

MONITORING WELL MW-23 DECOMMISSIONING AND REPLACEMENT REPORT

WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

September 1, 2023

Prepared for

Avista Corporation 1411 East Mission Avenue Spokane, Washington

Monitoring Well MW-23 Decommissioning and Replacement Report WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by:	Project Geologist	Dan Gray, LG
Document reviewed by:	Senior Geologist	Shane Kostka, LG

 Date:
 September 1, 2023

 Project No.:
 0236040.170.172

 File path:
 L:\236-Avista\040-Oil Spill\File Room - Projects\170 MW23 Replacement\R\completion Report\CSP MW-23 Completion Report final 090123.docx

 Project Coordinator:
 tac

MW-23 Replacement Completion Report WWP Central Steam Plant

This page intentionally left blank.

TABLE OF CONTENTS

			Page
1.0	Int	roduction	1-1
	1.1	Site Description and Background	1-1
	1.2	Monitoring Well MW-23 and Passive Air Introduction Wells Description	
		and Background	1-1
2.0	Mo	onitoring Well Replacement Activities	2-1
	2.1	New Monitoring Well Installation and Development	2-1
	2.2	Existing Monitoring Well Decommissioning	2-2
	2.3	Waste Management	2-2
3.0	Pa	ssive Air Introduction System Investigation Activities	3-1
4.0	Со	nclusions	4-1
5.0	Us	e of This Report	5-1
6.0	Re	ferences	6-1

FIGURES

Figure	Title
1	Site Location Map
2	Site Plan and Monitoring Well Locations
3	Monitoring Well Replacement Detail

TABLES

2 MW-23 Replacement Investigation Derived Waste Water Analytical Results

APPENDICES

Appendix	Title
А	Boring and Monitoring Well Logs
В	Analytical Laboratory Reports

LIST OF ABBREVIATIONS AND ACRONYMS

Avista Avista Corporation
bgs below ground surface
CAP cleanup action plan
Ecology Washington State Department of Ecology
EPA US Environmental Protection Agency
GPR ground penetrating radar
IDWinvestigation-derived waste
Landau Landau Associates, Inc.
MTCA Model Toxics Control Act
NAD83North American Datum of 1983
NAVD88 North American Vertical Datum of 1988
NTU nephelometric turbidity unit
NWTPH-Dx Northwest total petroleum hydrocarbon diesel-range extended
PVCpolyvinyl chloride
RCRAResource Conservation and Recovery Act
ROW right-of-way
Site Central Steam Plant site
UST underground storage tank
WAC Washington Administrative Code
WWP Washington Water Power Company

1.0 INTRODUCTION

This document was prepared on behalf of Avista Corporation (Avista), formerly the Washington Water Power Company (WWP), by Landau Associates, Inc. (Landau) and presents the details of decommissioning groundwater compliance monitoring well MW-23 and the construction and development of the replacement groundwater compliance monitoring well at the Central Steam Plant site (Site) located in Spokane, Washington (Figure 1). In conjunction with monitoring well decommissioning and construction, Landau investigated the integrity of the vent pipes associated with the Site remediation system passive air introduction wells. This document also presents the results of the passive air introduction vent pipe investigation.

1.1 Site Description and Background

The Central Steam Plant was constructed in 1915 and provided steam heat and electrical power to downtown Spokane until operations ceased in 1986. Seven concrete underground storage tanks (USTs) were used to store Bunker C fuel oil for steam plant operations. In June of 1982, WWP reported a release of Bunker C from one of the USTs to the Washington State Department of Ecology (Ecology).

Site cleanup activities are being performed in accordance with the cleanup action plan (CAP) developed by Ecology (Ecology 1996a), per the terms presented in the WWP/Ecology Amended Consent Decree (Ecology 1996b). As defined in the Amended Consent Decree (Ecology 1996b), the Site consists of the area affected by petroleum hydrocarbons in soil above Model Toxics Control Act (MTCA) Method A cleanup levels. Because hazardous substances are contained on the Site, the groundwater point of compliance was established as close as practicable to the edge of the contained hazardous substances, not to exceed the northern boundary of Steam Plant Square (Ecology 1996a). Since 1998, compliance monitoring activities, including groundwater performance monitoring, have been performed in accordance with the final compliance monitoring plan (AGI 1998). Groundwater performance monitoring is conducted semiannually to evaluate whether groundwater performance standards have been met and includes groundwater sampling and laboratory analysis, and measurement of groundwater elevations.

1.2 Monitoring Well MW-23 and Passive Air Introduction Wells Description and Background

Compliance monitoring well MW-23 was located in West Railroad Alley, near the intersection of West Railroad Alley and South Post Street (Figure 2) and was part of the network of compliance monitoring wells used for groundwater performance monitoring. During recent monitoring events, localized subsidence has been observed in the area of West Railroad Alley surrounding the monitoring well. During the most recent monitoring event conducted in March 2023, the well cap on MW-23 was observed to have failed, and surface water from the alleyway and the southern adjoining parking lot may have entered the well.

Monitoring well MW-23 was also originally designed to be one of the five Site passive air introduction wells (in conjunction with the bioventing system, the wells passively draw air from a vertical riser vent to optimize fresh air entry into the subsurface). In conjunction with preparation of the monitoring well decommissioning work plan, Landau observed that the vertical riser for passive air introduction (the vertical riser was formerly located on the north wall of the elevated railroad tracks, south of MW-23) and a portion of the horizontal piping connecting MW-23 to the vertical riser had been removed. It is likely that these features were removed during renovations of the Diamond parking lot south of the well. Per a conversation with Ecology on June 12, 2023, the replacement monitoring well was not planned to be constructed as a passive air introduction well.

Following the observation that the passive air introduction system at MW-23 had been removed, the integrity of the vent pipes for the remaining four passive air injection wells (MW-2, MW-6, MW-8, and MW-22) were investigated.

2.0 MONITORING WELL REPLACEMENT ACTIVITIES

This section describes the activities conducted during monitoring well replacement and includes monitoring well MW-23 decommissioning, replacement monitoring well MW-23R construction and development, and the management of residual wastes from the investigation.

2.1 New Monitoring Well Installation and Development

Installation of the replacement monitoring well, MW-23R (Ecology Well ID BNW281), was completed on June 30, 2023. The location of replacement monitoring well MW-23R was selected to be proximate to MW-23, as close as practicable to the edge of the contained hazardous substances, outside the area of localized subsidence, and clear of any identified subsurface utilities or structures.

Prior to the commencement of drilling activities, underground utilities were marked by a public utility locating service in the vicinity of the proposed replacement monitoring well location. In addition, Landau visited the Site with a private utility locator to mark the proposed boring/monitoring well location and private utilities in the surrounding area. Ground penetrating radar (GPR) was used to attempt to locate any subsurface structures, impediments, or additional nonconductive utilities near the proposed drilling area.

The initial location selected for the replacement monitoring well was approximately 15 feet south of monitoring well MW-23, near the northern edge of the Diamond parking lot located south of West Railroad Alley. Utilizing sonic drilling techniques, a boring was advanced to 35-feet below ground surface (bgs). The Latah Formation (a series of late Miocene lacustrine sedimentary deposits) was observed from 33.5 feet to 35 feet bgs. During previous investigations at the Site, the Latah Formation was generally observed to be overlying basalt bedrock. Within a layer of coarse sand identified within the Latah Formation from approximately 34 to 34.1 feet bgs, field observations indicated the potential presence of free product, and drilling for the initial location of the replacement monitoring well was terminated owing to the potential presence of free product. Bedrock was not encountered in this boring. The boring location, boring MW-23F, was abandoned, backfilled with bentonite chips, and paved to match the existing grade (Figure 3).

A second replacement monitoring well location, monitoring well MW-23R, was selected within the City of Spokane right-of-way (ROW) southeast of monitoring well MW-23, based on locations of underground utilities, areas of subsidence, and drill-rig access constraints. A boring was advanced to competent basalt bedrock at 35 feet bgs utilizing sonic drilling technology. The Latah Formation was observed from approximately 33.5 to 34 feet bgs. Basalt was observed from approximately 34 to 35 feet bgs (the bottom of the boring). No evidence of contamination was observed in the boring. A 2-inch polyvinyl chloride (PVC) monitoring well was constructed in accordance with Washington Administrative Code (WAC) 173-160-420 using a screened interval of 24 to 34 feet bgs. The screened interval was chosen to match as closely as possible the construction of the screened interval for monitoring well MW-23, which was keyed slightly into the Latah formation. The monitoring well was backfilled with 12/20 silica sand from 35 feet to 22 feet bgs, from approximately 1 foot below the screen to 2 feet above the screen. The remainder of the boring was backfilled with bentonite from a depth of 22 feet bgs

to 2 feet bgs. A standard-density, traffic-rated well monument was installed and set in place with concrete from 2 feet bgs to the existing grade.

Following installation of monitoring well MW-23R, ground surface elevation, horizontal coordinates, and the top of casing elevation were surveyed by a professional surveyor. Ground surface elevation and horizontal coordinates for abandoned boring MW-23F were also surveyed. The survey was completed using a vertical datum (North American Vertical Datum of 1988 [NAVD88]) and a horizontal datum (North American Vertical Datum of 1988 [NAVD88]) and a horizontal datum (North American Datum of 1983]). This is consistent with the datums used for the most recent survey completed in 2022. Details of the boring and of the constructed monitoring well and survey information are presented in the boring and monitoring well logs in Appendix A.

On July 20, 2023, monitoring well MW-23R was developed by Landau utilizing surging and pumping methods using a Waterra D25 foot valve and attached surge block. Approximately 30 well volumes were purged from the well, and turbidity readings were observed to be as low as 74 nephelometric turbidity units (NTUs) after purging. Lower turbidity was not achievable during well development and, based on the significant volume of water removed from the well, purging was determined to be complete.

2.2 Existing Monitoring Well Decommissioning

On June 30, 2023, monitoring well MW-23 (Ecology Well ID ABJ939) was decommissioned by the drilling contractor in accordance with WAC 173-160-460. Prior to decommissioning, all sampling materials and well casing obstructions (e.g., bailers, string) were removed from the well casing. Following removal of well casing obstructions, the drilling contractor filled the entirety of the well casing with bentonite chips, hydrated the chips with approximately 5 gallons of potable water, and capped the casing and filled the existing monument with concrete to match ground surface conditions.

2.3 Waste Management

Investigation-derived waste (IDW) from boring MW-23F and monitoring well MW-23R were stored in Washington State Department of Transportation-approved steel, 55-gallon drums. Cuttings from the boring and the monitoring well were kept in separate drums, and composite soil samples were collected from each drum for waste characterization purposes.

The drums were temporarily stored in a secure subsurface parking lot near the Site remediation system control room. The drums were picked up by Avista and held at their hazardous waste management building pending receipt of characterization analytical results.

Purge water generated from well development was pumped to 5-gallon buckets. A composite sample was collected from the purge water buckets for waste characterization and disposal purposes and the buckets were labeled and transported by Landau to Avista's hazardous waste management building for storage pending characterization analytical results.

Soil and purge water waste characterization samples were analyzed for diesel- and motor oil-range petroleum hydrocarbons using Ecology's Northwest total petroleum hydrocarbon extended-range diesel analytical method (NWTPH-Dx) and for Resource Conservation and Recovery Act (RCRA) 8 metals

(arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) plus copper, nickel, and zinc using US Environmental Protection Agency (EPA) 6000/7000 series methods. Laboratory analytical services were provided by Eurofins Test America in Spokane Valley, Washington, an Ecology-accredited laboratory. Analytical results for the waste characterization samples are provided in Tables 1 and 2. Copies of the laboratory analytical reports are included in Appendix B.

3.0 PASSIVE AIR INTRODUCTION SYSTEM INVESTIGATION ACTIVITIES

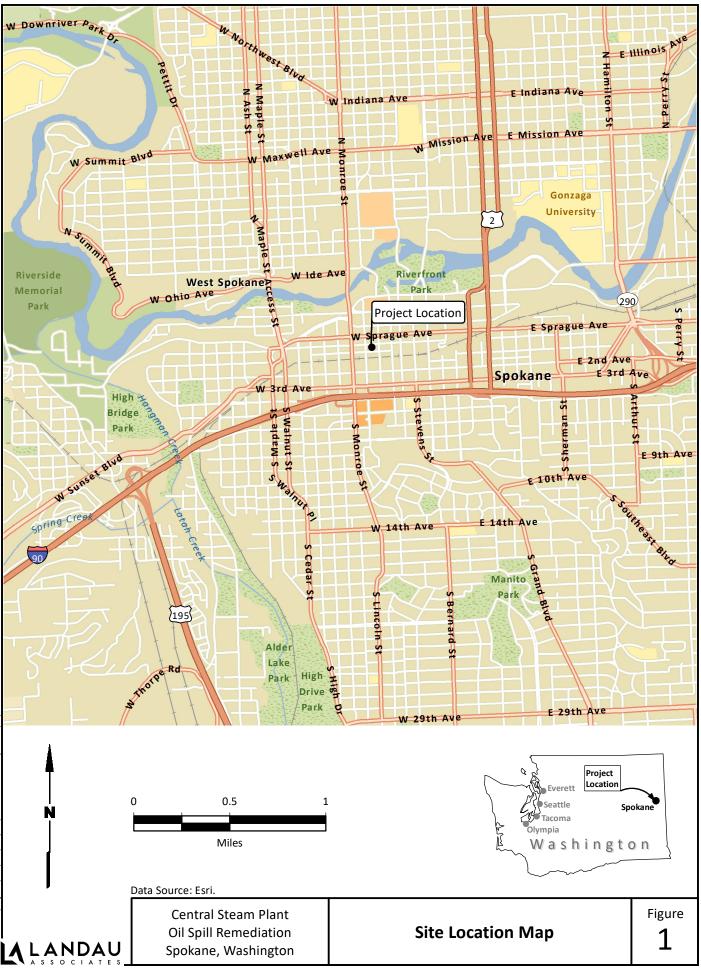
This section describes the activities associated with investigating the integrity of the vent pipes of the remaining four passive air injection wells (MW-2, MW-6, MW-8, and MW-22).

On May 16, 2023, Landau performed an initial investigation of the integrity of the four remaining passive air introduction wells. Landau determined that the top of the vertical riser pipe (a downturned 180-degree elbow to prevent stormwater and debris from entering the air introduction system) for the passive air introduction system for monitoring well MW-8 (located in the surface parking lot west of the Davenport parking garage) was cut. The remainder of the passive air introduction wells (MW-2, MW-6, and MW-22) were observed to be in good condition.

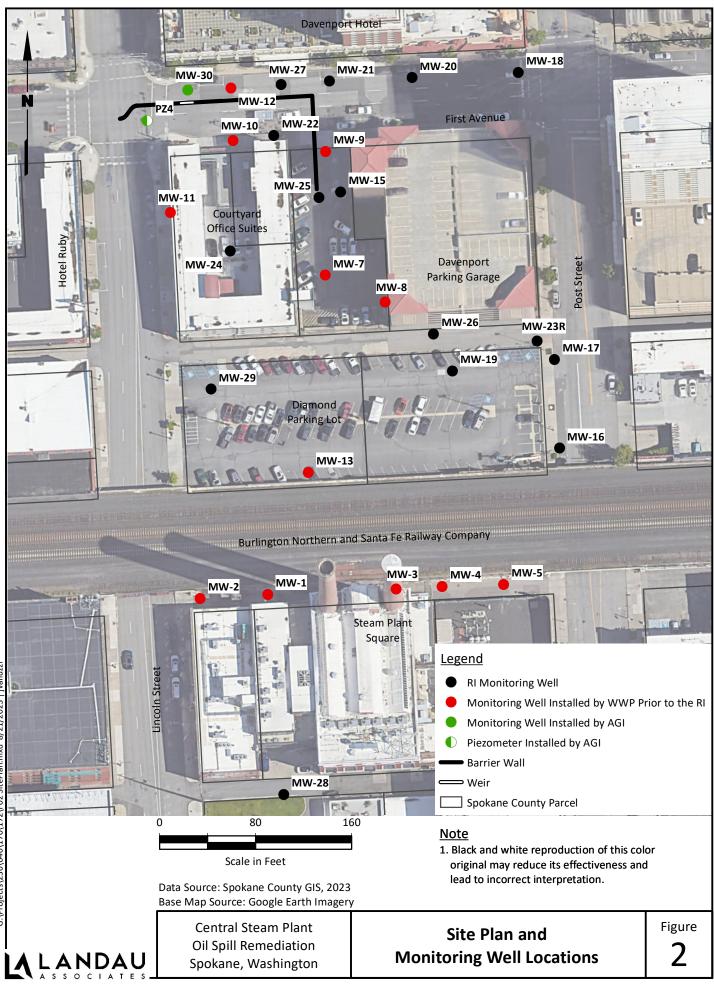
On July 20, 2023, the vent piping associated with passive air introduction well MW-8 was further investigated to determine if the passive air introduction system for the well was intact and not obstructed. A 1^{*}/₈-inch diameter sewer camera was passed through the remaining vertical riser portion of the vent piping. Large amounts of trash, debris, and rust were observed within the vertical pipe, and the camera was not able to view or enter the horizontal portion of the vent pipe. It was also determined that the horizontal portion of the vent pipe leading from MW-8 had been removed. It is likely the horizontal piping was removed during renovations of the surface parking lot. The camera was also passed through the vertical portion of the well to the groundwater table. The well appeared to be in good condition, and no former connections related to the passive air introduction system were identified.

Two 90-degree, galvanized steel elbows and a galvanized steel coupler were installed on top of the remaining portion of the vertical vent pipe to prevent future water and debris from entering the pipe.

4.0 CONCLUSIONS


Replacement monitoring well MW-23R was installed as close as practicable to the edge of the contained hazardous substances at the Site. The replacement well will be sampled during the second semiannual 2023 groundwater performance monitoring event. The vent piping associated with passive air introduction well MW-8 is no longer intact, and the well no longer acts as a passive air introduction well; however, the well appears to be in good condition and can still be used for semiannual groundwater elevation monitoring.

5.0 USE OF THIS REPORT


This report has been prepared for the exclusive use of Avista Corporation for specific application to decommissioning groundwater compliance monitoring well MW-23 and the construction and development of the replacement groundwater compliance monitoring well at the Central Steam Plant site in Spokane, Washington. The reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau, shall be at the user's sole risk. Landau warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. Landau makes no other warranty, either express or implied.

6.0 **REFERENCES**

- AGI. 1998. Final Cleanup Action Report, Central Steam Plant Oil Spill Remediation, Spokane, Washington. AGI Technologies. June 5.
- Ecology. 1996a. Washington Department of Ecology Eastern Regional Office Toxics Cleanup Program: Final Cleanup Action Plan, WWP Central Steam Plant Site. November 22.
- Ecology. 1996b. Amended Consent Decree No. 94-2-05788-4, State of Washington, Department of Ecology, Plaintiff, v. The Washington Water Power Company, Defendant. Washington State Department of Ecology.

G:\Projects\236\040\160\162\F01 SiteLoca

G:\Projects\236\040\170\172\F02 SitePlan.mxd 8/21/2023 | jvalluzzi

Table 1MW-23 Replacement Investigation Derived Waste Soil Analytical ResultsWWP Central Steam Plant SiteSpokane, Washington

	Sample Location, Laboratory SDG, Sample Date		
MW-23F-IDW MW-23R		MW-23R-IDW	
	590-20947-1	590-20947-1	
Analyte	6/30/2023	6/30/2023	
Total Petroleum Hydrocarbons (mg/kg; NWTPH-Dx	(/-Gx)	
Diesel Range Organics	10 U	15	
Residual Range Organics	26 U	85	
Total Metals (mg/kg; SW-846 60	10D/7471B)		
Arsenic	11	10	
Barium	40	45	
Cadmium	3.9 U	4.1 U	
Chromium	8.0	8.7	
Copper	16 U	16 U	
Lead	41	97	
Mercury	41 U	41 U	
Nickel	6.7	7.0	
Selenium	19 U	20 U	
Silver	4.8 U	5.1 U	
Zinc	61	210	

Notes:

Bold text indicates detected analyte.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Acronyms/Abbreviations:

IDW = investigation-derived waste

mg/kg = milligrams per kilogram

NWTPH-Dx/-Gx = Northwest total petroleum hydrocarbon diesel-

range/gasoline-range extended

SDG = sample delivery group

Table 2 MW-23 Replacement Investigation Derived Waste Water Analytical Results WWP Central Steam Plant Site Spokane, Washington

	Sample Location, Laboratory SDG, Sample Date	
	MW-23R-IDW	
	590-21120-1	
Analyte	7/20/2023	
Total Petroleum Hydrocarbons (µg/L; NWTPH-Dx/-Gx)		
Diesel Range Organics	230 U	
Residual Range Organics	380 U	
Total Metals (µg/kg; SW-846 602	10D/7471B)	
Arsenic	17	
Barium	89	
Cadmium	2.0 U	
Chromium	11	
Copper	16	
Lead	10	
Mercury	0.20 U	
Nickel	15 U	
Selenium	40 U	
Silver	2.0 U	
Zinc	35 U	

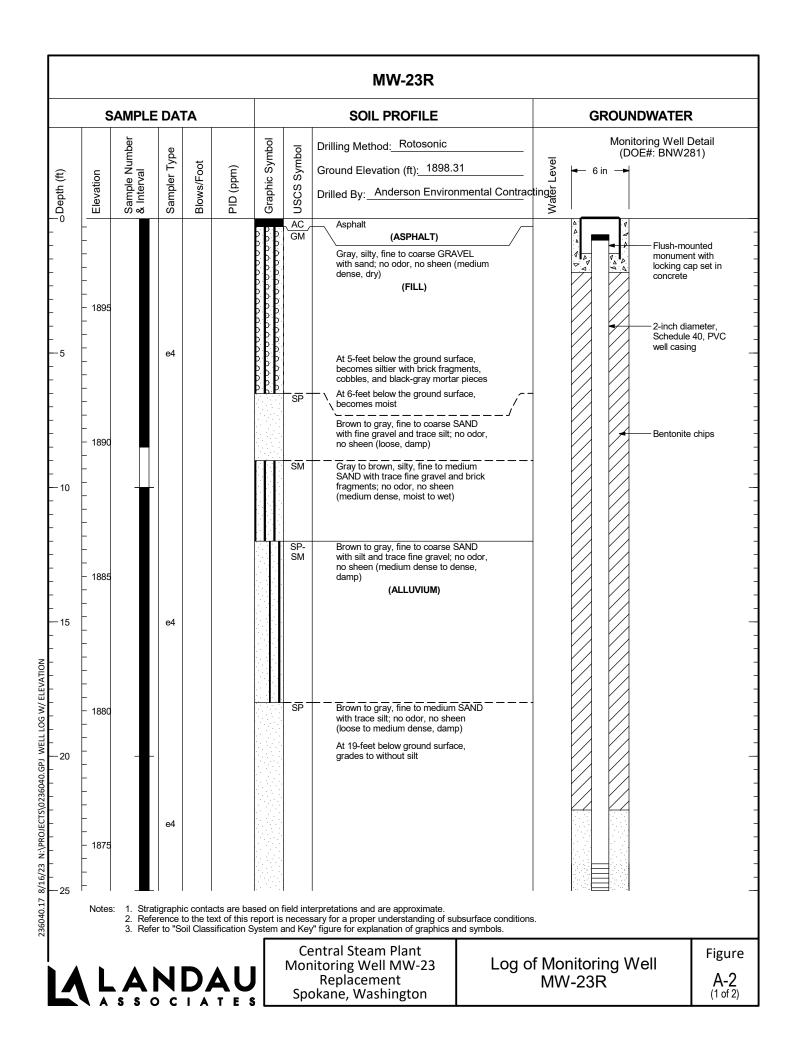
Notes:

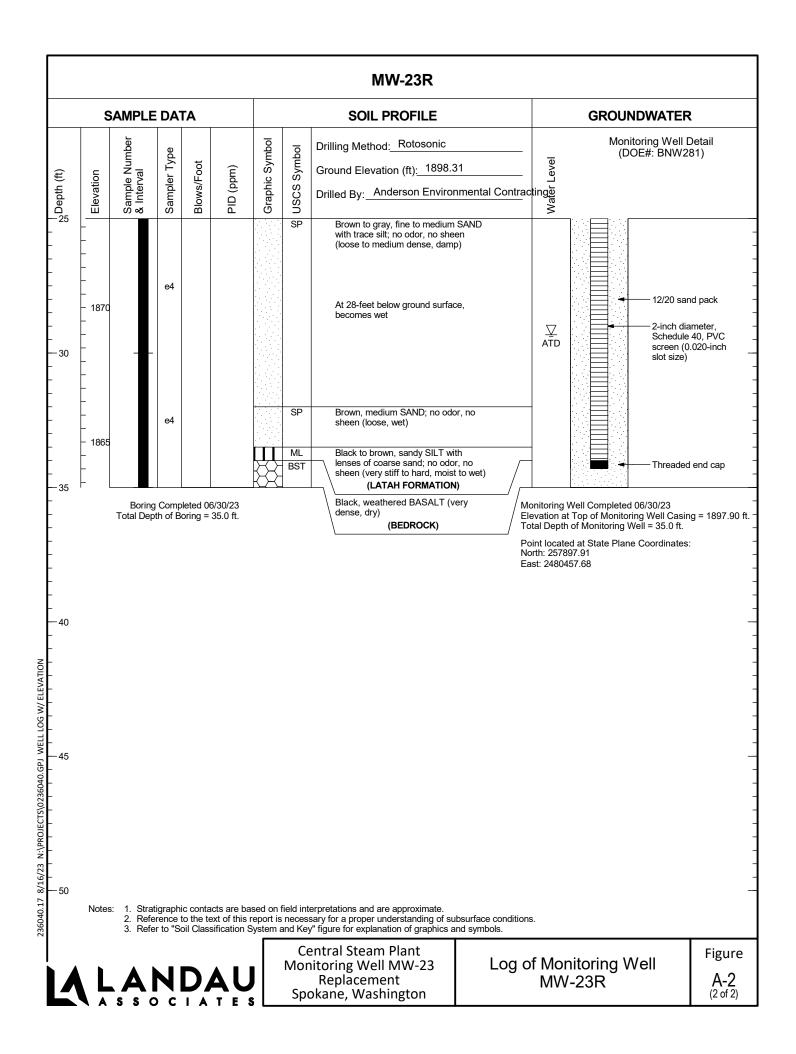
Bold text indicates detected analyte.

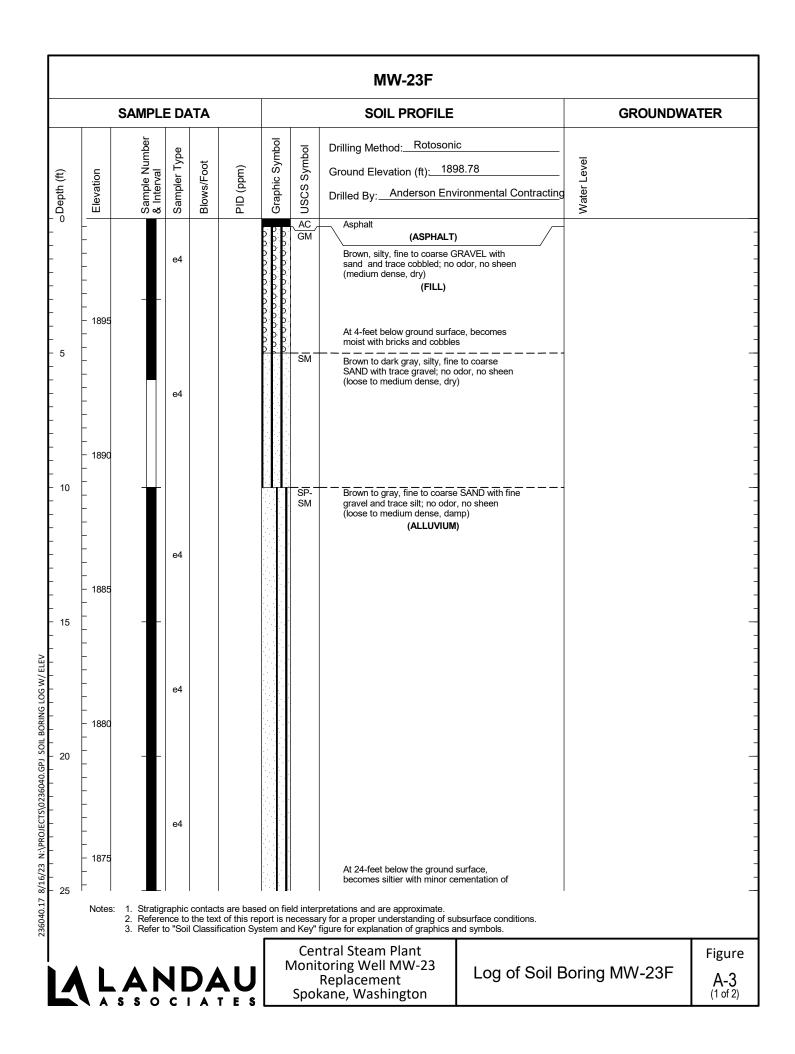
U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

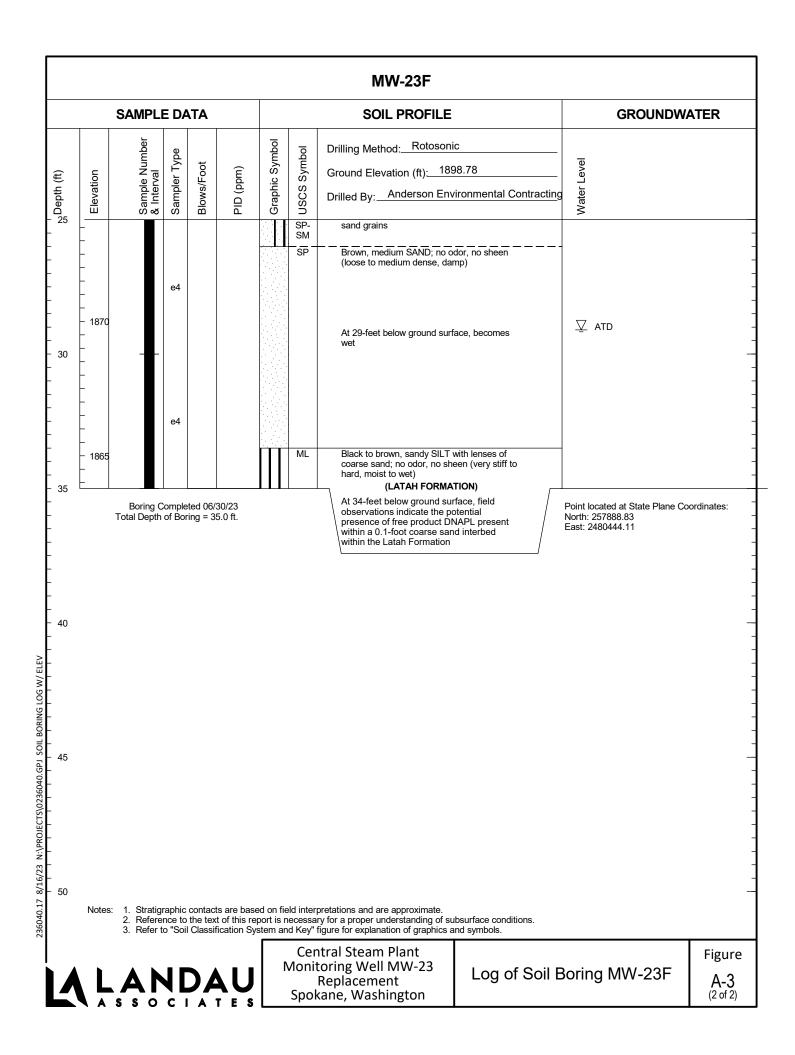
Acronyms/Abbreviations:

- IDW = investigation-derived waste
- µg/kg = micrograms per kilogram
- µg/L = micrograms per liter


NWTPH-Dx/-Gx = Northwest total petroleum hydrocarbon


- diesel-range/gasoline-range extended
- SDG = sample delivery group


APPENDIX A


Boring and Monitoring Well Logs

	MAJOR	Soll	GRAPHIC	ation Sy USCS LETTER	/stem TYPICAL		
	DIVISIONS		SYMBOL	SYMBOL ⁽¹⁾	DESCRIPTIONS (2)(3)		
olL is ze)	GRAVEL AND GRAVELLY SOIL	CLEAN GRAVEL (Little or no fines)			Well-graded gravel; gravel/sand mixture(s); little or no fines		
SOIL erial is e size)		· · ·		GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines		
COARSE-GRAINED SOIL (More than 50% of material is larger than No. 200 sieve size)	(More than 50% of coarse fraction retained on No. 4 sieve)	GRAVEL WITH FINES (Appreciable amount of		GM GC	Silty gravel; gravel/sand/silt mixture(s) Clayey gravel; gravel/sand/clay mixture(s)		
6. 20% of 10% of	SAND AND	fines) CLEAN SAND	PKIKI	SW			
SE-G han 5 nan No	SANDY SOIL	(Little or no fines)		SVV	Well-graded sand; gravelly sand; little or no fines Poorly graded sand; gravelly sand; little or no fines		
OAR Vore t rger t	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of		SM	Silty sand; sand/silt mixture(s)		
0 ~ <u>@</u>	through No. 4 sieve)	fines)		SC	Clayey sand; sand/clay mixture(s)		
SOIL 5 of r than ize)	SILT AI	ND CLAY	ШП	ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with low plasticity		
D S 0% o ller ti size	(Liquid limit	less than 50)		CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay		
NEI an 50 smal sieve		less than 50)		OL	Organic silt; organic, silty clay of low plasticity		
FINE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)	SILT AI	ND CLAY		MH	Inorganic silt; micaceous or diatomaceous fine sand; elastic silt		
	(Liquid limit c	reater than 50)		СН	Inorganic clay of high plasticity; fat clay		
				OH	Organic clay of medium to high plasticity; organic silt		
	HIGHLY OF	RGANIC SOIL		PT	Peat; humus; swamp soil with high organic content		
	OTHER MAT	ERIALS	GRAPHIC SYMBOL	SYMBOL	TYPICAL DESCRIPTIONS		
	PAVEME	NT	•	AC or PC	Asphalt concrete pavement or Portland cement pavement		
	ROCK	(RK	Rock (See Rock Classification)		
WOOD				WD	Wood, lumber, wood chips		
	DEBRI	S	6/6/6/	DB	Construction debris, garbage		
 Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows: Primary Constituent: > 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc. Secondary Constituents: > 30% and ≤ 50% - "yery gravelly," "very sandy," "very silty," etc. > 15% and ≤ 30% - "gravelly," "with sand," "with silt," etc. ≤ 5% - "With trace gravel," "with trace sand," "with trace silt," etc., or not noted. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating 							
con		pratory tests, as appropriate.					
	0	nd Sampling Ke	5		Field and Lab Test Data		
SAMPLER TYPE & METHOD SAMPLE NUMBER & INTERVAL Graphic Code Description Image: Code Code Image: Code Sample Identification Number							
AL.	ANDA	Monitorir Rep	Steam Pl ng Well M lacement e, Washing	W-23	Soil Classification System and Key		

APPENDIX B

Analytical Laboratory Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Shane Kostka Landau & Associates, Inc. 10 North Post Street, Suite 218 Spokane, Washington 99201 Generated 7/19/2023 12:17:27 PM

JOB DESCRIPTION

CSP MW-23 Replacement/0236040 010

JOB NUMBER

590-20947-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

See page two for job notes and contact information.

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Cardue timing Generated

7/19/2023 12:17:27 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions	5
Sample Summary	6
Chain of Custody	7
Receipt Checklists	8
Client Sample Results	9
QC Sample Results	11
Chronicle	13
Certification Summary	14
Method Summary	15

Job ID: 590-20947-1

Laboratory: Eurofins Spokane

Narrative

Receipt

The samples were received on 7/5/2023 1:35 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.2° C.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons in the diesel range appear to be due to oil overlap in the following samples: MW-23R-IDW-230630 (590-20947-2) and (590-20947-A-2-B DU).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-42442 recovered below the lower control limit for Zinc. The samples associated with this ICV were 10x the spike amount for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Qualifiers

M	le	ta	ls

MQL

NC

ND NEG

POS

PQL

PRES

QC

RER

RL RPD

TEF TEQ

TNTC

Metals Qualifier	Qualifier Description	4
^1-	Initial Calibration Verification (ICV) is outside acceptance limits, low biased.	4
<u>Oleanam</u>		5
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	8
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-20947-1	MW-23F-IDW-230630	Solid	06/30/23 18:30	07/05/23 13:35
590-20947-2	MW-23R-IDW-230630	Solid	06/30/23 18:30	07/05/23 13:35

	Chain-of-Cu Record	istody		le/Edmonds (4 na (253) 926-2		8-0907		Portlan	d (503) 542-:				7(5)	23 of	Turnaround Time Standard Accelerated
Project Name <u>C</u> Project Location/Event <u>C</u> Sampler's Name <u>D</u> Project Contact <u>Share</u>						A O Here	x x 3	15	- Color		Test	ting F	Parai	mete	rs	Special Handling Requirements:
Send Results To	Date	Time		No of Containers	/	KCR C	00								Obs	Stored on ice: 💽 / No ervations/Comments
MW-23F-IDW-22 MW 25R-IOW 2	30630 6/2/4	1830	5		X X	× ×									aliquot fro	er samples to settle, collect m clear portion 🔲 « Acid wash cleanup 🔲
																Silica gel cleanup
	590-20947 Chain of	Custody													Other	5.9,6.2 1,2006
									-						 	
														-		
	······································		,,,,,,,													
Relinquished by Signature Printed Name	Gm	Received by Signature Printed Name Company	1	in Mo	m_{-}		Signa	iquish ture							_	
Company Date	ime 13'35	Company E Date 7/5	ET 31 123	2ن Time <u>13:</u> 1	35			•				ne				Time

Client: Landau & Associates, Inc.

Login Number: 20947 List Number: 1

Creator: Morris, Mackenzie 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Spokane

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

85

Client Sample ID: MW-23F-IDW-2	30630						Lab S	Sample ID: 590-	
Date Collected: 06/30/23 18:30									x: Solid
Date Received: 07/05/23 13:35								Percent Soli	ds: 96.3
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		10		mg/Kg	×	07/13/23 10:37	07/13/23 18:11	1
(C10-C25)									
Residual Range Organics (RRO)	ND		26		mg/Kg	¢	07/13/23 10:37	07/13/23 18:11	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				07/13/23 10:37	07/13/23 18:11	1
n-Triacontane-d62	96		50 - 150				07/13/23 10:37	07/13/23 18:11	1
Client Sample ID: MW-23R-IDW-2	30630						Lab S	Sample ID: 590-	20947-2
Date Collected: 06/30/23 18:30								Matri	x: Solid
Date Received: 07/05/23 13:35								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	15		10		mg/Kg	<u></u>	07/13/23 10:37	07/13/23 18:33	1

	(C25-C36)						
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	o-Terphenyl	91		50 - 150	07/13/23 10:37	07/13/23 18:33	1
l	n-Triacontane-d62	98		50 - 150	07/13/23 10:37	07/13/23 18:33	1

26

mg/Kg

07/13/23 10:37 07/13/23 18:33
 07/13/24 18:33
 07/13/24 18:33
 07/13/24 18:34
 07/13/24 18:34
 07/14/24 18:34
 07/14/24 18:34
 07/14/24 18:34
 07/14/24 18:34
 07/14/24 18:34
 07/14/24 18:34
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14/24
 07/14
 07/14/24
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14
 07/14

Method: SW846 6010D - Metals (ICP)

(C10-C25)

Residual Range Organics (RRO)

Client Sample ID: MW-23F-IDW-230630 Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35							Lab S	ample ID: 590- Matri Percent Soli	x: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	11		4.8		mg/Kg	\$	07/17/23 10:10	07/18/23 14:23	5
Barium	40		4.8		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Cadmium	ND		3.9		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Chromium	8.0		4.8		mg/Kg	₽	07/17/23 10:10	07/18/23 14:23	5
Copper	ND		16		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Lead	41		12		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Nickel	6.7		4.8		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Selenium	ND		19		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Silver	ND		4.8		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5
Zinc	61	^1-	19		mg/Kg	¢	07/17/23 10:10	07/18/23 14:23	5

Client Sample ID: MW-23R-IDW-230630 Date Collected: 06/30/23 18:30

Date Collected: 00/30/23 18:30

Date Received: 07/05/23 13:35								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	10		5.1		mg/Kg	\$	07/17/23 10:10	07/18/23 14:27	5
Barium	45		5.1		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5
Cadmium	ND		4.1		mg/Kg	¢	07/17/23 10:10	07/18/23 14:27	5
Chromium	8.7		5.1		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5
Copper	ND		16		mg/Kg	¢	07/17/23 10:10	07/18/23 14:27	5
Lead	97		12		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5
Nickel	7.0		5.1		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5
Selenium	ND		20		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5
Silver	ND		5.1		mg/Kg	₽	07/17/23 10:10	07/18/23 14:27	5

Eurofins Spokane

Lab Sample ID: 590-20947-2

Matrix: Solid

1

Job ID: 590-20947-1

Client Sample Results

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

Job ID: 590-20947-1

Client Sample ID: MW-23R-IDW-230	630						Lah S	Sample ID: 590-	20947-2
Date Collected: 06/30/23 18:30							Lab	· · · ·	x: Solid
Date Received: 07/05/23 13:35								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	210	^1-	20		mg/Kg	— —	07/17/23 10:10	07/18/23 14:27	5
Client Sample ID: MW-23F-IDW-230	630						Lab S	Sample ID: 590-	20947- 1
-									
•	630						Lab S		
Date Collected: 06/30/23 18:30	630						Lab S	Matri	ix: Solid
Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35		Qualifier	BL	MDL	Unit	D		Matri Percent Soli	ix: Solid ds: 96.3
Date Collected: 06/30/23 18:30		Qualifier	RL 41	MDL	Unit ug/Kg	<u>D</u>	Lab 5	Matri	ix: Solid
Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35 Analyte	Result ND	Qualifier		MDL			Prepared 07/17/23 10:25	Matri Percent Soli Analyzed	ix: Solid ds: 96.3 Dil Fac
Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35 Analyte Hg	Result ND	Qualifier		MDL			Prepared 07/17/23 10:25	Matri Percent Soli Analyzed 07/17/23 14:29 Sample ID: 590-	ix: Solid ds: 96.3 Dil Fac
Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35 Analyte Hg Client Sample ID: MW-23R-IDW-230	Result ND	Qualifier		MDL			Prepared 07/17/23 10:25	Matri Percent Soli Analyzed 07/17/23 14:29 Sample ID: 590-	ix: Solid ds: 96.3
Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35 Analyte Hg Client Sample ID: MW-23R-IDW-230 Date Collected: 06/30/23 18:30	Result ND	Qualifier		MDL	ug/Kg		Prepared 07/17/23 10:25	Matri Percent Soli Analyzed 07/17/23 14:29 Sample ID: 590- Matri	ix: Solid ds: 96.3

Eurofins Spokane

Lab Sample ID: MB 590-42375/1-A

Matrix: Solid

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Prep Type: Total/NA

Client Sample ID: Method Blank

Matrix: Solid										Prep Type: I	otal/NA
Analysis Batch: 42384										Prep Batch	n: 42375
	MB	MB									
Analyte	Result	Qualifier	RL		MDL U	nit	D	Pr	repared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		10		m	ng/Kg	_	07/13	3/23 10:37	07/13/23 17:06	1
(C10-C25)											
Residual Range Organics (RRO)	ND		25		r	ng/Kg		07/13	3/23 10:37	07/13/23 17:06	1
(C25-C36)											
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits					Pi	repared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150					07/1	3/23 10:37	07/13/23 17:06	1
n-Triacontane-d62	83	1	50 - 150					07/1	3/23 10:37	07/13/23 17:06	1
—											
Lab Sample ID: LCS 590-4237	75/2-A						C	Client	Sample	ID: Lab Control	Sample
Matrix: Solid										Prep Type: 1	Total/NA
Analysis Batch: 42384										Prep Batch	n: 42375
-			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifi	er Unit		D	%Rec	Limits	
Diesel Range Organics (DRO)			66.7	61.1		mg/Kg			92	50 - 150	
(C10-C25)											
Residual Range Organics (RRO)			66.7	61.6		mg/Kg			92	50 - 150	
(C25-C36)											
	LCS LCS	S									
Surrogate	%Recovery Qua		Limits								
o-Terphenyl	88		50 - 150								
n-Triacontane-d62	89		50 - 150								
- -											
Lab Sample ID: 590-20947-2 I	DU						C	lient S	Sample I	D: MW-23R-IDW	-230630
Matrix: Solid										Prep Type: 1	Total/NA
Analysis Batch: 42384										Prep Batch	
-	Sample San	nple		DU	DU						RPD
Analyte	Result Qua	alifier		Result	Qualifi	er Unit		D		RPD) Limit
Diesel Range Organics (DRO)	15			13.3		mg/Kg		- <u>-</u> -		10	40
5 - 5 (-)						0 0					

73.8

mg/Kg

Ö

(C25-C36)			
	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	89		50 _ 150
n-Triacontane-d62	97		50 - 150

85

Method: 6010D - Metals (ICP)

Residual Range Organics (RRO)

(C10-C25)

Lab Sample ID: MB 590-42411/2-A Matrix: Solid Analysis Batch: 42442	мв	мв					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3		mg/Kg		07/17/23 10:10	07/18/23 21:22	1
Barium	ND		1.3		mg/Kg		07/17/23 10:10	07/18/23 21:22	1
Cadmium	ND		1.0		mg/Kg		07/17/23 10:10	07/18/23 21:22	1
Chromium	ND		1.3		mg/Kg		07/17/23 10:10	07/18/23 21:22	1
Copper	ND		4.0		mg/Kg		07/17/23 10:10	07/18/23 21:22	1

Eurofins Spokane

15

40

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 590-42411/2-A Matrix: Solid Analysis Batch: 42442											Client Sa	imple ID: Metho Prep Type: 1 Prep Batcl	Fotal/NA
Analyte	MB	MB Qualifier		RL		MDL	Unit		D	в	repared	Analyzed	Dil Fac
Lead	ND	Quaimer		3.0			mg/Kg		_		7/23 10:10	07/18/23 21:22	1
Nickel	ND			1.3			mg/K				7/23 10:10	07/18/23 21:22	
Selenium	ND			5.0			mg/Kg	•			7/23 10:10	07/18/23 21:22	1
Silver	ND			1.3			mg/K	-			7/23 10:10	07/18/23 21:22	1
Zinc		^1-		5.0			mg/K				7/23 10:10	07/18/23 21:22	
Matrix: Solid Analysis Batch: 42442			Spike		LCS	LCS						Prep Type: 1 Prep Batcl %Rec	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Arsenic			100		91.4			mg/Kg			91	80 - 120	
Barium			100		91.6			mg/Kg			92	80 - 120	
Cadmium			50.0		47.3			mg/Kg			95	80 - 120	
Chromium			50.0		47.3			mg/Kg			95	80 - 120	
Copper			50.0		45.2			mg/Kg			90	80 - 120	
Lead			50.0		50.3			mg/Kg			101	80 - 120	
Nickel			50.0		49.4			mg/Kg			99	80 - 120	
Selenium			100		91.8			mg/Kg			92	80 - 120	
Silver			5.00		5.50			mg/Kg			110	80 - 120	

Method: 7471B - Mercury (CVAA)

Zinc

Lab Sample ID: MB 590-42412/9-A Matrix: Solid Analysis Batch: 42423	МВ	МВ								Client Sa	mple ID: Metho Prep Type: Prep Batc	Total/NA
Analyte	Result	Qualifier		RL		MDL Un	it	D	Р	repared	Analyzed	Dil Fac
Hg	ND			50		ug	′Kg		07/1	7/23 10:25	07/17/23 13:43	1
Lab Sample ID: LCS 590-42412/8-A Matrix: Solid Analysis Batch: 42423								С	lient	Sample I	D: Lab Contro Prep Type: Prep Batc	Total/NA
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifie	· Unit		D	%Rec	Limits	
Hg			200		182		ug/Kg			91	80 - 120	

50.0

48.5 ^1-

mg/Kg

97

80 - 120

Dilution

Factor

Dilution

Factor

1

5

1

1

Run

Run

Batch

Number

Batch

42375

42384

Number Analyst

42411 AMB

42442 AMB

42412 AMB

42423 AMB

MRV

NMI

42343 MRV

Analyst

Lab

Lab

EET SPK

EET SPK

EET SPK

EET SPK

EET SPK

EET SPK

Client Sample ID: MW-23F-IDW-230630

Batch

Туре

Analysis

Client Sample ID: MW-23F-IDW-230630

Batch

Туре

Prep

Prep

Analysis

Analysis

Date Collected: 06/30/23 18:30

Date Received: 07/05/23 13:35

Date Collected: 06/30/23 18:30

Date Received: 07/05/23 13:35

Date Collected: 06/30/23 18:30

Date Received: 07/05/23 13:35

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix: Solid

Matrix: Solid

Percent Solids: 96.3

Lab Sample ID: 590-20947-1

Lab Sample ID: 590-20947-1

Prepared

or Analyzed 07/10/23 15:59

Prepared

or Analyzed

07/13/23 10:37

07/13/23 18:11

07/17/23 10:10

07/18/23 14:23

07/17/23 10:25

10

	Batch	Batch		Dilution	Batch			Prepa
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Anal
Total/NA	Analysis	Moisture		1	42343	MRV	EET SPK	07/10/23

Client Sample ID: MW-23R-IDW-230630 Date Collected: 06/30/23 18:30 Date Received: 07/05/23 13:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3550C			42375	MRV	EET SPK	07/13/23 10:37
Total/NA	Analysis	NWTPH-Dx		1	42384	NMI	EET SPK	07/13/23 18:33
Total/NA	Prep	3050B			42411	AMB	EET SPK	07/17/23 10:10
Total/NA	Analysis	6010D		5	42442	AMB	EET SPK	07/18/23 14:27
Total/NA	Prep	7471B			42412	AMB	EET SPK	07/17/23 10:25
Total/NA	Analysis	7471B		1	42423	AMB	EET SPK	07/17/23 14:31

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

ared alyzed

15:59

Lab Sample ID: 590-20947-2 Matrix: Solid

Percent Solids: 94.6

Prep 7471B Analysis 7471B Client Sample ID: MW-23R-IDW-230630

Batch

Method

Moisture

Batch

Method

3550C

3050B

6010D

NWTPH-Dx

EET SPK 07/17/23 14:29 Lab Sample ID: 590-20947-2 Matrix: Solid

Accreditation/Certification Summary

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

11

Laboratory: Eurofins Spokane Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number Expiration Date Program Washington C569 01-07-24 State 5 6 7 8 9 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte Percent Moisture Moisture Solid Moisture Solid Percent Solids

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0236040 010

Method Description

Metals (ICP)

Mercury (CVAA)

Percent Moisture

Preparation, Metals

Ultrasonic Extraction

Preparation, Mercury

Northwest - Semi-Volatile Petroleum Products (GC)

Laboratory

EET SPK

Protocol

NWTPH

SW846

SW846

SW846

SW846

SW846

EPA

	5
	8
	9

12

Protocol References:

Method

6010D

7471B

3050B

3550C

7471B

Moisture

NWTPH-Dx

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Shane Kostka Landau & Associates, Inc. 10 North Post Street, Suite 218 Spokane, Washington 99201 Generated 8/2/2023 3:49:15 PM

JOB DESCRIPTION

CSP MW-23 Replacement/0230040

JOB NUMBER

590-21120-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Candue Aming

Generated 8/2/2023 3:49:15 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions	5
Sample Summary	6
Chain of Custody	7
Receipt Checklists	9
Client Sample Results	11
QC Sample Results	12
Chronicle	15
Certification Summary	16
Method Summary	17

Job ID: 590-21120-1

Laboratory: Eurofins Spokane

Narrative

Receipt

The sample was received on 7/20/2023 3:44 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 15.7° C.

Receipt Exceptions

The following sample was received at the laboratory outside the required temperature criteria: MW-23R-IDW-Water (590-21120-1). The sample is considered acceptable since it was collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0230040

Percent Recovery

Glossary Abbreviation

¤

%R

Job ID: 590-21120-1

	4
	5
	8
	9

	· -· -· · · · · · · · · · · · · · · · ·
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numorous To Count

TNTC Too Numerous To Count

Client: Landau & Associates, Inc.

Project/Site: CSP MW-23 Replacement/0230040

Lab Sample IDClient Sample IDMatrixCollectedReceived590-21120-1MW-23R-IDW-WaterWater07/20/23 15:1007/20/23 15:44					
590-21120-1 MW-23R-IDW-Water Water 07/20/23 15:10 07/20/23 15:44	Lab Sample ID	Client Sample ID	Matrix	Collected	Received
	590-21120-1	MW-23R-IDW-Water	Water	07/20/23 15:10	07/20/23 15:44

	Chain-of-Cı Record	-	Tacon	e/Edmonds (4 1a (253) 926-2	493	[kane (5 tland (5			Dat Pag	e e1	7/2	0/23	Turnaround Time: Standard Accelerated	<u>t </u>
Project Name <u>CSP M</u> Project Location/Event Sampler's Name <u>D</u> Project Contact <u>S</u> Send Results To	W23 Replacement Spokane, W.A Common nome Kostka 11	Project No. /Welf De	Or30 evelopn			10/04				Test	ting Pa	arame	eters		Special Handling Re Shipment Method: Stored on ice:	
Sample I D.	Date	Time	Matrix	No of Containers	R				/ /					Obs	ervations/Commen	ts
MW-23R IDW	Water 7/20/1	3 15/10	GW		\times									aliquot fro	er samples to settle, m clear portion x Acid wash cleanup Silica gel cleanup [
														Dissolved	metal samples were	field filtered
590-21	590-21120 Chain of Custody													Other 15	.4,15.7	(P-004e
			· · · · · · · · · · · · · · · · · · ·													· · · · · · · · · · · · · · · · · · ·
Relinquished by Signature Printed Name Company Landan Date 7/20/23 Time 3 43 p Date 7/20/23				1 Mor 0 Time 15:		Si Pr _ Co	gnatur rinted f ompan	Vame		Tim				Company	Time	

WHITE COPY Laboratory

YELLOW COPY Project File Page 7 of 17 PINK COPY Client Representative

10/2018 8/2/2023

Eurofins Spokane

11922 East 1st Ave Spokane, WA 99206 Phone: 509-924-9200 Fax: 509-924-9290

Chain of Custody Record

🔆 eurofins

Storing ment Testing

Client Contact: Shipping/Receiving	Phone:						ndee E	-											590-8058.1	
		1 1-1							Mail: andee.Arrington@et.eurofinsus.com						State of Origin:					
Company:		W		Ra					ofinsu See not)	Wa	shin	gton					Page 1 of 1	
Eurofins Environment Testing Northwest,									shingto										Job #: 590-21120-1	
Address: 5755 8th Street East,	Due Date Reques 8/2/2023	ted:			Τ														Preservation Co	odes:
City:	TAT Requested (lays):				9523	·····	1	Ana	alysi	s Re	que	sted	 		-			A - HCL	M - Hexane
Facoma						64.													B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: NA. 98424											1	1							D - Nitric Acid	P - Na2O4S Q - Na2SO3
hone:	P0 #:				-												}		E - NaHSO4 F - MeOH	R - Na2S2O3
53-922-2310(Tel)						& Zr			1			ļ					ĺ		G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
mail:	WO #:				٦ž	Z Z					Í								t - Ice	U - Acetone V - MCAA
roject Name:	Project #:				8	2 1	ĺ											Ľ	J - DI Water K - EDTA	W - pH 4-5
SP MW-23 Replacement	59002630				Σ.	RA S				-		ļ				Í	ĺ	aln	L - EDA	Y - Trizma Z - other (specify)
ite:	SSOW#:				1ê) X	E X						1						containers	Other;	
		I	1	T	Field Filtered Sample (Yes or No) Perform MS/MSD /Vor M-V	50208/3005A (MOD) RCRA + Cu, Ni & Zn												ъ		
			Sample	Matrix	tere.	05A			ĺ									Total Number	1	
		Sample	Type	(W≠water, S≈solid,										1				Ī		
ample Identification - Client ID (Lab ID)	Sample Date	Time	(C≠comp, G=grab)	O=waste/oil, B7=Tissue, A=Air)	je je	5020					ĺ							otal	Current al la	
	\sim	\times		ation Code:	Χħ.								900				18359	$\overline{\mathbf{v}}$	Special in	structions/Note:
W-23-IDW-Water (590-21120-1)	7/20/23	15:10		Water	ĥŤ	X		and the form	99.000 - 1993 - 1995	912 2003	20.025.025	0.0000	्यालय	405203	98559	1000	16878	A	AND COMPANY OF A	
		Pacific				Ļ^	╂			+				_				3		
						Τ				1				Ť		Ť				·····
· · · · · · · · · · · · · · · · · · ·							┼┉╌┼			+		$\left \right $		-+	+	-+				
										_										
																Ī				
					1	1				+		 	-+		-		+	1968. 1968.		
						┨						$ \rightarrow $								
								1				ĺ								
															-					
······································						-												8488) 843-88	<u> </u>	
																	1000			
te: Since laboratory accreditations are subject to change, Eurofins Environm as not currently maintain accreditation in the State of Origin listed above for i	ent Testing Northwest, Li	C places the c	wnership of r	nethod, analyte 8	accre	ditation	compli	ance u	pon our	subcor	ntract l	aborato	ories.	This s	ample	e shipi	ment	is for	warded under chain-	of-custody. If the laboratory
es not currently maintain accreditation in the State of Origin listed above for tus should be brought to Eurofins Environment Testing Northwest, LLC atter	tion immediately. If all re	g analyzed, the equested accre	ditations are o	st be shipped bai current to date, re	ck to the sturn the	e Euro e signe	fins Env ed Chair	rironme n of Cu	ent Testi stody at	ing Nori testina	thwest to said	, LLC Ia I como	aborat liance	ory or to Eur	other ofins	instru Envire	ctions	s will b	be provided. Any chi sting Northwest LLC	anges to accreditation
ssible Hazard Identification																				
confirmed						1				may I					pies	are			l longer than 1 r	
eliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ole Rank: 2			Sné		eturn 1 netruc		ent IQC Ri	equire		isposa	al By	Lab	_		Ar	chiv	e For	Months
where the state of							nonac	nona	QUIN	equire	anea 	.5.								
npty Kit Relinquished by:		Date:			Time:				0			М	ethod	of Shi	pmen	nt:				
inquished by	7/21	11.	d	Company		Recei	ved by:	K	h.	~ ()			Da	ate/Tir	me: 122	10	 	-	Company
ingelished by:	Date/Time:	-1-		Company		Recei	/ed by:	73	<u> </u>	10	رما	7			A te/Tir		16	2	835	Company
nquished by:	Date/Time:			Company		Roos	ed by:							<u> </u>						
			ľ			Necel	eu by:							Da	te/Tir	ne:				Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cooler	Tempe	rature(s) °C ar	nd Othe	r Rem	arks:	ŦĤ	·					19.3	

Client: Landau & Associates, Inc.

Login Number: 21120 List Number: 1 Creator: Morris, Mackenzie 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-21120-1

List Source: Eurofins Spokane

Client: Landau & Associates, Inc.

Login Number: 21120 List Number: 2 Creator: Presley, Kim A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR9=19.0c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-21120-1

List Source: Eurofins Seattle

List Creation: 07/24/23 09:21 AM

Client Sample Results

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0230040

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Client Sample ID: MW-23R-IDW-WaterLab Sample ID: 590-21120-Date Collected: 07/20/23 15:10Matrix: WateDate Received: 07/20/23 15:44Matrix: Wate													
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Diesel Range Organics (DRO) (C10-C25)	ND		0.23		mg/L		07/27/23 15:10	07/28/23 18:12	1				
Residual Range Organics (RRO) (C25-C36)	ND		0.38		mg/L		07/27/23 15:10	07/28/23 18:12	1				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac				
o-Terphenyl	87		50 - 150				07/27/23 15:10	07/28/23 18:12	1				
n-Triacontane-d62	97		50 - 150				07/27/23 15:10	07/28/23 18:12	1				

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable

Client Sample ID: MW-23R-IDW Date Collected: 07/20/23 15:10	-Water						Lab San	nple ID: 590-2 Matrix:	
Date Received: 07/20/23 15:44	Desert	0	51		11	-	Descent	A	D '' F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.017		0.0050		mg/L		07/24/23 17:12	07/25/23 17:39	5
Barium	0.089		0.0060		mg/L		07/24/23 17:12	07/25/23 17:39	5
Cadmium	ND		0.0020		mg/L		07/24/23 17:12	07/25/23 17:39	5
Chromium	0.011		0.0040		mg/L		07/24/23 17:12	07/25/23 17:39	5
Copper	0.016		0.010		mg/L		07/24/23 17:12	07/25/23 17:39	5
Lead	0.010		0.0020		mg/L		07/24/23 17:12	07/25/23 17:39	5
Nickel	ND		0.015		mg/L		07/24/23 17:12	07/25/23 17:39	5
Selenium	ND		0.040		mg/L		07/24/23 17:12	07/25/23 17:39	5
Silver	ND		0.0020		mg/L		07/24/23 17:12	07/25/23 17:39	5
Zinc	ND		0.035		mg/L		07/24/23 17:12	07/25/23 17:39	5

Method: SW846 7470A - Mercury (CVAA)

Date Collected: 07/20/23 15:10										1120-1 Water
D	ate Received: 07/20/23 15:44									
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
М	ercury	ND		0.20		ug/L		07/21/23 10:34	07/24/23 14:56	1

Job ID: 590-21120-1

QC Sample Results

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-42	2623/1-A										Clie		le ID: Meth		
Matrix: Water													Prep Type:		
Analysis Batch: 42630													Prep Bate	:h: 4	2623
	M	BM	В												
Analyte	Resu	ilt Q	ualifier		RL	I	MDL	Unit		D	Pi	repared	Analyzed	I	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	N	ID			0.24			mg/L		_	07/2	7/23 15:10	07/28/23 15:0	9	1
Residual Range Organics (RRO) (C25-C36)	N	ID			0.40			mg/L			07/2	7/23 15:10	07/28/23 15:0	9	1
	М	вм	в												
Surrogate	%Recove	ry Q	ualifier	Lim	its						P	repared	Analyzed		Dil Fac
o-Terphenyl		35		50 -	150						07/2	7/23 15:10	07/28/23 15:0	9	1
n-Triacontane-d62	S	96		50 -	150						07/2	7/23 15:10	07/28/23 15:0	9	1
Lab Sample ID: LCS 590-4	2623/2-A								Cli	ent	Sar	nple ID:	Lab Contro	l Sa	mple
Matrix: Water													Prep Type:	Tot	al/NA
Analysis Batch: 42630													Prep Bato		
				Spike		LCS	LCS	;					%Rec		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Diesel Range Organics (DRO) (C10-C25)				1.60		1.50			mg/L		_	94	50 - 150		
Residual Range Organics (RRO) (C25-C36)				1.60		1.30			mg/L			81	50 - 150		
	LCS L	cs													
Surrogate	%Recovery Q	ualifi	er	Limits											
o-Terphenyl	93			50 - 150											
n-Triacontane-d62	103			50 - 150											
Lab Sample ID: LCSD 590	-42623/3-A							c	lient S	am	ple	ID: Lab	Control Sar	nple	Dup
Matrix: Water													Prep Type:	Tot	al/NA
Analysis Batch: 42630													Prep Bato	:h: 4	2623
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits R	PD	Limit
Diesel Range Organics (DRO) (C10-C25)				1.60		1.46			mg/L			91	50 - 150	3	25
Residual Range Organics (RRO) (C25-C36)				1.60		1.26			mg/L			79	50 - 150	3	25
	LCSD L	<u></u>													
Surrogate	%Recovery Q		er	Limits											
o-Terphenyl	94			50 - 150											

Method: 6020B - Metals (ICP/MS)

n-Triacontane-d62

102

Lab Sample ID: MB 580-432498/16-A **Matrix: Water** Analysis Batch: 432685

MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Arsenic ND 0.0050 mg/L 07/24/23 17:12 07/25/23 17:36 5 Barium ND 0.0060 07/24/23 17:12 07/25/23 17:36 5 mg/L Cadmium ND 07/24/23 17:12 07/25/23 17:36 5 0.0020 mg/L Chromium ND 0.0040 mg/L 07/24/23 17:12 07/25/23 17:36 5 Copper ND 0.010 mg/L 07/24/23 17:12 07/25/23 17:36 5

50 - 150

Eurofins Spokane

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 432498

5

9

Page 12 of 17

8/2/2023

Job ID: 590-21120-1

9

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-432498/16-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 432685 Prep Batch: 432498 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Lead ND 0.0020 mg/L 07/24/23 17:12 07/25/23 17:36 5 Nickel ND 0.015 mg/L 07/24/23 17:12 07/25/23 17:36 5 Selenium ND 0.040 07/24/23 17:12 07/25/23 17:36 5 mg/L Silver 5 ND 0.0020 mg/L 07/24/23 17:12 07/25/23 17:36 Zinc ND 0.035 mg/L 07/24/23 17:12 07/25/23 17:36 5

Lab Sample ID: LCS 580-432498/17-A

Matrix: Water

Analysis Batch: 432685	Spike	LCS	LCS				Prep Batch: 432498 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	1.03		mg/L		103	80 - 120
Barium	1.00	0.903		mg/L		90	80 - 120
Cadmium	1.00	0.932		mg/L		93	80 - 120
Chromium	1.00	1.07		mg/L		107	80 - 120
Copper	1.00	1.10		mg/L		110	80 - 120
Lead	1.00	0.996		mg/L		100	80 - 120
Nickel	1.00	1.06		mg/L		106	80 - 120
Selenium	1.00	0.999		mg/L		100	80 - 120
Silver	1.00	1.00		mg/L		100	80 - 120
Zinc	1.00	0.896		mg/L		90	80 - 120

Lab Sample ID: LCSD 580-432498/18-A Matrix: Water Analysis Batch: 432685

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 432498

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Duese Details 422400

						Ргер Ва	atcn: 43	52498
Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.00	1.04		mg/L		104	80 - 120	1	20
1.00	0.916		mg/L		92	80 - 120	1	20
1.00	0.948		mg/L		95	80 - 120	2	20
1.00	1.10		mg/L		110	80 - 120	3	20
1.00	1.11		mg/L		111	80 - 120	1	20
1.00	1.00		mg/L		100	80 - 120	1	20
1.00	1.08		mg/L		108	80 - 120	2	20
1.00	0.996		mg/L		100	80 - 120	0	20
1.00	1.01		mg/L		101	80 - 120	1	20
1.00	0.918		mg/L		92	80 - 120	2	20
	Added 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Added Result 1.00 1.04 1.00 0.916 1.00 0.948 1.00 1.10 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.01	Added Result Qualifier 1.00 1.04 1.00 0.916 1.00 0.948 1.00 1.10 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.01	Added Result Qualifier Unit 1.00 1.04 mg/L mg/L 1.00 0.916 mg/L mg/L 1.00 0.948 mg/L 1.00 1.00 1.10 mg/L 1.00 1.11 mg/L 1.00 1.11 mg/L 1.00 1.00 mg/L 1.00 1.00 1.08 mg/L 1.00 1.01 mg/L 1.00 1.01 mg/L 1.00 1.01 mg/L	Added Result Qualifier Unit D 1.00 1.04 mg/L mg/L mg/L 1.00 0.916 mg/L mg/L 1.00 0.948 mg/L mg/L 1.00 1.10 mg/L mg/L 1.00 1.11 mg/L mg/L 1.00 1.00 mg/L mg/L 1.00 1.08 mg/L mg/L 1.00 1.08 mg/L 1.00 1.00 1.01 mg/L 1.00 1.01	Added Result Qualifier Unit D %Rec 1.00 1.04 mg/L mg/L 104 1.00 0.916 mg/L 92 1.00 0.948 mg/L 95 1.00 1.10 mg/L 110 1.00 1.11 mg/L 111 1.00 1.00 mg/L 100 1.00 1.00 mg/L 100 1.00 1.08 mg/L 100 1.00 1.08 mg/L 100 1.00 1.08 mg/L 100 1.00 1.01 mg/L 101	Spike LCSD LCSD Wrec Added Result Qualifier Unit D %Rec Limits 1.00 1.04 mg/L D %Rec Limits 1.00 0.916 mg/L 92 80 - 120 1.00 0.948 mg/L 95 80 - 120 1.00 1.10 mg/L 110 80 - 120 1.00 1.10 mg/L 110 80 - 120 1.00 1.11 mg/L 111 80 - 120 1.00 1.00 mg/L 100 80 - 120 1.00 1.00 mg/L 100 80 - 120 1.00 1.00 mg/L 100 80 - 120 1.00 1.08 mg/L 108 80 - 120 1.00 0.996 mg/L 100 80 - 120 1.00 1.01 mg/L 101 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 1.00 1.04 mg/L 104 104 80-120 1 1.00 0.916 mg/L 92 80-120 1 1.00 0.948 mg/L 95 80-120 2 1.00 1.10 mg/L 110 80-120 2 1.00 1.10 mg/L 110 80-120 3 1.00 1.11 mg/L 111 80-120 1 1.00 1.00 mg/L 100 80-120 1 1.00 1.00 mg/L 100 80-120 1 1.00 1.08 mg/L 108 80-120 2 1.00 0.996 mg/L 100 80-120 0 1.00 1.01 mg/L 101 80-120 1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 590-42505/2-A Matrix: Water Analysis Batch: 42558						le ID: Method Prep Type: To Prep Batch:	otal/NA		
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20		ug/L		07/21/23 10:34	07/24/23 14:35	1

Method: 7470A - Mercury (CVAA) (Continued)

Project/Site: CSP MW-23 Replacement/02300	40						JOD ID: 590-21120-1	
Method: 7470A - Mercury (CVAA) (Co	ontinued)							
Lab Sample ID: LCS 590-42505/1-A Matrix: Water				Clie	ent Sai	mple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 42558	Spike	LCS	LCS				Prep Batch: 42505 %Rec	5
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.00	1.80		ug/L		90	80 - 120	
								8
								9

Matrix: Water

Lab Sample ID: 590-21120-1

Client Sample ID: MW-23R-IDW-Water Date Collected: 07/20/23 15:10 Date Received: 07/20/23 15:44

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3510C			42623	MRV	EET SPK	07/27/23 15:10
Total/NA	Analysis	NWTPH-Dx		1	42630	NMI	EET SPK	07/28/23 18:12
Total Recoverable	Prep	3005A			432498	JLS	EET SEA	07/24/23 17:12
Total Recoverable	Analysis	6020B		5	432685	FCW	EET SEA	07/25/23 17:39
Total/NA	Prep	7470A			42505	AMB	EET SPK	07/21/23 10:34
Total/NA	Analysis	7470A		1	42558	AMB	EET SPK	07/24/23 14:56

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0230040 Job ID: 590-21120-1

5

11

Laboratory: Eurofins Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-07-24

Laboratory: Eurofins Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-004	02-19-25
ANAB	Dept. of Defense ELAP	L2236	01-19-25
ANAB	Dept. of Energy	L2236	01-19-25
ANAB	ISO/IEC 17025	L2236	01-19-25
California	State	2954	07-07-23 *
Florida	NELAP	E87575	06-30-23 *
Louisiana (All)	NELAP	03073	07-01-24
Maine	State	WA01273	05-02-24
Montana (UST)	State	NA	04-14-27
New Jersey	NELAP	WA014	06-30-24
New York	NELAP	11662	03-31-24
Oregon	NELAP	4167	07-07-23 *
US Fish & Wildlife	US Federal Programs	A20571	06-30-23 *
USDA	US Federal Programs	525-23-4-22573	01-04-26
Washington	State	C788	07-13-23 *
Wisconsin	State	399133460	08-31-23

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Landau & Associates, Inc. Project/Site: CSP MW-23 Replacement/0230040

Method	Method Description	Protocol	Laboratory
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
6020B	Metals (ICP/MS)	SW846	EET SEA
7470A	Mercury (CVAA)	SW846	EET SPK
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SEA
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SPK
7470A	Preparation, Mercury	SW846	EET SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200