								
			[7]	Pump	Type:	Peristatlic				
Collection Metho	d:	Bailer		Pump		Peristatlic	Polyethylene		Other	☑ Dedicated
Collection Metho	d:	Bailer	PVC		Teflon		Polyethylene			✓ Dedicated
Collection Metho	d:	Bailer	PVC Alconox Wash				Polyethylene DI Water		Other Dedicated	
Collection Methor Material: Decon Procedure	d: Stainless Stee ::	Bailer	PVC Alconox Wash Other (describe		Teflon					
Collection Metho Material: [] Decon Procedure Sample Descriptio	d: Stainless Stee :: on (turbidity,	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse					
Collection Metho Material: [] Decon Procedure Sample Descriptio	d: Stainless Stee	Bailer I	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse	☐ ☑	DI Water			
Collection Metho Material: [] Decon Procedure Sample Descriptio	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Metho Material: [] Decon Procedure Sample Description	d: Stainless Stee	Bailer I	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse	☐ ☑	DI Water		Dedicated	
Collection Metho Material: [] Decon Procedure Sample Description	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Metho Material: Decon Procedure Sample Description Replicate 1 2	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3	d: Stainless Stee	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4	d: Stainless Stee c: on (turbidity, Temp (°C)	Bailer Color, odor, s In take DO (mg/L)	PVC Alconox Wash Other (describe theen, etc.): place Cond (uS/cm)	pH	Teflon Tap Rinse ORP	Turbidity	DI Water		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee c: on (turbidity, Temp (°C) Analysis Re	Bailer	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm)	pH icable)	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average	d: Stainless Stee Temp (°C) Analysis Res	Bailer Color, odor, s Intake DO (mg/L)	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) Me/Bold Appl D10) (8020)	pH icable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	d: Stainless Stee Temp (°C) Analysis Res (8260) (82	Bailer Color, odor, s Intake DO (mg/L) Color, odor, s Intake DO (mg/L) Color, odor, s	PVC Alconox Wash Other (describe theen, etc.): place Cond (uS/cm) Me/Bold Appl D10) (8020)) (BETX) (NV	pH icable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (8270) (PA	Bailer	PVC Alconox Wash Other (describe theen, etc.): place Cond (uS/cm) He/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID) Grease)	ORP (mV)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (8270) (PA	Bailer	Cond (uS/cm) Me/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil &	pH pH (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8270) (PA (COD) (TO	Bailer Color, odor, s A fake DO (mg/L) Color Color Color	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) Be/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (8270) (PA (COD) (TO (Total Cyar	Bailer Color, odor, s A take DO (mg/L)	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) Be/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B- 4) (Total Kie- yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen se Cyanide)	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Metho Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Ress (8260) (8270) (PH) (COD) (TOtal Cyar (Total 6010)	Bailer Color, odor, s Intake DO	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) He/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Ress (8260) (8270) (PH) (COD) (TOtal Cyar (Total 6010)	Bailer Color, odor, s A take DO (mg/L)	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) He/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Ress (8260) (8270) (PH) (COD) (TOtal Cyar (Total 6010)	Bailer Color, odor, s Intake DO	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) He/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Res (8260) (8270) (PA (PH) (COD) (TOtal Cyar (Total Met)	Bailer Color, odor, s Intake DO	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) He/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺
Collection Methor Material: Decon Procedure Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Res (8260) (8270) (PA (PH) (COD) (TOtal Cyar (Total Met)	Bailer Color, odor, s Intake DO	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) He/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalini	VOC-Boeing (NWTPH-Dx ty) (HCO3/C	DTW (ft) 38 list) w/SGC)	Time	Comr	nents/Observations/Fe ²⁺

Event: Weather:	Groundwat	er sampling				\	Well Name:			MW- 5
Neather:							Compale ID.			
							Sample ID:			MW- 5- 0623
Al Representativ	ve:	Spencer Lo					Date:	6/ 7 /2023	Time:	
WELL INFORMAT	TION & PUR	GE DATA			<u> </u>					
Top of Screer	n Depth (ft):	3		100		Well Secure?	□ No	✓ Yes D	amaged?	✓ No
DTW After Cap	Opened (ft):		Time:			Describe:				
Sta	tic DTW (ft):	15.34		915	Flow-TI	hru Cell Vol.:			3	100
Begin Purge (Date						6/ 7/2023		Gallon		1.90
	35					100		0411011	or angeon	
Water Disposal:		gal drum	0.00	age tank	Grou		Other			
	Temp	DO	Cond	L DAY	ORP	Turbidity	DTW	Purge V		11123 V
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)	flow-thru		Comments/ Observati
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	No)	0 000
1133	17.0	1.59	350.5	6.62	79.7		15.36	7		clear
1125	15.4	0.59	343.6		71.8		15-36	Y		clear
1138	15.3	0.38	343.0	4.47	61.8		15.36	<u>,</u>		clear
[13]	15.2	०५प	341.4	6.53	52.9			У		clear
1134	15.2	0.19	2399	4.56	45.9		15.36	Y		clear
1137	15.2	1.27	139.8	6.53	40.7		15.37	y		clear
1140	15.2	1.57	239.9	6.54	37.4		15.37	V		clear
								,		
				1						
Collection Method	d:	Bailer		_	Type: Teflon Tap Rinse	_	Polyethylene DI Water		Other	☑ Dedicated
Collection Method Material: [] Decon Procedure:	d: Stainless Steel	□ (□ (color, odor, s	PVC Alconox Wash Other (describe heen, etc.):	= sequence);	Teflon Tap Rinse					
Collection Method Material: [] Decon Procedure:	t: Stainless Steel n (turbidity,	color, odor, s	PVC Alconox Wash Other (describe heen, etc.):	= sequence);	Tap Rinse	17.51	DI Water		Dedicated	1
Collection Method Material: Decon Procedure:	f: Stainless Steel n (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	= sequence);	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	
Collection Method Material: Decon Procedure: Sample Descriptio	t: Stainless Steel n (turbidity,	color, odor, s	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Tap Rinse	17.51	DI Water		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio	f: Stainless Steel n (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate	f: Stainless Steel n (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2	f: Stainless Steel n (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3	f: Stainless Steel n (turbidity,	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average	Stainless Steel In (turbidity, Samp Temp (°C)	color, odor, s /ɛ i / i DO (mg/L)	PVC Alconox Wash Other (describe heen, etc.):	e sequence): Olace d pH	Teflon Tap Rinse OL + ORP	7.51 Turbidity	DI Water DTW		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Steel n (turbidity, Temp (°C) Analysis Rec	color, odor, s /£ i / f DO (mg/L)	Alconox Wash Other (describe heen, etc.): Cond (uS/cm)	pH -	OL / ORP (mV)	7 · 5 / Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Steel In (turbidity, Temp (°C) Analysis Rec	color, odor, s £ DO (mg/L) guested (Circle Code SIM)	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl	pH icable) (Boeing VOC	OL / ORP (mV)	7 · 5 / Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average	Stainless Steel n (turbidity, M p Temp (°C) Analysis Rec (8260) (826) (NWTPH-G)	color, odor, s DO (mg/L) guested (Circl OD-SIM) ROWTPH-GX	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl 10) (8020) (BETX) (NY	pH icable) (Boeing VOC	OL / ORP (mV)	7 · 5 / Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Steel In (turbidity, Temp (°C) Analysis Rec (8260) (826 (NWTPH-G) (8270) (PAI	Color, odor, s Color, odor, s	PVC Alconox Wash Other (describence), etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (N) 8141) (Oil 8	pH icable) (Boeing VOC WTPH-HCID)	OL / ORP (mV) Short List) (1 (NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (8260) (826 (NWTPH-G) (PH) (Cond	Color, odor, s Color, odor, s	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl 10) (8020) (BETX) (NV 8141) (Oil 8	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	OL F ORP (mV) Short List) (1 (NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (8260) (826 (NWTPH-G) (PH) (COND	DO (mg/L) Quested (Circle OD-SIM) BO (NWTPH-Gx) H) (8081) (Suctivity) (TD	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B	pH icable) (Boeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen	OL F ORP (mV) Short List) (1 (NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (8260) (826 (NWTPH-G) (PH) (Cond (COD) (TOC	color, odor, s /£ inf DO (mg/L) quested (Circle odo-SIM) D80 (NWTPH-Gx H) (8081) (1000 (Total PO4 de) (WAD C	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (N' 8141) (Oil 8 S) (TSS) (B I) (Total Kie yanide) (Free	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (*C) Analysis Rec (*C) Analysis Rec (*C) (*C) Analysis Rec (*C) (*C) (*C) (*C) (*C) (*C)	color, odor, s /£ inf DO (mg/L) quested (Circle OD-SIM) D8C (NWTPH-Gx) H) (8081) (1000	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B U) (Total Kie yanide) (Fre) (Diss 6010	icable) (Boeing VOC NTPH-HCID) (Grease) OD) (Turbidi dahl Nitrogen te Cyanide) (Diss 6020	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (*C) Analysis Rec (*C) Analysis Rec (*C) (*C) Analysis Rec (*C) (*C) (*C) (*C) (*C) (*C)	color, odor, s /£ inf DO (mg/L) quested (Circle odo-SIM) D80 (NWTPH-Gx H) (8081) (1000 (Total PO4 de) (WAD C	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B U) (Total Kie yanide) (Fre) (Diss 6010	icable) (Boeing VOC NTPH-HCID) (Grease) OD) (Turbidi dahl Nitrogen te Cyanide) (Diss 6020	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (*C) Analysis Rec (*C) Analysis Rec (*C) (*C) Analysis Rec (*C) (*C) (*C) (*C) (*C) (*C)	color, odor, s /£ inf DO (mg/L) quested (Circle OD-SIM) D8C (NWTPH-Gx) H) (8081) (1000	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B U) (Total Kie yanide) (Fre) (Diss 6010	icable) (Boeing VOC NTPH-HCID) (Grease) OD) (Turbidi dahl Nitrogen te Cyanide) (Diss 6020	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Rec (*C) Analysis Rec (*C) Analysis Rec (*C) (*C) Analysis Rec (*C) (*	color, odor, s /£ inf DO (mg/L) quested (Circle OD-SIM) D8C (NWTPH-Gx) H) (8081) (1000	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B U) (Total Kie yanide) (Fre) (Diss 6010	icable) (Boeing VOC NTPH-HCID) (Grease) OD) (Turbidi dahl Nitrogen te Cyanide) (Diss 6020	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (*C) Analysis Rec (*C) Analysis Rec (*C) (*C) Analysis Rec (*C) (*	color, odor, s /£ inf DO (mg/L) quested (Circle OD-SIM) D8C (NWTPH-Gx) H) (8081) (1000	PVC Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appl D10) (8020) (BETX) (NV 8141) (Oil 8 S) (TSS) (B U) (Total Kie yanide) (Fre) (Diss 6010	icable) (Boeing VOC NTPH-HCID) (Grease) OD) (Turbidi dahl Nitrogen te Cyanide) (Diss 6020	OL / ORP (mV) Short List) ((NWTPH-Dx) ty) (Alkalinit	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Co	DTW (ft) 8 list) w/SGC)	Time	Comr	ments/Observations/Fe

	Project Name:		Business Pa	rk				ct Number:			002.010.014
MELLINFORMATION & PURGE DATA Trime:	Event:	Groundwat	er sampling								MW- 6
Top of Screen Depth (ft): 3	Weather:							Sample ID:			
Top of Screen Depth (ft):	LAI Representati	ve:	Spencer Lo					Date:	6/ 7/2023	Time:	20
Describe: Static DTW (ft): 15.3.2 Time: 71.2 Flow-Thru Cell Vol.: Static DTW (ft): 15.3.2 End Purge (Date/Time): 6/7/2023 Gallons Purged: Gallons Purg	WELL INFORMA	TION & PUR	GE DATA								
Static DTW (ft): 15-3.2 Time: 9/12 Flow-Thru Cell Vol.: Gallons Purged Gallon	Top of Scree	n Depth (ft):	3		59		Well Secure?	☐ No	✓ Yes D	amaged?	✓ No Yes
Static DTW (ft): 15-32							Describe:				
Begin Purge (Date/Time): 6				Time:	912	Flow-T	hru Cell Vol.:		WLM No.:	3	
Water Disposal:				-			The second secon				1.70
Time Temp DO Cond ORP Turbidity DTW Purge Vol. ≥ 1 Comments / Observations Stabilization → ± 3% ± 1.0% ± ± 3% ± 0.1 units ± 1.0 mV ± 1.0% ± 1.00 ft (re. yho) (re.		117							Guitott	or argea.	4.40
Time	water Disposal:				ge tank						
Stabilization 3 3% 2 10% 2 3% 2 10 10 3 10 10 10 10 10		To a second second	The state of the s	100000000000000000000000000000000000000	200	The state of the s	0.00000000				TUNIO DE LA COLONIA
1036						Total Continues of the				7.1	Comments/ Observations
1039							± 10%		(Yes/	NO)	Olama
1042				2000				15.34	<u>y</u>		
O.51 1.5.4 1.5.4 1.5.4 1.5.4 1.5.3 1.5.34		10.6		3/3, 8		70 0		15. 211	7/		
O.51 1.5.4 1.5.4 1.5.4 1.5.4 1.5.3 1.5.34				2770		79.7		16 24	1/		
O.51 1.5.4 1.5.4 1.5.4 1.5.4 1.5.3 1.5.34		15.5	7.57			12.0		16 21	y		
105H		15. 1	1.41			W0.7		15 24	,		
SAMPLE COLLECTION DATA Collection Method: Bailer Pump Type: Peristatlic Stainless Steel PVC Teflon Polyethylene Other Other		15.7	V 00			60 7			3		
SAMPLE COLLECTION DATA Collection Method:		12.1				52.5			1,7		The second secon
Collection Method:	1051	101	4,40	- 41816 · (1)	Q IVD	22,3		131 51	7		CICOLY
Collection Method:											
Collection Method:				1							
Material: Stainless Steel PVC Teflon Polyethylene Other Dedicated	SAMPLE COLLEC	TION DATA									
Material: Stainless Steel PVC Teflon Polyethylene Other Dedicated	Collection Method	d. 🗆	Railer	√ Pi	ımn	Tune	Paristatlic				
Decomposed Decompose Dec	_	_		_				Polyethylene		Other	✓ Dedicated
Sample Description (turbidity, color, odor, sheen, etc.): Sample intrake place of 17.51 Replicate Temp DO (mg/L) (us/cm) pH ORP (mV) (NTU) (ft) Time Comments/Observations/Fe²* 1 2	_								_		
Sample Description (turbidity, color, odor, sheen, etc.): Sample intrake place of 17.5°			=			ap Mise	(*)	DI Watel		Dedicated	1
Replicate Temp DO (us/cm) pH ORP Turbidity DTW (ft) Time Comments/Observations/Fe ²⁺	Sample Description	n (turbidity)	_	-	sequence						
Temp					caf	17.51					
Comments							Turbidity	DTW	10000	10000	
1	Replicate			California in region (California)	рН			The second second second	Time	Comr	ments/Observations/Fe ²⁺
3	1	1.2/	(11.5/5)	1,007,0117		(0.00)	1010	(1.0)			
3	2						0				
Bottles Analysis Requested (Circle/Bold Applicable) 5 40mL HCI VOAs \$260 (8260D-SIM) \$010 (8020) (Boeing VOC Short List) (VOC-Boeing 38 list) (NWTPH-G) (NWTPH-GX) (BETX) (NWTPH-HCID) (NWTPH-DX) (NWTPH-DX w/SGC) (8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (CI) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample D: Comments:	3										
Bottles Analysis Requested (Circle/Bold Applicable) 5 40mL HCl VOAs (8260) (8260D-SIM) (8010) (8020) (Boeing VOC Short List) (VOC-Boeing 38 list) (NWTPH-G) (NWTPH-Gx) (BETX) (NWTPH-HClD) (NWTPH-Dx) (NWTPH-Dx w/SGC) (8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:	4										
5 40mL HCI VOAs (8260) (8260D-SIM) (8010) (8020) (Boeing VOC Short List) (VOC-Boeing 38 list) (NWTPH-G) (NWTPH-Gx) (BETX) (NWTPH-HCID) (NWTPH-Dx) (NWTPH-Dx w/SGC) (8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (CI) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:	Average								WOUND IN	7.760 10	I S motivate interest
5 40mL HCI VOAs (8260) (8260D-SIM) (8010) (8020) (Boeing VOC Short List) (VOC-Boeing 38 list) (NWTPH-G) (NWTPH-Gx) (BETX) (NWTPH-HCID) (NWTPH-Dx) (NWTPH-Dx w/SGC) (8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (CI) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:	Rottles	Analysis Ros	wested (Circle	/Rold Applie	'ahla'	-					
(NWTPH-G) (NWTPH-Gx) (BETX) (NWTPH-HCID) (NWTPH-Dx w/SGC) (8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (CI) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:				 		Short List\ (\)	/OC-Boeing 3	Ω lict\			
(8270) (PAH) (8081) (8141) (Oil & Grease) (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:	D TOTAL FIGURE										
(pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:						(144411111 02)	(HTTI DX	**,300,			·
(COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:						tv) (Alkalinit	v) (HCO3/CO)3) (CI) (SC	(NO3)	NO2) /F	
(Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:	<u> </u>	+						22/ (21/ (30	-1 (HO3)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(Total 6010) (Total 6020) (Diss 6010) (Diss 6020) (Total 7471) (Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:		+				, संसाध्य (IAC	23/1102/				
(Total Metals) (Dissolved Metals) List: Duplicate Sample ID: Comments:						(Total 747	1)				· ·
Duplicate Sample ID: Comments:		+				/ (10ta1747	-1				
Comments:		T. O.G. IVICEAL	-, (J13301¥6U	.ricioloj El3							
Comments:	D 0	16					ii.				
- ^ /:	,	:טו									
Signature: Date: 6.1.23		-	/	,				D-4-	, -	2.2	
	oignature:	_	5	(111)				- Date	6	25	7

vent:	Groundwa	ter sampling	<u> </u>				Well Name:			MW- 7	
Veather:							Sample ID:				2623
Al Representati	ive:	Spencer Lo	222				Date:	6/7/2023	Time:		
ELL INFORMA	TION & PU	RGE DATA						Z -			
Top of Scree	n Depth (ft):	3	N.			Well Secure?	□ No	✓ Yes Da	amaged?	✓ No	Yes
DTW After Cap	Opened (ft)		Time:			Describe:					
Sta	atic DTW (ft)	12.13	Time:	910	Flow-T	hru Cell Vol.:		WLM No.:	3		
egin Purge (Date,	/Time):	6/7/2023	3/	End Purge	,	6/ 7/2023			Purged:	1.75	
/ater Disposal:		gal drum	(2-2)	age tank	Gro		Other:	•	125		
vater bisposar,			1000	aye tarik					154		
Time	Temp (°C)	(mg/L)	Cond (µS/cm)	pH	ORP (mV)	Turbidity (NTU)	DTW (ft)	Purge Vo		Community	Observation
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	{Yes/f		Comments/	Observation
1152	17-11	3.24	260.5	6.5	35	110%	12.20	Yes		Clca	C
1155	13	057	242.6	6,54	12.5		14.20	Yes)	Cica	
1158	112	,42	744.5	6.65	7.8		12,20	1185		Clea	
201	12.8	.5]	244.0	6.70	-1.7		12.20	1460	5	Cleen	
204	13.3		748.2	1.75	-5.5		12.20	YES		Cleur	
607	13.2	,00	247.6	6.79	-9.4		2.20	145		(120	
170	13,0	1.26	245-4	6.86	-13.8		12.20	tes		()(200	
	1										
ollection Method	d:	Bailer	PVC	Pump	Type:	Peristatlic	Polyethylene		Other	✓ Dedicate	ed
ollection Method Naterial: econ Procedure:	d: Stainless Steel:	Bailer	PVC Alconox Wash Other (describe sheen, etc.);	sequence):	Teflon Tap Rinse	<u> </u>	Polyethylene DI Water	_ =	Other Dedicated	_	ed
ollection Method laterial: econ Procedure:	d: Stainless Steel:	Bailer Color, odor, s	PVC Alconox Wash Other (describe	sequence):	Teflon	9	DI Water	_ =		_	ed
ollection Method Aaterial: Decon Procedure:	d: Stainless Steel:	Bailer	PVC Alconox Wash Other (describe sheen, etc.);	sequence):	Teflon Tap Rinse	<u> </u>		_ =	Dedicated	_	
ollection Method laterial: lecon Procedure: ample Descriptio	d: Stainless Steel: on (turbidity, Samp	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence):	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
Decon Procedure: ample Descriptio	d: Stainless Steel: on (turbidity, Samp	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence):	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
ollection Method laterial: Decon Procedure: ample Descriptio	d: Stainless Steel: on (turbidity, Samp	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence):	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2	d: Stainless Steel: on (turbidity, Samp	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence):	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3	d: Stainless Steel: on (turbidity, Samp	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence):	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4	d: Stainless Stee : on (turbidity, Samp Temp (°C)	color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Place Place Cond	e sequence): ce d at pH	Teflon Tap Rinse 14. S	Turbidity	DI Water DTW		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	d: Stainless Stee : on (turbidity, Samp Temp (°C) Analysis Re	color, odor, s color, odor, s color, odor, s color, odor, s	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm)	pH icable)	Teflon Tap Rinse 14. S ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	d: Stainless Stee in (turbidity, Samp Temp (°C) Analysis Re (8260) (82	color, odor, s de inta	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) Cle/Bold Appli D10) (8020)	pH icable) (Boeing VOC	Teflon Tap Rinse / 4. S ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	d: Stainless Stee Temp (°C) Analysis Re (8260) (82	color, odor, s color,	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) Cle/Bold Appli D10) (8020)	pH icable) (Boeing VOC	Teflon Tap Rinse / 4. S ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated		
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles 4 40mL HCl VOAs	d: Stainless Stee Temp (*C) Analysis Re (8250) (82 (NWTPH-G) (8270) (PA	color, odor, s color, s colo	PVC Alconox Wash Other (describe sheen, etc.); Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID)	ORP (mV)	Turbidity (NTU)	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles 4 40mL HCl VOAs	Analysis Re (8270) (PA (pH) (Conc	color, odor, s Color,	PVC Alconox Wash Other (describe sheen, etc.); Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial: econ Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles 4 4OmL HCI VOAs	Analysis Re (8250) (82 (NWTPH-G) (COD) (TO	color, odor, s /c / ATA DO (mg/L) quested (Circ 60D-SIM) (80 (NWTPH-Gx H) (8081) (fuctivity) (TC C) (Total PO	Cond (uS/cm) Re/Bold Application (NS/CM) Re/Bold (US/CM) Ref (US/CM) Re/Bold (US/CM) Re/Bold (US/CM) Re/Bold (US/CM) Ref (US/CM) Re/Bold (US/CM) Re/Bold (US/CM) Re/Bold (US/CM)	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial:	Analysis Re (8260) (82 (NWTPH-G (PH) (Cond (COD) (TO	color, odor, s color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): Policy Cond (uS/cm) Be/Bold Appli D10 (8020)) (BETX) (NV 8141) (Oil & OS) (TSS) (BB	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger e Cyanide)	ORP (mV) Short List) ((NWTPH-Dx) (ty) (Alkalini	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/CC	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial:	Analysis Re [8260] (82 (NWTPH-G) (PH) (Cond (COD) (TO (Total Cyan (Total 6010	color, odor, s color, odor, s	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) Be/Bold Appli 010) (8020)) (BETX) (NV 8141) (Oil & OS) (TSS) (Be 4) (Total Kier yanide) (Fre	icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) (ty) (Alkalini	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/CC	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles 6 40mL HCl VOAs	Analysis Re [8260] (82 (NWTPH-G) (PH) (Cond (COD) (TO (Total Cyan (Total 6010	color, odor, s color, odor, s	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020)) (BETX) (NV 8141) (Oil & 05) (TSS) (Be 4) (Total Kiec yanide) (Fre	icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) (ty) (Alkalini	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/CC	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (82 (NWTPH-G) (PH) (Cond) (COD) (TO (Total Cyan) (Total Meta)	color, odor, s color, odor, s	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020)) (BETX) (NV 8141) (Oil & 05) (TSS) (Be 4) (Total Kiec yanide) (Fre	icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) (ty) (Alkalini	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/CC	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	
ollection Method laterial:	Analysis Re (8260) (82 (NWTPH-G) (PH) (Cond) (COD) (TO (Total Cyan) (Total Meta)	color, odor, s color, odor, s	Alconox Wash Other (describe sheen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020)) (BETX) (NV 8141) (Oil & 05) (TSS) (Be 4) (Total Kiec yanide) (Fre	icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitroger e Cyanide)) (Diss 6020	ORP (mV) Short List) ((NWTPH-Dx) (ty) (Alkalini	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/CC	DTW (ft) 8 list) w/SGC)	Time	Comm	nents/Observ	

Project Name:	Woodinville	e Business Pa	ark		130	Proje	ct Number:	107121	17890	002.010.014	23
Event:	Groundwat	er sampling				١	Well Name:			MW- 8	
Weather:					-		Sample ID:			MW- 8 -	0623
LAI Representat	ive:	Spencer Lo				-	Date:	6/8/2023			3=06540070
WELL INFORMA	TION & PUR	GE DATA									
Top of Scree	n Depth (ft):	3				Well Secure?	☐ No	✓ Yes Da	amaged?	✓ No	Yes
DTW After Cap			Time:			Describe:					
	atic DTW (ft):			859	Flow-T	hru Cell Vol.:			3		
Begin Purge (Date		- 4				6/8/2023				1.50	
								·	s ruigeu.	1.30	
Water Disposal:		gal drum	Stora	age tank	☐ Gro		Other:		*10		
Time	Temp (°C)	DO (mg/L)	Cond (µS/cm)	рН	ORP (mV)	Turbidity (NTU)	OTW (ft)	Purge Vo		Comments/	Observations
Stabilization ->		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/I	No)		
1124	14.2	0.90	506.0	6.54	6.9		10.62	Y		cle	ar.
1127	12.8	0.33	499.6	6.46	7.9		10.64	Ÿ			
1130	12.9	0.27	487.2	6.51	3.4		10.64	Y			
1133	12.8	0.34	471.0	6.59	-3.0		10.64	<u> </u>			
1136	13.0	0.34	471.3	6.58	-6.2		10.64	<u>'</u>			
1139	3.	0.43	456.0	6.62	-9.3	,	10.64	У'		/	<u>,</u>
1142	12.9	0.57	\$436.	8 6.62	-11.4		10.64	. v		V	
		,						'			
								ļ			
I											
SAMPLE COLLE	CTION DATA			945-							
										-	
Collection Metho	id: 📙	Bailer	✓ P	'ump	Туре	Peristatlic		10.000			
Material:	Stainless Steel		PVC		Teflon		Polyethylene		Other	✓ Dedicate	ed
Decon Procedure			Alconox Wash		ap Rinse	7	DI Water		Dedicated	3	
			Other (describe	sequence):							
Sample Descripti	on (turbidity,	color, odor, s	heen, etc.):		0 100 5						
	Sam	ple in	take	placed	91	13.0'					
	Temp	DO	Cond		ORP	Turbidity	DTW			. des	t= 2+
Replicate	(°C)	(mg/L)	(uS/cm)	рН	(mV)	(NTU)	(ft)	Time	Comr	ments/Observ	ations/Fe
1											
2											
3											
4											
Average						<u> </u>	<u> </u>	OHERON	THE REAL PROPERTY.		THE SHAPE
Bottles	Analysis Re	quested (Circl	le/Bold Appli	cable)							
5 40mL HCI VOA				<u> </u>	Short List) (VOC-Boeing 3	18 list)				
			· · · · · · · · · · · · · · · · · · ·			(NWTPH-Dx					
	(8270) (PA	H) (8081) (8141) (Oil &	Grease)							
					ty) (Alkalini	ty) (HCO3/Co	D3) (CI) (SC	04) (NO3)	(NO2) (F)	
		C) (Total PO4									
		de) (WAD C									
		(Total 6020) (Total 747	71)					
		ls) (Dissolve			, 1	,					
				320			40000				
- H (
Duplicate Sample	e IO:	79-70									
Comments:		-	2				P. C	1.6	2.3.		
Signature:		1	5	-	-		Date	6 3	23		

Event:		an campalina								
ACIII.	Groundwat	er sampling					Well Name:			MW- 9
Veather:						107	Sample ID:			MW- 9-0673
Al Representati	ve:	Spencer Lo					Date:	6/ //2023	Time:	- DE DATE:
VELL INFORMAT	TION & PUR	GE DATA		THE ST						
Top of Screen	n Depth (ft):	2.9				Well Secure?	☐ No	✓ Yes D	amaged?	✓ No Yes
DTW After Cap	Opened (ft):		Time:	The second secon		Describe:				
Sta	itic DTW (ft):	11:14	Time:	904	Flow-T	hru Cell Vol.:		WLM No.:	3	Marina Marina Marina and Alexandra A
Begin Purge (Date,		6/ 7/2023				6/7/2023			s Purged:	1,50
Water Disposal:		gal drum		age tank	☐ Grou		Other:			
Tatel Disposan				age talik	ORP			Dunas M	al > 1	T
Time	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pH	(mV)	Turbidity . (NTU)	DTW (ft)	Purge V flow-thru		Comments / Observation
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 1.0%	± 0.00 ft	(Yes/		Comments/ Observation
1254	16.3	1.36	358,0	6.60	1.6	1 10/0	11.17	Ve=		Went
1257	13.6		339.0	10.70	-3.1		11.19	'ye		clear
1300	13.6	0.46	323.0		48-6		11.19			ckar
1303	13.4	0.68	325.2		<15.4		11.20	Ves Ve	<u> </u>	clear
1306	3.5		318.1	1 20	-21.3			¥ V	25	clear
1309	13.4	1.50	217.9	10.12	-26.4		11.20	Ye	5	
	13.9		217.9	1.02	A 1		11.30			gear
1312	12.7	1.86	211-1	1.0 U H	-31-6		11.91	i je	<u> </u>	clear
	-				 	<u> </u>				
	-									
		2.	<u> </u>					·		•
Collection Method	d: Stainless Steel	Bailer	PVC	_	Teflon	_	Polyethylene		Other	✓ Dedicated
Collection Method Material: Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe sheen, etc.):	e sequence);	Teflon Tap Rinse	☐ ☑			Other Dedicated	_
Collection Method Material: Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe	`	Teflon Tap Rinse				_	_
Collection Methoc Material: Decon Procedure;	d: Stainless Steel	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): intake Cond	e sequence);	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	_
Collection Method Material: Decon Procedure; Sample Descriptio	d: Stainless Steel on (turbidity,	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): in ake	e sequence); placeo	Teflon Tap Rinse	13 5	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Descriptio	d: Stainless Steel	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): intake Cond	e sequence); placeo	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure; Sample Descriptio	d: Stainless Steel	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): intake Cond	e sequence); placeo	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2	d: Stainless Steel	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): intake Cond	e sequence); placeo	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3	d: Stainless Steel	Bailer color, odor, s	PVC Alconox Wash Other (describe sheen, etc.): intake Cond	e sequence); placeo	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average	Stainless Steel on (turbidity, Temp (°C)	color, odor, s	Alconox Wash Other (describe theen, etc.):	pH	Teflon Tap Rinse ORP	/3 5 Turbidity	DI Water		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, Temp (°C) Analysis Re	Bailer color, odor, s DO (mg/L)	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm)	pH pH	ORP (mV)	/3 -5 ' Turbidity (NTU)	DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, Temp (°C) Analysis Rev (8260) (826	Bailer Color, odor, s DO (mg/L) Quested (Circ	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm) Ile/Bold Appli D10) (8020)	pH icable) {Boeing VOC	ORP (mV)	// / / / / / / / / / / / / / / / / / /	DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, Temp (°C) Analysis Rec (8260) (826)	Bailer color, odor, s DO (mg/L) quested (Circ soD-SIM) Bai	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm) Ile/Bold Appli D10) (8020)) (BETX) (NV	pH icable) (Boeing VOC	ORP (mV)	// / / / / / / / / / / / / / / / / / /	DTW (ft)		Dedicated	3
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, Temp (°C) Analysis Rec (8260) (826 (NWTPH-G) (8270) (PAI	Bailer Color, odor, s DO (mg/L) Guested (Circ SOD-SIM) B((NWTPH-Gx H) (8081) (PVC Alconox Wash Other (describe theen, etc.):	pH icable) (Boeing VOC WTPH-HCID) Grease)	ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU)	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Stainless Steel In (turbidity, Temp (°C) Analysis Red (8260) (826) (NWTPH-G) (8270) (PAI (pH) (Cond	Bailer Color, odor, s COO (mg/L) Guested (Circ GOD-SIM) BO (NWTPH-Gx H) (8081) (uctivity) (TC	Alconox Wash Other (describe theen, etc.):	pH Icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Rec (NWTPH-G) (PH) (COND) (COD) (TOO	Bailer Color, odor, s Color,	Alconox Wash Other (describe theen, etc.): INTAKE Cond (uS/cm) Ile/Bold Appli D10) (B020)) (BETX) (NV 8141) (Oil & DS) (TSS) (B04) (Total Kied	pH icable) (Boeing VOC NTPH-HCID) Grease) OD) (Turbididahl Nitrogen	ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Ree (8260) (826 (NWTPH-G) (8270) (PAI (COD) (TOO (Total Cyani	Bailer Color, odor, s DO (mg/L) GOD-SIM) BO (NWTPH-GX H) (8081) (uctivity) (TC C) (Total POde) (WAD C	Alconox Wash Other (describe sheen, etc.): IN TAKE Cond (uS/cm) Ile/Bold Appli D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (BC 4) (Total Kiec yanide) (Fre	pH icable) (Boeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	ORP (mV) Short List) ('(NWTPH-Dx) ty) (Alkalinital) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Rec (\$260) (826 (NWTPH-G) (\$270) (PAI (pH) (Cond (COD) (TOG (Total Cyani	Bailer Color, odor, s DO (mg/L) DO (mg/L) (NWTPH-Gx H) (8081) (uctivity) (TCC) (Total 6020	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm) le/8old Appli 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Be 4) (Total Kied yanide) (Fre	e sequence): place pH Goeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ('(NWTPH-Dx) ty) (Alkalinital) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Sample Description Replicate 1 2 3 4 Average	Analysis Rec (\$260) (826 (NWTPH-G) (\$270) (PAI (pH) (Cond (COD) (TOG (Total Cyani	Bailer Color, odor, s DO (mg/L) DO (mg/L) (NWTPH-Gx H) (8081) (uctivity) (TCC) (Total 6020	Alconox Wash Other (describe sheen, etc.): IN TAKE Cond (uS/cm) Ile/Bold Appli D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (BC 4) (Total Kiec yanide) (Fre	e sequence): place pH Goeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ('(NWTPH-Dx) ty) (Alkalinital) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Sample Descriptio Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Received (COD) (Total Cyani (Total Meta	Bailer Color, odor, s DO (mg/L) DO (mg/L) (NWTPH-Gx H) (8081) (uctivity) (TCC) (Total 6020	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm) le/8old Appli 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Be 4) (Total Kied yanide) (Fre	e sequence): place pH Goeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ('(NWTPH-Dx) ty) (Alkalinital) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Received (COD) (Total Cyani (Total Meta	Bailer Color, odor, s DO (mg/L) DO (mg/L) (NWTPH-Gx H) (8081) (uctivity) (TCC) (Total 6020	Alconox Wash Other (describe sheen, etc.): INTAKE Cond (uS/cm) le/8old Appli 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Be 4) (Total Kied yanide) (Fre	e sequence): place pH Goeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	ORP (mV) Short List) ('(NWTPH-Dx) ty) (Alkalinital) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) B8 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺

Project Name:	Woodinville	e Business P	ai K				ct Number:			002.010.014
Event:	Groundwat	er sampling				١	Well Name:			MW-{0
Weather:							Sample ID:			MW-10-06 Z 3
LAI Representati	ve:	Spencer Lo					Date:	6/7/2023	Time:	
WELL INFORMA	TION & DITE	GE DATA								
			14.							
Top of Scree	n Depth (ft):	3				Well Secure?	_		amaged?	✓ No Yes
DTW After Cap			Time:			Describe:				
Sta	itic DTW (ft):	11.36	Time:	902	Flow-T	hru Cell Vol.:		WLM No.:	3	
Begin Purge (Date,	/Time):	6/ 7 /2023		End Purge (6/ 7/2023		- Gallon		1.50
Water Disposal:		gal drum		age tank	☐ Grou		Other	-		All Control of the Co
water bisposai.	ACCOUNT OF THE PARTY OF			age talik	38 100 100 0				1	
-1	Temp	00	Cond	-11	ORP	Turbidity	DTW	Purge V		
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)	flow-thru	MARKS THE REAL PROPERTY.	Comments/ Observations
Stabilization →	± 3%	± 10%	±3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	NOJ	ac-
1445	14.8		249.0		13.4			Yes		
1448	14. 2	0.41	296.5	6.54	11.9	-	11.35	yes		ela
1451	13.9	0.28		6.59	7.7 3.8		11.35	yes		clear
1454	13.8	6.25	302.5		-0.4		11.35	yes.		clean
1457	13.9	0.52	308.0	6.66			11.35	yes		Uer
1500	13.8	6.53		6.69	- 4./		11.35	705		clea
1503	13.8	0.58	304.9	6.70	*7.1		11.35	res		elecon
		-				-		-		
			1		l .		<u> </u>			
		1		1						
Collection Method	d: Stainless Steel	Bailer	I ✓ I	Pump	Type:	Peristatlic	Polyethylene] Other	✓ Dedicated
Decon Procedure:	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe theen, etc.):	= sequence):	Teflon Tap Rinse		Polyethylene DI Water		Other Dedicated	
Collection Method Material: Decon Procedure: Sample Descriptio	d: Stainless Steel	Bailer	PVC Alconox Wash Other (describe	= sequence):	Teflon		, ,			
Collection Method Material: Decon Procedure: Sample Description	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe heen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Car Replicate	d: Stainless Steel on (turbidity,	Bailer color, odor, s intake	PVC Alconox Wash Other (describe theen, etc.): Place	= sequence):	Teflon Tap Rinse		DI Water] Dedicated	
Collection Method Material: Decon Procedure: Sample Description Replicate 1	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe heen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe heen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe heen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe heen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3	d: Stainless Steel on (turbidity, ple Temp	Bailer color, odor, s intake	PVC Alconox Wash Other (describe theen, etc.): Place Cond	e sequence)	Teflon Tap Rinse 3 · 5 ′ ORP	Turbidity	DI Water] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, on ple Temp (°C) Analysis Re	color, odor, s /nfake DO (mg/L)	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm)	pH picable)	Teflon Tap Rinse 3 · 5 / ORP (mV)	Turbidity (NTU)	DI Water DTW (ft)] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average	Stainless Steel on (turbidity, on ple Temp (°C) Analysis Re (8260) (820)	color, odor, s /nfake DO (mg/L) quested (Circ	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)	pH icable) (Boeing VOC	Teflon Tap Rinse 3 · 5 · ORP (mV)	Turbidity (NTU)	DTW (ft)] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, on ple Temp (°C) Analysis Re (8260) (820)	color, odor, s /nfake DO (mg/L) quested (Circ	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)	pH picable)	Teflon Tap Rinse 3 · 5 · ORP (mV)	Turbidity (NTU)	DTW (ft)] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, ple Temp (°C) Analysis Re (8260) (820) (NWTPH-G)	color, odor, s /nfake DO (mg/L) quested (Circ	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NV	pH icable) (Boeing VOC	Teflon Tap Rinse 3 · 5 · ORP (mV)	Turbidity (NTU)	DTW (ft)] Dedicated	1
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, ple Temp (°C) Analysis Re (8260) (821 (NWTPH-G) (8270) (PA	color, odor, s /nf ake DO (mg/L) quested (Circ 60D-SIM) 380 (NWTPH-Gx H) (8081) (PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC	Teflon Tap Rinse ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Stainless Steel on (turbidity, ple Temp (°C) Analysis Re (8260) (820 (NWTPH-G) (8270) (PA	color, odor, s /nf nke DO (mg/L) quested (Circ 60D-SIM) 180 (NWTPH-Gx H) (8081) (Iuctivity) (TC	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID)	ORP (mV) Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (8270) (PA (PH) (Cond (COD) (Total Cyani	color, odor, s /nfake DO (mg/L) quested (Circ 60D-SIM) 386 (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total POdide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (BI 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC MTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen ee Cyanide)	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (8270) (PA (PH) (Cond (COD) (Total Cyani	color, odor, s /nfake DO (mg/L) quested (Circ 60D-SIM) 386 (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total POdide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (BI 4) (Total Kier yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (\$260) (820) (NWTPH-G) (\$270) (PA (pH) (Cond) (COD) (Total Cyan) (Total 6010)	color, odor, s /nfake DO (mg/L) quested (Circ 60D-SIM) 386 (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total POdide) (WAD C	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Bi 4) (Total Kied yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles	Analysis Re (\$260) (820) (NWTPH-G) (\$270) (PA (pH) (Cond) (COD) (Total Cyan) (Total 6010)	color, odor, s //nf a ke DO (mg/L) (mg/L) (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total PO4 ide) (WAD C	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Bi 4) (Total Kied yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (8270) (PA (pH) (Cond (COD) (Total Cyan) (Total Meta	color, odor, s //nf a ke DO (mg/L) (mg/L) (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total PO4 ide) (WAD C	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Bi 4) (Total Kied yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCl VOAs	Analysis Re (8260) (8270) (PA (pH) (Cond (COD) (Total Cyan) (Total Meta	color, odor, s //nf a ke DO (mg/L) (mg/L) (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total PO4 ide) (WAD C	Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl 210) (8020)) (BETX) (NV 8141) (Oil & 205) (TSS) (Bi 4) (Total Kied yanide) (Fre	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time	Comr	ments/Observations/Fe ²
Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (\$260) (820) (NWTPH-G) (\$270) (PA (pH) (Cond) (Total Cyan) (Total Meta)	color, odor, s //nf a ke DO (mg/L) (mg/L) (NWTPH-Gx H) (8081) (luctivity) (TCC) (Total PO4 ide) (WAD C	PVC Alconox Wash Other (describe theen, etc.): Place Cond (uS/cm) le/Bold Appl D10) (8020)) (BETX) (NV 8141) (Oil & DS) (TSS) (Be d) (Total Kier yanide) (Fre D) (Diss 6010 d Metals) Li	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	Teflon Tap Rinse 3 5 7 ORP (mV) Short List) ((NWTPH-Dx) ity) (Alkalinina) (NH3) (NH3)	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/C0	DTW (ft) 88 list) w/SGC)	Time D4) (NO3)	Comr	ments/Observations/Fe ²⁺

Project Name:	Woodinvill	e Business P	ark			Proje	ct Number:		17890	002.010.014	
Event:	Groundwat	er sampling					Well Name:			MW{	
Weather:							Sample ID:			MW-	
LAI Representat	ive:	Spencer Lo					Date:	6/8/2023	Time:		
WELL INFORMA	TION & PUR	RGE DATA									
Top of Scree	n Depth (ft):	7				Well Secure?	□ No	✓ Yes D	amaged?	✓ No	Yes
DTW After Cap	Opened (ft):		Time:			Describe:					
	atic DTW (ft):		Time:	853	Flow-T	hru Cell Vol.:		WLM No.:	3	69	
Begin Purge (Date		6/ 8/2023	•			6/8/2023		- 3	s Purged:	1.0	0053
				•		9.0		-		1.12	
Water Disposal:		gal drum	X 22 8	age tank	Gro		Other:				
M STERRI	Temp	DO	Cond		ORP	Turbidity	DTW	Purge V		1100	TV.
Time	(°C)	(mg/L)	(µS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru		Comments/ O	bservations
Stabilization -		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	Noj		
1058	16.1	1.26	29.3.	7.82	-33.0		15.91	405		CPUS	
1101	15.2	,38	294.2	7.00	-7.8		15.91	405		clear	
1104	15.1	133	581.1	6.87	-5.3		15.91	905		Clear	
1107	15.1	. 39	24.3	6.76	-5,5		15.91	Yes		clear	
1110	15.1	. 48	287.7	6.71	-4.7		15.91	15		clear	
								<u>'</u>		,	
							ļ		,	1	
										;	
									•		
							ļ				
SAMPLE COLLE	CTION DATA	18									
Collection Metho	od: \square	Bailer		oump	Type:	Peristatlic					
Material:	Stainless Steel		PVC		Teflon		Polyethylene		Other	✓ Dedicated	
Decon Procedure	::	✓	Alconox Wash		Гар Rinse	✓	DI Water		Dedicated	d	
			Other (describe	e sequence):							
Sample Descripti	on (turbidity,	color, odor, s	heen, etc.):		20 20 1	250					
	Sampl	e int	ake 1	luxed o	+ 18	• •					
	Temp	00	Cond	Company of the	ORP	Turbidity 1	DTW				Company Com
Replicate	(°C)	(mg/L)	(uS/cm)	рН	(mV)	(NTU)	(ft)	Time	Com	ments/Observat	ions/Fe ²⁺
1	1 6	(mg/s)	(do) citi)		(11107	(1110)	1007				
2				1				 			
3						<u> </u>	 	1			
4	 						1				
Average	1	 		1					District of the last	1 194 P 31 19 10	1000000
Average	<u> </u>		1					1		THE R. LEWIS CO., LANSING, MICH.	TEACH TO SE
Bottles		quested (Circ		<u> </u>							
5 40mL HCI VOA										ā	
	(NWTPH-G)	(NWTPH-Gx) (BETX) (NV	NTPH-HCID)	(NWTPH-Dx)	(NWTPH-Dx	w/SGC)				
	(8270) (PA	H) (8081) (8141) (Oil &	Grease)					a		
	(pH) (Cond	luctivity) (TE	S) (TSS) (B	OD) (Turbidi	ty) (Alkalini	ty) (HCO3/C	O3) (CI) (SC	04) (NO3)	(NO2) (F)	
		C) (Total PO									
		ide) (WAD C									
	+) (Total 6020) (Total 747	71)					
		ls) (Dissolve	, .								
			,								
Duplicate Sample	e ID:					No. of the last of	500				
Comments:	C IO						-0.		-(tax/mind		
		C	1				Date	6.8	2.3	72154	
Signature:	- 6					0	- Date	0.0	63		

Project Name:	Woodinville	e Business Pa	ırk			Proje	ct Number:		17890	002.010.014
Event:	Groundwat	er sampling				1	Vell Name:		.8	MW- 12
Weather:							Sample ID:			MW-12-0623
LAI Representat	ive:	Spencer Lo					Date:	6/7/2023	Time:	
WELL INFORMA	TION & PUR	GE DATA								
Top of Scree	en Depth (ft):	4	2			Well Secure?	□ No [√ Yes Da	amaged?	✓ No Yes
DTW After Cap	Opened (ft):		Time:			Describe:				
St	atic DTW (ft):	12.34	Time:	900	Flow-TI	ıru Cell Vol.:			3	
Begin Purge (Date		6/ 7 /2023			(Date/Time):				Purged:	1.50
Water Disposal:		gal drum	Stora		Grou		Other:	,		
water bisposai.			28	iye tarik		Turbidity	D TW	Duran V	151	
Time	Temp (°C)	DO (mg/L)	Cond (µS/cm)	рН	ORP (mV)	(NTU)	(ft)	Purge Vo		Comments/ Observations
Stabilization -		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/I		comments/ observations
1513	14.8	0.56	324-0	662	2.4	2.2070		V	10,	Clear
1516	14.4	0.33	325.6	6.58	1.5		12.38			4
1519	140	0.38	325.0	6.51	-1.8		12.38	V		
1522	14.0	0.59	329.6	6.64	-6.0		12.38	/\	1	
1525	14.0	0.91	336.3	6.65	-9.5		12.38	y/		
1528	14.0	1, 23	340.4	6.67	-11.6		12.38	/\	Y	
153	14.2	1.56	34Š∙2	6.67	-14.3		12.38	У		V
								·		
	1									ļ
						4				
SAMPLE COLLE	CTION DATA									
			О.							
Collection Metho		Bailer		24.000		Peristatlic	0.1.1.1		Other	[] Padland
_	Stainless Steel			200	Teflon		Polyethylene	5000		✓ Dedicated
Decon Procedure	2.	_	Alconox Wash		Tap Rinse	7	DI Water		Dedicated	d
e la procedur	a in the collect date.		Other (describe	sequence):						
Sample Descripti	Samp		/	Olaced	at 1	5'		- A) 2		
				MICO						- 9
Replicate	Temp	DO (m=/1)	Cond	pH	ORP	Turbidity	OTW (ft)	Time	Com	ments/Observations/Fe ²⁺
1	(°C)	(mg/L)	(uS/cm)		(mV)	(NTU)	(11)			
2										
3										
4							1			
Average									34,24	THE RESERVE
Bottles	Analysis Po	quested (Circl	e/Bold Annli	cable)						
5 40mL HCI VOA					Short List) (VOC-Boeing 3	38 list)			
S AGENT TO A		(NWTPH-Gx)								
		H) (8081) (
		luctivity) (TD			ty) (Alkalinit	ty) (HCO3/Co	O3) (CI) (SC	04) (NO3)	(NO2) (F	=}
		C) (Total PO4								
	+,	ide) (WAD Cy								
	(Total 6010) (Total 6020) (Diss 6010	(Diss 6020) (Total 747	1)				
	(Total Meta	ls) (Dissolve	d Metals) Lis	st:		-				
Duplicate Sampl	e ID:				750					
Comments:		(i)	2						Feire	- 10
Signature:			(-				Date	6.7	23	
_	0		- 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14		62.00 (20)		-	- 1		

Project Name: 🔟	Woodinville									002.010.014
Event:	Groundwat	er sampling				1	Well Name:			MW-13
Weather:							Sample ID:			MW-13-0623
Al Representativ	ve:	Spencer Lo					Date:	6/ //2023	Time:	
WELL INFORMAT	TION & PUR	GE DATA							HIT	
Top of Screen	Depth (ft):	3				Well Secure?	No	√ Yes D	amaged?	✓ No
DTW After Cap (Opened (ft):	Table and	Time:			Describe:				
		11-61	2 mm an 2 m	856	Flow-Ti	nru Cell Vol.:		WLM No.:	3	
Begin Purge (Date/		6/7 /2023			(Date/Time):	1000			s Purged:	1.05
Vater Disposal:		200	70mm277500	•						-1.19
vater bisposar.		gal drum		age tank	Grou		Other:			
Time	Temp	DO	Cond		ORP	Turbidity	DTW	Purge V		
Time	(°C)	(mg/L)	(μS/cm)	pH 1.0.1	(mV)	(NTU)	(ft)	flow-thru		Comments/ Observation
Stabilization →	±3%	±10%	379.7	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	NOJ	des
1358				6.67	-19.8		11.62	yes		dear
1407	15.5	30 0.42	346.5	6-17	-22.9			yes.		cleve
1404	15.8	U.7A	349.6	6.83	-18.5		11.64	yec yes	·	clear
	15.9	0.59	351.0	6.90	-33.0 -34.8		11.64			clear
1410	15.5	0.89	347.2	6.87	27.0		11.64	yes		clear
1413	15.5	1.30	350.5	6.87	-36.0		11.64	ÿe		clear
1416	5.2	1.76	349.6	6.81	-36.6		11.64	yes		clear
1419	15.1	4017	350.0	6.13	-37.7		11.64	yes		dear
								1	- 20	1
			200							
		Railer		Pump	Tuno	Ooristatlie	-			
Collection Method	I: Stainless Steel	V.	PVC Alconox Wash		Type: Teflon Tap Rinse		Polyethylene DI Water		Other Dedicated	✓ Dedicated
Collection Method Material: S Decon Procedure: Gample Description	l: Stainless Steel	□ (□ (color, odor, s	PVC Alconox Wash Other (describe heen, etc.):		Teflon Tap Rinse					_
Collection Method Material: S Decon Procedure: Gample Description	l: Stainless Steel	□ (□ (color, odor, s	PVC Alconox Wash Other (describe	1 1	Teflon Tap Rinse					_
Decon Procedure: Sample Description	I: Stainless Steel n (turbidity, Temp	color, odor, s	Alconox Wash Other (describe heen, etc.):		Teflon Tap Rinse	/4 Turbidity	DI Water		Dedicated	_
Collection Method Material: S Decon Procedure: Gample Description	l: Stainless Steel n (turbidity,	color, odor, s	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	74.	DI Water		Dedicated	1
Collection Method Material: S Decon Procedure: Comple Description Replicate	I: Stainless Steel n (turbidity, Temp	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	/4 Turbidity	DI Water		Dedicated	1
Collection Method Material: S Decon Procedure: Sample Description Replicate 1	I: Stainless Steel n (turbidity, Temp	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	/4 Turbidity	DI Water		Dedicated	1
Collection Method Material: S Decon Procedure: Sample Description Replicate 1 2	I: Stainless Steel n (turbidity, Temp	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	/4 Turbidity	DI Water		Dedicated	1
Collection Method Material: S Decon Procedure: Gample Description Replicate 1 2 3	I: Stainless Steel n (turbidity, Temp	color, odor, s	Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse ORP	/4 Turbidity	DI Water		Dedicated	1
Collection Method Material: Solution Solution Procedure: Gample Description Replicate 1 2 3 4 Average	I: Stainless Steel In (turbidity, Temp (°C)	color, odor, s	Alconox Wash Other (describe heen, etc.): Cond (us/cm)	pla (e o	Teflon Tap Rinse ORP	/4 Turbidity	DI Water		Dedicated	1
Collection Method Material: Solution Solution Procedure: Gample Description Replicate 1 2 3 4 Average Bottles	I: Stainless Steel In (turbidity, Temp (°C) Analysis Re	color, odor, s DO (mg/L)	Alconox Wash Other (describe heen, etc.): Cond (us/cm)	pla (e o	ORP (mV)	74 Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: S Decon Procedure: Gample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	I: Stainless Steel In (turbidity, Temp (°C) Analysis Rei	color, odor, s DO (mg/L) quested (Circle 60D-SIM)	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020)	pH icable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: Solution Solution Procedure: Cample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	I: Stainless Steel In (turbidity, Temp (°C) Analysis Rei (8260) (826 (NWTPH-G)	color, odor, s DO (mg/L) quested (Circle COD-SIM) DSC (NWTPH-GX)	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) De/Bold Appli (10) (8020) (BETX) (NV	pH icable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	1
Collection Method Material: Solution Procedure: Complete Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	I: Stainless Steel In (turbidity, Temp (°C) Analysis Rea (NWTPH-G) (8270) (PAI	color, odor, s DO (mg/L) quested (Circle GOD-SIM) D80 (NWTPH-GX) H) (8081) (6	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli D10) (8020) (BETX) (NV	pH pH (Boeing VOC VTPH-HCID) (Grease)	ORP (mV) Short List) (\(\text{(NWTPH-Dx)}\)	/Urbidity (NTU) /OC-Boeing 3	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Procedure: Collection Procedure: Collection Method Material: Solution Method Method Material: Solution Method	Analysis Red (8260) (826 (NWTPH-G) (PH) (Cond	color, odor, s DO (mg/L) quested (Circle Code Sold Sold Sold Sold Sold Sold Sold Sold	Cond (us/cm) De/Bold Appli D10) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC	pH pH (Cable) (Boeing VOC VTPH-HCID) (Grease) (Company of the phonometry) (Company o	ORP (mV) Short List) (\(\text{NWTPH-Dx}\)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx	DTW (ft)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Solution Procedure: Gample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Rec [8270] (PAI (COD) (TOC	color, odor, s DO (mg/L) quested (Circle odo-SIM) BO (NWTPH-Gx) H) (8081) (1000) (Total PO4	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & (S) (TSS) (BC	pH pH (cable) (Boeing VOC VTPH-HCID) (Grease) (DD) (Turbididahl Nitrogen	ORP (mV) Short List) (\(\text{NWTPH-Dx}\)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Secon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Rec (*C) Analysis Rec (8260) (826) (8270) (PAI (pH) (Cond (COD) (TOtal Cyani	color, odor, s color, odor, s color, odor, s color, odor, s color, sodor, s color,	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC yanide) (Free	pH pH greate) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	ORP (mV) Short List) (\(\text{NWTPH-Dx}\) (NH3) (NG)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx y) (HCO3/C0	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Section Procedure: Comple Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Ret (*C) Analysis Ret (8260) (826) (8270) (PAI (pH) (Cond (Total Cyani (Total 6010)	color, odor, s Color, odor, s	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC yanide) (Free) (Diss 6010)	pH pH (able) (Boeing VOC VTPH-HCID) (Grease) (DD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) (\(\text{NWTPH-Dx}\) (NH3) (NG)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx y) (HCO3/C0	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Solution Procedure: Gample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Ret (*C) Analysis Ret (8260) (826) (8270) (PAI (pH) (Cond (Total Cyani (Total 6010)	color, odor, s color, odor, s color, odor, s color, odor, s color, sodor, s color,	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC yanide) (Free) (Diss 6010)	pH pH (able) (Boeing VOC VTPH-HCID) (Grease) (DD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) (\(\text{NWTPH-Dx}\) (NH3) (NG)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx y) (HCO3/C0	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Solution Procedure: Gample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Red [8260] (826) (8270) (PAI (COND) (TOtal Cyani (Total Meta	color, odor, s Color, odor, s	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC yanide) (Free) (Diss 6010)	pH pH (able) (Boeing VOC VTPH-HCID) (Grease) (DD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) (\(\text{NWTPH-Dx}\) (NH3) (NG)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx y) (HCO3/C0	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Solution Section Procedure: Comple Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Red [8260] (826) (8270) (PAI (COND) (TOtal Cyani (Total Meta	color, odor, s Color, odor, s	Alconox Wash Other (describe heen, etc.): Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BC yanide) (Free) (Diss 6010)	pH pH (able) (Boeing VOC VTPH-HCID) (Grease) (DD) (Turbidi dahl Nitrogen e Cyanide) (Diss 6020	ORP (mV) Short List) (\(\text{NWTPH-Dx}\) (NH3) (NG)	Turbidity (NTU) /OC-Boeing 3 (NWTPH-Dx y) (HCO3/C0	DTW (ft) 38 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺

vent:							ct Number:			
		ter sampling					Well Name:	_		MW-IV
Veather:	Sunny	Lance Committee			TATE OF THE PARTY		Sample ID:			MW-14-0623
Al Representativ	ve:	Spencer Lo					Date:	6/1/2023	Time:	7.000
ELL INFORMAT	TION & PUI	RGE DATA								
Top of Screen	n Depth (ft):	4	20			Well Secure?	□ No	✓ Yes Da	amaged?	✓ No Yes
DTW After Cap	Opened (ft)		Time:			Describe:				
		12.59	_	848	Flow-T	hru Cell Vol.:		WLM No.:	3	
egin Purge (Date,			-		(Date/Time):					1.50
/ater Disposal:		-gal drum		rage tank	Grou	100	Other:	-		
vater bisposar.	81	2	78 2 2 X	age tank	ORP	Turbidity	DTW	Purge Ve	151	T
Time	Temp (°C)	DO (mg/L)	Cond (μS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru		Comments/ Observation
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	-	Comments/ Observation
1329	15.5	1.94	2781	6.69	-2.6	1 10/0	12.62	7.65	,	Clear
1332	13.5	0.44	262.6	6.79	40.8		12.63	yes		dear
		0.29	262.9	6.87	-18.9		12.63	Yes		dea
1338	13.6	0.25	163.2	6-95	26.2		12.63	W5:		clear
1341	13.4	6.33	262.0	7.03	-32.7		12.63	y e5		dev
1344	13.5	0.38	264.3	7.09	-392	,	12.63	yes		Uer
1347	13.5	0.41	262.8	7.11	-41.7		12.63	785		Clear
	-									
	1			T						
		-				<u> </u>		_		<u> </u>
ollection Method	d:	Bailer	PVC Alconox Wash		Type: Teflon Tap Rinse		Polyethylene DI Water		Other	✓ Dedicated
Collection Method Material: Decon Procedure:	d: E Stainless Stee	Bailer	PVC Alconox Wash Other (describ		Teflon					_
collection Method Material: Decon Procedure:	d: E Stainless Stee	Bailer	PVC Alconox Wash Other (describ		Teflon Tap Rinse					_
Collection Method Material: Decon Procedure:	d: Stainless Stee : on (turbidity,	Bailer Color, odor,	Alconox Wash Other (describ sheen, etc.):	e sequence):	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	_
iollection Method Material:	d: Stainless Stee : on (turbidity,	Bailer	Alconox Wash Other (describ sheen, etc.): heple	e sequence): intake	Teflon Tap Rinse] at	DI Water		Dedicated	d
Collection Method Material: Decon Procedure: Comple Description Replicate	d: Stainless Stee : on (turbidity,	Bailer Color, odor,	Alconox Wash Other (describ sheen, etc.):	e sequence): intake	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	d
Collection Method Material:	d: Stainless Stee : on (turbidity,	Bailer Color, odor,	Alconox Wash Other (describ sheen, etc.):	e sequence): intake	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3	d: Stainless Stee : on (turbidity,	Bailer Color, odor,	Alconox Wash Other (describ sheen, etc.):	e sequence): intake	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2	d: Stainless Stee : on (turbidity,	Bailer Color, odor,	Alconox Wash Other (describ sheen, etc.):	e sequence): intake	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	d
Collection Method Material: Decon Procedure: Cample Description Replicate 1 2 3 4 Average	d:Stainless Stee	Bailer Color, odor, Sa (mg/L)	Alcanox Wash Other (describ sheen, etc.): Let p le Cond (uS/cm)	e sequence): intake	Teflon Tap Rinse	☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	DI Water		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	d:Stainless Stee	Bailer color, odor, Sa mg/L)	Alcanox Wash Other (describ sheen, etc.): Cond (uS/cm)	e sequence): intake pH licable)	Teflon Tap Rinse O/ % (a) ORP (mV)	Turbidity (NTU)	DI Water / 5 ' DTW (ft)		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Stee	Bailer color, odor, Sa (mg/L) cquested (Cir.	Alcanox Wash Other (describ sheen, etc.): Cond (uS/cm) cle/Bold App 010) (8020)	e sequence): intake pH licable) (Boeing VOC	ORP (mV)	Turbidity (NTU)	DI Water / 5 ' DTW (ft) 38 list)		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Stee	Bailer Color, odor, Sa. (mg/L) Color, odor, o	Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) cle/Bold App 010) (8020)	e sequence): intake pH Hicable) (Boeing VOO WTPH-HCID)	ORP (mV)	Turbidity (NTU)	DI Water / 5 ' DTW (ft) 38 list)		Dedicated	d
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Stee	Bailer Color, odor, Sala (mg/L) DO (mg/L) cquested (Circle (GOD-SIM) (SOB1) (NWTPH-GOM) (SOB1)	Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) cle/Bold App) 010) (8020) c) (BETX) (N' (8141) (Oil 8	e sequence): intake pH Hicable) (Boeing VOC WTPH-HCID) & Grease)	ORP (mV)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	Stainless Stee	Bailer color, odor, po (mg/L) coguested (Circ 60D-SIM) (8081) ductivity) (Ti	Cond (uS/cm) Cle/Bold App O10) (8020) () (BETX) (N' (8141) (Oil 8 DS) (TSS) (B	e sequence): intake pH Hicable) (Boeing VOC WTPH-HCID) & Grease) BOD) (Turbid	ORP (mV) C Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
ollection Method laterial: lecon Procedure: ample Descriptio Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (8270) (PA (pH) (COD) (TO	color, odor, DO (mg/L) equested (Circ 660D-SIM) (NWTPH-G) (H) (8081) ductivity) (Total PO	PVC Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) cle/Bold App 010) (8020) c) (BETX) (N' (8141) (Oil 8 DS) (TSS) (B	e sequence): intake pH Bicable) (Boeing VOC WTPH-HCID) Grease) BOD) (Turbid dahl Nitroger	ORP (mV) C Short List) ((NWTPH-Dx)	Turbidity (NTU) VOC-Boeing (NWTPH-Dx	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (82 (NWTPH-G (PH) (COD) (TO	color, odor, DO (mg/L) equested (Circ 60D-SIM) (8081) ductivity) (Total PO nide) (WAD (Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) cle/Bold Appl 010) (8020) c) (BETX) (N' (8141) (Oil 8 DS) (TSS) (B 4) (Total Kie	e sequence): intake pH Bicable) (Boeing VOC WTPH-HCID) Grease) BOD) (Turbid dahl Nitroger	ORP (mV) C Short List) ((NWTPH-Dx) ity) (Alkalinin) (NH3) (N	VOC-Boeing (NWTPH-Dxty) (HCO3/CO3/NO2)	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Replicate 1 2 3 4 Average	Analysis Re (8260) (8270) (PH) (COD) (TC) (Total Cyar (Total 6010)	color, odor, DO (mg/L) equested (Circ 60D-SIM) (8081) ductivity) (Total PO nide) (WAD (Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) Cle/Bold Appl 010) (8020) () (BETX) (N' (8141) (Oil 8 DS) (TSS) (B Cyanide) (Fre 0) (Diss 6010)	e sequence): intake pH pH Geoing VOC WTPH-HCID Grease GOD) (Turbid dahl Nitroger George Cyanide D) (Diss 6020	ORP (mV) C Short List) ((NWTPH-Dx) ity) (Alkalinin) (NH3) (N	VOC-Boeing (NWTPH-Dxty) (HCO3/CO3/NO2)	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (8270) (PH) (COD) (TC) (Total Cyar (Total 6010)	color, odor, Sa DO (mg/L) color, Sa DO (mg/L) col	Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) Cle/Bold Appl 010) (8020) () (BETX) (N' (8141) (Oil 8 DS) (TSS) (B Cyanide) (Fre 0) (Diss 6010)	e sequence): intake pH pH Geoing VOC WTPH-HCID Grease GOD) (Turbid dahl Nitroger George Cyanide D) (Diss 6020	ORP (mV) C Short List) ((NWTPH-Dx) ity) (Alkalinin) (NH3) (N	VOC-Boeing (NWTPH-Dxty) (HCO3/CO3/NO2)	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (82 (NWTPH-G (PH) (COD) (TC (Total Cyar (Total Met.	color, odor, Sa DO (mg/L) color, Sa DO (mg/L) col	Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) Cle/Bold Appl 010) (8020) () (BETX) (N' (8141) (Oil 8 DS) (TSS) (B Cyanide) (Fre 0) (Diss 6010)	e sequence): intake pH pH Geoing VOC WTPH-HCID Grease GOD) (Turbid dahl Nitroger George Cyanide D) (Diss 6020	ORP (mV) C Short List) ((NWTPH-Dx) ity) (Alkalinin) (NH3) (N	VOC-Boeing (NWTPH-Dxty) (HCO3/CO3/NO2)	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺
Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (82 (NWTPH-G (PH) (COD) (TC (Total Cyar (Total Met.	color, odor, Sa DO (mg/L) color, Sa DO (mg/L) col	Alconox Wash Other (describ sheen, etc.): Cond (uS/cm) Cle/Bold Appl 010) (8020) () (BETX) (N' (8141) (Oil 8 DS) (TSS) (B Cyanide) (Fre 0) (Diss 6010)	e sequence): intake pH pH Geoing VOC WTPH-HCID Grease GOD) (Turbid dahl Nitroger George Cyanide D) (Diss 6020	ORP (mV) C Short List) ((NWTPH-Dx) ity) (Alkalinin) (NH3) (N	VOC-Boeing (NWTPH-Dxty) (HCO3/CO3/NO2)	DI Water / 5 ' DTW (ft) 38 list) w/SGC)	Time	Comi	ments/Observations/Fe ²⁺

Project Name:	Woodinvill	e Business P	ark			Proje	ct Number:		17890	002.010.0	14
Event:	Groundwat	ter sampling				\	Well Name:		D	MW-	
Weather:							Sample ID:			MW-	-0623
LAI Representat	ive:	Spencer Lo					Date:	6/8/202	Time:		
WELL INFORMA	TION & PU	RGE DATA									
Top of Scree	en Depth (ft):	42.5 43				Well Secure?	No	✓ Yes	Damaged?	ΔN	o 🔲 Yes
		700				Describe:					
St	Opened (ft): atic DTW (ft):	15 58	Time:	850	Flow-T	hru Cell Vol.:			: 3		
Begin Purge (Date		6/8 /2023	•			6/8 /2023				1.50	
Water Disposal:		100000	12.	5				-			
water bisposai:		gal drum	THE SHARE SHOW THE	age tank	Gro		Other:				
	Temp	00	Cond	-11	ORP	Turbidity	DTW		Vol. ≥ 1		
Time	(°C)	(mg/L)	(µS/cm)	pH	(mV)	(NTU)	(ft)		u cell vol.	Comment	ts/ Observations
Stabilization -		± 10%	±3%	± 0.1 units	± 10 mV	± 10%	‡ 0.00 ft	(Yes	/No)		
1028	15.2	0.98		6.97			16.04	 		clas	<u>v</u>
1031	14.8	0.68	435.5	7.27	-8.0		16.14	V V			
1034	14.7	0.45	387.4	7.49	-19.3		16,14	<u> </u>	,		
1037	14.7	0.36	385.4 380.9	7.69	-32.7		16.14)			
1040	14.6	0.34	380.4	7.82	-41.7		16.14	Y .			
1043	j4.6	0.32	376.3	7,88	-49.4		16.14	<u> </u>			
1404F	2 14.6	0.3	313.6	7.93	-56.0		16.14	У.		- 1	/
	- P. Sewicz Alban Per	THE RESIDENCE OF THE PARTY OF T						<u> </u>			
								ļ			
	<u> </u>			<u> </u>	· a		·.				
SAMPLE COLLE	CTION DATA	\ <u>\</u>					2				
DANII EE OOLLE		•			*						
Collection Metho		Bailer		Pump		Peristatlic			-		
-	Stainless Steel		PVC	<u></u> □¹	Teflon		Polyethylene	L	Other	✓ Dedi	cated
Decon Procedure	•	✓.	Alconox Wash	☐ 1	Tap Rinse	1	DI Water		Dedicated	1	
		2000	Other (describe	e sequence);							
Sample Descripti											
	Sq mpy	cintak	e plu	ved at	45'						
n. W	Temp	DO	Cond	-11	ORP	Turbidity	DTW	71			
Replicate	(°C)	(mg/L)	(uS/cm)	pH	(mV)	(NTU)	(ft)	Time	Lomi	nents/UDS	ervations/Fe ²⁺
1											
2											
3		I									
4											
Average									Line and the last of the last		
Datalas	Annhust- P-	augetad fet	ام/اعداط ۸۰۰۱	icable)							
Bottles		quested (Circ	· · · · · · · · · · · · · · · · · · ·		Charlettes) /	100 B i 3	10 H-43				
5 40mL HCl VOA											
	-+-	(NWTPH-Gx			(NWTPH-Dx)	(NWTPH-Dx	w/3GC)				
		H) (8081) (****		. <u>-</u>
		luctivity) (TD					03) (CI) (SC	04) (NO3)	(NO2) (F	J	
		C) (Total PO4) (NH3) (N	03/NO2)					
	+	ide) (WAD C									
) (Total 6020) (Total 747	1)					
	(Total Meta	als) (Dissolve	d Metals) Li	st:							
				128270	_38					120	40E 0000
Duplicate Sample	e ID:										
Comments:										518	
Signature:		-	-				Date	6.	8.23		15
	0	75				21.5					

Project Name:	Woodinvill	e Business P	агк				ct Number:			002.010.014
Event:	Groundwat	ter sampling					Well Name:			MW- Z
Weather:							Sample ID:		D	MW-2-0623
.Al Representati	ive:	Spencer Lo					Date:	6/8/2023	Time:	
WELL INFORMA	TION & PU	RGE DATA								
Top of Scree	n Depth (ft):	44				Well Secure?	No	✓ Yes D	amaged?	✓ No Yes
DTW After Cap	Opened (ft):		Time:			Describe:				
		11.01		907	Flow-T	hru Cell Vol.:		WLM No.:	3	· · ·
Begin Purge (Date		600		End Purge				-		7.0
				-				- 0811011	or algea.	2.0
Water Disposal:		gal drum		age tank	☐ Gro		Other:			
	Temp	DO	Cond	J 1	ORP	Turbidity	DTW	Purge V		ALL X - MEALINE
Time	(°C)	(mg/L)	(µS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru		Comments/ Observation
Stabilization →		±10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	No)	
832	15.0	-	478.3	7.28	105.6	,		705		Clear
.835	13.2	4.02	445.1	7.37	35.1		12.17	705		Clear
838	13.0	2.68	440.8	7.53	4.8	ļ	12.38	yes		clear
841	13.3	1.65	439.5	7.70	-23.2		12.38	yes		deur
844	13.2	1.39	438.5	7.76	-34.1		12-38	yes		clear
847	13.3	1.11	440.5	7.83	42.2		12.38	Yes		clear
820	13.4	0-99	443.5	7.87	-48.8		12.38	yes		clear
853	(3.4	0.89	446.3	7.43	-56.0		12.38	yes		Uper
	F3.4	0.83	449.7	7.96	-59.6		12.38	yes		Ueor
356		1				1	I	1		3
SAMPLE COLLECTION Methodological Collection	d: Stainless Steel	Bailer 🔲 (PVC		Teflon	1000	Polyethylene Di Water		Other	✓ Dedicated
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description	d: Stainless Steel :	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse		Polyethylene DI Water		Other Dedicated	
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description	d: Stainless Steel :	Bailer	PVC Alconox Wash Other (describe		Teflon	□				
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description	d: Stainless Steel :	Bailer	PVC Alconox Wash Other (describe heen, etc.):	e sequence):	Teflon Tap Rinse				Dedicated	
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description	d: Stainless Steel con (turbidity, sample Temp	Bailer color, odor, s halee	Alconox Wash Other (describe heen, etc.): place d	e sequence):	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Method Material: Decon Procedure: Description Replicate	d: Stainless Steel con (turbidity, sample Temp	Bailer color, odor, s halee	Alconox Wash Other (describe heen, etc.): place d	e sequence):	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Sample Description Replicate	d: Stainless Steel con (turbidity, sample Temp	Bailer color, odor, s halee	Alconox Wash Other (describe heen, etc.): place d	e sequence):	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description Replicate	d: Stainless Steel con (turbidity, sample Temp	Bailer color, odor, s halee	Alconox Wash Other (describe heen, etc.): place d	e sequence):	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Method Material: Decon Procedure: Sample Description Replicate 1 2 3	d: Stainless Steel con (turbidity, sample Temp	Bailer color, odor, s halee	Alconox Wash Other (describe heen, etc.): place d	e sequence):	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average	d: Stainless Steel turbidity, Sample Temp (°C)	color, odor, s Afalee DO (mg/L)	Alconox Wash Other (describe heen, etc.): Place of Cond (uS/cm)	pH	Teflon Tap Rinse 46' ORP	Turbidity	DI Water		Dedicated	
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	d: Stainless Steel con (turbidity, Sample Temp (°C) Analysis Re	Bailer	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm)	pH	Teflon Tap Rinse 46' ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	d: Stainless Steel con (turbidity, Sample Temp (°C) Analysis Re (8260) (82	color, odor, s A dee DO (mg/L) quested (Circle 60D-SIM) 800	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm)	pH icable) (Boeing VOC	Teflon Tap Rinse 46' ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	
Collection Method Material: Decon Procedure: Complete Description Replicate 1 2 3 4 Average Bottles	d: Stainless Steel con (turbidity,	Bailer Color, odor, s OO (mg/L) Quested (Circle 50D-SIM) 380 (NWTPH-Gx)	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 10) (8020) (BETX) (NV	pH icable) (Boeing VOC	Teflon Tap Rinse 46' ORP (mV)	Turbidity (NTU)	DTW (ft)		Dedicated	I
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	d: Stainless Steel Stainless Steel Temp (°C) Analysis Rev (8260) (820) (NWTPH-G) (8270) (PA	color, odor, s DO (mg/L) quested (Circl 60D-SIM) 380 (NWTPH-Gx) H) (8081) (8	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 10) (8020) (BETX) (NV B141) (Oil &	pH icable) (Boeing VOC WTPH-HCID) Grease)	ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	d: Stainless Steel Stainless Steel Temp (°C) Analysis Re (8260) (820 (NWTPH-G) (8270) (PA	color, odor, s DO (mg/L) quested (Circle 50D-SIM) (8081) (1000)	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil &	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbidi	Teflon Tap Rinse 76' ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Re(8260) (8270) (PA (COD) (TO	color, odor, s Afalee DO (mg/L) quested (Circle Color Silver) (NWTPH-Gx) H) (8081) (illuctivity) (TDC) (Total PO4	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (BG	pH icable) (Boeing VOC WTPH-HCID) Grease) OD) (Turbididahl Nitrogen	Teflon Tap Rinse 76' ORP (mV) Short List) ('(NWTPH-Dx)	Turbidity (NTU) VOC-Boeing 3 (NWTPH-Dx	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (8270) (PA (pH) (Cond (Total Cyan)	color, odor, s A de Color, odor, s A de Color, odor, s A de Color, odor, s DO (mg/L) Quested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (i) Questivity) (TD C) (Total PO4 ide) (WAD Cy	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV B141) (Oil & S) (TSS) (Be yanide) (Fre	pH icable) (Boeing VOC NTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Comple Description Replicate 1 2 3 4 Average Bottles	Analysis Re (8260) (820) (NWTPH-G) (PH) (Cond) (COD) (Total Cyani (Total 6010)	guested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (Illuctivity) (TD (Total 6020	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (Bi () (Total Kied yanide) (Fre) (Diss 6010	pH pH icable) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Complete Description Replicate 1 2 3 4 Average	Analysis Re (8260) (820) (NWTPH-G) (PH) (Cond) (COD) (Total Cyani (Total 6010)	color, odor, s A de Color, odor, s A de Color, odor, s A de Color, odor, s DO (mg/L) Quested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (i) Questivity) (TD C) (Total PO4 ide) (WAD Cy	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (Bi () (Total Kied yanide) (Fre) (Diss 6010	pH pH icable) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (820) (NWTPH-G) (8270) (PA (pH) (Cond) (Total Cyan) (Total Meta	guested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (Illuctivity) (TD (Total 6020	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (Bi () (Total Kied yanide) (Fre) (Diss 6010	pH pH icable) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTORISM Method Material: Decon Procedure: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (820) (NWTPH-G) (8270) (PA (pH) (Cond) (Total Cyan) (Total Meta	guested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (Illuctivity) (TD (Total 6020	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (Bi () (Total Kied yanide) (Fre) (Diss 6010	pH pH icable) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) 88 list) w/SGC)	Time	Comm	ments/Observations/Fe ²⁺
SAMPLE COLLECTION Collection Method Material: Decon Procedure: Sample Description Replicate 1 2 3 4 Average Bottles 5 40mL HCI VOAs	Analysis Re (8260) (820) (NWTPH-G) (8270) (PA (pH) (Cond) (Total Cyan) (Total Meta	guested (Circle 50D-SIM) 180 (NWTPH-Gx) H) (8081) (Illuctivity) (TD (Total 6020	Alconox Wash Other (describe heen, etc.): Place Cond (uS/cm) le/Bold Appli 010) (8020) (BETX) (NV 8141) (Oil & S) (TSS) (Bi () (Total Kied yanide) (Fre) (Diss 6010	pH pH icable) (Boeing VOC VTPH-HCID) Grease) OD) (Turbidi dahl Nitrogen e Cyanide)) (Diss 6020	Teflon Tap Rinse 46' ORP (mV) Short List) (' (NWTPH-Dx) ty) (Alkalinital) (NH3) (NG	VOC-Boeing 3 (NWTPH-Dx ty) (HCO3/Ct	DTW (ft) B8 list) w/SGC) O3) (Cl) (SC	Time	Comm	ments/Observations/Fe ²⁺

Project Name:	woodinville	Business P	ark			Projec	t Number:		1	789002.010.014
Event:	Groundwat	er Sampling	5			<u> </u>	Vell Name:			MW-15
Weather:	80, sunny					<u>-</u>	Sample ID:		MW-15 -	-0823
LAI Representa	itive:	Spencer Lo				_	Date:	8/1/2023	Time:	1240
WELL INFORM	ATION & PU	RGE DATA								
Top of Scree	en Depth (ft):	5				Well Secure?	□No	✓ Yes Da	ımaged?	✓ No Yes
DTW After Cap			•	1235		Describe:	_	_	flush	n mount
-	atic DTW (ft):				•	nru Cell Vol.:	N/A	WLM No.: H		
Begin Purge - Da				End Purge	į.			_	Purged: 1	1.75
				•				- Gallolis	ruigeu.	1.75
Water Disposal:	✓ 55-9	gal drum	Sto	rage tank	Gro		Other:			
	Temp	DO	Cond	рН	ORP	Turbidity	DTW	Purge Vol. ≥		
Time	(°C)	(mg/L)	(μS/cm)		(mV)	(NTU)	(ft)	thru cell		Comments/ Observations
Stabilization →		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/No	o)	
1252	16.0	2.72	318	6.34	168.9	-	14.04	yes		
1255	13.7	1.42	300	6.43	160.1	-	14.06	yes		
1258	13.6	1.10	301	6.54	142.8	-	14.06	yes		
1301	13.6	0.86	300	6.52	140.5	-	14.06	yes		
1304	13.3	0.68	300	6.58	136.1	-	14.06	yes		
1307	13.2	0.55	299	6.54	134.6	-	14.06	yes		
1310	13.3	0.52	300	6.57	128.7	-	14.06	yes		
1313	13.5	0.50	302	6.58	125.5	-	14.06	yes	+	
									+	
	<u> </u>									
SAMPLE COLLE	CTION DATA	4								
Callagtian Math	- d.	Bailer	V	Pump	T	Davistaltia D				
Collection Methodological:	Stainless		PVC		eflon	Peristaltic Po	•	Пон	ther	Dedicated
Material.	Stainless						Polyethylene			Dedicated
Danes Due codius				1 1 1 7	an Rinca	1./1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Decon Procedur	e:	=	Alconox Wash	_	ap Rinse	Ľ	DI Water		edicated	
			Other (describ	e sequence):					edicated	
Sample Descript			Other (describ	e sequence):		take set at 16			edicated	
	ion (turbidity,	, color, odor,	Other (describ sheen, etc.)	e sequence):	Sampling in	take set at 16	.0'; Clear		edicated	
	ion (turbidity,	, color, odor,	Other (describ sheen, etc.)	e sequence):	Sampling in	take set at 16	.0'; Clear	Time		omments/Observations/Fe2+
Sample Descript Replicate	Temp	DO (mg/L)	Other (describ sheen, etc.) Cond (uS/cm)	e sequence): :	Sampling in	take set at 16	.0'; Clear DTW (ft)	Time		omments/Observations/Fe2+
Sample Descript Replicate 1	Temp (°C)	DO (mg/L) 0.48	Other (describ sheen, etc.) Cond (uS/cm) 303.1	pH 6.62	ORP (mV)	Turbidity (NTU)	.0'; Clear DTW (ft) 14.06	Time 1316		omments/Observations/Fe2+
Replicate 1 2	Temp	DO (mg/L)	Other (describ sheen, etc.) Cond (uS/cm)	e sequence): :	Sampling in	take set at 16	.0'; Clear DTW (ft)	Time		omments/Observations/Fe2+
Replicate 1 2 3	Temp (°C)	DO (mg/L) 0.48	Other (describ sheen, etc.) Cond (uS/cm) 303.1	pH 6.62	ORP (mV)	Turbidity (NTU)	.0'; Clear DTW (ft) 14.06	Time 1316		omments/Observations/Fe2+
Replicate 1 2 3 4	Temp (°C)	DO (mg/L) 0.48	Other (describ sheen, etc.) Cond (uS/cm) 303.1	pH 6.62	ORP (mV)	Turbidity (NTU)	.0'; Clear DTW (ft) 14.06	Time 1316 1319		
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5	DO (mg/L) 0.48 0.48	Cond (uS/cm) 303.1 301.8	pH 6.62 6.63 6.63	ORP (mV) 120.4 117.2	Turbidity (NTU)	DTW (ft) 14.06 14.06	Time 1316 1319	C	
Replicate 1 2 3 4	Temp (°C) 13.6 13.5 13.55	DO (mg/L) 0.48 0.48 0.48	Cond (uS/cm) 303.1 301.8 302.45	pH 6.62 6.63 6.63 licable)	ORP (mV) 120.4 117.2	Turbidity (NTU) N/A	DTW (ft) 14.06 14.06	Time 1316 1319	C	
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82	DO (mg/L) 0.48 0.48 0.48 uested (Circ	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App] 3010) (8020	pH 6.62 6.63 6.63 licable) (Boeing VC	ORP (mV) 120.4 117.2 118.80	Turbidity (NTU) N/A (VOC-Boein	DTW (ft) 14.06 14.06 14.06	Time 1316 1319	C	
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82	DO (mg/L) 0.48 0.48 0.48 uested (Circ	Cond (uS/cm) 303.1 301.8 302.45 de/Bold App 8010) (8020 (BETX) (N)	pH 6.62 6.63 6.63 licable) (Boeing VC	ORP (mV) 120.4 117.2 118.80	Turbidity (NTU) N/A (VOC-Boein	DTW (ft) 14.06 14.06 14.06	Time 1316 1319	C	
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G)	DO (mg/L) 0.48 0.48 0.48 Uested (Circ (NWTPH-Gx)) 1) (8081) (8	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App (BETX) (N) 8141) (Oil 8	pH 6.62 6.63 6.63 licable) 0) (Boeing VC	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx)	Turbidity (NTU) N/A (VOC-Boein	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH-G)H) (Condu	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) (NWTPH-Gx) (Juctivity) (TD	Cond (uS/cm) 303.1 301.8 302.45 [le/Bold App (BETX) (NV 8141) (Oil 8 S) (TSS) (B	pH 6.62 6.63 6.63 licable) () (Boeing VC) WTPH-HCID) Code Grease) () (Turbidicates)	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx)	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Condu	DO (mg/L) 0.48 0.48 0.48 Uested (Circle (NWTPH-Gx)) (I) (8081) (Functivity) (TD) (Total PO4	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App] 8010) (8020 (BETX) (NY 8141) (Oil 8 S) (TSS) (B	pH 6.62 6.63 6.63 6.63 6.63 6.63 Grease) GOD) (Turbidical Nitroger	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx)	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Condu (COD) (TOC	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) (NWTPH-Gx) (Inctivity) (TD (Total PO4 de) (WAD Cy	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B c/anide) (Free canide) (Free canide)	pH 6.62 6.63 6.63 licable) O (Boeing VC) WTPH-HCID) G Grease) GOD) (Turbidication of the company	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanic	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) (B) (8081) (Cuctivity) (TD) (Total PO4 de) (WAD Cy	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B C) (Total Kie (anide) (Free (anide) (Free (anide) (Diss 6010)	pH 6.62 6.63 6.63 licable) 0) (Boeing VC WTPH-HCID) C Grease) GOD) (Turbidicated Nitrogenete Cyanide) 0) (Diss 6020	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average Bottles	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (PH) (Conduction (COD) (TOC) (Total Cyanic (Total 6010) (Total Metals	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) 1) (8081) (3000 (Total PO4) 1) (Total PO4) 3) (Total 6020 3) (Dissolved)	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B C) (Total Kie (anide) (Free (anide) (Free (anide) (Diss 6010)	pH 6.62 6.63 6.63 licable) 0) (Boeing VC WTPH-HCID) C Grease) GOD) (Turbidicated Nitrogenete Cyanide) 0) (Diss 6020	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average Bottles	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Conduction (COD) (TOC) (Total Cyanic (Total 6010) (Total Metalseserved VOA	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) 1) (8081) (3000 (Total PO4) 1) (Total PO4) 3) (Total 6020 3) (Dissolved)	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B C) (Total Kie (anide) (Free (anide) (Free (anide) (Diss 6010)	pH 6.62 6.63 6.63 licable) 0) (Boeing VC WTPH-HCID) C Grease) GOD) (Turbidicated Nitrogenete Cyanide) 0) (Diss 6020	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average Bottles 6-40mL HCl pre	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Conduction (COD) (TOC) (Total Cyanic (Total 6010) (Total Metalseserved VOA	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) 1) (8081) (3000 (Total PO4) 1) (Total PO4) 3) (Total 6020 3) (Dissolved)	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B C) (Total Kie (anide) (Free (anide) (Free (anide) (Diss 6010)	pH 6.62 6.63 6.63 licable) 0) (Boeing VC WTPH-HCID) C Grease) GOD) (Turbidicated Nitrogenete Cyanide) 0) (Diss 6020	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A
Replicate 1 2 3 4 Average Bottles	Temp (°C) 13.6 13.5 13.55 Analysis Req (8260D) (82 (NWTPH-G) (8270) (PAH (pH) (Conduction (COD) (TOC) (Total Cyanic (Total 6010) (Total Metalseserved VOA	DO (mg/L) 0.48 0.48 0.48 0.48 (NWTPH-Gx) 1) (8081) (3000 (Total PO4) 1) (Total PO4) 3) (Total 6020 3) (Dissolved)	Cond (uS/cm) 303.1 301.8 302.45 [e/Bold App 8010) (8020 (BETX) (N) 8141) (Oil 8 S) (TSS) (B C) (Total Kie (anide) (Free (anide) (Free (anide) (Diss 6010)	pH 6.62 6.63 6.63 licable) 0) (Boeing VC WTPH-HCID) C Grease) GOD) (Turbidicated Nitrogenete Cyanide) 0) (Diss 6020	ORP (mV) 120.4 117.2 118.80 OC Short List) (NWTPH-Dx) (ity) (Alkalin	Turbidity (NTU) N/A (VOC-Boein (NWTPH-Dx	DTW (ft) 14.06 14.06 14.06 g 38 list) w/SGC)	Time 1316 1319	errous Irc	on: N/A

Project Name:		Wood	inville - Bui	lding C		Projec	t Number:		1789002	2.010.013
Event:		Surfac	e Water Sa	mpling		W	Vell Name:		SV	V-1
Weather:			Sunny 70's				Sample ID:	SI	N-1-5.1'- (082423
Landau Represe	ntative:			, AT			•	08/24/23		
WELL INFORMA		RGE DATA	_						_	
Top of Screer	n Depth (ft):					Well Secure?	□No	Yes D	amaged?	☐ No ☐ Yes
DTW After Cap (- Time:			Describe:			J	
			-						A/I N A NI ~ .	
	tic DTW (ft):		Time:			Thru Cell Vol.:				
Begin Purge (Date	e/Time):	08/24/23 @	14:11	End Purge	(Date/Time):	08/24/23 @	14:26	. Gallon	is Purged: _	< 1 gal
Water Disposal:		-gal drum		rage tank	☐ Grou		/ Other:			ver
	Temp	DO	Cond		ORP	Turbidity	DTW	Purge Vo		Comments/
Time	(°C)	(mg/L)	(μS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru		Observations
Stabilization →		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/I		
14:14	19.7	-	171.6	7.98	-	-	4.85	Yes	S	Levels before samping
SAMPLE COLLEC	CTION DATA	4								
- 11		1		D	_					
Collection Method	_	Bailer		Pump		Peristaltic				
Material:	Stainless Stee	I P\	/C	Te	eflon	Po	olyethylene		Other	✓ Dedicated
	Stainless Stee	I P\	/C conox Wash	☐ Te		Po	olyethylene I Water		Other Dedicated	✓ Dedicated
Material: Decon Procedure:	Stainless Steel	I P\	/C conox Wash ther (describe s	☐ Te ☐ Ta sequence):	eflon ap Rinse	☐ Pc	l Water			✓ Dedicated
Material:	Stainless Steel	I P\	/C conox Wash ther (describe s	☐ Te ☐ Ta sequence):	eflon ap Rinse	Po	l Water			✓ Dedicated
Material: Decon Procedure:	Stainless Steel: : on (turbidity,	I P\ AI Color, odor, sh	/C conox Wash ther (describe : leen, etc.):	☐ Te ☐ Ta sequence):	eflon ap Rinse clear, colorle	Po	l Water o sheen			✓ Dedicated
Material: Decon Procedure: Sample Description	Stainless Steel: on (turbidity,	P\ Al Color, odor, sh	conox Wash ther (describe seen, etc.):	☐ Te	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW		Dedicated	
Material: Decon Procedure: Sample Description Replicate No.	Stainless Steel : on (turbidity, Temp (°C)	I P\ AI Color, odor, sh	conox Wash ther (describe seen, etc.): Cond (μS/cm)	Tesequence):	eflon ap Rinse clear, colorle	Po	o sheen DTW (ft)	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1	Stainless Steel: on (turbidity,	P\ Al Color, odor, sh	conox Wash ther (describe seen, etc.):	☐ Te	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW		Dedicated Commer	
Material: Decon Procedure: Sample Description Replicate No. 1 2	Stainless Steel : on (turbidity, Temp (°C)	P\ Al Color, odor, sh	conox Wash ther (describe seen, etc.): Cond (μS/cm)	Tesequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1	Stainless Steel : on (turbidity, Temp (°C)	P\ Al Color, odor, sh	conox Wash ther (describe seen, etc.): Cond (μS/cm)	Tesequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3	Stainless Steel : on (turbidity, Temp (°C)	P\ Al Color, odor, sh	conox Wash ther (describe seen, etc.): Cond (μS/cm)	Tesequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 19.4	DO (mg/L)	conox Wash ther (describe seen, etc.): Cond (μS/cm) 175.4	Te Ta sequence): pH 7.78 7.78	eflon ap Rinse clear, colorle	Poess, no odor, no	O sheen DTW (ft) 4.85	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4	Stainless Steel : on (turbidity, Temp (°C) 19.4 19.4 Analysis Re	DO (mg/L)	conox Wash ther (describe seen, etc.): Cond (μS/cm) 175.4 175.4 e/Bold Appli	Tessequence): pH	oflon ap Rinse clear, colorle ORP (mV)	Poess, no odor, no Turbidity (NTU) -	DTW (ft) 4.85	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 19.4 19.4 Analysis Re (8260) (82	DO (mg/L) - cquested (Circle 60D-SIM) (80:	Cond (µS/cm) 175.4 e/Bold Appli 10) (8020)	## To sequence): PH	oflon ap Rinse clear, colorle ORP (mV) -	Ess, no odor, no Turbidity (NTU) -	DTW (ft) 4.85	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 19.4 19.4 Analysis Re (8260) (82 (NWTPH-G)	DO (mg/L) - cquested (Circle 60D-SIM) (80:0) (NWTPH-Gx)	conox Wash ther (describe seen, etc.): Cond (μS/cm) 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NW	pH 7.78 7.78 icable) (Boeing VOC S	ORP (mV) - Short List) (Vi	Ess, no odor, no Turbidity (NTU) -	DTW (ft) 4.85	Time	Dedicated Commer	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82	DO (mg/L) - equested (Circle 60D-SIM) (80: 000 (NWTPH-Gx))	Cond (μS/cm) 175.4 2/Bold Appli 10) (8020) (BETX) (NW	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil &	ORP (mV) - Short List) (VINWTPH-Dx) (Grease)	Ess, no odor, no Turbidity (NTU) - OC-Boeing 38 I	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc	DO (mg/L)	Conox Wash ther (describe seen, etc.): Cond (μS/cm) 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (G) (TSS) (BC	pH 7.78 7.78 Gable) (Boeing VOC SVTPH-HCID) (N (8141) (Oil &	oflon ap Rinse clear, colorle ORP (mV) - Short List) (VINTPH-Dx) (Grease) () (Alkalinity	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TO	DO (mg/L) - color, odor, sh color, odo	Conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 P(Bold Appli 10) (8020) (BETX) (NW H) (8081) (5) (TSS) (BC (Total Kied	pH 7.78 7.78 Gable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen)	oflon ap Rinse clear, colorle ORP (mV) - Short List) (VINTPH-Dx) (Grease) () (Alkalinity	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan	DO (mg/L)	Cond (µS/cm) 175.4 Pe/Bold Appli 10) (8020) (BETX) (NW H) (8081) (S) (TSS) (BC anide) (Free	pH 7.78 7.78 7.78 Gable) (Boeing VOC SVTPH-HCID) (N (8141) (Oil & DD) (Turbidity Jahl Nitrogen) e Cyanide)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010)	DO (mg/L) - color, odor, sh color, odo	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010)	DO (mg/L)	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010)	DO (mg/L) - color, odor, sh color, odo	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010) (Total Meta	DO (mg/L) - color, odor, sh color, odo	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average Bottles	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010) (Total Meta	DO (mg/L) - color, odor, sh color, odo	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85 Iist) (SGC)	Time 1425	Commer Lev	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average Bottles Duplicate Sample	Temp (°C) 19.4 Analysis Re (8260) (82 (NWTPH-G) (8270) (82 (pH) (Conc (COD) (Total Cyan (Total 6010) (Total Meta	DO (mg/L) - color, odor, sh color, odo	conox Wash ther (describe steen, etc.): Cond (μS/cm) 175.4 175.4 175.4 e/Bold Appli 10) (8020) (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free (Diss 6010)	pH 7.78 7.78 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) e Cyanide) (Diss 6020)	oflon ap Rinse Clear, colorle ORP (mV) - Short List) (Vi NWTPH-Dx) (Grease) () (Alkalinity (NH3) (NO3)	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/) (HCO3/CO3) 3/NO2)	DTW (ft) 4.85 4.85 Iist) (SGC)	Time 1425	Commer Lev	nts/Observations/Fe ²⁺

Project Name: Event:			inville - Bui e Water Sa							2.010.013 <i>N</i> -2
Weather:			Sunny 70's	· · ·				SV		082423
Landau Represer	ntative:						· · · · · · · · · · · · · · · · · · ·	08/24/23		
WELL INFORMA			_					· ·		
Top of Screen	Depth (ft):	_	<u>.</u>			Well Secure?	☐ No	Yes D	amaged?	☐ No ☐ Yes
DTW After Cap C	Opened (ft):		Time:		i	Describe:				
Stat	ic DTW (ft):	6.50	Time:	16:20	Flow-	Thru Cell Vol.:		V	VLM No.:	
Begin Purge (Date	/Time):	08/24/23 @	- 13:30	End Purge	(Date/Time):	08/24/23 @	13:38	Gallons	s Purged:	< 1 gal
Water Disposal:		-gal drum	Sto	rage tank	☐ Grou	ınd 🗸	Other:			iver
Time	Temp (°C)	DO (mg/L)	Cond (μS/cm)	рН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Purge Vo		Comments/
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/N	lo)	Observations
13:33	20.4	-	164.6	7.78	-	-	6.25	Yes		Levels before samping
SAMPLE COLLEC	TION DATA	١								
Collection Method	4.	Bailer	\	Pump	Tyne	Peristaltic				
	Stainless Steel		_	· _	eflon		lyethylene	П	Other	✓ Dedicated
Decon Procedure:			conox Wash		ap Rinse		Water	_	edicated	
		_	ther (describe	_			· · · · · · · · · · · · · · · · · · ·	ء ت	carcacca	
Sample Descriptio	n (turbidity,			,	clear, colorle	ess, no odor, no	sheen			
	Temp	DO	Cond		ORP	Turbidity	DTW			
Replicate No.	(°C)	(mg/L)	(μS/cm)	рН	(mV)	(NTU)	(ft)	Time	Comme	nts/Observations/Fe ²⁺
1	20.4	-	178.5	7.28	-	-	6.25	1338	Lev	els after samping
2										
3										
4										
Average										
0-	20.4		178.5	7.28			6.25			
Bottles	1	quested (Circle		1			6.25			
	Analysis Re	-	e/Bold Appli	cable)	Short List) (Vo	OC-Boeing 38 l				
	Analysis Re (8260) (826	60D-SIM) (80:	e/Bold Appli 10) (8020)	cable) (Boeing VOC S		OC-Boeing 38 l NWTPH-Dx w/S	ist)			
	Analysis Re (8260) (820 (NWTPH-G) (8270) (82	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAI	e/Bold Appli 10) (8020) (BETX) (NW H) (8081)	Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil &	NWTPH-Dx) (Grease)	NWTPH-Dx w/S	ist) SGC)			
	Analysis Re (8260) (820 (NWTPH-G) (8270) (82 (pH) (Cond	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) S) (TSS) (BC	Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity	NWTPH-Dx) (Grease) /) (Alkalinity	NWTPH-Dx w/9	ist) SGC)) (NO3) (NC	02) (F)	
	Analysis Re (8260) (826 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TOO	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) G) (TSS) (BC (Total Kied	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity lahl Nitrogen)	NWTPH-Dx) (Grease) /) (Alkalinity	NWTPH-Dx w/9	ist) SGC)) (NO3) (NC	02) (F)	
	Analysis Re (8260) (824 (NWTPH-G) (8270) (827 (pH) (Cond (COD) (TOO (Total Cyani	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS C) (Total PO4) ide) (WAD Cy	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) 5) (TSS) (BO (Total Kied anide) (Free	(Boeing VOC S (TPH-HCID) (N (8141) (Oil & DD) (Turbidity (ahl Nitrogen) (ac Cyanide)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC)2) (F)	
	Analysis Re (8260) (826 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TOO (Total Cyani (Total 6010)	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4) ide) (WAD Cya) (Total 6020)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC	D2) (F)	
	Analysis Re (8260) (826 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TOO (Total Cyani (Total 6010)	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS C) (Total PO4) ide) (WAD Cy	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC)2) (F)	
	Analysis Re (8260) (826 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TOO (Total Cyani (Total 6010)	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4) ide) (WAD Cya) (Total 6020)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC	D2) (F)	
	Analysis Re (8260) (820 (NWTPH-G) (8270) (82) (pH) (Cond (COD) (TOO (Total Cyani (Total 6010) (Total Meta	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4) ide) (WAD Cya) (Total 6020)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC	02) (F)	
Bottles	Analysis Re (8260) (820 (NWTPH-G) (8270) (82) (pH) (Cond (COD) (TOO (Total Cyani (Total 6010) (Total Meta	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4) ide) (WAD Cya) (Total 6020)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC)) (NO3) (NC	D2) (F)	
Bottles Duplicate Sample Comments:	Analysis Re (8260) (820 (NWTPH-G) (8270) (82) (pH) (Cond (COD) (TOO (Total Cyani (Total 6010) (Total Meta	60D-SIM) (80: (NWTPH-Gx) 70E-SIM) (PAH luctivity) (TDS C) (Total PO4) ide) (WAD Cya) (Total 6020)	e/Bold Appli 10) (8020) (BETX) (NW H) (8081) () (TSS) (BC (Total Kied anide) (Free (Diss 6010)	(Boeing VOC S VTPH-HCID) (N (8141) (Oil & OD) (Turbidity (ahl Nitrogen) (E Cyanide) (Diss 6020)	NWTPH-Dx) (Grease) /) (Alkalinity (NH3) (NO	NWTPH-Dx w/5) (HCO3/CO3) 3/NO2)	ist) SGC) (CI) (SO4)	08/24/23	02) (F)	

Project Name:		Wood	linville - Bui	lding C		Projec	t Number:		1789002	2.010.013
Event:	-	Surfac	ce Water Sa	mpling		. W	/ell Name:		S۱	N-3
Weather:	Í		Sunny 70's)			Sample ID:	SV	V-3-4.8'-	082423
Landau Represei	ntative:		G_J	I, AT		<u>-</u>	Date:	08/24/23	Time:	12:55
WELL INFORMA	TION & PU	RGE DATA								
Top of Screer	n Depth (ft):		_			Well Secure?	☐ No	Yes D	amaged?	☐ No ☐ Yes
DTW After Cap (Opened (ft):		Time:			Describe:				
Stat	tic DTW (ft):	4.80	Time:	12:45	Flow-	-Thru Cell Vol.:		٧	VLM No.:	
Begin Purge (Date			- 12:50	End Purge	(Date/Time):	08/24/23 @	13:01	•	-	< 1 gal
Water Disposal:	· .	-gal drum		rage tank	∵ , , , , , , , , , , , , , , , , , , ,		Other:	•	-	iver
	Temp	DO	Cond		ORP	Turbidity	DTW	Purge Vo	ol. ≥ 1	_
Time	(°C)	(mg/L)	(μS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru	ell vol.	Comments/ Observations
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/N	lo)	Observations
12:53	20.5	-	164.7	7.61	-	-	4.55	Yes		Levels before samping
SAMPLE COLLEC	CTION DATA	4								
Calland to the										
Louection Method	d· 🗆	Bailer	V	Pump	Tyne:	Peristaltic				
Collection Method Material:	_	Bailer □ P\	_	Pump		Peristaltic Peristal	olyethylene	П	Other	✓ Dedicated
	Stainless Steel	P\	vc	Te	eflon	Po	olyethylene I Water		Other Dedicated	✓ Dedicated
Material:	Stainless Steel	P\ Al	VC Iconox Wash	Te		Po	olyethylene I Water		Other Dedicated	✓ Dedicated
Material:	Stainless Steel	P\ Al O	VC Iconox Wash ther (describe	Ta	eflon ap Rinse	Po	l Water			✓ Dedicated
Material: Decon Procedure:	Stainless Steel	P\ Al O	VC Iconox Wash ther (describe	Ta	eflon ap Rinse	☐ Pc	l Water			✓ Dedicated
Material: Decon Procedure:	Stainless Steel	P\ Al O	VC Iconox Wash ther (describe	Ta	eflon ap Rinse	☐ Pc	l Water			✓ Dedicated
Material: Decon Procedure:	Stainless Steel : on (turbidity,	P\ Al Color, odor, sh	dconox Wash ther (describe neen, etc.):	Ta	eflon ap Rinse clear, colorle	Po	l Water o sheen		Dedicated	Dedicated nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Descriptio	Stainless Steel : on (turbidity,	P\ Al O color, odor, sh	dconox Wash ther (describe neen, etc.):	To To Ta	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW		Dedicated Comme	
Material: Decon Procedure: Sample Description Replicate No.	Stainless Steel : on (turbidity, Temp (°C)	P\ Al O color, odor, sh	lconox Wash ther (describe neen, etc.): Cond (μS/cm)	To Tassequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3	Stainless Steel : on (turbidity, Temp (°C)	P\ Al O color, odor, sh	lconox Wash ther (describe neen, etc.): Cond (μS/cm)	To Tassequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4	Stainless Steel : on (turbidity, Temp (°C) 21	P\ Al O color, odor, sh	Cond (µS/cm)	pH 7.33	eflon ap Rinse clear, colorle	Poess, no odor, no	DTW (ft) 4.55	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3	Stainless Steel : on (turbidity, Temp (°C)	P\ Al O color, odor, sh	lconox Wash ther (describe neen, etc.): Cond (μS/cm)	To Tassequence):	eflon ap Rinse clear, colorle	Poess, no odor, no	o sheen DTW (ft)	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4	Stainless Steel : on (turbidity, Temp (°C) 21 21.0	P\ Al O color, odor, sh	Cond (µS/cm) 174.5	Tessequence): pH	eflon ap Rinse clear, colorle	Poess, no odor, no	DTW (ft) 4.55	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 21 21.0 Analysis Re	DO (mg/L)	Cond (µS/cm) 174.5 174.5 e/Bold Appli	Tessequence): pH	or clear, colorle	Poess, no odor, no	DTW (ft) 4.55	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel : on (turbidity, Temp (°C) 21 21.0 Analysis Re (8260) (826	DO (mg/L) - quested (Circle 60D-SIM) (80	Cond (µS/cm) 174.5 e/Bold Appli 10) (8020)	pH 7.33 7.33 icable) (Boeing VOC S	eflon ap Rinse clear, colorle ORP (mV) -	Ess, no odor, no Turbidity (NTU) -	DTW (ft) 4.55	Time	Dedicated Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (82	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI	Cond (µS/cm) 174.5 e/Bold Appli 10) (8020) (BETX) (NV	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil &	orease)	Ess, no odor, no Turbidity (NTU) - OC-Boeing 38 I	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (82	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI	Cond (µS/cm) 174.5 e/Bold Appli 10) (8020) (BETX) (NV	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil &	orease)	Ess, no odor, no Turbidity (NTU) - OC-Boeing 38 I	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Stainless Steel Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (82 (pH) (Cond (COD) (TOO	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAlductivity) (TDS C) (Total PO4)	Cond (µS/cm) 174.5 174.5 e/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen)	oflon ap Rinse clear, colorle ORP (mV) - Short List) (V NWTPH-Dx) (Grease) () (Alkalinity	Poess, no odor, no Turbidity (NTU) - OC-Boeing 38 I NWTPH-Dx w/ (HCO3/CO3)	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (8270) (7000 (Total Cyani	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy	Cond (µS/cm) 174.5 e/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 21 21.0 Analysis Re (8260) (826 (NWTPH-G) (8270) (8270) (700 (Total Cyani (Total 6010))	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy) (Total 6020)	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 21 21.0 Analysis Re (8260) (826 (NWTPH-G) (8270) (8270) (700 (Total Cyani (Total 6010))	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 21 21.0 Analysis Re (8260) (826 (NWTPH-G) (8270) (8270) (700 (Total Cyani (Total 6010))	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy) (Total 6020)	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average	Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (820 (Total Cyani (Total 6010) (Total Meta	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy) (Total 6020)	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average Bottles	Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (820 (Total Cyani (Total 6010) (Total Meta	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy) (Total 6020)	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55	Time 1301	Comme	nts/Observations/Fe ²⁺
Material: Decon Procedure: Sample Description Replicate No. 1 2 3 4 Average Bottles Duplicate Sample	Temp (°C) 21 21.0 Analysis Re (8260) (820 (NWTPH-G) (8270) (820 (Total Cyani (Total 6010) (Total Meta	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI ductivity) (TDS C) (Total PO4) ide) (WAD Cy) (Total 6020)	Cond (µS/cm) 174.5 Pe/Bold Appli 10) (8020) (BETX) (NV H) (8081) S) (TSS) (BC anide) (Free	pH 7.33 7.33 icable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity dahl Nitrogen) e Cyanide) (Diss 6020)	or clear, colorles or clear or	CSS, no odor, no ess, no	DTW (ft) 4.55 4.55 SGC) (CI) (SO4)	Time 1301	Comme	nts/Observations/Fe ²⁺

Project Name:		Wood	inville - Bui	lding C		Projec	t Number:		1789002	2.010.013
Event:		Surfac	e Water Sa	mpling						V-4
Weather:			Sunny 70's			9	Sample ID:	SV	V-4-5.3'-	082423
Landau Represe	ntative:		G_J	, AT			Date:	08/24/23	Time:	12:20
WELL INFORMA	TION & PUR	RGE DATA								
Top of Scree	n Depth (ft):					Well Secure?	☐ No	Yes D	amaged?	☐ No ☐ Yes
DTW After Cap			- Time:			Describe:				
	tic DTW (ft):		- Time:		Flow-	Thru Cell Vol.:			VIM No.:	
Begin Purge (Date	•		-			08/24/23 @				< 1 gal
Water Disposal:	•			-				Gallott	-	ver
rater bisposar.		gal drum		rage tank	Grou		Other:	,		vei
Time	Temp (°C)	DO (mg/L)	Cond (μS/cm)	рН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Purge Vo		Comments/ Observations
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/N	-	Observations
12:21	20.0	-	173.6	7.80	-	-	5.05	Yes		Levels before samping
									-	
SAMPLE COLLEC	CTION DATA									
Collection Method	d:	Bailer	V	Pump	Type:	Peristaltic				
	Stainless Steel	☐ P\	/C	☐ Te			olyethylene		Other	✓ Dedicated
Decon Procedure:		☐ Al	conox Wash	☐ Ta	ap Rinse	☐ DI	l Water	V	Pedicated	
		Ot	her (describe s	sequence):						
Sample Description	on (turbidity, o	color, odor, sh	een, etc.):		Clear, colorle	ess, no odor, no	o sheen			
	Temp	DO	Cond		ORP	Turbidity	DTW			
Replicate No.	(°C)	(mg/L)	(μS/cm)	pН	(mV)	(NTU)	(ft)	Time		nts/Observations/Fe ²⁺
1	20.4	-	174.5	7.34	-	-	5.05	1229	Lev	els after samping
2										
3										
4	20.4		174 5	7.24			F 0F			
Average	20.4		174.5	7.34			5.05			
Bottles	Analysis Red	quested (Circle	e/Bold Appli	cable)						
	1					C-Boeing 38 lis	-			
						IWTPH-Dx w/S	GC)			
		, ,	, , , ,	8141) (Oil & C		(11000 (000)	(01) (00.1)	(1100) (1100		
						(HCO3/CO3)	(CI) (SO4)	(NO3) (NO2) (F)	
			-	ahl Nitrogen)	(NH3) (NO3)	/NO2)				
	TCTOTAL CVANIC			Cyanide)						
	1	de) (WAD Cya (Total 6020)			(Total 7471)					
	(Total 6010)	(Total 6020)	(Diss 6010)	(Diss 6020)	(Total 7471)					
	(Total 6010)		(Diss 6010)	(Diss 6020)	(Total 7471)					
	(Total 6010) (Total Metal	(Total 6020)	(Diss 6010)	(Diss 6020)	(Total 7471)					
Duplicate Sample	(Total 6010) (Total Metal	(Total 6020)	(Diss 6010)	(Diss 6020)	(Total 7471)					
Duplicate Sample Comments: Signature:	(Total 6010) (Total Metal	(Total 6020)	(Diss 6010)	(Diss 6020)	(Total 7471)		D.1:	08/24/23		

Event:		VVOOL	linville - Bui	lding C		Project	t Number:		1789002	2.010.013
		Surfac	ce Water Sa			. W	/ell Name:			
Weather:			Sunny 70's)			Sample ID:	SV	V-5-4.8'- (082423
Landau Represe	ntative:		G_J	I, AT		•	Date:	08/24/23	Time: _	11:10
WELL INFORMA	TION & PUF	RGE DATA								
Top of Scree	n Depth (ft):		_			Well Secure?	☐ No	Yes D	amaged?	☐ No ☐ Yes
DTW After Cap	Opened (ft):		Time:		<u>-</u>	Describe:				
Sta	tic DTW (ft):	4.80	Time:	11:05	Flow	-Thru Cell Vol.:			VLM No.:_	
Begin Purge (Date	e/Time):	08/24/23 @	11:06	End Purge	(Date/Time):	08/24/23 @	11:19			< 1 gal
Water Disposal:	<u></u> 55-	-gal drum	Sto	rage tank	☐ Grou	ınd 🗸	Other:		Riv	ver
	Temp	DO	Cond		ORP	Turbidity	DTW	Purge Vo	ol. ≥ 1	Commental
Time	(°C)	(mg/L)	(μS/cm)	рН	(mV)	(NTU)	(ft)	flow-thru	ell vol.	Comments/ Observations
Stabilization ->	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/N		
11:08	19.0	-	80.13	7.81	-	-	4.55	Yes		Levels before samping
	<u> </u>									
	<u> </u>								+	
Collection Method Material: Decon Procedure:	Stainless Steel	_	/C conox Wash	_	eflon ap Rinse		olyethylene Water		Other Dedicated	✓ Dedicated
					•					
Camania Daganintia			ther (describe s	sequence):						
Sample Description	on (turbidity, (ther (describe s	sequence):		ess, no odor, no				
Sample Description	on (turbidity, o		ther (describe s	sequence):						
Sample Description		color, odor, sh	ther (describe s	sequence):	clear, colorle	ess, no odor, no	sheen	Time		nts/Observations/Fe ²⁺
	Temp	color, odor, sh	ther (describe seen, etc.):	sequence):	clear, colorle	ess, no odor, no	sheen	Time 1118	Commer	nts/Observations/Fe ²⁺ els after samping
Replicate No.	Temp (°C)	color, odor, sh	ther (describe seen, etc.): Cond (μS/cm)	sequence):	clear, colorle	ess, no odor, no	DTW (ft)		Commer	
Replicate No. 1 2 3	Temp (°C)	color, odor, sh	ther (describe seen, etc.): Cond (μS/cm)	sequence):	clear, colorle	ess, no odor, no	DTW (ft)		Commer	
Replicate No. 1 2 3 4	Temp (°C) 19.1	color, odor, sh	Cond (µS/cm)	pH 7.71	clear, colorle	ess, no odor, no	DTW (ft) 4.55		Commer	
Replicate No. 1 2 3	Temp (°C)	color, odor, sh	ther (describe seen, etc.): Cond (μS/cm)	sequence):	clear, colorle	ess, no odor, no	DTW (ft)		Commer	
Replicate No. 1 2 3 4	Temp (°C) 19.1	color, odor, sh	cond (μS/cm) 176.1	pH 7.71	clear, colorle	ess, no odor, no	DTW (ft) 4.55		Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re	DO (mg/L) - quested (Circle	Cond (µS/cm) 176.1 176.1 e/Bold Appli	pH 7.71 7.71 cable)	ORP (mV)	ess, no odor, no	DTW (ft) 4.55		Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (820 (NWTPH-G)	DO (mg/L) - quested (Circle 60D-SIM) (80	Cond (μS/cm) 176.1 176.1 e/Bold Appli 10) (8020) (BETX) (NW	pH 7.71 7.71 cable) (Boeing VOC S	ORP (mV) - Short List) (VO	Turbidity (NTU)	DTW (ft) 4.55 4.55		Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (826 (NWTPH-G) (8270) (8270)	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI	Cond (μS/cm) 176.1 176.1 e/Bold Appli 10) (8020) (BETX) (NW	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil &	ORP (mV) - Short List) (VO	Turbidity (NTU) - DC-Boeing 38 lix	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (820 (NWTPH-G) (8270) (821) (pH) (Cond	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PA	Cond (μS/cm) 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1 176.1	pH 7.71 7.71 Cable) (Boeing VOC SVTPH-HCID) (N (8141) (Oil &	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity)	Turbidity (NTU) DC-Boeing 38 li: NWTPH-Dx w/S	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (826 (NWTPH-G) (8270) (827) (8270) (8270) (7000)	DO (mg/L) - quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Cond (μS/cm) 176.1 (Cond (μS/cm) (Cond (μS/cm	pH 7.71 7.71 Cable) (Boeing VOC SVTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity)	Turbidity (NTU) DC-Boeing 38 li: NWTPH-Dx w/S	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	19.1 19.1 Analysis Re (8260) (8260) (8270) (8270) (8270) (COD) (TOO (Total Cyani	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS	Cond (μS/cm) 176.1 176.1 176.1 (BETX) (NWH) (8081) (S) (TSS) (BC) (Total Kiedlanide) (Free	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity) (NH3) (NO3	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (820 (NWTPH-G) (8270) (8270) (8270) (7000) (Total Cyani (Total Go10)	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) (TOE-SIM) (PAI luctivity) (TDS C) (Total PO4) (Total 6020)	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Total Kiedanide) (Free (Diss 6010)	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) Cyanide) (Diss 6020)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity)	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (820 (NWTPH-G) (8270) (8270) (8270) (7000) (Total Cyani (Total Go10)	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) 70E-SIM) (PAI luctivity) (TDS	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Total Kiedanide) (Free (Diss 6010)	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) Cyanide) (Diss 6020)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity) (NH3) (NO3	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Re (8260) (820 (NWTPH-G) (8270) (8270) (8270) (7000) (Total Cyani (Total Go10)	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) (TOE-SIM) (PAI luctivity) (TDS C) (Total PO4) (Total 6020)	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Total Kiedanide) (Free (Diss 6010)	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) Cyanide) (Diss 6020)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity) (NH3) (NO3	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average	Temp (°C) 19.1 19.1 Analysis Rec (8260) (826 (NWTPH-G) (8270) (827) (pH) (Cond (COD) (TOO (Total Cyani (Total 6010) (Total Meta	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) (TOE-SIM) (PAI luctivity) (TDS C) (Total PO4) (Total 6020)	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Total Kiedanide) (Free (Diss 6010)	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) Cyanide) (Diss 6020)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity) (NH3) (NO3	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	DTW (ft) 4.55 4.55 st) GGC)	1118	Commer	
Replicate No. 1 2 3 4 Average Bottles	Temp (°C) 19.1 19.1 Analysis Rec (8260) (826 (NWTPH-G) (8270) (827) (pH) (Cond (COD) (TOO (Total Cyani (Total 6010) (Total Meta	Quested (Circle 60D-SIM) (80 (NWTPH-Gx) (TOE-SIM) (PAI luctivity) (TDS C) (Total PO4) (Total 6020)	Cond (μS/cm) 176.1 176.1 176.1 176.1 (BETX) (NWH) (8081) (Total Kiedanide) (Free (Diss 6010)	pH 7.71 7.71 Cable) (Boeing VOC S VTPH-HCID) (N (8141) (Oil & DD) (Turbidity lahl Nitrogen) Cyanide) (Diss 6020)	Clear, colorle ORP (mV) - Short List) (VO NWTPH-Dx) (I Grease) () (Alkalinity) (NH3) (NO3	Turbidity (NTU) - DC-Boeing 38 lix NWTPH-Dx w/S (HCO3/CO3) B/NO2)	o sheen O the control of the contro	1118	Commer	

Project Name:		Wood	inville - Bui	lding C		_ Project	t Number:		1789002	2.010.013
Event:	1	Surfac	e Water Sa	mpling		_ W	/ell Name:			V-6
Weather:			Sunny 70's			<u>.</u> S	Sample ID:		SW-6-4.2'-	
Landau Represei	ntative:		G_J	I, AT		-	Date:	08/24/23	Time:	10:35
WELL INFORMA	TION & PUF	RGE DATA								
Top of Screer	n Depth (ft):		_			Well Secure?	☐ No	Yes	Damaged?	☐ No ☐ Yes
DTW After Cap (Opened (ft):		Time:			Describe:				
Stat	tic DTW (ft):	4.20	Time:		Flow	-Thru Cell Vol.:			WLM No.:	
Begin Purge (Date	e/Time):	08/24/23 @	- 10:18	End Purge	•	08/24/23 @		- Gallo		, 1 gal
Water Disposal:	☐ 55-	gal drum		rage tank	Gro		Other:	-	_	ver
	Temp	DO	Cond	1	ORP	Turbidity	DTW	Purge \	Vol. ≥ 1	
Time	(°C)	(mg/L)	(μS/cm)	рН	(mV)	(NTU)	(ft)		u cell vol.	Comments/
Stabilization →		± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes	/No)	Observations
10:21	18.9	-	128.9	7.87	-	-	3.95			Levels before samping
SAMPLE COLLEC	TION DATA									
Decon Procedure: Sample Description		O ₁	conox Wash ther (describe s neen, etc.):	sequence):	ap Rinse clear, colorle	ess, no odor, no	Water o sheen	4	Dedicated	
				1	L ODD	TL: 12a.	DTM			
Replicate No.	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Time	Comme	nts/Observations/Fe ²⁺
1	18.8	-	176.2	7.64	-	-	9.95	1029	_	els after samping
2										
3										
4										
Average	18.8		176.2	7.64			9.95			
Bottles	Analysis Re	quested (Circle	e/Bold Appli	cable)						
	1				Short List) (V	OC-Boeing 38 li	ist)			
						NWTPH-Dx w/S				
	(8270) (827	70E-SIM) (PAI	H) (8081) ((8141) (Oil &	Grease)					
	(pH) (Cond	luctivity) (TDS	S) (TSS) (BC	DD) (Turbidity	/) (Alkalinity) (HCO3/CO3)	(CI) (SO4) (NO3) (N	NO2) (F)	
	(COD) (TO	C) (Total PO4)	(Total Kied	lahl Nitrogen)	(NH3) (NO	3/NO2)				
	-	ide) (WAD Cy								
		(Total 6020)	•		(Total 7471	.)				
	(Total Meta	ls) (Dissolved	Metals) Lis	st:						
Duplicate Sample	ID:									
Comments:										
Signature:	G_J						Date:	08/24/23		

Project Name:		Wood	inville - Bui	lding C		Project	t Number:		1789002	2.010.013
Event:		Surfac	e Water Sa	mpling		W	/ell Name:		S۱	N-7
Weather:			Sunny 70's				Sample ID:	S	W-7-6.3'-	082423
Landau Represe	ntative:		G_J	, AT			Date:	08/24/23	Time:	9:32
WELL INFORMA	TION & PUF	RGE DATA								
Top of Screer	Depth (ft):		_			Well Secure?	☐ No	Yes [Damaged?	☐ No ☐ Yes
DTW After Cap (Opened (ft):		Time:			Describe:				
Stat	ic DTW (ft):	6.30	Time:	9:35	Flow-	Thru Cell Vol.:			WLM No.:	
Begin Purge (Date	/Time):	08/24/23 @	- 9:40	End Purge	-	08/24/23 @		-	-	
Water Disposal:	·	gal drum		rage tank	Grou		Other:	•	_	ver
Water Disposal.				rage tarik	_					VEI
Time	Temp (°C)	DO (mg/L)	Cond (μS/cm)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Purge V flow-thru		Comments/
Stabilization →	± 3%	± 10%	± 3%	± 0.1 units	± 10 mV	± 10%	± 0.00 ft	(Yes/	No)	Observations
9:43	18.5	-	178.2	7.88	-	-	6.05	Ye	S	Levels before samping
SAMPLE COLLEC	TION DATA									
Material: Decon Procedure: Sample Description		Al-	conox Wash ther (describe	Ta	eflon ap Rinse clear, colorle		olyethylene Water o sheen	_	Other Dedicated	✓ Dedicated
	Town	DO	Cond		OPP	T. mbi dia.	DTW			
Replicate No.	Temp (°C)	DO (mg/L)	Cond (µS/cm)	рН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Time	Comme	nts/Observations/Fe ²⁺
1	18.6	-	178.1	7.77	-	-	6.05	948	Lev	els after samping
2										
3										
4										
Average	18.6		178.1	7.77			6.05			
Bottles	Analysis Red	quested (Circle	/Bold Appli	cable)						
	_				Short List) (V	OC-Boeing 38 li	ist)			
						NWTPH-Dx w/S	-			
		70E-SIM) (PAI				·	,			
					-) (HCO3/CO3)	(CI) (SO4)	(NO3) (N	O2) (F)	
		C) (Total PO4)					<u> </u>			
		de) (WAD Cya			•	· · · · · · · · · · · · · · · · · · ·				
		(Total 6020)			(Total 7471)				
	(Total Meta	ls) (Dissolved	Metals) Lis	it:						
	<u> </u>									
Dunlicate Sample	ID:									
•	ID:									
Duplicate Sample Comments: Signature:	ID: G_J						Date:	08/24/23		

Laboratory Reports

Soil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, June 7, 2023 Mike Staton Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

RE: A3E1787 - Woodinville West Business Park - 1789002.010

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1787, which was received by the laboratory on 5/26/2023 at 10:51:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 4.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
SB-6-13	A3E1787-01	Soil	05/23/23 08:45	05/26/23 10:51				
SB-7-12	A3E1787-02	Soil	05/23/23 11:35	05/26/23 10:51				
SB-8-13	A3E1787-04	Soil	05/23/23 15:50	05/26/23 10:51				
MW-10-7	A3E1787-06	Soil	05/23/23 09:50	05/26/23 10:51				
MW-10-12	A3E1787-07	Soil	05/23/23 09:55	05/26/23 10:51				
DMW-2-20	A3E1787-12	Soil	05/23/23 14:05	05/26/23 10:51				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-6-13 (A3E1787-01)				Matrix: Soil		Batch:	23E1188	
Acetone	ND		1.79	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Acrylonitrile	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Benzene	ND		0.0179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Bromobenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Bromochloromethane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Bromodichloromethane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Bromoform	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	Q-54c
Bromomethane	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
2-Butanone (MEK)	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
n-Butylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
sec-Butylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
tert-Butylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Carbon disulfide	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Carbon tetrachloride	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	Q-54a
Chlorobenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Chloroethane	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Chloroform	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Chloromethane	ND		0.447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
2-Chlorotoluene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
4-Chlorotoluene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Dibromochloromethane	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	Q-54
1,2-Dibromoethane (EDB)	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Dibromomethane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Dichlorodifluoromethane	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1-Dichloroethane	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1-Dichloroethene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

			•	ds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-6-13 (A3E1787-01)				Matrix: Soil		Batch:	23E1188	
1,2-Dichloropropane	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,3-Dichloropropane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
2,2-Dichloropropane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1-Dichloropropene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Ethylbenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Hexachlorobutadiene	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
2-Hexanone	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Isopropylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
4-Isopropyltoluene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Methylene chloride	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Naphthalene	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
n-Propylbenzene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Styrene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Toluene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Trichloroethene (TCE)	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Trichlorofluoromethane	ND		0.179	mg/kg dry	50	05/30/23 11:58	5035A/8260D	Q-54d
1,2,3-Trichloropropane	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
m,p-Xylene	ND		0.0893	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
o-Xylene	ND		0.0447	mg/kg dry	50	05/30/23 11:58	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96%	Limits: 80-120 %		05/30/23 11:58	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SB-6-13 (A3E1787-01)				Matrix: Soil		Batch:	23E1188	
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recovery	: 100 % 98 %	Limits: 80-120 % 79-120 %	1 1	05/30/23 11:58 05/30/23 11:58	5035A/8260D 5035A/8260D	
SB-7-12 (A3E1787-02)		70 70		Matrix: Soil			23E1188	
Acetone	ND		1.82	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Acrylonitrile	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Benzene	ND		0.0182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Bromobenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Bromochloromethane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Bromodichloromethane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Bromoform	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	Q-54c
Bromomethane	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
2-Butanone (MEK)	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
n-Butylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
sec-Butylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
tert-Butylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Carbon disulfide	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Carbon tetrachloride	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	Q-54a
Chlorobenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Chloroethane	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Chloroform	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Chloromethane	ND		0.456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
2-Chlorotoluene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
4-Chlorotoluene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Dibromochloromethane	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	Q-54
1,2-Dibromoethane (EDB)	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Dibromomethane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Dichlorodifluoromethane	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,1-Dichloroethane	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
6B-7-12 (A3E1787-02)				Matrix: Soil	<u> </u>	Batch:	23E1188	
,1-Dichloroethene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
is-1,2-Dichloroethene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
rans-1,2-Dichloroethene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,2-Dichloropropane	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,3-Dichloropropane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,2-Dichloropropane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,1-Dichloropropene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
is-1,3-Dichloropropene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
rans-1,3-Dichloropropene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Ethylbenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Iexachlorobutadiene	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
-Hexanone	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
sopropylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
-Isopropyltoluene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Methylene chloride	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND		0.912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
Vaphthalene	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
-Propylbenzene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
styrene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,1,1,2-Tetrachloroethane	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
etrachloroethene (PCE)	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
oluene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,2,3-Trichlorobenzene	ND		0.456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,2,4-Trichlorobenzene	ND		0.456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,1,1-Trichloroethane	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,1,2-Trichloroethane	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
richloroethene (TCE)	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
richlorofluoromethane	ND		0.182	mg/kg dry	50	05/30/23 12:49	5035A/8260D	Q-54
,2,3-Trichloropropane	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
,2,4-Trimethylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	
3,5-Trimethylbenzene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
SB-7-12 (A3E1787-02)		Matrix: Soil		Batch:	23E1188				
m,p-Xylene	ND		0.0912	mg/kg dry	50	05/30/23 12:49	5035A/8260D		
o-Xylene	ND		0.0456	mg/kg dry	50	05/30/23 12:49	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	05/30/23 12:49	5035A/8260D		
Toluene-d8 (Surr)			99 %	80-120 %	1	05/30/23 12:49	5035A/8260D		
4-Bromofluorobenzene (Surr)			100 %	79-120 %	1	05/30/23 12:49	5035A/8260D		
SB-8-13 (A3E1787-04)				Matrix: Soil		Batch:	23E1188		
Acetone	ND		1.26	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Acrylonitrile	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Benzene	ND		0.0126	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Bromobenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Bromochloromethane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Bromodichloromethane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Bromoform	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D	Q-54c	
Bromomethane	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
2-Butanone (MEK)	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
n-Butylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
sec-Butylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
tert-Butylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Carbon disulfide	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Carbon tetrachloride	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	Q-54a	
Chlorobenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Chloroethane	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Chloroform	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Chloromethane	ND		0.315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
2-Chlorotoluene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
4-Chlorotoluene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Dibromochloromethane	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
1,2-Dibromo-3-chloropropane	ND		0.315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	Q-54	
1,2-Dibromoethane (EDB)	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
Dibromomethane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
1,2-Dichlorobenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
1,3-Dichlorobenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		
1.4-Dichlorobenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SB-8-13 (A3E1787-04)				Matrix: Soi	I	Batch:	23E1188	
Dichlorodifluoromethane	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1-Dichloroethane	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,2-Dichloroethane (EDC)	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1-Dichloroethene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
rans-1,2-Dichloroethene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,2-Dichloropropane	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,3-Dichloropropane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
2,2-Dichloropropane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1-Dichloropropene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
rans-1,3-Dichloropropene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Ethylbenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Hexachlorobutadiene	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
2-Hexanone	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
sopropylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
l-Isopropyltoluene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Methylene chloride	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
I-Methyl-2-pentanone (MiBK)	ND		0.630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Naphthalene	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
n-Propylbenzene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Styrene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1,1,2-Tetrachloroethane	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Toluene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,2,3-Trichlorobenzene	ND		0.315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,2,4-Trichlorobenzene	ND		0.315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1,1-Trichloroethane	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
,1,2-Trichloroethane	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Frichloroethene (TCE)	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
richlorofluoromethane	ND		0.126	mg/kg dry	50	05/30/23 13:14	5035A/8260D	Q-54

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-8-13 (A3E1787-04)				Matrix: Soil		Batch:	23E1188	
1,2,3-Trichloropropane	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
m,p-Xylene	ND		0.0630	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
o-Xylene	ND		0.0315	mg/kg dry	50	05/30/23 13:14	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 96%	Limits: 80-120 %	1	05/30/23 13:14	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	05/30/23 13:14	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	05/30/23 13:14	5035A/8260D	
MW-10-7 (A3E1787-06)				Matrix: Soil		Batch:	23E1188	
Acetone	ND		1.36	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Acrylonitrile	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Benzene	ND		0.0136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Bromobenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Bromochloromethane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Bromodichloromethane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Bromoform	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	Q-54c
Bromomethane	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
2-Butanone (MEK)	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
n-Butylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
sec-Butylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
tert-Butylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Carbon disulfide	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Carbon tetrachloride	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	Q-54a
Chlorobenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Chloroethane	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Chloroform	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Chloromethane	ND		0.340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
2-Chlorotoluene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
4-Chlorotoluene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Dibromochloromethane	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	Q-54
1,2-Dibromoethane (EDB)	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Dibromomethane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Monterg

Page 9 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

		Jiaule Organ	ic Compound	us by EFA 02	30D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-10-7 (A3E1787-06)				Matrix: Soil	1	Batch:	23E1188	
1,2-Dichlorobenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Dichlorodifluoromethane	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,1-Dichloroethane	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,1-Dichloroethene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,2-Dichloropropane	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,3-Dichloropropane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
2,2-Dichloropropane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,1-Dichloropropene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Ethylbenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Hexachlorobutadiene	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
2-Hexanone	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Isopropylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
4-Isopropyltoluene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Methylene chloride	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Naphthalene	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
n-Propylbenzene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Styrene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Toluene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
,2,3-Trichlorobenzene	ND		0.340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
,2,4-Trichlorobenzene	ND		0.340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
,1,1-Trichloroethane	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-10-7 (A3E1787-06)				Matrix: Soil		Batch:	23E1188	
1,1,2-Trichloroethane	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Trichloroethene (TCE)	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Trichlorofluoromethane	ND		0.136	mg/kg dry	50	05/30/23 14:06	5035A/8260D	Q-54d
1,2,3-Trichloropropane	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
m,p-Xylene	ND		0.0679	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
o-Xylene	ND		0.0340	mg/kg dry	50	05/30/23 14:06	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	I	05/30/23 14:06	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %	I	05/30/23 14:06	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	I	05/30/23 14:06	5035A/8260D	
MW-10-12 (A3E1787-07)				Matrix: Soil		Batch:	23E1188	
Acetone	ND		1.53	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Acrylonitrile	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Benzene	ND		0.0153	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Bromobenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Bromochloromethane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Bromodichloromethane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Bromoform	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D	Q-54c
Bromomethane	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
2-Butanone (MEK)	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
n-Butylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
sec-Butylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
tert-Butylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Carbon disulfide	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Carbon tetrachloride	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	Q-54a
Chlorobenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Chloroethane	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Chloroform	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Chloromethane	ND		0.384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
2-Chlorotoluene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1-Chlorotoluene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Dibromochloromethane	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-10-12 (A3E1787-07)				Matrix: Soil	1	Batch:	23E1188		
1,2-Dibromo-3-chloropropane	ND		0.384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	Q-54	
1,2-Dibromoethane (EDB)	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Dibromomethane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,2-Dichlorobenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,3-Dichlorobenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,4-Dichlorobenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Dichlorodifluoromethane	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,1-Dichloroethane	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,2-Dichloroethane (EDC)	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,1-Dichloroethene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
cis-1,2-Dichloroethene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
trans-1,2-Dichloroethene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,2-Dichloropropane	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,3-Dichloropropane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
2,2-Dichloropropane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,1-Dichloropropene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
cis-1,3-Dichloropropene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
trans-1,3-Dichloropropene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Ethylbenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Hexachlorobutadiene	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
2-Hexanone	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Isopropylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
4-Isopropyltoluene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Methylene chloride	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
4-Methyl-2-pentanone (MiBK)	ND		0.767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Methyl tert-butyl ether (MTBE)	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Naphthalene	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
n-Propylbenzene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Styrene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,1,1,2-Tetrachloroethane	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Tetrachloroethene (PCE)	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D		
Toluene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D		

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-10-12 (A3E1787-07)				Matrix: Soil		Batch:	23E1188	
1,2,3-Trichlorobenzene	ND		0.384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Trichloroethene (TCE)	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Trichlorofluoromethane	ND		0.153	mg/kg dry	50	05/30/23 14:31	5035A/8260D	Q-540
1,2,3-Trichloropropane	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
m,p-Xylene	ND		0.0767	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
o-Xylene	ND		0.0384	mg/kg dry	50	05/30/23 14:31	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	I	05/30/23 14:31	5035A/8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	05/30/23 14:31	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	05/30/23 14:31	5035A/8260D	
DMW-2-20 (A3E1787-12)				Matrix: Soil		Batch:	23E1188	
Acetone	ND		1.19	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Acrylonitrile	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Benzene	ND		0.0119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Bromobenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Bromochloromethane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Bromodichloromethane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Bromoform	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	Q-54
Bromomethane	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
2-Butanone (MEK)	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
n-Butylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
sec-Butylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
ert-Butylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Carbon disulfide	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Carbon tetrachloride	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	Q-54a
Chlorobenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Chloroethane	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Chloroform	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DMW-2-20 (A3E1787-12)				Matrix: Soil			23E1188	
2-Chlorotoluene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
4-Chlorotoluene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Dibromochloromethane	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	Q-54
1,2-Dibromoethane (EDB)	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	-
Dibromomethane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Dichlorodifluoromethane	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,1-Dichloroethane	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,1-Dichloroethene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,2-Dichloropropane	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,3-Dichloropropane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
2,2-Dichloropropane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,1-Dichloropropene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Ethylbenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Hexachlorobutadiene	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
2-Hexanone	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Isopropylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
4-Isopropyltoluene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Methylene chloride	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
I-Methyl-2-pentanone (MiBK)	ND		0.594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Naphthalene	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
a-Propylbenzene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
Styrene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D	
1,1,2-Tetrachloroethane	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
DMW-2-20 (A3E1787-12)				Matrix: Soil		Batch:					
1,1,2,2-Tetrachloroethane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
Tetrachloroethene (PCE)	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
Toluene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,2,3-Trichlorobenzene	ND		0.297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,2,4-Trichlorobenzene	ND		0.297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,1,1-Trichloroethane	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,1,2-Trichloroethane	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
Trichloroethene (TCE)	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
Trichlorofluoromethane	ND		0.119	mg/kg dry	50	05/30/23 14:57	5035A/8260D	Q-54d			
1,2,3-Trichloropropane	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,2,4-Trimethylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
1,3,5-Trimethylbenzene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
m,p-Xylene	ND		0.0594	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
o-Xylene	ND		0.0297	mg/kg dry	50	05/30/23 14:57	5035A/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 96 %	Limits: 80-120 %	5 1	05/30/23 14:57	5035A/8260D				
Toluene-d8 (Surr)			99 %	80-120 %	5 1	05/30/23 14:57	5035A/8260D				
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	05/30/23 14:57	5035A/8260D				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

		Vinyl Chlor	ride by EF	A 8260D SIM				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SB-6-13 (A3E1787-01)				Matrix: Soil		Batch:		
Vinyl chloride	ND	0.00823	0.0165	mg/kg dry	100	05/31/23 16:58	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	5 I	05/31/23 16:58	5035A/8260D SIM	
Toluene-d8 (Surr)			105 %	80-120 %		05/31/23 16:58	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	5 I	05/31/23 16:58	5035A/8260D SIM	
SB-7-12 (A3E1787-02)				Matrix: Soil		Batch:	23E1265	
Vinyl chloride	ND	0.00912	0.0182	mg/kg dry	100	05/31/23 17:52	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	5 1	05/31/23 17:52	5035A/8260D SIM	
Toluene-d8 (Surr)			104 %	80-120 %	5 1	05/31/23 17:52	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	5 I	05/31/23 17:52	5035A/8260D SIM	
SB-8-13 (A3E1787-04)		Matrix: Soil Batch: 23E1265					23E1265	
Vinyl chloride	ND	0.00630	0.0126	mg/kg dry	100	05/31/23 18:19	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	5 1	05/31/23 18:19	5035A/8260D SIM	
Toluene-d8 (Surr)			104 %	80-120 %	5 1	05/31/23 18:19	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	79-120 %	5 I	05/31/23 18:19	5035A/8260D SIM	
MW-10-7 (A3E1787-06)				Matrix: Soil		Batch:	23E1265	
Vinyl chloride	ND	0.00679	0.0136	mg/kg dry	100	05/31/23 19:14	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	5 1	05/31/23 19:14	5035A/8260D SIM	
Toluene-d8 (Surr)			104 %	80-120 %	5 1	05/31/23 19:14	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	79-120 %	5 1	05/31/23 19:14	5035A/8260D SIM	
MW-10-12 (A3E1787-07)				Matrix: Soil		Batch:	23E1265	
Vinyl chloride	ND	0.00767	0.0153	mg/kg dry	100	05/31/23 19:40	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	5 1	05/31/23 19:40	5035A/8260D SIM	
Toluene-d8 (Surr)			103 %	80-120 %	5 1	05/31/23 19:40	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	5 I	05/31/23 19:40	5035A/8260D SIM	
DMW-2-20 (A3E1787-12)				Matrix: Soil		Batch:	23E1265	
Vinyl chloride	ND	0.00594	0.0119	mg/kg dry	100	05/31/23 20:07	5035A/8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

	Vinyl Chloride by EPA 8260D SIM										
Analyte	Sample Result	Detection Limit	Reporting Limit	Ur	nits	Dilution	Date Analyzed	Method Ref.	Notes		
DMW-2-20 (A3E1787-12)	Matrix: Soil Batch: 23E1265										
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107%	Limits:	80-120 %	1	05/31/23 20:07	5035A/8260D SIM			
Toluene-d8 (Surr)			103 %		80-120 %	1	05/31/23 20:07	5035A/8260D SIM			
4-Bromofluorobenzene (Surr)			97 %		79-120 %	1	05/31/23 20:07	5035A/8260D SIM			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

ANALYTICAL SAMPLE RESULTS

		ercent Dry W	eigiit					
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
			Matrix: Soi	1	Batch: 23E1218			
70.1		1.00	%	1	05/31/23 05:22	EPA 8000D		
			Matrix: Soi	I	Batch:			
65.9		1.00	%	1	05/31/23 05:22	EPA 8000D		
			Matrix: Soi	I	Batch:			
87.4		1.00	%	1	05/31/23 05:22	EPA 8000D		
			Matrix: Soi	I	Batch:	23E1218		
81.2		1.00	%	1	05/31/23 05:22	EPA 8000D		
			Matrix: Soi	I	Batch:			
71.9		1.00	%	1	05/31/23 05:22	EPA 8000D		
	-	-	Matrix: Soi	I	Batch: 23E1218			
83.3		1.00	%	1	05/31/23 05:22	EPA 8000D		
	70.1 65.9 87.4 81.2	Result Limit 70.1 65.9 87.4 71.9	Result Limit Limit 70.1 1.00 65.9 1.00 87.4 1.00 81.2 1.00 71.9 1.00	Result Limit Limit Units	Result Limit Units Dilution Matrix: Soil 70.1 1.00 % 1 Matrix: Soil 87.4 1.00 % 1 Matrix: Soil 81.2 1.00 % 1 Matrix: Soil 71.9 1.00 % 1 Matrix: Soil	Result Limit Limit Units Dilution Analyzed	Result Limit Limit Units Dilution Analyzed Method Ref.	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 18 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23E1188 - EPA 5035A Soil Blank (23E1188-BLK1) Prepared: 05/30/23 09:58 Analyzed: 05/30/23 11:33 5035A/8260D ND 1.00 mg/kg wet Acetone 50 ND 0.100 50 Acrylonitrile mg/kg wet Benzene ND 0.0100 mg/kg wet 50 Bromobenzene ND 0.0250 mg/kg wet 50 Bromochloromethane ND 0.0500 mg/kg wet 50 Bromodichloromethane ND 0.0500 mg/kg wet 50 Bromoform ND mg/kg wet Q-54c 0.100 50 Bromomethane ND 0.500 mg/kg wet 50 2-Butanone (MEK) ND 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0500mg/kg wet 50 tert-Butylbenzene ND 0.0500 mg/kg wet 50 ---Carbon disulfide ND 0.500 mg/kg wet 50 Carbon tetrachloride ND Q-54a 0.0500 mg/kg wet 50 Chlorobenzene ND 0.0250 mg/kg wet 50 Chloroethane ND 0.500 mg/kg wet 50 ---Chloroform ND 0.0500mg/kg wet 50 0.250 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0500 mg/kg wet 50 4-Chlorotoluene ND 0.0500 mg/kg wet 50 Dibromochloromethane ND 0.100 mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.250 mg/kg wet 50 Q-54 1,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0500 mg/kg wet 50 1,2-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0250 mg/kg wet 50 Dichlorodifluoromethane ND 0.100 mg/kg wet 50 ---ND 1,1-Dichloroethane 0.0250mg/kg wet 50 1,2-Dichloroethane (EDC) ND 0.0250 mg/kg wet 50 1,1-Dichloroethene ND mg/kg wet 50 0.0250 cis-1,2-Dichloroethene ND 0.0250 mg/kg wet 50

Apex Laboratories

Philip Merenberg

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 36

50

0.0250

mg/kg wet

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23E1188 - EPA 5035A Soil Blank (23E1188-BLK1) Prepared: 05/30/23 09:58 Analyzed: 05/30/23 11:33 ND 0.0250 50 1,2-Dichloropropane mg/kg wet ND 0.0500 mg/kg wet 50 1,3-Dichloropropane ---50 2,2-Dichloropropane ND 0.0500 mg/kg wet 1,1-Dichloropropene ND 0.0500mg/kg wet 50 0.0500ND mg/kg wet cis-1,3-Dichloropropene 50 trans-1,3-Dichloropropene ND 0.0500 mg/kg wet 50 Ethylbenzene ND 0.0250 mg/kg wet 50 Hexachlorobutadiene ND 0.100 mg/kg wet 50 2-Hexanone ND 0.500 mg/kg wet 50 Isopropylbenzene ND 0.0500mg/kg wet 50 ND 0.0500mg/kg wet 50 4-Isopropyltoluene Methylene chloride ND 0.500 mg/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 0.500 mg/kg wet 50 ---0.0500 Methyl tert-butyl ether (MTBE) ND mg/kg wet 50 Naphthalene ND 0.100 mg/kg wet 50 n-Propylbenzene ND 0.0250 mg/kg wet 50 0.0500 Styrene ND mg/kg wet 50 1,1,1,2-Tetrachloroethane ND mg/kg wet 0.0250 50 ND 1.1.2.2-Tetrachloroethane 0.0500 --mg/kg wet 50 ------Tetrachloroethene (PCE) ND 0.0250 mg/kg wet 50 Toluene ND 0.0500 mg/kg wet 50 1,2,3-Trichlorobenzene ND 0.250 mg/kg wet 50 1,2,4-Trichlorobenzene ND 0.250 mg/kg wet 50 1,1,1-Trichloroethane ND 0.0250 mg/kg wet 50 ND 1,1,2-Trichloroethane 0.0250 mg/kg wet 50 ------Trichloroethene (TCE) ND 0.0250 mg/kg wet 50 Q-54d Trichlorofluoromethane ND 0.100 mg/kg wet 50 ---1,2,3-Trichloropropane ND 0.0500 mg/kg wet 50

Surr: 1,4-Difluorobenzene (Surr) Recovery: 97 % Limits: 80-120 % Dilution: Ix

0.0500

0.0500

0.0250

0.0500

0.0250

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

50

50

50

50

50

ND

ND

ND

ND

ND

Apex Laboratories

Philip Nevenberg

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1188 - EPA 5035A							Soi	il				
Blank (23E1188-BLK1)			Prepared	: 05/30/23 0	9:58 Ana	lyzed: 05/30	0/23 11:33					
Surr: Toluene-d8 (Surr)		Rec	overy: 98 %	Limits: 80-	120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
LCS (23E1188-BS1)			Prepared	: 05/30/23 0	9:58 Anal	lyzed: 05/30	0/23 10:37					
5035A/8260D												
Acetone	1.93		1.00	mg/kg we	et 50	2.00		96	80-120%			
Acrylonitrile	0.975		0.100	mg/kg we	et 50	1.00		98	80-120%			
Benzene	0.980		0.0100	mg/kg we	et 50	1.00		98	80-120%			
Bromobenzene	1.02		0.0250	mg/kg we	et 50	1.00		102	80-120%			
Bromochloromethane	1.01		0.0500	mg/kg we	et 50	1.00		101	80-120%			
Bromodichloromethane	0.830		0.0500	mg/kg we	et 50	1.00		83	80-120%			
Bromoform	0.566		0.100	mg/kg we	et 50	1.00		57	80-120%			Q-54
Bromomethane	0.981		0.500	mg/kg we	et 50	1.00		98	80-120%			
2-Butanone (MEK)	1.97		0.500	mg/kg we	et 50	2.00		99	80-120%			
n-Butylbenzene	1.05		0.0500	mg/kg we	et 50	1.00		105	80-120%			
sec-Butylbenzene	1.08		0.0500	mg/kg we	et 50	1.00		108	80-120%			
tert-Butylbenzene	1.08		0.0500	mg/kg we	et 50	1.00		108	80-120%			
Carbon disulfide	0.958		0.500	mg/kg we	et 50	1.00		96	80-120%			
Carbon tetrachloride	0.658		0.0500	mg/kg we	et 50	1.00		66	80-120%			Q-54
Chlorobenzene	1.01		0.0250	mg/kg we	et 50	1.00		101	80-120%			
Chloroethane	0.917		0.500	mg/kg we	et 50	1.00		92	80-120%			
Chloroform	0.976		0.0500	mg/kg we	et 50	1.00		98	80-120%			
Chloromethane	0.823		0.250	mg/kg we	et 50	1.00		82	80-120%			
2-Chlorotoluene	1.05		0.0500	mg/kg we	et 50	1.00		105	80-120%			
4-Chlorotoluene	1.04		0.0500	mg/kg we	et 50	1.00		104	80-120%			
Dibromochloromethane	0.737		0.100	mg/kg we	et 50	1.00		74	80-120%			Q-5
1,2-Dibromo-3-chloropropane	0.667		0.250	mg/kg we	et 50	1.00		67	80-120%			Q-5
1,2-Dibromoethane (EDB)	0.952		0.0500	mg/kg we	et 50	1.00		95	80-120%			
Dibromomethane	1.02		0.0500	mg/kg we		1.00		102	80-120%			
1,2-Dichlorobenzene	1.04		0.0250	mg/kg we		1.00		104	80-120%			
1,3-Dichlorobenzene	1.04		0.0250	mg/kg we		1.00		104	80-120%			
1,4-Dichlorobenzene	1.01		0.0250	mg/kg we		1.00		101	80-120%			
Dichlorodifluoromethane	0.891		0.100	mg/kg we		1.00		89	80-120%			
1.1-Dichloroethane	1.00		0.0250	mg/kg we		1.00		100	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23E1188 - EPA 5035A Soil LCS (23E1188-BS1) Prepared: 05/30/23 09:58 Analyzed: 05/30/23 10:37 1,2-Dichloroethane (EDC) 1.04 0.0250 mg/kg wet 50 1.00 104 80-120% 1,1-Dichloroethene 1.03 0.0250 mg/kg wet 50 1.00 103 80-120% ---------50 cis-1,2-Dichloroethene 1.02 0.0250 mg/kg wet 1.00 102 80-120% trans-1,2-Dichloroethene 0.998 0.0250 mg/kg wet 50 1.00 100 80-120% 98 0.977 0.0250 mg/kg wet 50 1.00 80-120% 1,2-Dichloropropane 1,3-Dichloropropane 1.04 0.0500 mg/kg wet 50 1.00 104 80-120% 80-120% 2,2-Dichloropropane 0.902 0.0500 mg/kg wet 50 1.00 90 103 1,1-Dichloropropene 1.03 0.0500 mg/kg wet 50 1.00 80-120% 97 cis-1,3-Dichloropropene 0.972 0.0500mg/kg wet 50 1.00 80-120% trans-1,3-Dichloropropene 0.947 0.0500mg/kg wet 50 1.00 95 80-120% Ethylbenzene 99 0.994 0.0250 mg/kg wet 50 1.00 80-120% Hexachlorobutadiene 1.01 0.100 mg/kg wet 50 1.00 101 80-120% 1.99 2.00 99 2-Hexanone 0.500mg/kg wet 50 ---80-120% ---Isopropylbenzene 1.06 0.0500 mg/kg wet 50 1.00 106 80-120% 0.0500 mg/kg wet 1.00 80-120% 4-Isopropyltoluene 1.10 50 ---110 Methylene chloride 0.997 0.500 mg/kg wet 50 1.00 100 80-120% 2.07 0.500 2.00 103 4-Methyl-2-pentanone (MiBK) mg/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 0.974 mg/kg wet 50 1.00 97 80-120% 0.0500 Naphthalene 1.08 0.100 1.00 108 --mg/kg wet 50 ---80-120% --n-Propylbenzene 1.05 0.0250 mg/kg wet 50 1.00 105 80-120% 1.05 0.0500 1.00 105 80-120% Styrene mg/kg wet 50 ---1,1,1,2-Tetrachloroethane 0.710 0.0250 mg/kg wet 50 1.00 71 80-120% Q-55 1,1,2,2-Tetrachloroethane 0.934 0.0500 mg/kg wet 50 1.00 93 80-120% Tetrachloroethene (PCE) 1.04 0.0250 mg/kg wet 50 1.00 104 80-120% Toluene 0.957 1.00 96 0.0500 mg/kg wet 50 80-120% ---------1,2,3-Trichlorobenzene 1.04 0.250 mg/kg wet 50 1.00 104 80-120% 1,2,4-Trichlorobenzene 1.01 0.250 mg/kg wet 50 1.00 101 80-120% ---1,1,1-Trichloroethane 0.926 0.0250 mg/kg wet 50 1.00 93 80-120%

Apex Laboratories

Philip Nevenberg

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1.02

1.02

0.470

1.02

1.04

1.08

0.0250

0.0250

0.100

0.0500

0.0500

0.0500

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

50

50

50

50

50

50

1.00

1.00

1.00

1.00

1.00

1.00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

102

47

102

104

108

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Q-54d

Philip Nerenberg, Lab Director

Page 22 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1188 - EPA 5035A							So	il				
LCS (23E1188-BS1)			Prepared	1: 05/30/23 0	9:58 Ana	lyzed: 05/30	/23 10:37					
Vinyl chloride	0.974		0.0250	mg/kg we	t 50	1.00		97	80-120%			
n,p-Xylene	1.98		0.0500	mg/kg we	et 50	2.00		99	80-120%			
o-Xylene	1.00		0.0250	mg/kg we	t 50	1.00		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 96 %	Limits: 80-	120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
Duplicate (23E1188-DUP1)			Prepared	1: 05/23/23 0	8:45 Ana	lyzed: 05/30	/23 12:24					
OC Source Sample: SB-6-13 (A3E	1787-01)											
5035A/8260D Acetone	ND		1.79	m ~/lra 4	50		ND				30%	
			0.179	mg/kg dr								
Acrylonitrile Benzene	ND ND			mg/kg dr			ND				30% 30%	
Bromobenzene	ND ND		0.0179 0.0447	mg/kg dr	•		ND ND				30%	
Bromochloromethane	ND ND		0.0447	mg/kg dr mg/kg dr			ND ND				30%	
Bromodichloromethane	ND ND		0.0893	mg/kg dr			ND ND				30%	
Bromoform	ND ND		0.0893	mg/kg dr			ND ND				30%	Q-
Bromomethane	ND ND		0.179	mg/kg dr			ND ND				30%	Q -
2-Butanone (MEK)	ND		0.893	mg/kg dr	•		ND				30%	
n-Butylbenzene	ND		0.0893	mg/kg dr			ND				30%	
sec-Butylbenzene	ND		0.0893	mg/kg dr			ND				30%	
ert-Butylbenzene	ND		0.0893	mg/kg dr			ND				30%	
Carbon disulfide	ND		0.893	mg/kg dr	,		ND				30%	
Carbon tetrachloride	ND		0.0893	mg/kg dr			ND				30%	O-
Chlorobenzene	ND		0.0447	mg/kg dr	•		ND				30%	~
Chloroethane	ND		0.893	mg/kg dr			ND				30%	
Chloroform	ND		0.0893	mg/kg dr	•		ND				30%	
Chloromethane	ND		0.447	mg/kg dr			ND				30%	
2-Chlorotoluene	ND		0.0893	mg/kg dr			0.0482			***	30%	
I-Chlorotoluene	ND		0.0893	mg/kg dr			ND				30%	
Dibromochloromethane	ND		0.179	mg/kg dr			ND				30%	
,2-Dibromo-3-chloropropane	ND		0.177	mg/kg dr			ND				30%	Q
,2-Dibromoethane (EDB)	ND		0.0893	mg/kg dr			ND				30%	~
Dibromomethane	ND		0.0893	mg/kg dr	,		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23E1188 - EPA 5035A Soil Duplicate (23E1188-DUP1) Prepared: 05/23/23 08:45 Analyzed: 05/30/23 12:24 QC Source Sample: SB-6-13 (A3E1787-01) mg/kg dry 1,2-Dichlorobenzene ND 0.0447 50 ND 30% 0.0447ND 1,3-Dichlorobenzene mg/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 0.0447 mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.179 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0447 mg/kg dry 50 ND 30% ------1,2-Dichloroethane (EDC) ND 0.0447 mg/kg dry 50 ND 30% 1,1-Dichloroethene ND 0.0447mg/kg dry 50 ND 30% 30% cis-1,2-Dichloroethene ND 0.0447 mg/kg dry 50 ND trans-1,2-Dichloroethene ND 0.0447 mg/kg dry 50 ND 30% 1,2-Dichloropropane ND 0.0447 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0893 mg/kg dry 50 ND 30% ND 0.0893 30% 2,2-Dichloropropane mg/kg dry 50 ND 1,1-Dichloropropene ND 0.0893 mg/kg dry 50 ND 30% ND 30% cis-1,3-Dichloropropene 0.0893 mg/kg dry 50 ND trans-1,3-Dichloropropene ND 0.0893 mg/kg dry 50 ND 30% Ethylbenzene ND 0.0447 mg/kg dry 50 ND ___ 30% Hexachlorobutadiene ND 0.179 mg/kg dry 50 ND 30% 2-Hexanone ND 30% 0.893 mg/kg dry 50 ND Isopropylbenzene ND 0.0893mg/kg dry 50 ND 30% ND 0.0893 mg/kg dry 50 ND 30% 4-Isopropyltoluene Methylene chloride ND 0.893 mg/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND ---0.893 mg/kg dry 50 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.0893 mg/kg dry 50 ND 30% Naphthalene 30% ND 0.179 mg/kg dry 50 ND ND 0.0447 30% n-Propylbenzene mg/kg dry 50 ND ND 0.0893 ND 30% Styrene mg/kg dry 50 1,1,1,2-Tetrachloroethane ND 0.0447 mg/kg dry ND 30% 50 1,1,2,2-Tetrachloroethane ND 0.0893 mg/kg dry 50 ND ---30% Tetrachloroethene (PCE) ND 0.0447 mg/kg dry 50 ND 30% Toluene ND 0.0893 mg/kg dry 30% 50 ND ---1,2,3-Trichlorobenzene ND 0.447 mg/kg dry 50 ND 30% 0.447 1,2,4-Trichlorobenzene ND 50 ND 30% mg/kg dry ---1,1,1-Trichloroethane ND 0.0447 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1188 - EPA 5035A							So	il				
Duplicate (23E1188-DUP1)			Prepared	1: 05/23/23 0	8:45 Ana	lyzed: 05/30	/23 12:24					
QC Source Sample: SB-6-13 (A3I	E1787-01)											
1,1,2-Trichloroethane	ND		0.0447	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		0.0447	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		0.179	mg/kg dr	y 50		ND				30%	Q-54
1,2,3-Trichloropropane	ND		0.0893	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0893	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0893	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND		0.0447	mg/kg dr	y 50		ND				30%	
m,p-Xylene	ND		0.0893	mg/kg dr	y 50		ND				30%	
o-Xylene	ND		0.0447	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 97 %	Limits: 80-	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			100 %		120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
Matrix Spike (23E1188-MS1) OC Source Sample: Non-SDG (A3	BE1763-01)		1	1: 05/23/23 0		<u>, </u>						
5035A/8260D												
Acetone	3.11		1.53	mg/kg dr	y 50	3.06	ND	102	36-164%			
Acrylonitrile	1.56		0.153	mg/kg dr	y 50	1.53	ND	102	65-134%			
Benzene	1.58		0.0153	mg/kg dr	y 50	1.53	ND	103	77-121%			
Bromobenzene	1.59		0.0382	mg/kg dr	y 50	1.53	ND	103	78-121%			
Bromochloromethane	1.64		0.0765	mg/kg dr	y 50	1.53	ND	107	78-125%			
Bromodichloromethane	1.39		0.0765	mg/kg dr	y 50	1.53	ND	91	75-127%			
Bromoform	0.994		0.153	mg/kg dr	y 50	1.53	ND	65	67-132%			Q-54
Bromomethane	1.47		0.765	mg/kg dr	y 50	1.53	ND	96	53-143%			
2-Butanone (MEK)	3.14		0.765	mg/kg dr	y 50	3.06	ND	103	51-148%			
n-Butylbenzene	1.72		0.0765	mg/kg dr	y 50	1.53	ND	112	70-128%			
sec-Butylbenzene	1.75		0.0765	mg/kg dr	y 50	1.53	ND	114	73-126%			
tert-Butylbenzene	1.74		0.0765	mg/kg dr	y 50	1.53	ND	114	73-125%			
Carbon disulfide	1.42		0.765	mg/kg dr	y 50	1.53	ND	93	63-132%			
Carbon tetrachloride	1.19		0.0765	mg/kg dr	y 50	1.53	ND	77	70-135%			Q-54
Chlorobenzene	1.61		0.0382	mg/kg dr	y 50	1.53	ND	105	79-120%			
Chloroethane	1.67		0.765	mg/kg dr	y 50	1.53	ND	109	59-139%			
Chloroform	1.57		0.0765	mg/kg dr	y 50	1.53	ND	102	78-123%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1188 - EPA 5035A							So	il				
Matrix Spike (23E1188-MS1)			Prepared	: 05/23/23 0	9:30 Ana	lyzed: 05/30	/23 17:55					
QC Source Sample: Non-SDG (A3	E1763-01)											
Chloromethane	1.03		0.382	mg/kg dr	y 50	1.53	ND	67	50-136%			
2-Chlorotoluene	1.65		0.0765	mg/kg dr	y 50	1.53	ND	108	75-122%			
4-Chlorotoluene	1.67		0.0765	mg/kg dr	y 50	1.53	ND	109	72-124%			
Dibromochloromethane	1.31		0.153	mg/kg dr	y 50	1.53	ND	86	74-126%			Q-54
1,2-Dibromo-3-chloropropane	1.13		0.382	mg/kg dr	y 50	1.53	ND	74	61-132%			Q-5
1,2-Dibromoethane (EDB)	1.53		0.0765	mg/kg dr	y 50	1.53	ND	100	78-122%			
Dibromomethane	1.61		0.0765	mg/kg dr	y 50	1.53	ND	105	78-125%			
1,2-Dichlorobenzene	1.64		0.0382	mg/kg dr	y 50	1.53	ND	107	78-121%			
1,3-Dichlorobenzene	1.66		0.0382	mg/kg dr	y 50	1.53	ND	109	77-121%			
1,4-Dichlorobenzene	1.58		0.0382	mg/kg dr	y 50	1.53	ND	103	75-120%			
Dichlorodifluoromethane	0.776		0.153	mg/kg dr	y 50	1.53	ND	51	29-149%			
1,1-Dichloroethane	1.60		0.0382	mg/kg dr	y 50	1.53	ND	104	76-125%			
1,2-Dichloroethane (EDC)	1.68		0.0382	mg/kg dr	y 50	1.53	ND	110	73-128%			
1,1-Dichloroethene	1.65		0.0382	mg/kg dr	y 50	1.53	ND	108	70-131%			
cis-1,2-Dichloroethene	1.64		0.0382	mg/kg dr	y 50	1.53	ND	107	77-123%			
trans-1,2-Dichloroethene	1.60		0.0382	mg/kg dr	y 50	1.53	ND	105	74-125%			
1,2-Dichloropropane	1.57		0.0382	mg/kg dr	y 50	1.53	ND	103	76-123%			
1,3-Dichloropropane	1.63		0.0765	mg/kg dr	y 50	1.53	ND	106	77-121%			
2,2-Dichloropropane	1.35		0.0765	mg/kg dr	y 50	1.53	ND	88	67-133%			
1,1-Dichloropropene	1.68		0.0765	mg/kg dr		1.53	ND	110	76-125%			
cis-1,3-Dichloropropene	1.50		0.0765	mg/kg dr		1.53	ND	98	74-126%			
trans-1,3-Dichloropropene	1.42		0.0765	mg/kg dr		1.53	ND	93	71-130%			
Ethylbenzene	1.59		0.0382	mg/kg dr		1.53	ND	104	76-122%			
Hexachlorobutadiene	1.65		0.153	mg/kg dr		1.53	ND	108	61-135%			
2-Hexanone	3.08		0.765	mg/kg dr		3.06	ND	101	53-145%			
Isopropylbenzene	1.67		0.0765	mg/kg dr		1.53	ND	109	68-134%			
4-Isopropyltoluene	1.75		0.0765	mg/kg dr		1.53	ND	114	73-127%			
Methylene chloride	1.59		0.765	mg/kg dr		1.53	ND	104	70-128%			
4-Methyl-2-pentanone (MiBK)	3.22		0.765	mg/kg dr		3.06	ND	105	65-135%			
Methyl tert-butyl ether (MTBE)	1.50		0.0765	mg/kg dr		1.53	ND	98	73-125%			
Naphthalene	1.63		0.153	mg/kg dr		1.53	ND	106	62-129%			
n-Propylbenzene	1.71		0.0382	mg/kg dr		1.53	ND	112	73-125%			
Styrene	1.65		0.0765	mg/kg dr		1.53	ND	108	76-124%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number:
 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager:
 Mike Staton
 A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23E1188 - EPA 5035A Soil Matrix Spike (23E1188-MS1) Prepared: 05/23/23 09:30 Analyzed: 05/30/23 17:55 QC Source Sample: Non-SDG (A3E1763-01) Q-54f 1,1,1,2-Tetrachloroethane 1.25 0.0382 mg/kg dry 50 1.53 ND 82 78-125% 0.076599 1,1,2,2-Tetrachloroethane 1.52 mg/kg dry 50 1.53 ND 70-124% Tetrachloroethene (PCE) 1.65 0.0382 mg/kg dry 50 1.53 ND 108 73-128% Toluene 1.55 0.0765 mg/kg dry 50 1.53 ND 101 77-121% 1,2,3-Trichlorobenzene 1.61 0.382 mg/kg dry 50 1.53 ND 105 66-130% 1,2,4-Trichlorobenzene 0.382 1.53 1.58 mg/kg dry 50 ND 103 67-129% 1,1,1-Trichloroethane 1.53 0.0382mg/kg dry 50 1.53 ND 100 73-130% 1.53 1,1,2-Trichloroethane 0.03821.63 mg/kg dry 50 ND 106 78-121% Trichloroethene (TCE) 1.65 0.0382 mg/kg dry 50 1.53 ND 108 77-123% Trichlorofluoromethane 1.91 0.153 mg/kg dry 50 1.53 ND 125 62-140% O-54d 1,2,3-Trichloropropane 1.64 0.0765 mg/kg dry 50 1.53 ND 107 73-125% mg/kg dry 50 1,2,4-Trimethylbenzene 0.07651.53 ND 109 75-123% 1.67 1.53 1,3,5-Trimethylbenzene 1.72 0.0765 mg/kg dry 50 ND 113 73-124% 1.53 Vinyl chloride 0.0382 mg/kg dry ND 91 1.40 50 56-135% 0.0765 3.06 m,p-Xylene 3.20 mg/kg dry 50 ND 104 77-124% o-Xylene 1.60 ---0.0382 mg/kg dry 50 1.53 ND 104 77-123% ---Surr: 1,4-Difluorobenzene (Surr) 97% Recovery: Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 101 % 80-120 % 98 % 79-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	260D SIN	1					
Analyte	Result	Detection I Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1265 - EPA 5035A							So	il				
Blank (23E1265-BLK1)			Prepared	1: 05/31/23 1	3:15 Ana	lyzed: 05/31	/23 16:31					
5035A/8260D SIM												
Vinyl chloride	ND	0.00500	0.0100	mg/kg we	et 100							
Surr: 1,4-Difluorobenzene (Surr)		Recovery	v: 109 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					
LCS (23E1265-BS1)			Prepared	1: 05/31/23 1	3:15 Ana	lyzed: 05/31	/23 15:37					
5035A/8260D SIM												
Vinyl chloride	0.0180	0.00500	0.0100	mg/kg w	et 100	0.0200		90	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recovery	v: 107 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			104 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	-120 %		"					
Duplicate (23E1265-DUP1)			Prepared	1: 05/23/23 ()8:45 Ana	lyzed: 05/31	/23 17:25					
OC Source Sample: SB-6-13 (A3E	1787-01)											
5035A/8260D SIM												
Vinyl chloride	ND	0.00823	0.0165	mg/kg dr	y 100		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recovery	v: 108 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			104 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-	-120 %		"					
Matrix Spike (23E1265-MS1)			Prepared	1: 05/23/23 1	4:05 Ana	lyzed: 05/31	/23 20:34					
QC Source Sample: DMW-2-20 (A	3E1787-12)											
5035A/8260D SIM Vinyl chloride	0.0261	0.00594	0.0119	mg/kg dr	y 100	0.0238	ND	110	56-135%			
Surr: 1,4-Difluorobenzene (Surr)		Recover	v: 107 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)		Ž	103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97%	79.	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 28 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1218 - Total Solids (Dry Weigl	ht) - 2022					Soil					
Duplicate (23E1218-DUP1)			Prepared	: 05/30/23	15:37 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1746-01)											
% Solids	97.8		1.00	%	1		97.8			0.05	10%	
Duplicate (23E1218-DUP2)			Prepared	: 05/30/23	15:37 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1746-02)											
% Solids	95.3		1.00	%	1		95.2			0.1	10%	
Duplicate (23E1218-DUP3)			Prepared	: 05/30/23	15:37 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1746-03)											
% Solids	93.7		1.00	%	1		93.6			0.05	10%	
Duplicate (23E1218-DUP4)			Prepared	: 05/30/23	15:37 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1746-04)											
% Solids	94.4		1.00	%	1		94.5			0.02	10%	
Duplicate (23E1218-DUP5)			Prepared	: 05/30/23	15:37 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1772-01)											
% Solids	91.5		1.00	%	1		90.0			2	10%	
Duplicate (23E1218-DUP6)			Prepared	: 05/30/23	19:36 Anal	yzed: 05/31/	/23 05:22					
QC Source Sample: Non-SDG (A3	E1834-02)											
% Solids	78.8		1.00	%	1		76.0			4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

gate) Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

SAMPLE PREPARATION INFORMATION

		Volatile	Volatile Organic Compounds by EPA 8260D											
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor							
Batch: 23E1188														
A3E1787-01	Soil	5035A/8260D	05/23/23 08:45	05/23/23 08:45	5.25g/5mL	5g/5mL	0.95							
A3E1787-02	Soil	5035A/8260D	05/23/23 11:35	05/23/23 11:35	5.8g/5mL	5g/5mL	0.86							
A3E1787-04	Soil	5035A/8260D	05/23/23 15:50	05/23/23 15:50	5.13g/5mL	5g/5mL	0.98							
A3E1787-06	Soil	5035A/8260D	05/23/23 09:50	05/23/23 09:50	5.47g/5mL	5g/5mL	0.91							
A3E1787-07	Soil	5035A/8260D	05/23/23 09:55	05/23/23 09:55	6.09g/5mL	5g/5mL	0.82							
A3E1787-12	Soil	5035A/8260D	05/23/23 14:05	05/23/23 14:05	6.08g/5mL	5g/5mL	0.82							

		Viny	/I Chloride by EPA 8	3260D SIM			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E1265							
A3E1787-01	Soil	5035A/8260D SIM	05/23/23 08:45	05/23/23 08:45	5.85g/5mL	5g/5mL	0.86
A3E1787-02	Soil	5035A/8260D SIM	05/23/23 11:35	05/23/23 11:35	5.8g/5mL	5g/5mL	0.86
A3E1787-04	Soil	5035A/8260D SIM	05/23/23 15:50	05/23/23 15:50	5.13g/5mL	5g/5mL	0.98
A3E1787-06	Soil	5035A/8260D SIM	05/23/23 09:50	05/23/23 09:50	5.47g/5mL	5g/5mL	0.91
A3E1787-07	Soil	5035A/8260D SIM	05/23/23 09:55	05/23/23 09:55	6.09g/5mL	5g/5mL	0.82
A3E1787-12	Soil	5035A/8260D SIM	05/23/23 14:05	05/23/23 14:05	6.08g/5mL	5g/5mL	0.82

			Percent Dry We	ight			
Prep: Total Solids (D	ry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E1218							
A3E1787-01	Soil	EPA 8000D	05/23/23 08:45	05/30/23 15:37			NA
A3E1787-02	Soil	EPA 8000D	05/23/23 11:35	05/30/23 15:37			NA
A3E1787-04	Soil	EPA 8000D	05/23/23 15:50	05/30/23 15:37			NA
A3E1787-06	Soil	EPA 8000D	05/23/23 09:50	05/30/23 15:37			NA
A3E1787-07	Soil	EPA 8000D	05/23/23 09:55	05/30/23 15:37			NA
A3E1787-12	Soil	EPA 8000D	05/23/23 14:05	05/30/23 15:37			NA

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -13%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -14%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -23%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -26%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -33%. The results are reported as Estimated Values.
- Q-54e Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
- Q-54f Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -9%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3E1787 - 06 07 23 1538

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 33 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3E1787 - 06 07 23 1538

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

155 NE 100th St #302 Project Number: 1789002.010 Report ID: Seattle, WA 98125 Project Manager: Mike Staton A3E1787 - 06 07 23 1538

Event Wash Wash Susaiss Park Project No. 178902.010 Stance Lo Myle Shitan Mike Sh	Wis Good Wist of	Accelerated
Wisy Books Rate Sanding C. All local Inagelyge Date Time Matrix Containers S. 23.23 345 541 3 3 52.22 1135 52.22 1135 52.22 1135 52.22 1135 52.22 1135 52.22 1135 52.22 1135 52.22 1135 52.22 52.22 1135 52.22 52.22 1135 52.22 52.22 1135 52.22 52.22 1135 1	Wis Visit Vi	Testing Parameters
600 in C. 10 M Date Time Matrix Containers 5.23.23 845 55.1 5.23.23 113.5 5.23.23 15.55 5.23.23 15.55 5.23.23 15.55 5.23.23 15.55	0075 45 4 415 201	Snecial Handling Bonitementer
No of Date Time Matrix Containers No of St. 23.23 34'5 St. 13.5 St. 23.23 14'5 St. 23.23 14'5 St. 23.23 15.55 St. 23.23	1 20 m	special narioning requirements.
No. of No. of Date Time Matrix Containers S. 2.3.2.3 34/5 54.3 3.4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Shipment Method:
No. of N	/ / / / / / / 5/5	Stored on ice: (%) / No
\$123.12 845 551 3 \$123.12 1135 \$123.23 1135 \$123.23 1145 \$5.13.23 1550 \$5.13.23 1550 \$5.13.23 1550	Prof. D. Man. n.	Observations/Comments
\$12.23 1955 52.2 1955 52.2 1955 52.2 52.2 55.2		
5.2.2.3 5.2.3.2 5.2.3.2 5.2.3.2 5.2.3.2 5.2.3.2		Allow water samples to settle, collect
\$123.23 \$137.23 \$123.13 \$123.13	×	aliquot from clear portion
5.23.23 6.23.23 5.23.23 5.23.23		NWTPH-Dx - Acid wash cleanup
\$1.83.83 \$1.83.83 \$7.83.83		- Silica gel cleanup
5.23.23		Dissolved metal samples were field filtered
5.23.23		
Marrie Anna	×	
Aw. 12-11 5.22-23 1150	×	Other
MW-13-12 5.42.23 10:00	***	
MW-14-13 5.22.23 1445	X	The state of the s
DM. 2. 200 5.23.23 1935 6 00 4	>	
TOTAL CONTRACTOR OF THE CONTRA		
TOPOLOGIC		The second secon
		The second secon
	Relinquished by	Received by
Signature S	Signature	Signature Signature
Dec nee Lo Printed Name	Printed Name	Printed Name
Company Agek	Company	Company
Date 5.25.43 Time 1051	Date Time	Date

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 35 of 36 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> 155 NE 100th St #302

Seattle, WA 98125

Project: Woodinville West Business Park

Project Number: **1789002.010**Project Manager: **Mike Staton**

Report ID: A3E1787 - 06 07 23 1538

CII. A.	
	ndau Associales Element WO#: A3 E 1787
Project/Project #:	Woodmille West Business Park / 1789002.010
Delivery Info:	/
Date/time received: 5.26	-23 @ 1051 By: DJS
Delivered by: Apex_Clie	ent_ESSFedEx: VIPS_RadioMorganSDSEvergreenOther
	ate/time inspected: 5.26.23 @ 105! By: DJ/
Chain of Custody include	
Signed/dated by client?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	<u>4,9</u>
Custody seals? (Y/N)	ν
Received on ice? (Y/N)	<u>Y</u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other)) Real
Condition (In/Out):	<u>l</u>
in samples mace. 105_	× No Comments:
Bottle labels/COCs agree?	Yes No - Comments: Beauth to hook and listed
	? Yes No x Comments: Brewed a top block not listed
on CoC. TB + 3301	? Yes No x Comments: Breezed a trip blink net listed
COC/container discrepance	
OC CoC . TB # 330 (cies form initiated? Yes No _x
COC/container discrepance Containers/volumes receive	cies form initiated? Yes No _x
COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments	cies form initiated? Yes No wed appropriate for analysis? Yes No Comments: e headspace? Yes No NA>
COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker	cies form initiated? Yes No ved appropriate for analysis? Yes No Comments: e headspace? Yes No NA ed: Yes No NA pH appropriate? Yes No NA
COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments	cies form initiated? Yes No ved appropriate for analysis? Yes No Comments: e headspace? Yes No NA ed: Yes No NA pH appropriate? Yes No NA
COC. TB + 330 (COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	cies form initiated? Yes No _ ved appropriate for analysis? Yes _> No Comments: le headspace? Yes No NA _> ed: Yes No NA _> pH appropriate? Yes No NA _>
COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker	cies form initiated? Yes No _ ved appropriate for analysis? Yes _> No Comments: le headspace? Yes No NA _> ed: Yes No NA _> pH appropriate? Yes No NA _>
COC. TB + 330 (COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	cies form initiated? Yes No _ ved appropriate for analysis? Yes _> No Comments: le headspace? Yes No NA _> ed: Yes No NA _> pH appropriate? Yes No NA _>
COC. TB + 330 (COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checker Comments: Additional information:	cies form initiated? Yes No _ ved appropriate for analysis? Yes _> No Comments: e headspace? Yes No NA _> _ ed: Yes No NA < pH appropriate? Yes No NA _> _ 3487
COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	cies form initiated? Yes No _ ved appropriate for analysis? Yes _> No Comments: le headspace? Yes No NA _> ed: Yes No NA _> pH appropriate? Yes No NA _>

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, June 23, 2023 Mike Staton Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

RE: A3F0805 - Woodinville West Business Park - 1789002.010

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3F0805, which was received by the laboratory on 6/6/2023 at 10:31:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 3.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-11-5	A3F0805-01	Soil	06/01/23 15:20	06/06/23 10:31
DMW-1-10	A3F0805-03	Soil	06/02/23 10:30	06/06/23 10:31
DMW-1-20	A3F0805-04	Soil	06/02/23 11:00	06/06/23 10:31
DMW-1-47.5	A3F0805-05	Soil	06/02/23 12:00	06/06/23 10:31

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

155 NE 100th St #302

Seattle, WA 98125

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project:

Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-11-5 (A3F0805-01)				Matrix: Soi	l	Batch:	23F0213	
Acetone	ND	0.621	1.24	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Acrylonitrile	ND	0.0621	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Benzene	ND	0.00621	0.0124	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Bromobenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Bromochloromethane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Bromodichloromethane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Bromoform	ND	0.124	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Bromomethane	ND	0.621	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
2-Butanone (MEK)	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
n-Butylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
sec-Butylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
tert-Butylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Carbon disulfide	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Carbon tetrachloride	ND	0.0621	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Chlorobenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Chloroethane	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Chloroform	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Chloromethane	ND	0.155	0.311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
2-Chlorotoluene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
4-Chlorotoluene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Dibromochloromethane	ND	0.0621	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	0.311	0.311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Dibromomethane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,2-Dichlorobenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,3-Dichlorobenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,4-Dichlorobenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
Dichlorodifluoromethane	ND	0.0621	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,1-Dichloroethane	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
1,1-Dichloroethene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	
cis-1,2-Dichloroethene	0.0224	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	J
trans-1,2-Dichloroethene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-11-5 (A3F0805-01)				Matrix: Soil		Batch:	23F0213		
1,2-Dichloropropane	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,3-Dichloropropane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
2,2-Dichloropropane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,1-Dichloropropene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
cis-1,3-Dichloropropene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
rans-1,3-Dichloropropene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Ethylbenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Hexachlorobutadiene	ND	0.0621	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
2-Hexanone	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Isopropylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
4-Isopropyltoluene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Methylene chloride	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
I-Methyl-2-pentanone (MiBK)	ND	0.311	0.621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Methyl tert-butyl ether (MTBE)	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Naphthalene	ND	0.0621	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
-Propylbenzene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Styrene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
,1,1,2-Tetrachloroethane	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Tetrachloroethene (PCE)	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Toluene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,2,3-Trichlorobenzene	ND	0.155	0.311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,2,4-Trichlorobenzene	ND	0.155	0.311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
1,1,1-Trichloroethane	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
,1,2-Trichloroethane	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Trichloroethene (TCE)	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
richlorofluoromethane	ND	0.124	0.124	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
,2,3-Trichloropropane	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
,2,4-Trimethylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
,3,5-Trimethylbenzene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
n,p-Xylene	ND	0.0311	0.0621	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
-Xylene	ND	0.0155	0.0311	mg/kg dry	50	06/07/23 17:08	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	06/07/23 17:08	5035A/8260D		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-11-5 (A3F0805-01)				Matrix: Soil		Batch:	23F0213		
Surrogate: Toluene-d8 (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	06/07/23 17:08	5035A/8260D		
4-Bromofluorobenzene (Surr)			99 %	79-120 %	I	06/07/23 17:08	5035A/8260D		
DMW-1-10 (A3F0805-03)				Matrix: Soil		Batch: 23F0184			
Acetone	ND	0.631	1.26	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Acrylonitrile	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Benzene	ND	0.00631	0.0126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Bromobenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Bromochloromethane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Bromodichloromethane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Bromoform	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Bromomethane	ND	0.631	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
2-Butanone (MEK)	ND	0.315	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
n-Butylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
sec-Butylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
ert-Butylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Carbon disulfide	ND	0.315	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Carbon tetrachloride	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Chlorobenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Chloroethane	ND	0.315	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Chloroform	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Chloromethane	ND	0.158	0.315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
2-Chlorotoluene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
4-Chlorotoluene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Dibromochloromethane	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2-Dibromo-3-chloropropane	ND	0.158	0.315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2-Dibromoethane (EDB)	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Dibromomethane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2-Dichlorobenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,3-Dichlorobenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,4-Dichlorobenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Dichlorodifluoromethane	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1-Dichloroethane	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2-Dichloroethane (EDC)	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
	Kesuit	Pillit	Lillit					inotes	
DMW-1-10 (A3F0805-03)				Matrix: Soi	I	Batch:	23F0184		
1,1-Dichloroethene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
cis-1,2-Dichloroethene	0.0233	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D	J	
trans-1,2-Dichloroethene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2-Dichloropropane	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,3-Dichloropropane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
2,2-Dichloropropane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1-Dichloropropene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
cis-1,3-Dichloropropene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
trans-1,3-Dichloropropene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Ethylbenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Hexachlorobutadiene	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
2-Hexanone	ND	0.631	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Isopropylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
4-Isopropyltoluene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Methylene chloride	ND	0.315	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
4-Methyl-2-pentanone (MiBK)	ND	0.315	0.631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Methyl tert-butyl ether (MTBE)	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Naphthalene	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
n-Propylbenzene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Styrene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1,1,2-Tetrachloroethane	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Tetrachloroethene (PCE)	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Toluene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2,3-Trichlorobenzene	ND	0.158	0.315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2,4-Trichlorobenzene	ND	0.158	0.315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1,1-Trichloroethane	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,1,2-Trichloroethane	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Trichloroethene (TCE)	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Trichlorofluoromethane	ND	0.0631	0.126	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2,3-Trichloropropane	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,2,4-Trimethylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
1,3,5-Trimethylbenzene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
DMW-1-10 (A3F0805-03)				Matrix: Soil		Batch: 23F0184			
m,p-Xylene	ND	0.0315	0.0631	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
o-Xylene	ND	0.0158	0.0315	mg/kg dry	50	06/06/23 15:16	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	06/06/23 15:16	5035A/8260D		
Toluene-d8 (Surr)			96 %	80-120 %	1	06/06/23 15:16	5035A/8260D		
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	06/06/23 15:16	5035A/8260D		
DMW-1-20 (A3F0805-04)			Matrix: Soil		Batch: 23F0541				
Acetone	ND	0.722	1.44	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Acrylonitrile	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Benzene	ND	0.00722	0.0144	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Bromobenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Bromochloromethane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Bromodichloromethane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Bromoform	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Bromomethane	ND	0.722	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
2-Butanone (MEK)	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
n-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
sec-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
tert-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Carbon disulfide	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Carbon tetrachloride	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Chlorobenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Chloroethane	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Chloroform	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Chloromethane	ND	0.181	0.361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
2-Chlorotoluene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
4-Chlorotoluene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Dibromochloromethane	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
1,2-Dibromo-3-chloropropane	ND	0.181	0.361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
1,2-Dibromoethane (EDB)	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
Dibromomethane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
1,2-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		
1,3-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DMW-1-20 (A3F0805-04)				Matrix: Soi	I	Batch:	23F0541	
1,4-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Dichlorodifluoromethane	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1-Dichloroethane	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1-Dichloroethene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
cis-1,2-Dichloroethene	0.0578	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
trans-1,2-Dichloroethene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,2-Dichloropropane	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,3-Dichloropropane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
2,2-Dichloropropane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1-Dichloropropene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
cis-1,3-Dichloropropene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
trans-1,3-Dichloropropene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Ethylbenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Hexachlorobutadiene	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
2-Hexanone	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Isopropylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
4-Isopropyltoluene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Methylene chloride	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	0.361	0.722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Naphthalene	ND	0.0722	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
n-Propylbenzene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Styrene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Tetrachloroethene (PCE)	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Toluene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,2,3-Trichlorobenzene	ND	0.181	0.361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,2,4-Trichlorobenzene	ND	0.181	0.361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1,1-Trichloroethane	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,1,2-Trichloroethane	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Γrichloroethene (TCE)	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DMW-1-20 (A3F0805-04)				Matrix: Soil		Batch:	23F0541	
Trichlorofluoromethane	ND	0.144	0.144	mg/kg dry	50	06/15/23 14:55	5035A/8260D	Q-52
1,2,3-Trichloropropane	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,2,4-Trimethylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
1,3,5-Trimethylbenzene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Vinyl chloride	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
m,p-Xylene	ND	0.0361	0.0722	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
o-Xylene	ND	0.0181	0.0361	mg/kg dry	50	06/15/23 14:55	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	06/15/23 14:55	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	06/15/23 14:55	5035A/8260D	
4-Bromofluorobenzene (Surr)			93 %	79-120 %	1	06/15/23 14:55	5035A/8260D	
DMW-1-47.5 (A3F0805-05)				Matrix: Soil		Batch:	23F0699	H-01
Acetone	ND	0.656	1.31	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Acrylonitrile	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Benzene	ND	0.00656	0.0131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Bromobenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Bromochloromethane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Bromodichloromethane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Bromoform	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Bromomethane	ND	0.656	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
2-Butanone (MEK)	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
n-Butylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
sec-Butylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
ert-Butylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Carbon disulfide	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Carbon tetrachloride	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Chlorobenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Chloroethane	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Chloroform	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Chloromethane	ND	0.164	0.328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
2-Chlorotoluene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1-Chlorotoluene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Dibromochloromethane	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic compound	us by EPA 82	ענט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
DMW-1-47.5 (A3F0805-05)				Matrix: Soi	l	Batch:	23F0699	H-01
1,2-Dibromo-3-chloropropane	ND	0.164	0.328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Dibromomethane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2-Dichlorobenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,3-Dichlorobenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,4-Dichlorobenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Dichlorodifluoromethane	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1-Dichloroethane	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1-Dichloroethene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
cis-1,2-Dichloroethene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
trans-1,2-Dichloroethene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2-Dichloropropane	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,3-Dichloropropane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
2,2-Dichloropropane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1-Dichloropropene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
cis-1,3-Dichloropropene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
trans-1,3-Dichloropropene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Ethylbenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Hexachlorobutadiene	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
2-Hexanone	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Isopropylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
4-Isopropyltoluene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Methylene chloride	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	0.328	0.656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Naphthalene	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
n-Propylbenzene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Styrene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Tetrachloroethene (PCE)	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Toluene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compour	nds by EPA 826	30D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DMW-1-47.5 (A3F0805-05)				Matrix: Soil		Batch:	23F0699	H-01
1,2,3-Trichlorobenzene	ND	0.164	0.328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2,4-Trichlorobenzene	ND	0.164	0.328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1,1-Trichloroethane	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,1,2-Trichloroethane	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Trichloroethene (TCE)	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Trichlorofluoromethane	ND	0.0656	0.131	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2,3-Trichloropropane	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,2,4-Trimethylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
1,3,5-Trimethylbenzene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Vinyl chloride	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
m,p-Xylene	ND	0.0328	0.0656	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
o-Xylene	ND	0.0164	0.0328	mg/kg dry	50	06/20/23 11:43	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove.	ery: 102 %	Limits: 80-120 %	<i>i</i> 1	06/20/23 11:43	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	í 1	06/20/23 11:43	5035A/8260D	
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	06/20/23 11:43	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

		Vinyl Chlo	ride by EF	A 8260D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-5 (A3F0805-01)				Matrix: Soil		Batch:	23F0303	
Vinyl chloride	ND	0.00621	0.0124	mg/kg dry	100	06/08/23 18:26	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 107 %	Limits: 80-120 %	1	06/08/23 18:26	5035A/8260D SIM	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/08/23 18:26	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	79-120 %	1	06/08/23 18:26	5035A/8260D SIM	
DMW-1-10 (A3F0805-03)				Matrix: Soil		Batch:	23F0303	
Vinyl chloride	ND	0.00631	0.0126	mg/kg dry	100	06/08/23 19:20	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 107 %	Limits: 80-120 %	1	06/08/23 19:20	5035A/8260D SIM	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/08/23 19:20	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	1	06/08/23 19:20	5035A/8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-5 (A3F0805-01)				Matrix: So	oil	Batch:	23F0189	
% Solids	82.3		1.00	%	1	06/07/23 06:26	EPA 8000D	
DMW-1-10 (A3F0805-03)				Matrix: So	oil	Batch:	23F0189	
% Solids	87.4		1.00	%	1	06/07/23 06:26	EPA 8000D	
DMW-1-20 (A3F0805-04)				Matrix: So	oil	Batch:	23F0546	
% Solids	80.9		1.00	%	1	06/16/23 08:09	EPA 8000D	
DMW-1-47.5 (A3F0805-05)				Matrix: So	oil	Batch:	23F0703	H-01
% Solids	78.8		1.00	%	1	06/21/23 04:08	EPA 8000D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0184 - EPA 5035A Soil Blank (23F0184-BLK1) Prepared: 06/06/23 13:19 Analyzed: 06/06/23 14:50 5035A/8260D ND 0.500 1.00 mg/kg wet Acetone ND 0.0500 0.100 mg/kg wet 50 Acrylonitrile Benzene ND 0.00500 0.0100 mg/kg wet 50 Bromobenzene ND 0.0125 0.0250 mg/kg wet 50 Bromochloromethane ND 0.0250 0.0500 mg/kg wet 50 ND 0.0250 Bromodichloromethane 0.0500 mg/kg wet 50 Bromoform ND 0.0500 0.100 mg/kg wet 50 0.500 Bromomethane ND 0.500 mg/kg wet 50 2-Butanone (MEK) ND 0.250 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0250 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0250 0.0500mg/kg wet 50 ND 0.0250 tert-Butylbenzene 0.0500 mg/kg wet 50 ---Carbon disulfide ND 0.250 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0250 0.0500 mg/kg wet 50 Chlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Chloroethane ND 0.250 0.500 mg/kg wet 50 ------Chloroform ND 0.0250 0.0500mg/kg wet 50 0.125 0.250 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 4-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 Dibromochloromethane ND 0.05000.100mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.125 0.250 mg/kg wet 50 0.02501,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0250 0.0500 mg/kg wet 50 0.0125 1,2-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Dichlorodifluoromethane ND 0.0500 0.100 mg/kg wet 50 ---1,1-Dichloroethane ND 0.01250.0250mg/kg wet 50 0.0125 1,2-Dichloroethane (EDC) ND 0.0250 mg/kg wet 50 1,1-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 trans-1,2-Dichloroethene 0.0125 0.0250 ND mg/kg wet 50

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Analyte	Resuit	Limit	Limit	Units D	Hution	Amount	Resuit	70 KEC	Limits	KPD	Limit	Notes
Batch 23F0184 - EPA 5035A							Soi	il				
Blank (23F0184-BLK1)			Prepared	: 06/06/23 13:	19 Anal	yzed: 06/06/	23 14:50					
1,2-Dichloropropane	ND	0.0125	0.0250	mg/kg wet	50							
,3-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50							
2,2-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50							
,1-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50							
is-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50							
ans-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50							
thylbenzene	ND	0.0125	0.0250	mg/kg wet	50							
Iexachlorobutadiene	ND	0.0500	0.100	mg/kg wet	50							
-Hexanone	ND	0.500	0.500	mg/kg wet	50							
sopropylbenzene	ND	0.0250	0.0500	mg/kg wet	50							
-Isopropyltoluene	ND	0.0250	0.0500	mg/kg wet	50							
lethylene chloride	ND	0.250	0.500	mg/kg wet	50							
-Methyl-2-pentanone (MiBK)	ND	0.250	0.500	mg/kg wet	50							
fethyl tert-butyl ether (MTBE)	ND	0.0250	0.0500	mg/kg wet	50							
laphthalene	ND	0.0500	0.100	mg/kg wet	50							
-Propylbenzene	ND	0.0125	0.0250	mg/kg wet	50							
tyrene	ND	0.0250	0.0500	mg/kg wet	50							
,1,1,2-Tetrachloroethane	ND	0.0125	0.0250	mg/kg wet	50							
,1,2,2-Tetrachloroethane	ND	0.0250	0.0500	mg/kg wet	50							
etrachloroethene (PCE)	ND	0.0125	0.0250	mg/kg wet	50							
oluene	ND	0.0250	0.0500	mg/kg wet	50							
,2,3-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50							
,2,4-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50							
,1,1-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50							
,1,2-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50							
richloroethene (TCE)	ND	0.0125	0.0250	mg/kg wet	50							
richlorofluoromethane	ND	0.0500	0.100	mg/kg wet	50							
,2,3-Trichloropropane	ND	0.0250	0.0500	mg/kg wet	50							
,2,4-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50							
,3,5-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50							
inyl chloride	ND	0.0125	0.0250	mg/kg wet	50							
n,p-Xylene	ND	0.0250	0.0500	mg/kg wet	50							
-Xylene	ND	0.0125	0.0250	mg/kg wet	50							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 15 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			/olatile Org	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0184 - EPA 5035A							Soi	I				
Blank (23F0184-BLK1)			Prepared	: 06/06/23 1	3:19 Anal	yzed: 06/06/	/23 14:50					
Surr: Toluene-d8 (Surr)		Reco	very: 98 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"					
LCS (23F0184-BS1)			Prepared	: 06/06/23 1	3:19 Anal	lyzed: 06/06/	/23 13:24					
5035A/8260D												
Acetone	1.90	0.500	1.00	mg/kg we	t 50	2.00		95	80-120%			
Acrylonitrile	1.06	0.0500	0.100	mg/kg we	t 50	1.00		106	80-120%			
Benzene	1.07	0.00500	0.0100	mg/kg we	t 50	1.00		107	80-120%			
Bromobenzene	1.11	0.0125	0.0250	mg/kg we	t 50	1.00		111	80-120%			
Bromochloromethane	1.11	0.0250	0.0500	mg/kg we	t 50	1.00		111	80-120%			
Bromodichloromethane	1.15	0.0250	0.0500	mg/kg we	t 50	1.00		115	80-120%			
Bromoform	1.15	0.0500	0.100	mg/kg we	t 50	1.00		115	80-120%			
Bromomethane	1.23	0.500	0.500	mg/kg we	t 50	1.00		123	80-120%			Q-
2-Butanone (MEK)	1.82	0.250	0.500	mg/kg we	t 50	2.00		91	80-120%			
n-Butylbenzene	0.962	0.0250	0.0500	mg/kg we	t 50	1.00		96	80-120%			
sec-Butylbenzene	1.04	0.0250	0.0500	mg/kg we	t 50	1.00		104	80-120%			
tert-Butylbenzene	0.892	0.0250	0.0500	mg/kg we	t 50	1.00		89	80-120%			
Carbon disulfide	1.17	0.250	0.500	mg/kg we	t 50	1.00		117	80-120%			
Carbon tetrachloride	1.30	0.0250	0.0500	mg/kg we	t 50	1.00		130	80-120%			Q-
Chlorobenzene	1.11	0.0125	0.0250	mg/kg we	t 50	1.00		111	80-120%			
Chloroethane	1.45	0.250	0.500	mg/kg we	t 50	1.00		145	80-120%			Q-
Chloroform	1.10	0.0250	0.0500	mg/kg we	t 50	1.00		110	80-120%			
Chloromethane	1.08	0.125	0.250	mg/kg we	t 50	1.00		108	80-120%			
2-Chlorotoluene	1.02	0.0250	0.0500	mg/kg we	t 50	1.00		102	80-120%			
4-Chlorotoluene	0.985	0.0250	0.0500	mg/kg we	t 50	1.00		99	80-120%			
Dibromochloromethane	1.32	0.0500	0.100	mg/kg we	t 50	1.00		132	80-120%			Q-
1,2-Dibromo-3-chloropropane	1.14	0.125	0.250	mg/kg we	t 50	1.00		114	80-120%			
1,2-Dibromoethane (EDB)	1.13	0.0250	0.0500	mg/kg we	t 50	1.00		113	80-120%			
Dibromomethane	1.09	0.0250	0.0500	mg/kg we		1.00		109	80-120%			
1,2-Dichlorobenzene	1.11	0.0125	0.0250	mg/kg we	t 50	1.00		111	80-120%			
1,3-Dichlorobenzene	1.12	0.0125	0.0250	mg/kg we	t 50	1.00		112	80-120%			
1,4-Dichlorobenzene	1.08	0.0125	0.0250	mg/kg we		1.00		108	80-120%			
Dichlorodifluoromethane	1.01	0.0500	0.100	mg/kg we		1.00		101	80-120%			
1,1-Dichloroethane	1.11	0.0125	0.0250	mg/kg we	t 50	1.00		111	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0184 - EPA 5035A							Soi	I				
LCS (23F0184-BS1)			Prepared	: 06/06/23 1	3:19 Ana	lyzed: 06/06	/23 13:24					
1,2-Dichloroethane (EDC)	1.04	0.0125	0.0250	mg/kg we	et 50	1.00		104	80-120%			
1,1-Dichloroethene	1.12	0.0125	0.0250	mg/kg we	et 50	1.00		112	80-120%			
cis-1,2-Dichloroethene	1.04	0.0125	0.0250	mg/kg we	et 50	1.00		104	80-120%			
trans-1,2-Dichloroethene	1.08	0.0125	0.0250	mg/kg we	et 50	1.00		108	80-120%			
1,2-Dichloropropane	1.07	0.0125	0.0250	mg/kg we	et 50	1.00		107	80-120%			
1,3-Dichloropropane	1.05	0.0250	0.0500	mg/kg we	et 50	1.00		105	80-120%			
2,2-Dichloropropane	1.14	0.0250	0.0500	mg/kg we	t 50	1.00		114	80-120%			
1,1-Dichloropropene	1.07	0.0250	0.0500	mg/kg we	et 50	1.00		107	80-120%			
cis-1,3-Dichloropropene	1.10	0.0250	0.0500	mg/kg we	t 50	1.00		110	80-120%			
trans-1,3-Dichloropropene	1.10	0.0250	0.0500	mg/kg we	et 50	1.00		110	80-120%			
Ethylbenzene	1.01	0.0125	0.0250	mg/kg we	et 50	1.00		101	80-120%			
Hexachlorobutadiene	1.09	0.0500	0.100	mg/kg we	t 50	1.00		109	80-120%			
2-Hexanone	1.49	0.500	0.500	mg/kg we	et 50	2.00		74	80-120%			Q-55
Isopropylbenzene	1.03	0.0250	0.0500	mg/kg we	t 50	1.00		103	80-120%			
4-Isopropyltoluene	1.06	0.0250	0.0500	mg/kg we	et 50	1.00		106	80-120%			
Methylene chloride	1.33	0.250	0.500	mg/kg we	et 50	1.00		133	80-120%			Q-56
4-Methyl-2-pentanone (MiBK)	1.61	0.250	0.500	mg/kg we	et 50	2.00		81	80-120%			
Methyl tert-butyl ether (MTBE)	1.06	0.0250	0.0500	mg/kg we	et 50	1.00		106	80-120%			
Naphthalene	0.936	0.0500	0.100	mg/kg we	et 50	1.00		94	80-120%			
n-Propylbenzene	0.982	0.0125	0.0250	mg/kg we	et 50	1.00		98	80-120%			
Styrene	1.03	0.0250	0.0500	mg/kg we	et 50	1.00		103	80-120%			
1,1,1,2-Tetrachloroethane	1.20	0.0125	0.0250	mg/kg we	et 50	1.00		120	80-120%			
1,1,2,2-Tetrachloroethane	1.08	0.0250	0.0500	mg/kg we	et 50	1.00		108	80-120%			
Tetrachloroethene (PCE)	1.20	0.0125	0.0250	mg/kg we	et 50	1.00		120	80-120%			
Toluene	1.01	0.0250	0.0500	mg/kg we	et 50	1.00		101	80-120%			
1,2,3-Trichlorobenzene	1.10	0.125	0.250	mg/kg we	et 50	1.00		110	80-120%			
1,2,4-Trichlorobenzene	1.04	0.125	0.250	mg/kg we	et 50	1.00		104	80-120%			
1,1,1-Trichloroethane	1.11	0.0125	0.0250	mg/kg we	et 50	1.00		111	80-120%			
1,1,2-Trichloroethane	1.11	0.0125	0.0250	mg/kg we	et 50	1.00		111	80-120%			
Trichloroethene (TCE)	1.17	0.0125	0.0250	mg/kg we	et 50	1.00		117	80-120%			
Trichlorofluoromethane	0.867	0.0500	0.100	mg/kg we	et 50	1.00		87	80-120%			
1,2,3-Trichloropropane	1.05	0.0250	0.0500	mg/kg we	et 50	1.00		105	80-120%			
1,2,4-Trimethylbenzene	1.02	0.0250	0.0500	mg/kg we	et 50	1.00		102	80-120%			
1,3,5-Trimethylbenzene	1.06	0.0250	0.0500	mg/kg we	et 50	1.00		106	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		<u>'</u>	Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0184 - EPA 5035A							So	il				
LCS (23F0184-BS1)			Prepared	1: 06/06/23 13	3:19 Ana	lyzed: 06/06	/23 13:24					
/inyl chloride	1.14	0.0125	0.0250	mg/kg we	t 50	1.00		114	80-120%			
n,p-Xylene	2.09	0.0250	0.0500	mg/kg we	t 50	2.00		105	80-120%			
-Xylene	0.956	0.0125	0.0250	mg/kg we	t 50	1.00		96	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			97 %	80-1	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-1	120 %		"					
Ouplicate (23F0184-DUP1)			Prepared	1: 06/02/23 10	0:30 Ana	lyzed: 06/06	/23 15:41					
OC Source Sample: DMW-1-10 (A	A3F0805-03	<u>)</u>										
5035A/8260D												
Acetone	ND	0.631	1.26	mg/kg dry	50		ND				30%	
crylonitrile	ND	0.0631	0.126	mg/kg dry			ND				30%	
enzene	ND	0.00631	0.0126	mg/kg dry	50		ND				30%	
Bromobenzene	ND	0.0158	0.0315	mg/kg dry	50		ND				30%	
romochloromethane	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
Bromoform	ND	0.0631	0.126	mg/kg dry			ND				30%	
Bromomethane	ND	0.631	0.631	mg/kg dry	50		ND				30%	
-Butanone (MEK)	ND	0.315	0.631	mg/kg dry	50		ND				30%	
-Butylbenzene	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
ec-Butylbenzene	ND	0.0315	0.0631	mg/kg dry			ND				30%	
ert-Butylbenzene	ND	0.0315	0.0631	mg/kg dry			ND				30%	
Carbon disulfide	ND	0.315	0.631	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
Chlorobenzene	ND	0.0158	0.0315	mg/kg dry			ND				30%	
Chloroethane	ND	0.315	0.631	mg/kg dry			ND				30%	
Chloroform	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
Chloromethane	ND	0.158	0.315	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0315	0.0631	mg/kg dry	50		ND				30%	
Dibromochloromethane	ND	0.0631	0.126	mg/kg dry			ND				30%	
,2-Dibromo-3-chloropropane	ND	0.158	0.315	mg/kg dry	50		ND				30%	
,2-Dibromoethane (EDB)	ND	0.0315	0.0631	mg/kg dry			ND				30%	
Dibromomethane	ND	0.0315	0.0631	mg/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0184 - EPA 5035A Soil Duplicate (23F0184-DUP1) Prepared: 06/02/23 10:30 Analyzed: 06/06/23 15:41 QC Source Sample: DMW-1-10 (A3F0805-03) 1,2-Dichlorobenzene ND 0.0158 0.0315 mg/kg dry 50 ND 30% 0.03150.0158 1,3-Dichlorobenzene ND mg/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 0.0158 0.0315 mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.0631 0.126mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0158 0.0315 mg/kg dry 50 ND 30% ------1,2-Dichloroethane (EDC) ND 0.0158 0.0315 mg/kg dry 50 ND 30% 1,1-Dichloroethene ND 0.01580.0315mg/kg dry 50 ND 30% 0.0158 0.0233 30% cis-1,2-Dichloroethene 0.0233 0.0315 mg/kg dry 50 0 trans-1,2-Dichloroethene ND 0.0158 0.0315 mg/kg dry 50 ND 30% 1,2-Dichloropropane ND 0.0158 0.0315 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0315 0.0631 mg/kg dry 50 ND 30% ND 0.03150.0631 30% 2,2-Dichloropropane mg/kg dry 50 ND 1,1-Dichloropropene ND 0.0315 0.0631 mg/kg dry 50 ND 30% ND 0.0315 30% cis-1,3-Dichloropropene 0.0631 mg/kg dry 50 ND 0.0315 trans-1,3-Dichloropropene ND 0.0631 mg/kg dry 50 ND 30% Ethylbenzene ND 0.0158 0.0315 mg/kg dry 50 ND ___ 30% Hexachlorobutadiene ND 0.0631 0.126 mg/kg dry 50 ND 30% 2-Hexanone ND 0.631 30% 0.631 mg/kg dry 50 ND 0.0315 Isopropylbenzene ND 0.0631 mg/kg dry 50 ND 30% 0.0315 ND 0.0631 mg/kg dry 50 ND 30% 4-Isopropyltoluene ND 0.315 Methylene chloride 0.631 mg/kg dry 50 ND 30% 0.315 4-Methyl-2-pentanone (MiBK) ND 0.631 mg/kg dry 50 ND ------30% Methyl tert-butyl ether (MTBE) ND 0.0315 0.0631 mg/kg dry 50 ND 30% Naphthalene ND 0.0631 30% 0.126mg/kg dry 50 ND ND 0.0158 0.0315 30% n-Propylbenzene mg/kg dry 50 ND ND 0.0315 0.0631 ND 30% Styrene mg/kg dry 50 1,1,1,2-Tetrachloroethane ND 0.0158 0.0315 mg/kg dry ND 30% 50 ND 0.0315 1,1,2,2-Tetrachloroethane 0.0631 mg/kg dry 50 ND ------30% Tetrachloroethene (PCE) ND 0.0158 0.0315 mg/kg dry 50 ND 30% Toluene ND 0.0315 0.0631 30% mg/kg dry 50 ND ---1,2,3-Trichlorobenzene ND 0.158 0.315 mg/kg dry 50 ND 30% 0.158 0.315 1,2,4-Trichlorobenzene ND 50 ND 30% mg/kg dry 1,1,1-Trichloroethane ND 0.0158 0.0315 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0184 - EPA 5035A							Soi	I				
Duplicate (23F0184-DUP1)			Prepared	1: 06/02/23 1	0:30 Ana	lyzed: 06/06/	/23 15:41					
QC Source Sample: DMW-1-10 (A	A3F0805-03)	1										
1,1,2-Trichloroethane	ND	0.0158	0.0315	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	0.0158	0.0315	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	0.0631	0.126	mg/kg dr	y 50		ND				30%	
,2,3-Trichloropropane	ND	0.0315	0.0631	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0315	0.0631	mg/kg dr	y 50		ND				30%	
,3,5-Trimethylbenzene	ND	0.0315	0.0631	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND	0.0158	0.0315	mg/kg dr	y 50		ND				30%	
n,p-Xylene	ND	0.0315	0.0631	mg/kg dr	y 50		ND				30%	
o-Xylene	ND	0.0158	0.0315	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 107 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %		120 %		"					
4-Bromofluorobenzene (Surr)			96 %		120 %		"					
Ouplicate (23F0184-DUP2) QC Source Sample: Non-SDG (A3	3F0817-01)		1	1: 06/06/23 0		•	-					
Acetone	ND	0.625	1.25	mg/kg dr	y 50		ND				30%	
Acrylonitrile	ND	0.0625	0.125	mg/kg dr	y 50		ND				30%	
Benzene	ND	0.00625	0.0125	mg/kg dr	y 50		ND				30%	
Bromobenzene	ND	0.0156	0.0313	mg/kg dr			ND				30%	
Bromochloromethane	ND	0.0313	0.0625	mg/kg dr			ND				30%	
Bromodichloromethane	ND	0.0313	0.0625	mg/kg dr			ND				30%	
Bromoform	ND	0.0625	0.125	mg/kg dr			ND				30%	
Bromomethane	ND	0.625	0.625	mg/kg dr			ND				30%	
2-Butanone (MEK)	ND	0.313	0.625	mg/kg dr			ND				30%	
n-Butylbenzene	ND	0.0313	0.0625	mg/kg dr			ND				30%	
ec-Butylbenzene	ND	0.0313	0.0625	mg/kg dr			ND				30%	
ert-Butylbenzene	ND	0.0313	0.0625	mg/kg dr			ND				30%	
Carbon disulfide	ND	0.313	0.625	mg/kg dr			ND				30%	
Carbon tetrachloride	ND	0.0313	0.0625	mg/kg dr			ND				30%	
Chlorobenzene	ND	0.0156	0.0313	mg/kg dr			ND				30%	
					•		ND				30%	
Chloroethane	ND	0.313	0.625	mg/kg ar	y 30		ND				30/0	
Chloroethane Chloroform	ND ND	0.313 0.0313	0.625 0.0625	mg/kg dr mg/kg dr			ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0184 - EPA 5035A Soil Duplicate (23F0184-DUP2) Prepared: 06/06/23 08:50 Analyzed: 06/06/23 20:47 QC Source Sample: Non-SDG (A3F0817-01) 2-Chlorotoluene ND 0.0313 0.0625 mg/kg dry 50 ND 30% 0.0625ND 0.0313 4-Chlorotoluene mg/kg dry 50 ND 30% Dibromochloromethane ND 0.0625 0.125 mg/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 0.156 0.313 mg/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 0.0313 0.0625 mg/kg dry 50 ND 30% ------ND 0.0313 Dibromomethane 0.0625 mg/kg dry 50 ND 30% 1,2-Dichlorobenzene ND 0.0156 0.0313mg/kg dry 50 ND 30% ND 0.0156 ND 30% 1.3-Dichlorobenzene 0.0313 mg/kg dry 50 1,4-Dichlorobenzene ND 0.0156 0.0313 mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.0625 0.125 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0156 0.0313 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0156 0.0313 mg/kg dry 30% 50 ND 1,1-Dichloroethene ND 0.0156 0.0313 mg/kg dry 50 ND 30% ND 0.0156 0.0313 30% cis-1,2-Dichloroethene mg/kg dry 50 ND 0.0156 trans-1,2-Dichloroethene ND 0.0313 mg/kg dry 50 ND 30% 1,2-Dichloropropane ND 0.0156 0.0313 mg/kg dry 50 ND ___ 30% 1,3-Dichloropropane ND 0.0313 0.0625 mg/kg dry 50 ND 30% ND 0.0313 30% 2,2-Dichloropropane 0.0625mg/kg dry 50 ND ---0.0313 1,1-Dichloropropene ND 0.0625mg/kg dry 50 ND 30% 0.0313 cis-1,3-Dichloropropene ND 0.0625 mg/kg dry 50 ND 30% ND 0.0313 mg/kg dry trans-1,3-Dichloropropene 0.0625 50 ND 30% Ethylbenzene ND 0.0156 0.0313 mg/kg dry 50 ND ---30% Hexachlorobutadiene ND 0.0625 0.125 mg/kg dry 50 ND 30% 2-Hexanone ND ND 30% 0.625 0.625 mg/kg dry 50 ND 0.0313 0.0625 30% Isopropylbenzene mg/kg dry 50 ND ND 0.0313 0.0625 ND 30% 4-Isopropyltoluene mg/kg dry 50 Methylene chloride ND 0.313 0.625 mg/kg dry ND 30% 50 4-Methyl-2-pentanone (MiBK) ND 0.313 0.625 mg/kg dry 50 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.0313 0.0625 mg/kg dry 50 ND 30% Naphthalene ND 0.0625 0.125 ND 30% mg/kg dry 50 n-Propylbenzene ND 0.0156 0.0313 mg/kg dry 50 ND 30% 0.0313 Styrene ND 0.062550 ND 30% mg/kg dry 1,1,1,2-Tetrachloroethane ND 0.0156 0.0313 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0184 - EPA 5035A							Soi	il				
Duplicate (23F0184-DUP2)			Prepared	: 06/06/23 0	8:50 Ana	lyzed: 06/06	/23 20:47					
QC Source Sample: Non-SDG (A3	3F0817-01)											
1,1,2,2-Tetrachloroethane	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
Tetrachloroethene (PCE)	ND	0.0156	0.0313	mg/kg dr	y 50		ND				30%	
Toluene	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	0.156	0.313	mg/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	0.156	0.313	mg/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND	0.0156	0.0313	mg/kg dr			ND				30%	
1,1,2-Trichloroethane	ND	0.0156	0.0313	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	0.0156	0.0313	mg/kg dr			ND				30%	
Trichlorofluoromethane	ND	0.0625	0.125	mg/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND	0.0156	0.0313	mg/kg dr	y 50		ND				30%	
m,p-Xylene	ND	0.0313	0.0625	mg/kg dr	y 50		ND				30%	
o-Xylene	ND	0.0156	0.0313	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 109 %	Limits: 80-	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79-	120 %		"					
Matrix Spike (23F0184-MS1)			Prenared	· 06/06/23 0	07:40 Ana	lyzed: 06/06	/23 19:30					
QC Source Sample: Non-SDG (A3	RF0808_01)		Trepure	00,00,25 0	7110	.,224. 00.00	,20 17.00					
5035A/8260D	<u> </u>											
Acetone	2.29	0.621	1.24	mg/kg dr	y 50	2.48	ND	92	36-164%			
Acrylonitrile	1.20	0.0621	0.124	mg/kg dr	•	1.24	ND	97	65-134%			
Benzene	1.36	0.00621	0.0124	mg/kg dr	•	1.24	ND	110	77-121%			
Bromobenzene	1.35	0.0155	0.0310	mg/kg dr	,	1.24	ND	109	78-121%			
Bromochloromethane	1.39	0.0310	0.0621	mg/kg dr	-	1.24	ND	112	78-125%			
Bromodichloromethane	1.35	0.0310	0.0621	mg/kg dr	-	1.24	ND	109	75-127%			
Bromoform	1.25	0.0621	0.124	mg/kg dr	•	1.24	ND	101	67-132%			
Bromomethane	1.56	0.621	0.621	mg/kg dr	•	1.24	ND	126	53-143%			Q
2-Butanone (MEK)	2.13	0.310	0.621	mg/kg dr	•	2.48	ND ND	86	51-148%			V
` ′	1.15	0.0310	0.0621	mg/kg dr	•	1.24	ND ND	93	70-128%			
n-Butylbenzene	1.13	0.0310	0.0021	mg/kg ar	y 50	1.24	שא	93	/0-120%			

Apex Laboratories

Philip Neimberg

sec-Butylbenzene

1.27

0.0310

0.0621

mg/kg dry

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

73-126%

ND

Philip Nerenberg, Lab Director

1.24

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23F0184 - EPA 5035A Soil Matrix Spike (23F0184-MS1) Prepared: 06/06/23 07:40 Analyzed: 06/06/23 19:30 QC Source Sample: Non-SDG (A3F0808-01) mg/kg dry tert-Butylbenzene 1.09 0.0310 0.0621 50 1.24 ND 88 73-125% 0.310 1.24 Carbon disulfide 1.34 0.621 mg/kg dry 50 ND 108 63-132% Carbon tetrachloride 1.44 0.0310 0.0621 mg/kg dry 50 1.24 ND 116 70-135% Q-54 Chlorobenzene 1.34 0.0155 0.0310mg/kg dry 50 1.24 ND 108 79-120% Chloroethane 1.89 0.310 0.621 mg/kg dry 50 1.24 ND 153 59-139% Q-54c ---0.0310 1.24 Chloroform 1.38 0.0621 mg/kg dry 50 ND 112 78-123% Chloromethane 1.36 0.155 0.310 mg/kg dry 50 1.24 ND 109 50-136% 0.0310 102 2-Chlorotoluene 1.26 0.0621 mg/kg dry 50 1.24 ND 75-122% 4-Chlorotoluene 1.21 0.0310 0.0621 mg/kg dry 50 1.24 ND 97 72-124% Dibromochloromethane 1.46 0.0621 0.124 mg/kg dry 50 1.24 ND 118 74-126% O-54a 1,2-Dibromo-3-chloropropane 1.26 0.155 0.310 mg/kg dry 50 1.24 ND 102 61-132% 0.0310 1,2-Dibromoethane (EDB) 0.0621 1.24 107 78-122% 1.33 mg/kg dry 50 ND Dibromomethane 1.35 0.0310 0.0621 mg/kg dry 50 1.24 ND 109 78-125% 1.34 0.0155 0.0310 1.24 ND 108 78-121% 1,2-Dichlorobenzene mg/kg dry 50 0.0155 1,3-Dichlorobenzene 1.37 0.0310 mg/kg dry 50 1.24 ND 110 77-121% 1.4-Dichlorobenzene 1.32 0.0155 0.0310 mg/kg dry 50 1.24 ND 107 75-120% ___ Dichlorodifluoromethane 1.30 0.0621 0.124 mg/kg dry 50 1.24 ND 105 29-149% 0.0155 1.24 ND 1.1-Dichloroethane 1.38 0.0310mg/kg dry 50 111 76-125% 0.0155 1.24 73-128% 1,2-Dichloroethane (EDC) 1.29 0.0310mg/kg dry 50 ND 104 0.0155 1,1-Dichloroethene 1.38 0.0310 mg/kg dry 50 1.24 ND 70-131% 111 0.0155 mg/kg dry 1.24 ND 100 77-123% cis-1,2-Dichloroethene 1.24 0.0310 50 trans-1,2-Dichloroethene 1.33 0.0155 0.0310 mg/kg dry 50 1.24 ND 108 74-125% 1,2-Dichloropropane 1.30 0.0155 0.0310 mg/kg dry 50 1.24 ND 105 76-123% 0.0310 1.24 100 1,3-Dichloropropane 1.24 0.0621 mg/kg dry 50 ND 77-121% 0.0310 1.24 2,2-Dichloropropane 1.31 0.0621 mg/kg dry 50 ND 106 67-133% 1.35 0.0310 0.0621 1.24 ND 109 76-125% 1,1-Dichloropropene mg/kg dry 50 cis-1,3-Dichloropropene 0.0310 0.0621 mg/kg dry 1.24 ND 102 74-126% 1.26 50 trans-1,3-Dichloropropene 1.25 0.0310 0.0621 mg/kg dry 50 1.24 ND 101 71-130% Ethylbenzene 1.26 0.0155 0.0310 mg/kg dry 50 1.24 ND 101 76-122% Hexachlorobutadiene 1.35 0.0621 0.124 1.24 ND 109 mg/kg dry 50 61-135% 2-Hexanone 1.73 0.621 0.621 mg/kg dry 50 2.48 ND 70 53-145% Q-54h Isopropylbenzene 0.0310 1.23 0.0621 50 1.24 ND 99 68-134% mg/kg dry 4-Isopropyltoluene 1.28 0.0310 0.0621 mg/kg dry 50 1.24 ND 103 73-127%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0184 - EPA 5035A Soil Matrix Spike (23F0184-MS1) Prepared: 06/06/23 07:40 Analyzed: 06/06/23 19:30 QC Source Sample: Non-SDG (A3F0808-01) Methylene chloride 1.60 0.310 0.621 mg/kg dry 50 1.24 ND 129 70-128% Q-54b 0.310 2.48 4-Methyl-2-pentanone (MiBK) 1.81 0.621 mg/kg dry 50 ND 73 65-135% Methyl tert-butyl ether (MTBE) 1.24 0.0310 0.0621 mg/kg dry 50 1.24 ND 100 73-125% Naphthalene 1.10 0.0621 0.124 mg/kg dry 50 1.24 ND 89 62-129% 1.22 0.0155 0.0310 mg/kg dry 50 1.24 ND 98 73-125% n-Propylbenzene 1.23 0.0310 1.24 99 Styrene 0.0621 mg/kg dry 50 ND 76-124% 1,1,1,2-Tetrachloroethane 1.39 0.0155 0.0310mg/kg dry 50 1.24 ND 112 78-125% 1,1,2,2-Tetrachloroethane 1.24 1.30 0.0310 105 0.0621 mg/kg dry 50 ND 70-124% Tetrachloroethene (PCE) 1.46 0.0155 0.0310 mg/kg dry 50 1.24 ND 118 73-128% Toluene 1.26 0.0310 0.0621 mg/kg dry 50 1.24 ND 102 77-121% 1,2,3-Trichlorobenzene 1.29 0.155 0.310 mg/kg dry 50 1.24 ND 104 66-130% 50 1.21 0.155 0.310 mg/kg dry 1.24 ND 97 67-129% 1.2.4-Trichlorobenzene 0.0155 1,1,1-Trichloroethane 1.39 0.0310mg/kg dry 50 1.24 ND 112 73-130% 1,1,2-Trichloroethane 1.34 0.0155 0.0310 mg/kg dry 1.24 ND 108 50 78-121% 0.0155 Trichloroethene (TCE) 1.46 0.0310 mg/kg dry 50 1.24 ND 117 77-123% Trichlorofluoromethane 1.39 0.0621 0.124 mg/kg dry 50 1.24 ND 112 62-140% 1,2,3-Trichloropropane 1.25 0.0310 0.0621 mg/kg dry 50 1.24 ND 101 73-125% 1.25 0.0310 1.24 100 1,2,4-Trimethylbenzene 0.0621 mg/kg dry 50 ND 75-123% 1,3,5-Trimethylbenzene 1.29 0.0310 1.24 73-124% 0.0621 mg/kg dry 50 ND 104 0.0155 0.0310 Vinyl chloride 1.49 mg/kg dry 50 1.24 ND 120 56-135% 2.53 0.0310 mg/kg dry 2.48 ND 102 77-124% m,p-Xylene 0.0621 50 0.0155 0.0310 o-Xylene 1.15 mg/kg dry 50 1.24 ND 93 77-123% Surr: 1,4-Difluorobenzene (Surr) 108 % Limits: 80-120 % lχ Recovery: Dilution: Toluene-d8 (Surr) 97% 80-120 % 4-Bromofluorobenzene (Surr) 95 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0213 - EPA 5035A Soil Blank (23F0213-BLK1) Prepared: 06/07/23 08:38 Analyzed: 06/07/23 10:46 5035A/8260D ND 0.500 1.00 mg/kg wet Acetone ND 0.0500 0.100 50 Acrylonitrile mg/kg wet Benzene ND 0.00500 0.0100 mg/kg wet 50 Bromobenzene ND 0.0125 0.0250 mg/kg wet 50 Bromochloromethane ND 0.0250 0.0500 mg/kg wet 50 ND 0.0250 Bromodichloromethane 0.0500 mg/kg wet 50 Bromoform ND 0.100 0.100 mg/kg wet 50 0.500 Bromomethane ND 0.500 mg/kg wet 50 2-Butanone (MEK) ND 0.250 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0250 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0250 0.0500mg/kg wet 50 ND 0.0250 tert-Butylbenzene 0.0500 mg/kg wet 50 ---Carbon disulfide ND 0.250 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0500 0.0500 mg/kg wet 50 Chlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Chloroethane ND 0.250 0.500 mg/kg wet 50 ------Chloroform ND 0.0250 0.0500mg/kg wet 50 0.125 0.250 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 4-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 Dibromochloromethane ND 0.05000.100mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.250 0.250 mg/kg wet 50 0.0250 1,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0250 0.0500 mg/kg wet 50 0.0125 1,2-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Dichlorodifluoromethane ND 0.0500 0.100 mg/kg wet 50 ---1,1-Dichloroethane ND 0.01250.0250mg/kg wet 50 0.0125 1,2-Dichloroethane (EDC) ND 0.0250 mg/kg wet 50 1,1-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 0.0125 0.0250 trans-1,2-Dichloroethene ND mg/kg wet 50

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0213 - EPA 5035A							Soi	I				
Blank (23F0213-BLK1)			Prepared	: 06/07/23 08	8:38 Anal	lyzed: 06/07/	/23 10:46					
1,2-Dichloropropane	ND	0.0125	0.0250	mg/kg we	t 50							
1,3-Dichloropropane	ND	0.0250	0.0500	mg/kg we	t 50							
2,2-Dichloropropane	ND	0.0250	0.0500	mg/kg we	t 50							
1,1-Dichloropropene	ND	0.0250	0.0500	mg/kg we	t 50							
eis-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg we	t 50							
rans-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg we	t 50							
Ethylbenzene	ND	0.0125	0.0250	mg/kg we	t 50							
Hexachlorobutadiene	ND	0.0500	0.100	mg/kg we								
2-Hexanone	ND	0.250	0.500	mg/kg we	t 50							
sopropylbenzene	ND	0.0250	0.0500	mg/kg we	t 50							
1-Isopropyltoluene	ND	0.0250	0.0500	mg/kg we	t 50							
Methylene chloride	ND	0.250	0.500	mg/kg we	t 50							
1-Methyl-2-pentanone (MiBK)	ND	0.250	0.500	mg/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND	0.0250	0.0500	mg/kg we	t 50							
Naphthalene	ND	0.0500	0.100	mg/kg we								
n-Propylbenzene	ND	0.0125	0.0250	mg/kg we	t 50							
Styrene	ND	0.0250	0.0500	mg/kg we								
1,1,1,2-Tetrachloroethane	ND	0.0125	0.0250	mg/kg we								
1,1,2,2-Tetrachloroethane	ND	0.0250	0.0500	mg/kg we	t 50							
Tetrachloroethene (PCE)	ND	0.0125	0.0250	mg/kg we	t 50							
Toluene	ND	0.0250	0.0500	mg/kg we								
1,2,3-Trichlorobenzene	ND	0.125	0.250	mg/kg we								
1,2,4-Trichlorobenzene	ND	0.125	0.250	mg/kg we								
1,1,1-Trichloroethane	ND	0.0125	0.0250	mg/kg we								
,1,2-Trichloroethane	ND	0.0125	0.0250	mg/kg we								
Trichloroethene (TCE)	ND	0.0125	0.0250	mg/kg we								
Trichlorofluoromethane	ND	0.100	0.100	mg/kg we								
,2,3-Trichloropropane	ND	0.0250	0.0500	mg/kg we								
,2,4-Trimethylbenzene	ND	0.0250	0.0500	mg/kg we								
,3,5-Trimethylbenzene	ND	0.0250	0.0500	mg/kg we								
Vinyl chloride	ND	0.0125	0.0250	mg/kg we								
n,p-Xylene	ND	0.0250	0.0500	mg/kg we								
o-Xylene	ND	0.0125	0.0250	mg/kg we								

Surr: 1,4-Difluorobenzene (Surr) Recovery: 97 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23F0213 - EPA 5035A							So	il					
Blank (23F0213-BLK1)			Prepared	: 06/07/23 0	8:38 Ana	lyzed: 06/07	7/23 10:46						
Surr: Toluene-d8 (Surr)		Recove	ery: 100 %	Limits: 80-	120 %	Dil	ution: 1x						
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"						
LCS (23F0213-BS1)			Prepared	: 06/07/23 0	8:38 Ana	lyzed: 06/07	7/23 09:51						
5035A/8260D													
Acetone	1.90	0.500	1.00	mg/kg we		2.00		95	80-120%				
Acrylonitrile	0.936	0.0500	0.100	mg/kg we	t 50	1.00		94	80-120%				
Benzene	0.933	0.00500	0.0100	mg/kg we	t 50	1.00		93	80-120%				
Bromobenzene	0.935	0.0125	0.0250	mg/kg we	t 50	1.00		94	80-120%				
Bromochloromethane	0.978	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%				
Bromodichloromethane	0.903	0.0250	0.0500	mg/kg we	t 50	1.00		90	80-120%				
Bromoform	0.728	0.100	0.100	mg/kg we	t 50	1.00		73	80-120%			Q-5	
Bromomethane	1.02	0.500	0.500	mg/kg we	t 50	1.00		102	80-120%				
2-Butanone (MEK)	1.87	0.250	0.500	mg/kg we	t 50	2.00		94	80-120%				
n-Butylbenzene	0.985	0.0250	0.0500	mg/kg we	t 50	1.00		99	80-120%				
sec-Butylbenzene	0.985	0.0250	0.0500	mg/kg we	t 50	1.00		99	80-120%				
tert-Butylbenzene	0.997	0.0250	0.0500	mg/kg we	t 50	1.00		100	80-120%				
Carbon disulfide	0.894	0.250	0.500	mg/kg we	t 50	1.00		89	80-120%				
Carbon tetrachloride	0.762	0.0500	0.0500	mg/kg we	t 50	1.00		76	80-120%			Q-5	
Chlorobenzene	0.952	0.0125	0.0250	mg/kg we	t 50	1.00		95	80-120%				
Chloroethane	0.981	0.250	0.500	mg/kg we	t 50	1.00		98	80-120%				
Chloroform	0.934	0.0250	0.0500	mg/kg we		1.00		93	80-120%				
Chloromethane	0.821	0.125	0.250	mg/kg we	t 50	1.00		82	80-120%				
2-Chlorotoluene	0.966	0.0250	0.0500	mg/kg we		1.00		97	80-120%				
4-Chlorotoluene	0.960	0.0250	0.0500	mg/kg we		1.00		96	80-120%				
Dibromochloromethane	0.898	0.0500	0.100	mg/kg we	t 50	1.00		90	80-120%				
1,2-Dibromo-3-chloropropane	0.791	0.250	0.250	mg/kg we	t 50	1.00		79	80-120%			Q-5	
1,2-Dibromoethane (EDB)	0.950	0.0250	0.0500	mg/kg we	t 50	1.00		95	80-120%				
Dibromomethane	0.979	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%				
1,2-Dichlorobenzene	0.969	0.0125	0.0250	mg/kg we		1.00		97	80-120%				
1,3-Dichlorobenzene	0.957	0.0125	0.0250	mg/kg we		1.00		96	80-120%				
1,4-Dichlorobenzene	0.938	0.0125	0.0250	mg/kg we		1.00		94	80-120%				
Dichlorodifluoromethane	0.991	0.0500	0.100	mg/kg we		1.00		99	80-120%				
1,1-Dichloroethane	0.955	0.0125	0.0250	mg/kg we		1.00		95	80-120%				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4-Isopropyltoluene

Methylene chloride

Naphthalene

Styrene

Toluene

n-Propylbenzene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethene (PCE)

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Philip Manherg

4-Methyl-2-pentanone (MiBK)

Methyl tert-butyl ether (MTBE)

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

0.0250

0.250

0.250

0.0250

0.0500

0.0125

0.0250

0.0125

0.0250

0.0125

0.0250

0.125

0.125

0.0125

0.0125

0.0125

0.100

0.0250

0.0250

0.0250

1.01

0.970

1.96

0.932

0.988

0.978

0.952

0.818

0.914

0.998

0.923

0.980

0.962

0.926

0.969

0.973

0.724

0.992

0.954

0.986

0.0500

0.500

0.500

0.0500

0.100

0.0250

0.0500

0.0250

0.0500

0.0250

0.0500

0.250

0.250

0.0250

0.0250

0.0250

0.100

0.0500

0.0500

0.0500

mg/kg wet

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

1.00

1.00

2.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

101

97

98

93

99

98

95

82

91

100

92

98

96

93

97

97

72

99

95

99

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Q-55

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0213 - EPA 5035A Soil LCS (23F0213-BS1) Prepared: 06/07/23 08:38 Analyzed: 06/07/23 09:51 1,2-Dichloroethane (EDC) 1.04 0.0125 0.0250 50 1.00 104 80-120% mg/kg wet 1,1-Dichloroethene 0.993 0.0125 0.0250 mg/kg wet 50 1.00 99 80-120% ---------50 cis-1,2-Dichloroethene 0.977 0.0125 0.0250 mg/kg wet 1.00 98 80-120% trans-1,2-Dichloroethene 0.958 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% 94 0.935 0.0125 0.0250 mg/kg wet 50 1.00 80-120% 1,2-Dichloropropane 99 1,3-Dichloropropane 0.992 0.0250 0.0500 mg/kg wet 50 1.00 80-120% 0.0250 80-120% 2,2-Dichloropropane 0.8420.0500 mg/kg wet 50 1.00 84 0.0250 98 1,1-Dichloropropene 0.985 0.0500 mg/kg wet 50 1.00 80-120% 0.0250 0.0500 92 cis-1,3-Dichloropropene 0.925 mg/kg wet 50 1.00 80-120% trans-1,3-Dichloropropene 0.8680.02500.0500mg/kg wet 50 1.00 87 80-120% Ethylbenzene 93 0.933 0.0125 0.0250 mg/kg wet 50 1.00 80-120% 0.0500 98 Hexachlorobutadiene 0.976 0.100 mg/kg wet 50 1.00 80-120% 0.250 2.00 93 2-Hexanone 1.86 0.500 mg/kg wet 50 ---80-120% ---Isopropylbenzene 0.976 0.0250 0.0500 mg/kg wet 50 1.00 98 80-120%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Com	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0213 - EPA 5035A							So	il				
LCS (23F0213-BS1)			Prepared	1: 06/07/23 08	3:38 Ana	lyzed: 06/07	/23 09:51					
Vinyl chloride	1.00	0.0125	0.0250	mg/kg wet	50	1.00		100	80-120%			
n,p-Xylene	1.86	0.0250	0.0500	mg/kg wet	50	2.00		93	80-120%			
o-Xylene	0.928	0.0125	0.0250	mg/kg wet	50	1.00		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80-1	20 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			103 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-1	20 %		"					
Ouplicate (23F0213-DUP1)			Prepared	l: 06/01/23 12	2:00 Anal	lyzed: 06/07	/23 17:59					
OC Source Sample: Non-SDG (A3	F0812-01)											
Acetone	ND	1.20	2.40	mg/kg dry	50		ND				30%	
Acrylonitrile	ND	0.120	0.240	mg/kg dry	50		ND				30%	
Benzene	ND	0.0120	0.0240	mg/kg dry	50		ND				30%	
Bromobenzene	ND	0.0300	0.0601	mg/kg dry	50		ND				30%	
Bromochloromethane	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
Bromoform	ND	0.240	0.240	mg/kg dry	50		ND				30%	
Bromomethane	ND	1.20	1.20	mg/kg dry	50		ND				30%	
-Butanone (MEK)	ND	0.601	1.20	mg/kg dry	50		ND				30%	
-Butylbenzene	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
ec-Butylbenzene	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
ert-Butylbenzene	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
Carbon disulfide	ND	0.601	1.20	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND	0.120	0.120	mg/kg dry	50		ND				30%	
Thlorobenzene	ND	0.0300	0.0601	mg/kg dry	50		ND				30%	
Chloroethane	ND	0.601	1.20	mg/kg dry	50		ND				30%	
Chloroform	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
Chloromethane	ND	0.300	0.601	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
Dibromochloromethane	ND	0.120	0.240	mg/kg dry	50		ND				30%	
,2-Dibromo-3-chloropropane	ND	0.601	0.601	mg/kg dry	50		ND				30%	
,2-Dibromoethane (EDB)	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
bibromomethane	ND	0.0601	0.120	mg/kg dry	50		ND				30%	
,2-Dichlorobenzene	ND	0.0300	0.0601	mg/kg dry	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0213 - EPA 5035A Soil Duplicate (23F0213-DUP1) Prepared: 06/01/23 12:00 Analyzed: 06/07/23 17:59 QC Source Sample: Non-SDG (A3F0812-01) mg/kg dry 1,3-Dichlorobenzene ND 0.0300 0.0601 50 ND 30% ND 0.0300 0.0601 1,4-Dichlorobenzene mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.120 0.240 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0300 0.0601 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0300 0.0601 mg/kg dry 50 ND 30% ------ND 0.0300 1,1-Dichloroethene 0.0601 mg/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 0.03000.0601 mg/kg dry 50 ND 30% trans-1,2-Dichloroethene ND 30% 0.0300 0.0601 mg/kg dry 50 ND 1,2-Dichloropropane ND 0.0300 0.0601 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0601 0.120 mg/kg dry 50 ND 30% 2,2-Dichloropropane ND 0.0601 0.120 mg/kg dry 50 ND 30% ND 0.0601 0.120 30% 1,1-Dichloropropene mg/kg dry 50 ND cis-1,3-Dichloropropene ND 0.0601 0.120 mg/kg dry 50 ND 30% ND 0.0601 0.120 30% trans-1,3-Dichloropropene mg/kg dry 50 ND 0.0300 Ethylbenzene ND 0.0601 mg/kg dry 50 ND 30% ND Hexachlorobutadiene 0.120 0.240 mg/kg dry 50 ND ___ 30% 2-Hexanone ND 0.601 1.20 mg/kg dry 50 ND 30% ND 30% Isopropylbenzene 0.0601 0.120 mg/kg dry 50 ND 4-Isopropyltoluene ND 0.0601 0.120 mg/kg dry 50 ND 30% ND 0.601 Methylene chloride 1.20 mg/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND 0.601 1.20 mg/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 0.0601 0.120 mg/kg dry 50 ND ------30% Naphthalene ND 0.120 0.240 mg/kg dry 50 ND 30% ND 0.0300 30% n-Propylbenzene 0.0601 mg/kg dry 50 ND ND 0.0601 0.120 30% Styrene mg/kg dry 50 ND ND 1,1,1,2-Tetrachloroethane 0.0300 0.0601 ND 30% mg/kg dry 50 1,1,2,2-Tetrachloroethane ND 0.0601 0.120 mg/kg dry ND 30% 50 ND 0.0300 Tetrachloroethene (PCE) 0.0601 mg/kg dry 50 ND ------30% Toluene ND 0.0601 0.120 mg/kg dry 50 ND 30% ND 0.300 0.601 30% 1.2.3-Trichlorobenzene mg/kg dry 50 ND ---1,2,4-Trichlorobenzene ND 0.300 0.601 mg/kg dry 50 ND 30% 0.0300 1,1,1-Trichloroethane ND 0.0601 50 ND 30% mg/kg dry 1,1,2-Trichloroethane ND 0.0300 0.0601 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0213 - EPA 5035A							So	il				
Duplicate (23F0213-DUP1)			Prepared	1: 06/01/23	12:00 Ana	lyzed: 06/07	7/23 17:59					
QC Source Sample: Non-SDG (A3	F0812-01)											
Trichloroethene (TCE)	ND	0.0300	0.0601	mg/kg dı	y 50		ND				30%	
Trichlorofluoromethane	ND	0.240	0.240	mg/kg dı	y 50		ND				30%	
1,2,3-Trichloropropane	ND	0.0601	0.120	mg/kg dı	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0601	0.120	mg/kg dı	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0601	0.120	mg/kg dı	y 50		ND				30%	
Vinyl chloride	ND	0.0300	0.0601	mg/kg dı	y 50		ND				30%	
m,p-Xylene	ND	0.0601	0.120	mg/kg dı	y 50		ND				30%	
o-Xylene	ND	0.0300	0.0601	mg/kg dı	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	79-	-120 %		"					
QC Source Sample: Non-SDG (A3 5035A/8260D	E1848-01)											
Acetone	2.94	0.711	1.42	mg/kg dr	y 50	2.84	ND	103	36-164%			
Acrylonitrile	1.33	0.0711	0.142	mg/kg di	•	1.42	ND	94	65-134%			
Benzene	1.40	0.00711		mg/kg di	•	1.42	ND	98	77-121%			
Bromobenzene	1.39	0.0178	0.0355	mg/kg di	•	1.42	ND	98	78-121%			
Bromochloromethane	1.44	0.0178	0.0333	mg/kg di	-	1.42	ND	102	78-12176			
Bromodichloromethane	1.27	0.0355	0.0711	mg/kg di	•	1.42	ND	89	75-127%			
Bromoform	1.04	0.142	0.142	mg/kg di	-	1.42	ND	73	67-132%			Q-5
Bromomethane	1.61	0.711	0.711	mg/kg di		1.42	ND	113	53-143%			
2-Butanone (MEK)	2.87	0.355	0.711	mg/kg di	•	2.84	ND	101	51-148%			
n-Butylbenzene	1.59	0.0355	0.0711	mg/kg di		1.42	ND	112	70-128%			
sec-Butylbenzene	1.54	0.0355	0.0711	mg/kg di	•	1.42	ND	109	73-126%			
tert-Butylbenzene	1.54	0.0355	0.0711	mg/kg di	•	1.42	ND	108	73-125%			
Carbon disulfide	1.34	0.355	0.711	mg/kg dı	•	1.42	ND	94	63-132%			
Carbon tetrachloride	1.16	0.0711	0.0711	mg/kg dı	•	1.42	ND	82	70-135%			Q-5
Chlorobenzene	1.41	0.0178	0.0355	mg/kg di	•	1.42	ND	99	79-120%			
Chloroethane	1.64	0.355	0.711	mg/kg dı	•	1.42	ND	116	59-139%			
Chloroform	1.39	0.0355	0.0711	mg/kg dı		1.42	ND	98	78-123%			
Chloromethane	1.23	0.178	0.355	mg/kg dı	•	1.42	ND	86	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0213 - EPA 5035A Soil Matrix Spike (23F0213-MS1) Prepared: 05/26/23 09:45 Analyzed: 06/07/23 16:17 QC Source Sample: Non-SDG (A3E1848-01) mg/kg dry 2-Chlorotoluene 1.45 0.0355 0.0711 50 1.42 ND 102 75-122% 0.0355 0.0711 1.42 4-Chlorotoluene 1.44 mg/kg dry 50 ND 102 72-124% Dibromochloromethane 1.28 0.0711 0.142 mg/kg dry 50 1.42 ND 90 74-126% 1,2-Dibromo-3-chloropropane 1.15 0.355 0.355 mg/kg dry 50 1.42 ND 81 61-132% O-54f 1,2-Dibromoethane (EDB) 1.38 0.0355 0.0711 mg/kg dry 50 1.42 ND 97 78-122% Dibromomethane 0.0355 1.42 99 1.41 0.0711 mg/kg dry 50 ND 78-125% 1,2-Dichlorobenzene 1.43 0.01780.0355mg/kg dry 50 1.42 ND 101 78-121% 1.42 0.0178 1,3-Dichlorobenzene 1.43 0.0355 mg/kg dry 50 ND 101 77-121% 1,4-Dichlorobenzene 1.38 0.0178 0.0355 mg/kg dry 50 1.42 ND 97 75-120% Dichlorodifluoromethane 1.56 0.0711 0.142 mg/kg dry 50 1.42 ND 109 29-149% 1,1-Dichloroethane 1.42 0.0178 0.0355 mg/kg dry 50 1.42 ND 100 76-125% 0.0178 50 1,2-Dichloroethane (EDC) 0.0355mg/kg dry 1.42 ND 73-128% 1.51 106 1.42 1,1-Dichloroethene 1.55 0.0178 0.0355 mg/kg dry 50 ND 109 70-131% cis-1,2-Dichloroethene 1.45 0.0178 0.0355 1.42 ND 102 77-123% mg/kg dry 50 0.0178 trans-1,2-Dichloroethene 1.43 0.0355 mg/kg dry 50 1.42 ND 101 74-125% 1,2-Dichloropropane 1.36 0.0178 0.0355 mg/kg dry 50 1.42 ND 96 76-123% ___ 1,3-Dichloropropane 1.44 0.0355 0.0711mg/kg dry 50 1.42 ND 101 77-121% 0.0355 0.0711 1.42 ND 2,2-Dichloropropane 1.18 mg/kg dry 50 83 67-133% 0.0355 1.42 76-125% 1,1-Dichloropropene 1.53 0.0711mg/kg dry 50 ND 107 0.0355 0.0711 cis-1,3-Dichloropropene 1.28 mg/kg dry 50 1.42 ND 90 74-126% 0.0355 mg/kg dry 1.42 ND 83 trans-1,3-Dichloropropene 1.18 0.0711 50 71-130% Ethylbenzene 1.40 0.0178 0.0355 mg/kg dry 50 1.42 ND 99 76-122% Hexachlorobutadiene 1.88 0.0711 0.142 mg/kg dry 50 1.42 ND 132 61-135% 2-Hexanone 0.355 2.84 ND 101 2.87 0.711 mg/kg dry 50 53-145% 0.0355 0.0711 1.42 107 Isopropylbenzene 1.52 mg/kg dry 50 ND 68-134% 1.57 0.0355 0.0711 1.42 ND 110 73-127% 4-Isopropyltoluene mg/kg dry 50 Methylene chloride 1.39 0.355 0.711 mg/kg dry 1.42 ND 98 70-128% 50 2.84 4-Methyl-2-pentanone (MiBK) 3.02 0.355 0.711 mg/kg dry 50 ND 106 65-135% Methyl tert-butyl ether (MTBE) 1.37 0.0355 0.0711 mg/kg dry 50 1.42 ND 97 73-125% Naphthalene 1.60 0.0711 0.142 1 42 ND 113 62-129% mg/kg dry 50 n-Propylbenzene 1.45 0.0178 0.0355 mg/kg dry 50 1.42 ND 102 73-125% 0.0355 0.0711 1.42 Styrene 1.49 50 ND 105 76-124% mg/kg dry ---1,1,1,2-Tetrachloroethane 1.17 0.0178 0.0355 mg/kg dry 50 1.42 ND 83 78-125%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 32 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0213 - EPA 5035A Soil Matrix Spike (23F0213-MS1) Prepared: 05/26/23 09:45 Analyzed: 06/07/23 16:17 QC Source Sample: Non-SDG (A3E1848-01) 1,1,2,2-Tetrachloroethane 1.40 0.0355 0.0711 mg/kg dry 50 1.42 ND 94 70-124% 0.0178 0.03551.42 Tetrachloroethene (PCE) 1.46 mg/kg dry 50 ND 103 73-128% 77-121% Toluene 1.41 0.0355 0.0711 mg/kg dry 50 1.42 0.0611 95 1,2,3-Trichlorobenzene 1.52 0.178 0.355 mg/kg dry 50 1.42 ND 107 66-130% 1,2,4-Trichlorobenzene 1.47 0.178 0.355 mg/kg dry 50 1.42 ND 104 67-129% 1,1,1-Trichloroethane 1.40 0.0178 1.42 0.0355 mg/kg dry 50 ND 98 73-130% 0.0178 1,1,2-Trichloroethane 1.41 0.0355mg/kg dry 50 1.42 ND 99 78-121% 1.48 1.42 Trichloroethene (TCE) 0.0178 0.0355104 77-123% mg/kg dry 50 ND Q-54i Trichlorofluoromethane 7.25 0.142 0.142 mg/kg dry 50 1.42 ND 510 62-140% 1,2,3-Trichloropropane 1.41 0.0355 0.0711 mg/kg dry 50 1.42 ND 100 73-125% 1,2,4-Trimethylbenzene 1.42 0.0355 0.0711 mg/kg dry 50 1.42 ND 100 75-123% 0.0355 mg/kg dry 1,3,5-Trimethylbenzene 0.07111.42 ND 103 73-124% 1.46 50 1.57 0.0178 1.42 ND Vinyl chloride 0.0355 mg/kg dry 50 110 56-135% 2.84 m,p-Xylene 2.84 0.0355 0.0711 ND 100 77-124% mg/kg dry 50 0.0178 0.0355 77-123% o-Xylene 1.44 mg/kg dry 50 ND 101 Surr: 1,4-Difluorobenzene (Surr) Recovery: 97% Limits: 80-120 % Dilution: 1x 100 % Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 99 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 33 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0541 - EPA 5035A Soil Blank (23F0541-BLK1) Prepared: 06/15/23 08:10 Analyzed: 06/15/23 11:57 5035A/8260D ND 0.500 1.00 mg/kg wet 50 Acetone ND 0.0500 0.100 50 Acrylonitrile mg/kg wet Benzene ND 0.00500 0.0100 mg/kg wet 50 Bromobenzene ND 0.0125 0.0250 mg/kg wet 50 Bromochloromethane ND 0.0250 0.0500 mg/kg wet 50 ND 0.0250 Bromodichloromethane 0.0500 mg/kg wet 50 Bromoform ND 0.0500 0.100 mg/kg wet 50 0.500 Bromomethane ND 0.500 mg/kg wet 50 2-Butanone (MEK) ND 0.250 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0250 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0250 0.0500mg/kg wet 50 ND 0.0250 tert-Butylbenzene 0.0500 mg/kg wet 50 ---Carbon disulfide ND 0.250 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0250 0.0500 mg/kg wet 50 Chlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Chloroethane ND 0.250 0.500 mg/kg wet 50 ------Chloroform ND 0.0250 0.0500mg/kg wet 50 0.125 0.250 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 4-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 Dibromochloromethane ND 0.05000.100mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.125 0.250 mg/kg wet 50 0.02501,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0250 0.0500 mg/kg wet 50 0.0125 1,2-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Dichlorodifluoromethane ND 0.0500 0.100 mg/kg wet 50 ---1,1-Dichloroethane ND 0.01250.0250mg/kg wet 50 0.0125 1,2-Dichloroethane (EDC) ND 0.0250 mg/kg wet 50 1,1-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 trans-1,2-Dichloroethene 0.0125 0.0250 ND mg/kg wet 50

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Batch 23F0541 - EPA 5035A							So	il		
Blank (23F0541-BLK1)			Prepared	: 06/15/23 08:	10 Anal	yzed: 06/15	/23 11:57			
1,2-Dichloropropane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,3-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
2,2-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
1,1-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
cis-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
trans-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
Ethylbenzene	ND	0.0125	0.0250	mg/kg wet	50				 	
Hexachlorobutadiene	ND	0.0500	0.100	mg/kg wet	50				 	
2-Hexanone	ND	0.250	0.500	mg/kg wet	50				 	
Isopropylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
4-Isopropyltoluene	ND	0.0250	0.0500	mg/kg wet	50				 	
Methylene chloride	ND	0.250	0.500	mg/kg wet	50				 	
4-Methyl-2-pentanone (MiBK)	ND	0.250	0.500	mg/kg wet	50				 	
Methyl tert-butyl ether (MTBE)	ND	0.0250	0.0500	mg/kg wet	50				 	
Naphthalene	ND	0.0500	0.100	mg/kg wet	50				 	
n-Propylbenzene	ND	0.0125	0.0250	mg/kg wet	50				 	
Styrene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,1,1,2-Tetrachloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,1,2,2-Tetrachloroethane	ND	0.0250	0.0500	mg/kg wet	50				 	
Tetrachloroethene (PCE)	ND	0.0125	0.0250	mg/kg wet	50				 	
Toluene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,2,3-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50				 	
1,2,4-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50				 	
1,1,1-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,1,2-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
Trichloroethene (TCE)	ND	0.0125	0.0250	mg/kg wet	50				 	
Trichlorofluoromethane	ND	0.100	0.100	mg/kg wet	50				 	 Q-52
1,2,3-Trichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
1,2,4-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,3,5-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
Vinyl chloride	ND	0.0125	0.0250	mg/kg wet	50				 	
m,p-Xylene	ND	0.0250	0.0500	mg/kg wet	50				 	
o-Xylene	ND	0.0125	0.0250	mg/kg wet	50				 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 99 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Namberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23F0541 - EPA 5035A							So	il					
Blank (23F0541-BLK1)			Prepared	: 06/15/23 0	8:10 Ana	lyzed: 06/15	/23 11:57						
Surr: Toluene-d8 (Surr)		Recov	ery: 100 %	Limits: 80-	120 %	Dilt	ution: 1x						
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"						
LCS (23F0541-BS1)			Prepared	: 06/15/23 0	8:10 Ana	yzed: 06/15	/23 09:55						
5035A/8260D													
Acetone	2.02	0.500	1.00	mg/kg we		2.00		101	80-120%				
Acrylonitrile	1.02	0.0500	0.100	mg/kg we	t 50	1.00		102	80-120%				
Benzene	1.01	0.00500	0.0100	mg/kg we	t 50	1.00		101	80-120%				
Bromobenzene	0.947	0.0125	0.0250	mg/kg we		1.00		95	80-120%				
Bromochloromethane	1.06	0.0250	0.0500	mg/kg we	t 50	1.00		106	80-120%				
Bromodichloromethane	1.03	0.0250	0.0500	mg/kg we	t 50	1.00		103	80-120%				
Bromoform	0.938	0.0500	0.100	mg/kg we	t 50	1.00		94	80-120%				
Bromomethane	1.12	0.500	0.500	mg/kg we	t 50	1.00		112	80-120%				
2-Butanone (MEK)	2.02	0.250	0.500	mg/kg we	t 50	2.00		101	80-120%				
n-Butylbenzene	0.980	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%				
sec-Butylbenzene	0.997	0.0250	0.0500	mg/kg we	t 50	1.00		100	80-120%				
tert-Butylbenzene	0.970	0.0250	0.0500	mg/kg we	t 50	1.00		97	80-120%				
Carbon disulfide	0.904	0.250	0.500	mg/kg we	t 50	1.00		90	80-120%				
Carbon tetrachloride	1.08	0.0250	0.0500	mg/kg we	t 50	1.00		108	80-120%				
Chlorobenzene	0.996	0.0125	0.0250	mg/kg we	t 50	1.00		100	80-120%				
Chloroethane	1.23	0.250	0.500	mg/kg we	t 50	1.00		123	80-120%			Ç	
Chloroform	0.993	0.0250	0.0500	mg/kg we	t 50	1.00		99	80-120%				
Chloromethane	0.952	0.125	0.250	mg/kg we	t 50	1.00		95	80-120%				
2-Chlorotoluene	0.961	0.0250	0.0500	mg/kg we	t 50	1.00		96	80-120%				
4-Chlorotoluene	0.981	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%				
Dibromochloromethane	1.10	0.0500	0.100	mg/kg we	t 50	1.00		110	80-120%				
1,2-Dibromo-3-chloropropane	0.912	0.125	0.250	mg/kg we	t 50	1.00		91	80-120%				
1,2-Dibromoethane (EDB)	0.996	0.0250	0.0500	mg/kg we	t 50	1.00		100	80-120%				
Dibromomethane	1.04	0.0250	0.0500	mg/kg we	t 50	1.00		104	80-120%				
1,2-Dichlorobenzene	0.989	0.0125	0.0250	mg/kg we	t 50	1.00		99	80-120%				
1,3-Dichlorobenzene	0.995	0.0125	0.0250	mg/kg we		1.00		100	80-120%				
1,4-Dichlorobenzene	0.962	0.0125	0.0250	mg/kg we		1.00		96	80-120%				
Dichlorodifluoromethane	1.07	0.0500	0.100	mg/kg we		1.00		107	80-120%				
1,1-Dichloroethane	1.03	0.0125	0.0250	mg/kg we		1.00		103	80-120%				

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0541 - EPA 5035A Soil LCS (23F0541-BS1) Prepared: 06/15/23 08:10 Analyzed: 06/15/23 09:55 1,2-Dichloroethane (EDC) 1.08 0.0125 0.0250 mg/kg wet 50 1.00 108 80-120% 1,1-Dichloroethene 1.04 0.0125 0.0250 mg/kg wet 50 1.00 104 80-120% ---------50 cis-1,2-Dichloroethene 1.03 0.0125 0.0250 mg/kg wet 1.00 103 80-120% trans-1,2-Dichloroethene 1.00 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% 1.01 0.0125 0.0250 mg/kg wet 50 1.00 101 80-120% 1,2-Dichloropropane 1,3-Dichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120% 0.0250 80-120% 2,2-Dichloropropane 0.974 0.0500 mg/kg wet 50 1.00 97 1,1-Dichloropropene 1.03 0.0250 0.0500 mg/kg wet 50 1.00 103 80-120% 0.0250 0.0500 cis-1,3-Dichloropropene 1.02 mg/kg wet 50 1.00 102 80-120% trans-1,3-Dichloropropene 0.993 0.02500.0500mg/kg wet 50 1.00 99 80-120% Ethylbenzene 0.958 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% 0.0500 93 Hexachlorobutadiene 0.930 0.100 mg/kg wet 50 1.00 80-120% 0.250 2.00 89 2-Hexanone 1.77 0.500 mg/kg wet 50 ---80-120% ---Isopropylbenzene 0.954 0.0250 0.0500 mg/kg wet 50 1.00 95 80-120% 99 0.993 0.0250 0.0500 mg/kg wet 1.00 80-120% 4-Isopropyltoluene 50 Methylene chloride 1.05 0.250 0.500 mg/kg wet 50 1.00 105 80-120% 0.250 0.500 2.00 94 4-Methyl-2-pentanone (MiBK) 1.88 mg/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 0.935 0.0250 0.0500 mg/kg wet 50 1.00 93 80-120% Naphthalene 0.929 0.0500 0.100 1.00 93 mg/kg wet 50 ---80-120% --n-Propylbenzene 0.997 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% 0.954 0.0250 0.0500 1.00 95 80-120% Styrene mg/kg wet 50 1,1,1,2-Tetrachloroethane 1.06 0.0125 0.0250 mg/kg wet 50 1.00 106 80-120% 1,1,2,2-Tetrachloroethane 0.881 0.0250 0.0500 mg/kg wet 50 1.00 88 80-120% Tetrachloroethene (PCE) 0.996 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% 0.962 Toluene 0.0250 1.00 96 0.0500 mg/kg wet 50 80-120% ------1,2,3-Trichlorobenzene 0.944 0.125 0.250 mg/kg wet 50 1.00 94 80-120%

Apex Laboratories

Philip Manherg

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

0.900

1.06

1.02

1.08

0.748

1.02

0.966

0.999

0.125

0.0125

0.0125

0.0125

0.100

0.0250

0.0250

0.0250

0.250

0.0250

0.0250

0.0250

0.100

0.0500

0.0500

0.0500

mg/kg wet

50

50

50

50

50

50

50

50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

90

106

102

108

75

102

97

100

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Q-52

Philip Nerenberg, Lab Director

Page 37 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0541 - EPA 5035A							So	il				
LCS (23F0541-BS1)			Prepared	: 06/15/23 08	8:10 Ana	lyzed: 06/15	/23 09:55					
/inyl chloride	1.09	0.0125	0.0250	mg/kg we	t 50	1.00		109	80-120%			
n,p-Xylene	1.89	0.0250	0.0500	mg/kg we	t 50	2.00		94	80-120%			
-Xylene	0.917	0.0125	0.0250	mg/kg we	t 50	1.00		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			102 %	80-1	120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79-1	120 %		"					
Duplicate (23F0541-DUP1)			Prepared	1: 06/02/23 11	1:00 Anal	lyzed: 06/15	/23 15:20					
OC Source Sample: DMW-1-20 (A	A3F0805-04)	1										
5035A/8260D												
Acetone	ND	0.722	1.44	mg/kg dry	50		ND				30%	
crylonitrile	ND	0.0722	0.144	mg/kg dry			ND				30%	
Benzene	ND	0.00722	0.0144	mg/kg dry	50		ND				30%	
Bromobenzene	ND	0.0181	0.0361	mg/kg dry	50		ND				30%	
Bromochloromethane	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
Bromoform	ND	0.0722	0.144	mg/kg dry	50		ND				30%	
Bromomethane	ND	0.722	0.722	mg/kg dry	50		ND				30%	
-Butanone (MEK)	ND	0.361	0.722	mg/kg dry	50		ND				30%	
-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
ec-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
ert-Butylbenzene	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
Carbon disulfide	ND	0.361	0.722	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
Chlorobenzene	ND	0.0181	0.0361	mg/kg dry	50		ND				30%	
Chloroethane	ND	0.361	0.722	mg/kg dry			ND				30%	
Chloroform	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
Chloromethane	ND	0.181	0.361	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
-Chlorotoluene	ND	0.0361	0.0722	mg/kg dry	50		ND				30%	
bibromochloromethane	ND	0.0722	0.144	mg/kg dry	50		ND				30%	
,2-Dibromo-3-chloropropane	ND	0.181	0.361	mg/kg dry	50		ND				30%	
2-Dibromoethane (EDB)	ND	0.0361	0.0722	mg/kg dry			ND				30%	
Dibromomethane	ND	0.0361	0.0722	mg/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0541 - EPA 5035A							Soi	l				
Duplicate (23F0541-DUP1)			Prepared	: 06/02/23 1	1:00 Anal	yzed: 06/15/	/23 15:20					
QC Source Sample: DMW-1-20 (A	A3F0805-04)											
1,2-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
1,3-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
1,4-Dichlorobenzene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
Dichlorodifluoromethane	ND	0.0722	0.144	mg/kg dr	y 50		ND				30%	
,1-Dichloroethane	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
,2-Dichloroethane (EDC)	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
,1-Dichloroethene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
eis-1,2-Dichloroethene	0.0549	0.0181	0.0361	mg/kg dr	y 50		0.0578			5	30%	
rans-1,2-Dichloroethene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
,2-Dichloropropane	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
,3-Dichloropropane	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
,2-Dichloropropane	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
,1-Dichloropropene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
is-1,3-Dichloropropene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
rans-1,3-Dichloropropene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
Ethylbenzene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
Hexachlorobutadiene	ND	0.0722	0.144	mg/kg dr	y 50		ND				30%	
2-Hexanone	ND	0.361	0.722	mg/kg dr	y 50		ND				30%	
sopropylbenzene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
l-Isopropyltoluene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
Methylene chloride	ND	0.361	0.722	mg/kg dr			ND				30%	
l-Methyl-2-pentanone (MiBK)	ND	0.361	0.722	mg/kg dr	y 50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
Vaphthalene	ND	0.0722	0.144	mg/kg dr	y 50		ND				30%	
-Propylbenzene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
tyrene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
,1,1,2-Tetrachloroethane	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
,1,2,2-Tetrachloroethane	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
etrachloroethene (PCE)	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
oluene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
,2,3-Trichlorobenzene	ND	0.181	0.361	mg/kg dr	y 50		ND				30%	
2,4-Trichlorobenzene	ND	0.181	0.361	mg/kg dr	y 50		ND				30%	
,1,1-Trichloroethane	ND	0.0181	0.0361	mg/kg dr			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		\	Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0541 - EPA 5035A							So	il				
Duplicate (23F0541-DUP1)			Prepared	1: 06/02/23 1	1:00 Ana	lyzed: 06/15	/23 15:20					
QC Source Sample: DMW-1-20 (A	A3F0805-04	1										
1,1,2-Trichloroethane	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	0.144	0.144	mg/kg dr	y 50		ND				30%	Q-5
1,2,3-Trichloropropane	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
m,p-Xylene	ND	0.0361	0.0722	mg/kg dr	y 50		ND				30%	
o-Xylene	ND	0.0181	0.0361	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %		120 %		"					
4-Bromofluorobenzene (Surr)			96 %		120 %		"					
QC Source Sample: DMW-1-20 (A	A3F0805-04	1		1: 06/02/23 1								
5035A/8260D												
Acetone	3.10	0.722	1.44	mg/kg dr	y 50	2.89	ND	107	36-164%			
Acrylonitrile	1.46	0.0722	0.144	mg/kg dr	y 50	1.45	ND	101	65-134%			
Benzene	1.55	0.00722	0.0144	mg/kg dr	y 50	1.45	ND	107	77-121%			
Bromobenzene	1.38	0.0181	0.0361	mg/kg dr	y 50	1.45	ND	95	78-121%			
Bromochloromethane	1.61	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	111	78-125%			
Bromodichloromethane	1.57	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	108	75-127%			
Bromoform	1.28	0.0722	0.144	mg/kg dr		1.45	ND	88	67-132%			
Bromomethane	1.81	0.722	0.722	mg/kg dr	y 50	1.45	ND	125	53-143%			
2-Butanone (MEK)	2.98	0.361	0.722	mg/kg dr	y 50	2.89	ND	103	51-148%			
n-Butylbenzene	1.48	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	103	70-128%			
sec-Butylbenzene	1.50	0.0361	0.0722	mg/kg dr		1.45	ND	103	73-126%			
tert-Butylbenzene	1.41	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	98	73-125%			
Carbon disulfide	1.41	0.361	0.722	mg/kg dr	y 50	1.45	ND	97	63-132%			
Carbon tetrachloride	1.65	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	114	70-135%			
Chlorobenzene	1.47	0.0181	0.0361	mg/kg dr	y 50	1.45	ND	102	79-120%			
Chloroethane	2.00	0.361	0.722	mg/kg dr	y 50	1.45	ND	138	59-139%			Q-54
Chloroform	1.53	0.0361	0.0722	mg/kg dr	y 50	1.45	ND	106	78-123%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0541 - EPA 5035A Soil Matrix Spike (23F0541-MS1) Prepared: 06/02/23 11:00 Analyzed: 06/15/23 15:46 QC Source Sample: DMW-1-20 (A3F0805-04) mg/kg dry Chloromethane 1.50 0.181 0.361 50 1.45 ND 104 50-136% 0.0361 0.0722 1.45 2-Chlorotoluene 1.42 mg/kg dry 50 ND 98 75-122% 4-Chlorotoluene 1.43 0.0361 0.0722 mg/kg dry 50 1.45 ND 99 72-124% Dibromochloromethane 1.56 0.0722 0.144 mg/kg dry 50 1.45 ND 108 74-126% 1,2-Dibromo-3-chloropropane 1.29 0.181 0.361 mg/kg dry 50 1.45 ND 90 61-132% 1.42 0.0361 0.0722 1.45 98 1,2-Dibromoethane (EDB) mg/kg dry 50 ND 78-122% Dibromomethane 1.53 0.0361 0.0722mg/kg dry 50 1.45 ND 106 78-125% 1.45 0.0181 99 1,2-Dichlorobenzene 1.43 0.0361 mg/kg dry 50 ND 78-121% 1,3-Dichlorobenzene 1.45 0.0181 0.0361 mg/kg dry 50 1.45 ND 100 77-121% 1,4-Dichlorobenzene 1.39 0.0181 0.0361 mg/kg dry 50 1.45 ND 96 75-120% Dichlorodifluoromethane 1.73 0.0722 0.144 mg/kg dry 50 1.45 ND 119 29-149% 0.0181 50 1,1-Dichloroethane 1.59 0.0361 mg/kg dry 1.45 ND 76-125% 110 0.0181 1,2-Dichloroethane (EDC) 1.61 0.0361 mg/kg dry 50 1.45 ND 111 73-128% 1,1-Dichloroethene 1.63 0.0181 0.0361 mg/kg dry 1.45 ND 112 50 70-131% 0.0181 cis-1,2-Dichloroethene 1.61 0.0361 mg/kg dry 50 1.45 0.0578 107 77-123% trans-1,2-Dichloroethene 1.56 0.0181 0.0361 mg/kg dry 50 1.45 ND 108 74-125% ___ 1,2-Dichloropropane 1.53 0.0181 0.0361 mg/kg dry 50 1.45 ND 106 76-123% 1.49 0.0361 0.0722 1.45 ND 103 77-121% 1,3-Dichloropropane mg/kg dry 50 0.0361 1.45 ND 67-133% 2,2-Dichloropropane 1.41 0.0722mg/kg dry 50 98 0.0361 0.0722 1,1-Dichloropropene 1.59 mg/kg dry 50 1.45 ND 110 76-125% 0.0361 0.0722 mg/kg dry 1.45 ND 99 74-126% cis-1,3-Dichloropropene 1.43 50 1.45 trans-1,3-Dichloropropene 1.38 0.0361 0.0722 mg/kg dry 50 ND 95 71-130% Ethylbenzene 1.42 0.0181 0.0361 mg/kg dry 50 1.45 ND 98 76-122% 0.0722 1.45 98 Hexachlorobutadiene 1.41 0.144 mg/kg dry 50 ND 61-135% 2.57 0.361 0.722 2.89 89 53-145% 2-Hexanone mg/kg dry 50 ND 1.42 0.0361 0.0722 1.45 ND 98 68-134% Isopropylbenzene mg/kg dry 50 1.47 0.0361 0.0722 mg/kg dry 1.45 ND 101 73-127% 4-Isopropyltoluene 50 1.45 Methylene chloride 1.56 0.361 0.722 mg/kg dry 50 ND 108 70-128% 4-Methyl-2-pentanone (MiBK) 2.74 0.361 0.722 mg/kg dry 50 2.89 ND 95 65-135% Methyl tert-butyl ether (MTBE) 1.36 0.0361 0.0722 mg/kg dry 1.45 ND 94 73-125% 50 Naphthalene 1.32 0.0722 0.144 mg/kg dry 50 1.45 ND 91 62-129% 0.0181 0.0361 1.45 n-Propylbenzene 1.49 50 ND 103 73-125% mg/kg dry ---Styrene 1.39 0.0361 0.0722 mg/kg dry 50 1.45 ND 96 76-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0541 - EPA 5035A Soil Matrix Spike (23F0541-MS1) Prepared: 06/02/23 11:00 Analyzed: 06/15/23 15:46 QC Source Sample: DMW-1-20 (A3F0805-04) 1,1,1,2-Tetrachloroethane 1.55 0.0181 0.0361 mg/kg dry 50 1.45 ND 107 78-125% 0.0361 0.07221.45 1,1,2,2-Tetrachloroethane 1.26 mg/kg dry 50 ND 87 70-124% Tetrachloroethene (PCE) 1.49 0.0181 0.0361 mg/kg dry 50 1.45 ND 103 73-128% Toluene 1.44 0.0361 0.0722mg/kg dry 50 1.45 ND 100 77-121% 1,2,3-Trichlorobenzene 1.37 0.181 0.361 mg/kg dry 50 1.45 ND 95 66-130% 1,2,4-Trichlorobenzene 1.29 0.181 1.45 89 0.361 mg/kg dry 50 ND 67-129% 0.0181 1,1,1-Trichloroethane 1.63 0.0361 mg/kg dry 50 1.45 ND 113 73-130% 1.45 1,1,2-Trichloroethane 0.0181 0.0361 102 1.48 mg/kg dry 50 ND 78-121% Trichloroethene (TCE) 1.64 0.0181 0.0361 mg/kg dry 50 1.45 ND 114 77-123% Trichlorofluoromethane 4.51 0.144 0.144 mg/kg dry 50 1.45 ND 312 62-140% 0-521,2,3-Trichloropropane 1.44 0.0361 0.0722 mg/kg dry 50 1.45 ND 100 73-125% 0.0361 0.0722 mg/kg dry 1,2,4-Trimethylbenzene 1.45 ND 75-123% 1.41 50 98 0.0361 1.45 1,3,5-Trimethylbenzene 1.48 0.0722 mg/kg dry 50 ND 102 73-124% 0.0181 mg/kg dry 1.45 Vinyl chloride 1.74 0.0361 ND 120 50 56-135% 0.0361 0.0722 2.89 97 m,p-Xylene 2.79 mg/kg dry 50 ND 77-124% o-Xylene 1.33 0.0181 0.0361 mg/kg dry 50 1.45 ND 92 77-123% ---Surr: 1,4-Difluorobenzene (Surr) 100 % Dilution: 1x Limits: 80-120 % Recovery: Toluene-d8 (Surr) 102 % 80-120 % 92 % 79-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0699 - EPA 5035A Soil Blank (23F0699-BLK1) Prepared: 06/20/23 08:14 Analyzed: 06/20/23 11:18 5035A/8260D ND 0.500 1.00 mg/kg wet Acetone 50 ND 0.0500 0.100 50 Acrylonitrile mg/kg wet Benzene 0.00650 0.00500 0.0100 mg/kg wet 50 B-02, J Bromobenzene ND 0.0125 0.0250 mg/kg wet 50 Bromochloromethane ND 0.0250 0.0500 mg/kg wet 50 ND 0.0250 Bromodichloromethane 0.0500 mg/kg wet 50 Bromoform ND 0.0500 0.100 mg/kg wet 50 0.500 Bromomethane ND 0.500 mg/kg wet 50 2-Butanone (MEK) ND 0.250 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0250 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0250 0.0500mg/kg wet 50 ND 0.0250 tert-Butylbenzene 0.0500 mg/kg wet 50 ---Carbon disulfide ND 0.250 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0250 0.0500 mg/kg wet 50 Chlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Chloroethane ND 0.250 0.500 mg/kg wet 50 ------Chloroform ND 0.0250 0.0500mg/kg wet 50 0.125 0.250 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 4-Chlorotoluene ND 0.0250 0.0500 mg/kg wet 50 Dibromochloromethane ND 0.05000.100mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.125 0.250 mg/kg wet 50 0.02501,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0250 0.0500 mg/kg wet 50 0.0125 1,2-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0125 0.0250 mg/kg wet 50 Dichlorodifluoromethane ND 0.0500 0.100 mg/kg wet 50 ------ND 0.01251,1-Dichloroethane 0.0250mg/kg wet 50 0.0125 1,2-Dichloroethane (EDC) ND 0.0250 mg/kg wet 50 1,1-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0125 0.0250 mg/kg wet 50 0.0125 0.0250 trans-1,2-Dichloroethene ND mg/kg wet 50

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 23F0699 - EPA 5035A							So	il		
Blank (23F0699-BLK1)			Prepared	: 06/20/23 08:	14 Anal	yzed: 06/20	/23 11:18			
1,2-Dichloropropane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,3-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
2,2-Dichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
1,1-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
cis-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
trans-1,3-Dichloropropene	ND	0.0250	0.0500	mg/kg wet	50				 	
Ethylbenzene	ND	0.0125	0.0250	mg/kg wet	50				 	
Hexachlorobutadiene	ND	0.0500	0.100	mg/kg wet	50				 	
2-Hexanone	ND	0.250	0.500	mg/kg wet	50				 	
Isopropylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
4-Isopropyltoluene	ND	0.0250	0.0500	mg/kg wet	50				 	
Methylene chloride	ND	0.250	0.500	mg/kg wet	50				 	
4-Methyl-2-pentanone (MiBK)	ND	0.250	0.500	mg/kg wet	50				 	
Methyl tert-butyl ether (MTBE)	ND	0.0250	0.0500	mg/kg wet	50				 	
Naphthalene	ND	0.0500	0.100	mg/kg wet	50				 	
n-Propylbenzene	ND	0.0125	0.0250	mg/kg wet	50				 	
Styrene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,1,1,2-Tetrachloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,1,2,2-Tetrachloroethane	ND	0.0250	0.0500	mg/kg wet	50				 	
Tetrachloroethene (PCE)	ND	0.0125	0.0250	mg/kg wet	50				 	
Toluene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,2,3-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50				 	
1,2,4-Trichlorobenzene	ND	0.125	0.250	mg/kg wet	50				 	
1,1,1-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
1,1,2-Trichloroethane	ND	0.0125	0.0250	mg/kg wet	50				 	
Trichloroethene (TCE)	ND	0.0125	0.0250	mg/kg wet	50				 	
Trichlorofluoromethane	ND	0.0500	0.100	mg/kg wet	50				 	
1,2,3-Trichloropropane	ND	0.0250	0.0500	mg/kg wet	50				 	
1,2,4-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
1,3,5-Trimethylbenzene	ND	0.0250	0.0500	mg/kg wet	50				 	
Vinyl chloride	ND	0.0125	0.0250	mg/kg wet	50				 	
m,p-Xylene	ND	0.0250	0.0500	mg/kg wet	50				 	
o-Xylene	ND	0.0125	0.0250	mg/kg wet	50				 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 103 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Namberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0699 - EPA 5035A							So	il				
Blank (23F0699-BLK1)			Prepared	: 06/20/23 0	8:14 Ana	lyzed: 06/20	/23 11:18					
Surr: Toluene-d8 (Surr)		Recov	ery: 103 %	Limits: 80-	120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			94 %	79-	120 %		"					
LCS (23F0699-BS1)			Prepared	: 06/20/23 0	8:14 Ana	lyzed: 06/20	/23 09:57					
5035A/8260D												
Acetone	1.93	0.500	1.00	mg/kg we		2.00		96	80-120%			
Acrylonitrile	0.978	0.0500	0.100	mg/kg we	t 50	1.00		98	80-120%			
Benzene	1.05	0.00500	0.0100	mg/kg we	t 50	1.00		105	80-120%			B-0
Bromobenzene	0.938	0.0125	0.0250	mg/kg we		1.00		94	80-120%			
Bromochloromethane	1.11	0.0250	0.0500	mg/kg we	t 50	1.00		111	80-120%			
Bromodichloromethane	1.10	0.0250	0.0500	mg/kg we	t 50	1.00		110	80-120%			
Bromoform	1.03	0.0500	0.100	mg/kg we	t 50	1.00		103	80-120%			
Bromomethane	1.14	0.500	0.500	mg/kg we	t 50	1.00		114	80-120%			
2-Butanone (MEK)	1.92	0.250	0.500	mg/kg we	t 50	2.00		96	80-120%			
n-Butylbenzene	0.954	0.0250	0.0500	mg/kg we	t 50	1.00		95	80-120%			
sec-Butylbenzene	0.978	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%			
tert-Butylbenzene	0.919	0.0250	0.0500	mg/kg we	t 50	1.00		92	80-120%			
Carbon disulfide	0.953	0.250	0.500	mg/kg we	t 50	1.00		95	80-120%			
Carbon tetrachloride	1.14	0.0250	0.0500	mg/kg we	t 50	1.00		114	80-120%			
Chlorobenzene	1.00	0.0125	0.0250	mg/kg we	t 50	1.00		100	80-120%			
Chloroethane	1.29	0.250	0.500	mg/kg we	t 50	1.00		129	80-120%			Q-5
Chloroform	1.03	0.0250	0.0500	mg/kg we	t 50	1.00		103	80-120%			
Chloromethane	0.974	0.125	0.250	mg/kg we	t 50	1.00		97	80-120%			
2-Chlorotoluene	0.945	0.0250	0.0500	mg/kg we	t 50	1.00		94	80-120%			
4-Chlorotoluene	0.957	0.0250	0.0500	mg/kg we	t 50	1.00		96	80-120%			
Dibromochloromethane	1.17	0.0500	0.100	mg/kg we	t 50	1.00		117	80-120%			
1,2-Dibromo-3-chloropropane	0.946	0.125	0.250	mg/kg we	t 50	1.00		95	80-120%			
1,2-Dibromoethane (EDB)	0.982	0.0250	0.0500	mg/kg we	t 50	1.00		98	80-120%			
Dibromomethane	1.08	0.0250	0.0500	mg/kg we	t 50	1.00		108	80-120%			
1,2-Dichlorobenzene	0.982	0.0125	0.0250	mg/kg we	t 50	1.00		98	80-120%			
1,3-Dichlorobenzene	0.982	0.0125	0.0250	mg/kg we		1.00		98	80-120%			
1,4-Dichlorobenzene	0.977	0.0125	0.0250	mg/kg we		1.00		98	80-120%			
Dichlorodifluoromethane	1.07	0.0500	0.100	mg/kg we		1.00		107	80-120%			
1,1-Dichloroethane	1.02	0.0125	0.0250	mg/kg we		1.00		102	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution Amount % REC Analyte Result Ĺimit Units Result Limits RPD Limit Notes Limit

Prepared: 06/20/23 08:14 Analyzed: 06/20/23 09:57	23F0699 - EPA 5035A						So	il		
1.1-Dichloroethene	23F0699-BS1)		Prepared	: 06/20/23 08:	14 Ana	lyzed: 06/20/	23 09:57			
cis-1,2-Dichloroethene 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% trans-1,2-Dichloroethene 0.979 0.0125 0.0250 mg/kg wet 50 1.00 98 80-120% 1,2-Dichloropropane 1.01 0.0250 0.0500 mg/kg wet 50 1.00 101 80-120% 2,2-Dichloropropane 0.989 0.0250 0.0500 mg/kg wet 50 1.00 104 80-120% 2,2-Dichloropropane 1.04 0.0250 0.0500 mg/kg wet 50 1.00 104 80-120% 2,2-Dichloropropene 1.02 0.0250 0.0500 mg/kg wet 50 1.00 104 80-120% 1,1-1 1.02 0.0250 0.0500 mg/kg wet 50 1.00 96 80-120% 2-120% Elhylberach	chloroethane (EDC)	0.0125	0.0250	mg/kg wet	50	1.00		108	80-120%	
trans-1,2-Dichloroethene 0.979 0.0125 0.0250 mg/kg wet 50 1.00	chloroethene	0.0125	0.0250	mg/kg wet	50	1.00		103	80-120%	
1,2-Dichloropropane 1.03 0.0125 0.0250 mg/kg wet 50 1.00	-Dichloroethene	0.0125	0.0250	mg/kg wet	50	1.00		102	80-120%	
1,3-Dichloropropane 1.01 0.0250 0.0500 mg/kg wet 50 1.00 101 80-120% 2,2-Dichloropropane 0.989 0.0250 0.0500 mg/kg wet 50 1.00 99 80-120% 1,1-Dichloropropene 1.04 0.0250 0.0500 mg/kg wet 50 1.00 104 80-120% trans-1,3-Dichloropropene 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120% Ethylbenzene 0.955 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% Hexachlorobutadiene 0.928 0.0500 0.100 mg/kg wet 50 1.00 93 80-120% 2-Hexanone 1.61 0.250 0.500 mg/kg wet 50 1.00 94 80-120% 2-Hexanone 0.966 0.0250 0.0500 mg/kg wet 50 1.00 94 80-120% <td>,2-Dichloroethene</td> <td>79 0.0125</td> <td>0.0250</td> <td>mg/kg wet</td> <td>50</td> <td>1.00</td> <td></td> <td>98</td> <td>80-120%</td> <td> </td>	,2-Dichloroethene	79 0.0125	0.0250	mg/kg wet	50	1.00		98	80-120%	
2,2-Dichloropropane 0,989 0,0250 0,0500 mg/kg wet 50 1,00 99 80-120% 1,1-Dichloropropene 1,04 0,0250 0,0500 mg/kg wet 50 1,00 104 80-120% cis-1,3-Dichloropropene 1,02 0,0250 0,0500 mg/kg wet 50 1,00 102 80-120% Ethylbenzene 0,955 0,0125 0,0250 mg/kg wet 50 1,00 96 80-120% Hexachlorobutadiene 0,958 0,050 0,100 mg/kg wet 50 1,00 93 80-120% 2-Hexanone 1,61 0,250 0,500 mg/kg wet 50 1,00 93 80-120% 4-Hospropylbenzene 0,940 0,0250 0,0500 mg/kg wet 50 1,00 94 80-120% 4-Stoppolybenzene 0,966 0,	chloropropane	3 0.0125	0.0250	mg/kg wet	50	1.00		103	80-120%	
1,1-Dichloropropene	chloropropane	0.0250	0.0500	mg/kg wet	50	1.00		101	80-120%	
1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120% 102 80-	chloropropane 0	89 0.0250	0.0500	mg/kg wet	50	1.00		99	80-120%	
Carans-1,3-Dichloropropene 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	chloropropene	0.0250	0.0500	mg/kg wet	50	1.00		104	80-120%	
Ethylbenzene 0.955 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% Plexachlorobutadiene 0.928 0.0500 0.100 mg/kg wet 50 1.00 93 80-120% 1.00	-Dichloropropene	0.0250	0.0500	mg/kg wet	50	1.00		102	80-120%	
Hexachlorobutadiene 0.928 0.0500 0.100 mg/kg wet 50 1.00 93 80-120% 82-Hexanone 1.61 0.250 0.500 mg/kg wet 50 2.00 81 80-120% 84-Methylenechloride 0.940 0.0250 0.0500 mg/kg wet 50 1.00 94 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 97 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 89 80-120% 84-Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00 89 80-120% 84-Methylene chloride 1.17 0.250 0.500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.17 0.250 0.500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.10 0.050 0.0500 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 88 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 98 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 95 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 95 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 95 80-120% 84-Methylene chloride 1.12 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 96 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg wet 50 1.00 92 80-120% 84-Methylene chloride 1.00 0.0125 0.0250 mg/kg we	,3-Dichloropropene	0.0250	0.0500	mg/kg wet	50	1.00		102	80-120%	
2-Hexanone 1.61 0.250 0.500 mg/kg wet 50 2.00 81 80-120% 85 80-120% 8	enzene (55 0.0125	0.0250	mg/kg wet	50	1.00		96	80-120%	
Sopropy S	nlorobutadiene 0	28 0.0500	0.100	mg/kg wet	50	1.00		93	80-120%	
H-Isopropyltoluene	none	0.250	0.500	mg/kg wet	50	2.00		81	80-120%	
Methylene chloride 1.10 0.250 0.500 mg/kg wet 50 1.00	pylbenzene 0	40 0.0250	0.0500	mg/kg wet	50	1.00		94	80-120%	
H-Methyl-2-pentanone (MiBK) 1.77 0.250 0.500 mg/kg wet 50 2.00 88 80-120% Methyl tert-butyl ether (MTBE) 0.888 0.0250 0.0500 mg/kg wet 50 1.00 89 80-120% 89 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80-120% 80 80 80 80 80 80 80 80 80 80 80 80 80	ropyltoluene	66 0.0250	0.0500	mg/kg wet	50	1.00		97	80-120%	
Methyl tert-butyl ether (MTBE) 0.888 0.0250 0.0500 mg/kg wet 50 1.00 89 80-120% Naphthalene 0.876 0.0500 0.100 mg/kg wet 50 1.00 88 80-120% n-Propylbenzene 0.984 0.0125 0.0250 mg/kg wet 50 1.00 98 80-120% Styrene 0.948 0.0250 0.0500 mg/kg wet 50 1.00 95 80-120% 1,1,2,2-Tetrachloroethane 1.12 0.0125 0.0250 mg/kg wet 50 1.00 91 80-120% 1,1,2,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 91 80-120% 1,1,2,2-Tetrachloroethane (PCE) 1.00 0.0125 0.0250 mg/kg wet 50 1.00 91 80-120% 80-120% 1,2,3-T	ene chloride	0 0.250	0.500	mg/kg wet	50	1.00		110	80-120%	
Naphthalene 0.876 0.0500 0.100 mg/kg wet 50 1.00 88 80-120%	yl-2-pentanone (MiBK)	7 0.250	0.500	mg/kg wet	50	2.00		88	80-120%	
1.12 0.0125 0.0250 mg/kg wet 50 1.00 98 80-120% 1.1,1,1,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 95 80-120% 1.1,2,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 91 80-120% 1.1,2,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 91 80-120% 1.1,2,2-Tetrachloroethane (PCE) 1.00 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% 10	tert-butyl ether (MTBE)	88 0.0250	0.0500	mg/kg wet	50	1.00		89	80-120%	
Styrene 0.948 0.0250 0.0500 mg/kg wet 50 1.00 95 80-120% 1,1,1,2-Tetrachloroethane 1.12 0.0125 0.0250 mg/kg wet 50 1.00 112 80-120% 1,1,2,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 91 80-120% 100 80-	nalene 0	76 0.0500	0.100	mg/kg wet	50	1.00		88	80-120%	
1,1,1,2-Tetrachloroethane 1.12 0.0125 0.0250 mg/kg wet 50 1.00 112 80-120% 1,1,2,2-Tetrachloroethane 0.910 0.0250 0.0500 mg/kg wet 50 1.00 91 80-120% Tetrachloroethane (PCE) 1.00 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% Toluene 0.963 0.0250 0.0500 mg/kg wet 50 1.00 96 80-120% 1,2,3-Trichlorobenzene 0.923 0.125 0.250 mg/kg wet 50 1.00 92 80-120% 1,2,4-Trichlorobenzene 0.872 0.125 0.250 mg/kg wet 50 1.00 87 80-120% 1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 <	ylbenzene	84 0.0125	0.0250	mg/kg wet	50	1.00		98	80-120%	
1,1,2,2-Tetrachloroethane	e 0	48 0.0250	0.0500	mg/kg wet	50	1.00		95	80-120%	
Tetrachloroethene (PCE) 1.00 0.0125 0.0250 mg/kg wet 50 1.00 100 80-120% Foluene 0.963 0.0250 0.0500 mg/kg wet 50 1.00 96 80-120% 1,2,3-Trichlorobenzene 0.923 0.125 0.250 mg/kg wet 50 1.00 92 80-120% 1,2,4-Trichlorobenzene 0.872 0.125 0.250 mg/kg wet 50 1.00 87 80-120% 1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% Frichloroethene (TCE) 1.10 0.0125 0.0250 mg/kg wet 50 1.00 110 80-120% Frichlorofluoromethane 0.	-Tetrachloroethane	2 0.0125	0.0250	mg/kg wet	50	1.00		112	80-120%	
Toluene 0.963 0.0250 0.0500 mg/kg wet 50 1.00 96 80-120% 1,2,3-Trichlorobenzene 0.923 0.125 0.250 mg/kg wet 50 1.00 92 80-120% 1,2,4-Trichlorobenzene 0.872 0.125 0.250 mg/kg wet 50 1.00 87 80-120% 1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% Trichloroethene (TCE) 1.10 0.0125 0.0250 mg/kg wet 50 1.00 110 80-120% Trichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02	-Tetrachloroethane 0	10 0.0250	0.0500	mg/kg wet	50	1.00		91	80-120%	
1,2,3-Trichlorobenzene 0.923 0.125 0.250 mg/kg wet 50 1.00 92 80-120% 1,2,4-Trichlorobenzene 0.872 0.125 0.250 mg/kg wet 50 1.00 87 80-120% 1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% Trichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 89 80-120%	loroethene (PCE)	0.0125	0.0250	mg/kg wet	50	1.00		100	80-120%	
1,2,4-Trichlorobenzene 0.872 0.125 0.250 mg/kg wet 50 1.00 87 80-120% 1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% 10	e 0	63 0.0250	0.0500	mg/kg wet	50	1.00		96	80-120%	
1,1,1-Trichloroethane 1.09 0.0125 0.0250 mg/kg wet 50 1.00 109 80-120% 1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% Frichloroethene (TCE) 1.10 0.0125 0.0250 mg/kg wet 50 1.00 110 80-120% Frichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	richlorobenzene 0	23 0.125	0.250	mg/kg wet	50	1.00		92	80-120%	
1,1,2-Trichloroethane 1.02 0.0125 0.0250 mg/kg wet 50 1.00 102 80-120% Frichloroethene (TCE) 1.10 0.0125 0.0250 mg/kg wet 50 1.00 110 80-120% Frichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	richlorobenzene 0	72 0.125	0.250	mg/kg wet	50	1.00		87	80-120%	
Frichloroethene (TCE) 1.10 0.0125 0.0250 mg/kg wet 50 1.00 110 80-120% Frichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	richloroethane	9 0.0125	0.0250	mg/kg wet	50	1.00		109	80-120%	
Frichlorofluoromethane 0.890 0.0500 0.100 mg/kg wet 50 1.00 89 80-120% 1,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	richloroethane	0.0125	0.0250	mg/kg wet	50	1.00		102	80-120%	
,2,3-Trichloropropane 1.02 0.0250 0.0500 mg/kg wet 50 1.00 102 80-120%	proethene (TCE)	0.0125	0.0250	mg/kg wet	50	1.00		110	80-120%	
	orofluoromethane (90 0.0500	0.100	mg/kg wet	50	1.00		89	80-120%	
1.2.4 Trimedully areas 0.049 0.0250 0.0500 mg/lg-mg/ 50 1.00 05 00.1200/	richloropropane	0.0250	0.0500	mg/kg wet	50	1.00		102	80-120%	
1,2,4-Trimethylbenzene 0.948 0.0250 0.0500 mg/kg wet 50 1.00 95 80-120%	rimethylbenzene 0	48 0.0250	0.0500	mg/kg wet	50	1.00		95	80-120%	
.3,5-Trimethylbenzene 0.978 0.0250 0.0500 mg/kg wet 50 1.00 98 80-120%	rimethylbenzene 0	78 0.0250	0.0500	mg/kg wet	50	1.00		98	80-120%	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0699 - EPA 5035A							Soi	il				
LCS (23F0699-BS1)			Prepared	: 06/20/23 0	8:14 Ana	lyzed: 06/20	/23 09:57					
Vinyl chloride	1.09	0.0125	0.0250	mg/kg we	t 50	1.00		109	80-120%			
n,p-Xylene	1.88	0.0250	0.0500	mg/kg we	t 50	2.00		94	80-120%			
o-Xylene	0.881	0.0125	0.0250	mg/kg we	t 50	1.00		88	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79	120 %		"					
Duplicate (23F0699-DUP1)			Prepared	: 06/14/23 14	4:45 Ana	lyzed: 06/20	/23 12:34					
OC Source Sample: Non-SDG (A3	F1254-01)											
Acetone	ND	0.476	0.953	mg/kg dry	50		ND				30%	
Acrylonitrile	ND	0.0476	0.0953	mg/kg dry	50		ND				30%	
Benzene	ND	0.00476	0.00953	mg/kg dry	50		ND				30%	
Bromobenzene	ND	0.0119	0.0238	mg/kg dry	50		ND				30%	
Bromochloromethane	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Bromoform	ND	0.0476	0.0953	mg/kg dry	50		ND				30%	
Bromomethane	ND	0.476	0.476	mg/kg dry	50		ND				30%	
2-Butanone (MEK)	ND	0.238	0.476	mg/kg dry	50		ND				30%	
n-Butylbenzene	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
sec-Butylbenzene	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
ert-Butylbenzene	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Carbon disulfide	ND	0.238	0.476	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Chlorobenzene	ND	0.0119	0.0238	mg/kg dry	50		ND				30%	
Chloroethane	ND	0.238	0.476	mg/kg dry	50		ND				30%	
Chloroform	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Chloromethane	ND	0.119	0.238	mg/kg dry	50		ND				30%	
2-Chlorotoluene	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
4-Chlorotoluene	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Dibromochloromethane	ND	0.0476	0.0953	mg/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	0.119	0.238	mg/kg dry			ND				30%	
,2-Dibromoethane (EDB)	ND	0.0238	0.0476	mg/kg dry	50		ND				30%	
Dibromomethane	ND	0.0238	0.0476	mg/kg dry			ND				30%	
,2-Dichlorobenzene	ND	0.0119	0.0238	mg/kg dry	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0699 - EPA 5035A Soil Duplicate (23F0699-DUP1) Prepared: 06/14/23 14:45 Analyzed: 06/20/23 12:34 QC Source Sample: Non-SDG (A3F1254-01) mg/kg dry 1,3-Dichlorobenzene ND 0.0119 0.0238 50 ND 30% ND 0.0119 0.02381,4-Dichlorobenzene mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.0476 0.0953 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0119 0.0238mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0119 0.0238 mg/kg dry 50 ND 30% ------ND 0.0119 1,1-Dichloroethene 0.0238mg/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 0.0119 0.0238mg/kg dry 50 ND 30% trans-1,2-Dichloroethene 0.0119 30% ND 0.0238 mg/kg dry 50 ND 1,2-Dichloropropane ND 0.0119 0.0238 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0238 0.0476 mg/kg dry 50 ND 30% 2,2-Dichloropropane ND 0.0238 0.0476 mg/kg dry 50 ND 30% ND 0.02380.0476 30% 1,1-Dichloropropene mg/kg dry 50 ND cis-1,3-Dichloropropene ND 0.0238 0.0476mg/kg dry 50 ND 30% ND 0.0238 0.0476 30% trans-1,3-Dichloropropene mg/kg dry 50 ND 0.0119 Ethylbenzene ND 0.0238 mg/kg dry 50 ND 30% ND Hexachlorobutadiene 0.0476 0.0953 mg/kg dry 50 ND ___ 30% 2-Hexanone ND 0.238 0.476mg/kg dry 50 ND 30% ND 0.0238 30% Isopropylbenzene 0.0476mg/kg dry 50 ND 4-Isopropyltoluene ND 0.0238 0.0476 mg/kg dry 50 ND 30% ND 0.238 0.476 Methylene chloride mg/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) 0.238 ND 0.476 mg/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 0.0238 0.0476 mg/kg dry 50 ND ------30% Naphthalene ND 0.0476 0.0953 mg/kg dry 50 ND 30% ND 0.0119 30% n-Propylbenzene 0.0238mg/kg dry 50 ND ND 0.0238 0.0476 30% Styrene mg/kg dry 50 ND 0.0119 1,1,1,2-Tetrachloroethane ND 0.0238 ND 30% mg/kg dry 50 1,1,2,2-Tetrachloroethane ND 0.0238 0.0476 mg/kg dry ND 30% 50 ND 0.0119 Tetrachloroethene (PCE) 0.0238 mg/kg dry 50 ND ------30% Toluene ND 0.0238 0.0476 mg/kg dry 50 ND 30% ND 0.119 0.238 30% 1.2.3-Trichlorobenzene mg/kg dry 50 ND ---1,2,4-Trichlorobenzene ND 0.119 0.238 mg/kg dry 50 ND 30% 0.0119 1,1,1-Trichloroethane ND 0.023850 ND 30% mg/kg dry 1,1,2-Trichloroethane ND 0.0119 0.0238 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 48 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		\	Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0699 - EPA 5035A							Soi	<u> </u>				
Duplicate (23F0699-DUP1)			Prepared	: 06/14/23	14:45 Anal	lyzed: 06/20/	/23 12:34					
QC Source Sample: Non-SDG (A3	F1254-01)											
Trichloroethene (TCE)	ND	0.0119	0.0238	mg/kg dı	y 50		ND				30%	
Trichlorofluoromethane	ND	0.0476	0.0953	mg/kg dı	y 50		ND				30%	
1,2,3-Trichloropropane	ND	0.0238	0.0476	mg/kg dı	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0238	0.0476	mg/kg dı	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0238	0.0476	mg/kg dı			ND				30%	
Vinyl chloride	ND	0.0119	0.0238	mg/kg dı	y 50		ND				30%	
n,p-Xylene	ND	0.0238	0.0476	mg/kg dı	y 50		ND				30%	
o-Xylene	ND	0.0119	0.0238	mg/kg dı	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79	-120 %		"					
QC Source Sample: Non-SDG (A3		0.480	0.078	ma/ka di	w 50		ND				200/	
Acetone	ND	0.489	0.978	mg/kg dı	y 50		ND				30%	
Acrylonitrile	ND	0.0489	0.0978	mg/kg dı	y 50		ND				30%	
Benzene	ND	0.00489	0.00978	mg/kg dı	y 50		ND				30%	
Bromobenzene	ND	0.0122	0.0244	mg/kg dı	y 50		ND				30%	
Bromochloromethane	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
Bromodichloromethane	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
Bromoform	ND	0.0489	0.0978	mg/kg dı	y 50		ND				30%	
Bromomethane	ND	0.489	0.489	mg/kg dı	y 50		ND				30%	
2-Butanone (MEK)	ND	0.244	0.489	mg/kg dı	y 50		ND				30%	
n-Butylbenzene	ND	0.0244	0.0489	mg/kg dı	•		ND				30%	
ec-Butylbenzene	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
ert-Butylbenzene	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
Carbon disulfide	ND	0.244	0.489	mg/kg dı	y 50		ND				30%	
Carbon tetrachloride	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
Chlorobenzene	ND	0.0122	0.0244	mg/kg dı	y 50		ND				30%	
Chloroethane	ND	0.244	0.489	mg/kg dı	y 50		ND				30%	
Chloroform	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	
Chloromethane	ND	0.122	0.244	mg/kg dı	y 50		ND				30%	
2-Chlorotoluene	ND	0.0244	0.0489	mg/kg dı	y 50		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0699 - EPA 5035A Soil Duplicate (23F0699-DUP2) Prepared: 06/15/23 17:30 Analyzed: 06/20/23 17:14 QC Source Sample: Non-SDG (A3F1267-04) 4-Chlorotoluene ND 0.0244 0.0489 mg/kg dry 50 ND 30% ND 0.0489 0.0978 Dibromochloromethane mg/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 0.122 0.244 mg/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 0.0244 0.0489mg/kg dry 50 ND 30% Dibromomethane ND 0.0244 0.0489 mg/kg dry 50 ND 30% ------ND 0.0122 1,2-Dichlorobenzene 0.0244 mg/kg dry 50 ND 30% 1,3-Dichlorobenzene ND 0.01220.0244mg/kg dry 50 ND 30% 0.0122 30% 1,4-Dichlorobenzene ND 0.0244 mg/kg dry 50 ND Dichlorodifluoromethane ND 0.0489 0.0978 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0122 0.0244 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0122 0.0244 mg/kg dry 50 ND 30% 0.0122 1,1-Dichloroethene ND 0.0244mg/kg dry 30% 50 ND 0.0122 cis-1,2-Dichloroethene ND 0.0244mg/kg dry 50 ND 30% 0.0122 ND 0.0244 30% trans-1,2-Dichloroethene mg/kg dry 50 ND 0.0122 1,2-Dichloropropane ND 0.0244 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0244 0.0489 mg/kg dry 50 ND ___ 30% 2,2-Dichloropropane ND 0.0244 0.0489mg/kg dry 50 ND 30% ND 0.0244 30% 1,1-Dichloropropene 0.0489mg/kg dry 50 ND ---0.0244 ND cis-1,3-Dichloropropene ND 0.0489mg/kg dry 50 30% 0.0244 0.0489 trans-1,3-Dichloropropene ND mg/kg dry 50 ND 30% 0.0122 mg/kg dry Ethylbenzene 0.0342 0.0244 50 0.0337 1 30% ND 0.0489 Hexachlorobutadiene 0.0978 mg/kg dry 50 ND ---30% 2-Hexanone ND 0.244 0.489 mg/kg dry 50 ND 30% ND 0.0244 30% Isopropylbenzene 0.0489mg/kg dry 50 ND ND 0.0244 0.0489 30% 4-Isopropyltoluene mg/kg dry 50 ND ND 0.244 0.489 ND 30% Methylene chloride mg/kg dry 50 4-Methyl-2-pentanone (MiBK) ND 0.244 0.489 mg/kg dry ND 30% 50 0.0244 Methyl tert-butyl ether (MTBE) ND 0.0489 mg/kg dry 50 ND ------30% Naphthalene 0.303 0.0489 0.0978 mg/kg dry 50 0.298 2 30% ND 0.0122 0.0244 mg/kg dry ND 30% n-Propylbenzene 50 ---Styrene ND 0.0244 0.0489 mg/kg dry 50 ND 30% 0.0122 0.0244 ND 50 ND 30% 1.1.1.2-Tetrachloroethane mg/kg dry 1,1,2,2-Tetrachloroethane ND 0.0244 0.0489 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 50 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

		\	/olatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0699 - EPA 5035A							Soi	il				
Duplicate (23F0699-DUP2)			Prepared	: 06/15/23 1	7:30 Ana	lyzed: 06/20	/23 17:14					
QC Source Sample: Non-SDG (A3	F1267-04)											
Tetrachloroethene (PCE)	ND	0.0122	0.0244	mg/kg dr	y 50		ND				30%	
Toluene	ND	0.0244	0.0489	mg/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	0.122	0.244	mg/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	0.122	0.244	mg/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND	0.0122	0.0244	mg/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND	0.0122	0.0244	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	0.0122	0.0244	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	0.0489	0.0978	mg/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	0.0244	0.0489	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	0.0293	0.0244	0.0489	mg/kg dr	y 50		0.0289			2	30%	
1,3,5-Trimethylbenzene	ND	0.0244	0.0489	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND	0.0122	0.0244	mg/kg dr	y 50		ND				30%	
m,p-Xylene	0.0533	0.0244	0.0489	mg/kg dr	y 50		0.0538			0.9	30%	
o-Xylene	0.0240	0.0122	0.0244	mg/kg dr	y 50		0.0235			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Matrix Spike (23F0699-MS1)			Prepared	: 06/15/23 1	4:50 Ana	lyzed: 06/20	/23 15:32					
QC Source Sample: Non-SDG (A3	F1254-14)											
5035A/8260D	•											
Acetone	1.90	0.496	0.991	mg/kg dr	y 50	1.98	ND	96	36-164%			
Acrylonitrile	0.974	0.0496	0.0991	mg/kg dr		0.990	ND	98	65-134%			
Benzene	1.02	0.00496	0.00991	mg/kg dr		0.990	ND	103	77-121%			B-0
Bromobenzene	0.942	0.0124	0.0248	mg/kg dr	•	0.990	ND	95	78-121%			
Bromochloromethane	1.02	0.0248	0.0496	mg/kg dr		0.990	ND	103	78-125%			
Bromodichloromethane	1.04	0.0248	0.0496	mg/kg dr		0.990	ND	105	75-127%			
Bromoform	0.950	0.0496	0.0991	mg/kg dr	•	0.990	ND	96	67-132%			
Bromomethane	1.21	0.496	0.496	mg/kg dr		0.990	ND	123	53-143%			
2-Butanone (MEK)	2.03	0.248	0.496	mg/kg dr		1.98	ND	103	51-148%			
n-Butylbenzene	1.32	0.0248	0.0496	mg/kg dr	,	0.990	0.206	113	70-128%			
sec-Butylbenzene	1.22	0.0248	0.0496	mg/kg dr		0.990	0.115	111	73-126%			
tert-Butylbenzene	1.07	0.0248	0.0496	mg/kg dr		0.990	ND	108	73-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0699 - EPA 5035A Soil Matrix Spike (23F0699-MS1) Prepared: 06/15/23 14:50 Analyzed: 06/20/23 15:32 QC Source Sample: Non-SDG (A3F1254-14) mg/kg dry Carbon disulfide 0.931 0.248 0.496 50 0.990 ND 94 63-132% 0.0248 0.0496 0.990 Carbon tetrachloride 1.14 mg/kg dry 50 ND 115 70-135% Chlorobenzene 1.02 0.0124 0.0248 mg/kg dry 50 0.990 ND 103 79-120% O-54e Chloroethane 1.30 0.248 0.496 mg/kg dry 50 0.990 ND 131 59-139% Chloroform 0.999 0.0248 0.0496 mg/kg dry 50 0.990 ND 101 78-123% ---0.929 0.990 94 Chloromethane 0.124 0.248 mg/kg dry 50 ND 50-136% 2-Chlorotoluene 1.04 0.0248 0.0496 mg/kg dry 50 0.990 ND 88 75-122% 0.982 0.0248 0.990 99 4-Chlorotoluene 0.0496 mg/kg dry 50 ND 72-124% mg/kg dry Dibromochloromethane 1.09 0.0496 0.0991 50 0.990 ND 111 74-126% 1,2-Dibromo-3-chloropropane 1.01 0.124 0.248 mg/kg dry 50 0.990 ND 102 61-132% 1,2-Dibromoethane (EDB) 0.977 0.0248 0.0496 mg/kg dry 50 0.990 ND 99 78-122% 0.0248 50 1.02 0.0496 0.990 ND 103 78-125% Dibromomethane mg/kg dry 0.994 0.990 1,2-Dichlorobenzene 0.0124 0.0248mg/kg dry 50 ND 100 78-121% 0.988 0.0124 0.0248 0.990 ND 100 77-121% 1,3-Dichlorobenzene mg/kg dry 50 0.0124 1,4-Dichlorobenzene 0.938 0.0248 mg/kg dry 50 0.990 ND 95 75-120% Dichlorodifluoromethane 1.07 0.0496 0.0991 mg/kg dry 50 0.990 ND 108 29-149% ___ 1,1-Dichloroethane 1.03 0.0124 0.0248 mg/kg dry 50 0.990 ND 104 76-125% 1.05 0.0124 0.0248 0.990 ND 106 1,2-Dichloroethane (EDC) mg/kg dry 50 73-128% 0.990 1,1-Dichloroethene 1.07 0.0124 0.0248mg/kg dry 50 ND 108 70-131% 0.0124 cis-1,2-Dichloroethene 1.01 0.0248 mg/kg dry 50 0.990 ND 102 77-123% 0.0124 mg/kg dry 0.990 ND 74-125% trans-1,2-Dichloroethene 1.00 0.0248 50 101 0.0124 1,2-Dichloropropane 1.02 0.0248 mg/kg dry 50 0.990 ND 103 76-123% 1,3-Dichloropropane 0.987 0.0248 0.0496 mg/kg dry 50 0.990 ND 100 77-121% 0.955 0.0248 0.0496 0.990 ND 97 67-133% 2,2-Dichloropropane mg/kg dry 50 0.0248 0.0496 0.990 76-125% 1,1-Dichloropropene 1.07 mg/kg dry 50 ND 108 97 0.963 0.0248 0.0496 0.990 ND 74-126% cis-1,3-Dichloropropene mg/kg dry 50 trans-1,3-Dichloropropene 0.935 0.0248 0.0496 mg/kg dry 0.990 ND 95 71-130% 50 Ethylbenzene 0.980 0.0124 0.0248 mg/kg dry 50 0.990 ND 99 76-122% Hexachlorobutadiene 1.41 0.0496 0.0991 mg/kg dry 50 0.990 ND 142 61-135% Q-01 2-Hexanone 2.51 0.248 0.496 mg/kg dry 1.98 ND 89 50 53-145% Isopropylbenzene 1.08 0.0248 0.0496 mg/kg dry 50 0.990 ND 109 68-134% 0.0248 0.0496 4-Isopropyltoluene 1.14 50 0.990 ND 115 73-127% mg/kg dry Methylene chloride 1.02 0.248 0.496 mg/kg dry 50 0.990 ND 103 70-128%

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 52 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23F0699 - EPA 5035A Soil Matrix Spike (23F0699-MS1) Prepared: 06/15/23 14:50 Analyzed: 06/20/23 15:32 QC Source Sample: Non-SDG (A3F1254-14) 4-Methyl-2-pentanone (MiBK) 5.79 0.248 0.496 mg/kg dry 50 1.98 ND 81 65-135% Methyl tert-butyl ether (MTBE) 0.0248 0.0496 0.990 93 0.917 mg/kg dry 50 ND 73-125% Naphthalene 1.19 0.0496 0.0991 mg/kg dry 50 0.990 ND 121 62-129% n-Propylbenzene 1.09 0.0124 0.0248mg/kg dry 50 0.990 0.0828 101 73-125% 1.06 0.0248 0.0496 mg/kg dry 50 0.990 ND 107 76-124% Styrene 1,1,1,2-Tetrachloroethane 1.04 0.0124 0.990 78-125% 0.0248 mg/kg dry 50 ND 105 0.843 1,1,2,2-Tetrachloroethane 1.04 0.843mg/kg dry 50 0.990 ND 105 70-124% Tetrachloroethene (PCE) 0.992 0.0124 0.990 73-128% 0.0248 mg/kg dry 50 ND 100 Toluene 0.928 0.0248 0.0496 mg/kg dry 50 0.990 ND 94 77-121% 1,2,3-Trichlorobenzene 1.04 0.124 0.248 mg/kg dry 50 0.990 ND 105 66-130% 1,2,4-Trichlorobenzene 1.02 0.124 0.248 mg/kg dry 50 0.990 ND 103 67-129% 0.0124 50 1,1,1-Trichloroethane 0.0248mg/kg dry 0.990 ND 73-130% 1.11 112 0.0124 0.990 1,1,2-Trichloroethane 1.17 0.0248mg/kg dry 50 ND 96 78-121% 0.0124 Trichloroethene (TCE) 1.12 0.0248 mg/kg dry 0.990 ND 113 77-123% 50 0.0496 Trichlorofluoromethane 1.23 0.0991 mg/kg dry 50 0.990 ND 124 62-140% 1,2,3-Trichloropropane 1.18 0.0248 0.0496 mg/kg dry 50 0.990 ND 92 73-125% ___ 1,2,4-Trimethylbenzene 0.998 0.0248 0.0496 mg/kg dry 50 0.990 0.0292 98 75-123% 1,3,5-Trimethylbenzene 1.02 0.0248 0.990 0.0496 mg/kg dry 50 ND 103 73-124% Vinyl chloride 0.0124 0.990 ND 56-135% 1.13 0.0248mg/kg dry 50 114 1.95 0.0248 0.0496 m,p-Xylene mg/kg dry 50 1.98 ND 98 77-124% 1.02 0.0124 0.0248 0.990 ND 103 77-123% o-Xylene mg/kg dry 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 % 4-Bromofluorobenzene (Surr) 97% 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 53 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride by	EPA 8	260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units Di	lution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0303 - EPA 5035A							Soi	il				
Blank (23F0303-BLK1)			Prepared	: 06/08/23 15:1	8 Ana	yzed: 06/08	/23 17:59					
5035A/8260D SIM												
Vinyl chloride	ND	0.00500	0.0100	mg/kg wet	100							
Surr: 1,4-Difluorobenzene (Surr)		Recover	v: 108 %	Limits: 80-120	%	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80-120	%		"					
4-Bromofluorobenzene (Surr)			98 %	79-120	%		"					
LCS (23F0303-BS1)			Prepared	: 06/08/23 15:1	8 Ana	yzed: 06/08	/23 17:05					
5035A/8260D SIM												
Vinyl chloride	0.0173	0.00500	0.0100	mg/kg wet	100	0.0200		87	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recover	v: 106 %	Limits: 80-120	%	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80-120	%		"					
4-Bromofluorobenzene (Surr)			96 %	79-120	%		"					
Duplicate (23F0303-DUP1)			Prepared	: 06/01/23 15:2	0 Ana	lyzed: 06/08	/23 18:53					
OC Source Sample: MW-11-5 (A3	F0805-01)											
5035A/8260D SIM												
Vinyl chloride	ND	0.00621	0.0124	mg/kg dry	100		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	v: 108 %	Limits: 80-120	%	Dilt	ution: 1x					_
Toluene-d8 (Surr)			103 %	80-120	%		"					
4-Bromofluorobenzene (Surr)			97 %	79-120	%		"					
Matrix Spike (23F0303-MS1)			Prepared	: 06/02/23 10:3	0 Ana	yzed: 06/08	/23 19:47					
QC Source Sample: DMW-1-10 (A	A3F0805-03)											
5035A/8260D SIM												
Vinyl chloride	0.0241	0.00631	0.0126	mg/kg dry	100	0.0253	ND	96	56-135%			
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 107 %	Limits: 80-120	%	Dilt	ution: 1x					
Toluene-d8 (Surr)			103 %	80-120	%		"					
4-Bromofluorobenzene (Surr)			96 %	79-120	%		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 54 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0189 - Total Solids (Dry Weigh	nt) - 2022					Soil					
Duplicate (23F0189-DUP1)			Prepared	: 06/06/23	13:56 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: MW-11-5 (A.	3F0805-01)											
EPA 8000D			1.00								100/	
% Solids	81.2		1.00	%	1		82.3			1	10%	
Duplicate (23F0189-DUP2)			Prepared	: 06/06/23	13:56 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: DMW-1-10 (A3F0805-03	1										
EPA 8000D												
% Solids	87.6		1.00	%	1		87.4			0.2	10%	
Duplicate (23F0189-DUP3)			Prepared	: 06/06/23	17:43 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: Non-SDG (A3	3F0832-01)											
% Solids	78.7		1.00	%	1		78.6			0.1	10%	
Duplicate (23F0189-DUP4)			Prepared	: 06/06/23	17:43 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: Non-SDG (A3	3F0847-04)											
% Solids	93.8		1.00	%	1		93.7			0.1	10%	
Duplicate (23F0189-DUP5)			Prepared	: 06/06/23	18:32 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: Non-SDG (A3	3F0858-01)											
% Solids	71.7		1.00	%	1		72.1			0.5	10%	
Duplicate (23F0189-DUP6)			Prepared	: 06/06/23	18:32 Anal	yzed: 06/07/	23 06:26					
QC Source Sample: Non-SDG (A3	BF0858-02)											
% Solids	77.6		1.00	%	1		77.7			0.1	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 55 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0546 - Total Solids (Dry Weigl	ht) - 2022					Soil					
Duplicate (23F0546-DUP1)			Prepared	: 06/15/23	10:09 Ana	lyzed: 06/16	/23 08:09					
QC Source Sample: DMW-1-20 (2	A3F0805-04)										
<u>EPA 8000D</u> % Solids	80.0		1.00	%	1		80.9			1	10%	
Duplicate (23F0546-DUP2)			Prepared	: 06/15/23	19:33 Ana	lyzed: 06/16	/23 08:09					
QC Source Sample: Non-SDG (A3	F1219-01)											
% Solids	92.9		1.00	%	1		90.7			2	10%	
Duplicate (23F0546-DUP3)			Prepared	: 06/15/23	19:33 Ana	lyzed: 06/16	/23 08:09					
QC Source Sample: Non-SDG (A3	F1219-02)											
% Solids	93.5		1.00	%	1		95.3			2	10%	
Duplicate (23F0546-DUP4)			Prepared	: 06/15/23	19:33 Anal	lyzed: 06/16	/23 08:09					
QC Source Sample: Non-SDG (A3	F1220-01)											
% Solids	77.1		1.00	%	1		76.6			0.7	10%	
Duplicate (23F0546-DUP5)			Prepared	: 06/15/23	19:33 Anal	lyzed: 06/16	/23 08:09					
QC Source Sample: Non-SDG (A3	F1220-02)											
% Solids	77.0		1.00	%	1		77.2			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 56 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0703 - Total Solids (Dry Weigl	ht) - 2022					Soi	I				
Duplicate (23F0703-DUP1)			Prepared	06/20/23	09:29 Anal	yzed: 06/21	/23 04:08					
QC Source Sample: DMW-1-47.5	(A3F0805-0	<u>)5)</u>										
EPA 8000D												
% Solids	78.4		1.00	%	1		78.8			0.6	10%	
Duplicate (23F0703-DUP2)			Prepared	: 06/20/23	09:29 Anal	yzed: 06/21	/23 04:08					PR
QC Source Sample: Non-SDG (A3	F1188-02)											
% Solids	96.4		1.00	%	1		96.4			0.05	10%	
Duplicate (23F0703-DUP3)			Prepared	: 06/20/23	09:29 Anal	yzed: 06/21	/23 04:08					PR
QC Source Sample: Non-SDG (A3	F1188-04)											
% Solids	96.5		1.00	%	1		96.5			0.05	10%	
Duplicate (23F0703-DUP4)			Prepared	: 06/20/23	19:05 Anal	yzed: 06/21	/23 04:08					
QC Source Sample: Non-SDG (A3	3F1342-04)											
% Solids	73.3		1.00	%	1		73.4			0.1	10%	
Duplicate (23F0703-DUP5)			Prepared	: 06/20/23	19:05 Anal	yzed: 06/21	/23 04:08					
QC Source Sample: Non-SDG (A3	3F1342-05)											
% Solids	73.3		1.00	%	1		73.5			0.3	10%	
Duplicate (23F0703-DUP6)			Prepared	: 06/20/23	19:05 Anal	yzed: 06/21	/23 04:08					
QC Source Sample: Non-SDG (A3	3F1342-06)											
% Solids	73.3		1.00	%	1		73.0			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 57 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F0805 - 06 23 23 1514

SAMPLE PREPARATION INFORMATION

	Volatile Organic Compounds by EPA 8260D													
Prep: EPA 5035A					Sample Initial/Final	Default Initial/Final	RL Prep Factor							
Lab Number	Matrix	Method	Sampled	Prepared	IIIItiai/Tiliai	IIIIIIIII/TIIIIII	racioi							
Batch: 23F0184														
A3F0805-03	Soil	5035A/8260D	06/02/23 10:30	06/02/23 10:30	5.12g/5mL	5g/5mL	0.98							
Batch: 23F0213														
A3F0805-01	Soil	5035A/8260D	06/01/23 15:20	06/01/23 15:20	5.91g/5mL	5g/5mL	0.85							
					279 - 8 - 2 - 2	og ome								
Batch: 23F0541														
A3F0805-04	Soil	5035A/8260D	06/02/23 11:00	06/02/23 11:00	5.11g/5mL	5g/5mL	0.98							
Batch: 23F0699														
A3F0805-05	Soil	5035A/8260D	06/02/23 12:00	06/02/23 12:00	6.08g/5mL	5g/5mL	0.82							
						. 8								

	Vinyl Chloride by EPA 8260D SIM													
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor							
Batch: 23F0303														
A3F0805-01	Soil	5035A/8260D SIM	06/01/23 15:20	06/01/23 15:20	5.91g/5mL	5g/5mL	0.85							
A3F0805-03	Soil	5035A/8260D SIM	06/02/23 10:30	06/02/23 10:30	5.12g/5mL	5g/5mL	0.98							

			Percent Dry We	ight			
Prep: Total Solids (Dr	y Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0189							
A3F0805-01	Soil	EPA 8000D	06/01/23 15:20	06/06/23 13:56			NA
A3F0805-03	Soil	EPA 8000D	06/02/23 10:30	06/06/23 13:56			NA
Batch: 23F0546							
A3F0805-04	Soil	EPA 8000D	06/02/23 11:00	06/15/23 10:09			NA
Batch: 23F0703							
A3F0805-05	Soil	EPA 8000D	06/02/23 12:00	06/20/23 09:29			NA

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

155 NE 100th St #302 Project Number: 1789002.010 Report ID: Seattle, WA 98125 Project Manager: Mike Staton A3F0805 - 06 23 23 1514

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

ex Laborato	<u>ories</u>
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
H-01	Analyzed outside the recommended holding time.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
PRO	Sample has undergone sample processing prior to extraction and analysis.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +12%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +25%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +9%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -4%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -7%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -8%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Apex Laboratories

Philip Nevenberg

Q-56

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 59 of 64 Philip Nerenberg, Lab Director

Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manhera

Page 60 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 62 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F0805 - 06 23 23 1514

LANDAU ASSOCIATES	Chain-of-Custody Record	tody	Tacom Olymp	North Seattle (205) 531-8550 Tacoma (253) 926-2493 Olympia (360) 791-3178	Spokane (509) 327-9737 Portland (503) 542-1080	Page of	Standard S-dty Accelerated
Project Name Woodin	Project Name Weshing West Brings Park Project No. 1789032.010	ject No.	1789002.			Testing Parameters	
Project Location/Event	Project Location/Event Wood numble West Busines Park, Building C, Additional Investigation	S Park, E	wilding C, 1	Harriem Investgation	12/2/2010		
Sampler's Name Spere Lo	ner bo				1 12 13		Special Handling Requirements:
Project Contact Mike Staten	Staton				TO W. JON		Shipment Method:
Send Results To MSF.	Send Results To MStaton @ landavinc. Lom			0.0	7		Stored on ice: 🔗 / No
Sample I.D.		Time	Matrix	No. of Cal	077 179 180 1179		Observations/Comments
MW-11-5	6.1.23	1520	1:05				THE PARTY OF THE P
MW-11-22	6.1.23	1545	Sp.f		×		Allow water samples to settle, collect
DMW-1-10	6.2.13 10	1030	1:55	×			aliquot from clear portion
DMW-1-10		1100	1.05		×		NWTPH-Dx - Acid wash cleanup
DAM-1-47.5	11.2.3 12	1000	1.05		χ		- Silica gel cleanup 🔲
りか~!~が心の	6.2.23 11	5021	50:1		*		Dissolved metal samples were field filtered
+84-1-MWQ	6.4.23	5201	1:05		×		
DMW-2-52	6.1.13	0 401	1,105	->	×		The state of the s
						0	Other
	AND ADDRESS OF THE AD						THE STATE OF THE S
							THE PROPERTY OF THE PROPERTY O
						1	
							* Out to the latest and the latest a
			4 4				
							Comment (and) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
							PROPERTY - Street and street
				and the second s			The second secon
	0.000						
Relinquished by		Received by			Relinquished by	R.	Received by
Signature Signature	Sign	Signature 8	3	Λ.	Signature	Sign	Signature
Printed Name Spence	V S	ited Name	Printed Name Days Salara	Salvad	Printed Name	Pri	Printed Name
Company CAL		Company	tpe,		Company	8	Сотрапу
Date 6.5.23	Time 1200 Date	Date 6-6-23	1	Time 103	Date Time	Date	e Time

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 63 of 64

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302

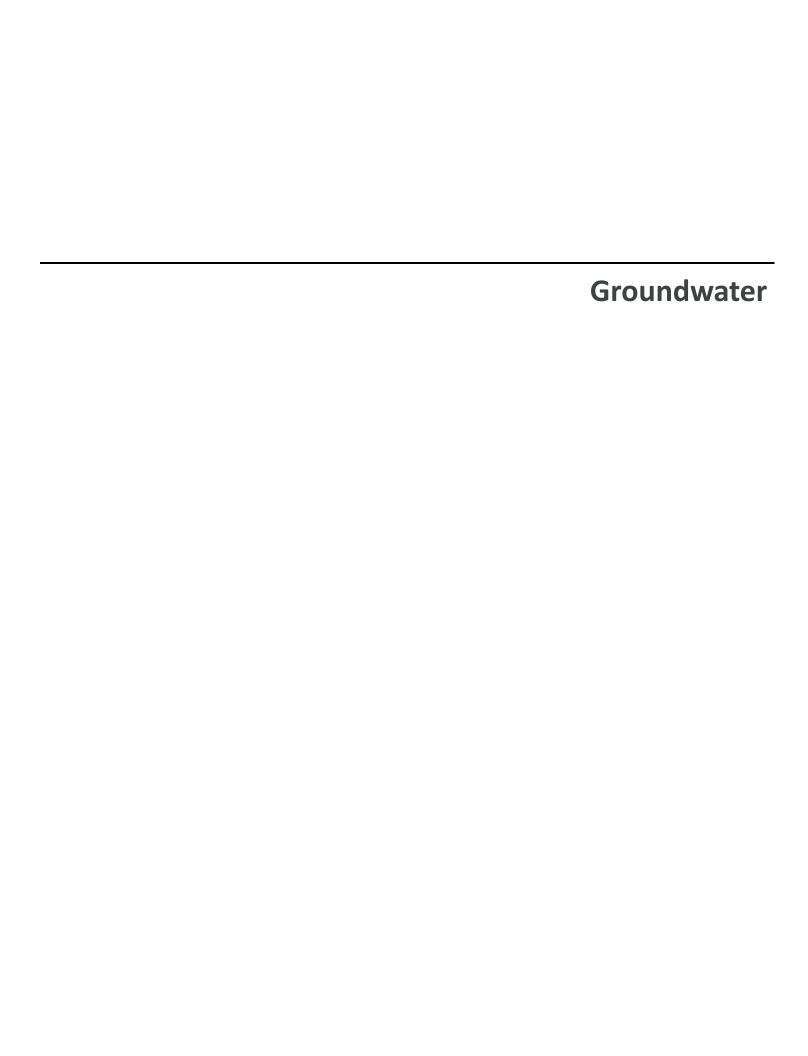
Seattle, WA 98125

Project:

Woodinville West Business Park

Project Number: 1789002.010

Project Manager: Mike Staton


Report ID: A3F0805 - 06 23 23 1514

Client: Londau /	Associates Element WO#: A3 F080 S
	Loodinville West Business Bork/ 1789002,010
Delivery Info:	· /
Date/time received: 6-6-	23 @ 1031 By:
Delivered by: ApexClie	nt_ESSFedEx_xUPS_RadioMorganSDSEvergreenOther
Cooler Inspection Da	te/time inspected: 6-6-23 @ 1031 By:
Chain of Custody included	d? Yes <u>></u> No
Signed/dated by client?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler
Temperature (°C)	3.9
Custody seals? (Y/N)	<u>7</u>
Received on ice? (Y/N)	**************************************
Temp. blanks? (Y/N)	<u>, </u>
Ice type: (Gel/Real/Other)	Beal
Condition (In/Out):	<u> </u>
Out of temperature sample Sample Inspection: Date	of temperature samples? Yes/No es form initiated? Yes/No electrime inspected: 6-6-13 @ 1045 By: 515
Out of temperature sample Sample Inspection: Dar All samples intact? Yes	es form initiated? Yes No louis By: 515 No Comments:
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree?	es form initiated? Yes No te/time inspected: 6-6-23 @ 1045 By: 515
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMV-2-49 continer discrepance	es form initiated? Yes No By: D S No Comments: Yes No X Comments: DMW-1-10 Cooking Time reads The reads 1030 ies form initiated? Yes No X N
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMV-2-49 continer discrepance	es form initiated? Yes No louis By: Dis et/time inspected: 6-6-23 @ 1045 By: Dis Set/time inspected: 6-6-23 @ 1045
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMW-2-49 conw COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments	es form initiated? Yes No By: D S No Comments: Yes No X Comments: DMW-1-10 Cooking Time reads The reads 1030 ies form initiated? Yes No X N
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMW-2-49 600000 COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	es form initiated? Yes No lectime inspected: 6-6-13 @ 1045 By: 55 No Comments: DMW-1-105 Cookw Two reads Yes No X Comments: DMW-1-105 Cookw Two reads Yes No X Comments: DMW-1-105 Cookw Two reads Post 6-6-13 ies form initiated? Yes No X red appropriate for analysis? Yes No Comments: Comment
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMW-2-49 600000 COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	es form initiated? Yes No Louis By: Dissective inspected: 6-6-23 @ 1045 By: Dissective inspected: By: Dissective inspected
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMV-2-49 convice COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checke Comments: Additional information:	es form initiated? Yes No lettime inspected: 6-6-23 @ 1045 By: 55 No Comments: Yes No Comments: DMW-1-10 Control Time reads Yes No Comments: DMW-1-10 Control Time reads The reads 1030 T
Out of temperature sample Sample Inspection: Dat All samples intact? Yes 2 Bottle labels/COCs agree? DMW-2-49 600000 COC/container discrepance Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker Comments:	es form initiated? Yes No lectime inspected: 6-6-13 @ 1045 By: 55 No Comments: DMW-1-105 Cookw Two reads Yes No X Comments: DMW-1-105 Cookw Two reads Yes No X Comments: DMW-1-105 Cookw Two reads Post 6-6-13 ies form initiated? Yes No X red appropriate for analysis? Yes No Comments: Comment

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, June 28, 2023 Mike Staton Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

RE: A3F1020 - Woodinville West Business Park - 1789002.010

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3F1020, which was received by the laboratory on 6/9/2023 at 10:18:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cobrien@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 4.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled Date Received	
MW-1-0623	A3F1020-01	Water	06/07/23 10:18	_
MW-2-0623	A3F1020-02	Water	06/07/23 12:42 06/09/23 10:18	
MW-3-0623	A3F1020-03	Water	06/08/23 09:34 06/09/23 10:18	
MW-4-0623	A3F1020-04	Water	06/08/23 10:16 06/09/23 10:18	
MW-5-0623	A3F1020-05	Water	06/07/23 11:40 06/09/23 10:18	
MW-6-0623	A3F1020-06	Water	06/07/23 10:57 06/09/23 10:18	
MW-7-0623	A3F1020-07	Water	06/07/23 12:10 06/09/23 10:18	
MW-8-0623	A3F1020-08	Water	06/08/23 11:42 06/09/23 10:18	
MW-9-0623	A3F1020-09	Water	06/07/23 13:12 06/09/23 10:18	
MW-10-0623	A3F1020-10	Water	06/07/23 15:03 06/09/23 10:18	
MW-11-0623	A3F1020-11	Water	06/08/23 11:10 06/09/23 10:18	
MW-12-0623	A3F1020-12	Water	06/07/23 15:31 06/09/23 10:18	
MW-13-0623	A3F1020-13	Water	06/07/23 14:19 06/09/23 10:18	
MW-14-0623	A3F1020-14	Water	06/07/23 13:47 06/09/23 10:18	
DMW-1-0623	A3F1020-15	Water	06/08/23 10:46 06/09/23 10:18	
DMW-2-0623	A3F1020-16	Water	06/08/23 08:56 06/09/23 10:18	
Trip Blank	A3F1020-17	Water	06/07/23 00:00 06/09/23 10:18	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

			ic Compound	, LI A O				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0623 (A3F1020-01)				Matrix: Wa			23F0390	
Acetone	ND	10.0	20.0	ug/L	1	06/12/23 18:59	EPA 8260D	
Acetone Acrylonitrile	ND ND	10.0	2.00	ug/L ug/L	1	06/12/23 18:59	EPA 8260D EPA 8260D	
Benzene	ND ND	0.100	0.200	_	1	06/12/23 18:59	EPA 8260D	
Benzene Bromobenzene	ND ND		0.200	ug/L	1	06/12/23 18:59	EPA 8260D EPA 8260D	
Bromobenzene Bromochloromethane	ND ND	0.250 0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D EPA 8260D	
				ug/L		06/12/23 18:59	EPA 8260D EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1			
Bromoform	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/12/23 18:59	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/12/23 18:59	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/12/23 18:59	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/12/23 18:59	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
ris-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-1-0623 (A3F1020-01)				Matrix: Wa	ater	Batch:	23F0390	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/12/23 18:59	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/12/23 18:59	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/12/23 18:59	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/12/23 18:59	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/12/23 18:59	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 18:59	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/12/23 18:59	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
/inyl chloride	ND	0.200	0.400	ug/L	1	06/12/23 18:59	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/12/23 18:59	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	06/12/23 18:59	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-1-0623 (A3F1020-01)				Matrix: Wate	r	Batch: 2	23F0390	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107%	Limits: 80-120 %	1	06/12/23 18:59	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/12/23 18:59	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	06/12/23 18:59	EPA 8260D	
MW-2-0623 (A3F1020-02)				Matrix: Wate	r	Batch: 2	23F0390	
Acetone	ND	10.0	20.0	ug/L	1	06/12/23 19:22	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/12/23 19:22	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/12/23 19:22	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/12/23 19:22	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/12/23 19:22	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/12/23 19:22	EPA 8260D	
2-Chlorotoluene	0.730	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	J
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/12/23 19:22	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 19:22	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	1		olatile Organi	•	us by EPA 8	2000			
Matrix: Water Batch: 23F0390 Matrix: Water Batch: 23F0390 Matrix: Water Matrix: Wa	Analysta	•		1 0	I Ini+-	Dil		Mothed Dec	NICA
	•	Kesuit	LIMIÜ	Limit					notes
	MW-2-0623 (A3F1020-02)				Matrix: W	ater	Batch:	23F0390	
Part	1,2-Dichloroethane (EDC)	ND	0.200	0.400		1	06/12/23 19:22	EPA 8260D	
Parallel Parallel	1,1-Dichloroethene	ND	0.200	0.400		1	06/12/23 19:22	EPA 8260D	
Parallel Parallel	cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 19:22	EPA 8260D	
1,3-Dichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	trans-1,2-Dichloroethene	ND	0.200	0.400		1	06/12/23 19:22	EPA 8260D	
2,2-Dichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
1,1-Dichloropropene	1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Sis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Paras 1,3 - Dichloropropene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Ethylbenzene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D	cis-1,3-Dichloropropene	ND	0.500	1.00		1	06/12/23 19:22	EPA 8260D	
Ethylbenzene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D	trans-1,3-Dichloropropene	ND	0.500	1.00		1	06/12/23 19:22	EPA 8260D	
Part	Ethylbenzene	ND	0.250	0.500		1	06/12/23 19:22	EPA 8260D	
Sepropylbenzene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/12/23 19:22	EPA 8260D	
A-Isopropyltoluene	2-Hexanone	ND	5.00	10.0	ug/L	1	06/12/23 19:22	EPA 8260D	
Methylene chloride ND 5.00 10.0 ug/L 1 06/12/23 19:22 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 06/12/23 19:22 EPA 8260D Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D Propylbenzene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Styrene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D Styrene ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Include ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Tolluene ND 1.00	Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Henthyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 06/12/23 19:22 EPA 8260D Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D	4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D n-Propylbenzene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Styrene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Toluene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane <td< td=""><td>Methylene chloride</td><td>ND</td><td>5.00</td><td>10.0</td><td>ug/L</td><td>1</td><td>06/12/23 19:22</td><td>EPA 8260D</td><td></td></td<>	Methylene chloride	ND	5.00	10.0	ug/L	1	06/12/23 19:22	EPA 8260D	
Naphthalene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D n-Propylbenzene ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Styrene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1.1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1.1,1,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D 1.1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D 1.06/12/23 19:22 EPA 8260D 1.06/12/23 19:22 EPA 8260D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/12/23 19:22	EPA 8260D	
ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D	Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Styrene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Toluene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane	Naphthalene	ND	1.00	2.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Styrene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Toluene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane	n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
1,1,2-Tetrachloroethane	Styrene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Toluene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,1,1,2-Tetrachloroethane	ND	0.200	0.400		1	06/12/23 19:22	EPA 8260D	
Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Toluene ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	
Toluene	Tetrachloroethene (PCE)	ND	0.200	0.400	_	1	06/12/23 19:22	EPA 8260D	
1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	Toluene	ND	0.500	1.00	_	1	06/12/23 19:22	EPA 8260D	
1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,2,3-Trichlorobenzene	ND	1.00	2.00	_	1	06/12/23 19:22	EPA 8260D	
I,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D I,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,2,4-Trichlorobenzene	ND	1.00	2.00	_	1	06/12/23 19:22	EPA 8260D	
1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 06/12/23 19:22 EPA 8260D Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,1,1-Trichloroethane	ND	0.200	0.400		1	06/12/23 19:22	EPA 8260D	
Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 06/12/23 19:22 EPA 8260D Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	1,1,2-Trichloroethane	ND	0.250			1	06/12/23 19:22	EPA 8260D	
Trichlorofluoromethane ND 1.00 2.00 ug/L 1 06/12/23 19:22 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	Trichloroethene (TCE)	ND	0.200	0.400	_	1	06/12/23 19:22	EPA 8260D	
1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 06/12/23 19:22 EPA 8260D	Trichlorofluoromethane				_	1	06/12/23 19:22	EPA 8260D	
	1,2,3-Trichloropropane				_		06/12/23 19:22	EPA 8260D	
,, , ,	1,2,4-Trimethylbenzene		0.500		ug/L	-			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-2-0623 (A3F1020-02)				Matrix: Wate	r	Batch: 2	23F0390	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
Vinyl chloride	1.19	0.200	0.400	ug/L	1	06/12/23 19:22	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/12/23 19:22	EPA 8260D	
o-Xylene	0.270	0.250	0.500	ug/L	1	06/12/23 19:22	EPA 8260D	J
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	06/12/23 19:22	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/12/23 19:22	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	06/12/23 19:22	EPA 8260D	
MW-3-0623 (A3F1020-03)				Matrix: Wate	r	Batch: 2	23F0390	
Acetone	ND	10.0	20.0	ug/L	1	06/12/23 19:44	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/12/23 19:44	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/12/23 19:44	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/12/23 19:44	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/12/23 19:44	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/12/23 19:44	EPA 8260D	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0623 (A3F1020-03)				Matrix: Wa	ater	Batch:	23F0390	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/12/23 19:44	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/12/23 19:44	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/12/23 19:44	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/12/23 19:44	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/12/23 19:44	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Cetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number:
 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager:
 Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-3-0623 (A3F1020-03)				Matrix: Wate	r	Batch:	23F0390	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/12/23 19:44	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/12/23 19:44	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/12/23 19:44	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	I	06/12/23 19:44	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/12/23 19:44	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	06/12/23 19:44	EPA 8260D	
MW-4-0623 (A3F1020-04)			_	Matrix: Wate	r	Batch:	23F0390	
Acetone	ND	10.0	20.0	ug/L	1	06/12/23 20:07	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/12/23 20:07	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/12/23 20:07	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/12/23 20:07	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/12/23 20:07	EPA 8260D	
arbon tetrachloride	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/12/23 20:07	EPA 8260D	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-4-0623 (A3F1020-04)				Matrix: Wa	ater	Batch:	23F0390	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
cis-1,2-Dichloroethene	0.440	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/12/23 20:07	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/12/23 20:07	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/12/23 20:07	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/12/23 20:07	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/12/23 20:07	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-4-0623 (A3F1020-04)				Matrix: Wate	r	Batch: 23F0390		
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
Vinyl chloride	1.85	0.200	0.400	ug/L	1	06/12/23 20:07	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/12/23 20:07	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/12/23 20:07	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	1	06/12/23 20:07	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	06/12/23 20:07	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	06/12/23 20:07	EPA 8260D	
MW-5-0623 (A3F1020-05)				Matrix: Wate	r	Batch: 23F0390		
Acetone	ND	10.0	20.0	ug/L	1	06/12/23 20:30	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/12/23 20:30	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/12/23 20:30	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/12/23 20:30	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/12/23 20:30	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-5-0623 (A3F1020-05)				Matrix: W	ater	Batch:	23F0390		
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
Chloroethane	ND	5.00	5.00	ug/L	1	06/12/23 20:30	EPA 8260D		
Chloroform	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
Chloromethane	ND	2.50	5.00	ug/L	1	06/12/23 20:30	EPA 8260D		
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/12/23 20:30	EPA 8260D		
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
Dibromomethane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D		
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D		
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D		
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D		
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D		
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D		
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/12/23 20:30	EPA 8260D		
-Hexanone	ND	5.00	10.0	ug/L	1	06/12/23 20:30	EPA 8260D		
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		
Methylene chloride	ND	5.00	10.0	ug/L	1	06/12/23 20:30	EPA 8260D		
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/12/23 20:30	EPA 8260D		
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number:
 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager:
 Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-5-0623 (A3F1020-05)				Matrix: Wate	r	Batch: 2	23F0390	
Naphthalene	ND	1.00	2.00	ug/L	1	06/12/23 20:30	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/12/23 20:30	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/12/23 20:30	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/12/23 20:30	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	06/12/23 20:30	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/12/23 20:30	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	06/12/23 20:30	EPA 8260D	
MW-6-0623 (A3F1020-06)				Matrix: Water		Batch: 23F0436		
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 11:07	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 11:07	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 11:07	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 11:07	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
/IW-6-0623 (A3F1020-06)				Matrix: W	ater	Batch:	23F0436	
-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 11:07	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 11:07	EPA 8260D	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
thylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 11:07	EPA 8260D	
-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 11:07	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

				nds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-6-0623 (A3F1020-06)				Matrix: Wate	r	Batch:	23F0436	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 11:07	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 11:07	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 11:07	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 11:07	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 11:07	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 11:07	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits: 80-120 %	I	06/13/23 11:07	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/13/23 11:07	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/13/23 11:07	EPA 8260D	
MW-7-0623 (A3F1020-07)	Matrix: Water Batch: 23F0436		23F0436					
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 11:30	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 11:30	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-7-0623 (A3F1020-07)				Matrix: Wa	ater	Batch:	23F0436	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 11:30	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 11:30	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 11:30	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 11:30	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
is-1,2-Dichloroethene	1.50	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	06/13/23 11:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-7-0623 (A3F1020-07)				Matrix: Wate	er -	Batch:	23F0436	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 11:30	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 11:30	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 11:30	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 11:30	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 11:30	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 11:30	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 11:30	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 11:30	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 97%	Limits: 80-120 %	6 I	06/13/23 11:30	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	06/13/23 11:30	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	6 I	06/13/23 11:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-8-0623 (A3F1020-08)				Matrix: Wa	ater	Batch:	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 11:53	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 11:53	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 11:53	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 11:53	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 11:53	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 11:53	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
is-1,2-Dichloroethene	0.220	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	J
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	06/13/23 11:53	EPA 8260D	-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-8-0623 (A3F1020-08)				Matrix: Wa	ater	Batch:	23F0436	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 11:53	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 11:53	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 11:53	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 11:53	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 11:53	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 11:53	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 11:53	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 11:53	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
/inyl chloride	0.860	0.200	0.400	ug/L	1	06/13/23 11:53	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 11:53	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L ug/L	1	06/13/23 11:53	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-8-0623 (A3F1020-08)				Matrix: Wate	r	Batch: 23F0436		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	06/13/23 11:53	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	I	06/13/23 11:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	06/13/23 11:53	EPA 8260D	
MW-9-0623 (A3F1020-09)					r	Batch:	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 12:15	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 12:15	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 12:15	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 12:15	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 12:15	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 12:15	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-9-0623 (A3F1020-09)				Matrix: Wa	ater	Batch:	23F0436	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 12:15	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 12:15	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 12:15	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 12:15	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 12:15	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
•				2				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting	** .	5	Date	V 4 45 5	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-9-0623 (A3F1020-09)				Matrix: Wate	r	Batch: 2	23F0436	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
Vinyl chloride	0.360	0.200	0.400	ug/L	1	06/13/23 12:15	EPA 8260D	J
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 12:15	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 12:15	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	06/13/23 12:15	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/13/23 12:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	06/13/23 12:15	EPA 8260D	
MW-10-0623 (A3F1020-10)				Matrix: Wate	r	Batch: 2	23F0436	
Acetone	ND	20.0	20.0	ug/L	1	06/13/23 12:38	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 12:38	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 12:38	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 12:38	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 12:38	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 12:38	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
Analyte	Result	Lillill	Pullit			Analyzed		note
MW-10-0623 (A3F1020-10)				Matrix: W	ater	Batch: 23F0436		
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
sis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 12:38	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 12:38	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 12:38	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 12:38	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 12:38	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
styrene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
etrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
oluene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 12:38	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-10-0623 (A3F1020-10)				Matrix: Wate	r	Batch:	23F0436	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 12:38	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 12:38	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 12:38	EPA 8260D	_
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 98 %	Limits: 80-120 %	1	06/13/23 12:38	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/13/23 12:38	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	06/13/23 12:38	EPA 8260D	
MW-11-0623 (A3F1020-11)				Matrix: Wate	r	Batch: 2	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 13:01	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 13:01	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 13:01	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 13:01	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 13:01	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 13:01	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-11-0623 (A3F1020-11)				Matrix: Wa	ater	Batch:	23F0436	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 13:01	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 13:01	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 13:01	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 13:01	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Japhthalene	ND	1.00	2.00	ug/L	1	06/13/23 13:01	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
tyrene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L ug/L	1	06/13/23 13:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-11-0623 (A3F1020-11)				Matrix: Wate	r	Batch: 2	23F0436	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 13:01	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 13:01	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 13:01	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	06/13/23 13:01	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	06/13/23 13:01	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	06/13/23 13:01	EPA 8260D	
MW-12-0623 (A3F1020-12)				Matrix: Wate	r	Batch: 2	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 13:23	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 13:23	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 13:23	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 13:23	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 13:23	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-12-0623 (A3F1020-12)				Matrix: Wa	ater	Batch:	23F0436	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 13:23	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
l-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 13:23	EPA 8260D	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
ris-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
eis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Iexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 13:23	EPA 8260D	
-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 13:23	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 13:23	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 13:23	EPA 8260D	
lethyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-12-0623 (A3F1020-12)				Matrix: Wate	r	Batch: 2	23F0436	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 13:23	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:23	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:23	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
Trichlorofluoromethane	ND	1.00 2.00		ug/L	1	06/13/23 13:23	EPA 8260D	
1,2,3-Trichloropropane	ND	•		ug/L	1	06/13/23 13:23	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 13:23	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 13:23	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 13:23	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	06/13/23 13:23	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/13/23 13:23	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/13/23 13:23	EPA 8260D	
MW-13-0623 (A3F1020-13)				Matrix: Wate	r	Batch: 2	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 13:46	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 13:46	EPA 8260D	
Bromobenzene	ND	0.250	e		1	06/13/23 13:46	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Bromodichloromethane	ND	0.500			1	06/13/23 13:46	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 13:46	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 13:46	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ds by EPA 8.	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-13-0623 (A3F1020-13)				Matrix: Wa	ater	Batch:	23F0436	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 13:46	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 13:46	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 13:46	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 13:46	EPA 8260D	
		-		-6	-			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number:
 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager:
 Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-13-0623 (A3F1020-13)				Matrix: Wate	r	Batch: 23F0436		
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 13:46	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 13:46	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 13:46	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
Vinyl chloride	1.34	0.200	0.400	ug/L	1	06/13/23 13:46	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 13:46	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 13:46	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	06/13/23 13:46	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/13/23 13:46	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/13/23 13:46	EPA 8260D	
MW-14-0623 (A3F1020-14)				Matrix: Wate	r	Batch:	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 14:08	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 14:08	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

			ic Compound	JUNY LIFA 0.				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-14-0623 (A3F1020-14)				Matrix: Wa	ater	Batch:	23F0436	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 14:08	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 14:08	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 14:08	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 14:08	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
eis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-14-0623 (A3F1020-14)				Matrix: Wate	ır	Batch: 2	23F0436	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	_
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 14:08	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 14:08	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 14:08	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 14:08	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 14:08	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 14:08	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
/inyl chloride	1.52	0.200	0.400	ug/L	1	06/13/23 14:08	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 14:08	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 14:08	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 97 %	Limits: 80-120 %	5 I	06/13/23 14:08	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	5 1	06/13/23 14:08	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	5 1	06/13/23 14:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
•	Kesuit	Lillit	FIIIII					note
DMW-1-0623 (A3F1020-15)				Matrix: Wa	ater	Batch:	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 14:31	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 14:31	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 14:31	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 14:31	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 14:31	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Chloroform	0.730	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	J
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 14:31	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DMW-1-0623 (A3F1020-15)				Matrix: Wa	ater	Batch:	23F0436	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 14:31	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 14:31	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 14:31	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 14:31	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 14:31	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:31	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 14:31	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 14:31	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 14:31	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L ug/L	1	06/13/23 14:31	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DMW-1-0623 (A3F1020-15)				Matrix: Water		Batch: 23F0436		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	06/13/23 14:31	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	06/13/23 14:31	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/13/23 14:31	EPA 8260D	
DMW-2-0623 (A3F1020-16)				Matrix: Wate	r	Batch:	23F0436	
Acetone	ND	10.0	20.0	ug/L	1	06/13/23 14:54	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	06/13/23 14:54	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	06/13/23 14:54	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	06/13/23 14:54	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	06/13/23 14:54	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Chloroform	0.600	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	J
Chloromethane	ND	2.50	5.00	ug/L	1	06/13/23 14:54	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	06/13/23 14:54	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DMW-2-0623 (A3F1020-16)				Matrix: Wa	ater	Batch: 23F0436		
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Iexachlorobutadiene	ND	2.50	5.00	ug/L	1	06/13/23 14:54	EPA 8260D	
-Hexanone	ND	5.00	10.0	ug/L	1	06/13/23 14:54	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	06/13/23 14:54	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	06/13/23 14:54	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	06/13/23 14:54	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Cetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
Coluene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
richloroethene (TCE)	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Seattle, WA 98125

155 NE 100th St #302

Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F1020 - 06 28 23 1411

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	60D	-	-	
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DMW-2-0623 (A3F1020-16)		Matrix: Water				Batch:		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	06/13/23 14:54	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	06/13/23 14:54	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	06/13/23 14:54	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	6 1	06/13/23 14:54	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	6 1	06/13/23 14:54	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	6 1	06/13/23 14:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0390 - EPA 5030C Water Blank (23F0390-BLK1) Prepared: 06/12/23 09:26 Analyzed: 06/12/23 11:48 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 1.00 2.00 Acrylonitrile ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 5.00 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0390 - EPA 5030C							Wat	er				
Blank (23F0390-BLK1)			Prepared	l: 06/12/23	09:26 Anal	yzed: 06/12	/23 11:48					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
sopropylbenzene	ND	0.500	1.00	ug/L	1							
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Гoluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
n,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 94 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

		,										
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0390 - EPA 5030C							Wa	ter				
Blank (23F0390-BLK1)			Prepared	: 06/12/23	09:26 Ana	lyzed: 06/12	/23 11:48					
Surr: Toluene-d8 (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	tion: 1x					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (23F0390-BS1)			Prepared	: 06/12/23	09:26 Ana	lyzed: 06/12	/23 10:53					
EPA 8260D												
Acetone	37.7	10.0	20.0	ug/L	1	40.0		94	80-120%			
Acrylonitrile	17.7	1.00	2.00	ug/L	1	20.0		88	80-120%			
Benzene	18.2	0.100	0.200	ug/L	1	20.0		91	80-120%			
Bromobenzene	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%			
Bromochloromethane	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
Bromodichloromethane	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
Bromoform	22.6	0.500	1.00	ug/L	1	20.0		113	80-120%			
Bromomethane	19.7	5.00	5.00	ug/L	1	20.0		98	80-120%			
2-Butanone (MEK)	35.7	5.00	10.0	ug/L	1	40.0		89	80-120%			
n-Butylbenzene	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
sec-Butylbenzene	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
ert-Butylbenzene	21.9	0.500	1.00	ug/L	1	20.0		110	80-120%			
Carbon disulfide	17.3	5.00	10.0	ug/L	1	20.0		86	80-120%			
Carbon tetrachloride	21.9	0.500	1.00	ug/L	1	20.0		110	80-120%			
Chlorobenzene	19.3	0.250	0.500	ug/L	1	20.0		97	80-120%			
Chloroethane	18.4	5.00	5.00	ug/L	1	20.0		92	80-120%			
Chloroform	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
Chloromethane	16.2	2.50	5.00	ug/L	1	20.0		81	80-120%			
2-Chlorotoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
l-Chlorotoluene	22.1	0.500	1.00	ug/L	1	20.0		110	80-120%			
Dibromochloromethane	20.7	0.500	1.00	ug/L	1	20.0		104	80-120%			
,2-Dibromo-3-chloropropane	19.1	2.50	5.00	ug/L	1	20.0		96	80-120%			
,2-Dibromoethane (EDB)	19.1	0.250	0.500	ug/L	1	20.0		95	80-120%			
Dibromomethane	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
,2-Dichlorobenzene	20.4	0.250	0.500	ug/L	1	20.0		102	80-120%			
,3-Dichlorobenzene	20.1	0.250	0.500	ug/L	1	20.0		101	80-120%			
,4-Dichlorobenzene	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
Dichlorodifluoromethane	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
,1-Dichloroethane	19.1	0.200	0.400	ug/L	1	20.0		96	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

7 that y to	Result	LIIIII	Limit	Cinto	Dilation	7 tinount	resurt	70 REC	Limis	IG D	Liiiit	110103
Batch 23F0390 - EPA 5030C							Wa	iter				
LCS (23F0390-BS1)			Prepared	: 06/12/23 0	9:26 Anal	yzed: 06/12/	23 10:53					
1,2-Dichloroethane (EDC)	20.5	0.200	0.400	ug/L	1	20.0		102	80-120%			
1,1-Dichloroethene	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
cis-1,2-Dichloroethene	19.3	0.200	0.400	ug/L	1	20.0		97	80-120%			
rans-1,2-Dichloroethene	18.5	0.200	0.400	ug/L	1	20.0		93	80-120%			
1,2-Dichloropropane	18.2	0.250	0.500	ug/L	1	20.0		91	80-120%			
1,3-Dichloropropane	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
2,2-Dichloropropane	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
,1-Dichloropropene	19.9	0.500	1.00	ug/L	1	20.0		100	80-120%			
eis-1,3-Dichloropropene	21.1	0.500	1.00	ug/L	1	20.0		106	80-120%			
rans-1,3-Dichloropropene	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
Ethylbenzene	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
Hexachlorobutadiene	20.9	2.50	5.00	ug/L	1	20.0		105	80-120%			
2-Hexanone	33.8	5.00	10.0	ug/L	1	40.0		85	80-120%			
sopropylbenzene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
1-Isopropyltoluene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
Methylene chloride	17.2	5.00	10.0	ug/L	1	20.0		86	80-120%			
4-Methyl-2-pentanone (MiBK)	38.4	5.00	10.0	ug/L	1	40.0		96	80-120%			
Methyl tert-butyl ether (MTBE)	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
Naphthalene	17.0	1.00	2.00	ug/L	1	20.0		85	80-120%			
n-Propylbenzene	20.3	0.250	0.500	ug/L	1	20.0		101	80-120%			
Styrene	18.3	0.500	1.00	ug/L	1	20.0		92	80-120%			
1,1,1,2-Tetrachloroethane	20.1	0.200	0.400	ug/L	1	20.0		100	80-120%			
1,1,2,2-Tetrachloroethane	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Tetrachloroethene (PCE)	19.7	0.200	0.400	ug/L	1	20.0		99	80-120%			
Гoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
1,2,3-Trichlorobenzene	19.7	1.00	2.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trichlorobenzene	19.5	1.00	2.00	ug/L	1	20.0		98	80-120%			
,1,1-Trichloroethane	21.5	0.200	0.400	ug/L	1	20.0		107	80-120%			
,1,2-Trichloroethane	18.5	0.250	0.500	ug/L	1	20.0		93	80-120%			
Trichloroethene (TCE)	18.1	0.200	0.400	ug/L	1	20.0		91	80-120%			
Trichlorofluoromethane	22.1	1.00	2.00	ug/L	1	20.0		110	80-120%			
,2,3-Trichloropropane	19.7	0.500	1.00	ug/L	1	20.0		99	80-120%			
,2,4-Trimethylbenzene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,3,5-Trimethylbenzene	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0390 - EPA 5030C							Wa	ter				
LCS (23F0390-BS1)			Prepared	: 06/12/23	09:26 Anal	lyzed: 06/12/	/23 10:53					
Vinyl chloride	17.6	0.200	0.400	ug/L	1	20.0		88	80-120%			
n,p-Xylene	43.8	0.500	1.00	ug/L	1	40.0		110	80-120%			
o-Xylene	21.7	0.250	0.500	ug/L	1	20.0		108	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
Duplicate (23F0390-DUP1)			Prepared	: 06/12/23	09:26 Anal	lyzed: 06/12/	/23 13:19					
OC Source Sample: Non-SDG (A3	F0977-11)											
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 23F0390 - EPA 5030C Water Duplicate (23F0390-DUP1) Prepared: 06/12/23 09:26 Analyzed: 06/12/23 13:19 QC Source Sample: Non-SDG (A3F0977-11) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% ---ND 0.200 0.400 1,1-Dichloroethene ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400 ND 30% 0.200 ug/L 1 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 0.250 Ethylbenzene ND 0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 ND 30% Isopropylbenzene 1.00 1 ug/L ---ND ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 ND 30% 10.0 ug/L 1 Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ___ ---30% Naphthalene ND 1.00 2.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene 0.250 ug/L 1 ND 0.500 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.200 0.400 1 ND 30% ug/L 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% ND 0.500 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 1.00 2.00 1 ND 30% ug/L ---1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 0.200 0.400 ND 1,1,1-Trichloroethane 1 30% ug/L 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23F0390 - EPA 5030C							Wa	ter					
Duplicate (23F0390-DUP1)			Prepared	1: 06/12/23	09:26 Ana	yzed: 06/12	/23 13:19						
QC Source Sample: Non-SDG (A3	F0977-11)												
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%		
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%		
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%		
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80	0-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			101 %	80	0-120 %		"						
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"						
QC Source Sample: Non-SDG (A3		10.0	20.0	/1	1		NID				200/		
Acetone	ND	10.0	20.0	ug/L	1		ND				30%		
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%		
Benzene	ND	0.100	0.200	ug/L	1		ND				30%		
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%		
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%		
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%		
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%		
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%		
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%		
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%		
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%		
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%		
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%		
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0390 - EPA 5030C Water Duplicate (23F0390-DUP2) Prepared: 06/12/23 09:26 Analyzed: 06/12/23 14:49 QC Source Sample: Non-SDG (A3F0998-01) 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 Dibromochloromethane ug/L 1 ND 30% 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 ND 30% 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ND 30% Dibromomethane ND 0.500 1.00 1 ND 30% ug/L ---ND 0.250 30% 1,2-Dichlorobenzene 0.500 ug/L 1 ND 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.500 ND 30% 1,4-Dichlorobenzene 0.250 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 0.400 1,1-Dichloroethene ND 0.200 ND 30% ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.200 0.400 ND 30% ug/L 1 0.250 1,2-Dichloropropane ND 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND ___ 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 ND 30% 1,1-Dichloropropene 1.00 1 ug/L ---ND ND cis-1,3-Dichloropropene 0.500 1.00 ug/L 1 30% 0.500 1.00 trans-1,3-Dichloropropene ND ND 30% ug/L 1 ND 0.250 0.500 ND 30% Ethylbenzene ug/L 1 Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND ___ ---30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND ND 30% Isopropylbenzene 0.500 1.00 ug/L 1 ND 0.500 1.00 ND 30% 4-Isopropyltoluene ug/L 1 ND 30% 5.00 10.0 ug/L 1 ND Methylene chloride 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ND 30% ug/L 1 Methyl tert-butyl ether (MTBE) ND ND 0.500 1.00 ug/L 1 30% Naphthalene ND 1.00 2.00 ug/L 1 ND 30% ND 0.250 0.500 1 ND 30% n-Propylbenzene ug/L Styrene ND 0.500 1.00 ug/L 1 ND 30% ND 0.200 0.400 ND 30% 1 1.1.1.2-Tetrachloroethane ug/L 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23F0390 - EPA 5030C							Wa	ter					
Ouplicate (23F0390-DUP2)			Prepared	: 06/12/23	09:26 Anal	yzed: 06/12	/23 14:49						
QC Source Sample: Non-SDG (A3F	70998-01 <u>)</u>												
etrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%		
oluene	ND	0.500	1.00	ug/L	1		ND				30%		
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%		
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%		
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%		
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%		
richloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%		
richlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%		
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
inyl chloride	ND	0.200	0.400	ug/L	1		ND				30%		
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%		
-Xylene	ND	0.250	0.500	ug/L	1		ND				30%		
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 110 %	Limits: 80	0-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			100 %	80	-120 %		"						
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"						
Matrix Spike (23F0390-MS1)			Prepared	: 06/12/23	09:26 Anal	yzed: 06/12	/23 20:52						
QC Source Sample: MW-5-0623 (A	3F1020-05	9				-							
EPA 8260D		<u> </u>											
Acetone	41.9	10.0	20.0	ug/L	1	40.0	ND	105	39-160%				
Acrylonitrile	19.5	1.00	2.00	ug/L	1	20.0	ND	98	63-135%				
Benzene	22.4	0.100	0.200	ug/L	1	20.0	ND	112	79-120%				
Bromobenzene	20.0	0.250	0.500	ug/L	1	20.0	ND	100	80-120%				
Bromochloromethane	24.0	0.500	1.00	ug/L	1	20.0	ND	120	78-123%				
Bromodichloromethane	22.8	0.500	1.00	ug/L	1	20.0	ND	114	79-125%				
Bromoform	22.0	0.500	1.00	ug/L	1	20.0	ND	110	66-130%				
Bromomethane	22.4	5.00	5.00	ug/L	1	20.0	ND	112	53-141%				
-Butanone (MEK)	41.7	5.00	10.0	ug/L	1	40.0	ND	104	56-143%				
-Butylbenzene	23.5	0.500	1.00	ug/L	1	20.0	ND	118	75-128%				
ec-Butylbenzene	23.6	0.500	1.00	ug/L	1	20.0	ND	118	77-126%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0390 - EPA 5030C Water Matrix Spike (23F0390-MS1) Prepared: 06/12/23 09:26 Analyzed: 06/12/23 20:52 QC Source Sample: MW-5-0623 (A3F1020-05) Carbon disulfide 5.00 10.0 ug/L 1 20.0 ND 110 64-133% 0.500 1.00 20.0 Carbon tetrachloride 24.7 ug/L 1 ND 124 72-136% Chlorobenzene 20.4 0.250 0.500 ug/L 1 20.0 ND 102 80-120% Chloroethane 22.8 5.00 5.00 ug/L 1 20.0 ND 114 60-138% Chloroform 21.3 0.500 1.00 1 20.0 ND 107 79-124% ug/L 21.1 2.50 5.00 20.0 ND 105 Chloromethane ug/L 1 50-139% 2-Chlorotoluene 20.4 0.500 1.00 ug/L 1 20.0 ND 102 79-122% 4-Chlorotoluene 23.3 20.0 ND 78-122% 0.500 1.00 ug/L 1 116 Dibromochloromethane 21.6 0.500 1.00 ug/L 1 20.0 ND 108 74-126% 1,2-Dibromo-3-chloropropane 19.4 2.50 5.00 ug/L 1 20.0 ND 97 62-128% 1,2-Dibromoethane (EDB) 19.7 0.250 0.500 ug/L 1 20.0 ND 98 77-121% 21.4 0.500 1.00 20.0 ND 107 79-123% Dibromomethane ug/L 1 20.0 80-120% 1,2-Dichlorobenzene 21.1 0.250 0.500 ug/L 1 ND 105 20.0 21.4 0.250 0.500 1 ND 107 80-120% 1,3-Dichlorobenzene ug/L ug/L 1,4-Dichlorobenzene 20.7 0.250 0.500 1 20.0 ND 103 79-120% Dichlorodifluoromethane 22.3 0.500 1.00 ug/L 1 20.0 ND 112 32-152% ___ 1,1-Dichloroethane 23.0 0.200 0.400 ug/L 1 20.0 ND 115 77-125% 21.8 0.200 0.400 20.0 ND 109 73-128% 1,2-Dichloroethane (EDC) 1 ug/L 23.8 20.0 ND 71-131% 1,1-Dichloroethene 0.200 0.400ug/L 1 119 0.200 0.400 20.0 cis-1,2-Dichloroethene 22.8 ND 114 78-123% ug/L 1 trans-1,2-Dichloroethene 0.200 0.400 20.0 ND 107 75-124% 21.4 ug/L 1 21.8 0.250 1,2-Dichloropropane 0.500 ug/L 1 20.0 ND 109 78-122% 1,3-Dichloropropane 21.3 0.500 1.00 ug/L 1 20.0 ND 106 80-120% 23.5 1.00 20.0 ND 118 60-139% 2,2-Dichloropropane 0.500 ug/L 1 24.0 0.500 1.00 20.0 ND 120 79-125% 1,1-Dichloropropene ug/L 1 20.1 20.0 100 0.500 1.00 ND 75-124% cis-1,3-Dichloropropene ug/L 1 trans-1,3-Dichloropropene 22.9 0.500 1.00 20.0 ND 114 73-127% ug/L 1 20.0 ND 79-121% Ethylbenzene 21.6 0.250 0.500 ug/L 1 108 Hexachlorobutadiene 20.9 2.50 5.00 ug/L 1 20.0 ND 105 66-134% 2-Hexanone 38.2 5.00 10.0 1 40.0 ND 96 57-139% ug/L Isopropylbenzene 20.5 0.500 1.00 ug/L 1 20.0 ND 102 72-131% 20.7 0.500 1.00 20.0 ND 103 4-Isopropyltoluene 1 77-127% ug/L Methylene chloride 19.6 5.00 10.0 ug/L 1 20.0 ND 98 74-124%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0390 - EPA 5030C Water Matrix Spike (23F0390-MS1) Prepared: 06/12/23 09:26 Analyzed: 06/12/23 20:52 QC Source Sample: MW-5-0623 (A3F1020-05) 40.0 4-Methyl-2-pentanone (MiBK) 42.5 5.00 10.0 ug/L 1 ND 106 67-130% Methyl tert-butyl ether (MTBE) 0.500 1.00 20.0 20.5 ug/L 1 ND 103 71-124% Naphthalene 17.6 1.00 2.00 ug/L 1 20.0 ND 88 61-128% n-Propylbenzene 22.6 0.250 0.500 ug/L 1 20.0 ND 113 76-126% Styrene 20.0 0.500 1.00 ug/L 1 20.0 ND 100 78-123% 1,1,1,2-Tetrachloroethane 20.5 0.200 0.400 20.0 ND ug/L 1 103 78-124% 1,1,2,2-Tetrachloroethane 22.2 0.250 0.500 ug/L 1 20.0 ND 111 71-121% Tetrachloroethene (PCE) 0.40020.0 ND 106 74-129% 21.1 0.200 ug/L 1 20.0 Toluene 21.1 0.500 1.00 ug/L 1 ND 106 80-121% 1,2,3-Trichlorobenzene 20.4 1.00 2.00 ug/L 1 20.0 ND 102 69-129% 1,2,4-Trichlorobenzene 19.9 1.00 2.00 ug/L 1 20.0 ND 99 69-130% 0.400 20.0 1,1,1-Trichloroethane 23.9 0.200 ND 119 74-131% ug/L 1 19.7 0.250 0.500 20.0 ND 80-120% 1,1,2-Trichloroethane ug/L 1 98 20.0 Trichloroethene (TCE) 20.2 0.200 0.400 ND 101 79-123% ug/L 1 1.00 65-141% Trichlorofluoromethane 25.2 2.00 ug/L 1 20.0 ND 126 1,2,3-Trichloropropane 21.0 0.500 1.00 ug/L 1 20.0 ND 105 73-122% 1,2,4-Trimethylbenzene 20.9 0.500 1.00 ug/L 1 20.0 ND 104 76-124% 1,3,5-Trimethylbenzene 23.0 0.500 20.0 ND 75-124% 1.00 115 ug/L 1 Vinyl chloride 23.3 0.200 20.0 ND 58-137% 0.400ug/L 1 116 0.500 1.00 40.0 m,p-Xylene 47.5 ND 119 80-121% ug/L 1 o-Xylene 23.0 0.250 0.500 20.0 ND 115 78-122% ug/L Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 97% 80-120 % 4-Bromofluorobenzene (Surr) 94% 80-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0436 - EPA 5030C Water Blank (23F0436-BLK1) Prepared: 06/13/23 08:29 Analyzed: 06/13/23 10:44 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 1.00 2.00 Acrylonitrile ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 5.00 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0436 - EPA 5030C							Wat	er				
Blank (23F0436-BLK1)			Prepared	: 06/13/23	08:29 Anal	yzed: 06/13/	/23 10:44					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
eis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
l-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Γrichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1							
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
n,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 97 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0436 - EPA 5030C							Wa	ter				
Blank (23F0436-BLK1)			Prepared	: 06/13/23	08:29 Anal	lyzed: 06/13	/23 10:44					
Surr: Toluene-d8 (Surr)		Recor	very: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (23F0436-BS1)			Prepared	: 06/13/23	08:29 Ana	lyzed: 06/13	/23 09:50					
EPA 8260D												
Acetone	39.3	10.0	20.0	ug/L	1	40.0		98	80-120%			
Acrylonitrile	19.3	1.00	2.00	ug/L	1	20.0		96	80-120%			
Benzene	19.1	0.100	0.200	ug/L	1	20.0		95	80-120%			
Bromobenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
Bromochloromethane	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromodichloromethane	22.1	0.500	1.00	ug/L	1	20.0		111	80-120%			
Bromoform	21.3	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromomethane	21.4	5.00	5.00	ug/L	1	20.0		107	80-120%			
2-Butanone (MEK)	40.1	5.00	10.0	ug/L	1	40.0		100	80-120%			
n-Butylbenzene	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
ec-Butylbenzene	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
ert-Butylbenzene	22.3	0.500	1.00	ug/L	1	20.0		111	80-120%			
Carbon disulfide	18.8	5.00	10.0	ug/L	1	20.0		94	80-120%			
Carbon tetrachloride	23.1	0.500	1.00	ug/L	1	20.0		115	80-120%			
Chlorobenzene	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
Chloroethane	21.1	5.00	5.00	ug/L	1	20.0		106	80-120%			
Chloroform	20.3	0.500	1.00	ug/L	1	20.0		101	80-120%			
Chloromethane	17.5	2.50	5.00	ug/L	1	20.0		88	80-120%			
2-Chlorotoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
1-Chlorotoluene	22.7	0.500	1.00	ug/L	1	20.0		114	80-120%			
Dibromochloromethane	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
,2-Dibromo-3-chloropropane	18.5	2.50	5.00	ug/L	1	20.0		93	80-120%			
,2-Dibromoethane (EDB)	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
Dibromomethane	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
,2-Dichlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
,3-Dichlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
,4-Dichlorobenzene	19.9	0.250	0.500	ug/L	1	20.0		99	80-120%			
Dichlorodifluoromethane	20.9	0.500	1.00	ug/L	1	20.0		105	80-120%			
,1-Dichloroethane	20.9	0.200	0.400	ug/L	1	20.0		105	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0436 - EPA 5030C							Wa	ter				
LCS (23F0436-BS1)			Prepared	: 06/13/23	08:29 Anal	yzed: 06/13	/23 09:50					
1,2-Dichloroethane (EDC)	21.8	0.200	0.400	ug/L	1	20.0		109	80-120%			
1,1-Dichloroethene	21.5	0.200	0.400	ug/L	1	20.0		107	80-120%			
cis-1,2-Dichloroethene	21.1	0.200	0.400	ug/L	1	20.0		106	80-120%			
rans-1,2-Dichloroethene	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
1,2-Dichloropropane	19.7	0.250	0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichloropropane	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
2,2-Dichloropropane	23.8	0.500	1.00	ug/L	1	20.0		119	80-120%			
1,1-Dichloropropene	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
cis-1,3-Dichloropropene	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
trans-1,3-Dichloropropene	22.8	0.500	1.00	ug/L	1	20.0		114	80-120%			
Ethylbenzene	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%			
Hexachlorobutadiene	20.6	2.50	5.00	ug/L	1	20.0		103	80-120%			
2-Hexanone	35.8	5.00	10.0	ug/L	1	40.0		90	80-120%			
sopropylbenzene	19.1	0.500	1.00	ug/L	1	20.0		95	80-120%			
4-Isopropyltoluene	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
Methylene chloride	17.9	5.00	10.0	ug/L	1	20.0		90	80-120%			
4-Methyl-2-pentanone (MiBK)	40.6	5.00	10.0	ug/L	1	40.0		101	80-120%			
Methyl tert-butyl ether (MTBE)	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
Naphthalene	16.2	1.00	2.00	ug/L	1	20.0		81	80-120%			
n-Propylbenzene	21.5	0.250	0.500	ug/L	1	20.0		107	80-120%			
Styrene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,1,1,2-Tetrachloroethane	20.1	0.200	0.400	ug/L	1	20.0		101	80-120%			
1,1,2,2-Tetrachloroethane	20.4	0.250	0.500	ug/L	1	20.0		102	80-120%			
Tetrachloroethene (PCE)	18.6	0.200	0.400	ug/L	1	20.0		93	80-120%			
Toluene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,2,3-Trichlorobenzene	18.9	1.00	2.00	ug/L	1	20.0		95	80-120%			
1,2,4-Trichlorobenzene	18.3	1.00	2.00	ug/L	1	20.0		92	80-120%			
1,1,1-Trichloroethane	22.4	0.200	0.400	ug/L	1	20.0		112	80-120%			
1,1,2-Trichloroethane	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%			
Trichloroethene (TCE)	18.3	0.200	0.400	ug/L	1	20.0		92	80-120%			
Trichlorofluoromethane	23.3	1.00	2.00	ug/L	1	20.0		116	80-120%			
,2,3-Trichloropropane	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,2,4-Trimethylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,3,5-Trimethylbenzene	22.6	0.500	1.00	ug/L	1	20.0		113	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0436 - EPA 5030C							Wa	ter				
LCS (23F0436-BS1)			Prepared	1: 06/13/23	08:29 Ana	lyzed: 06/13	/23 09:50					
Vinyl chloride	19.2	0.200	0.400	ug/L	1	20.0		96	80-120%			
m,p-Xylene	45.3	0.500	1.00	ug/L	1	40.0		113	80-120%			
o-Xylene	21.5	0.250	0.500	ug/L	1	20.0		107	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	0-120 %		"					
Duplicate (23F0436-DUP1)			Prepared	1: 06/13/23	08:29 Ana	lyzed: 06/13	/23 19:03					
OC Source Sample: Non-SDG (A3	F1048-03)											
Acetone	ND	250	500	ug/L	25		ND				30%	
Acrylonitrile	ND	250	250	ug/L	25		ND				30%	R-0
Benzene	36.5	2.50	5.00	ug/L	25		38.2			5	30%	
Bromobenzene	ND	6.25	12.5	ug/L	25		ND				30%	
Bromochloromethane	ND	12.5	25.0	ug/L	25		ND				30%	
Bromodichloromethane	ND	12.5	25.0	ug/L	25		ND				30%	
Bromoform	ND	12.5	25.0	ug/L	25		ND				30%	
Bromomethane	ND	125	125	ug/L	25		ND				30%	
2-Butanone (MEK)	ND	125	250	ug/L	25		ND				30%	
n-Butylbenzene	ND	12.5	25.0	ug/L	25		ND				30%	
sec-Butylbenzene	ND	12.5	25.0	ug/L	25		ND				30%	
tert-Butylbenzene	ND	12.5	25.0	ug/L	25		ND				30%	
Carbon disulfide	ND	125	250	ug/L	25		ND				30%	
Carbon tetrachloride	ND	12.5	25.0	ug/L	25		ND				30%	
Chlorobenzene	ND	6.25	12.5	ug/L	25		ND				30%	
Chloroethane	ND	125	125	ug/L	25		ND				30%	
Chloroform	ND	12.5	25.0	ug/L	25		ND				30%	
Chloromethane	ND	62.5	125	ug/L	25		ND				30%	
2-Chlorotoluene	ND	12.5	25.0	ug/L	25		ND				30%	
4-Chlorotoluene	ND	12.5	25.0	ug/L	25		ND				30%	
Dibromochloromethane	ND	12.5	25.0	ug/L	25		ND				30%	
1,2-Dibromo-3-chloropropane	ND	62.5	125	ug/L	25		ND				30%	
1,2-Dibromoethane (EDB)	ND	6.25	12.5	ug/L	25		ND				30%	
Dibromomethane	ND	12.5	25.0	ug/L	25		ND				30%	
1,2-Dichlorobenzene	ND	6.25	12.5	ug/L	25		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0436 - EPA 5030C Water Duplicate (23F0436-DUP1) Prepared: 06/13/23 08:29 Analyzed: 06/13/23 19:03 QC Source Sample: Non-SDG (A3F1048-03) 1,3-Dichlorobenzene ND 6.25 12.5 ug/L 25 ND 30% ND 6.25 12.5 25 1,4-Dichlorobenzene ug/L ND 30% 25 Dichlorodifluoromethane ND 12.5 25.0 ug/L ND 30% 1,1-Dichloroethane ND 5.00 10.0 ug/L 25 ND 30% 1,2-Dichloroethane (EDC) ND 5.00 10.0 ug/L 25 ND 30% ---ND 5.00 10.0 1,1-Dichloroethene ug/L 25 ND 30% cis-1,2-Dichloroethene ND 5.00 10.0 ug/L 25 ND 30% trans-1,2-Dichloroethene ND 5.00 25 ND 30% 10.0 ug/L 1,2-Dichloropropane ND 6.25 12.5 ug/L 25 ND 30% 1,3-Dichloropropane ND 12.5 25.0 ug/L 25 ND 30% 2,2-Dichloropropane ND 25.0 25.0 ug/L 25 ND 30% ND 12.5 25.0 25 ND 30% 1,1-Dichloropropene ug/L 25 cis-1,3-Dichloropropene ND 12.5 25.0 ug/L ND 30% ND 12.5 25.0 25 ND 30% trans-1,3-Dichloropropene ug/L 6.25 Ethylbenzene 354 12.5 ug/L 25 366 3 30% Hexachlorobutadiene ND 62.5 125 ug/L 25 ND ___ 30% 2-Hexanone ND 125 250 ug/L 25 ND 30% 12.5 25.0 25 30% Isopropylbenzene 17.5 16.5 6 ug/L ---ND 12.5 25 ND 4-Isopropyltoluene 25.0 ug/L 30% ND 125 250 Methylene chloride 25 ND 30% ug/L 4-Methyl-2-pentanone (MiBK) ND 125 25 ND 250 ug/L 30% Methyl tert-butyl ether (MTBE) ND 12.5 25.0 ug/L 25 ND ___ ---30% Naphthalene 325 25.0 50.0 ug/L 25 294 10 30% 44.8 6.25 25 44.2 1 30% n-Propylbenzene 12.5 ug/L ND 12.5 25.0 25 ND 30% Styrene ug/L ND 1,1,1,2-Tetrachloroethane 5.00 10.0 25 ND 30% ug/L 1,1,2,2-Tetrachloroethane ND 6.25 12.5 25 ND 30% ug/L ND 25 Tetrachloroethene (PCE) 5.00 10.0 ug/L ND ------30% 106 12.5 25.0 ug/L 25 106 0 30% 1,2,3-Trichlorobenzene ND 25.0 50.0 25 ND 30% ug/L ---1,2,4-Trichlorobenzene ND 25.0 50.0 ug/L 25 ND 30% ND 5.00 10.0 1,1,1-Trichloroethane 25 ND 30% ug/L 1,1,2-Trichloroethane ND 6.25 12.5 ug/L 25 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0436 - EPA 5030C							Wa	ter				
Duplicate (23F0436-DUP1)			Prepared	1: 06/13/23	08:29 Anal	yzed: 06/13/	/23 19:03					
QC Source Sample: Non-SDG (A3	F1048-03)											
Trichloroethene (TCE)	ND	5.00	10.0	ug/L	25		ND				30%	
Trichlorofluoromethane	ND	25.0	50.0	ug/L	25		ND				30%	
1,2,3-Trichloropropane	ND	12.5	25.0	ug/L	25		ND				30%	
,2,4-Trimethylbenzene	587	12.5	25.0	ug/L	25		574			2	30%	
1,3,5-Trimethylbenzene	221	12.5	25.0	ug/L	25		210			5	30%	
Vinyl chloride	ND	5.00	10.0	ug/L	25		ND				30%	
n,p-Xylene	1550	12.5	25.0	ug/L	25		1590			2	30%	
o-Xylene	134	6.25	12.5	ug/L	25		134			0.6	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
QC Source Sample: DMW-2-0623 EPA 8260D	(A3F1020-	<u>16)</u>										
EPA 8260D												
Acetone	42.2	10.0	20.0	ug/L	1	40.0	ND	106	39-160%			
Acrylonitrile	20.0	1.00	2.00	ug/L	1	20.0	ND	100	63-135%			
Benzene	20.6	0.100	0.200	ug/L	1	20.0	ND	103	79-120%			
Bromobenzene	18.5	0.250	0.500	ug/L	1	20.0	ND	93	80-120%			
Bromochloromethane	22.8	0.500	1.00	ug/L	1	20.0	ND	114	78-123%			
Bromodichloromethane	22.2	0.500	1.00	ug/L	1	20.0	ND	111	79-125%			
Bromoform	21.4	0.500	1.00	ug/L	1	20.0	ND	107	66-130%			
Bromomethane	22.6	5.00	5.00	ug/L	1	20.0	ND	113	53-141%			
-Butanone (MEK)	40.5	5.00	10.0	ug/L	1	40.0	ND	101	56-143%			
-Butylbenzene	23.6	0.500	1.00	ug/L	1	20.0	ND	118	75-128%			
ec-Butylbenzene	23.1	0.500	1.00	ug/L	1	20.0	ND	116	77-126%			
ert-Butylbenzene	22.3	0.500	1.00	ug/L	1	20.0	ND	111	78-124%			
Carbon disulfide	20.9	5.00	10.0	ug/L	1	20.0	ND	104	64-133%			
Carbon tetrachloride	24.5	0.500	1.00	ug/L	1	20.0	ND	122	72-136%			
Chlorobenzene	19.5	0.250	0.500	ug/L	1	20.0	ND	98	80-120%			
Chloroethane	25.0	5.00	5.00	ug/L	1	20.0	ND	125	60-138%			
Chloroform	20.9	0.500	1.00	ug/L	1	20.0	0.600	102	79-124%			
Chloromethane	19.7	2.50	5.00	ug/L	1	20.0	ND	98	50-139%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0436 - EPA 5030C Water Matrix Spike (23F0436-MS1) Prepared: 06/13/23 08:29 Analyzed: 06/13/23 15:17 QC Source Sample: DMW-2-0623 (A3F1020-16) 2-Chlorotoluene 19.4 0.500 1.00 ug/L 1 20.0 ND 97 79-122% 23.1 0.500 1.00 20.0 4-Chlorotoluene ug/L 1 ND 116 78-122% Dibromochloromethane 20.8 0.500 1.00 ug/L 1 20.0 ND 104 74-126% 1,2-Dibromo-3-chloropropane 18.3 2.50 5.00 ug/L 1 20.0 ND 91 62-128% 1,2-Dibromoethane (EDB) 18.5 0.250 0.500 1 20.0 ND 92 77-121% ug/L Dibromomethane 20.3 0.500 1.00 20.0 ND 101 79-123% ug/L 1 1,2-Dichlorobenzene 20.3 0.250 0.500 ug/L 1 20.0 ND 101 80-120% 20.6 0.500 20.0 ND 103 80-120% 1.3-Dichlorobenzene 0.250 ug/L 1 1,4-Dichlorobenzene 19.9 0.250 0.500 ug/L 1 20.0 ND 100 79-120% 22.8 Dichlorodifluoromethane 0.500 1.00 ug/L 1 20.0 ND 114 32-152% 1,1-Dichloroethane 22.3 0.200 0.400 ug/L 1 20.0 ND 112 77-125% 0.400 20.0 1,2-Dichloroethane (EDC) 22.3 0.200 ND 112 73-128% ug/L 1 20.0 ND 1,1-Dichloroethene 24.1 0.200 0.400 ug/L 1 120 71-131% 20.0 cis-1,2-Dichloroethene 21.6 0.200 0.400 1 ND 108 78-123% ug/L 0.200 0.400 ug/L trans-1,2-Dichloroethene 21.4 1 20.0 ND 107 75-124% 1,2-Dichloropropane 20.7 0.250 0.500 ug/L 1 20.0 ND 104 78-122% ___ 1,3-Dichloropropane 20.1 0.500 1.00 ug/L 1 20.0 ND 101 80-120% 23.6 0.500 20.0 ND 60-139% 2,2-Dichloropropane 1.00 1 118 ug/L 22.4 20.0 ND 79-125% 1,1-Dichloropropene 0.500 1.00 ug/L 1 112 0.500 1.00 20.0 cis-1,3-Dichloropropene 19.1 ND 95 75-124% ug/L 1 trans-1,3-Dichloropropene 22.3 0.500 20.0 ND 111 73-127% 1.00 ug/L 1 0.250 Ethylbenzene 21.0 0.500 ug/L 1 20.0 ND 105 79-121% Hexachlorobutadiene 20.8 2.50 5.00 ug/L 1 20.0 ND 104 66-134% 2-Hexanone 35.7 10.0 40.0 ND 89 57-139% 5.00 ug/L 1 19.3 0.500 1.00 20.0 ND 97 72-131% Isopropylbenzene ug/L 1 19.8 0.500 20.0 99 1.00 1 ND 77-127% 4-Isopropyltoluene ug/L Methylene chloride 18.8 5.00 10.0 20.0 ND 94 74-124% ug/L 1 40.0 106 67-130% 4-Methyl-2-pentanone (MiBK) 42.5 5.00 10.0 ug/L 1 ND Methyl tert-butyl ether (MTBE) 19.0 0.500 1.00 ug/L 1 20.0 ND 95 71-124% Naphthalene 16.3 1.00 2.00 1 20.0 ND 82 61-128% ug/L n-Propylbenzene 22.1 0.250 0.500 ug/L 1 20.0 ND 111 76-126% 19.2 0.500 1.00 20.0 ND Styrene 1 96 78-123% ug/L 1,1,1,2-Tetrachloroethane 20.1 0.200 0.400 ug/L 1 20.0 ND 100 78-124%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting Spike % REC RPD Source Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Amount Limit Notes Batch 23F0436 - EPA 5030C Water Matrix Spike (23F0436-MS1) Prepared: 06/13/23 08:29 Analyzed: 06/13/23 15:17 QC Source Sample: DMW-2-0623 (A3F1020-16) 20.0 1,1,2,2-Tetrachloroethane 21.7 0.250 0.500 ug/L 1 ND 108 71-121% 0.200 0.40020.0 97 Tetrachloroethene (PCE) 19.4 ug/L 1 ND 74-129% 20.0 80-121% Toluene 20.1 0.500 1.00 ug/L 1 ND 100 1,2,3-Trichlorobenzene 18.3 1.00 2.00 ug/L 1 20.0 ND 92 69-129% 1,2,4-Trichlorobenzene 17.8 1.00 2.00 ug/L 1 20.0 ND 89 69-130% 20.0 1,1,1-Trichloroethane 23.2 0.200 0.400 ND ug/L 1 116 74-131% 0.250 20.0 1,1,2-Trichloroethane 19.2 0.500 ug/L 1 ND 96 80-120% Trichloroethene (TCE) 18.4 0.200 0.40020.0 ND 92 79-123% ug/L 1 20.0 Trichlorofluoromethane 25.2 1.00 2.00 ug/L 1 ND 126 65-141% 1,2,3-Trichloropropane 20.6 0.500 1.00 ug/L 1 20.0 ND 103 73-122% 1,2,4-Trimethylbenzene 20.5 0.500 1.00 ug/L 1 20.0 ND 103 76-124% 20.0 1,3,5-Trimethylbenzene 22.3 0.500 1.00 ND 112 75-124% ug/L 1 22.0 0.200 0.400 20.0 ND 58-137% Vinyl chloride ug/L 1 110 45.9 1.00 40.0 m,p-Xylene 0.500 ND 115 80-121% ug/L 1 0.250 0.500 ND 78-122% o-Xylene 21.7 ug/L Surr: 1,4-Difluorobenzene (Surr) Recovery: 97% Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 95 % 80-120 % 4-Bromofluorobenzene (Surr) 92 % 80-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010
Project Manager: Mike Staton

Report ID: A3F1020 - 06 28 23 1411

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	s by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0390							
A3F1020-01	Water	EPA 8260D	06/07/23 10:18	06/12/23 11:41	5mL/5mL	5mL/5mL	1.00
A3F1020-02	Water	EPA 8260D	06/07/23 12:42	06/12/23 11:41	5mL/5mL	5mL/5mL	1.00
A3F1020-03	Water	EPA 8260D	06/08/23 09:34	06/12/23 11:41	5mL/5mL	5mL/5mL	1.00
A3F1020-04	Water	EPA 8260D	06/08/23 10:16	06/12/23 11:41	5mL/5mL	5mL/5mL	1.00
A3F1020-05	Water	EPA 8260D	06/07/23 11:40	06/12/23 11:41	5mL/5mL	5mL/5mL	1.00
Batch: 23F0436							
A3F1020-06	Water	EPA 8260D	06/07/23 10:57	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-07	Water	EPA 8260D	06/07/23 12:10	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-08	Water	EPA 8260D	06/08/23 11:42	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-09	Water	EPA 8260D	06/07/23 13:12	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-10	Water	EPA 8260D	06/07/23 15:03	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-11	Water	EPA 8260D	06/08/23 11:10	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-12	Water	EPA 8260D	06/07/23 15:31	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-13	Water	EPA 8260D	06/07/23 14:19	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-14	Water	EPA 8260D	06/07/23 13:47	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-15	Water	EPA 8260D	06/08/23 10:46	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00
A3F1020-16	Water	EPA 8260D	06/08/23 08:56	06/13/23 10:36	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3F1020 - 06 28 23 1411

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

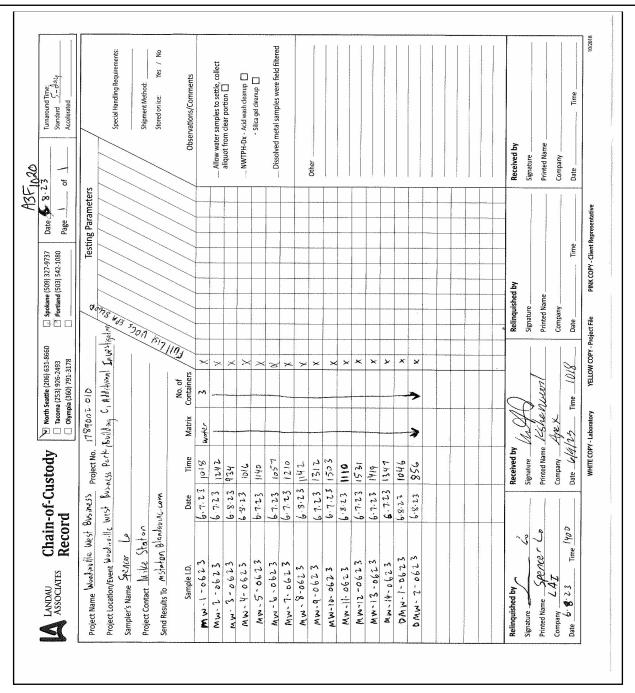
Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Woodinville West Business Park Landau Associates (Northgate) Project:

155 NE 100th St #302 Project Number: 1789002.010 Report ID: Seattle, WA 98125 Project Manager: Mike Staton A3F1020 - 06 28 23 1411

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: **1789002.010**Project Manager: **Mike Staton**

Report ID: A3F1020 - 06 28 23 1411

	APEX LABS COOLE		
Client: <u>Lynslac</u>	Associates	Element WO#	: A3 <u>F1620</u>
Project/Project #: _ <i>Wook</i>	Unville West BL	siness / 17890	02-010
Delivery Info:			
Date/time received: 6/4/6	23 @ 1018 By: _	hw	
Delivered by: ApexClien	t_ESSFedEx <u>_U</u> PSRa	dioMorganSDS_	EvergreenOther
Cooler Inspection Date	e/time inspected: 6/9/23	@ <i>[0]8</i> By:	Kus
Chain of Custody included?			
Signed/dated by client?	Yes		
	Cooler #1 Cooler #2 Coole	er #3 Cooler #4 Cooler	#5 Cooler #6 Cooler #7
Temperature (°C)	4.4		
Custody seals? (Y/N)	<u> </u>		
Received on ice? (Y/N)	· ·	***********************************	
Temp. blanks? (Y/N)			
Ice type: (Gel/Real/Other)	Deal		**************************************
Condition (In/Out):	1		
All samples intact? Yes 🗸	No Comments:		
· /-			
	Yes No 🔽 Comments:	Time for MW-2	-0623 reads time
Bottle labels/COCs agree?	Yes No × Comments:		
Bottle labels/COCs agree? 1244 . Tim, Ger Mu -9		Trip Blank provid	
Bottle labels/COCs agree? 1244 . Tim, Lex Mu -9 COC/container discrepancie	-0623 reads 13:15.	TripBlank provid	ed, noton col.
Bottle labels/COCs agree? 1244 Time for Musey COC/container discrepancie Containers/volumes receive	es form initiated? Yes N	TripBlank provide o X es X No Commer	ed, noton coc.
Bottle labels/COCs agree? 1244 Time for Musey COC/container discrepancie Containers/volumes receive	es form initiated? Yes Ned appropriate for analysis? Yes Nedadspace? Yes No	TripBlank provide o X es X No Commer	ed, noton coc.
Bottle labels/COCs agree? 1244 Time for Musey COC/container discrepancie Containers/volumes receive Do VOA vials have visible Comments 18 has HS	es form initiated? Yes Ned appropriate for analysis? Yes Nedadspace? Yes No	TripBlank provide o X es X No Commen	ed, not on coc.
Bottle labels/COCs agree? 1244 Time for Musey COC/container discrepancie Containers/volumes receive Do VOA vials have visible Comments 18 has HS	es form initiated? Yes N ed appropriate for analysis? Ye headspace? Yes X No headspace? Yes X PH app	TripBlank provide o X es X No Commen	ed, not on coc.
Bottle labels/COCs agree? 12.44 T.M. Cox Mw-9 COC/container discrepancie Containers/volumes receive Do VOA vials have visible to the comments 18 has HS Water samples: pH checked Comments:	es form initiated? Yes N ed appropriate for analysis? Ye headspace? Yes X No headspace? Yes X PH app	Trip Blank provide o X es X No Commer NA propriate? YesNo1	ed, not on coc.
Bottle labels/COCs agree? 12.44 T.M. Cox Mw-9 COC/container discrepancie Containers/volumes receive Do VOA vials have visible to the comments 18 has HS Water samples: pH checked Comments:	es form initiated? Yes Nod appropriate for analysis? Yes Node headspace? Yes Node Node Node Node Node Node Node Node	Trip Blank provide o No Commer o No Commer o NA propriate? Yes No 1	its:
Bottle labels/COCs agree? 12.44 T.M. Cox Mw-9 COC/container discrepancie Containers/volumes receive Do VOA vials have visible to the comments 18 has HS Water samples: pH checked Comments:	es form initiated? Yes Nod appropriate for analysis? Yes Node headspace? Yes Node Node Node Node Node Node Node Node	Trip Blank provide o X es X No Commer NA propriate? YesNo1	its:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(B)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, August 11, 2023 Mike Staton Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

RE: A3H0817 - Woodinville West Business Park - 1789002.010.014

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3H0817, which was received by the laboratory on 8/3/2023 at 10:50:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 3.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION											
Client Sample ID	Laboratory ID M	Matrix Date Sampl	ed Date Received									
MW-15-0823	A3H0817-01 W	Vater 08/01/23 13	3:13 08/03/23 10:50									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

ANALYTICAL SAMPLE RESULTS

			ic Compound	,		B :		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-15-0823 (A3H0817-01RE1)				Matrix: Wa	ater	Batch:	23H0334	
Acetone	ND	10.0	20.0	ug/L	1	08/09/23 14:34	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/09/23 14:34	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Bromoform	ND	1.00	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/09/23 14:34	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Carbon disulfide	ND	10.0	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Chloroethane	ND	5.00	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/09/23 14:34	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
,1-Dichloroethane	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	08/09/23 14:34	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compound	us by EPA 8.	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-15-0823 (A3H0817-01RE1)				Matrix: Wa	ater	Batch:	23H0334	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/09/23 14:34	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/09/23 14:34	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/09/23 14:34	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/09/23 14:34	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/09/23 14:34	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/09/23 14:34	EPA 8260D	
Frichlorofluoromethane	ND	0.800	1.60	ug/L	1	08/09/23 14:34	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/09/23 14:34	EPA 8260D	
Vinyl chloride	0.220	0.100	0.200	ug/L	1	08/09/23 14:34	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L ug/L	1	08/09/23 14:34	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L ug/L	1	08/09/23 14:34	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Uı	nits	Dilution	Date Analyzed	Method Ref.	Notes			
MW-15-0823 (A3H0817-01RE1)				Matı	rix: Wate	er	Batch:	23H0334				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits:	80-120 %	1	08/09/23 14:34	EPA 8260D				
Toluene-d8 (Surr)			102 %		80-120 %	1	08/09/23 14:34	EPA 8260D				
4-Bromofluorobenzene (Surr)			104 %		80-120 %	1	08/09/23 14:34	EPA 8260D				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Woodinville West Business Park Landau Associates (Northgate) Project:

155 NE 100th St #302 Project Number: 1789002.010.014 Seattle, WA 98125 Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23H0288 - EPA 5030C Water Blank (23H0288-BLK1) Prepared: 08/08/23 11:00 Analyzed: 08/08/23 12:51 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 1.00 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 10.0 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 1,2-Dichloroethane (EDC) ND 0.200 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene 0.200 0.400

Apex Laboratories

Philip Merenberg

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 6 of 32 Philip Nerenberg, Lab Director

1

ug/L

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0288 - EPA 5030C							Wat	ter				
Blank (23H0288-BLK1)			Prepared	: 08/08/23	11:00 Anal	yzed: 08/08/	/23 12:51					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	0.800	1.60	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 103 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0288 - EPA 5030C							Wa	ter				
Blank (23H0288-BLK1)			Prepared	: 08/08/23	11:00 Ana	lyzed: 08/08	/23 12:51					
Surr: Toluene-d8 (Surr)		Recon	very: 102 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (23H0288-BS1)			Prepared	: 08/08/23	11:00 Ana	lyzed: 08/08	3/23 11:57					
EPA 8260D												
Acetone	37.9	10.0	20.0	ug/L	1	40.0		95	80-120%			
Acrylonitrile	19.9	1.00	2.00	ug/L	1	20.0		99	80-120%			
Benzene	19.2	0.100	0.200	ug/L	1	20.0		96	80-120%			
Bromobenzene	18.3	0.250	0.500	ug/L	1	20.0		91	80-120%			
Bromochloromethane	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
Bromodichloromethane	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Bromoform	15.6	1.00	1.00	ug/L	1	20.0		78	80-120%			Q-5
Bromomethane	24.4	5.00	5.00	ug/L	1	20.0		122	80-120%			Q-5
2-Butanone (MEK)	42.0	5.00	10.0	ug/L	1	40.0		105	80-120%			
n-Butylbenzene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
sec-Butylbenzene	18.5	0.500	1.00	ug/L	1	20.0		93	80-120%			
tert-Butylbenzene	18.1	0.500	1.00	ug/L	1	20.0		91	80-120%			
Carbon disulfide	16.2	5.00	10.0	ug/L	1	20.0		81	80-120%			
Carbon tetrachloride	18.7	0.500	1.00	ug/L	1	20.0		94	80-120%			
Chlorobenzene	18.3	0.250	0.500	ug/L	1	20.0		92	80-120%			
Chloroethane	17.2	5.00	10.0	ug/L	1	20.0		86	80-120%			ICV-0
Chloroform	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
Chloromethane	17.7	2.50	5.00	ug/L	1	20.0		88	80-120%			
2-Chlorotoluene	17.8	0.500	1.00	ug/L	1	20.0		89	80-120%			
4-Chlorotoluene	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%			
Dibromochloromethane	17.6	0.500	1.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromo-3-chloropropane	17.2	2.50	5.00	ug/L	1	20.0		86	80-120%			
1,2-Dibromoethane (EDB)	18.5	0.250	0.500	ug/L	1	20.0		92	80-120%			
Dibromomethane	18.9	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,2-Dichlorobenzene	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
1,4-Dichlorobenzene	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
Dichlorodifluoromethane	20.7	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,1-Dichloroethane	19.2	0.200	0.400	ug/L	1	20.0		96	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: **1789002.010.014**Project Manager: **Mike Staton**

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0288 - EPA 5030C							Wa	ter				
LCS (23H0288-BS1)			Prepared	: 08/08/23	11:00 Anal	yzed: 08/08/	/23 11:57					
1,2-Dichloroethane (EDC)	19.6	0.200	0.400	ug/L	1	20.0		98	80-120%			
1,1-Dichloroethene	19.7	0.200	0.400	ug/L	1	20.0		98	80-120%			
cis-1,2-Dichloroethene	19.1	0.200	0.400	ug/L	1	20.0		96	80-120%			
trans-1,2-Dichloroethene	19.3	0.200	0.400	ug/L	1	20.0		96	80-120%			
1,2-Dichloropropane	19.2	0.250	0.500	ug/L	1	20.0		96	80-120%			
1,3-Dichloropropane	18.7	0.500	1.00	ug/L	1	20.0		93	80-120%			
2,2-Dichloropropane	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,1-Dichloropropene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
cis-1,3-Dichloropropene	17.9	0.500	1.00	ug/L	1	20.0		90	80-120%			
trans-1,3-Dichloropropene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Ethylbenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Hexachlorobutadiene	20.1	2.50	5.00	ug/L	1	20.0		101	80-120%			
2-Hexanone	38.8	5.00	10.0	ug/L	1	40.0		97	80-120%			
Isopropylbenzene	18.5	0.500	1.00	ug/L	1	20.0		92	80-120%			
4-Isopropyltoluene	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%			
Methylene chloride	20.6	5.00	10.0	ug/L	1	20.0		103	80-120%			
4-Methyl-2-pentanone (MiBK)	37.9	5.00	10.0	ug/L	1	40.0		95	80-120%			
Methyl tert-butyl ether (MTBE)	17.5	0.500	1.00	ug/L	1	20.0		88	80-120%			
Naphthalene	16.6	2.00	4.00	ug/L	1	20.0		83	80-120%			
n-Propylbenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
Styrene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,1,1,2-Tetrachloroethane	18.3	0.250	0.500	ug/L	1	20.0		92	80-120%			
1,1,2,2-Tetrachloroethane	20.5	0.200	0.400	ug/L	1	20.0		103	80-120%			
Tetrachloroethene (PCE)	18.8	0.200	0.400	ug/L	1	20.0		94	80-120%			
Toluene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,2,3-Trichlorobenzene	17.8	1.00	2.00	ug/L	1	20.0		89	80-120%			
1,2,4-Trichlorobenzene	18.8	1.00	2.00	ug/L	1	20.0		94	80-120%			
1,1,1-Trichloroethane	18.9	0.200	0.400	ug/L	1	20.0		94	80-120%			
1,1,2-Trichloroethane	18.2	0.250	0.500	ug/L	1	20.0		91	80-120%			
Trichloroethene (TCE)	18.5	0.200	0.400	ug/L	1	20.0		92	80-120%			
Trichlorofluoromethane	22.8	0.800	1.60	ug/L	1	20.0		114	80-120%			
1,2,3-Trichloropropane	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trimethylbenzene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,3,5-Trimethylbenzene	18.3	0.500	1.00	ug/L	1	20.0		92	80-120%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0288 - EPA 5030C							Wa	ter				
LCS (23H0288-BS1)			Prepared	1: 08/08/23	11:00 Ana	lyzed: 08/08	/23 11:57					
Vinyl chloride	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
n,p-Xylene	38.6	0.500	1.00	ug/L	1	40.0		97	80-120%			
o-Xylene	18.7	0.250	0.500	ug/L	1	20.0		93	80-120%			
'urr: 1,4-Difluorobenzene (Surr)		Recov	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
Duplicate (23H0288-DUP1)			Prepared	1: 08/08/23	11:00 Ana	lyzed: 08/08	/23 20:08					
OC Source Sample: MW-15-0823	(A3H0817-	<u>01)</u>										
EPA 8260D	-	•										
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	1.00	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	10.0	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

Dibromomethane

ND

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

Page 10 of 32

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23H0288 - EPA 5030C Water Duplicate (23H0288-DUP1) Prepared: 08/08/23 11:00 Analyzed: 08/08/23 20:08 QC Source Sample: MW-15-0823 (A3H0817-01) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,3-Dichlorobenzene ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ------1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 1,1-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% 0.400 ND 30% cis-1,2-Dichloroethene ND 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 2,2-Dichloropropane ug/L 1 ND 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% cis-1,3-Dichloropropene ug/L 1 ND ug/L trans-1,3-Dichloropropene ND 0.500 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND ___ 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND 30% 2-Hexanone 5.00 10.0 1 ND ug/L Isopropylbenzene ND 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 ND ND 30% 4-Isopropyltoluene ug/L 1 ND Methylene chloride 5.00 10.0 ug/L 1 ND 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND ug/L ND 30% 2.00 4.00 1 ND 0.250 0.500 30% n-Propylbenzene ug/L 1 ND ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 ND 30% Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% 1.00 2.00 1,2,4-Trichlorobenzene ND 1 ND 30% ug/L ---1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 11 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302

Seattle, WA 98125

gate) Project:

Project Number: 1789002.010.014

Woodinville West Business Park

Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23H0288 - EPA 5030C							Wa	ter					
Duplicate (23H0288-DUP1)			Prepared	1: 08/08/23	11:00 Ana	lyzed: 08/08/	/23 20:08						
QC Source Sample: MW-15-0823	(A3H0817-0	<u>)1)</u>											
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%		
Trichloroethene (TCE)	ND	0.800	0.800	ug/L	1		ND				30%	R-0	
Trichlorofluoromethane	ND	0.800	1.60	ug/L	1		ND				30%		
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
Vinyl chloride	0.240	0.200	0.400	ug/L	1		0.210			13	30%	Q-05,	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%		
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	-120 %	Dilı	ıtion: 1x						
Toluene-d8 (Surr)			101 %	80	-120 %		"						
4-Bromofluorobenzene (Surr)			103 %	80	-120 %		"						
Matrix Spike (23H0288-MS1)			Drangrad	1. 00/00/22	11:00 And	1 00/00							
OC Source Sample: Non SDC (A3	H10850 20)		Терагес	1. 06/06/23	II.00 Alla	lyzed: 08/08/	/23 16:58						
QC Source Sample: Non-SDG (A3	3H0850-20)		Терагес	1. 06/06/23	11.00 Alla	lyzed: 08/08/	/23 16:58						
EPA 8260D		10.0	•			<u> </u>		91	39-160%				
EPA 8260D Acetone	46.4	10.0	20.0	ug/L	1	40.0	ND	91	39-160% 63-135%				
EPA 8260D Acetone Acrylonitrile	46.4 20.8	1.00	20.0	ug/L ug/L	1 1	40.0 20.0	ND ND	104	63-135%				
EPA 8260D Acetone Acrylonitrile Benzene	46.4 20.8 20.7	1.00 0.100	20.0 2.00 0.200	ug/L ug/L ug/L	1 1 1	40.0 20.0 20.0	ND ND ND	104 103	63-135% 79-120%				
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene	46.4 20.8 20.7 18.7	1.00 0.100 0.250	20.0 2.00 0.200 0.500	ug/L ug/L ug/L ug/L	1 1 1 1	40.0 20.0 20.0 20.0	ND ND ND	104 103 94	63-135% 79-120% 80-120%				
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	46.4 20.8 20.7 18.7 20.2	1.00 0.100 0.250 0.500	20.0 2.00 0.200 0.500 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND	104 103 94 101	63-135% 79-120% 80-120% 78-123%	 	 		
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	46.4 20.8 20.7 18.7 20.2 19.4	1.00 0.100 0.250 0.500 0.500	20.0 2.00 0.200 0.500 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND	104 103 94 101 97	63-135% 79-120% 80-120% 78-123% 79-125%	 	 	0-54	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	46.4 20.8 20.7 18.7 20.2 19.4 16.2	1.00 0.100 0.250 0.500 0.500 1.00	20.0 2.00 0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND	104 103 94 101 97 81	63-135% 79-120% 80-120% 78-123% 79-125% 66-130%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0	1.00 0.100 0.250 0.500 0.500 1.00 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND ND	104 103 94 101 97 81 130	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6	1.00 0.100 0.250 0.500 0.500 1.00 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND	104 103 94 101 97 81	63-135% 79-120% 80-120% 78-123% 79-125% 66-130%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0	1.00 0.100 0.250 0.500 0.500 1.00 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND	104 103 94 101 97 81 130 114	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6 20.0 19.4	1.00 0.100 0.250 0.500 0.500 1.00 5.00 5.00 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	104 103 94 101 97 81 130 114 100 97	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6 20.0	1.00 0.100 0.250 0.500 0.500 1.00 5.00 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	104 103 94 101 97 81 130 114	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6 20.0 19.4 19.1	1.00 0.100 0.250 0.500 0.500 1.00 5.00 5.00 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	104 103 94 101 97 81 130 114 100 97 96	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 64-133%	 	 	-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6 20.0 19.4 19.1 17.6 20.4	1.00 0.100 0.250 0.500 0.500 1.00 5.00 0.500 0.500 0.500 5.00 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	104 103 94 101 97 81 130 114 100 97 96 88 102	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 75-128% 77-126% 78-124% 64-133% 72-136%	 		-	
EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	46.4 20.8 20.7 18.7 20.2 19.4 16.2 26.0 45.6 20.0 19.4 19.1 17.6	1.00 0.100 0.250 0.500 0.500 1.00 5.00 0.500 0.500 0.500 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	104 103 94 101 97 81 130 114 100 97 96 88	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 64-133%	 		Q-54 Q-54	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0288 - EPA 5030C							Wa	ter				
Matrix Spike (23H0288-MS1)			Prepared	: 08/08/23	11:00 Anal	yzed: 08/08/	23 16:58					
QC Source Sample: Non-SDG (A3I	H0850-20)											
Chloromethane	18.9	2.50	5.00	ug/L	1	20.0	ND	95	50-139%			
2-Chlorotoluene	18.7	0.500	1.00	ug/L	1	20.0	ND	94	79-122%			
4-Chlorotoluene	19.1	0.500	1.00	ug/L	1	20.0	ND	96	78-122%			
Dibromochloromethane	18.5	0.500	1.00	ug/L	1	20.0	ND	92	74-126%			
1,2-Dibromo-3-chloropropane	18.1	2.50	5.00	ug/L	1	20.0	ND	91	62-128%			
1,2-Dibromoethane (EDB)	19.3	0.250	0.500	ug/L	1	20.0	ND	97	77-121%			
Dibromomethane	19.9	0.500	1.00	ug/L	1	20.0	ND	100	79-123%			
1,2-Dichlorobenzene	20.5	0.250	0.500	ug/L	1	20.0	ND	102	80-120%			
1,3-Dichlorobenzene	19.5	0.250	0.500	ug/L	1	20.0	ND	98	80-120%			
1,4-Dichlorobenzene	20.2	0.250	0.500	ug/L	1	20.0	ND	101	79-120%			
Dichlorodifluoromethane	23.4	0.500	1.00	ug/L	1	20.0	ND	117	32-152%			
1,1-Dichloroethane	20.4	0.200	0.400	ug/L	1	20.0	ND	102	77-125%			
1,2-Dichloroethane (EDC)	20.4	0.200	0.400	ug/L	1	20.0	ND	102	73-128%			
1,1-Dichloroethene	21.4	0.200	0.400	ug/L	1	20.0	ND	107	71-131%			
cis-1,2-Dichloroethene	20.4	0.200	0.400	ug/L	1	20.0	ND	102	78-123%			
trans-1,2-Dichloroethene	20.8	0.200	0.400	ug/L	1	20.0	ND	104	75-124%			
1,2-Dichloropropane	20.2	0.250	0.500	ug/L	1	20.0	ND	101	78-122%			
1,3-Dichloropropane	19.6	0.500	1.00	ug/L	1	20.0	ND	98	80-120%			
2,2-Dichloropropane	19.1	0.500	1.00	ug/L	1	20.0	ND	96	60-139%			
1,1-Dichloropropene	21.2	0.500	1.00	ug/L	1	20.0	ND	106	79-125%			
cis-1,3-Dichloropropene	18.0	0.500	1.00	ug/L	1	20.0	ND	90	75-124%			
trans-1,3-Dichloropropene	19.1	0.500	1.00	ug/L	1	20.0	ND	96	73-127%			
Ethylbenzene	19.7	0.250	0.500	ug/L	1	20.0	ND	99	79-121%			
Hexachlorobutadiene	20.7	2.50	5.00	ug/L	1	20.0	ND	103	66-134%			
2-Hexanone	42.5	5.00	10.0	ug/L	1	40.0	ND	106	57-139%			
Isopropylbenzene	19.7	0.500	1.00	ug/L	1	20.0	ND	99	72-131%			
4-Isopropyltoluene	19.5	0.500	1.00	ug/L	1	20.0	ND	97	77-127%			
Methylene chloride	20.6	5.00	10.0	ug/L	1	20.0	ND	103	74-124%			
4-Methyl-2-pentanone (MiBK)	40.1	5.00	10.0	ug/L	1	40.0	ND	100	67-130%			
Methyl tert-butyl ether (MTBE)	18.0	0.500	1.00	ug/L	1	20.0	ND	90	71-124%			
Naphthalene	17.8	2.00	4.00	ug/L	1	20.0	ND	89	61-128%			
n-Propylbenzene	20.0	0.250	0.500	ug/L	1	20.0	ND	100	76-126%			
Styrene	19.5	0.500	1.00	ug/L	1	20.0	ND	97	78-123%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 23H0288 - EPA 5030C Water Matrix Spike (23H0288-MS1) Prepared: 08/08/23 11:00 Analyzed: 08/08/23 16:58 QC Source Sample: Non-SDG (A3H0850-20) 97 1,1,1,2-Tetrachloroethane 19.3 0.250 0.500 ug/L 1 20.0 ND 78-124% 0.200 0.400 20.0 1,1,2,2-Tetrachloroethane 21.7 ug/L 1 ND 108 71-121% 20.0 74-129% Tetrachloroethene (PCE) 20.2 0.200 0.400 ug/L 1 ND 101 Toluene 19.9 0.500 1.00 ug/L 1 20.0 ND 99 80-121% 1,2,3-Trichlorobenzene 18.8 1.00 2.00 ug/L 1 20.0 ND 94 69-129% 1,2,4-Trichlorobenzene 19.6 1.00 2.00 20.0 98 ug/L 1 ND 69-130% 1,1,1-Trichloroethane 20.4 0.200 0.400ug/L 1 20.0 ND 102 74-131% 1,1,2-Trichloroethane 19.3 0.250 0.500 20.0 ND 97 80-120% ug/L 1 20.0 Trichloroethene (TCE) 19.8 0.200 0.400 ug/L 1 ND 99 79-123% Trichlorofluoromethane 25.5 0.800 1.60 ug/L 1 20.0 ND 128 65-141% 1,2,3-Trichloropropane 20.9 0.500 1.00 ug/L 1 20.0 ND 104 73-122% 1,2,4-Trimethylbenzene 19.2 0.500 1.00 20.0 ND 76-124% ug/L 1 96 19.1 0.500 20.0 ND 95 75-124% 1,3,5-Trimethylbenzene 1.00 ug/L 1 22.0 20.0 Vinyl chloride 0.200 0.400 ND 110 58-137% ug/L 1 0.500 1.00 40.0 m,p-Xylene 40.9 ug/L 1 ND 102 80-121% o-Xylene 19.5 0.250 0.500 ug/L 1 20.0 ND 98 78-122% ---Surr: 1,4-Difluorobenzene (Surr) 103 % Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 98 % 80-120 % 96 % 80-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014

Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wat	er				
Blank (23H0334-BLK1)			Prepared	: 08/09/23	10:00 Anal	yzed: 08/09/	23 14:07					
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	ug/L	1							
Benzene	ND	0.100	0.200	ug/L	1							
Bromobenzene	ND	0.250	0.500	ug/L	1							
Bromochloromethane	ND	0.500	1.00	ug/L	1							
Bromodichloromethane	ND	0.500	1.00	ug/L	1							
Bromoform	ND	1.00	1.00	ug/L	1							
Bromomethane	ND	5.00	5.00	ug/L	1							
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1							
n-Butylbenzene	ND	0.500	1.00	ug/L	1							
sec-Butylbenzene	ND	0.500	1.00	ug/L	1							
ert-Butylbenzene	ND	0.500	1.00	ug/L	1							
Carbon disulfide	ND	10.0	10.0	ug/L	1							
Carbon tetrachloride	ND	0.500	1.00	ug/L	1							
Chlorobenzene	ND	0.250	0.500	ug/L	1							
Chloroethane	ND	5.00	10.0	ug/L	1							
Chloroform	ND	0.500	1.00	ug/L	1							
Chloromethane	ND	2.50	5.00	ug/L	1							
2-Chlorotoluene	ND	0.500	1.00	ug/L	1							
1-Chlorotoluene	ND	0.500	1.00	ug/L	1							
Dibromochloromethane	ND	0.500	1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1							
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
Dibromomethane	ND	0.500	1.00	ug/L	1							
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1							
,1-Dichloroethane	ND	0.200	0.400	ug/L	1							
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1							
,1-Dichloroethene	ND	0.200	0.400	ug/L	1							
eis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
Blank (23H0334-BLK1)			Prepared	: 08/09/23	10:00 Anal	yzed: 08/09/	/23 14:07					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	0.800	1.60	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	_		ery: 104 %	Limits: 80		Dilı	ution: 1x					

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
Blank (23H0334-BLK1)			Prepared	: 08/09/23	10:00 Ana	yzed: 08/09	/23 14:07					
Surr: Toluene-d8 (Surr)		Recor	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			105 %	80	0-120 %		"					
LCS (23H0334-BS1)			Prepared	: 08/09/23	10:00 Ana	yzed: 08/09	/23 12:45					
EPA 8260D												
Acetone	37.2	10.0	20.0	ug/L	1	40.0		93	80-120%			
Acrylonitrile	19.8	1.00	2.00	ug/L	1	20.0		99	80-120%			
Benzene	19.1	0.100	0.200	ug/L	1	20.0		96	80-120%			
Bromobenzene	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%			
Bromochloromethane	19.5	0.500	1.00	ug/L	1	20.0		97	80-120%			
Bromodichloromethane	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%			
Bromoform	15.6	1.00	1.00	ug/L	1	20.0		78	80-120%			Q-:
Bromomethane	26.0	5.00	5.00	ug/L	1	20.0		130	80-120%			Q-:
2-Butanone (MEK)	41.9	5.00	10.0	ug/L	1	40.0		105	80-120%			
n-Butylbenzene	19.4	0.500	1.00	ug/L	1	20.0		97	80-120%			
sec-Butylbenzene	18.7	0.500	1.00	ug/L	1	20.0		93	80-120%			
tert-Butylbenzene	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%			
Carbon disulfide	15.8	10.0	10.0	ug/L	1	20.0		79	80-120%			Q-:
Carbon tetrachloride	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%			
Chlorobenzene	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%			
Chloroethane	18.1	5.00	10.0	ug/L	1	20.0		91	80-120%			ICV-0
Chloroform	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
Chloromethane	17.4	2.50	5.00	ug/L	1	20.0		87	80-120%			
2-Chlorotoluene	18.0	0.500	1.00	ug/L	1	20.0		90	80-120%			
4-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Dibromochloromethane	17.5	0.500	1.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromo-3-chloropropane	17.6	2.50	5.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromoethane (EDB)	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%			
Dibromomethane	19.1	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,2-Dichlorobenzene	19.9	0.250	0.500	ug/L	1	20.0		100	80-120%			
1,3-Dichlorobenzene	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
1,4-Dichlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dichlorodifluoromethane	20.5	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,1-Dichloroethane	19.1	0.200	0.400	ug/L	1	20.0		96	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 23H0334 - EPA 5030C Water

Batch 23H0334 - EPA 5030C							VV	ater		
LCS (23H0334-BS1)			Prepared:	08/09/23 10	:00 Ana	lyzed: 08/09/	23 12:45			
1,2-Dichloroethane (EDC)	19.5	0.200	0.400	ug/L	1	20.0		97	80-120%	
1,1-Dichloroethene	19.4	0.200	0.400	ug/L	1	20.0		97	80-120%	
cis-1,2-Dichloroethene	18.9	0.200	0.400	ug/L	1	20.0		95	80-120%	
trans-1,2-Dichloroethene	18.9	0.200	0.400	ug/L	1	20.0		95	80-120%	
1,2-Dichloropropane	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%	
1,3-Dichloropropane	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%	
2,2-Dichloropropane	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%	
1,1-Dichloropropene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%	
cis-1,3-Dichloropropene	18.1	0.500	1.00	ug/L	1	20.0		90	80-120%	
rans-1,3-Dichloropropene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%	
Ethylbenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%	
Hexachlorobutadiene	20.6	2.50	5.00	ug/L	1	20.0		103	80-120%	
2-Hexanone	38.5	5.00	10.0	ug/L	1	40.0		96	80-120%	
Isopropylbenzene	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%	
1-Isopropyltoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%	
Methylene chloride	20.2	5.00	10.0	ug/L	1	20.0		101	80-120%	
4-Methyl-2-pentanone (MiBK)	38.1	5.00	10.0	ug/L	1	40.0		95	80-120%	
Methyl tert-butyl ether (MTBE)	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%	
Naphthalene	16.6	2.00	4.00	ug/L	1	20.0		83	80-120%	
n-Propylbenzene	18.9	0.250	0.500	ug/L	1	20.0		95	80-120%	
Styrene	18.5	0.500	1.00	ug/L	1	20.0		92	80-120%	
1,1,1,2-Tetrachloroethane	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%	
1,1,2,2-Tetrachloroethane	21.5	0.200	0.400	ug/L	1	20.0		108	80-120%	
Tetrachloroethene (PCE)	18.8	0.200	0.400	ug/L	1	20.0		94	80-120%	
Toluene	18.7	0.500	1.00	ug/L	1	20.0		93	80-120%	
1,2,3-Trichlorobenzene	18.3	1.00	2.00	ug/L	1	20.0		92	80-120%	
1,2,4-Trichlorobenzene	19.1	1.00	2.00	ug/L	1	20.0		96	80-120%	
1,1,1-Trichloroethane	18.6	0.200	0.400	ug/L	1	20.0		93	80-120%	
1,1,2-Trichloroethane	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%	
Trichloroethene (TCE)	18.4	0.200	0.400	ug/L	1	20.0		92	80-120%	
Trichlorofluoromethane	23.7	0.800	1.60	ug/L	1	20.0		118	80-120%	
1,2,3-Trichloropropane	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%	
1,2,4-Trimethylbenzene	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%	
1,3,5-Trimethylbenzene	18.7	0.500	1.00	ug/L	1	20.0		94	80-120%	
-				-						

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
LCS (23H0334-BS1)			Prepared	: 08/09/23	10:00 Ana	yzed: 08/09/	/23 12:45					
/inyl chloride	19.9	0.200	0.400	ug/L	1	20.0		99	80-120%			
n,p-Xylene	38.3	0.500	1.00	ug/L	1	40.0		96	80-120%			
-Xylene	18.3	0.250	0.500	ug/L	1	20.0		92	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"					
Ouplicate (23H0334-DUP1)			Prepared	: 08/09/23	12:00 Ana	yzed: 08/09/	/23 16:49					
OC Source Sample: Non-SDG (A3	H0898-04)											
Acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	1.00	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	10.0	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	10.0	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23H0334 - EPA 5030C Water Duplicate (23H0334-DUP1) Prepared: 08/09/23 12:00 Analyzed: 08/09/23 16:49 QC Source Sample: Non-SDG (A3H0898-04) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ------ND 0.200 1,1-Dichloroethene 0.400 ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400 ND 30% 0.200 ug/L 1 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 1,1-Dichloropropene ug/L 1 ND cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% trans-1,3-Dichloropropene ug/L 1 ND 0.250 ug/L Ethylbenzene ND 0.500 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 30% Isopropylbenzene 1.00 1 ND ug/L 4-Isopropyltoluene ND 0.500 1.00 ug/L 1 ND 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ------30% Naphthalene ND 2.00 4.00 ug/L 1 ND 30% ND 30% n-Propylbenzene 0.250 0.500 ug/L 1 ND ND 0.500 1.00 30% Styrene ug/L 1 ND ND 0.250 0.500 ND 30% 1.1.1.2-Tetrachloroethane ug/L 1 1,1,2,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 ND Tetrachloroethene (PCE) 0.200 0.400 ug/L 1 ---ND ------30% ND 0.500 1.00 ug/L 1 ND 30% ND 1.00 2.00 ND 30% 1,2,3-Trichlorobenzene ug/L 1 ---1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% 0.200 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wat	ter				
Duplicate (23H0334-DUP1)			Prepared	1: 08/09/23	12:00 Ana	lyzed: 08/09	/23 16:49					
QC Source Sample: Non-SDG (A3	H0898-04)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	0.800	1.60	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A3					_							
Acetone	ND	50.0	100	ug/L	5		ND				30%	
Acrylonitrile	ND	5.00	10.0	ug/L	5		ND				30%	
Benzene	ND	0.500	1.00	ug/L	5		ND				30%	
Bromobenzene	ND	1.25	2.50	ug/L	5		ND				30%	
Bromochloromethane	ND	2.50	5.00	ug/L	5		ND				30%	
Bromodichloromethane	ND	2.50	5.00	ug/L	5		ND				30%	
Bromoform	ND	5.00	5.00	ug/L	5		ND				30%	
Bromomethane	ND	25.0	25.0	ug/L	5		ND				30%	
-Butanone (MEK)	ND	25.0	50.0	ug/L	5		ND				30%	
-Butylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
ec-Butylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
ert-Butylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
Carbon disulfide	ND	50.0	50.0	ug/L	5		ND				30%	
Carbon tetrachloride	ND	2.50	5.00	ug/L	5		ND				30%	
Chlorobenzene	ND	1.25	2.50	ug/L	5		ND				30%	
Chloroethane	ND	25.0	50.0	ug/L	5		ND				30%	
Chloroform	ND	2.50	5.00	ug/L	5		ND				30%	
Chloromethane	ND	12.5	25.0	ug/L	5		ND				30%	
2-Chlorotoluene	ND	2.50	5.00	ug/L	5		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
Duplicate (23H0334-DUP2)			Prepared	: 08/09/23	12:00 Anal	lyzed: 08/09/	/23 21:47					H-01, V-13
QC Source Sample: Non-SDG (A3	G1462-02)											
4-Chlorotoluene	ND	2.50	5.00	ug/L	5		ND				30%	
Dibromochloromethane	ND	2.50	5.00	ug/L	5		ND				30%	
1,2-Dibromo-3-chloropropane	ND	12.5	25.0	ug/L	5		ND				30%	
1,2-Dibromoethane (EDB)	ND	1.25	2.50	ug/L	5		ND				30%	
Dibromomethane	ND	2.50	5.00	ug/L	5		ND				30%	
1,2-Dichlorobenzene	ND	1.25	2.50	ug/L	5		ND				30%	
1,3-Dichlorobenzene	ND	1.25	2.50	ug/L	5		ND				30%	
1,4-Dichlorobenzene	ND	1.25	2.50	ug/L	5		ND				30%	
Dichlorodifluoromethane	ND	2.50	5.00	ug/L	5		ND				30%	
1,1-Dichloroethane	ND	1.00	2.00	ug/L	5		ND				30%	
1,2-Dichloroethane (EDC)	ND	1.00	2.00	ug/L	5		ND				30%	
1,1-Dichloroethene	ND	1.00	2.00	ug/L	5		ND				30%	
cis-1,2-Dichloroethene	ND	1.00	2.00	ug/L	5		ND				30%	
trans-1,2-Dichloroethene	ND	1.00	2.00	ug/L	5		ND				30%	
1,2-Dichloropropane	ND	1.25	2.50	ug/L	5		ND				30%	
1,3-Dichloropropane	ND	2.50	5.00	ug/L	5		ND				30%	
2,2-Dichloropropane	ND	2.50	5.00	ug/L	5		ND				30%	
1,1-Dichloropropene	ND	2.50	5.00	ug/L	5		ND				30%	
cis-1,3-Dichloropropene	ND	2.50	5.00	ug/L	5		ND				30%	
trans-1,3-Dichloropropene	ND	2.50	5.00	ug/L	5		ND				30%	
Ethylbenzene	ND	1.25	2.50	ug/L	5		ND				30%	
Hexachlorobutadiene	ND	12.5	25.0	ug/L	5		ND				30%	
2-Hexanone	ND	25.0	50.0	ug/L	5		ND				30%	
Isopropylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
4-Isopropyltoluene	ND	2.50	5.00	ug/L	5		ND				30%	
Methylene chloride	ND	25.0	50.0	ug/L	5		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	2.50	5.00	ug/L	5		ND				30%	
Naphthalene	ND	10.0	20.0	ug/L	5		ND				30%	
n-Propylbenzene	ND	1.25	2.50	ug/L	5		ND				30%	
Styrene	ND	2.50	5.00	ug/L	5		ND				30%	
1,1,1,2-Tetrachloroethane	ND	1.25	2.50	ug/L	5		ND				30%	
1,1,2,2-Tetrachloroethane	ND	1.00	2.00	ug/L	5		ND				30%	
•				٥								

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Seattle, WA 98125

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Project Number: 1789002.010.014

Project Manager: Mike Staton

Project:

Woodinville West Business Park

Report ID: A3H0817 - 08 11 23 1812

Q-54

Q-01

Q-01

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
Duplicate (23H0334-DUP2)			Prepared	: 08/09/23	12:00 Anal	yzed: 08/09	/23 21:47					H-01, V-13
QC Source Sample: Non-SDG (A3	G1462-02)											
Tetrachloroethene (PCE)	ND	1.00	2.00	ug/L	5		ND				30%	
Toluene	ND	2.50	5.00	ug/L	5		ND				30%	
1,2,3-Trichlorobenzene	ND	5.00	10.0	ug/L	5		ND				30%	
1,2,4-Trichlorobenzene	ND	5.00	10.0	ug/L	5		ND				30%	
1,1,1-Trichloroethane	ND	1.00	2.00	ug/L	5		ND				30%	
1,1,2-Trichloroethane	ND	1.25	2.50	ug/L	5		ND				30%	
Trichloroethene (TCE)	ND	1.00	2.00	ug/L	5		ND				30%	
Trichlorofluoromethane	ND	4.00	8.00	ug/L	5		ND				30%	
1,2,3-Trichloropropane	ND	2.50	5.00	ug/L	5		ND				30%	
1,2,4-Trimethylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
1,3,5-Trimethylbenzene	ND	2.50	5.00	ug/L	5		ND				30%	
Vinyl chloride	ND	1.00	2.00	ug/L	5		ND				30%	
m,p-Xylene	ND	2.50	5.00	ug/L	5		ND				30%	
o-Xylene	ND	1.25	2.50	ug/L	5		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
Matrix Spike (23H0334-MS1)			Prepared	: 08/09/23	12:00 Anal	lyzed: 08/09	/23 18:11					
QC Source Sample: Non-SDG (A3	H0898-06)											
EPA 8260D												
Acetone	40.2	10.0	20.0	ug/L	1	40.0	ND	101	39-160%			
Acrylonitrile	19.4	1.00	2.00	ug/L	1	20.0	ND	97	63-135%			
Benzene	17.2	0.100	0.200	ug/L	1	20.0	ND	86	79-120%			
Bromobenzene	15.4	0.250	0.500	ug/L	1	20.0	ND	77	80-120%			Q
Bromochloromethane	16.6	0.500	1.00	ug/L	1	20.0	ND	83	78-123%			
Bromodichloromethane	15.6	0.500	1.00	ug/L	1	20.0	ND	78	79-125%			Q
Bromoform	12.9	1.00	1.00	ug/L	1	20.0	ND	65	66-130%			Q-5

Apex Laboratories

Philip Nevenberg

Bromomethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

2-Butanone (MEK)

23.0

42.7

14.8

15.4

15.3

5.00

5.00

0.500

0.500

0.500

5.00

10.0

1.00

1.00

1.00

ug/L

ug/L

ug/L

ug/L

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

115

107

74

77

76

53-141%

56-143%

75-128%

77-126%

78-124%

Philip Nerenberg, Lab Director

1

1

1

1

1

20.0

40.0

20.0

20.0

20.0

ND

ND

ND

ND

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23H0334 - EPA 5030C Water Matrix Spike (23H0334-MS1) Prepared: 08/09/23 12:00 Analyzed: 08/09/23 18:11 QC Source Sample: Non-SDG (A3H0898-06) Carbon disulfide 14.3 10.0 10.0 ug/L 1 20.0 ND 71 64-133% Q-54b 1.00 20.0 Carbon tetrachloride 16.8 0.500 ug/L 1 ND 84 72-136% ug/L Chlorobenzene 16.1 0.250 0.500 1 20.0 ND 80 80-120% ICV-01 Chloroethane 15.6 5.00 10.0 ug/L 1 20.0 ND 78 60-138% Chloroform 17.2 0.500 1.00 1 20.0 ND 86 79-124% ug/L ---20.0 Chloromethane 16.6 2.50 5.00 ug/L 1 ND 83 50-139% Q-01 2-Chlorotoluene 15.4 0.500 1.00 1 20.0 ND 77 79-122% ug/L 20.0 78 78-122% 4-Chlorotoluene 15.6 0.500 1.00 ug/L 1 ND Q-01 Dibromochloromethane 14.6 0.500 1.00 ug/L 1 20.0 ND 73 74-126% 1,2-Dibromo-3-chloropropane 16.4 2.50 5.00 ug/L 1 20.0 ND 82 62-128% 1,2-Dibromoethane (EDB) 16.1 0.250 0.500 ug/L 1 20.0 ND 80 77-121% 16.7 0.500 1.00 20.0 ND 79-123% Dibromomethane ug/L 1 84 20.0 1,2-Dichlorobenzene 16.6 0.250 0.500 ug/L 1 ND 83 80-120% Q-01 20.0 15.8 0.250 0.500 ND 79 80-120% 1,3-Dichlorobenzene ug/L 1 ug/L 1,4-Dichlorobenzene 16.2 0.250 0.500 1 20.0 ND 81 79-120% Dichlorodifluoromethane 20.1 0.500 1.00 ug/L 1 20.0 ND 101 32-152% ___ 1,1-Dichloroethane 17.2 0.200 0.400 ug/L 1 20.0 ND 86 77-125% 17.2 0.200 20.0 ND 1,2-Dichloroethane (EDC) 0.400 86 73-128% ug/L 1 18.4 20.0 92 71-131% 1,1-Dichloroethene 0.200 0.400 ug/L 1 ND cis-1,2-Dichloroethene 0.200 0.400 16.9 20.0 ND 78-123% ug/L 1 84 trans-1,2-Dichloroethene 17.2 0.200 0.400 20.0 ND 75-124% ug/L 1 86 0.250 1,2-Dichloropropane 16.9 0.500 ug/L 1 20.0 ND 84 78-122% 1,3-Dichloropropane 16.2 0.500 1.00 ug/L 1 20.0 ND 81 80-120% 15.2 20.0 60-139% 2,2-Dichloropropane 0.500 1.00 1 ND 76 ug/L 0.500 20.0 90 79-125% 1,1-Dichloropropene 18.1 1.00 ug/L 1 ND 20.0 Q-01 14.0 0.500 1.00 ND 70 cis-1,3-Dichloropropene ug/L 1 75-124% trans-1,3-Dichloropropene 15.4 0.500 1.00 20.0 ND 77 73-127% ug/L 1 20.0 79-121% Ethylbenzene 16.4 0.250 0.500 ug/L 1 ND 82 Hexachlorobutadiene 12.4 2.50 5.00 ug/L 1 20.0 ND 62 66-134% O-01 2-Hexanone 38.2 5.00 10.0 ug/L 1 40.0 ND 96 57-139%

Apex Laboratories

Philip Nevenberg

15.7

15.0

17.2

0.500

0.500

5.00

1.00

1.00

10.0

Isopropylbenzene

4-Isopropyltoluene

Methylene chloride

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

78

75

86

72-131%

77-127%

74-124%

Q-01

Philip Nerenberg, Lab Director

Page 24 of 32

1

1

1

ug/L

ug/L

ug/L

20.0

20.0

20.0

ND

ND

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0334 - EPA 5030C							Wa	ter				
Matrix Spike (23H0334-MS1)			Prepared	: 08/09/23	12:00 Anal	lyzed: 08/09	/23 18:11					
QC Source Sample: Non-SDG (A3)	H0898-06)											
4-Methyl-2-pentanone (MiBK)	36.3	5.00	10.0	ug/L	1	40.0	ND	91	67-130%			
Methyl tert-butyl ether (MTBE)	14.7	0.500	1.00	ug/L	1	20.0	ND	73	71-124%			
Naphthalene	14.0	2.00	4.00	ug/L	1	20.0	ND	70	61-128%			
n-Propylbenzene	16.2	0.250	0.500	ug/L	1	20.0	ND	81	76-126%			
Styrene	15.7	0.500	1.00	ug/L	1	20.0	ND	78	78-123%			
1,1,1,2-Tetrachloroethane	15.6	0.250	0.500	ug/L	1	20.0	ND	78	78-124%			
1,1,2,2-Tetrachloroethane	19.2	0.200	0.400	ug/L	1	20.0	ND	96	71-121%			
Tetrachloroethene (PCE)	16.8	0.200	0.400	ug/L	1	20.0	ND	84	74-129%			
Toluene	16.6	0.500	1.00	ug/L	1	20.0	ND	83	80-121%			
1,2,3-Trichlorobenzene	13.7	1.00	2.00	ug/L	1	20.0	ND	68	69-129%			Q-01
1,2,4-Trichlorobenzene	14.1	1.00	2.00	ug/L	1	20.0	ND	70	69-130%			
1,1,1-Trichloroethane	17.0	0.200	0.400	ug/L	1	20.0	ND	85	74-131%			
1,1,2-Trichloroethane	16.1	0.250	0.500	ug/L	1	20.0	ND	81	80-120%			
Trichloroethene (TCE)	16.2	0.200	0.400	ug/L	1	20.0	ND	81	79-123%			
Trichlorofluoromethane	22.7	0.800	1.60	ug/L	1	20.0	ND	113	65-141%			
1,2,3-Trichloropropane	18.4	0.500	1.00	ug/L	1	20.0	ND	92	73-122%			
1,2,4-Trimethylbenzene	15.7	0.500	1.00	ug/L	1	20.0	ND	79	76-124%			
1,3,5-Trimethylbenzene	15.7	0.500	1.00	ug/L	1	20.0	ND	79	75-124%			
Vinyl chloride	18.7	0.200	0.400	ug/L	1	20.0	ND	94	58-137%			
m,p-Xylene	33.5	0.500	1.00	ug/L	1	40.0	ND	84	80-121%			
o-Xylene	15.7	0.250	0.500	ug/L	1	20.0	ND	79	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23H0334							
A3H0817-01RE1	Water	EPA 8260D	08/01/23 13:13	08/09/23 12:00	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 26 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

155 NE 100th St #302 Project Number: 1789002.010.014 Report ID: Seattle, WA 98125 Project Manager: Mike Staton A3H0817 - 08 11 23 1812

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

ex Laborato	<u>ories</u>
H-01	Analyzed outside the recommended holding time.
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -2%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
R-06	Reporting level raised due to possible carryover from a previous sample.
V-13	Reporting levels raised due to dilution necessary for analysis due to sample foaming in sparge vessel.

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 27 of 32 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " "(blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 29 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.014
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H0817 - 08 11 23 1812

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton

Report ID: A3H0817 - 08 11 23 1812

Project Name Woodhaville	Record	☐ Tacoma (253) 926-2493 ☐ Olympia (360) 791-3178	☐ Portland (503) 542-1080	Page of	Standard Joseph Accelerated
	Project Name Woodhaville Busings fork project No. 1789,002, 010 014	178902.010.014	Testi	Testing Parameters	
Project Location/Event Woodhy ville, W.A.	moute tut		1		Special Handling Requirements:
Sampler's Name Xence to Bright States	2 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Shipment Method:
Send Results To Mike Sh	Send Results To Mike Staton Mistaton Charlounce com		1 1 1 1 1		Stored on ice: Yes / No
Sample I.D.	Date Time	No. of Matrix Containers			Observations/Comments
MW-15-0823	8-1-23 (313	* of other			Allow water camples to settle rollert
A STATE OF THE STA					aliquot from clear portion
					NWTPH-Dx - Acid wash cleanup
	NODAO MININA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA MANAGAMANA	The state of the s			- Silica gel cleanup
					Dissolved metal samples were field filtered
					Other
	A A A A A A A A A A A A A A A A A A A	ANTI-			
THE PROPERTY OF THE PROPERTY O	A MINISTRAL PROPERTY OF THE PR				
AND VICTORY I					
					and the state of t
, i.e. constant					
The state of the s					
Relinquished by	Received by	0101	Relinquished by	~	Received by
Signature 20 100	Signature	72	Signature	55 6	Signature
Company CAL	Company	LINX	Company		Company
2.23	Time /600 Date 8/3/2.3	•	DateTime	Î	Date Time

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 32

Apex Laboratories, LLC

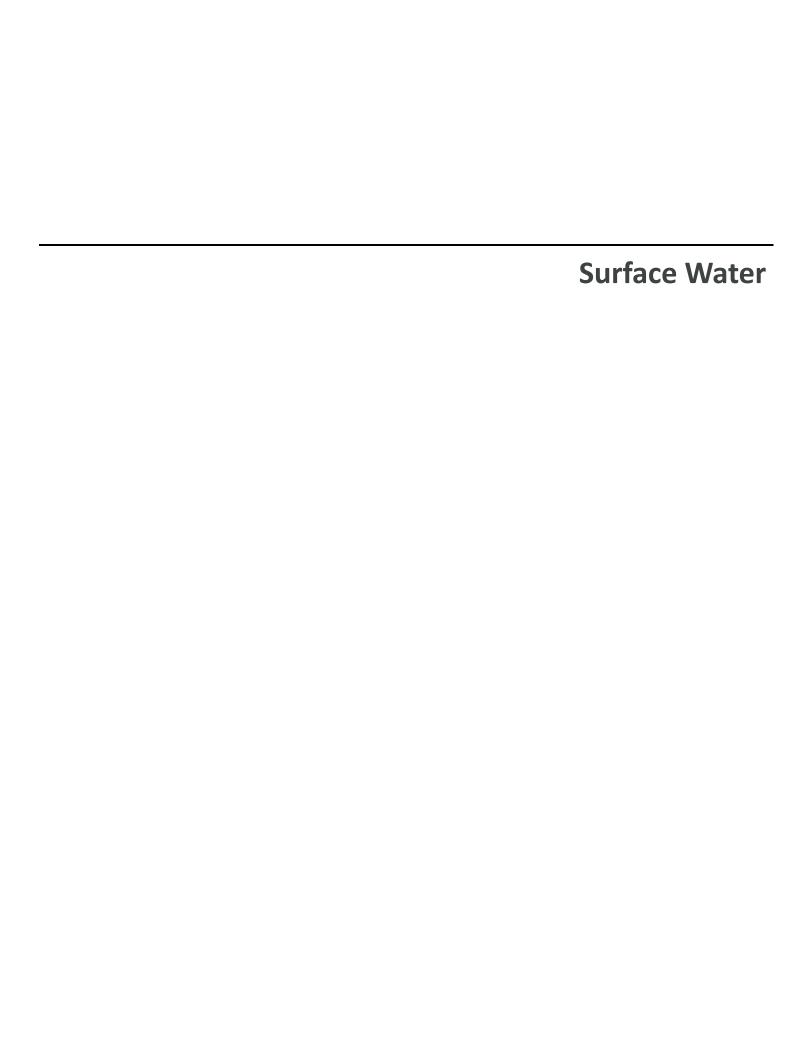
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.014
Project Manager: Mike Staton


Report ID: A3H0817 - 08 11 23 1812

APEX LABS COOLER RECEIPT FORM Landau Client: Element WO#: A3 H0817 Project/Project #: Woodinville, WA / 1789 OUZ-010. 014 **Delivery Info:** Date/time inspected: 8/3/23 @ 1050 By: _____ **Cooler Inspection** Yes ______ No _____ Chain of Custody included? Yes X No Signed/dated by client? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why:
Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: 8-4-23 @ 938 By: 515 All samples intact? Yes <u>×</u> No ___ Comments:___ Bottle labels/COCs agree? Yes x No Comments: COC/container discrepancies form initiated? Yes No × Containers/volumes received appropriate for analysis? Yes > No _ Comments: _____ Do VOA vials have visible headspace? Yes ___ No > NA ___ Water samples: pH checked: Yes___No___NA__> pH appropriate? Yes___No___NA>> Comments: ____ Additional information: 7819 8422 3571 Labeled by: Witness: Cooler Inspected by: DIS 8-4-23 Form Y-003 R-00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, September 7, 2023
Mike Staton
Landau Associates (Northgate)
155 NE 100th St #302
Seattle, WA 98125

RE: A3H1439 - Woodinville West Business Park - 1789002.010.013

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3H1439, which was received by the laboratory on 8/25/2023 at 10:50:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 0.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW-7-6.3ft-082423	A3H1439-01	Water	08/24/23 09:32	08/25/23 10:50
SW-6-4.2ft-082423	A3H1439-02	Water	08/24/23 10:25	08/25/23 10:50
SW-5-4.8ft-082423	АЗН1439-03	Water	08/24/23 11:10	08/25/23 10:50
SW-4-5.3ft-082423	АЗН1439-04	Water	08/24/23 12:20	08/25/23 10:50
SW-3-4.8ft-082423	АЗН1439-05	Water	08/24/23 12:55	08/25/23 10:50
SW-2-6.5ft-082423	АЗН1439-06	Water	08/24/23 13:35	08/25/23 10:50
SW-1-5.1ft-082423	АЗН1439-07	Water	08/24/23 14:15	08/25/23 10:50

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

		Jiame Organ	ic Compound	as by EPA 8.	-00D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
SW-7-6.3ft-082423 (A3H1439-01)				Matrix: Wa	ater	Batch:	23H1056	
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 13:15	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 13:15	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 13:15	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 13:15	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 13:15	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 13:15	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 3 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-7-6.3ft-082423 (A3H1439-01)				Matrix: Wat	er	Batch: 2	23H1056	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 13:15	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 13:15	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 13:15	EPA 8260D	
l-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 13:15	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 13:15	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 13:15	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 13:15	EPA 8260D	
Crichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 13:15	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 13:15	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 13:15	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SW-7-6.3ft-082423 (A3H1439-01)				Matrix: Wate	r	Batch: 2	23H1056	
Surrogate: Toluene-d8 (Surr)		Recove	ery: 104 %	Limits: 80-120 %	1	08/29/23 13:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	08/29/23 13:15	EPA 8260D	
SW-6-4.2ft-082423 (A3H1439-02)				Matrix: Wate	r	Batch: 2	23H1056	
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 14:01	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 14:01	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 14:01	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 14:01	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 14:01	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 14:01	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ls by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-6-4.2ft-082423 (A3H1439-02)				Matrix: Wa	ater	Batch:	23H1056	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 14:01	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 14:01	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 14:01	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 14:01	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 14:01	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:01	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 6 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-6-4.2ft-082423 (A3H1439-02)				Matrix: Wate	r	Batch:	23H1056	
m,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 14:01	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 14:01	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 97 %	Limits: 80-120 %	1	08/29/23 14:01	EPA 8260D	
Toluene-d8 (Surr)			106 %	80-120 %	1	08/29/23 14:01	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	08/29/23 14:01	EPA 8260D	
SW-5-4.8ft-082423 (A3H1439-03)				Matrix: Wate	r	Batch:	23H1056	
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 14:23	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 14:23	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 14:23	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 14:23	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 14:23	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 14:23	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SW-5-4.8ft-082423 (A3H1439-03)				Matrix: Wa	ater	Batch:	23H1056	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 14:23	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 14:23	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 14:23	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 14:23	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 14:23	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:23	EPA 8260D	
(/				8-2	-			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 8 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-5-4.8ft-082423 (A3H1439-03)				Matrix: Wate	r	Batch: 2	23H1056	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 14:23	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 14:23	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80-120 %	I	08/29/23 14:23	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	08/29/23 14:23	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	08/29/23 14:23	EPA 8260D	
SW-4-5.3ft-082423 (A3H1439-04)				Matrix: Wate	r	Batch: 23H1056		
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 14:46	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 14:46	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 14:46	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 14:46	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 14:46	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 14:46	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 14:46	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
SW-4-5.3ft-082423 (A3H1439-04)				Matrix: Wa	ater	Batch:					
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 14:46	EPA 8260D				
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 14:46	EPA 8260D				
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 14:46	EPA 8260D				
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 14:46	EPA 8260D				
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 14:46	EPA 8260D				
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D				
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D				
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D				
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:46	EPA 8260D				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 10 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-4-5.3ft-082423 (A3H1439-04)				Matrix: Wate	r	Batch: 2		
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 14:46	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 14:46	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 14:46	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 14:46	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 14:46	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recon	very: 97 %	Limits: 80-120 %	1	08/29/23 14:46	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %		08/29/23 14:46	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	08/29/23 14:46	EPA 8260D	
SW-3-4.8ft-082423 (A3H1439-05)				Matrix: Wate	r	Batch: 2	23H1056	
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 15:08	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 15:08	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 15:08	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 15:08	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 15:08	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 15:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-3-4.8ft-082423 (A3H1439-05)				Matrix: Wa	ater	Batch:	23H1056	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 15:08	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 15:08	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 15:08	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 15:08	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 15:08	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 12 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D				
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
SW-3-4.8ft-082423 (A3H1439-05)				Matrix: Wate	er	Batch: 2	Batch: 23H1056		
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D		
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D		
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D		
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D		
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:08	EPA 8260D		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D		
n,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 15:08	EPA 8260D		
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 15:08	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	08/29/23 15:08	EPA 8260D		
Toluene-d8 (Surr)			107 %	80-120 %	1	08/29/23 15:08	EPA 8260D		
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	08/29/23 15:08	EPA 8260D		
SW-2-6.5ft-082423 (A3H1439-06)				Matrix: Wate	er	Batch: 2	23H1056		
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 15:31	EPA 8260D		
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 15:31	EPA 8260D		
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 15:31	EPA 8260D		
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D		
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 15:31	EPA 8260D		
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 15:31	EPA 8260D		
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 15:31	EPA 8260D		
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-2-6.5ft-082423 (A3H1439-06)				Matrix: Wa	ater	Batch:	23H1056	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	_
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 15:31	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 15:31	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 15:31	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 15:31	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 15:31	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 15:31	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SW-2-6.5ft-082423 (A3H1439-06)				Matrix: Wate	er	Batch:	23H1056	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 15:31	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:31	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 15:31	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 15:31	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	08/29/23 15:31	EPA 8260D	
Toluene-d8 (Surr)			106 %	80-120 %	1	08/29/23 15:31	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	08/29/23 15:31	EPA 8260D	
SW-1-5.1ft-082423 (A3H1439-07)				Matrix: Wate	er	Batch: 2	23H1056	
Acetone	ND	10.0	20.0	ug/L	1	08/29/23 15:53	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	08/29/23 15:53	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	08/29/23 15:53	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	08/29/23 15:53	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 15 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic compound	us by EPA 8	700D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-1-5.1ft-082423 (A3H1439-07)				Matrix: Wa	ater	Batch:	23H1056	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	08/29/23 15:53	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	08/29/23 15:53	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	08/29/23 15:53	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	08/29/23 15:53	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SW-1-5.1ft-082423 (A3H1439-07)				Matrix: Wate	er	Batch:	23H1056	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	08/29/23 15:53	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	08/29/23 15:53	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	08/29/23 15:53	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	08/29/23 15:53	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	08/29/23 15:53	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	08/29/23 15:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	5 I	08/29/23 15:53	EPA 8260D	
Toluene-d8 (Surr)			106 %	80-120 %	5 1	08/29/23 15:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	<i>i</i> 1	08/29/23 15:53	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

		Vinyl Chlor	ide by EF	A 8260D SIM				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SW-7-6.3ft-082423 (A3H1439-01)				Matrix: Water		Batch:		
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 17:13	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	6 I	09/01/23 17:13	EPA 8260D SIM	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	09/01/23 17:13	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 1	09/01/23 17:13	EPA 8260D SIM	
SW-6-4.2ft-082423 (A3H1439-02RE1)				Matrix: Wat	er	Batch:	2310048	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 20:21	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	6 I	09/01/23 20:21	EPA 8260D SIM	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	09/01/23 20:21	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 1	09/01/23 20:21	EPA 8260D SIM	
SW-5-4.8ft-082423 (A3H1439-03)				Matrix: Wat	er	Batch:	2310048	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 18:34	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 104 %	Limits: 80-120 %	6 I	09/01/23 18:34	EPA 8260D SIM	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	09/01/23 18:34	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	6 I	09/01/23 18:34	EPA 8260D SIM	
SW-4-5.3ft-082423 (A3H1439-04)				Matrix: Wat	er	Batch: 2310048		
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 19:01	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 105 %	Limits: 80-120 %	6 I	09/01/23 19:01	EPA 8260D SIM	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	09/01/23 19:01	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 1	09/01/23 19:01	EPA 8260D SIM	
SW-3-4.8ft-082423 (A3H1439-05)				Matrix: Wat	er	Batch:	2310048	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 19:28	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 104 %	Limits: 80-120 %	6 I	09/01/23 19:28	EPA 8260D SIM	
Toluene-d8 (Surr)			102 %	80-120 %	6 I	09/01/23 19:28	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 1	09/01/23 19:28	EPA 8260D SIM	
SW-2-6.5ft-082423 (A3H1439-06)			Matrix: Water			Batch:		
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 19:55	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 104 %	Limits: 80-120 %	6 I	09/01/23 19:55	EPA 8260D SIM	
Toluene-d8 (Surr)			105 %	80-120 %	6 I	09/01/23 19:55	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 I	09/01/23 19:55	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

ANALYTICAL SAMPLE RESULTS

	Vinyl Chloride by EPA 8260D SIM											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
SW-1-5.1ft-082423 (A3H1439-07)				Matrix: Water Batch: 2310048								
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	09/01/23 20:48	EPA 8260D SIM					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 105 %	Limits: 80-120 %	5 1	09/01/23 20:48	EPA 8260D SIM					
Toluene-d8 (Surr)			104 %	80-120 %	5 I	09/01/23 20:48	EPA 8260D SIM					
4-Bromofluorobenzene (Surr)			102 %	80-120 %	5 I	09/01/23 20:48	EPA 8260D SIM					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 19 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Reporting Detection Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23H1056 - EPA 5030C							Wa	ter				
Blank (23H1056-BLK1)			Prepared	: 08/29/23	10:03 Anal	yzed: 08/29/	23 12:29					
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	ug/L	1							
Benzene	ND	0.100	0.200	ug/L	1							
Bromobenzene	ND	0.250	0.500	ug/L	1							
Bromochloromethane	ND	0.500	1.00	ug/L	1							
Bromodichloromethane	ND	0.500	1.00	ug/L	1							
Bromoform	ND	0.500	1.00	ug/L	1							
Bromomethane	ND	5.00	5.00	ug/L	1							
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1							
n-Butylbenzene	ND	0.500	1.00	ug/L	1							
sec-Butylbenzene	ND	0.500	1.00	ug/L	1							
ert-Butylbenzene	ND	0.500	1.00	ug/L	1							
Carbon disulfide	ND	5.00	10.0	ug/L	1							
Carbon tetrachloride	ND	0.500	1.00	ug/L	1							
Chlorobenzene	ND	0.250	0.500	ug/L	1							
Chloroethane	ND	5.00	5.00	ug/L	1							
Chloroform	ND	0.500	1.00	ug/L	1							
Chloromethane	ND	2.50	5.00	ug/L	1							
2-Chlorotoluene	ND	0.500	1.00	ug/L	1							
1-Chlorotoluene	ND	0.500	1.00	ug/L	1							
Dibromochloromethane	ND	0.500	1.00	ug/L	1							
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1							
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
Dibromomethane	ND	0.500	1.00	ug/L	1							
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1							
,1-Dichloroethane	ND	0.200	0.400	ug/L	1							
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1							
,1-Dichloroethene	ND	0.200	0.400	ug/L	1							
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							

Apex Laboratories

Philip Namberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Woodinville West Business Park Project:

155 NE 100th St #302 Project Number: 1789002.010.013 Report ID: Seattle, WA 98125 Project Manager: Mike Staton A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C							Wat	ter				
Blank (23H1056-BLK1)			Prepared	: 08/29/23	10:03 Anal	yzed: 08/29	/23 12:29					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.100	0.200	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							

Apex Laboratories

Philip Manherg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 21 of 38 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C							Wa	ter				
Blank (23H1056-BLK1)			Prepared	: 08/29/23	10:03 Ana	yzed: 08/29	/23 12:29					
Surr: Toluene-d8 (Surr)		Recon	very: 104 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (23H1056-BS1)			Prepared	: 08/29/23	10:03 Ana	lyzed: 08/29	/23 11:35					
EPA 8260D												
Acetone	47.2	10.0	20.0	ug/L	1	40.0		118	80-120%			
Acrylonitrile	23.9	1.00	2.00	ug/L	1	20.0		119	80-120%			
Benzene	20.4	0.100	0.200	ug/L	1	20.0		102	80-120%			
Bromobenzene	20.1	0.250	0.500	ug/L	1	20.0		101	80-120%			
Bromochloromethane	22.5	0.500	1.00	ug/L	1	20.0		112	80-120%			
Bromodichloromethane	22.1	0.500	1.00	ug/L	1	20.0		111	80-120%			
Bromoform	23.7	0.500	1.00	ug/L	1	20.0		119	80-120%			
Bromomethane	19.0	5.00	5.00	ug/L	1	20.0		95	80-120%			
2-Butanone (MEK)	48.8	5.00	10.0	ug/L	1	40.0		122	80-120%			Q-
n-Butylbenzene	23.0	0.500	1.00	ug/L	1	20.0		115	80-120%			
sec-Butylbenzene	22.1	0.500	1.00	ug/L	1	20.0		110	80-120%			
tert-Butylbenzene	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
Carbon disulfide	22.1	5.00	10.0	ug/L	1	20.0		110	80-120%			
Carbon tetrachloride	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
Chlorobenzene	21.4	0.250	0.500	ug/L	1	20.0		107	80-120%			
Chloroethane	22.9	5.00	5.00	ug/L	1	20.0		115	80-120%			
Chloroform	22.1	0.500	1.00	ug/L	1	20.0		111	80-120%			
Chloromethane	17.9	2.50	5.00	ug/L	1	20.0		90	80-120%			
2-Chlorotoluene	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
4-Chlorotoluene	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Dibromochloromethane	23.2	0.500	1.00	ug/L	1	20.0		116	80-120%			
1,2-Dibromo-3-chloropropane	22.1	2.50	5.00	ug/L	1	20.0		111	80-120%			
1,2-Dibromoethane (EDB)	22.5	0.250	0.500	ug/L	1	20.0		113	80-120%			
Dibromomethane	22.2	0.500	1.00	ug/L	1	20.0		111	80-120%			
1,2-Dichlorobenzene	21.7	0.250	0.500	ug/L	1	20.0		109	80-120%			
1,3-Dichlorobenzene	21.6	0.250	0.500	ug/L	1	20.0		108	80-120%			
1,4-Dichlorobenzene	20.6	0.250	0.500	ug/L	1	20.0		103	80-120%			
Dichlorodifluoromethane	16.7	0.500	1.00	ug/L	1	20.0		84	80-120%			
1,1-Dichloroethane	22.4	0.200	0.400	ug/L	1	20.0		112	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C	Water											
LCS (23H1056-BS1)			Prepared	: 08/29/23	10:03 Anal	yzed: 08/29	/23 11:35					
1,2-Dichloroethane (EDC)	23.7	0.200	0.400	ug/L	1	20.0		118	80-120%			
1,1-Dichloroethene	21.9	0.200	0.400	ug/L	1	20.0		109	80-120%			
cis-1,2-Dichloroethene	20.9	0.200	0.400	ug/L	1	20.0		104	80-120%			
trans-1,2-Dichloroethene	21.5	0.200	0.400	ug/L	1	20.0		107	80-120%			
1,2-Dichloropropane	21.0	0.250	0.500	ug/L	1	20.0		105	80-120%			
1,3-Dichloropropane	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
2,2-Dichloropropane	22.5	0.500	1.00	ug/L	1	20.0		112	80-120%			
1,1-Dichloropropene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
cis-1,3-Dichloropropene	22.3	0.500	1.00	ug/L	1	20.0		111	80-120%			
trans-1,3-Dichloropropene	22.9	0.500	1.00	ug/L	1	20.0		115	80-120%			
Ethylbenzene	21.4	0.250	0.500	ug/L	1	20.0		107	80-120%			
Hexachlorobutadiene	19.9	2.50	5.00	ug/L	1	20.0		100	80-120%			
2-Hexanone	43.5	5.00	10.0	ug/L	1	40.0		109	80-120%			
sopropylbenzene	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
4-Isopropyltoluene	22.2	0.500	1.00	ug/L	1	20.0		111	80-120%			
Methylene chloride	21.7	5.00	10.0	ug/L	1	20.0		108	80-120%			
4-Methyl-2-pentanone (MiBK)	46.4	5.00	10.0	ug/L	1	40.0		116	80-120%			
Methyl tert-butyl ether (MTBE)	21.3	0.500	1.00	ug/L	1	20.0		106	80-120%			
Naphthalene	20.8	2.00	4.00	ug/L	1	20.0		104	80-120%			
n-Propylbenzene	21.9	0.250	0.500	ug/L	1	20.0		110	80-120%			
Styrene	21.1	0.500	1.00	ug/L	1	20.0		105	80-120%			
1,1,1,2-Tetrachloroethane	20.9	0.200	0.400	ug/L	1	20.0		105	80-120%			
1,1,2,2-Tetrachloroethane	22.5	0.250	0.500	ug/L	1	20.0		112	80-120%			
Tetrachloroethene (PCE)	21.0	0.200	0.400	ug/L	1	20.0		105	80-120%			
Гoluene	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
1,2,3-Trichlorobenzene	20.2	1.00	2.00	ug/L	1	20.0		101	80-120%			
1,2,4-Trichlorobenzene	19.6	1.00	2.00	ug/L ug/L	1	20.0		98	80-120%			
1,1,1-Trichloroethane	22.1	0.200	0.400	ug/L ug/L	1	20.0		110	80-120%			
1,1,2-Trichloroethane	21.6	0.250	0.500	ug/L	1	20.0		108	80-120%			
Trichloroethene (TCE)	20.1	0.200	0.400	ug/L ug/L	1	20.0		100	80-120%			
Trichlorofluoromethane	23.0	1.00	2.00	ug/L ug/L	1	20.0		115	80-120%			
1,2,3-Trichloropropane	23.1	0.500	1.00	ug/L ug/L	1	20.0		116	80-120%			
1,2,4-Trimethylbenzene	22.1	0.500	1.00	ug/L ug/L	1	20.0		111	80-120%			
1,3,5-Trimethylbenzene	22.1	0.500	1.00	ug/L ug/L	1	20.0		110	80-120%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Project:

Woodinville West Business Park

155 NE 100th St #302 Seattle, WA 98125 Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C							Wa	ter				
LCS (23H1056-BS1)			Prepared	1: 08/29/23	10:03 Ana	lyzed: 08/29/	/23 11:35					
Vinyl chloride	18.5	0.100	0.200	ug/L	1	20.0		92	80-120%			
m,p-Xylene	45.1	0.500	1.00	ug/L	1	40.0		113	80-120%			
o-Xylene	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					
Duplicate (23H1056-DUP1)			Prepared	1: 08/29/23	10:03 Ana	lyzed: 08/29/	/23 13:38					
OC Source Sample: SW-7-6.3ft-08	2423 (A3H	1439-01)										
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

Dibromomethane

ND

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

Page 24 of 38

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23H1056 - EPA 5030C Water Duplicate (23H1056-DUP1) Prepared: 08/29/23 10:03 Analyzed: 08/29/23 13:38 QC Source Sample: SW-7-6.3ft-082423 (A3H1439-01) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,3-Dichlorobenzene ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ------1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 0.400 ND 30% cis-1,2-Dichloroethene ND 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 2,2-Dichloropropane ug/L 1 ND 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% cis-1,3-Dichloropropene ug/L 1 ND 0.500 ug/L trans-1,3-Dichloropropene ND 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND ___ 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND 30% 2-Hexanone 5.00 10.0 1 ND ug/L Isopropylbenzene ND 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 ND ND 30% 4-Isopropyltoluene ug/L 1 ND Methylene chloride 5.00 10.0 ug/L 1 ND 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND ug/L ND 30% 2.00 4.00 1 ND 0.250 0.500 30% n-Propylbenzene ug/L 1 ND ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 ND 30% Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% 1.00 2.00 1,2,4-Trichlorobenzene ND 1 ND 30% ug/L ---1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C							Wat	ter				
Duplicate (23H1056-DUP1)			Prepared	: 08/29/23	10:03 Anal	lyzed: 08/29/	/23 13:38					
QC Source Sample: SW-7-6.3ft-08	2423 (A3H	1439-01)										
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.100	0.200	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
Duplicate (23H1056-DUP2) QC Source Sample: Non-SDG (A3	H1472-05)		Prepared	: 08/29/23	16:30 Anal	lyzed: 08/29/	/23 22:01					
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
ouroun temaemoriae			0.500	ug/L	1		ND				30%	
	ND	0.250	0.500	ug/L	1		1.2				5070	
Chlorobenzene	ND ND	0.250 5.00	5.00	ug/L ug/L	1		ND				30%	
Chlorobenzene Chloroethane Chloroform				_						3		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23H1056 - EPA 5030C Water Duplicate (23H1056-DUP2) Prepared: 08/29/23 16:30 Analyzed: 08/29/23 22:01 QC Source Sample: Non-SDG (A3H1472-05) 2-Chlorotoluene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 4-Chlorotoluene ug/L 1 ND 30% Dibromochloromethane ND 0.500 1.00 ug/L 1 ND 30% 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 ND 30% 1,2-Dibromoethane (EDB) ND 0.250 0.500 1 ND 30% ug/L ------Dibromomethane ND 0.500 1.00 ug/L 1 ND 30% 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND ND 30% 1,3-Dichlorobenzene 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400ND 30% ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ND 0.200 0.400 ND 30% cis-1,2-Dichloroethene ug/L 1 0.200 ug/L trans-1,2-Dichloroethene ND 0.400 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND ___ 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 ND 30% 2,2-Dichloropropane 1.00 1 ug/L ---ND ND 1,1-Dichloropropene 0.500 1.00 ug/L 1 30% 0.500 1.00 cis-1,3-Dichloropropene ND ND 30% ug/L 1 trans-1,3-Dichloropropene ND 0.500 ND 1.00 ug/L 1 30% 0.250 Ethylbenzene ND 0.500 ug/L 1 ND ---30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND ND 30% 2-Hexanone 5.00 10.0 ug/L 1 ND 0.500 1.00 ND 30% Isopropylbenzene ug/L 1 ND 0.500 1.00 ND 30% 4-Isopropyltoluene ug/L 1 Methylene chloride ND 5.00 10.0 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND 2.00 4.00 ND 30% ug/L 1 n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 30% 0.500 1.00 ND Styrene ND 1 30% ug/L ---1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

Seattle, WA 98125

155 NE 100th St #302

Project:

Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H1056 - EPA 5030C							Wa	ter				
Duplicate (23H1056-DUP2)			Prepared	: 08/29/23	16:30 Ana	lyzed: 08/29	/23 22:01					
QC Source Sample: Non-SDG (A3	H1472-05)											
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.100	0.200	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (23H1056-MS1)			Prepared	: 08/29/23	10:03 Ana	lyzed: 08/29	/23 19:19					
QC Source Sample: Non-SDG (A3	H1443-05)											
EPA 8260D												
Acetone	50.5	10.0	20.0	ug/L	1	40.0	ND	126	39-160%			
Acrylonitrile	23.4	1.00	2.00	ug/L	1	20.0	ND	117	63-135%			
Benzene	21.5	0.100	0.200	ug/L	1	20.0	0.350	106	79-120%			
Bromobenzene	20.0	0.250	0.500	ug/L	1	20.0	ND	100	80-120%			
Bromochloromethane	23.0	0.500	1.00	ug/L	1	20.0	ND	115	78-123%			
Bromodichloromethane	22.4	0.500	1.00	ug/L	1	20.0	ND	112	79-125%			
Bromoform	22.9	0.500	1.00	ug/L	1	20.0	ND	115	66-130%			
Bromomethane	20.2	5.00	5.00	ug/L	1	20.0	ND	101	53-141%			
		-		<i>5</i> –								

Apex Laboratories

Philip Nevenberg

2-Butanone (MEK)

n-Butylbenzene

sec-Butylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

121

111

111

56-143%

75-128%

77-126%

Q-54

Philip Nerenberg, Lab Director

Page 28 of 38

1

1

1

40.0

20.0

20.0

ND

ND

ND

5.00

0.500

0.500

10.0

1.00

1.00

ug/L

ug/L

ug/L

48.6

22.3

22.2

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23H1056 - EPA 5030C Water Matrix Spike (23H1056-MS1) Prepared: 08/29/23 10:03 Analyzed: 08/29/23 19:19 QC Source Sample: Non-SDG (A3H1443-05) tert-Butylbenzene 21.3 0.500 1.00 ug/L 1 20.0 ND 107 78-124% 5.00 10.0 20.0 Carbon disulfide 24.0 ug/L 1 ND 120 64-133% ug/L Carbon tetrachloride 23.1 0.500 1.00 1 20.0 ND 115 72-136% Chlorobenzene 21.4 0.250 0.500 ug/L 1 20.0 ND 107 80-120% Chloroethane 25.5 5.00 5.00 1 20.0 ND 128 60-138% ug/L 22.7 0.500 1.00 20.0 ND Chloroform ug/L 1 113 79-124% Chloromethane 19.6 2.50 5.00 ug/L 1 20.0 ND 98 50-139% 20.9 20.0 ND 104 2-Chlorotoluene 0.500 1.00 ug/L 1 79-122% 4-Chlorotoluene 21.8 0.500 1.00 ug/L 1 20.0 ND 109 78-122% Dibromochloromethane 22.2 0.500 1.00 ug/L 1 20.0 ND 111 74-126% 1,2-Dibromo-3-chloropropane 20.4 2.50 5.00 ug/L 1 20.0 ND 102 62-128% 1,2-Dibromoethane (EDB) 22.9 0.250 0.500 20.0 ND 77-121% ug/L 1 114 20.0 79-123% Dibromomethane 22.2 0.500 1.00 ug/L 1 ND 111 20.0 21.2 0.250 0.500 ND 106 80-120% 1,2-Dichlorobenzene ug/L 1 ug/L 1,3-Dichlorobenzene 21.1 0.250 0.500 1 20.0 ND 106 80-120% 1.4-Dichlorobenzene 20.4 0.250 0.500 ug/L 1 20.0 ND 102 79-120% ___ Dichlorodifluoromethane 18.1 0.500 1.00 ug/L 1 20.0 ND 90 32-152% 1,1-Dichloroethane 23.6 0.200 20.0 ND 0.400 1 118 77-125% ug/L 20.0 73-128% 1,2-Dichloroethane (EDC) 23.8 0.200 0.400 ug/L 1 ND 119 0.200 0.400 20.0 1,1-Dichloroethene ND 120 71-131% 24.0 ug/L 1 22.1 0.200 0.400 20.0 ND 78-123% cis-1,2-Dichloroethene ug/L 1 110 trans-1,2-Dichloroethene 22.9 0.200 0.400 ug/L 1 20.0 ND 115 75-124% 1,2-Dichloropropane 21.9 0.250 0.500 ug/L 1 20.0 ND 110 78-122% 22.3 ug/L 20.0 ND 1,3-Dichloropropane 0.500 1.00 1 112 80-120% 0.500 20.0 ND 106 60-139% 2,2-Dichloropropane 21.2 1.00 ug/L 1 20.0 22.1 0.500 1.00 ND 110 79-125% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene 20.4 0.500 1.00 20.0 ND 102 75-124% ug/L 1 20.0 73-127% trans-1,3-Dichloropropene 22.4 0.500 1.00 ug/L 1 ND 112 Ethylbenzene 22.0 0.250 0.500 ug/L 1 20.0 ND 110 79-121% Hexachlorobutadiene 194 2.50 5.00 1 20.0 ND 97 ug/L 66-134% 2-Hexanone 43.5 5.00 10.0 1 40.0 ND 109 57-139% ug/L Isopropylbenzene 0.500 1.00 20.0 21.9 1 ND 110 72-131% ug/L ---4-Isopropyltoluene 21.9 0.500 1.00 ug/L 1 20.0 ND 110 77-127%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23H1056 - EPA 5030C Water Matrix Spike (23H1056-MS1) Prepared: 08/29/23 10:03 Analyzed: 08/29/23 19:19 QC Source Sample: Non-SDG (A3H1443-05) Methylene chloride 21.1 5.00 10.0 ug/L 1 20.0 ND 105 74-124% 5.00 10.0 40.0 4-Methyl-2-pentanone (MiBK) 46.9 ug/L 1 ND 117 67-130% Methyl tert-butyl ether (MTBE) 21.5 0.500 1.00 ug/L 1 20.0 ND 107 71-124% Naphthalene 19.7 2.00 4.00 ug/L 1 20.0 ND 99 61-128% 22.1 0.250 0.500 ug/L 1 20.0 ND 111 76-126% n-Propylbenzene 21.3 0.500 1.00 20.0 ND Styrene ug/L 1 106 78-123% 1,1,1,2-Tetrachloroethane 21.0 0.200 0.400ug/L 1 20.0 ND 105 78-124% 1,1,2,2-Tetrachloroethane 22.7 0.250 0.500 20.0 ND ug/L 1 114 71-121% Tetrachloroethene (PCE) 21.1 0.200 0.400 ug/L 1 20.0 ND 106 74-129% Toluene 21.6 0.500 1.00 ug/L 1 20.0 ND 108 80-121% 1,2,3-Trichlorobenzene 19.4 1.00 2.00 ug/L 1 20.0 ND 97 69-129% 18.6 1.00 2.00 20.0 ND 93 69-130% 1.2.4-Trichlorobenzene ug/L 1 20.0 1,1,1-Trichloroethane 23.2 0.200 0.400 ug/L 1 ND 116 74-131% 1,1,2-Trichloroethane 20.0 21.8 0.250 0.500 ND 109 ug/L 1 80-120% 0.200 0.400 Trichloroethene (TCE) 21.0 ug/L 1 20.0 ND 105 79-123% Trichlorofluoromethane 24.9 1.00 2.00 ug/L 1 20.0 ND 125 65-141% 1,2,3-Trichloropropane 22.8 0.500 1.00 ug/L 1 20.0 ND 114 73-122% 21.8 0.500 20.0 ND 109 1,2,4-Trimethylbenzene 1.00 76-124% ug/L 1 1,3,5-Trimethylbenzene 22.0 20.0 ND 75-124% 0.500 1.00 ug/L 1 110 0.100 0.200 20.0 Vinyl chloride 20.9 ND 105 58-137% ug/L 1 m,p-Xylene 44.9 0.500 1.00 40.0 ND 112 80-121% ug/L 1 21.4 0.250 o-Xylene 0.500 ug/L 1 20.0 ND 107 78-122% Surr: 1,4-Difluorobenzene (Surr) 98 % Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 102 % 80-120 % 4-Bromofluorobenzene (Surr) 93 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	260D SIM	1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0048 - EPA 5030C							Wa	ter				
Blank (23I0048-BLK1)			Prepared	1: 09/01/23	14:11 Anal	lyzed: 09/01	/23 16:46					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 103 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			120 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (2310048-BS1)			Prepared	1: 09/01/23	14:11 Anal	lyzed: 09/01	/23 15:53					
EPA 8260D SIM												
Vinyl chloride	0.208	0.0100	0.0200	ug/L	1	0.200		104	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 102 %	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
Duplicate (23I0048-DUP1)			Prepared	1: 09/01/23	14:11 Anal	lyzed: 09/01	/23 17:40					
OC Source Sample: SW-7-6.3ft-08	2423 (A3H1	1439-01)										
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
Matrix Spike (2310048-MS1)			Prepared	1: 09/01/23	14:11 Anal	lyzed: 09/01	/23 21:15					
QC Source Sample: SW-1-5.1ft-08	2423 (A3H1	1439-07)										
EPA 8260D SIM	,											
Vinyl chloride	0.267	0.0100	0.0200	ug/L	1	0.200	ND	133	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23H1056							
A3H1439-01	Water	EPA 8260D	08/24/23 09:32	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-02	Water	EPA 8260D	08/24/23 10:25	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-03	Water	EPA 8260D	08/24/23 11:10	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-04	Water	EPA 8260D	08/24/23 12:20	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-05	Water	EPA 8260D	08/24/23 12:55	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-06	Water	EPA 8260D	08/24/23 13:35	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00
A3H1439-07	Water	EPA 8260D	08/24/23 14:15	08/29/23 11:42	5mL/5mL	5mL/5mL	1.00

		Ving	yl Chloride by EPA 8	3260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 2310048							
A3H1439-01	Water	EPA 8260D SIM	08/24/23 09:32	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-02RE1	Water	EPA 8260D SIM	08/24/23 10:25	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-03	Water	EPA 8260D SIM	08/24/23 11:10	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-04	Water	EPA 8260D SIM	08/24/23 12:20	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-05	Water	EPA 8260D SIM	08/24/23 12:55	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-06	Water	EPA 8260D SIM	08/24/23 13:35	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00
A3H1439-07	Water	EPA 8260D SIM	08/24/23 14:15	09/01/23 14:12	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.

Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 33 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate) Project: Woodinville West Business Park

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 34 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 35 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Landau Associates (Northgate)</u> Project: <u>Woodinville West Business Park</u>

 155 NE 100th St #302
 Project Number: 1789002.010.013
 Report ID:

 Seattle, WA 98125
 Project Manager: Mike Staton
 A3H1439 - 09 07 23 1748

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

	Record	Tacom	☐ Tacoma (253) 926-2493 ☐ Olympia (360) 791-3178	☐ Portland (503) 542-1080	Page 1 of 1	Standard
Project Name JUN GLE IU	why Sough of Project No.	784007	010.013		Testing Parameters	
Project Location/Event 1865	Project Location/Event 18 Sandawhich Diver Bldg (REpublics) Parts. P.C.	70)	Nocdinality Wes	() () () () ()		Special Handling Requirements:
Sampler's Name Adam	Sampler's Name Adem Torocoid, Graham	John son		1 / 50/20		
Project Contact 시 노후	Staton	T STATE OF THE STA		1096		Shipment Method: For (1)
Send Results To MIVA S	Station databland avincion	מטושרים		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Stored on ice: (8 / No
Sample I.D.	Date Time	Matrix	No. of Containers	27700		Observations/Comments
SW-7-63'-082423 824.23	423 824.23 932	Ago	XX			The second secon
SU-6-4.2'-08242382473 1025	2301 20.428 2010	AG	× ×		— Allow	Allow water samples to settle, collect
Sp. 5- 48, -08.	- 4.8, -082423 \$ 24.231110	₽	× × 9		andno	t from clear portion 🗀
Sw-1 - 53 -081	- 53-0824278-24231220	40	×		TWVTP	■ NWTPH-Dx - Acid wash cleanup
5W-3-84.8 -002473 8.24.17 1255	(73 8.24.13 1255	S	х Х			- Silica gel cleanup
	6.5'-082463 8.24.231335	40	× × 9		Dissol	_ Dissolved metal samples were field filtered
280-115-1-MS	-085 423 8-2423 1415	0	× × 9			-
					Other	***************************************
						1 Projection and the second se
A VALLED IN THE REAL PROPERTY.	- The state of the				The discussion of the second	WIND MALE
MADE RECORD OF						77777
APRILITERINA						,
THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS O						7704
						TOTAL COLOR STATE OF THE STATE
The state of the s						
CATALOG CONTRACTOR CON	THE PROPERTY OF THE PROPERTY O		and the second s			
					- Milds	
Relinquished by.	Received by			Relinguished by	Received hy	, and the second
Z	1	de		Signature	Signature	
ADJam.	TONOCALL Printed Name ALESS.	BSa	Milbu	Printed Name	Printed Name	ne
	-	60	٧), ٥	Company	Company	TOTAL
Date O LM 100.5 7 Time	Time 1702 Date 8/05/0		Time 11/250	Date Time	Date	Time

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 37 of 38

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Landau Associates (Northgate)

155 NE 100th St #302 Seattle, WA 98125 Project: Woodinville West Business Park

Project Number: 1789002.010.013
Project Manager: Mike Staton

Report ID: A3H1439 - 09 07 23 1748

	THE EXTENDS COOLE	R RECEIPT FORM
Client: Landall	Associates	Element WO#: A3 HV39
Project/Project #: Sw	Face Water Sampli	ny 1789002.010.013
Delivery Info:		
Date/time received: 8/2	15/23@10:56 By:	APW
Delivered by: Apex_Cli	ent_ESSFedEx_UPS_Ra	adioMorganSDSEvergreenOther
		@ 10.50 By: AAW
Chain of Custody include	•	
Signed/dated by client?	YesX No	
	Cooler #1 Cooler #2 Cool	er #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	0.8	
Custody seals? (Y/N)	N	
Received on ice? (Y/N)	<u> </u>	
Temp. blanks? (Y/N)	N	
Ice type: (Gel/Real/Other	· Kool	
Condition (In/Out):	In	
Sample Inspection: Da		@16:08 By: PW
Sample Inspection: Da All samples intact? Yes	xte/time inspected: \$\instruction \text{3} \\ \text{No} \text{Comments:}	
Sample Inspection: Da All samples intact? Yes	xte/time inspected: \$\instruction \text{3} \\ \text{No} \text{Comments:}	•
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree	Ate/time inspected: Spsp23 No Comments: Per No Comments	: SW-2-6.5'-U8Z423 cont. times vary
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand	Ate/time inspected: \$\instyle 3 \\ \times \text{No Comments:} ? Yes No Comments cies form initiated? Yes N	: SW-2-6.5'-U8Z423 cont. times vary
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepant Containers/volumes receive Do VOA vials have visible	Ate/time inspected: \$\instyle 3 \\ \times \text{No Comments:} ? Yes No Comments cies form initiated? Yes N	: <u>SW-2-6.5'-U8ZUZZ cont. times</u> vary lo <u>×</u> es <u>X</u> No Comments:
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepant Containers/volumes recei Do VOA vials have visible Comments	Ate/time inspected: Spsy 3 No Comments: ? Yes No Comments cies form initiated? Yes No ved appropriate for analysis? Y le headspace? Yes No	: <u>SW-2-6.5'-U82427</u> cont. times very lo <u>×</u> es <u>X</u> No Comments:
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes recei Do VOA vials have visible Comments Water samples: pH check	Ate/time inspected: SNSY 3 No Comments: ? Yes No Comments cies form initiated? Yes No ved appropriate for analysis? Y the headspace? Yes No ed: Yes NoNAX pH appropriate.	: <u>SW-2-6.5'-U8ZUZZ cont. times</u> vary lo <u>×</u> es <u>X</u> No Comments:
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes recei Do VOA vials have visibl Comments Water samples: pH check	Ate/time inspected: SNSY 3 No Comments: ? Yes No Comments cies form initiated? Yes No ved appropriate for analysis? Y the headspace? Yes No ed: Yes NoNAX pH appropriate.	: <u>SW-2-6.5'-U82427</u> cont. times very lo <u>×</u> es <u>X</u> No Comments:
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepant Containers/volumes recei Do VOA vials have visibl Comments Water samples: pH check Comments:	Ate/time inspected: Spsp23 No Comments: ? Yes No Comments cies form initiated? Yes No ved appropriate for analysis? Y le headspace? Yes No ed: Yes No NAX pH ap	: <u>SW-2-6.5'-U82427</u> cont. times very lo <u>×</u> es <u>X</u> No Comments:
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes recei Do VOA vials have visibl Comments Water samples: pH check Comments: Additional information:	Ate/time inspected: \$\textit{NS} \textit{3} \textit{3} \textit{No} \textit{Comments:} \textit{2} \textit{No} \textit{4} \textit{Comments:} \textit{2} \textit{2} \textit{2} \textit{No} \textit{4} \textit{Comments:} \textit{2} \textit{No} \textit{4} \textit{2} \textit{1} \textit{2} \textit{3} \textit{4} \textit{5} \textit{6} \text	: SW-2-6.5'-U8ZUZZ COAT. tymes vary lo × es × No Comments: × NA propriate? YesNoNA ×
Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepant Containers/volumes recei Do VOA vials have visibl Comments Water samples: pH check Comments:	Ate/time inspected: Spsp23 No Comments: ? Yes No Comments cies form initiated? Yes No ved appropriate for analysis? Y le headspace? Yes No ed: Yes No NAX pH ap	: SW-2-6.5'-U8ZU23 (Unt. times vwy lo × es × No Comments: × NA — propriate? Yes No NA ×

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 38 of 38