Appendix H Data Validation Reports

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-0882
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	July 12, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRS]C-FB01-052422	E2109-FS	Water
2	NRSIC-EB01-052422	E2116-FS	Water
3	NRSIC-EB01-052522	E2122-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for two aqueous equipment blank samples and one aqueous field blank sample collected on May 24-25, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning

- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-FB01-052422	None - ND		5H (*
NRSJC-EB01-052422	None - ND	27		5
NRSJC-EB01-052522	None - ND	-	17	2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 7/12/22 Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161.X1.XX.0026,000001

Client ID		NRSJC-FB01-052422						
Battelle ID		E2109-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 6500+ (AE) LO/MS/MS						
%Moisture		NA						
Matrix		AQ						
Sample Sze		0,263						
Sze Unit-Basis		L			Analysis		100	100
Analyte	CASNo.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PEHXA	307-24-4	2.38 U	E2109-FS(0)	1.000	6/22/2022	0.868	2,38	4,75
PFHpA	375-85-9	2.38 U	E2109-FS(0)	1.000	6/22/2022	0.894	2,38	4.75
PFOA	335-67-1	2.38 U	E2109-FS(0)	1,000	6/22/2022	0,960	2,38	4,75
PENA	375-95-1	2.38 U	E2109-FS(0)	1,000	6/22/2022	0,792	2,38	4,75
PFDA	335-76-2	2,38 U	E2109-FS(0)	1.000	6/22/2022	0.745	2.38	4.75
PFUnA	2058-94-8	2,38 U	E2109-FS(0)	1,000	6/22/2022	0,715	2,38	4,75
PFDoA	307-55-1	2,38 U	E2109-FS(0)	1,000	6/22/2022	0,722	2,38	4.75
PFTrDA	72629-94-8	2.38 U	E2109-FS(0)	1,000	6/22/2022	0.705	2.38	4.75
PFTeDA	376-06-7	2.38 U	E2109-FS(0)	1,000	6/22/2022	0.752	2.38	4.75
NMeFOSAA	2355-31-9	2.38 U	E2109-F9(0)	1,000	6/22/2022	0.979	2.38	4.75
NELFOSAA	2991-50-6	2.38 U	E2109-FS(0)	1,000	6/22/2022	0.941	2.38	4.75
PFBS	375-73-5	2.38 U	E2109-FS(0)	1.000	6/22/2022	0,823	2,38	4.75
PFHxS	355-46-4	2 38 U	E2109-FS(0)	1.000	6/22/2022	0,948	2,38	4 75
PFOS	1763-23-1	2.38 U	E2109-FS(0)	1.000	6/22/2022	1.02	2,38	4.75
HFPO-DA	13252-13-6	2,38 U	E2109-FS(0)	1.000	6/22/2022	0,822	2,38	4.75
Adona	919005-14-4	2,38 U	E2109-FS(0)	1,000	6/22/2022	0,826	2.38	4.75
90-PF3ONS	756426-58-1	2,38 U	E2109-FS(0)	1.000	6/22/2022	0,979	2.38	4.75
110-FF3OUdS	763051-92-9	2,38 U	E2109-FS(0)	1,000	6/22/2022	0,856	2.38	4.75

Project Qient: QH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161,X1,XX.0026,000001

Qient ID		NRSJC EB01-052422						
Battelle ID Sample Type Collection Date Extraction Date Analytical Instrument %Moisture Matrix Sample Sze Sze Unit-Basis Analyte	CASNo.	E2116-FS SA 05/24/2022 06/03/2022 Sciex 6500+ (AE) LC/MS/MS NA AQ 0.260 L Result (ng/L)	Etrad ID	DF	Analysis Date	DL	LOD	LOQ
						0.070	0.40	4.04
PFHxA	307-24-4	2,40 U	E2116-FS(0)	1,000	6/22/2022	0.878	2,40	4.81
PFHpA	375-85-9	2.40 U	E2116-F9(0)	1.000	6/22/2022	0.905	2.40	4,81
PFOA	335-67-1	2.40 U	E2116-F9(0)	1.000	6/22/2022	0.971	2.40	4.81
PFINA	375-95-1	2,40 U	E2116-FS(0)	1.000	6/22/2022	0,801	2.40	4,81
PFDA	335-76-2	2,40 U	E2116-FS(0)	1,000	6/22/2022	0,754	2.40	4,81
PFUnA	2058-94-8	2.40 U	E2116-FS(0)	1,000	6/22/2022	0,723	2.40	4,81
PFDoA	307-55-1	2.40 U	E2116-FS(0)	1,000	6/22/2022	0.731	2_40	4.81
PFTrDA	72629-94-8	2.40 U	E2116-F9(0)	1.000	6/22/2022	0.713	2,40	4.81
PFTeDA	376-06-7	2.40 U	E2116-FS(0)	1.000	6/22/2022	0.761	2.40	4.81
NMeFOSAA	2355-31-9	2.40 U	E2116-F9(0)	1,000	6/22/2022	0.990	2.40	4.81
NELFOSAA	2991-50-6	2.40 U	E2116-FS(0)	1,000	6/22/2022	0.952	2,40	4.81
PFBS	375-73-5	2.40 U	E2116-FS(0)	1.000	6/22/2022	0.833	2.40	4.81
PFHxS	355-46-4	2.40 U	E2116-FS(0)	1.000	6/22/2022	0,959	2,40	4.81
PFOS	1763-23-1	2.40 U	E2116-F9(0)	1.000	6/22/2022	1.03	2.40	4.81
HFPO-DA	13252-13-6	2.40 U	E2116-F9(0)	1.000	6/22/2022	0.832	2,40	4.81
Adona	919005-14-4	2.40 U	E2116-FS(0)	1.000	6/22/2022	0,836	2.40	4.81
90-PF3ONS	756426-58-1	2.40 U	E2116-FS(0)	1,000	6/22/2022	0,990	2.40	4.81
110-FF3OUdS	763051-92-9	2,40 U	E2116-FS(0)	1,000	6/22/2022	0,866	2.40	4.81

2

Project Qient: OH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161 X1 XX.0026,000001

	E2122-FS SA 05/25/2022 06/03/2022 Stiex 6500+ (AE) LC/MS/MS NA						
	SA 05/25/2022 06/03/2022 Stiex 6500+ (AE) LC/MS/MS NA						
	06/03/2022 Sciex 6500+ (AE) LC/MS/MS NA						
	06/03/2022 Sciex 6500+ (AE) LC/MS/MS NA						
	NA						
	AQ						
	0.261						
	³⁰ L			Analysis			
ASNo.	Result (ng/L)	Extrad ID	DF	Date	DL	LOD	LOQ
07 24 4	2 20 11	E2122 EQ(0)	1.000	6/22/2022	0.875	2.30	4,79
							4.79
							4.79
							4,79
							4,79
							4,79
							4,79
							4.79
		. ,					4,79
							4,79
							4,79
							4.79
							4,79
							4,79
							4,79
		. ,					4.79
							4.79
							4.79
	ASNo. 07-24-4 75-85-9 35-67-1 75-95-1 35-76-2 058-94-8 07-55-1 2629-94-8 76-06-7 355-31-9 991-50-6 75-73-5 55-46-4 763-23-1 3252-13-6 19005-14-4 56426-58-1 63051-92-9	L ASNo. Result (ng/L) 07-24-4 2,39 U 07-24-4 2,39 U 35-67-0 2,39 U 35-67-1 2,39 U 35-76-2 2,39 U 07-55-1 2,39 U 07-55-1 2,39 U 07-55-1 2,39 U 2629-94-8 2,39 U 07-06-7 2,39 U 991-50-6 2,39 U 991-50-6 2,39 U 76-3-23-1 2,39 U 325-13-6 2,39 U 901-50-6 2,39 U 925-13-6 2,39 U 9325-13-6 2,39 U 944-4 2,39 U 955-46-4 2,39 U 956-426-58-1 2,39 U	L Extract ID ASNo. Result (ng/L) Extract ID 07-24-4 2.39 U E2122-FS(0) 55-65-9 2.39 U E2122-FS(0) 35-67-1 2.39 U E2122-FS(0) 35-76-2 2.39 U E2122-FS(0) 058-94-8 2.39 U E2122-FS(0) 059-51-1 2.39 U E2122-FS(0) 055-31-9 2.39 U E2122-FS(0) 055-31-9 2.39 U E2122-FS(0) 055-31-9 2.39 U E2122-FS(0) 055-46-4 2.39 U E2122-FS(0) 03252-13-6 2.39 U E2122-FS(0) 03252-13-6 2.39 U E2122-FS(0)	L Extract ID DF ASNo. Result (ng/L) Extract ID DF 07-24-4 2,39 U E2122-FS(0) 1,000 35-67-1 2,39 U E2122-FS(0) 1,000 35-67-1 2,39 U E2122-FS(0) 1,000 35-76-2 2,39 U E2122-FS(0) 1,000 058-94-8 2,39 U E2122-FS(0) 1,000 059-51-1 2,39 U E2122-FS(0) 1,000 055-31-9 2,39 U E2122-FS(0) 1,000 055-31-9 2,39 U E2122-FS(0) 1,000 055-31-9 2,39 U E2122-FS(0) 1,000 055-4	L Pesult (ng/L)L Extract IDAnalysis DFASNo.Pesult (ng/L)Extract IDDF07-24-4 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 55-67-1 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 35-67-1 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 35-76-2 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 058-94-8 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 059-94-8 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 059-94-8 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 059-05-6 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 059-15-16 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 053-23-1 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 0352-13-6 2.39 UE2122-FS(0) 1.000 $6/22/2022$ 0352-13-6 2.39 UE2122-FS(0) 1.000 $6/22/2022$ <	L Pesult (ng/L)L Extract IDAnalysis DFDateDL07-24.4 $2,39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.875 55-85-9 $2,39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.901 35-67-1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.967 75-95-1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.798 35-76-2 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.7751 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.720 07-55-1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.728 2629-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.758 355-31-9 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.758 355-31-9 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.987 991-50-6 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.987 955-46-4 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.829 925-13-6 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ </td <td>L Pesult (ng/L)L Extract IDAnalysis DFDateDLLOD07-24.4$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.875$$2.39$07-24.4$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.901$$2.39$35-67-1$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.901$$2.39$35-67-1$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.967$$2.39$35-76-2$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.751$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.720$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.728$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.758$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.758$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.758$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.987$$2.39$058-94-8$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.987$$2.39$07-55.1$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.983$$2.39$085-53-1-9$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$$0.983$$2.39$091-50-6$2.39 \cup$E2122-FS(0)$1.000$$6/22/2022$</td>	L Pesult (ng/L)L Extract IDAnalysis DFDateDLLOD07-24.4 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.875 2.39 07-24.4 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.901 2.39 35-67-1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.901 2.39 35-67-1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.967 2.39 35-76-2 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.751 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.720 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.728 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.758 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.758 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.758 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.987 2.39 058-94-8 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.987 2.39 07-55.1 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.983 2.39 085-53-1-9 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$ 0.983 2.39 091-50-6 $2.39 \cup$ E2122-FS(0) 1.000 $6/22/2022$

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-0883
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	July 12, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-B6-SS02-000H	E2102-FS	Soil
2	NRSJC-S1-SS06-000H	E2103-FS	Soil
3	NRS]C-S1-SS05-000H	E2104-FS	Soil
4	NRSJC-S1-SS07-000H	E2105-FS	Soil
5	NRSJC-S1-SS20-000H	E2106-FS	Soil
6	NRSJC-S1-SB20-0203	E2107-FS	Soil
7	NRSJC-S1-SB20P-0203	E2108-FS	Soil
8	NRSIC-S6-SS09-000H	E2110-FS	Soil
8MS	NRSIC-S6-SS09-000HMS	E2111MS-FS	Soil
8MSD	NRSJC-S6-SS09-000HMSD	E2112MSD-FS	Soil

A Stage 2B/4 data validation was performed on the analytical data for eight soil samples collected on May 24, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-EB01-052422	None - ND	-	177.):	
NRSJC-FB01-052422	None - ND		-	8 .

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are shown below. The precision was acceptable. •

Compound	NRSJC-S1-SB20-0203	NRSJC-S1-SB20P-0203	RPD	Qualifier
None	ND	ND	(47)	14

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 7/12/22 Nancy Weaver

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161,X1,XX.0026,000001

Battelle ID Sample Type Collection Date Extraction Date Analytical Instrument		E2102-FS SA 05/24/2022 06/03/2022						
% Moisture Matrix Sample Sze Sze Unit-Basis	CASNo.	Sciex 5500 (AG) LC/MS/MS 17.08 SO 4.980 g Result (ng/g_Dny)	Extract ID	DF	Analysis Date	DL	LOD	LOQ
	307-24-4	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,179	0.502	1.00
PFI-lpA 3	375-85-9	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,169	0.502	1.00
PFOA 3	335-67-1	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,215	0.502	1.00
PENA 3	375-95-1	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,158	0.502	1.00
PFDA 3	335-76-2	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,159	0.502	1.00
PFUnA 2	2058-94-8	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,157	0.502	1.00
PFDoA 3	307-55-1	0,502 U	E2102-FS(0)	1.000	6/22/2022	0,161	0.502	1.00
PFTrDA 7	72629-94-8	0.502 U	E2102-FS(0)	1.000	6/22/2022	0.162	0.502	1.00
PFTeDA 3	376-06-7	0,502 U	E2102-FS(0)	1,000	6/22/2022	0,163	0.502	2.01
NMeFOSAA 2	2355-31-9	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,160	0.502	2.01
NELFOSAA 2	2991-50-6	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,166	0.502	2.01
PFBS 3	375-73-5	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,172	0.502	1.00
PFHxS 3	355-46-4	0.502 U	E2102-FS(0)	1,000	6/22/2022	0,174	0.502	1.00
PFOS 1	1763-23-1	0.313 J	E2102-FS(0)	1.000	6/22/2022	0,176	0.502	1.00
HFPO-DA 1	13252-13-6	0.502 U	E2102-FS(0)	1.000	6/22/2022	0.160	0.502	2.01
Adona 9	919005-14-4	0.502 U	E2102-FS(0)	1.000	6/22/2022	0,161	0.502	2.01
90-PF3ONS 7	756426-58-1	0.502 U	E2102-FS(0)	1.000	6/22/2022	0.155	0.502	2.01
110-PF3OUdS 7	763051-92-9	0.502 U	E2102-FS(0)	1,000	6/22/2022	0,151	0.502	2.01

Project Qient: QH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161,X1,XX,0026,000001

Client ID		NRSJC S1-SS06-000H						
Battelle ID		E2103-FS,						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/ MS/ MS						
%Moisture		17.88						
Matrix		90						
Sample Sze		5,000						
Sze Unit-Basis		g			Analysis			
Analyte	CASNo.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHkA	307-24-4	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,178	0.500	1.00
PFHpA	375-85-9	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,168	0,500	1.00
PFOA	335-67-1	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,214	0.500	1.00
PFNA	375-95-1	0.500 U	E2103-FS(0)	1,000	6/22/2022	0,157	0.500	1.00
PFDA	335-76-2	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,156	0.500	1.00
PFDoA	307-55-1	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,162	0,500	2.00
NMeFOSAA	2355-31-9	0.500 U	E2103-FS(0)	1.000	6/22/2022	0.159	0.500	2.00
NEFOSAA	2991-50-6	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,165	0.500	2.00
PFBS	375-73-5	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,171	0.500	1.00
PFHkS	355-46-4	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,173	0.500	1.00
PFOS	1763-23-1	0.218 J	E2103-FS(0)	1.000	6/22/2022	0,175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,159	0.500	2.00
Adona	919005-14-4	0,500 U	E2103-FS(0)	1.000	6/22/2022	0,160	0.500	2.00
90-PF3ONS	756426-58-1	0.500 U	E2103-FS(0)	1.000	6/22/2022	0,154	0.500	2.00
11Q-PF3OUdS	763051-92-9	0.500 U	E2103-F9(0)	1.000	6/22/2022	0.150	0.500	2.00

Project Olient: OH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161.X1 XX.0026.000001

Client ID		NRSJC-S1-SS05-000H						
Battelle ID		E2104-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		22.32						
Matrix		30						
Sample Size		4,990						
Sze Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	L.OD	LOQ
PFHkA	307-24-4	0,501 U	E2104-FS(0)	1,000	6/22/2022	0,178	0,501	1.00
PFHpA	375-85-9	0,501 U	E2104-F9(0)	1,000	6/22/2022	0,168	0,501	1,00
PFOA	335-67-1	0,501 U	E2104-FS(0)	1,000	6/22/2022	0,214	0.501	1.00
PFNA	375 95 1	0,501 U	E2104-FS(0)	1,000	6/22/2022	0.157	0,501	1.00
PFDA	335-76-2	0,501 U	E2104-FS(0)	1,000	6/22/2022	0.158	0,501	1.00
PFUnA	2058-94-8	0,501 U	E2104-F9(0)	1,000	6/22/2022	0,156	0,501	1.00
PFDoA	307-55-1	0,501 U	E2104-FS(0)	1,000	6/22/2022	0.160	0,501	1.00
PFTrDA	72629-94-8	0,501 U	E2104-FS(0)	1,000	6/22/2022	0,161	0,501	1.00
PFTeDA	376-06-7	0,501 U	E2104-FS(0)	1.000	6/22/2022	0.162	0,501	2.00
NMeFOSAA	2355-31-9	0.501 U	E2104-FS(0)	1.000	6/22/2022	0,159	0,501	2,00
NELFOSAA	2991-50-6	0.501 U	E2104-FS(0)	1,000	6/22/2022	0.165	0.501	2,00
PFBS	375-73-5	0.501 U	E2104-FS(0)	1,000	6/22/2022	0,171	0,501	1.00
PFHxS	355-46-4	0,501 U	E2104-FS(0)	1,000	6/22/2022	0,173	0.501	1.00
PFOS	1763-23-1	0,501 U	E2104-FS(0)	1,000	6/22/2022	0.175	0,501	1.00
HFPO-DA	13252-13-6	0,501 U	E2104-FS(0)	1.000	6/22/2022	0,159	0,501	2.00
Adona	919005-14-4	0.501 U	E2104-FS(0)	1.000	6/22/2022	0.160	0,501	2,00
90-PF3ONS	756426-58-1	0,501 U	E2104-FS(0)	1,000	6/22/2022	0,154	0.501	2,00
110-PF3OUdS	763051-92-9	0.501 U	E2104-FS(0)	1,000	6/22/2022	0.150	0,501	2.00

Project Qient: QH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161.X1 XX.0026.000001

Dient ID		NRSJC S1-SSD7-000H						
Battelle ID		E2105-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		21,91						
Matrix		90						
Sample Size		5,010						
Size Unit-Basis		g			Analysis			
Analyte	CASNo+	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 U	E2105-FS(0)	1.000	6/22/2022	0,178	0.499	0.998
PTHpA	375-85-9	0.499 U	E2105-FS(0)	1,000	6/22/2022	0,168	0.499	0.998
FOA	335-67-1	0,499 U	E2105-FS(0)	1,000	6/22/2022	0.214	0,499	0.998
PFNA	375-95-1	0.499 U	E2105-FS(0)	1,000	6/22/2022	0,157	0,499	0,998
PFDA	335-76-2	0,499 U	E2105-FS(0)	1,000	6/22/2022	0,158	0,499	0,998
PFUnA	2058-94-8	0,499 U	E2105-FS(0)	1,000	6/22/2022	0,156	0.499	0.998
PFDoA	307-55-1	0.499 U	E2105-F9(0)	1,000	6/22/2022	0,160	0.499	0.998
PFTrDA	72629-94-8	0,499 U	E2105-F9(0)	1,000	6/22/2022	0,161	0.499	0.998
7FTeDA	376-06-7	0.499 U	E2105-FS(0)	1.000	6/22/2022	0,162	0,499	2,00
NMeFOSAA	2355-31-9	0,499 U	E2105-FS(0)	1,000	6/22/2022	0,159	0,499	2,00
NEI FOSAA	2991-50-6	0,499 U	E2105-FS(0)	1.000	6/22/2022	0,165	0,499	2.00
PFBS	375 73 5	0,499 U	E2105-FS(0)	1,000	6/22/2022	0,171	0,499	0.998
PFHxS	355-46-4	0.499 U	E2105-FS(0)	1.000	6/22/2022	0,173	0,499	0.998
FOS	1763-23-1	0.499 U	E2105-FS(0)	1,000	6/22/2022	0,175	0,499	0,998
HFPO-DA	13252-13-6	0,499 U	E2105-FS(0)	1.000	6/22/2022	0,159	0,499	2.00
Adona	919005-14-4	0,499 U	E2105-FS(0)	1.000	6/22/2022	0,160	0,499	2.00
90-PF3ONS	756426-58-1	0.499 U	E2105-FS(0)	1,000	6/22/2022	0,154	0,499	2,00
110-PF3OUdS	763051-92-9	0,499 U	E2105-FS(0)	1,000	6/22/2022	0,150	0.499	2.00

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.; G25161.X1.XX.0026.000001

Client ID		NRSJC S1-SS20-000H						
Battelle ID		E2106-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		33,33						
Matrix		SO						
Sample Size		4,990						
Sze Unit-Basis		g			Analysis			
Analyte	CASNo,	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,178	0,501	1,00
PFHpA	375-85-9	0.501 U	E2106-FS(0)	1,000	6/22/2022	0,168	0,501	1.00
PFOA	335-67-1	0.501 U	E2106-FS(0)	1.000	6/22/2022	0.214	0.501	1,00
PFNA	375-95-1	0.501 U	E2106-FS(0)	1.000	6/22/2022	0.157	0,501	1.00
PFDA	335-76-2	0.501 U	E2106-FS(0)	1.000	6/22/2022	0.158	0,501	1,00
PFUnA	2058-94-8	0.501 U	E2106-FS(0)	1.000	6/22/2022	0.156	0,501	1.00
PFDoA	307-55-1	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,160	0,501	1,00
PFTrDA	72629-94-8	0.501 U	E2106-FS(0)	1,000	6/22/2022	0.161	0,501	1.00
PFTeDA	376-06-7	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,162	0.501	2,00
NMeFOSAA	2355-31-9	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,159	0.501	2.00
NELFOSAA	2991-50-6	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,165	0.501	2,00
PFBS	375-73-5	0.501 U	E2106-FS(0)	1,000	6/22/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,173	0.501	1,00
PFOS	1763-23-1	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,175	0.501	1,00
HFPO-DA	13252-13-6	0.501 U	E2106-FS(0)	1,000	6/22/2022	0,159	0.501	2,00
Adona	919005-14-4	0.501 U	E2106-FS(0)	1,000	6/22/2022	0,160	0.501	2,00
90-PF3ONS	756426-58-1	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,154	0.501	2.00
110-PF3OUdS	763051-92-9	0.501 U	E2106-FS(0)	1.000	6/22/2022	0,150	0.501	2,00

5

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: C25161,X1,XX.0026,000001

Client ID		NRSJC-S1-SB20-0203						
Battelle ID		E2107-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		24,64						
Matrix		SO						
Sample Sze		5.020						
Sze Unit-Basis		g			Analysis			
Analyte	CASNo.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
			53 (07 (C) (0)		0/00/0000	0.477	0.400	0.000
PFHkA	307-24-4	0,498 U	E2107-FS(0)	1.000	6/22/2022	0,177	0.498	0.996
PFHpA	375-85-9	0.498 U	E2107-FS(0)	1.000	6/22/2022	0.167	0.498	0.996
PFOA	335-67-1	0,498 U	E2107-FS(0)	1,000	6/22/2022	0.213	0.498	0.996
PFNA	375-95-1	0.498 U	E2107-FS(0)	1,000	6/22/2022	0,156	0.498	0.996
PFDA	335-76-2	0.498 U	E2107-FS(0)	1,000	6/22/2022	0,157	0.498	0,996
PFUnA	2058-94-8	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,155	0.498	0.996
PFDoA	307-55-1	0.498 U	E2107-FS(0)	1.000	6/22/2022	0,159	0.498	0.996
PFTrDA	72629-94-8	0.498 U	E2107-FS(0)	1.000	6/22/2022	0,160	0,498	0,996
PFTeDA	376-06-7	0,498 U	E2107-FS(0)	1,000	6/22/2022	0.161	0.498	1.99
NMeFOSAA	2355-31-9	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,158	0,498	1,99
NELFOSAA	2991-50-6	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,164	0.498	1,99
PFBS	375-73-5	0.498 U	E2107-FS(0)	1.000	6/22/2022	0,170	0.498	0.996
PFHxS	355-46-4	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,172	0.498	0.996
PFOS	1763-23-1	0,498 U	E2107-FS(0)	1.000	6/22/2022	0.174	0.498	0.996
HFPO-DA	13252-13-6	0.498 U	E2107-FS(0)	1.000	6/22/2022	0.158	0.498	1,99
Adona	919005-14-4	0.498 U	E2107-FS(0)	1.000	6/22/2022	0,159	0.498	1.99
90-PF3ONS	756426-58-1	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,153	0.498	1,99
110-PF3OUdS	763051-92-9	0,498 U	E2107-FS(0)	1,000	6/22/2022	0,149	0.498	1.99

Project Client: CH2M Project Name: CTO-4117: Northwest FFASInvestigation Project No.: G25161 X1 XX.0026.000001

Client ID		NRSIC-S1-5820P-0203						
Battelle ID		E2108-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/ MS/ MS						
%Moisture		20.45						
Matrix		SO						
Sample Size		5,000						
Size Unit-Basis		g			Analysis			
Analyte	CASNo,	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E2409 E(YO)	1,000	6/22/2022	0.178	0.500	1.00
PFHpA	375-85-9	0,500 U	E2108-FS(0) E2108-FS(0)	1.000	6/22/2022	0.178	0,500	1.00
PFOA	335-67-1	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.214	0.500	1.00
PFNA	375-95-1	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.214	0.500	1.00
PFDA	335-76-2	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.157	0,500	1.00
PFUnA	2058-94-8	0.500 U	E2108-FS(0)	1.000	6/22/2022	0.156	0,500	1.00
PFDoA	307-55-1	0.500 U	E2108-F9(0)	1.000	6/22/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0,500 U	E2108-F9(0)	1.000	6/22/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E2108-FS(0)	1.000	6/22/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.159	0.500	2.00
NEIFOSAA	2991-50-6	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.165	0.500	2.00
PFBS	375-73-5	0,500 U	E2108-F9(0)	1.000	6/22/2022	0.171	0.500	1.00
PFHxS	355-46-4	0,500 U	E2108-FS(0)	1.000	6/22/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E2108-FS(0)	1.000	6/22/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E2108-FS(0)	1.000	6/22/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E2108-FS(0)	1.000	6/22/2022	0,160	0.500	2.00
90-PF3ONS	756426-58-1	0.500 U	E2108-FS(0)	1.000	6/22/2022	0,154	0.500	2.00
110-PF3OUdS	763051-92-9	0.500 U	E2108-FS(0)	1.000	6/22/2022	0.150	0.500	2.00

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161.X1.XX.0026,000001

Client ID		NRSJC-96-59D9-000H						
BattelleID		E2110-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		23,10						
Matrix		90						
Semple Size		5.030						
Size Unit-Basis		g			Analysis			
Analyte	CASNo.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.497 U	E2110-FS(0)	1.000	6/22/2022	0,177	0.497	0.994
PFHpA	375-85-9	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.167	0.497	0.994
PFOA	335-67-1	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.213	0.497	0.994
PENA	375-95-1	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.156	0.497	0.994
PFDA	335-76-2	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.157	0.497	0.994
PFUnA	2058-94-8	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.155	0.497	0.994
PFDoA	307-55-1	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.159	0.497	0.994
PFTrDA	72629-94-8	0.497 U	E2110-FS(0)	1,000	6/22/2022	0.160	0.497	0.994
PFTeDA	376-06-7	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.161	0.497	1.99
NMeFOSAA	2355-31-9	0.497 U	E2110-FS(0)	1.000	6/22/2022	0,158	0.497	1.99
NELFOSAA	2991-50-6	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.164	0.497	1.99
PFBS	375-73-5	0.497 U	E2110-FS(0)	1.000	6/22/2022	0.170	0.497	0.994
PFHxS	355-46-4	0.497 U	E2110-FS(0)	1,000	6/22/2022	0,172	0,497	0.994
PFOS	1763-23-1	0.284 J	E2110-FS(0)	1.000	6/22/2022	0.174	0.497	0.994
HFPO-DA	13252-13-6	0,497 U	E2110-FS(0)	1.000	6/22/2022	0.158	0.497	1.99
Adona	919005-14-4	0.497 U	E2110-FS(0)	1.000	6/22/2022	0,159	0.497	1.99
90-PF3ONS	756426-58-1	0,497 U	E2110-FS(0)	1.000	6/22/2022	0.153	0,497	1.99
110-PF3OUdS	763051-92-9	0,497 U	E2110-FS(0)	1,000	6/22/2022	0.149	0.497	1.99

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-0884
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	July 12, 2022

PFAS								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix					
1	NRSIC-S6-SS10-000H	E2113-FS	Soil					
2	NRSJC-S6-SS08-000H	E2114-FS	Soil					
3	NRSJC-S7-SS13-000H	E2115-FS	Soil					
4	NRSJC-S5-SS16-000H	E2117-FS	Soil					
5	NRSJC-S5-SB21-0203	E2118-FS	Soil					
6	NRSIC-S5-SS19-000H	E2119-FS	Soil					
6MS	NRS[C-S5-SS19-000HMS	E2120MS-FS	Soil					
6MSD	NRSJC-S5-SS19-000HMSD	E2121MSD-FS	Soil					
7	NRSIC-S5-SS18-000H	E2123-FS	Soil					

A Stage 2B/4 data validation was performed on the analytical data for seven soil samples collected on May 24-25, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-EB01-052422	None - ND	1.52	~	(3 .)
NRSJC-FB01-052422	None - ND	8 1 2	-	
NRSJC-EB01-052522	None - ND		-	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 7/12/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

I

Project Client: CH2M Project Name: CTO-4117: Northwest FFASInvestigation Project No.: C25161.X1.XX.0026.000001

05/24/20 06/03/20 Sciex 5500 (AC) LC/MS/ 23	SA 022 022 MS .57 SO					
05/24/20 06/03/20 Sciex 5500 (AC) LC/MS/ 23	022 022 MS .57 SO					
06/03/20 Sciex 5500 (AC) LC/MS/1 23	022 MS .57 SO					
Sciex 5500 (AC) LO/MS/ 23	MS .57 SO					
23	.57 SO					
	80					
4.9	190					
	g		Analysis			
Result (ng/g_D	ry) Extract II	ID DF	Date	DL	LOD	LOQ
0.5	501 U E2113-FS	30) 1.000	6/22/2022	0.178	0,501	1.00
	501 U E2113-FS		6/22/2022	0.178	0.501	1.00
	501 U E2113-FS		6/22/2022	0.100	0.501	1.00
						1.00
		1 /				1.00
						1.00
						1.00
						1.00
						2.00
						2.00
						2.00
						1.00
						1.00
						1.00
						2.00
						2.00
						2.00
						2.00
4	0.5 3 0.5 -8 0.5 -8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.501 U F2113-F3 6 0.501 U F2113-F3 6 0.501 U F2113-F3 44 0.501 U F2113-F3 8-1 0.501 U F2113-F3	0.501 U E2113-FS(0) 1.000 3 0.501 U E2113-FS(0) 1.000 44 0.501 U E2113-FS(0) 1.000 8-1 0.501 U E2113-FS(0) 1.000	0.501 U E2113-FS(0) 1.000 6/22/2022 3 0.501 U E2113-FS(0) 1.000 6/22/2022 0.501 U E2113-FS(0) 1.000 6/22/2022 -8 0.501 U E2113-FS(0) 1.000 6/22/2022 -8 0.501 U E2113-FS(0) 1.000 6/22/2022 -8 0.501 U E2113-FS(0) 1.000 6/22/2022 -9 0.501 U E2113-FS(0) 1.000 6/22/2022 -6 0.501 U E2113-FS(0) 1.000 6/22/2022 44 0.501 U E2113-FS(0) 1.000 6/22/2022 8-1 0.501 U E2113-FS(0)	0.501 U F2113-FS(0) 1.000 6/22/2022 0.158 0.501 U F2113-FS(0) 1.000 6/22/2022 0.156 0.501 U F2113-FS(0) 1.000 6/22/2022 0.156 0.501 U F2113-FS(0) 1.000 6/22/2022 0.166 0.501 U F2113-FS(0) 1.000 6/22/2022 0.161 0.501 U F2113-FS(0) 1.000 6/22/2022 0.162 0.501 U F2113-FS(0) 1.000 6/22/2022 0.165 0.501 U F2113-FS(0) 1.000 6/22/2022 0.165 0.501 U F2113-FS(0) 1.000 6/22/2022 0.171 0.501 U F2113-FS(0) 1.000 6/22/2022 0.173 0.501 U F2113-FS(0) 1.000 6/22/2022 0.175 -6 0.501 U F2113-FS(0) 1.000 6/22/2022 0.175 -6 0.501 U F2113-FS(0) 1.000 6/22/2022 0.159 4.4 0.501 U F2113-FS(0) 1.000	0.501 U F2113-FS(0) 1.000 6/22/2022 0.158 0.501 3 0.501 U F2113-FS(0) 1.000 6/22/2022 0.156 0.501 3 0.501 U F2113-FS(0) 1.000 6/22/2022 0.156 0.501 -8 0.501 U F2113-FS(0) 1.000 6/22/2022 0.161 0.501 -8 0.501 U F2113-FS(0) 1.000 6/22/2022 0.162 0.501 -8 0.501 U F2113-FS(0) 1.000 6/22/2022 0.162 0.501 -8 0.501 U F2113-FS(0) 1.000 6/22/2022 0.162 0.501 -9 0.501 U F2113-FS(0) 1.000 6/22/2022 0.165 0.501 -9 0.501 U F2113-FS(0) 1.000 6/22/2022 0.175 0.501 -0.501 U F2113-FS(0) 1.000 6/22/2022 0.175 0.501 -1 0.501 U F2113-FS(0) 1.000 6/22/2022 0.159 0.501 <t< td=""></t<>

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: C25161.X1.XX.0026,000001

Qient ID		NRSJC-56-5508-000H						
Battelle ID		E2114-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		15.77						
Matrix		SO						
Sample Size		4,990						
Sze Unit-Basis		g			Analysis			
Analyte	CASNo	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFH:xA	307-24-4	0.501 U	E2114-FS(0)	1.000	6/22/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E2114-FS(0)	1,000	6/22/2022	0,168	0,501	1.00
PFOA	335-67-1	0.501 U	E2114-FS(0)	1,000	6/22/2022	0.214	0.501	1.00
PFNA	375 95 1	0.501 U	E2114-FS(0)	1.000	6/22/2022	0.157	0,501	1.00
PFDA	335-76-2	0,501 U	E2114-FS(0)	1,000	6/22/2022	0,158	0,501	1.00
PFUnA	2058-94-8	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,156	0,501	1,00
PFDoA	307-55-1	0.501 U	E2114-FS(0)	1.000	6/22/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,161	0,501	1.00
FTeDA	376-06-7	0.501 U	E2114-FS(0)	1,000	6/22/2022	0.162	0.501	2.00
VMeFOSAA	2355-31-9	0,501 U	E2114-FS(0)	1.000	6/22/2022	0,159	0,501	2,00
NEFOSAA	2991-50-6	0.501 U	E2114-FS(0)	1.000	6/22/2022	0.165	0,501	2.00
PFBS	375-73-5	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,171	0,501	1.00
PFHxS	355-46-4	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,173	0,501	1.00
PFOS	1763-23-1	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,159	0,501	2.00
Adona	919005-14-4	0.501 U	E2114-FS(0)	1.000	6/22/2022	0.160	0,501	2,00
90-PF3ONS	756426-58-1	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,154	0,501	2.00
110-PF3OUdS	763051-92-9	0.501 U	E2114-FS(0)	1.000	6/22/2022	0,150	0,501	2,00

Project Olent: OH2M Project Name: CTO-4117: Northwest FFASInvestigation Project No.; G25161,X1,XX.0026,000001

Client ID		NRSJC-57-5513-000H						
Battelle ID		E2115-FS						
Sample Type		SA						
Collection Date		05/24/2022						
Extraction Date		06/03/2022						
Analytical Instrument	t	Sciex 5500 (AC) LC/ MS/ MS						
%Moisture		9,14						
Matrix		SO						
Sample Sze		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CASNo.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHkA	307-24-4	0,502 U		1.000	610010000	0.179	0,502	1.00
PFHpA	375-85-9	0,502 U	E2115-F9(0) E2115-F9(0)	1,000	6/22/2022 6/22/2022	0.179	0,502	1.00
PFOA	335-67-1	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.215	0,502	1.00
PFINA	375-95-1	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E2115-F9(0)	1,000	6/22/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E2115-FS(0)	1,000	6/22/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E2115-FS(0)	1,000	6/22/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E2115-FS(0)	1.000	6/22/2022	0,163	0.502	2.01
NMeFOSAA	2355-31-9	0.502 U	E2115-FS(0)	1,000	6/22/2022	0.160	0.502	2.01
NELFOSAA	2991-50-6	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.166	0,502	2.01
PFBS	375-73-5	0.502 U	E2115 FS(0)	1,000	6/22/2022	0,172	0.502	1.00
PTHxS	355-46-4	0,502 U	E2115-FS(0)	1.000	6/22/2022	0,174	0,502	1.00
PFOS	1763-23-1	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E2115-F9(0)	1.000	6/22/2022	0,160	0.502	2.01
Adona	919005-14-4	0,502 U	E2115-FS(0)	1.000	6/22/2022	0.161	0,502	2.01
9a-PF3ONS	756426-58-1	0.502 U	E2115-FS(0)	1.000	6/22/2022	0,155	0.502	2.01
110-PF3OUds	763051-92-9	0.502 U	E2115-FS(0)	1.000	6/22/2022	0.151	0.502	2.01

Project Client: CH2M Project Name: CTO-4117: Northwest FFASInvestigation Project No.: C25161.X1 XX.0026.000001

Gient ID		NRSJC-55-5516-000H						
Battelle ID		E2117-FS						
Sample Type		SA						
Collection Date		05/25/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		6.92						
Matrix		90						
Sample Sze		4,990						
Size Unit-Basis		g			Analysis			
Analyte	CASNo	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E2117-FS(0)	1.000	6/22/2022	0.178	0,501	1.00
PFHpA	375-85-9	0.501 U	E2117-FS(0)	1.000	6/22/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E2117-FS(0)	1,000	6/22/2022	0,214	0.501	1.00
PFNA	375-95-1	0,501 U	E2117-FS(0)	1.000	6/22/2022	0,157	0,501	1,00
PFDA	335-76-2	0.501 U	E2117-FS(0)	1,000	6/22/2022	0,158	0,501	1.00
PFUnA	2058-94-8	0.501 U	E2117-FS(0)	1,000	6/22/2022	0,156	0,501	1.00
PFDoA	307-55-1	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,160	0,501	1.00
PFTrDA	72629-94-8	0.501 U	E2117-FS(0)	1.000	6/22/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E2117-FS(0)	1,000	6/22/2022	0,162	0,501	2.00
NMeFOSAA	2355-31-9	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,159	0,501	2.00
NEFOSAA	2991-50-6	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,165	0,501	2,00
PFBS	375-73-5	0.501 U	E2117-F9(0)	1,000	6/22/2022	0,171	0,501	1.00
PFHxS	355-46-4	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,173	0.501	1.00
PFOS	1763-23-1	0,501 U	E2117-F9(0)	1,000	6/22/2022	0,175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E2117-FS(0)	1,000	6/22/2022	0,159	0,501	2.00
Adona	919005-14-4	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,160	0,501	2.00
901-PF3ONS	756426-58-1	0.501 U	E2117-FS(0)	1.000	6/22/2022	0,154	0,501	2.00
110-PF3OUdS	763051-92-9	0.501 U	E2117-FS(0)	1.000	6/22/2022	0.150	0.501	2.00

Project Client: CH2M

Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161,X1 XX.0026.000001

Gient ID		NRSJC-55-5821-0203						
Battelle ID		E2118-FS						
Sample Type		SA						
Collection Date		05/25/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/ MS/ MS						
%Moisture		12.27						
Matrix		90						
Sample Size		4.980						
Sze Unit-Basis		g			Analysis			
Analyte	CASNo	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.502 U	E2118-FS(0)	1,000	6/22/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E2118-FS(0)	1.000	6/22/2022	0,158	0.502	1.00
PFDA	335-76-2	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.159	0.502	1,00
PFUnA	2058-94-8	0.502 U	E2118-FS(0)	1.000	6/22/2022	0,157	0.502	1.00
PFDoA	307-55-1	0.502 U	E2118-FS(0)	1,000	6/22/2022	0.161	0.502	1,00
PFTrDA	72629-94-8	0,502 U	E2118-FS(0)	1.000	6/22/2022	0.162	0,502	1.00
PFTeDA	376-06-7	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.163	0.502	2.01
NMeFOSAA	2355-31-9	0,502 U	E2118-FS(0)	1,000	6/22/2022	0.160	0.502	2.01
NEFOSAA	2991-50-6	0,502 U	E2118-FS(0)	1.000	6/22/2022	0.166	0.502	2,01
PFBS	375-73-5	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.172	0.502	1.00
PFHxS	355-46-4	0,502 U	E2118-FS(0)	1,000	6/22/2022	0.174	0.502	1.00
PFOS .	1763-23-1	0,502 U	E2118-F9(0)	1.000	6/22/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.160	0.502	2.01
Adona	919005-14-4	0,502 U	E2118-FS(0)	1,000	6/22/2022	0.161	0,502	2,01
90-PF3ONS	756426-58-1	0.502 U	E2118-FS(0)	1.000	6/22/2022	0,155	0.502	2.01
110-PF3OUdS	763051-92-9	0.502 U	E2118-FS(0)	1.000	6/22/2022	0.151	0,502	2.01

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161.X1 XX.0026.000001

Client ID		NRSJC-95-SS19-000H						
Battelle ID		E2119-FS						
Sample Type		SA						
Collection Date		05/25/2022						
Extraction Date		06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		17.03						
Matrix		Q						
Sample Size		4,990						
Sze Unit-Basis		9			Analysis			
Analyte	CASNo.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PfHxA	307-24-4	0.501 U	E2119-FS(0)	1,000	6/22/2022	0_178	0.501	1,00
PfHpA	375-85-9	0.501 U	E2119-FS(0)	1.000	6/22/2022	0.168	0.501	1.00
PFOA	335-67-1	0,501 U	E2119-FS(0)	1,000	6/22/2022	0.214	0,501	1,00
PFNA	375-95-1	0,501 U	E2119-FS(0)	1,000	6/22/2022	0,157	0,501	1.00
PFDA	335-76-2	0,501 U	E2119-FS(0)	1,000	6/22/2022	0,158	0,501	1,00
PFUnA	2058-94-8	0,501 U	E2119-FS(0)	1,000	6/22/2022	0,156	0,501	1.00
PFDoA	307-55-1	0.501 U	E2119-FS(0)	1,000	6/22/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E2119-FS(0)	1.000	6/22/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E2119-FS(0)	1,000	6/22/2022	0.162	0,501	2.00
NMeFOSAA	2355-31-9	0,501 U	E2119-FS(0)	1.000	6/22/2022	0,159	0,501	2.00
NELFOSAA	2991-50-6	0.501 U	E2119-FS(0)	1,000	6/22/2022	0,165	0,501	2,00
PFBS	375-73-5	0.501 U	E2119-FS(0)	1.000	6/22/2022	0.171	0,501	1,00
PFHxS	355-46-4	0.501 U	E2119-FS(0)	1.000	6/22/2022	0,173	0,501	1.00
PFOS	1763-23-1	0.501 U	E2119-FS(0)	1.000	6/22/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E2119-FS(0)	1,000	6/22/2022	0,159	0,501	2,00
Adona	919005-14-4	0,501 U	E2119-FS(0)	1.000	6/22/2022	0,160	0.501	2,00
90-PF3ONS	756426-58-1	0,501 U	E2119-FS(0)	1.000	6/22/2022	0,154	0,501	2.00
110-PF3OUdS	763051-92-9	0.501 U	E2119-F9(0)	1,000	6/22/2022	0,150	0,501	2,00

```
Isotope Dilution
```

Analyzed by: Schumitz, Denise Printed: 6/24/2022 ML 7/12/22

Project Client: CH2M Project Name: CTO-4117: Northwest PFASInvestigation Project No.: G25161 X1 XX.0026.000001

Gient ID		NRSJC-55-5518-000H						
Battelle ID Sample Type		E2123-FS						
Collection Date		SA						
Extraction Date		05/25/2022 06/03/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
%Moisture		13.18						
Matrix		90 13:10						
Sample Sze		5 010						
Size Unit-Basis		g			Analysis			
Analyte	CASNo.	Result (ng/g Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHXA	307-24-4	0.499 U	E2123-F9(0)	1.000	6/22/2022	0,178	0.499	0,998
P FH pA	375-85-9	0.499 U	E2123-FS(0)	1.000	6/22/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E2123-FS(0)	1,000	6/22/2022	0,214	0.499	0.998
PFINA	375-95-1	0.499 U	E2123-FS(0)	1.000	6/22/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E2123-FS(0)	1,000	6/22/2022	0.158	0.499	0,998
PFUnA	2058-94-8	0.499 U	E2123-FS(0)	1.000	6/22/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E2123-FS(0)	1,000	6/22/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E2123-FS(0)	1.000	6/22/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E2123-FS(0)	1,000	6/22/2022	0.162	0.499	2,00
NMeFOSAA	2355-31-9	0,499 U	E2123-FS(0)	1,000	6/22/2022	0.159	0.499	2.00
NEIFOSAA	2991-50-6	0,499 U	E2123-FS(0)	1,000	6/22/2022	0.165	0.499	2.00
PFBS	375-73-5	0,499 U	E2123-F9(0)	1,000	6/22/2022	0,171	0,499	0,998
PFHxS	355-46-4	0,499 U	E2123-FS(0)	1,000	6/22/2022	0.173	0.499	0.998
PFOS	1763-23-1	0,499 U	E2123-FS(0)	1.000	6/22/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E2123-FS(0)	1,000	6/22/2022	0,159	0.499	2.00
Adona	919005-14-4	0.499 U	E2123-FS(0)	1,000	6/22/2022	0,160	0.499	2.00
901-PF3ONS	756426-58-1	0.499 U	E2123-FS(0)	1.000	6/22/2022	0,154	0.499	2.00
110-PF3OUdS	763051-92-9	0.499 U	E2123-FS(0)	1,000	6/22/2022	0.150	0.499	2.00

Isotope Dilution

7

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-0980
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	July 30, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-B6-FB01-060922	E2955-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for one aqueous field blank sample collected on June 9, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAŠ	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries

- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.
Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-B6-FB01-060922	None - ND	<u></u>		

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 7/31/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-FB01-060922						
Battelle ID		E2955-FS						
Sample Type		SA						
Collection Date		06/09/2022						
Extraction Date		06/21/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.219						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
								_
PFHxA	307-24-4	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.04	2.85	5.71
PFHpA	375-85-9	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.07	2.85	5.71
PFOA	335-67-1	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.15	2.85	5.71
PFNA	375-95-1	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.951	2.85	5.71
PFDA	335-76-2	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.895	2.85	5.71
PFUnA	2058-94-8	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.858	2.85	5.71
PFDoA	307-55-1	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.868	2.85	5.71
PFTrDA	72629-94-8	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.847	2.85	5.71
PFTeDA	376-06-7	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.903	2.85	5,71
NMeFOSAA	2355-31-9	2.85 U	E2955-F5(0)	1.000	7/11/2022	1.18	2.85	5.71
NEtFOSAA	2991-50-6	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.13	2.85	5.71
PFBS	375-73-5	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.989	2.85	5.71
PFHxS	355-46-4	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.14	2.85	5.71
PFOS	1763-23-1	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.22	2.85	5.71
HFPO-DA	13252-13-6	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.987	2.85	5.71
Adona	919005-14-4	2.85 U	E2955-FS(0)	1.000	7/11/2022	0.992	2.85	5.71
9CI-PF3ON5	756426-58-1	2.85 U	E2955-FS(0)	1.000	7/11/2022	1,18	2.85	5.71
11CI-PF3OUd5	763051-92-9	2.85 U	E2955-FS(0)	1.000	7/11/2022	1.03	2.85	5.71

Analyzed by: Griffith, Lauren Printed: 7/12/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-0981
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	July 30, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-B6-SB01-0102	E2946-FS	Soil
2	NRSJC-B6-SB01-2930	E2947-FS	Soil
2MS	NRSJC-B6-SB01-2930MS	E2948-FSMS	Soil
2MSD	NRSJC-B6-SB01-2930MSD	E2949-FSMSD	Soil
3	NRSJC-B6-SB02-3637	E2950-FS	Soil
4	NRSIC-B6-SS03-000H	E2951-FS	Soil
5	NRSJC-B6-SS03P-000H	E2952-FS	Soil
6	NRSJC-B6-SB03-2930	E2953-FS	Soil
7	NRSIC-B6-SS04-000H	E2954-FS	Soil
8	NRSJC-B6-SB04-2728	E2956-FS	Soil
9	NRSJC-B6-SB04-2930	E2957-FS	Soil

A Stage 2B/4 data validation was performed on the analytical data for nine soil samples collected on June 1-9, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PEAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-B6-FB01-060922	None - ND	122	023	÷

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
5	13C2-PFTeDA	44%	UJ

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are shown below. The precision was acceptable.

Compound	NRSJC-B6-SS03-000H ng/g	NRSJC-B6-SS03P-000H ng/g	RPD	Qualifier
None	ND	ND		H

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 213,122

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SB01-0102						
Battelle ID		E2946-FS						
Sample Type		SA						
Collection Date		06/01/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		17.58						
Matrix		SOIL						
Sample Size		4.990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.318 J	E2946-FS(0)	1.000	7/9/2022	0.178	0.501	1.00
PFHpA	375-85- 9	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.751 J	E2946-FS(0)	1.000	7/9/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E2946-F5(0)	1.000	7/9/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E2946-F5(0)	1.000	7/9/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E2946-FS(0)	1.000	7/9/2022	0.150	0.501	2.00

Ju 7130122 Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NR\$JC-B6-SB01-2930						
Battelle ID		E2947-FS						
Sample Type		SA						
Collection Date		06/02/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		6.44						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E2947-F5(0)	1.000	7/9/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E2947-F5(0)	1.000	7/9/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.160	0.500	2.00
OCI-PF3ONS	756426-58-1	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E2947-FS(0)	1.000	7/9/2022	0.150	0.500	2.00

NW H30122

Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SB02-3637						
Battelle ID		E2950-FS						
Sample Type		SA						
Collection Date		06/03/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		19.41						
Matrix		SOIL						
Sample Size		5.060						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.494 U		1 000	7/0/2022	0.176	0.404	0.000
			E2950-FS(0)	1.000	7/9/2022	0.176	0.494	0.988
PFHpA	375-85-9	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.166	0.494	0.988
PFOA	335-67-1	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.211	0.494	0.988
PFNA	375-95-1	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.155	0.494	0.988
PFDA	335-76-2	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.156	0.494	0.988
PFUnA	2058-94-8	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.154	0.494	0.988
PFDoA	307-55-1	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.158	0.494	0.988
PFTrDA	72629-94-8	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.159	0.494	0.988
PFTeDA	376-06-7	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.160	0.494	1.98
NMeFOSAA	2355-31-9	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.157	0.494	1.98
NEtFOSAA	2991-50-6	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.163	0.494	1.98
PFBS	375-73-5	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.169	0.494	0.988
PFHxS	355-46-4	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.171	0.494	0.988
PFOS	1763-23-1	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.173	0.494	0.988
HFPO-DA	13252-13-6	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.157	0.494	1.98
Adona	919005-14-4	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.158	0.494	1.98
9CI-PF3ONS	756426-58-1	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.152	0.494	1.98
11Cl-PF3OUdS	763051-92-9	0.494 U	E2950-FS(0)	1.000	7/9/2022	0.148	0.494	1.98

NU7130122

Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SS03-000H						
Battelle ID		E2951-FS						
Sample Type		SA						
Collection Date		06/06/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		12,13						
Matrix		SOIL						
Sample Size		4.980						
Size Unit-Basis		ß			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
DELLA	202.04.4				- 10 /0000			
PFHxA	307-24-4	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.163	0.502	2.01
VMeFOSAA	2355-31-9	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.174	0.502	1.00
PFOS	1763-23-1	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.161	0.502	2.01
9CI-PF3ONS	756426-58-1	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.155	0.502	2.01
11Cl-PF3OUdS	763051-92-9	0.502 U	E2951-FS(0)	1.000	7/9/2022	0.151	0.502	2.01

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SS03P-000H							
Battelle ID		E2952-FS							
Sample Type		SA							
Collection Date		06/06/2022							
Extraction Date		06/15/2022							
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS							
% Moisture		12.10							
Matrix		SOIL							
Sample Size		5.010							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.178	0.499	0.998	
PFHpA	375-85-9	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.168	0.499	0.998	
PFOA	335-67-1	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.214	0.499	0.998	
PFNA	375-95-1	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.157	0.499	0.998	
PFDA	335-76-2	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.158	0.499	0.998	
PFUnA	2058-94-8	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.156	0.499	0.998	
PFDoA	307-55-1	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.160	0.499	0.998	
PFTrDA	72629-94-8	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.161	0.499	0.998	
PFTeDA	376-06-7	0.499 y 4 J	E2952-FS(0)	1.000	7/9/2022	0.162	0.499	2.00	SSL
NMeFOSAA	2355-31-9	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.159	0.499	2.00	
NEtFOSAA	2991-50-6	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.165	0.499	2.00	
PFBS	375-73-5	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.171	0.499	0.998	
PFHxS	355-46-4	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.173	0.499	0.998	
PFOS	1763-23-1	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.175	0.499	0.998	
HFPO-DA	13252-13-6	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.159	0.499	2.00	
Adona	919005-14-4	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.160	0.499	2.00	
9CI-PF3ONS	756426-58-1	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.154	0.499	2.00	
11CI-PF3OUdS	763051-92-9	0.499 U	E2952-FS(0)	1.000	7/9/2022	0.150	0.499	2.00	

NW7130122

Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-86-S803-2930						
Battelle ID		E2953-FS						
Sample Type		SA						
Collection Date		06/07/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		15.15						
Matrix		SOIL						
Sample Size		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E2953-FS(0)	1.000	7/9/2022	0,169	0.502	1.00
PFOA	335-67-1	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.163	0.502	2.01
NMeFOSAA	2355-31-9	0.502 U	E2953-FS(0)	1,000	7/9/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.174	0.502	1.00
PFOS	1763-23-1	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E2953-F5(0)	1.000	7/9/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.161	0.502	2.01
9CI-PF3ONS	756426-58-1	0.502 U	E2953-F5(0)	1.000	7/9/2022	0.155	0.502	2.01
11CI-PF3OUdS	763051-92-9	0.502 U	E2953-FS(0)	1.000	7/9/2022	0.151	0.502	2.01

Analyzed by: Schumitz, Denise Printed: 7/12/2022

þ

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026,000001

Client ID		NRSJC-B6-SS04-000H						
Battelle ID		E2954-FS						
Sample Type		SA						
Collection Date		06/08/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sclex 6500+ (AF) LC/MS/MS						
% Moisture		32.94						
Matrix		SOIL						
Sample Size		4.690						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
-!								
PFHxA	307-24-4	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.190	0.533	1.07
PFHpA	375-85-9	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.179	0.533	1.07
PFOA	335-67-1	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.228	0.533	1.07
PFNA	375-95-1	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.167	0.533	1.07
PFDA	335-76-2	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.168	0.533	1.07
PFUnA	2058-94-8	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.166	0.533	1.07
PFDoA	307-55-1	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.171	0.533	1.07
PFTrDA	72629-94-8	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.172	0.533	1.07
PFTeDA	376-06-7	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.173	0.533	2.13
NMeFOSAA	2355-31-9	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.170	0.533	2.13
NEtFOSAA	2991-50-6	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.176	0.533	2.13
PFBS	375-73-5	0.356 J	E2954-FS(0)	1.000	7/9/2022	0.182	0.533	1.07
PFHxS	355-46-4	2.59	E2954-FS(0)	1.000	7/9/2022	0.184	0.533	1.07
PFOS	1763-23-1	0.356 J	E2954-FS(0)	1.000	7/9/2022	0.187	0.533	1.07
HFPO-DA	13252-13-6	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.170	0.533	2.13
Adona	919005-14-4	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.171	0.533	2.13
9CI-PF3ONS	756426-58-1	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.164	0.533	2.13
11CI-PF3OUdS	763051-92-9	0.533 U	E2954-FS(0)	1.000	7/9/2022	0.160	0.533	2.13

New 7130122

Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SB04-2728						
Battelle ID		E2956-FS						
Sample Type		SA						
Collection Date		06/09/2022						
Extraction Date		06/15/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		13.79						
Matrix		SOIL						
Sample Size		4.990						
Size Unit-Basls		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.154	0.501	2.00
11CI-PF3OUdS	763051-92-9	0.501 U	E2956-FS(0)	1.000	7/9/2022	0.150	0.501	2.00

Analyzed by: Schumitz, Denise Printed: 7/12/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-B6-SB04-2930						
Battelle ID		E2957-FS						
Sample Type		SA						
Collection Date		06/09/2022						
Extraction Date		06/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		7.76						
Matrix		SOIL						
Sample Size		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.179	0.502	1.00
РҒНрА	375-85-9	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E2957-F5(0)	1.000	7/9/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.163	0.502	2.01
NMeFOSAA	2355-31-9	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.174	0.502	1.00
PFOS	1763-23-1	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.161	0.502	2.01
9CI-PF3ONS	756426-58-1	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.155	0.502	2.01
11CI-PF3OUdS	763051-92-9	0.502 U	E2957-FS(0)	1.000	7/9/2022	0.151	0.502	2.01

9

Analyzed by: Schumitz, Denise Printed: 7/12/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1021
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	October 12, 2022

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S6-SB10-1415	E3223-FS	Soil				
2	NRSJC-S6-SB10P-1415	E3224-FS	Soil				
3	NRSJC-S6-SB08-3H04	E3226-FS	Soil				
4	NRSJC-S6-SB09-3H05	E3227-FS	Soil				

A Stage 2B/4 data validation was performed on the analytical data for four soil samples collected on June 10 & 15, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning

- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications,

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S6-FB01-061022	None - ND	12	-	-
NRSJC-S6-EB01-061522	None - ND	2 5 1	-	-
NRSJC-S6-FB01-061522	None - ND	1.	-	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S6-SB10-1415 ng/g	NRSJC-S6-SB10P-1415 ng/g	RPD	Qualifier
None	ND	ND		÷.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signedi

<u>Nancy Weaver</u> Dated: 10/12/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161 X1 XX.0026 000001

Client ID		NRSJC-S6-SB10-1415						
Battelle ID		E3223-FS						
Sample Type		SA						
Collection Date		06/10/2022						
Extraction Date		06/21/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		6.76						
Matrix		SOIL						
Sample Size		4.990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract D	DF	Date	DL	LOD	LOQ
1								
PFHxA	307-24-4	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E3223 FS(0)	1.000	7/15/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.165	0,501	2.00
PFBS	375-73-5	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E3223-FS(0)	1,000	7/15/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E3223-F5(0)	1.000	7/15/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E3223-FS(0)	1.000	7/15/2022	0.150	0.501	2.00

W10/12/22

Analyzed by: Schumitz, Denise Printed: 9/20/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

BATTELLE

Client ID

It can be done

Battelle ID		E3224-F5						
Sample Type		SA						
Collection Date		06/10/2022						
Extraction Date		06/21/2022						
Analytical Instrumen	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		6.04						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.214	0.500	1,00
PFNA	375-95-1	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E3224-FS(0)	1,000	7/15/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E3224-F5(0)	1.000	7/15/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E3224-FS(0)	1.000	7/15/2022	0.154	0.500	2.00
11CI-PF3OUds	763051-92-9	0.500 U	E3224-F5(0)	1.000	7/15/2022	0.150	0.500	2.00

NRSJC-S6-S810P-1415

Analyzed by: Schumitz, Denise

ł

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID NRSJC-S6-SB08-3H04 Battelle ID E3226-FS Sample Type SA Collection Date 06/15/2022 Extraction Date 06/21/2022 Analytical Instrument Sciex 6500+ (AF) LC/MS/MS % Moisture 6.27 Matrix SOIL Sample Size 4.970 Size Unit-Basis g Analysis Analyte CAS No. Result (ng/g_Dry) Extract ID DF Date DL LOD LOQ PFHxA 307-24-4 0.503 U E3226-FS(0) 1.000 7/15/2022 0.179 0.503 1.01 PFHpA 375-85-9 0.503 U E3226-FS(0) 1.000 7/15/2022 0.169 0.503 1.01 E3226-FS(0) PFOA 335-67-1 0.503 U 1.000 7/15/2022 0.215 0.503 1.01 PFNA 375-95-1 0.503 U E3226-FS(0) 1.000 7/15/2022 0.158 0.503 1.01 PFDA 335-76-2 0.503 U E3226-FS(0) 1.000 7/15/2022 0,159 0.503 1.01 **PFUnA** 2058-94-8 0.503 U E3226-FS(0) 0.503 1.01 1.000 7/15/2022 0.157 PFDoA 307-55-1 0.503 U E3226-FS(0) 1.000 7/15/2022 0.161 0.503 1.01 PFTIDA 72629-94-8 0.503 U E3226-FS(0) 1/15/2022 1.000 0.162 0.503 1.01 PFTeDA 376-06-7 E3226-FS(0) 0.503 U 1.000 7/15/2022 0.163 0.503 2.01 NMeFOSAA 2355-31-9 0.503 U E3226-FS(0) 1.000 7/15/2022 0.160 0.503 2.01 NEtFOSAA 2991-50-6 0.503 U E3226-FS(0) 7/15/2022 0.503 1.000 0.166 2.01 PFBS 375-73-5 0.503 U E3226-FS(0) 0.503 1.000 7/15/2022 0.172 1.01 PFHxS 355-46-4 0.503 U E3226-FS(0) 1.000 7/15/2022 0.174 0.503 1.01 PFOS 1763-23-1 0.503 U E3226-FS(0) 1.000 7/15/2022 0.503 1.01 0.176 HFPO-DA 13252-13-6 0.503 U E3226-FS(0) 0.503 1.000 7/15/2022 0.160 2 01 Adona 919005-14-4 0.503 U E3226-F5(0) 1.000 7/15/2022 0.161 0.503 2.01 9CI-PF3ONS 756426-58-1 0.503 U E3226-FS(0) 1.000 7/15/2022 0.155 0.503 2.01 11CI-PF3OUd5 763051-92-9 0.503 U E3226-FS(0) 1.000 7/15/2022 0.151 0.503 2.01

NW 10/12/22

Analyzed by: Schumitz, Denise Printed: 9/20/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S6-SB09-3H05						
Battelle ID		E3227-FS						
Sample Type		SA						
Collection Date		06/15/2022						
Extraction Date		06/21/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		8.61						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.156	0.500	1.00
PFDoA	307-55-1	0,500 U	E3227-FS(0)	1.000	7/15/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E3227-F5(0)	1.000	7/15/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0,500 U	E3227-FS(0)	1.000	7/15/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E3227-FS(0)	1.000	7/15/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E3227-F5(0)	1.000	7/15/2022	0.150	0.500	2.00

Analyzed by: Schumitz, Denise Printed: 9/20/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1022
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 8, 2022

PFAS									
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1	NRSIC-S6-FB01-061022	E3225-FS	Water						
2	NRSJC-S6-EB01-061522	E3228-FS	Water						
3	NRSJC-S6-FB01-061522	E3229-FS	Water						

A Stage 2B/4 data validation was performed on the analytical data for one aqueous equipment blank sample and two aqueous field blank samples collected on June 10-15, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning

- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were not qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S6-FB01-061022	None - ND	-		-
NRSJC-S6-EB01-061522	None - ND			÷
NRSJC-S6-FB01-061522	None - ND			-

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All samples were inadvertently double spiked with internal standards. No action was taken by the reviewer.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 8/8/22 Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S6-FB01-061022						
Battelle ID		E3225-FS						
Sample Type		SA						
Collection Date		06/10/2022						
Extraction Date		06/21/2022						
Analytical Instrumen	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0,268						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.852	2.33	4.65
PFHpA	375-85-9	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.878	2.33	4.66
PFOA	335-67-1	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.942	2.33	4.66
PFNA	375-95-1	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.777	2.33	4.66
PFDA	335-76-2	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.731	2.33	4.66
PFUnA	2058-94-8	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.701	2.33	4.66
PFDoA	307-55-1	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.709	2.33	4,66
PFTrDA	72629-94-8	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.692	2.33	4.66
PFTeDA	376-06-7	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.738	2,33	4.66
NMeFOSAA	2355-31-9	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.961	2.33	4.66
NEtFOSAA	2991-50-6	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.924	2.33	4.66
PFBS	375-73-5	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.808	2.33	4.66
PFHxS	355-46-4	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.930	2.33	4.66
PFOS	1763-23-1	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.998	2.33	4.66
HFPO-DA	13252-13-6	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.807	2.33	4.66
Adona	919005-14-4	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.811	2.33	4.66
9CI-PF3ONS	756426-58-1	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.961	2,33	4.66
11Cl-PF3OUdS	763051-92-9	2.33 U	E3225-FS(0)	1.000	7/15/2022	0.840	2.33	4.66

W 8/8/22

Client ID

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

enentie								
Battelle ID		E3228-FS						
Sample Type		SA						
Collection Date		06/15/2022						
Extraction Date		06/21/2022						
Analytical Instrument	t	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.275						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.830	2.27	4.55
PFHpA	375-85-9	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.855	2.27	4.55
PFOA	335-67-1	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.918	2.27	4.55
PFNA	375-95-1	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.757	2.27	4.55
PFDA	335-76-2	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.713	2.27	4.55
PFUnA	2058-94-8	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.684	2.27	4.55
PFDoA	307-55-1	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.691	2.27	4.55
PFTrDA	72629-94-8	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.675	2.27	4.55
PFTeDA	376-06-7	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.719	2.27	4.55
NMeFOSAA	2355-31-9	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.936	2.27	4.55
NEtFOSAA	2991-50-6	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.900	2.27	4,55
PFBS	375-73-5	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.787	2.27	4.55
PFHxS	355-46-4	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.906	2.27	4.55
PFOS	1763-23-1	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.973	2.27	4.55
HFPO-DA	13252-13-6	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.786	2.27	4.55
Adona	919005-14-4	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.790	2.27	4.55
9CI-PF3ONS	756426-58-1	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.936	2.27	4,55
11CI-PF3OUdS	763051-92-9	2.27 U	E3228-FS(0)	1.000	7/15/2022	0.819	2.27	4.55

NRSJC-S6-EB01-061522

MJ 88222 Analyzed by: Bailey, Kevin Printed: 7/22/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S6-FB01-061522						
Battelle ID		E3229-FS						
Sample Type		SA						
Collection Date		06/15/2022						
Extraction Date		06/21/2022						
Analytical Instrumen	t	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.248						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	ŁOQ
PFHxA	307-24-4	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.920	2.52	5.04
PFHpA	375-85-9	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.949	2.52	5.04
PFOA	335-67-1	2.52 U	E3229-FS(0)	1.000	7/15/2022	1.02	2.52	5.04
PFNA	375-95-1	2.52 U	E3229-F5(0)	1.000	7/15/2022	0.840	2.52	5.04
PFDA	335-76-2	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.790	2.52	5.04
PFUnA	2058-94-8	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.758	2.52	5.04
PFDoA	307-55-1	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.766	2.52	5.04
PFTrDA	72629-94-8	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.748	2.52	5.04
PFTeDA	376-06-7	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.797	2.52	5.04
NMeFOSAA	2355-31-9	2.52 U	E3229-FS(0)	1.000	7/15/2022	1.04	2.52	5.04
NEtFOSAA	2991-50-6	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.998	2.52	5.04
PFBS	375-73-5	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.873	2.52	5.04
PFHxS	355-46-4	2.52 U	E3229-FS(0)	1.000	7/15/2022	1.01	2.52	5.04
PFOS	1763-23-1	2.52 U	E3229-FS(0)	1.000	7/15/2022	1.08	2.52	5.04
HFPO-DA	13252-13-6	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.872	2.52	5.04
Adona	919005-14-4	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.876	2.52	5.04
9CI-PF3ONS	756426-58-1	2.52 U	E3229-FS(0)	1.000	7/15/2022	1.04	2.52	5.04
11CI-PF3OUdS	763051-92-9	2.52 U	E3229-FS(0)	1.000	7/15/2022	0.908	2.52	5.04

Analyzed by: Bailey, Kevin Printed: 7/22/2022

3

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1048
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 8, 2022

PFAS				
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix	
1	NRSJC-S1-EB01-061722	E3398-FS	Water	
2	NRSJC-S1-FB01-062122	E3399-FS	Water	
3	NRSJC-S1-FB01-061722	E3400-FS	Water	

A Stage 2B/4 data validation was performed on the analytical data for one aqueous equipment blank sample and two aqueous field blank samples collected on June 17-21, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were not qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSIC-S1-EB01-061722	None - ND	(4)		¥
NRSJC-S1-FB01-062122	None - ND			2
NRSJC-S1-FB01-061722	None - ND	14	(2)	4

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Senior Chemist

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nanypleaver Dated: 8125122 Nancy Weaver

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

١

Client ID		NRSJC-51-EB01-061722						
Battelle ID		E3398-FS						
Sample Type		SA						
Collection Date		06/17/2022						
Extraction Date		06/29/2022						
Analytical Instrumen	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.256						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.892	2.44	4.88
PFHpA	375-85-9	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.919	2.44	4.88
PFOA	335-67-1	2,44 U	E3398-FS(0)	1.000	7/21/2022	0.986	2.44	4,88
PFNA	375-95-1	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.813	2.44	4.88
PFDA	335-76-2	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.766	2.44	4.88
PFUnA	2058-94-8	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.734	2.44	4.88
PFDoA	307-55-1	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.742	2.44	4.88
PFTrDA	72629-94-8	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.725	2.44	4.88
PFTeDA	376-06-7	2.44 U	E3398-F5(0)	1.000	7/21/2022	0.772	2.44	4.88
NMeFOSAA	2355-31-9	2.44 U	E3398-FS(0)	1.000	7/21/2022	1.01	2.44	4.88
NEtFOSAA	2991-50-6	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.967	2.44	4.88
PFBS	375-73-5	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.846	2.44	4.88
PFHxS	355-46-4	2.44 U	E3398-FS(0)	1.000	7/21/2022	0,974	2.44	4.88
PFOS	1763-23-1	2.44 U	E3398-F5(0)	1.000	7/21/2022	1.04	2.44	4.88
HFPO-DA	13252-13-6	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.845	2.44	4.88
Adona	919005-14-4	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.849	2.44	4.88
9CI-PF3ONS	756426-58-1	2.44 U	E3398-FS(0)	1.000	7/21/2022	1.01	2.44	4.88
11CI-PF3OUdS	763051-92-9	2.44 U	E3398-FS(0)	1.000	7/21/2022	0.880	2.44	4.88

Client ID		NRSJC-S						
Battelle ID		E3399-F\$						
Sample Type		SA						
Collection Date		06/21/2022						
Extraction Date		06/29/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.245						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.932	2.55	5.10
PFHpA	375-85-9	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.960	2.55	5.10
PFOA	335-67-1	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.03	2.55	5.10
PFNA	375-95-1	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.850	2.55	5.10
PFDA	335-76-2	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.800	2.55	5.10
PFUnA	2058-94-8	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.767	2.55	5.10
PFDoA	307-55-1	2.55 V	E3399-FS(0)	1.000	7/21/2022	0.776	2.55	5.10
PFTrDA	72629-94-8	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.757	2.55	5.10
PFTeDA	376-06-7	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.807	2.55	5.10
NMeFOSAA	2355-31-9	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.05	2.55	5.10
NEtFOSAA	2991-50-6	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.01	2.55	5.10
PFBS	375-73-5	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.884	2.55	5.10
PFHxS	355-46-4	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.02	2.55	5.10
PFOS	1763-23-1	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.09	2.55	5.10
HFPO-DA	13252-13-6	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.883	2.55	5.10
Adona	919005-14-4	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.887	2.55	5.10
9CI-PF3ONS	756426-58-1	2.55 U	E3399-FS(0)	1.000	7/21/2022	1.05	2.55	5.10
11CI-PF3OUdS	763051-92-9	2.55 U	E3399-FS(0)	1.000	7/21/2022	0.919	2.55	5.10

NW 8125122

Analyzed by: Harnden, Kelsey Printed: 7/27/2022

2

3

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S1-FB01-061722						
Battelle ID		E3400-FS						
Sample Type		SA						
Collection Date		06/17/2022						
Extraction Date		06/29/2022						
Analytical Instrumen	t	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.245						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.932	2.55	5.10
PFHpA	375-85-9	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.960	2.55	5.10
PFOA	335-67-1	2.55 U	E3400-FS(0)	1,000	7/21/2022	1.03	2.55	5.10
PFNA	375-95-1	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.850	2.55	5.10
PFDA	335-76-2	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.800	2.55	5.10
PFUnA	2058-94-8	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.767	2.55	5.10
PFDoA	307-55-1	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.776	2.55	5.10
PFTrDA	72629-94-8	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.757	2.55	5.10
PFTeDA	376-06-7	2,55 U	E3400-FS(0)	1.000	7/21/2022	0.807	2,55	5.10
NMeFOSAA	2355-31-9	2.55 U	E3400-FS(0)	1.000	7/21/2022	1.05	2.55	5.10
NEtFOSAA	2991-50-6	2,55 U	E3400-FS(0)	1.000	7/21/2022	1.01	2.55	5.10
PFBS	375-73-5	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.884	2.55	5.10
PFHxS	355-46-4	2.55 U	E3400-F5(0)	1,000	7/21/2022	1.02	2.55	5.10
PFOS	1763-23-1	2.55 U	E3400-FS(0)	1.000	7/21/2022	1.09	2.55	5.10
HFPO-DA	13252-13-6	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.883	2,55	5.10
Adona	919005-14-4	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.887	2.55	5.10
9CI-PF3ONS	756426-58-1	2.55 U	E3400-FS(0)	1.000	7/21/2022	1.05	2.55	5.10
11Cl-PF3OUdS	763051-92-9	2.55 U	E3400-FS(0)	1.000	7/21/2022	0.919	2,55	5.10

Analyzed by: Harnden, Kelsey Printed: 7/27/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1049
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S1-SB06-0708	E3401-FS	Soil				
1MS	NRSJC-S1-SB06-0708MS	E3402-FSMS	Soil				
1MSD	NRSJC-S1-SB06-0708MSD	E3403-FSMSD	Soil				
2	NRSJC-S1-SB07-0304	E3404-FS	Soil				
3	NRSJC-S1-SB05-3H4H	E3405-FS	Soil				
4	NRSJC-S1-SB06-2526	E3406-FS	Soil				

A Stage 2B/4 data validation was performed on the analytical data for four soil samples collected on June 16-21, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications,

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 28 days for soil samples and analyzed within 30 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S1-EB01-061722	None - ND	-	(3)	
NRSJC-S1-FB01-061722	None - ND	8	(14)	-
NRSJC-S1-FB01-062122	None - ND	-	191	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

١

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S1-SB06-0708						
Battelle ID		E3401-FS						
Sample Type		SA						
Collection Date		06/20/2022						
Extraction Date		06/29/2022						
Analytical Instrumen	t	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		29,36						
Matrix		SO						
Sample Size		4.940						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.180	0,506	1.01
PFHpA	375-85-9	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.170	0.506	1.01
PFOA	335-67-1	0.506 U	E3401-FS(0)	1.000	7/21/2022	0,217	0.506	1.01
PFNA	375-95-1	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.159	0.506	1.01
PFDA	335-76-2	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.160	0.506	1.01
PFUnA	2058-94-8	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.158	0.506	1.01
PFDoA	307-55-1	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.162	0.506	1.01
PFTrDA	72629-94-8	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.163	0.506	1.01
PFTeDA	376-06-7	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.164	0,506	2.02
NMeFOSAA	2355-31-9	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.161	0.506	2.02
NEtFOSAA	2991-50-6	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.167	0.506	2.02
PFBS	375-73-5	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.173	0.506	1.01
PFHxS	355-46-4	0,506 U	E3401-FS(0)	1.000	7/21/2022	0.175	0.506	1.01
PFOS	1763-23-1	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.177	0.506	1.01
HFPO-DA	13252-13-6	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.161	0.506	2.02
Adona	919005-14-4	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.162	0.506	2.02
9CI-PF3ONS	756426-58-1	0.506 U	E3401-F5(0)	1.000	7/21/2022	0.156	0.506	2.02
11Cl-PF3OUdS	763051-92-9	0.506 U	E3401-FS(0)	1.000	7/21/2022	0.152	0.506	2.02

Analyzed by: Bailey, Kevin Printed: 10/17/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S1-SB07-0304						
Battelle ID		E3404-FS						
Sample Type		SA						
Collection Date		06/17/2022						
Extraction Date		06/29/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		30.27						
Matrix		SO						
Sample Size		4.870						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.183	0.513	1.03
PFHpA	375-85-9	0.513 U	E3404-F5(0)	1.000	7/21/2022	0.172	0.513	1.03
PFOA	335-67-1	0.513 U	E3404-FS(0)	1,000	7/21/2022	0.220	0.513	1.03
PFNA	375-95-1	0.513 V	E3404-FS(0)	1.000	7/21/2022	0.161	0.513	1.03
PFDA	335-76-2	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.162	0.513	1.03
PFUnA	2058-94-8	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.160	0.513	1.03
PFDoA	307-55-1	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.164	0,513	1.03
PFTrDA	72629-94-8	0.513 U	E3404-F5(0)	1.000	7/21/2022	0.165	0.513	1.03
PFTeDA	376-06-7	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.166	0,513	2.05
NMeFOSAA	2355-31-9	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.163	0.513	2.05
NEtFOSAA	2991-50-6	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.169	0.513	2.05
PFBS	375-73-5	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.176	0.513	1.03
PFHxS	355-46-4	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.178	0.513	1.03
PFOS	1763-23-1	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.180	0.513	1.03
HFPO-DA	13252-13-6	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.163	0.513	2.05
Adona	919005-14-4	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.164	0.513	2.05
9CI-PF3ONS	756426-58-1	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.158	0.513	2.05
11Cl-PF3OUdS	763051-92-9	0.513 U	E3404-FS(0)	1.000	7/21/2022	0.154	0.513	2.05

NWIZ	16	22
Analyzed by:	Bailey	y, Kevin
Printed: 1	0/17/	2022

Client ID		NRSJC-S1-SB05-3H4H						
Battelle ID		E3405-FS						
Sample Type		SA						
Collection Date		06/16/2022						
Extraction Date		06/29/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		30.04						
Matrix		SO						
Sample Size		4.870						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.513 U	E3405-FS(0)	1,000	7/21/2022	0.183	0.513	1.03
PFHpA	375-85-9	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.172	0.513	1.03
PFOA	335-67-1	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.220	0,513	1.03
PFNA	375-95-1	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.161	0.513	1.03
PFDA	335-76-2	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.162	0.513	1.03
PFUnA	2058-94-8	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.160	0.513	1.03
PFDoA	307-55-1	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.164	0.513	1.03
PFTrDA	72629-94-8	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.165	0.513	1.03
PFTeDA	376-06-7	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.166	0.513	2.05
NMeFOSAA	2355-31-9	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.163	0.513	2.05
NEtFOSAA	2991-50-6	0.513 U	E3405-FS(0)	1,000	7/21/2022	0.169	0.513	2.05
PFBS	375-73-5	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.176	0.513	1.03
PFHxS	355-46-4	0.513 U	E3405-F5(0)	1.000	7/21/2022	0.178	0.513	1.03
PFOS	1763-23-1	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.180	0.513	1.03
HFPO-DA	13252-13-6	0,513 U	E3405-FS(0)	1.000	7/21/2022	0.163	0.513	2.05
Adona	919005-14-4	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.164	0.513	2.05
9CI-PF3ONS	756426-58-1	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.158	0.513	2.05
11CI-PF3OUdS	763051-92-9	0.513 U	E3405-FS(0)	1.000	7/21/2022	0.154	0.513	2.05

3

Mi 2(16(22 Analyzed by: Bailey, Kevin Printed: 10/17/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161,X1,XX.0026.000001

Client ID		NRSJC-S1-SB06-2526						
Battelle ID		E3406-FS						
Sample Type		SA						
Collection Date		06/21/2022						
Extraction Date		06/29/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		10.14						
Matrix		SO						
Sample Size		4,990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	ÐL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E3406-F5(0)	1.000	7/21/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E3406-FS(0)	1.000	7/21/2022	0,160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E3406-FS(0)	1,000	7/21/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E3406-FS(0)	1,000	7/21/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E3406-FS(0)	1.000	7/21/2022	0.150	0.501	2.00

4

W12/16/22 Analyzed by: Bailey, Kevin Printed: 10/17/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1081
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 15, 2022

PFAS								
EDS ID Client Sample ID		Laboratory Sample ID	Matrix					
1	NRSIC-S5-SB18-1415	E3552-FS	Soil					
2	NRSJC-S5-SB18P-1415	E3553-FS	Soil					
3	NRSJC-S5-SB16-1314	E3554-FS	Soil					
4	NRSJC-S5-SB19-1011	E3555-FS	Soil					
5	NRSJC-S5-SB18-0708	E3556-FS	Soil					

A Stage 2B/4 data validation was performed on the analytical data for five soil samples collected on June 22-27, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times

- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were not qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S5-FB01-062322	None - ND	-	-	21
NRSJC-S5-FB01-062722	None - ND	-	-	2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are shown below. The precision was acceptable.

Compound	NRSJC-S5-SB18-1415 ng/g	NRSJC-S5-SB18P-1415 ng/g	RPD	Qualifier
None	ND	ND	2	1.5

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 8/15/22 Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRSJC-S5-SB18-1415						
Battelle ID		E3552-FS						
Sample Type		SA						
Collection Date		06/22/2022						
Extraction Date		07/01/2022						
Analytical Instrument	:	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		9.80						
Matrix		SO						
Sample Size		5.020						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.177	0.498	0.996
PFHpA	375-85-9	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.167	0.498	0.996
PFOA	335-67-1	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.213	0.498	0,996
PFNA	375-95-1	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.156	0.498	0.996
PFDA	335-76-2	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.157	0.498	0.996
PFUnA	2058-94-8	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.155	0.498	0.996
PFDoA	307-55-1	0.498 U	E3552-FS(0)	1,000	7/27/2022	0.159	0.498	0.996
PFTrDA	72629-94-8	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.160	0.498	0.996
PFTeDA	376-06-7	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.161	0.498	1.99
MeFOSAA	2355-31-9	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.158	0.498	1.99
NELFOSAA	2991-50-6	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.164	0.498	1.99
PFBS	375-73-5	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.170	0.498	0.996
PFHxS	355-46-4	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.172	0.498	0.996
PFOS	1763-23-1	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.174	0.498	0.996
HFPO-DA	13252-13-6	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.158	0.498	1.99
Adona	919005-14-4	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.159	0.498	1.99
OCI-PF3ONS	756426-58-1	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.153	0.498	1.99
11Cl-PF3OUdS	763051-92-9	0.498 U	E3552-FS(0)	1.000	7/27/2022	0.149	0.498	1.99

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

Client ID		NRSJC-S5-SB18P-1415						
Battelle ID		E3553-FS						
Sample Type		SA						
Collection Date		06/22/2022						
Extraction Date		07/01/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		8.92						
Matrix		SO						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
					_ / /			
PFHxA	307-24-4	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.214	0.499	0.998
PFNA	375-95-1	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.159	0.499	2.00
NEtFOSAA	2991-50-6	0.499 U	E3553-FS(0)	1,000	7/27/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.160	0.499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.154	0.499	2.00
11CI-PF3OUdS	763051-92-9	0.499 U	E3553-FS(0)	1.000	7/27/2022	0.150	0.499	2.00

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

ē.

2

Client ID		NRSJC-S5-SB16-1314						
Battelle ID		E3554-F5						
Sample Type		SA						
Collection Date		06/27/2022						
Extraction Date		07/01/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/M5						
% Moisture		8.41						
Matrix		SO						
Sample Size		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
0.011.4								
PFHxA	307-24-4	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E3554-F5(0)	1.000	7/27/2022	0,162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.163	0.502	2.01
NMeFOSAA	2355-31-9	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.174	0.502	1.00
PFOS	1763-23-1	0.502 U	E3554-F5(0)	1.000	7/27/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.161	0.502	2.01
9CI-PF3ONS	756426-58-1	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.155	0.502	2.01
11CI-PF3OUdS	763051-92-9	0.502 U	E3554-FS(0)	1.000	7/27/2022	0.151	0.502	2.01

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

3

Client ID		NRSJC-S5-SB19-1011						
Battelle ID		E3555-FS						
Sample Type		SA						
Collection Date		06/23/2022						
Extraction Date		07/01/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		4.73						
Matrix		SO						
Sample Size		5.090						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.491 U	E3555 55(0)	1 000	7/27/2022	0.175	0.401	0.000
			E3555-FS(0)	1.000	7/27/2022	0.175	0.491	0.982
PFHpA PFOA	375-85-9 335-67-1	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.165	0.491	0.982
PFOA	335-67-1 375-95-1	0.491 U 0.491 U	E3555-FS(0)	1.000	7/27/2022	0.210	0.491	0,982
PFDA	335-76-2		E3555-FS(0)	1.000	7/27/2022	0.154	0.491	0.982
PFUnA	2058-94-8	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.155	0.491	0.982
PFURA	2058-94-8	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.153	0.491	0.982
PFDOA PFTrDA	72629-94-8	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.157	0.491	0.982
PFTeDA		0.491 U	E3555-FS(0)	1.000	7/27/2022	0.158	0.491	0.982
NMeFOSAA	376-06-7	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.159	0.491	1.96
NIMEFOSAA	2355-31-9	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.156	0.491	1.96
PFBS	2991-50-6 375-73-5	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.162	0.491	1.96
PFHxS	355-46-4	0.491 U	E3555-FS(0)	1.000	7/27/2022	0.168	0.491	0.982
PFOS	1763-23-1	0.491 U 0.491 U	E3555-FS(0)	1.000	7/27/2022	0.170	0.491 0.491	
HFPO-DA	13252-13-6		E3555-FS(0)		7/27/2022			0.982
Adona	919005-14-4	0.491 U 0.491 U	E3555-FS(0)	1.000	7/27/2022	0.156	0.491	1.96 1.96
Adona 9CI-PF3ONS	756426-58-1	0.491 U 0.491 U	E3555-FS(0)	1.000	7/27/2022	0.157	0.491	
11CI-PF3OUdS	763051-92-9	0.491 U	E3555-FS(0)		7/27/2022	0.151	0.491	1.95
110-220003	/03031-92-9	0.491 0	E3555-FS(0)	1.000	7/27/2022	0.147	0.491	1.96

4

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

Client ID		NRSJC-S5-SB18-0708						
Battelle ID		E3556-F\$						
Sample Type		SA						
Collection Date		06/22/2022						
Extraction Date		07/01/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		6.23						
Matrix		SO						
Sample Size		4.890						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
DELLA	207.04.4				- / /			
PFHxA	307-24-4	0,511 U	E3556-FS(0)	1.000	7/27/2022	0.182	0.511	1.02
PFHpA	375-85-9	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.172	0.511	1.02
PFOA	335-67-1	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.219	0.511	1.02
PFNA	375-95-1	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.161	0.511	1.02
PFDA	335-76-2	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.162	0.511	1.02
PFUnA	2058-94-8	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.160	0.511	1.02
PFDoA	307-55-1	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.164	0.511	1.02
PFTrDA	72629-94-8	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.165	0.511	1.02
PFTeDA	376-06-7	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.166	0.511	2.04
NMeFOSAA	2355-31-9	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.163	0.511	2.04
NEtFOSAA	2991-50-6	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.169	0.511	2.04
PFBS	375-73-5	0.511 U	E3556-FS(0)	1.000	7/27/2022	0,175	0.511	1.02
PFHxS	355-46-4	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.177	0.511	1.02
PFOS	1763-23-1	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.179	0.511	1.02
HFPO-DA	13252-13-6	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.163	0.511	2.04
Adona	919005-14-4	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.164	0.511	2.04
PCI-PF3ONS	756426-58-1	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.157	0.511	2.04
11Cl-PF3OUdS	763051-92-9	0.511 U	E3556-FS(0)	1.000	7/27/2022	0.153	0.511	2.04

5

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1082
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 15, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S5-FB01-062322	E3557-FS	Water
2	NRSJC-S5-FB01-062722	E3558-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for two aqueous field blank samples collected on June 23-27, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination

- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S5-FB01-062322	None - ND	1712	-	
NRSJC-S5-FB01-062722	None - ND	1.00	-	

Surrogate Spike Recoveries

• All samples exhibited surrogate recoveries either at 0% or very low. All compounds were qualified as estimated (UJ) using professional judgement since they're field blank samples. Both samples were re-extracted and reanalyzed in SDG 22-1321.

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R) except for the following.

LCS ID	Compound	%R	Qualifier	Affected Samples
DI980LCS-FS	PFHxS	155%	None	All Associated ND

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver

Dated: 8/15122

Nancy Weaver Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

1

Client ID		NRSJC-S5-FB01-062322							
Battelle ID		E3557-FS							
Sample Type		SA							
Collection Date		06/23/2022							
Extraction Date		07/05/2022							
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS							
% Moisture		NA							
Matrix		AQ							
Sample Size		0.245							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
									·
PFHxA	307-24-4	2.55 4	AJ E3557-FS(0)	1.000	7/27/2022	0.932	2.55	5.10	SSL
PFHpA	375-85-9	2.55 U	E3557-FS(0)	1.000	7/27/2022	0.960	2,55	5.10	
PFOA	335-67-1	2.55 U	E3557-FS(0)	1.000	7/27/2022	1.03	2.55	5.10	
PFNA	375-95-1	2.55 L	E3557-FS(0)	1.000	7/27/2022	0.850	2.55	5.10	
PFDA	335-76-2	2,55 U	E3557-FS(0)	1.000	7/27/2022	0.800	2.55	5.10	
PFUnA	2058-94-8	2.55 U	E3557-FS(0)	1.000	7/27/2022	0.767	2.55	5.10	
PFDoA	307-55-1	2.55 🔱	E3557-FS(0)	1.000	7/27/2022	0.776	2.55	5.10	
PFTrDA	72629-94-8	2.55 🔱	E3557-FS(0)	1.000	7/27/2022	0.757	2.55	5.10	
PFTeDA	376-06-7	2.55 🗸	E3557-FS(0)	1.000	7/27/2022	0.807	2.55	5.10	
NMeFOSAA	2355-31-9	2.55 U	E3557-FS(0)	1.000	7/27/2022	1.05	2.55	5.10	
NEtFOSAA	2991-50-6	2.55 U	E3557-FS(0)	1.000	7/27/2022	1.01	2.55	5.10	
PFBS	375-73-5	2.55 J	E3557-FS(0)	1.000	7/27/2022	0.884	2.55	5.10	
PFHxS	355-46-4	2.55 U	E3557-FS(0)	1.000	7/27/2022	1.02	2.55	5.10	
PFOS	1763-23-1	2.55	E3557-FS(0)	1.000	7/27/2022	1.09	2.55	5.10	
HFPO-DA	13252-13-6	2.55	E3557-FS(0)	1.000	7/27/2022	0,883	2.55	5.10	
Adona	919005-14-4	2.55	E3557-FS(0)	1.000	7/27/2022	0.887	2.55	5.10	
9CI-PF3ONS	756426-58-1	2.55 🖞	E3557-FS(0)	1.000	7/27/2022	1.05	2.55	5.10	
11CI-PF3OUdS	763051-92-9	2.55 U	+ E3557-FS(0)	1.000	7/27/2022	0.919	2.55	5.10	4

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID	NRSJC-S5-FB01-062322
Battelle ID	E3557-FS
Sample Type	SA
Collection Date	06/23/2022
Extraction Date	07/05/2022
Analytical Instrument	Sclex 6500+ (AF) LC/MS/MS

			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	10 🕅	E3557-FS(0)	7/27/2022	
13C4-PFHpA	11 N	E3557-FS(0)	7/27/2022	
13C8-PFOA	11 N	E3557-FS(0)	7/27/2022	
13C9-PFNA	13 N	E3557-FS(0)	7/27/2022	
13C6-PFDA	14 N	E3557-FS(0)	7/27/2022	
13C7-PFUnA	11 N	E3557-FS(0)	7/27/2022	
13C2-PFDoA	10 N	E3557-FS(0)	7/27/2022	
13C2-PFTeDA	8 N	E3557-FS(0)	7/27/2022	
d3-MeFOSAA	4 N	E3557-FS(0)	7/27/2022	
d5-EtFOSAA	3 N	E3557-FS(0)	7/27/2022	
13C3-PFBS	2 1	E3557-FS(0)	7/27/2022	
13C3-PFHxS	3 /	E3557-FS(0)	7/27/2022	
13C8-PFOS	4 1	E3557-FS(0)	7/27/2022	
13C3-HFPO-DA	12 1	E3557-FS(0)	7/27/2022	

1

Client ID		NRSJC-S5-FB01-062722							
Battelle ID		E3558-FS							
Sample Type		SA							
Collection Date		06/27/2022							
Extraction Date		07/05/2022							
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS							
% Molsture		NA							
Matrix		AQ							
Sample Size		0.252							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
		-270	1						
PFHxA	307-24-4	2.48 🌵 🛵		1.000	7/27/2022	0,906	2.48	4.96	S
PFHpA	375-85-9	2.48 4	E3558-F5(0)	1.000	7/27/2022	0.934	2.48	4.96	
PFOA	335-67-1	2.48	E3558-FS(0)	1.000	7/27/2022	1.00	2.48	4.96	
PFNA	375-95-1	2.48 U	E3558-FS(0)	1.000	7/27/2022	0.826	2.48	4.96	
PFDA	335-76-2	2.48 4	E3558-FS(0)	1.000	7/27/2022	0.778	2,48	4.96	
PFUnA	2058-94-8	2.48 🖞	E3558-FS(0)	1.000	7/27/2022	0.746	2.48	4.96	
PFDoA	307-55-1	2.48 🗸	E3558-F5(0)	1.000	7/27/2022	0.754	2.48	4.96	
PFTrDA	72629-94-8	2.48 U	E3558-FS(0)	1.000	7/27/2022	0.736	2.48	4.96	
PFTeDA	376-06-7	2.48 🗸	E3558-FS(0)	1.000	7/27/2022	0.785	2.48	4.96	
NMeFOSAA	2355-31-9	2.48 🗸	E3558-FS(0)	1.000	7/27/2022	1.02	2.48	4.96	
NEtFOSAA	2991-50-6	2.48 U	E3558-FS(0)	1.000	7/27/2022	0.982	2.48	4.96	
PFBS	375-73-5	2.48	E3558-FS(0)	1.000	7/27/2022	0.859	2.48	4.96	
PFHxS	355-46-4	2.48 🔱	E3558-FS(0)	1.000	7/27/2022	0.989	2.48	4.96	
PFOS	1763-23-1	2.48 🛡	E3558-FS(0)	1.000	7/27/2022	1.05	2.48	4.96	
HFPO-DA	13252-13-6	2.48 🗸	E3558-FS(0)	1.000	7/27/2022	0.858	2.48	4.96	
Adona	919005-14-4	2.48 U	E3558-FS(0)	1.000	7/27/2022	0.862	2.48	4.96	
9CI-PF3ONS	756426-58-1	2.48 U	E3558-FS(0)	1.000	7/27/2022	1.02	2.48	4.96	
11CI-PF3OUdS	763051-92-9	2.48 U	E3558-FS(0)	1.000	7/27/2022	0.894	2.48	4.96	

2

Analyzed by: Harnden, Kelsey Printed: 8/4/2022

Client ID	NRSJC-S5-FB01-062722
Battelle ID	E3558-FS
Sample Type	SA
Collection Date	06/27/2022
Extraction Date	07/05/2022
Analytical Instrument	Sciex 6500+ (AF) LC/MS/MS

Surrogate Recoveries (%)	Recovery	Extract ID	Analysis Date	
13C5-PFHxA	0 N	E3558-F5(0)	7/27/2022	
13C4-PFHpA	ON	E3558-FS(0)	7/27/2022	
13C8-PFOA	ON	E3558-FS(0)	7/27/2022	
13C9-PFNA	0 N	E3558-FS(0)	7/27/2022	
13C6-PFDA	0 N	E3558-FS(0)	7/27/2022	
13C7-PFUnA	0 N	E3558-FS(0)	7/27/2022	
L3C2-PFDoA	0 N	E3558-FS(0)	7/27/2022	
13C2-PFTeDA	ON	E3558-FS(0)	7/27/2022	
d3-MeFOSAA	ON	E3558-FS(0)	7/27/2022	
15-EtFOSAA	ON	E3558-FS(0)	7/27/2022	
13C3-PFBS	DN	E3558-FS(0)	7/27/2022	
13C3-PFHxS	ON	E3558-FS(0)	7/27/2022	
13C8-PFOS	ON	E3558-FS(0)	7/27/2022	
13C3-HFPO-DA	ON	E3558-FS(0)	7/27/2022	

NW SIISI22 Analyzed by: Harnden, Kelsey Printed: 8/4/2022

۰.

2

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1130
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 31, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S4-SB14-0203	E3786-FS	Soil
2	NRSJC-S4-SB14-1718	E3787-FS	Soil
3	NRSJC-S4-SB15-1617	E3788-FS	Soil

A Stage 2B/4 data validation was performed on the analytical data for three soil samples collected on June 29-30, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References		
PFAŠ	Battelle SOP 5-369-09		

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for soil samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S4-FB01-062922	None - ND	390		#
NRSJC-S4-EB01-062922	None - ND	120 C	2 2 2	<u>1</u>

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 9/1/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S4-SB14-0203						
Battelle ID		E3786-FS						
Sample Type		SA						
Collection Date		06/29/2022						
Extraction Date		07/12/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		7.59						
Matrix		SOIL						
Sample Size		5.020						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.177	0.498	0.996
PFHpA	375-85-9	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.167	0.498	0.996
PFOA	335-67-1	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.213	0.498	0.996
PFNA	375-95-1	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.156	0.498	0.996
PFDA	335-76-2	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.157	0.498	0.996
PFUnA	2058-94-8	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.155	0.498	0.996
PFDoA	307-55-1	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.159	0.498	0.996
PFTrDA	72629-94-8	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.160	0.498	0.996
PFTeDA	376-06-7	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.161	0.498	1.99
NMeFOSAA	2355-31-9	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.158	0.498	1.99
NEtFOSAA	2991-50-6	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.164	0.498	1,99
PFBS	375-73-5	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.170	0.498	0.996
PFHxS	355-46-4	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.172	0.498	0.996
PFOS	1763-23-1	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.174	0.498	0.996
HFPO-DA	13252-13-6	0,498 U	E3786-FS(0)	1.000	8/4/2022	0.158	0.498	1.99
Adona	919005-14-4	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.159	0.498	1.99
9CI-PF3ONS	756426-58-1	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.153	0.498	1.99
11Cl-PF3OUdS	763051-92-9	0.498 U	E3786-FS(0)	1.000	8/4/2022	0.149	0.498	1.99

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1,XX.0026.000001

Client ID		NRSJC-S4-SB14-1718						
Battelle ID		E3787-FS						
Sample Type		SA						
Collection Date		06/29/2022						
Extraction Date		07/12/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		7.26						
Matrix		SOIL						
Sample Size		5.130						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.173	0.487	0.975
PFHpA	375-85-9	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.164	0.487	0.975
PFOA	335-67-1	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.209	0.487	0.975
PFNA	375-95-1	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.153	0.487	0.975
PFDA	335-76-2	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.154	0.487	0.975
PFUnA	2058-94-8	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.152	0.487	0.975
PFDoA	307-55-1	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.156	0.487	0.975
PFTrDA	72629-94-8	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.157	0.487	0.975
PFTeDA	376-06-7	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.158	0.487	1.95
NMeFOSAA	2355-31-9	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.155	0.487	1.95
NEtFOSAA	2991-50-6	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.161	0.487	1.95
PFBS	375-73-5	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.167	0.487	0.975
PFHxS	355-46-4	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.169	0.487	0.975
PFOS	1763-23-1	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.171	0.487	0.975
HFPO-DA	13252-13-6	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.155	0.487	1.95
Adona	919005-14-4	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.156	0.487	1.95
9CI-PF3ONS	756426-58-1	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.150	0.487	1.95
11Cl-PF3OUdS	763051-92-9	0.487 U	E3787-FS(0)	1.000	8/4/2022	0.146	0.487	1.95

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No : G25161.X1.XX.0026.000001

Client ID		NRSJC-S4-SB15-1617						
Battelle ID		E3788-FS						
Sample Type		SA						
Collection Date		06/30/2022						
Extraction Date		07/12/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
% Moisture		5.96						
Matrix		SOIL						
Sample Size		5.060						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.176	0.494	0.988
PFHpA	375-85-9	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.166	0.494	0.988
PFOA	335-67-1	0.494 U	E3788-FS(0)	1,000	8/4/2022	0.211	0.494	0.988
PFNA	375-95-1	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.155	0.494	0.988
PFDA	335-76-2	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.156	0.494	0.988
PFUnA	2058-94-8	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.154	0.494	0.988
PFDoA	307-55-1	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.158	0.494	0.988
PFTrDA	72629-94-8	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.159	0.494	0.988
PFTeDA	376-06-7	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.160	0.494	1.98
NMeFOSAA	2355-31-9	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.157	0.494	1,98
NEtFOSAA	2991-50-6	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.163	0.494	1.98
PFBS	375-73-5	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.169	0.494	0.98
PFHxS	355-46-4	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.171	0.494	0.98
PFOS	1763-23-1	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.173	0.494	0.988
HFPO-DA	13252-13-6	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.157	0.494	1.98
Adona	919005-14-4	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.158	0.494	1.98
9CI-PF3ONS	756426-58-1	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.152	0.494	1.98
11CI-PF3OUdS	763051-92-9	0.494 U	E3788-FS(0)	1.000	8/4/2022	0.148	0.494	1.98

3

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1131
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 31, 2022

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S4-FB01-062922	E3784-FS	Water				
2	NRSJC-S4-EB01-062922	E3785-FS	Water				
3	NRSJC-B6-GW01-0622	E3789-FS	Water				
4	NRSJC-B6-GW02-0622	E3790-FS	Water				
5	NRSJC-B6-GW03-0622	E3791-FS	Water				
6	NRSJC-B6-GW04-0722	E3792-FS	Water				
7	NRSJC-B6-EB01-070122	E3793-FS	Water				

A Stage 2B/4 data validation was performed on the analytical data for four water samples, two aqueous equipment blank samples and one aqueous field blank sample collected on June 29-July 1, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S4-FB01-062922	None - ND		14	-
NRSJC-S4-EB01-062922	None - ND	54) (4)	100 C	4
NRSJC-B6-EB01-070122	None - ND	320	124	-

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

• EDS Sample 4 exhibited PFOS with an ion ratio outside of QC criteria and was flagged (Q) by the laboratory. The reviewer qualified this result as estimated (]).

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 9/1/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

I

Client ID		NR5JC-54-FB01-062922						
Battelle ID		E3784-FS						
Sample Type		SA						
Collection Date		06/29/2022						
Extraction Date		07/12/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.240						
Size Unit-Basis		L			Analysis			
Anaiyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.951	2.60	5.21
PFHpA	375-85-9	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.980	2.60	5.21
PFOA	335-67-1	2.60 U	E3784-FS(0)	1.000	8/6/2022	1.05	2.60	5.21
PFNA	375-95-1	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.868	2.60	5.21
PFDA	335-76-2	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.817	2.60	5.21
PFUnA	2058-94-8	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.783	2.60	5.21
PFDoA	307-55-1	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.792	2.60	5.21
PFTrDA	72629-94-8	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.773	2.60	5.21
PFTeDA	376-06-7	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.824	2.60	5.21
NMeFOSAA	2355-31-9	2.60 U	E3784-FS(0)	1.000	8/6/2022	1.07	2.60	5.21
NEtFOSAA	2991-50-6	2.60 U	E3784-FS(0)	1.000	8/6/2022	1.03	2.60	5.21
PFBS	375-73-5	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.902	2.60	5.21
PFHxS	355-46-4	2.60 U	E3784-FS(0)	1.000	8/6/2022	1.04	2.60	5.21
PFOS	1763-23-1	2.60 U	E3784-FS(0)	1.000	8/6/2022	1.11	2.60	5.21
HFPO-DA	13252-13-6	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.901	2.60	5.21
Adona	919005-14-4	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.905	2.60	5.21
9CI-PF3ONS	756426-58-1	2.60 U	E3784-FS(0)	1.000	8/6/2022	1,07	2.60	5.21
11CI-PF3OUdS	763051-92-9	2.60 U	E3784-FS(0)	1.000	8/6/2022	0.939	2.60	5.21

2

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1,XX,0026.000001

Client ID		NRSJC-S4-EB01-062922						
Battelle ID		E3785-FS						
Sample Type		SA						
Collection Date		06/29/2022						
Extraction Date		07/12/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.267						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.855	2.34	4.68
PFHpA	375-85-9	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.881	2.34	4.68
PFOA	335-67-1	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.946	2,34	4.68
PFNA	375-95-1	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.780	2.34	4.68
PFDA	335-76-2	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.734	2.34	4.68
PFUnA	2058-94-8	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.704	2.34	4.68
PFDoA	307-55-1	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.712	2.34	4.68
PFTrDA	72629-94-8	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.695	2.34	4.68
PFTeDA	376-06-7	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.741	2.34	4.68
NMeFOSAA	2355-31-9	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.964	2.34	4.68
NEtFOSAA	2991-50-6	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.927	2.34	4.68
PFBS	375-73-5	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.811	2.34	4.68
PFHxS	355-46-4	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.934	2.34	4.68
PFOS	1763-23-1	2.34 U	E3785-FS(0)	1.000	8/6/2022	1.00	2.34	4.68
HFPO-DA	13252-13-6	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.810	2,34	4.68
Adona	919005-14-4	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.814	2.34	4.68
9CI-PF3ONS	756426-58-1	2.34 U	E3785-FS(0)	1.000	8/6/2022	0.964	2.34	4.68
11CI-PF3OUdS	763051-92-9	2.34 U	E3785-F5(0)	1.000	8/6/2022	0.844	2.34	4.68

L22-1131_Master_369D

Client ID		NRSJC-B6-GW01-0622						
Battelle ID		E3789-FS						
Sample Type		SA						
Collection Date		06/30/2022						
Extraction Date		07/12/2022						
Analytical Instrumen	it	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.268						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.852	2.33	4.66
PFHpA	375-85-9	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.878	2.33	4.66
PFOA	335-67-1	1.33 J	E3789-FS(0)	1.000	8/6/2022	0.942	2.33	4.66
PFNA	375-95-1	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.777	2.33	4.66
PFDA	335-76-2	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.731	2.33	4.66
PFUnA	2058-94-8	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.701	2.33	4.66
PFDoA	307-55-1	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.709	2.33	4.66
PFTrDA	72629-94-8	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.692	2.33	4.66
PFTeDA	376-06-7	2.33 U	E3789-FS(0)	1,000	8/6/2022	0.738	2.33	4.66
NMeFOSAA	2355-31-9	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.961	2.33	4.66
NEtFOSAA	2991-50-6	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.924	2.33	4.66
PFBS	375-73-5	1.04 J	E3789-FS(0)	1.000	8/6/2022	0.808	2.33	4.66
PFHxS	355-46-4	1.49 J	E3789-FS(0)	1.000	8/6/2022	0.930	2.33	4.66
PFOS	1763-23-1	4.22 J	E3789-FS(0)	1.000	8/6/2022	0.998	2.33	4.66
HFPO-DA	13252-13-6	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.807	2.33	4.66
Adona	919005-14-4	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.811	2.33	4.66
9CI-PF3ONS	756426-58-1	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.961	2.33	4.66
11CI-PF3OUdS	763051-92-9	2.33 U	E3789-FS(0)	1.000	8/6/2022	0.840	2.33	4.66

Client ID		NRSJC-B6-GW02-0622							
Battelle ID		E3790-FS							
Sample Type		SA							
Collection Date		06/30/2022							
Extraction Date		07/12/2022							
Analytical Instrument	t	Sciex 5500 (AC) LC/MS/MS							
% Moisture		NA							
Matrix		AQUEOUS							
Sample Size		0.260							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	2.63 J	E3790-FS(0)	1.000	8/6/2022	0.878	2.40	4.81	
PFHpA	375-85-9	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.905	2.40	4.81	
PFOA	335-67-1	2.20 J	E3790-FS(0)	1.000	8/6/2022	0.971	2.40	4.81	
PFNA	375-95-1	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.801	2.40	4.81	
PFDA	335-76-2	2,40 U	E3790-FS(0)	1.000	8/6/2022	0.754	2.40	4.81	
PFUnA	2058-94-8	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.723	2.40	4.81	
PFDoA	307-55-1	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.731	2.40	4.81	
PFTrDA	72629-94-8	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.713	2.40	4.81	
PFTeDA	376-06-7	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.761	2.40	4.81	
NMeFOSAA	2355-31-9	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.990	2.40	4.81	
NEtFOSAA	2991-50-6	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.952	2.40	4,81	
PFBS	375-73-5	2.64 J	E3790-FS(0)	1.000	8/6/2022	0.833	2.40	4.81	
PFHxS	355-46-4	7.34	E3790-FS(0)	1.000	8/6/2022	0.959	2.40	4.81	
PFOS	1763-23-1	18.3 🖌 🍠	E3790-FS(0)	1.000	8/6/2022	1.03	2.40	4.81	DT
HFPO-DA	13252-13-6	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.832	2.40	4.81	10000
Adona	919005-14-4	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.836	2.40	4.81	
9CI-PF3ONS	756426-58-1	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.990	2.40	4.81	
11CI-PF3OUdS	763051-92-9	2.40 U	E3790-FS(0)	1.000	8/6/2022	0.866	2.40	4.81	

Client ID		NRSJC-B6-GW03-0622						
8attelle ID		E3791-FS						
Sample Type		SA						
Collection Date		06/30/2022						
Extraction Date		07/12/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.260						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	11,7	E3791-FS(0)	1.000	8/6/2022	0.878	2.40	4.81
PFHpA	375-85-9	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.905	2.40	4.81
PFOA	335-67-1	2.97 J	E3791-FS(0)	1.000	8/6/2022	0.971	2.40	4.81
PFNA	375-95-1	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.801	2.40	4.81
PFDA	335-76-2	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.754	2.40	4.81
PFUnA	2058-94-8	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.723	2.40	4.81
PFDoA	307-55-1	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.731	2.40	4.81
PFTrDA	72629-94-8	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.713	2.40	4.81
PFTeDA	376-06-7	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.761	2.40	4.81
NMeFOSAA	2355-31-9	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.990	2.40	4.81
NEtFOSAA	2991-50-6	2.40 U	E3791-FS(0)	1,000	8/6/2022	0.952	2.40	4.81
PFBS	375-73-5	17.4	E3791-FS(0)	1.000	8/6/2022	0.833	2.40	4.81
PFHxS	355-46-4	153	E3791-FS(0)	1.000	8/6/2022	0.959	2.40	4.81
PFOS	1763-23-1	16.5	E3791-FS(0)	1.000	8/6/2022	1.03	2.40	4.81
HFPO-DA	13252-13-6	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.832	2.40	4.81
Adona	919005-14-4	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.836	2.40	4.81
9CI-PF3ONS	756426-58-1	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.990	2.40	4.81
11Cl-PF3OUdS	763051-92-9	2.40 U	E3791-FS(0)	1.000	8/6/2022	0.866	2.40	4.81

5

Client ID		NRSJC-B6-GW04-0722						
Battelle ID		E3792-FS						
Sample Type		SA						
Collection Date		07/01/2022						
Extraction Date		07/12/2022						
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.283						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	3.95 J	E3792-FS(0)	1.000	8/6/2022	0.807	2.21	4.42
PFHpA	375-85-9	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.831	2.21	4.42
PFOA	335-67-1	2.36 J	E3792-FS(0)	1.000	8/6/2022	0.892	2 21	4.42
PFNA	375-95-1	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.736	2.21	4.42
PFDA	335-76-2	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.693	2.21	4.42
PFUnA	2058-94-8	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.664	2.21	4.42
PFDoA	307-55-1	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.671	2.21	4.42
PFTrDA	72629-94-8	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.655	2.21	4.42
PFTeDA	376-06-7	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.699	2.21	4.42
NMeFOSAA	2355-31-9	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.910	2.21	4.42
NEtFOSAA	2991-50-6	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.875	2.21	4.42
PFBS	375-73-5	5.46	E3792-FS(0)	1.000	8/6/2022	0.765	2.21	4.42
PFHxS	355-46-4	32.1	E3792-FS(0)	1.000	8/6/2022	0.881	2,21	4.42
PFOS	1763-23-1	60.6	E3792-FS(0)	1.000	8/6/2022	0.945	2.21	4.42
HFPO-DA	13252-13-6	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.764	2.21	4.42
Adona	919005-14-4	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.768	2.21	4.42
9CI-PF3ONS	756426-58-1	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.910	2.21	4.42
11Cl-PF3OUdS	763051-92-9	2.21 U	E3792-FS(0)	1.000	8/6/2022	0.796	2.21	4.42

6

Analyzed by: Griffith, Lauren Printed: 8/5/2022

Project Client: CH2M

Client ID		NRSJC-B6-EB01-070122						
Battelle ID		E3793-FS						
Sample Type		SA						
Collection Date		07/01/2022						
Extraction Date		07/12/2022						
Analytical Instrumen	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQUEOUS						
Sample Size		0.279						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.818	2.24	4.48
PFHpA	375-85-9	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.843	2.24	4.48
PFOA	335-67-1	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.905	2.24	4.48
PFNA	375-95-1	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.746	2.24	4.48
PFDA	335-76-2	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.703	2.24	4.48
PFUnA	2058-94-8	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.674	2.24	4.48
PFDoA	307-55-1	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.681	2.24	4.48
PFTrDA	72629-94-8	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.665	2.24	4.48
PFTeDA	376-06-7	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.709	2.24	4.48
NMeFOSAA	2355-31-9	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.923	2.24	4.48
NEtFOSAA	2991-50-6	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.887	2.24	4.48
PFBS	375-73-5	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.776	2.24	4.48
PFHxS	355-46-4	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.893	2.24	4.48
PFOS	1763-23-1	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.959	2.24	4.48
HFPO-DA	13252-13-6	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.775	2.24	4.48
Adona	919005-14-4	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.779	2.24	4.48
9CI-PF3ONS	756426-58-1	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.923	2.24	4.48
11Cl-PF3OUdS	763051-92-9	2.24 U	E3793-FS(0)	1.000	8/6/2022	0.807	2.24	4.48

7

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1190
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	October 13, 2022

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S1-GW06-0722	E4106-FS	Water				
2	NRSJC-S1-GW05-0722	E4107-FS	Water				
2MS	NRSJC-S1-GW05-0722MS	E4108-FSMS	Water				
2MSD	NRSJC-S1-GW05-0722MSD	E4109-FSMSD	Water				
3	NRSJC-S1-GW07-0722	E4110-FS	Water				
4	NRSJC-S1-GW07P-0722	E4111-FS	Water				
5	NRSJC-S6-GW09-0722	E4112-FS	Water				
6	NRSJC-S6-GW09P-0722	E4113-FS	Water				

A Stage 2B/4 data validation was performed on the analytical data for six samples collected on July 11-12, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B 15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

- All samples were extracted within 14 days for water samples and analyzed within 28 days.
- Several compounds in several samples were flagged (T) by the laboratory indicating holding time exceedances since the extracts were analyzed outside of 28 days. However, the extracts were stored per draft EPA Method 1633 which allows for 90 days to analysis. Therefore, no action was taken on this basis.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S1-EB01-071122	None - ND	-	-	÷

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria except for the following.

EDS Sample	Internal Standard	Area Count	Qualifier
2	13C4-PFOS	High	None - Sample ND
3	13C4-PFOS	High	None - Sample ND
4	13C4-PFOS	High	None - Sample ND

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S1-GW07-0722 ng/L	NRSJC-S1-GW07P-0722 ng/L	RPD	Qualifier
PFOA	2.27U	1.09	NC	None

Compound	NRSJC-S6-GW09-0722 ng/L	NRSJC-S6-GW09P-0722 ng/L	RPD	Qualifier
PFOA	2.19U	1.24	NC	None

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 10/13/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRSJC-S1-GW06-0722						
Battelle ID		E4106-FS						
Sample Type		SA						
Collection Date		07/11/2022						
Extraction Date		07/19/2022						
Analytical Instrument	t	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.274						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.833	2.28	4.56
PFHpA	375-85-9	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.859	2.28	4.56
PFOA	335-67-1	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.922	2.28	4.56
PFNA	375-95-1	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.760	2.28	4.56
PFDA	335-76-2	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.715	2.28	4.56
PFUnA	2058-94-8	2.28 UT	E4106-FS(0)	1.000	9/30/2022	0.686	2.28	4.56
PFDoA	307-55-1	2.28 UT	E4106-FS(0)	1.000	9/30/2022	0.693	2.28	4.56
PFTrDA	77629-94-8	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.677	2.28	4.56
PFTeDA	376-06-7	2.28 U	E4106-FS(0)	1.000	9/30/2022	0.722	2.28	4.56
NMeFOSAA	2355-31-9	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.940	2.28	4.56
NEtFOSAA	2991-50-6	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.903	2.28	4.56
PFBS	375-73-5	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.790	2.28	4.56
PFHxS	355-46-4	2.28 UT	E4106-FS(0)	1.000	9/30/2022	0.910	2.28	4.56
PFOS	1763-23-1	2.28 UT	E4106-FS(0)	1.000	9/30/2022	0.976	2.28	4.56
HFPO-DA	13252-13-6	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.789	2.28	4.56
Adona	919005-14-4	2.28 U	E4106-FS(0)	1,000	8/12/2022	0.793	2.28	4.56
9CI-PF3ONS	756426-58-1	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.940	2.28	4.56
11CI-PF3OUdS	763051-92-9	2.28 U	E4106-FS(0)	1.000	8/12/2022	0.822	2.28	4.56

Analyzed by: Harnden, Kelsey Printed: 10/3/2022

L22-1190_Master_369D

Ű.

Client ID		NRSJC-S1-GW05-0722						
Battelle ID		E4107-FS						
Sample Type		SA						
Collection Date		07/11/2022						
Extraction Date		07/19/2022						
Analytical Instrumen	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.271						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DŁ	LOD	LOQ
PFHxA	307-24-4	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.842	2.31	4.61
PFHpA	375-85-9	2.31 U	E4107-FS(0)	1.000	8/12/2022	0,868	2.31	4.61
PFOA	335-67-1	2.22 J	E4107-FS(0)	1.000	8/12/2022	0.932	2.31	4 61
PFNA	375-95-1	2.31 U	E4107-F5(0)	1.000	8/12/2022	0.768	2.31	4.61
PFDA	335-76-2	2 31 U	E4107-FS(0)	1.000	8/12/2022	0.723	2.31	4.61
PFUnA	2058-94-8	2.31 U	E4107-FS(0)	1.000	9/30/2022	0.694	2.31	4.61
PFDoA	307-55-1	2.31 U	E4107-FS(0)	1.000	9/30/2022	0.701	2.31	4,61
PFTrDA	72629-94-8	2 31 U	F4107-F5(0)	1 000	8/17/2022	0.685	7 31	4 61
PFTeDA	376-06-7	2.31 U	E4107-FS(0)	1.000	9/30/2022	0.730	2.31	4.61
NMeFOSAA	2355-31-9	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.950	2.31	4.61
NEtFOSAA	2991-50-6	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.913	2.31	4.61
PFBS	375-73-5	1.29 J	E4107-FS(0)	1.000	8/12/2022	0.799	2.31	4.61
PFHxS	355-46-4	2.31 U	E4107-FS(0)	1.000	9/30/2022	0.920	2.31	4.61
PFOS	1763-23-1	2.31 UT	E4107-FS(0)	1.000	9/30/2022	0.987	2.31	4.61
HFPO-DA	13252-13-6	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.798	2.31	4.61
Adona	919005-14-4	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.802	2.31	4.61
9CI-PF3ONS	756426-58-1	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.950	2.31	4.61
11Cl-PF3OUdS	763051-92-9	2.31 U	E4107-FS(0)	1.000	8/12/2022	0.831	2.31	4.61

Analyzed by: Harnden, Kelsey Printed: 10/3/2022

Client ID		NRSJC-S1-GW07-0722						
Battelle ID		E4110-FS						
Sample Type		SA						
Collection Date		07/12/2022						
Extraction Date		07/19/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.275						
Size Unit-Basis		Ĺ			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.830	2.27	4.55
PFHpA	375-85-9	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.855	2.27	4.55
PFOA	335-67-1	2.27 U	E4110-FS(0)	1.000	8/12/2022	0,918	2.27	4.55
PFNA	375-95-1	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.757	2.27	4.55
PFDA	335-76-2	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.713	2.27	4.55
PFUnA	2058-94-8	2.27 UT	E4110-FS(0)	1.000	9/30/2022	0.684	2.27	4.55
PFDoA	307-55-1	2.27 UT	E4110-FS(0)	1.000	9/30/2022	0.691	2.27	4.55
PFTrDA	72629-94-8	2 27 U	E4110-FS(0)	1 000	8/17/2022	0 675	2 27	4.55
PFTeDA	376-06-7	2 27 U	E4110-FS(0)	1,000	9/30/2022	0.719	2.27	4.55
NMeFOSAA	2355-31-9	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.936	2.27	4.55
NEtFOSAA	2991-50-6	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.900	2,27	4.55
PFBS	375-73-5	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.787	2.27	4.55
PFHxS	355-46-4	2.27 UT	E4110-FS(0)	1.000	9/30/2022	0.906	2.27	4.55
PFOS	1763-23-1	2.27 UT	E4110-FS(0)	1.000	9/30/2022	0.973	2.27	4.55
HFPO-DA	13252-13-6	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.786	2.27	4.55
Adona	919005-14-4	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.790	2.27	4.55
9CI-PF3ONS	756426-58-1	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.936	2.27	4.55
11CI-PF3OUdS	763051-92-9	2.27 U	E4110-FS(0)	1.000	8/12/2022	0.819	2.27	4.55

 \sim

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161:X1 XX.0026.000001

Client ID		NRSJC-S1-GW07P-0722						
Battelle ID		E4111-FS						
Sample Type		SA						
Collection Date		07/12/2022						
Extraction Date		07/19/2022						
Analytical Instrumen	t	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.270						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.845	2.31	4.63
PFHpA	375-85-9	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.871	2.31	4.63
PFOA	335-67-1	1.09 J	E4111-FS(0)	1.000	8/12/2022	0.935	2.31	4.63
PFNA	375-95-1	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.771	2.31	4.63
PFDA	335-76-2	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.726	2.31	4.63
PFUnA	2058-94-8	2.31 U	E4111-FS(0)	1.000	9/30/2022	0.696	2.31	4.63
PFDoA	307-55-1	2.31 U	E4111-FS(0)	1.000	9/30/2022	0.704	2.31	4.63
PFTrD≜	72629-94-8	2 31 U	E4111-FS(0)	1.000	8/12/2022	0 687	2 31	4 63
PFTeDA	376-06-7	2.31 UT	E4111-FS(0)	1.000	9/30/2022	0,732	2.31	4.63
NMeFOSAA	2355-31-9	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.954	2.31	4.63
NEtFOSAA	2991-50-6	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.917	2.31	4.63
PFBS	375-73-5	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.802	2.31	4.63
PFHxS	355-46-4	2.31 U	E4111-FS(0)	1.000	9/30/2022	0.923	2.31	4.63
PFOS	1763-23-1	2.31 U	E4111-FS(0)	1.000	9/30/2022	0.991	2.31	4.63
HFPO-DA	13252-13-6	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.801	2.31	4.63
Adona	919005-14-4	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.805	2.31	4.63
9CI-PF3ONS	756426-58-1	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.954	2.31	4.63
11CI-PF3OUdS	763051-92-9	2.31 U	E4111-FS(0)	1.000	8/12/2022	0.834	2.31	4.63

Analyzed by: Harnden, Kelsey Printed: 10/3/2022

L22-1190_Master_369D

Client ID		NRSJC-S6-GW09-0722						
Battelle ID		E4112-FS						
Sample Type		SA						
Collection Date		07/12/2022						
Extraction Date		07/19/2022						
Analytical Instrumen	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.286						
Size Unit-Basis		Ĺ			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.19 U	E4112-FS(0)	1.000	8/12/2022	0,798	2.19	4.37
PFHpA	375-85-9	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.823	2.19	4.37
PFOA	335-67-1	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.883	2.19	4.37
PFNA	375-95-1	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.728	2.19	4.37
PFDA	335-76-2	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.685	2.19	4.37
PFUnA	2058-94-8	2.19 01	E4112-FS(0)	1.000	10/1/2022	0.657	2.19	4.37
PFDoA	307-55-1	2.19 UT	E4112-FS(0)	1.000	10/1/2022	0.664	2.19	4.37
PFTrDA	77679-94-R	2.19 11	E4112-FS(0)	1 000	8/12/2027	0.649	7 19	4 37
PFTeDA	376-06-7	2.19 UT	E4112-FS(0)	1.000	10/1/2022	0.691	2.19	4.37
NMeFOSAA	2355-31-9	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.900	2.19	4.37
NEtFOSAA	2991-50-6	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.865	2.19	4.37
PFBS	375-73-5	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.757	2.19	4.37
PFHxS	355-46-4	2.19 U	E4112-FS(0)	1.000	10/1/2022	0.872	2.19	4.37
PFOS	1763-23-1	2.19 U	E4112-FS(0)	1.000	10/1/2022	0.935	2.19	4.37
HFPO-DA	13252-13-6	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.756	2.19	4.37
Adona	919005-14-4	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.760	2.19	4.37
9CI-PF3ONS	756426-58-1	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.900	2.19	4.37
11CI-PF3OUdS	763051-92-9	2.19 U	E4112-FS(0)	1.000	8/12/2022	0.788	2.19	4.37

Analyzed by: Harnden, Kelsey Printed: 10/3/2022

6

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S6-GW09P-0722						
Battelle ID		E4113-FS						
Sample Type		SA						
Collection Date		07/12/2022						
Extraction Date		07/19/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.290						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.787	2.16	4.31
PFHpA	375-85-9	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.811	2.16	4.31
PFOA	335-67-1	1.24 J	E4113-FS(0)	1.000	8/12/2022	0.871	2.16	4.31
PFNA	375-95-1	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.718	2.16	4.31
PFDA	335-76-2	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.676	2.16	4.31
PFUnA	2058-94-8	2.16 UT	E4113-FS(0)	1.000	10/1/2022	0.648	2.16	4.31
PFDoA	307-55-1	2.16 UT	E4113-FS(0)	1.000	10/1/2022	0.655	2.16	4.31
PFTrDA	72629-94-8	2.16 U	E4113-ES(0)	1 000	8/17/2022	0 640	2.16	4.31
PFTeDA	376-06-7	2.16 U	E4113-FS(0)	1.000	10/1/2022	0.682	2.16	4.31
NMeFOSAA	2355-31-9	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.888	2.16	4:31
NEtFOSAA	2991-50-6	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.853	2.16	4.31
PFBS	375-73-5	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.747	2.16	4.31
PFHxS	355-46-4	2.16 UT	E4113-FS(0)	1.000	10/1/2022	0.859	2.16	4.31
PFOS	1763-23-1	2.16 UT	E4113-FS(0)	1.000	10/1/2022	0.922	2.16	4.31
HFPO-DA	13252-13-6	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.746	2.16	4.31
Adona	919005-14-4	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.749	2.16	4.31
9CI-PF3ONS	756426-58-1	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.888	2.16	4.31
11Cl-PF3OUdS	763051-92-9	2.16 U	E4113-FS(0)	1.000	8/12/2022	0.777	2.16	4.31

NU10/13/22

Analyzed by: Harnden, Kelsey Printed: 10/3/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1191
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-SS-GW16-0722	E4114-FS	Water
2	NRSJC-SS-GW16P-0722	E4115-FS	Water
3	NRSJC-SS-GW19-0722	E4116-FS	Water
4	NRSJC-SS-GW18-0722	E4117-FS	Water
4MS	NRSJC-SS-GW18-0722MS	E4118-FSMS	Water
4MSD	NRSJC-SS-GW18-0722MSD	E4119-FSMSD	Water

A Stage 2B/4 data validation was performed on the analytical data for four water samples collected on July 12-13, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks exhibited the following contamination.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
DJ214PB-FS	PFOS	1.09	U	1, 2

Field QC Blank

• Field QC samples were not collected.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
1	13C2-PFTeDA	39%	UJ

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R),

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values except for the following.

MS/MSD Sample	MS/MSD Sample Compound		Qualifier		
4	PFHxS	150%/136%/OK	None - Sample ND		
	PFTeDA	OK/OK/32.7	None for RPD Alone		

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria. •

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-SS-GW16-0722 ng/L	NRSJC-SS-GW16P-0722 ng/L	RPD	Qualifier	
None	ND	ND		4	

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22

Senior Chemist

Qualifier	Definition						
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.						
J	The reported result was an estimated value with an unknown bias.						
J+	The result was an estimated quantity, but the result may be biased high.						
J	The result was an estimated quantity, but the result may be biased low.						
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."						
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.						
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.						
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is rccommended.						

1

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX,0026.000001

Client ID NRSJC-S5-GW16-0722			5-0722							
Battelle ID E4114-FS Sample Type SA Collection Date 07/12/022 Extraction Date 07/20/2022 Analytical Instrument Sciex 6500+ (AF) LC/MS/MS % Moisture NA			L14-FS							
			SA							
			/2022							
			7/20/2022							
			/IS/MS							
			NA							
Matrix	WATER									
Sample Size			0.256							
Size Unit-Basis			L			Analysis				
Analyte	CAS No.	Result	(ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4		2,44 U	E4114-FS(0)	1.000	8/12/2022	0.892	2.44	4.88	
PFHpA	375-85-9		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.919	2.44	4.88	
PFOA	335-67-1		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.986	2.44	4.88	
PFNA	375-95-1		2.44 U	E4114-F5(0)	1.000	8/12/2022	0.813	2.44	4.88	
PFDA	335-76-2		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.766	2.44	4.88	
PFUnA	2058-94-8		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.734	2.44	4.88	
PFDoA	307-55-1		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.742	2.44	4.88	
PFTrDA	72629-94-8		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.725	2.44	4.88	
PFTeDA	376-06-7		2.44 1/ 45	E4114-FS(0)	1.000	8/12/2022	0.772	2.44	4.88	SSL
NMeFOSAA	2355-31-9		2.44 U	E4114-FS(0)	1.000	8/12/2022	1.01	2.44	4.88	
NEtFOSAA	2991-50-6		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.967	2.44	4.88	
PFBS	375-73-5		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.846	2.44	4.88	
PFHxS	355-46-4		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.974	2.44	4.88	_
PFOS	1763-23-1	2.44	1.007 LL	E4114-FS(0)	1.000	8/12/2022	1.04	2.44	4.88	MBL
HFPO-DA	13252-13-6		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.845	2.44	4.88	
Adiona	919005-14-4		2.44 U	E4114-FS(0)	1.000	8/12/2022	0.849	2.44	4.88	
9CI-PF3ONS	756426-58-1		2.44 U	E4114-FS(0)	1.000	8/12/2022	1.01	2.44	4.88	
11Cl-PF3OUdS	763051-92-9		2.44 U	E4114-F5(0)	1.000	8/12/2022	0.880	2.44	4.88	

Client ID	NRSJC-S5-GW16-0722			
Battelle ID	E4114-FS			
Sample Type	SA			
Collection Date	07/12/2022			
Extraction Date	07/20/2022			
Analytical Instrument	Sciex 6500+ (AF) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	80	E4114-FS(0)	8/12/2022	
13C4-PFHpA	85	E4114-FS(0)	8/12/2022	
13C8-PFOA	87	E4114 FS(0)	8/12/2022	
13C9-PFNA	79	E4114-FS(0)	8/12/2022	
13C6-PFDA	79	E4114-FS(0)	8/12/2022	
13C7-PFUnA	69	E4114-FS(0)	8/12/2022	
13C2-PFDoA	55	E4114-FS(0)	8/12/2022	
13C2-PFTeDA	39	E4114-FS(0)	8/12/2022	
d3-MeFOSAA	71	E4114-FS(0)	8/12/2022	
d5-EtFOSAA	74	E4114-FS(0)	8/12/2022	
13C3-PFBS	76	E4114-FS(0)	8/12/2022	
13C3-PFHxS	79	E4114-FS(0)	8/12/2022	
13C8-PFOS	61	E4114-FS(0)	8/12/2022	
13C3-HFPO-DA	75	E4114-FS(0)	8/12/2022	

Project Client: CH2M Project Name: CTO-4117:

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S5-GW16F	P-0722							
Battelle ID		E41	115-FS							
Sample Type			SA							
Collection Date		07/12	/2022							
Extraction Date		07/20	/2022							
Analytical Instrument		Sciex 6500+ (AF) LC/N	/IS/MS							
% Moisture			NA							
Matrix		v	VATER							
Sample Size			0.265							
Size Unit-Basis			L			Analysis				
Analyte	CAS No.	Result	(ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
										-
PFHxA	307-24-4		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.861	2.36	4.72	
PFHpA	375-85-9		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.888	2.36	4.72	
PFOA	335-67-1		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.953	2.36	4.72	
PFNA	375-95-1		2.36 U	E4115-F5(0)	1.000	8/12/2022	0.786	2.36	4.72	
PFDA	335-76-2		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.740	2.36	4.72	
PFUnA	2058-94-8		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.709	2.36	4.72	
PFDoA	307-55-1		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.717	2.36	4.72	
PFTrDA	72629-94-8		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.700	2.36	4.72	
PFTeDA	376-06-7		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.746	2.36	4.72	
NMeFOSAA	2355-31-9		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.972	2.36	4.72	
NEtFOSAA	2991-50-6		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.934	2,36	4.72	
PFBS	375-73-5		2.36 U	E4115-FS(0)	1,000	8/12/2022	0.817	2.36	4.72	
PFHxS	355-46-4		2,36 U	E4115-FS(0)	1.000	8/12/2022	0.941	2.36	4.72	
PFOS	1763-23-1	2.36	1.00 / 4	E4115-FS(0)	1.000	8/12/2022	1.01	2.36	4.72	MBL
HFPO-DA	13252-13-6		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.816	2.36	4.72	
Adona	919005-14-4		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.820	2.36	4.72	
9CI-PF3ONS	756426-58-1		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.972	2.36	4.72	
11CI-PF3OUdS	763051-92-9		2.36 U	E4115-FS(0)	1.000	8/12/2022	0.850	2.36	4.72	

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161, X1, XX.0026.000001

Client ID		NRSJC-S5-GW19-0722						
Battelle ID		E4116-FS						
Sample Type		SA						
Collection Date		07/12/2022						
Extraction Date		07/20/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.267						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.855	2.34	4.68
PFHpA	375-85-9	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.881	2.34	4.68
PFOA	335-67-1	2.34 U	E4116-F5(0)	1.000	8/12/2022	0.946	2.34	4.68
PFNA	375-95-1	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.780	2.34	4.68
PFDA	335-76-2	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.734	2.34	4.68
PFUnA	2058-94-8	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.704	2.34	4.68
PFDoA	307-55-1	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.712	2.34	4.68
PFTrDA	72629-94-8	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.695	2.34	4.68
PFTeDA	376-06-7	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.741	2.34	4.68
NMeFOSAA	2355-31-9	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.964	2.34	4.68
NELFOSAA	2991-50-6	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.927	2.34	4.68
PFBS	375-73-5	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.811	2.34	4.68
PFHxS	355-46-4	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.934	2.34	4,68
PFOS	1763-23-1	2.34 U	E4116-FS(0)	1.000	8/12/2022	1.00	2.34	4.68
HFPO-DA	13252-13-6	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.810	2.34	4.68
Adona	919005-14-4	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.814	2.34	4.68
9CI-PF3ONS	756426-58-1	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.964	2.34	4.68
11Cl-PF3OUdS	763051-92-9	2.34 U	E4116-FS(0)	1.000	8/12/2022	0.844	2.34	4.68

ma 12/14/22

Analyzed by: Burkitt, Nathan Printed: 10/28/2022

Client ID		NRSJC-S5-GW18-0722						
Battelle ID		E4117-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/20/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.263						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.868	2.38	4.75
PFHpA	375-85-9	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.894	2.38	4.75
PFOA	335-67-1	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.960	2.38	4.75
PFNA	375-95-1	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.792	2.38	4.75
PFDA	335-76-2	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.745	2.38	4.75
PFUnA	2058-94-8	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.715	2.38	4.75
PFDoA	307-55-1	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.722	2.38	4.75
PFTrDA	72629-94-8	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.705	2.38	4.75
PFTeDA	376-06-7	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.752	2.38	4.75
NMeFOSAA	2355-31-9	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.979	2.38	4.75
NEtFOSAA	2991-50-6	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.941	2.38	4.75
PFBS	375-73-5	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.823	2.38	4.75
PFHxS	355-46-4	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.948	2.38	4.75
PFOS	1763-23-1	2.38 U	E4117-FS(0)	1.000	8/12/2022	1.02	2.38	4.75
HFPO-DA	13252-13-6	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.822	2.38	4.75
Adona	919005-14-4	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.826	2.38	4.75
9CI-PF3ONS	756426-58-1	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.979	2.38	4.75
11Cl-PF3OUdS	763051-92-9	2.38 U	E4117-FS(0)	1.000	8/12/2022	0.856	2.38	4.75

4

Analyzed by: Burkitt, Nathan Printed: 10/28/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1192
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	September 12, 2022

	PFAS									
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix							
1	NRSJC-S6-GW10-0722	E4120-FS	Water							
2	NRSJC-S6-GW08-0722	E4121-FS	Water							
2MS	NRSJC-S6-GW08-0722MS	E4122-FSMS	Water							
2MSD	NRSJC-S6-GW08-0722MSD	E4123-FSMSD	Water							
3	NRSJC-S4-GW14-0722	E4124-FS	Water							
4	NRSJC-S4-GW14P-0722	E4125-FS	Water							

A Stage 2B/4 data validation was performed on the analytical data for four water samples collected on July 13, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

• Date Completeness, Case Narrative & Custody Documentation

- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S4-FB01-071322	None - ND	67.0	85	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R),

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S4-GW14-0722 ng/L	NRSJC-S4-GW14P-0722 ng/L	RPD	Qualifier
None	ND	ND		(2)

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

NanyWeaver Dated: 9/12/22

Nancy Weaver Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
Je	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRSJC-S6-GW10-0722						
Battelle ID		E4120-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/21/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.257						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.43 U	E4120-FS(0)	1,000	8/18/2022	0.888	2.43	4.86
PFHpA	375-85-9	2.43 U	E4120-FS(0)	1.000	8/18/2022	0,915	2.43	4.86
PFOA	335-67-1	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.982	2.43	4.86
PFNA	375-95-1	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.810	2.43	4.86
PFDA	335-76-2	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.763	2.43	4.86
PFUnA	2058-94-8	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.732	2.43	4.86
PFDoA	307-55-1	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.739	2.43	4.86
PFTrDA	72629-94-8	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.722	2.43	4.86
PFTeDA	376-06-7	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.769	2.43	4.86
NMeFOSAA	2355-31-9	2.43 U	E4120-FS(0)	1.000	8/18/2022	1.00	2.43	4.86
NEtFOSAA	2991-50-6	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.963	2.43	4.86
PFBS	375-73-5	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.842	2.43	4.86
PFHxS	355-46-4	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.970	2.43	4.86
PFOS	1763-23-1	2.43 U	E4120-FS(0)	1.000	8/18/2022	1.04	2.43	4.86
HFPO-DA	13252-13-6	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.841	2.43	4.86
Adona	919005-14-4	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.845	2.43	4.86
9CI-PF3ONS	756426-58-1	2.43 U	E4120-FS(0)	1.000	8/18/2022	1.00	2.43	4.86
11Cl-PF3OUdS	763051-92-9	2.43 U	E4120-FS(0)	1.000	8/18/2022	0.876	2.43	4.86

Analyzed by: Harnden, Kelsey Printed: 8/26/2022

Client ID		NRSJC-S6-GW08-0722						
Battelle ID		E4121-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/21/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.272						
Size Unit-Basis		26 L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.839	2.30	4.60
PFHpA	375-85-9	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.865	2.30	4.60
PFOA	335-67-1	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.928	2.30	4.60
PFNA	375-95-1	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.766	2.30	4.60
PFDA	335-76-2	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.721	2.30	4.60
PFUnA	2058-94-8	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.691	2.30	4.60
PFDoA	307-55-1	2.30 U	E4121-FS(0)	1,000	8/18/2022	0.699	2.30	4.60
PFTrDA	72629-94-8	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.682	2.30	4.60
PFTeDA	376-06-7	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.727	2.30	4.60
NMeFOSAA	2355-31-9	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.947	2.30	4.60
NEtFOSAA	2991-50-6	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.910	2.30	4.60
PF8S	375-73-5	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.796	2.30	4.60
PFHxS	355-46-4	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.916	2.30	4.60
PFOS	1763-23-1	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.983	2.30	4.60
HFPO-DA	13252-13-6	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.795	2,30	4.60
Adona	919005-14-4	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.799	2.30	4.60
9CI-PF3ONS	756426-58-1	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.947	2.30	4.60
11Cl-PF3OUdS	763051-92-9	2.30 U	E4121-FS(0)	1.000	8/18/2022	0.828	2.30	4.60

2

Client ID		NRSJC-54-GW14-0722						
Battelle ID		E4124-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/21/2022						
Analytical Instrument		Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0,260						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.878	2.40	4.81
PFHpA	375-85-9	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.905	2.40	4.81
PFOA	335-67-1	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.971	2.40	4.81
PFNA	375-95-1	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.801	2.40	4.81
PFDA	335-76-2	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.754	2.40	4.81
PFUnA	2058-94-8	2.40 U	E4124-FS(0)	1,000	8/18/2022	0.723	2.40	4.81
PFDoA	307-55-1	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.731	2.40	4.81
PFTrDA	72629-94-8	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.713	2.40	4.81
PFTeDA	376-06-7	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.761	2.40	4.81
NMeFOSAA	2355-31-9	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.990	2.40	4.81
NEtFOSAA	2991-50-6	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.952	2.40	4.81
PFBS	375-73-5	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.833	2.40	4.81
PFHxS	355-46-4	2.40 U	E4124-FS(0)	1,000	8/18/2022	0.959	2.40	4.81
PFOS	1763-23-1	2.40 U	E4124-FS(0)	1.000	8/18/2022	1.03	2.40	4.81
HFPO-DA	13252-13-6	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.832	2.40	4.81
Adona	919005-14-4	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.836	2.40	4.81
9CI-PF3ONS	756426-58-1	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.990	2.40	4.81
11Cl-PF3OUdS	763051-92-9	2.40 U	E4124-FS(0)	1.000	8/18/2022	0.866	2.40	4.81

Client ID		NRSJC-S4-GW14P-0722						
Battelle ID		E4125-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/21/2022						
Analytical Instrumen	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.267						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.855	2.34	4.68
PFHpA	375-85-9	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.881	2.34	4.68
PFOA	335-67-1	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.946	2.34	4.68
PFNA	375-95-1	2.34 Ų	£4125-FS(0)	1.000	8/18/2022	0.780	2.34	4.68
PFDA	335-76-2	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.734	2.34	4.68
PFUnA	2058-94-8	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.704	2.34	4.68
PFDoA	307-55-1	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.712	2.34	4.68
PFTrDA	72629-94-8	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.695	2.34	4.68
PFTeDA	376-06-7	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.741	2.34	4.68
NMeFOSAA	2355-31-9	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.964	2,34	4.68
NEtFOSAA	2991-50-6	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.927	2.34	4.68
PFBS	375-73-5	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.811	2.34	4.68
PFHxS	355-46-4	2,34 U	E4125-FS(0)	1,000	8/18/2022	0.934	2.34	4.68
PFOS	1763-23-1	2.34 U	E4125-FS(0)	1.000	8/18/2022	1.00	2.34	4,68
HFPO-DA	13252-13-6	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.810	2.34	4.68
Adona	919005-14-4	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.814	2.34	4.68
9CI-PF3ONS	756426-58-1	2.34 U	E4125-FS(0)	1.000	8/18/2022	0.964	2.34	4.68
11Cl-PF3OUdS	763051-92-9	2.34 U	E4125-FS(0)	1,000	8/18/2022	0.844	2.34	4.68

M 9112122 Analyzed by: Harnden, Kelsey Printed: 8/26/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1193
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 31, 2022

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S4-GW15-0722	E4126-FS	Water				
1MS	NRSJC-S4-GW15-0722MS	E4127-FSMS	Water				
1MSD	NRSJC-S4-GW15-0722MSD	E4128-FSMSD	Water				
2	NRSJC-S4-FB01-071322	E4129-FS	Water				
3	NRSJC-S1-EB01-071122	E4130-FS	Water				

A Stage 2B/4 data validation was performed on the analytical data for one water sample, one aqueous field blank sample and one aqueous equipment blank sample collected on July 11-13, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

Date Completeness, Case Natrative & Custody Documentation

- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S4-FB01-071322	None - ND	245.	(=)	-
NRSJC-S1-EB01-071122	None - ND		(a)	2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 9/1/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

l

Client ID		NRSJC-S4-GW15-0722						
8attelle ID		E4126-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/19/2022						
Analytical Instrumen	t	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.278						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.821	2.25	4.50
PFHpA	375-85-9	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.846	2.25	4.50
PFOA	335-67-1	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.908	2.25	4.50
PFNA	375-95-1	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.749	2.25	4.50
PFDA	335-76-2	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.705	2.25	4.50
PFUnA	2058-94-8	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.676	2.25	4.50
PFDoA	307-55-1	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.683	2.25	4.50
PFTrDA	72629-94-8	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.667	2.25	4.50
PFTeDA	376-06-7	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.711	2.25	4.50
NMeFOSAA	2355-31-9	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.926	2.25	4.50
NEtFOSAA	2991-50-6	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.890	2.25	4.50
PFB\$	375-73-5	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.779	2.25	4.50
PFHxS	355-46-4	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.897	2.25	4.50
PFOS	1763-23-1	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.962	2.25	4.50
HFPO-DA	13252-13-6	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.778	2.25	4.50
Adona	919005-14-4	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.781	2.25	4.50
9CI-PF3ONS	756426-58-1	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.926	2.25	4.50
11Cl-PF3OUdS	763051-92-9	2.25 U	E4126-FS(0)	1.000	8/13/2022	0.810	2.25	4.50

Client ID		NRSJC-S4-FB01-071322						
Battelle ID		E4129-FS						
Sample Type		SA						
Collection Date		07/13/2022						
Extraction Date		07/19/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.280						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.815	2.23	4.46
PFHpA	375-85-9	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.840	2.23	4.46
PFOA	335-67-1	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.902	2.23	4.46
PFNA	375-95-1	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.744	2.23	4.46
PFDA	335-76-2	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.700	2.23	4.46
PFUnA	2058-94-8	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.671	2.23	4.46
PFDoA	307-55-1	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.679	2.23	4.46
PFTrDA	72629-94-8	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.663	2.23	4.46
PFTeDA	376-06-7	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.706	2.23	4.46
NMeFOSAA	2355-31-9	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.920	2.23	4.46
NEtFOSAA	2991-50-6	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.884	2.23	4.46
PFBS	375-73-5	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.773	2.23	4.46
PFHxS	355-46-4	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.890	2.23	4.46
PFOS	1763-23-1	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.955	2.23	4.46
HFPO-DA	13252-13-6	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.772	2.23	4.46
Adona	919005-14-4	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.776	2.23	4.46
9CI-PF3ONS	756426-58-1	2.23 U	E4129-FS(0)	1.000	8/13/2022	0,920	2.23	4.46
11Cl-PF3OUdS	763051-92-9	2.23 U	E4129-FS(0)	1.000	8/13/2022	0.804	2.23	4.46

2

Client ID		NRSJC-S1-EB01-071122						
Battelle ID		E4130-FS						
Sample Type		SA						
Collection Date		07/11/2022						
Extraction Date		07/19/2022						
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.276						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.827	2.26	4.53
PFHpA	375-85-9	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.852	2.26	4.53
PFOA	335-67-1	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.915	2.26	4.53
PFNA	375-95-1	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.755	2.26	4.53
PFDA	335-76-2	2.26 U	E4130-F5(0)	1.000	8/13/2022	0.710	2.26	4.53
PFUnA	2058-94-8	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.681	2.26	4.53
PFDoA	307-55-1	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.688	2.26	4.53
PFTrDA	72629-94-8	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.672	2.26	4.53
PFTeDA	376-06-7	2,26 U	E4130-FS(0)	1.000	8/13/2022	0.716	2.26	4.53
NMeFOSAA	2355-31-9	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.933	2.26	4.53
NEtFOSAA	2991-50-6	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.897	2.26	4.53
PFBS	375-73-5	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.784	2.26	4.53
PFHxS	355-46-4	2.26 U	E4130-FS(0)	1,000	8/13/2022	0.903	2.26	4.53
PFOS	1763-23-1	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.969	2.26	4.53
HFPO-DA	13252-13-6	2.26 U	E4130-F5(0)	1.000	8/13/2022	0.784	2.26	4.53
Adona	919005-14-4	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.787	2.26	4.53
9CI-PF3ONS	756426-58-1	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.933	2.26	4.53
11Cl-PF3OUdS	763051-92-9	2.26 U	E4130-FS(0)	1.000	8/13/2022	0.816	2.26	4.53

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1321
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	August 31, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S5-FB01-062322	E3557-FS	Water
2	NRSJC-S5-FB01-062722	E3558-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for two aqueous field blank samples collected on June 23-27, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination

- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were serious deficiencies of data. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

• All compounds were qualified (X) in two samples due to grossly exceeded holding times.

The remaining data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days except for the following.

EDS Sample	Date Extracted	Date Analyzed	# of Days	Qualifier
All Samples	06/23/22	08/04/22	42	X

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S5-FB01-062322	None - ND		2	
NRSJC-S5-FB01-062722	None - ND	S		

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• Both samples were re-extracted grossly outside of holding times to confirm surrogate deficiencies in package 22-1082. Use the results in package 22-1082 since the results in this package are all (X) qualified.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 9/1/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

roject Name: CTO-4 roject No.: G25161.	117: Northwest PFAS Inve X1.XX.0026.000001	stigation						1.	nal 22-108
Client ID		NRSJC-S5-FB01-062322					/	19	Nº 108
Battelle ID		E3557-F\$1					1	0'	02
Sample Type		SA					100	() ()	1
Collection Date		06/23/2022				-/	U.,	CD4	
xtraction Date		08/04/2022				/		2.	
nalytical Instrumen	it	Sciex 6500+ (AE) LC/MS/MS				1	- D.		
% Moisture		NA				1			
Matrix		AQ			1				
Sample Size		0.257			1				
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	-
PFHxA	307-24-4	2.43 U	× E3557-FS1(0)	1.000	8/6/2022	0.888	2.43	4.86	HT
FHpA	375-85-9	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.915	2.43	4.86	
FOA	335-67-1	2.43 UT	E3557-F51(0)	1.000	8/6/2022	0.982	2.43	4.86	
FNA	375-95-1	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.810	2.43	4.86	
FDA	335-76-2	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.763	2.43	4.86	
FUnA	2058-94-8	2.43 UT	E3557-F51(0)	1.000	8/6/2022	0.732	2.43	4.86	1
FDoA	307-55-1	2.43 UT	E3557-F51(0)	1.000	8/6/2022	0.739	2.43	4.86	
FTrDA	72629-94-8	2.43 UT	E3557-F91(0)	1.000	8/6/2022	0.722	2.43	4.86	
PFTeDA	376-06-7	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.769	2.43	4.86	
MeFOSAA	2355-31-9	2.43 UT	E3557-F51(0)	1.000	8/6/2022	1.00	2.43	4.86	
NEtFOSAA	2991-50-6	2.43 UT	F3557-FS1(0)	1.000	8/6/2022	0.963	2.43	4.86	
PFBS	375-73-5	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.842	2.43	4.86	-
PFHxS	355-46-4	2.43 IJT	E3557-FS1(0)	1.000	8/6/2022	0.970	2.43	4.86	
FOS	1763-23-1	2.43 U	E3557-FS1(0)	1.000	8/6/2022	1.04	2.43	4.86	
IFPO-DA	13252-13-6	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	0.841	2.43	4.86	
Adona	919005-14-4	2,43 UT	E3557-FS1(0)	1.000	8/6/2022	0.845	2.43	4.86	
CI-PF3ONS	756426-58-1	2.43 UT	E3557-FS1(0)	1.000	8/6/2022	1.00	2.43	4.86	
11CI-PF3OUdS	763051-92-9	2.43 UT	E3557-F51(0)	1.000	8/6/2022	0.876	2.43	4.86	1

Project Client: CH2M									9. Nal 082
Project Name: CTO-411	17: Northwest PFAS Inve	stigation							
Project No.: G25161 X1	1.XX.0026.000001								· 10 2
									GIN NO
Client ID		NRSJC-S5-FB01-062722					1	اہے ا	
								0'	2
Battelle ID		E3558-FS1					/	e ·	Ψ
Sample Type		SA					100	4	
Collection Date		06/27/2022				/		Sr	
Extraction Date		08/04/2022				/			
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS				1	M		
% Moisture		NA				/			
Matrix		AQ							
Sample Size		0.263			/				
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
					/				
PFHxA	307-24-4	2.38 ЦТ 🗙	E3558-FS1(0)	1.000	8/6/2022	0.868	2.38	4.75	HT
PRHpA	375-85-9	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0.894	2.38	4:75	
PFOA	335-67-1	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0.960	2.38	4.75	
PFNA	375-95-1	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0,792	2.38	4.75	
PFDA	335-76-2	2.38	E3558-FS1(0)	1.000	8/6/2022	0.745	2.38	4.75	
PRUnA	2058-94-8	2.38 UT	E3558-FS1(0)	1.000	8/6/2022	0.715	2.38	4.75	
PFDoA	307-55-1	2,38 UT	E3558-F51(0)	1.000	8/6/2022	0.722	2.38	4,75	
PFTrDA	72629-94-8	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0.705	2.38	4.75	1
PFTeDA	376-06-7	2.38 UT	E3558-E61(0)	1,000	8/6/2022	0,752	2.38	4.75	
NMeFOSAA	2355-31-9	2.38 UT	E3558-FS1(0)	1.000	8/6/2022	0.979	2.38	4,75	
NEtFOSAA	2991-50-6	2.38 UT	E3858-FS1(0)	1.000	8/6/2022	0.941	2.38	4.75	
PF8S	375-73-5	2.38 UT	£3558-FS1(0)	1.000	8/6/2022	0.823	2.38	4.75	
PFHxS	355-46-4	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0.948	2.38	4.75	
PFOS	1763-23-1	2.38 UT	E3558-FS1(0)	1.000	8/6/2022	1.02	2.38	4.75	
HFPO-DA	13252-13-6	2.38 1	E3558-FS1(0)	1.000	8/6/2022	0.822	2.38	4.75	
Adona	919005-14-4	2.38 OT	E3558-FS1(0)	1.000	8/6/2022	0.826	2.38	4.75	
9CI-PF3ONS	756426-58-1	2.38 UT	E3558-F51(0)	1.000	8/6/2022	0.979	2.38	4.75	
11CI-PF3OUdS	763051-92-9	L38 UT	E3558-F\$1(0)	1.000	8/6/2022	0.856	2.38	4.75	

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1323
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	October 12, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NSE-B2114-EB01-080122	E4954-FS	Water
2	NSE-B2114-EB02-080122	E4955-FS	Water
3	NSE-B2114-EB03-080122	E4956-FS	Water
4	NSE-B2114-FB01-080122	E4957-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for three aqueous equipment blank samples and one aqueous field blank sample collected on August 1, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times

- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days except for the following.

EDS Sample	Date Extracted	Date Analyzed	# of Days	Qualifier
All Samples	08/09/22	09/14/22	36	UJ

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NSE-B2114-EB01-080122	None - ND	2	2	V <u>5</u> 2
NSE-B2114-EB02-080122	None - ND	2	2	<u>11</u> 2
NSE-B2114-EB03-080122	None - ND	2	÷	
NSE-B2114-FB01-080122	None - ND			

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Many Weaver Dated: 10/12/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NSE-B2114-EB01-080122							
Battelle ID		E4954-FS							
Sample Type		SA							
Collection Date		08/01/2022							
Extraction Date		08/09/2022							
Analytical Instrument	t	Sciex 6500+ (AF) LC/MS/MS							
% Moisture		NA							
Matrix		AQ							
Sample Size		0.259							
Size Unit-Basis		L		Analysis					
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
			4		carolitati such conta t				
PFHxA	307-24-4	2.41 UT U	E4954-FS(0)	1.000	9/14/2022	0.881	2.41	4.83	
PFHpA	375-85-9	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.908	2.41	4.83	
PFOA	335-67-1	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.975	2.41	4.83	
PFNA	375-95-1	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.804	2.41	4.83	
PFDA	335-76-2	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.757	2.41	4.83	
PFUnA	2058-94-8	2.41 UT	E4954-F5(0)	1.000	9/14/2022	0.726	2.41	4.83	
PFDoA	307-55-1	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.734	2.41	4.83	
PFTrDA	72629-94-8	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.716	2.41	4.83	
PFTeDA	376-06-7	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.764	2.41	4.83	
NMeFOSAA	2355-31-9	2.41 UT	E4954-F\$(0)	1.000	9/14/2022	0.994	2.41	4.83	
NEtFOSAA	2991-50-6	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.956	2.41	4.83	
PFBS	375-73-5	2.41 UT	E4954-F5(0)	1.000	9/14/2022	0.836	2.41	4.83	
PFHxS	355-46-4	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.962	2.41	4.83	
PFOS	1763-23-1	2.41 UT	E4954-FS(0)	1.000	9/14/2022	1.03	2.41	4.83	
HFPO-DA	13252-13-6	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.835	2.41	4.83	
Adona	919005-14-4	2.41 UT	E4954-F5(0)	1.000	9/14/2022	0.839	2.41	4.83	
9CI-PF3ONS	756426-58-1	2.41 UT	E4954-FS(0)	1.000	9/14/2022	0.994	2.41	4.83	
11CI-PF3OUdS	763051-92-9	2.41 UT	+ E4954-FS(0)	1.000	9/14/2022	0.870	2.41	4.83	

Nulli2122

Analyzed by: Harnden, Kelsey Printed: 10/1/2022

Ň

2

Client ID		NSE-B2114-EB02-080122							
Battelle ID E4955-FS									
Sample Type SA									
Collection Date 08/01/2022									
Extraction Date 08/09/2022									
Analytical Instrument Sciex 6500+ (AF) LC/MS/MS % Moisture NA Matrix AQ Sample Size 0.244 Size Unit-Basis L									
		NA	NA						
		AQ							
		0.244							
		L							
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	-
			-						
PFHxA	307-24-4	2.56 UT 🕻		1.000	9/14/2022	0.935	2.56	5.12	_
PFHpA	375-85-9	2.56 UT	E4955-PS(0)	1,000	9/14/2022	0.964	2.56	5.12	
PFOA	335-67-1	2.56 UT	E4955-FS(0)	1.000	9/14/2022	1.03	2.56	5.12	
PFNA	375-95-1	2.56 UT	E4955-F5(0)	1,000	9/14/2022	0.853	2.56	5.12	
PFDA	335-76-2	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.803	2.56	5.12	
PFUnA	2058-94-8	2.56 U	E4955-F5(0)	1.000	9/14/2022	0.770	2.56	5.12	
PFDoA	307-55-1	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.779	2.56	5.12	
PFTrDA	72629-94-8	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.760	2.56	5.12	
PFTeDA	376-06-7	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.810	2.56	5.12	
NMeFOSAA	2355-31-9	2.56 UT	£4955-FS(0)	1.000	9/14/2022	1,06	2.56	5,12	
NEtFOSAA	2991-50-6	2.56 UT	E4955-FS(0)	1.000	9/14/2022	1.01	2.56	5.12	
PFBS	375-73-5	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.887	2.56	5.12	
PFHxS	355-46-4	2.56 UT	E4955-FS(0)	1.000	9/14/2022	1.02	2.56	5.12	
PFOS	1763-23-1	2.56 UT	E4955-FS(0)	1.000	9/14/2022	1.10	2.56	5.12	
HFPO-DA	13252-13-6	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.886	2.56	5.12	
Adona	919005-14-4	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.890	2.56	5.12	
9CI-PF3ONS	756426-58-1	2.56 UT	E4955-FS(0)	1.000	9/14/2022	1.06	2.56	5.12	
11CI-PF3OUdS	763051-92-9	2.56 UT	E4955-FS(0)	1.000	9/14/2022	0.923	2:56	5.12	

MW 10 (12/22 Analyzed by: Harnden, Kelsey Printed: 10/1/2022

Client ID		NSE-B2114-EB03-080122							
Battelle ID		E4956-FS							
Sample Type		SA							
Collection Date		08/01/2022							
Extraction Date		08/09/2022							
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS							
% Moisture		NA							
Matrix		AQ							
Sample Size		0.247							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DĹ	LOD	LOQ	
			1						
PFHxA	307-24-4	2.53 UT	いJ E4956-FS(0)	1.000	9/14/2022	0.924	2.53	5.06	H1
PFHpA	375-85-9	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.952	2.53	5.06	1.00
PFOA	335-67-1	2.53 UT	E4956-FS(0)	1.000	9/14/2022	1.02	2.53	5.06	1
PFNA	375-95-1	2.53 UT	E4956-FS(0)	1,000	9/14/2022	0.843	2.53	5.06	
PFDA	335-76-2	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.794	2.53	5.06	
PFUNA	2058-94-8	2.53 UT	E4956-FS(0)	1,000	9/14/2022	0.761	2.53	5.06	
PFDoA	307-55-1	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.769	2.53	5.06	
PFTrDA	72629-94-8	2.53 UT	E4956-FS(0)	1.009	9/14/2022	0.751	2.53	5.06	
PFTeDA	376-06-7	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.801	2.53	5.06	
NMeFOSAA	2355-31-9	2.53 UT	E4956-FS(0)	1.000	9/14/2022	1.04	2.53	5.06	
NEtFOSAA	2991-50-6	2.53 UT	E4956-FS(0)	1.000	9/14/2022	1.00	2.53	5.06	
PFBS	375-73-5	2.53 UT	E4956-FS(0)	1,000	9/14/2022	0.877	2.53	5.06	
PFHxS	355-46-4	2.53 U <mark>T</mark>	E4956-FS(0)	1.000	9/14/2022	1.01	2.53	5.06	
PFOS	1763-23-1	2.53 UT	E4956-F5(0)	1.000	9/14/2022	1.09	2.53	5.06	
HFPO-DA	13252-13-6	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.876	2.53	5.06	
Adoina	919005-14-4	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.880	2.53	5.06	
9CI-PF3ONS	756426-58-1	2.53 UT	E4956-FS(0)	1.000	9/14/2022	1.04	2.53	5.06	
11CI-PF3OUdS	763051-92-9	2.53 UT	E4956-FS(0)	1.000	9/14/2022	0.912	2.53	5.06	

Analyzed by: Harnden, Kelsey Printed: 10/1/2022

3

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NSE-B2114-FB01-080122								
Battelle ID		E4957-FS								
Sample Type		SA								
Collection Date		08/01/2022								
Extraction Date		08/09/2022								
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS								
% Moisture		NA								
Matrix		AQ								
Sample Size		0.245								
Size Unit-Basis		L				Analysis				
Analyte	CAS No.	Result (ng/L)		Extract ID	DF	Date	DL	LOD	LOQ	
										1
PFHxA	307-24-4	2.55 U	t UJ	E4957-FS(0)	1.000	9/14/2022	0.932	2.55	5.10	-H'
PFHpA	375-85-9	2.55 U	TI	E4957-FS(0)	1.000	9/14/2022	0.960	2.55	5.10	
PFOA	335-67-1	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	1.03	2.55	5.10	
PFNA	375-95-1	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	0.850	2.55	5.10	
PFDA	335-76-2	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	0.800	2.55	5.10	
PFUnA	2058-94-8	2.55 U	T .	E4957-FS(0)	1.000	9/14/2022	0.767	2.55	5.10	
PFDoA	307-55-1	2.55 U	т	E4957-FS(0)	1.000	9/14/2022	0.776	2.55	5.10	
PFTrDA	72629-94-8	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	0.757	2.55	5.10	
PFTeDA	376-06-7	2.55 U	т	E4957-FS(0)	1.000	9/14/2022	0.807	2.55	5.10	
NMeFOSAA	2355-31-9	2.55 U	T I	E4957-F5(0)	1.000	9/14/2022	1.05	2.55	5.10	
NEtFOSAA	2991-50-6	2.55 🌵	T	E4957-FS(0)	1.000	9/14/2022	1.01	2.55	5.10	
PFBS	375-73-5	2.55 🗸	T	E4957-FS(0)	1.000	9/14/2022	0.884	2.55	5.10	
PFHxS	355-46-4	2.55 🔱	T	E4957-FS(0)	1.000	9/14/2022	1.02	2.55	5.10	
PFOS	1763-23-1	2.55 🗸	T	E4957-FS(0)	1.000	9/14/2022	1.09	2.55	5.10	
HFPO-DA	13252-13-6	2.55 🗸	T	E4957-FS(0)	1.000	9/14/2022	0.883	2.55	5.10	
Adona	919005-14-4	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	0.887	2.55	5.10	
9CI-PF3ONS	756426-58-1	2.55 U	T	E4957-FS(0)	1.000	9/14/2022	1.05	2.55	5.10	
11CI-PF3OUdS	763051-92-9	2.55 U	T a	E4957-FS(0)	1.000	9/14/2022	0.919	2.55	5.10	

Analyzed by: Harnden, Kelsey Printed: 10/1/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1325
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

PFAS								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix					
1	NSE-B2114-SS03-0001	E4943-FS	Soil					
2	NSE-B2114-SB02-1920	E4944-FS	Soil					
3	NSE-B2114-SB01-0910	E4945-FS	Soil					
3MS	NSE-B2114-SB01-0910MS	E4946-FSMS	Soil					
3MSD	NSE-B2114-SB01-0910MSD	E4947-FSMSD	Soil					
4	NSE-B2114-SS01-0001	E4948-FS	Soil					
5	NSE-B2114-SS01P-0001	E4949-FS	Soil					
6	NSE-B2114-SS02-0001	E4950-FS	Soil					
7	NSE-B2114-SB03-1920	E4951-FS	Soil					

A Stage 2B/4 data validation was performed on the analytical data for seven soil samples collected on July 26-28, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Evcrett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were reanalyzed for PFTeDA and PFHxS outside of the 28-day holding time. However, the extracts were stored per draft EPA Method 1633 which allows for 90 days. The laboratory (T) flags were removed, and no qualifications were required.

LC/MS Tuning

• All criteria were met.

Initial Calibration

All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NSE-B2114-FB01-080122	None - ND		574	15

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
6	13C7-PFUnA	40%	J
	13C2-PFDoA	43%	Ĵ
	13C2-PFTeDA	40%	ŬJ
	d3-MeFOSAA	32%	UJ
	d5-EtFOSAA	35%	UJ
	13C8-PFOS	42%	J

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values. •

Internal Standard (IS) Area Performance

. All internal standards met response and retention time (RT) criteria.

Target Compound Identification

All mass spectra and quantitation criteria were met. ٠

Compound Quantitation

All criteria were met. .

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	NSE-B2114-SS01-0001 ng/g	NSE-B2114-SS01P-0001 ng/g	RPD	Qualifier
PFHxA	0.501U	0.207	NC	None
PFHxS	2.77	2.15	25%	
PFOS	34.5	30.9	11%	

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22 Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

l

Project Client: CH2M

Client ID		NSE-B2114-SS03-0001						
Battelle ID		E4943-F5						
Sample Type		SA						
Collection Date		07/27/2022						
Extraction Date		08/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		5.20						
Matrix		SO						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E4943-F5(0)	1.000	9/2/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E4943-FS(0)	1.000	10/1/2022	0.162	0.500	2.00
NMefósáa	2355-31-9	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E4943-F5(0)	1.000	10/1/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.399 J	E4943-F\$(0)	1.000	9/2/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E4943-F5(0)	1.000	9/2/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E4943-FS(0)	1.000	9/2/2022	0.150	0.500	2.00

Analyzed by: Harnden, Kelsey Printed: 10/7/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NSE-B2114-SB02-1920						
Battelle ID		E4944-FS						
Sample Type		SA						
Collection Date		07/27/2022						
Extraction Date		08/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		22.68						
Matrix		SO						
Sample Size		5.020						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.177	0.498	0.996
PFHpA	375-85-9	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.167	0.498	0.996
PFOA	335-67-1	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.213	0.498	0.996
PFNA	375-95-1	0.498 U	E4944-F5(0)	1.000	9/2/2022	0,156	0.498	0.996
PFDA	335-76-2	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.157	0.498	0.996
PFUnA	2058-94-8	0.498 U	E4944, FS(0)	1.000	9/2/2022	0.155	0.498	0.996
PFDoA	307-55-1	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.159	0.498	0.996
PFTrDA	72629-94-8	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.160	0.498	0.996
PFTeDA	376-06-7	0.498 U	E4944-FS(0)	1.000	10/1/2022	0.161	0.498	1.99
NMeFOSAA	2355-31-9	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.158	0.498	1.99
NEtFOSAA	2991-50-6	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.164	0.498	1.99
PFBS	375-73-5	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.170	0.498	0.996
PFHxS	355-46-4	0.498 U	E4944-FS(0)	1.000	10/1/2022	0.172	0.498	0.996
PFOS	1763-23-1	0.208 J	E4944-FS(0)	1.000	9/2/2022	0.174	0.498	0.996
HFPO-DA	13252-13-6	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.158	0.498	1.99
Adona	919005-14-4	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.159	0.498	1.99
9CI-PF3ONS	756426-58-1	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.153	0.498	1.99
11Cl-PF3OUdS	763051-92-9	0.498 U	E4944-FS(0)	1.000	9/2/2022	0.149	0.498	1.99

Analyzed by: Harnden, Kelsey Printed: 10/7/2022

×.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NSE-B2114-SB01-0910						
Battelle ID		E4945-FS						
Sample Type		SA						
Collection Date		07/27/2022						
Extraction Date		08/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		16.37						
Matrix		SO						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.178	0.500	1.00
PEHpA	375-85-9	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.214	0.500	1,00
PFNA	375-95-1	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E4945-FS(0)	1.000	10/1/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 UT	E4945-FS(0)	1.000	10/1/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.636 J	E4945-FS(0)	1.000	9/2/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E4945-FS(0)	1.000	9/2/2022	0.150	0.500	2.00

Analyzed by: Harnden, Kelsey Printed: 10/7/2022

3

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NSE-B2114-SS01-0001						
Battelle ID		E4948-FS						
Sample Type		SA						
Collection Date		07/26/2022						
Extraction Date		08/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		20 23						
Matrix		SO						
Sample Size		4.990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.168	0,501	1.00
PFOA	335-67-1	0.501 U	E4948-FS(0)	1.000	9/3/2022	0,214	0.501	1.00
PFNA	375-95-1	0.501 U	E4948-F5(0)	1.000	9/3/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.156	0.501	1,00
PFDoA	307-55-1	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E4948-FS(0)	1.000	10/1/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.171	0.501	1.00
PFHxS	355-46-4	2.77 7	E4948-FS(0)	1.000	10/1/2022	0.173	0.501	1.00
PFOS	1763-23-1	34.5	E4948-FS(0)	1.000	9/3/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E4948-FS(0)	1.000	9/3/2022	0.150	0.501	2.00

Project Client: CH2M

Client ID		NSE-B2114-SS01P-0001						
Battelle ID		E4949-FS						
Sample Type		SA						
Collection Date		07/26/2022						
Extraction Date		08/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		9.40						
Matrix		SO						
Sample Size		4.990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0,207 J	E4949-FS(0)	1.000	9/3/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E4949-F5(0)	1.000	9/3/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E4949-FS(0)	1.000	10/1/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.171	0.501	1.00
PFHxS	355-46-4	2.15 🏌	E4949-FS(0)	1.000	10/1/2022	0.173	0.501	1.00
PFOS	1763-23-1	30.9	E4949-FS(0)	_1.000	9/3/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E4949-FS(0)	1.000	9/3/2022	0.150	0.501	2.00

þ

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161,X1.XX.0026.000001

Client ID		NSE-B2114-SS02-0001							
Battelle ID		E4950-FS							
Sample Type		SA							
Collection Date		07/26/2022							
Extraction Date		08/08/2022							
Analytical Instrumer	nt	Sciex 6500+ (AF) LC/MS/MS							
% Moisture		9.39							
Matrix		SO							
Sample Size		4.990							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	0.436 J	E4950-FS(0)	1.000	9/3/2022	0.178	0.501	1.00	
PFHpA	375-85-9	0.308 J	E4950-FS(0)	1.000	9/3/2022	0.168	0.501	1.00	
PFOA	335-67-1	0.350 J	E4950-FS(0)	1.000	9/3/2022	0.214	0.501	1.00	
PFNA	375-95-1	0.240 J	E4950-FS(0)	1.000	9/3/2022	0,157	0.501	1.00	
PFDA	335-76-2	0.593 J	E4950-FS(0)	1.000	9/3/2022	0.158	0.501	1.00	
PFUnA	2058-94-8	0.267 🖋 🍠	E4950-FS(0)	1.000	9/3/2022	0.156	0.501	1.00	SSL
PFDoA	307-55-1	0.478 🖌 🍠	E4950-FS(0)	1.000	9/3/2022	0.160	0.501	1.00	SSL
PFTrDA	72629-94-8	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.161	0.501	1.00	
PFTeDA	376-06-7	0.501 Vt uJ	E4950-FS(0)	1.000	10/1/2022	0.162	0.501	2.00	SSL
NMeFOSAA	2355-31-9	0.501 1 1.7	E4950-FS(0)	1.000	9/3/2022	0.159	0.501	2.00	
NEtFOSAA	2991-50-6	0.501 🖌 🚺 🍠	E4950-FS(0)	1.000	9/3/2022	0.165	0.501	2.00	4
PFBS	375-73-5	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.171	0.501	1.00	
PFHxS	355-46-4	0.982 J	E4950-FS(0)	1.000	10/1/2022	0.173	0.501	1.00	
PFOS	1763-23-1	14.8 J	E4950-FS(0)	1.000	9/3/2022	0.175	0.501	1.00	SSL
HFPO-DA	13252-13-6	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.159	0.501	2.00	
Adona	919005-14-4	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.160	0.501	2.00	
9CI-PF3ONS	756426-58-1	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.154	0.501	2.00	
11Cl-PF3OUdS	763051-92-9	0.501 U	E4950-FS(0)	1.000	9/3/2022	0.150	0.501	2.00	

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1,XX.0026.000001

Client ID	NSE-B2114-SS02-0001			
Battelle ID	E4950-FS			
Sample Type	SA			
Collection Date	07/26/2022			
Extraction Date	08/08/2022			
Analytical Instrument	Sciex 6500+ (AF) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	58	E4950-FS(0)	9/3/2022	
13C4-PFHpA	58	E4950-FS(0)	9/3/2022	
13C8-PFOA	52	E4950-FS(0)	9/3/2022	
13C9-PFNA	51	E4950-FS(0)	9/3/2022	
13C6-PFDA	53	E4950-FS(0)	9/3/2022	
13C7-PFUnA	40 N	E4950-FS(0)	9/3/2022	
13C2-PFDoA	43 🖡	E4950-FS(0)	9/3/2022	
13C2-PFTeDA	40 🗰	E4950-FS(0)	10/1/2022	
d3-MeFOSAA	32 🖠	E4950-FS(0)	9/3/2022	
d5-EtFOSAA	35 1	E4950-FS(0)	9/3/2022	
13C3-PFBS	57	E4950-FS(0)	9/3/2022	
13C3-PFHxS	63	E4950-FS(0)	10/1/2022	
13C8-PFOS	42 🖌	E4950-FS(0)	9/3/2022	
13C3-HFPO-DA	63	E4950-FS(0)	9/3/2022	

Client ID

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Battelle ID		E4951-FS						
Sample Type		SA						
Collection Date		07/28/2022						
Extraction Date		08/08/2022						
Analytical Instrumen	ıt	Sciex 6500+ (AF) LC/MS/MS						
% Moisture		23.02						
Matrix		SO						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 U	E4951-FS(0)	1.000	9/3/2022	0,168	0.499	0.998
PFOA	335-67-1	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.214	0.499	0.998
PFNA	375-95-1	0.499 U	E4951-F5(0)	1.000	9/3/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E4951-F5(0)	1.000	9/3/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0,499 U	E4951-FS(0)	1.000	9/3/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E4951-FS(0)	1.000	10/1/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E4951-FS(0)	1.000	9/3/2022	0,159	0.499	2.00
NELFOSAA	2991-50-6	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.165	0.499	2.00
PFBS	375-73-5	0,499 U	E4951-FS(0)	1.000	9/3/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 UT	E4951-FS(0)	1.000	10/1/2022	0.173	0.499	0.998
PFOS	1763-23-1	.0.499 U	E4951-F5(0)	1.000	9/3/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.160	0,499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.154	0.499	2.00
11CI-PF3OUdS	763051-92-9	0.499 U	E4951-FS(0)	1.000	9/3/2022	0.150	0.499	2.00

NSE-B2114-SB03-1920

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1385
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRCPB-B106-SS01-0001	E5332-FS	Soil
2	NRCPB-B106-SS01P-0001	E5333-FS	Soil
3	NRCPB-B106-SS02-0001	E5334-FS	Soil
4	NRCPB-B106-SB01-1314	E5337-FS	Soil
4MS	NRCPB-B106-SB01-1314MS	E5338-FSMS	Soil
4MSD	NRCPB-B106-SB01-1314MSD	E5339-FSMSD	Soil
5	NRCPB-B106-SB02-0910	E5340-FS	Soil
6	NRCPB-B106-SS03-0001	E5343-FS	Soil
7	NRCPB-B106-SB03-0506	E5345-FS	Soil

A Stage 2B/4 data validation was performed on the analytical data for seven soil samples collected on August 3-8, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratorics (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 28 days for soil samples and analyzed within 30 days except for the following.

EDS Sample	Date Extracted	Date Analyzed	# of Days	Qualifier
3	08/16/22	10/29/22	74	UJ - PFTeDA only
7	08/16/22	10/29/22	74	UJ - PFDoA only

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. 11g/L	Qualifier	Affected Samples
NRCPB-B106-EB01-080322	None - ND	-	=	18
NRCPB-B106-EB01-080422	None - ND	-	-) eg
NRCPB-B106-EB01-080922	None - ND	-	-	ė:
NRCPB-B106-FB01-080322	None - ND		-	(e)
NRCPB-B106-FB01-080822	None - ND	H	i	ei

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
2	d5-EtFOSAA	44%	UJ
6	13C2-PFTeDA	43%	UJ
7	d5-EtFOSAA	45%	U

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values. •

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria. •

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRCPB-B106-SS01-0001 ng/g	NRCPB-B106-SS01P-0001 11g/g	RPD	Qualifier
PFOS	0.260	0.498U	NC	None

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRCPB-B106-S501-0001						
Battelle ID		E5332-FS						
Sample Type		SA						
Collection Date		08/03/2022						
Extraction Date		08/16/2022						
Analytical instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		16.31						
Matrix		SO						
Sample Size		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E5332-FS(0)	1.000	9/9/2022	0:158	0.502	1.00
PFDA	335-76-2	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.159	0.502	1.00
PFUna	2058-94-8	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.163	0.502	2.01
NMeFOSAA	2355-31-9	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.174	0.502	1.00
PFOS	1763-23-1	0.260 J	E5332-FS(0)	1.000	9/9/2022	0.176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E5332-FS(0)	1.000	9/9/2022	0,161	0.502	2.01
9CI-PF3ONS	756426-58-1	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.155	0.502	2.01
11CI-PEOUds	763051-92-9	0.502 U	E5332-FS(0)	1.000	9/9/2022	0.151	0.502	2.01

Analyzed by: Burkitt, Nathan Printed: 11/2/2022

Project Client: CH2M

Client ID		NRCPB-B106-SS01P-0001							
Battelle ID		E5333-FS							
Sample Type		SA							
Collection Date		08/03/2022							
Extraction Date		08/16/2022							
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS							
% Moisture		17.05							
Matrix		SO							
Sample Size		5.020							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.177	0.498	0.996	
PFHpA	375-85-9	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.167	0.498	0.996	
PFOA	335-67-1	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.213	0.498	0.996	
PFNA	375-95-1	0.498 U	E5333-F\$(0)	1.000	9/9/2022	0.156	0.498	0.996	
PFDA	335-76-2	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.157	0.498	0.996	
PFUnA	2058-94-8	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.155	0.498	0.996	
PFDoA	307-55-1	0,498 U	E5333-FS(0)	1.000	9/9/2022	0.159	0.498	0.996	
PFTrDA	72629-94-8	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.160	0.498	0.996	
PFTeDA	376-06-7	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.161	0.498	1.99	
NMeFOSAA	2355-31-9	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.158	0.498	1.99	
NEtFOSAA	2991-50-6	0.498 📈 🚺	E5333-FS(0)	1.000	9/9/2022	0.164	0.498	1.99	SSU
PFBS	375-73-5	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.170	0.498	0.996	1
PFHxS	355-46-4	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.172	0.498	0.996	
PFOS	1763-23-1	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.174	0.498	0.996	
HFPO-DA	13252-13-6	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.158	0.498	1.99	
Adona	919005-14-4	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.159	0.498	1.99	
9CI-PF3ONS	756426-58-1	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.153	0.498	1.99	
11CI-PF3OUds	763051-92-9	0.498 U	E5333-FS(0)	1.000	9/9/2022	0.149	0.498	1.99	

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID	NRCPB-B106-SS01P-0001						
Battelle ID	E5333-FS						
Sample Type	SA						
Collection Date	08/03/2022						
Extraction Date	08/16/2022						
Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS						
Surrogate Recoveries (%)	Recovery	Extract ID					
13C5-PFHxA	82	E5333-FS(0)					
13C4-PFHpA	89	E5333-F5(0)	1				
13C8-PFOA	91	E5333-FS(0)					
1200 0514							

Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	82	E5333-FS(0)	9/9/2022	
13C4-PFHpA	89	E5333-F5(0)	9/9/2022	
13C8-PFOA	91	E5333-F5(0)	9/9/2022	
13C9-PFNA	74	E5333-FS(0)	9/9/2022	
13C6-PFDA	68	E5333-FS(0)	9/9/2022	
13C7-PFUnA	65	E5333-FS(0)	9/9/2022	
13C2-PFDoA	57	E5333-FS(0)	9/9/2022	
13C2-PFTeDA	64	E5333-P5(0)	9/9/2022	
d3-MeFOSAA	59	E5333-FS(0)	9/9/2022	
dS-EtFOSAA	44	E5333-PS(0)	9/9/2022	
13C3-PFBS	74	E5333-FS(0)	9/9/2022	
13C3-PFHxS	79	E5333-F5(0)	9/9/2022	
13C8-PFOS	68	E5333-FS(0)	9/9/2022	
13C3-HFPO-DA	73	E5333-FS(0)	9/9/2022	

Analysis

Project Client: CH2M

Client ID		NRCPB-B106-SS02-0001							
Battelle ID		E5334-FS							
Sample Type		SA							
Collection Date		08/03/2022							
Extraction Date		08/16/2022							
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS							
% Moisture		14.68							
Matrix		50							
Sample Size		4.980							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.179	0.502	1.00	
PFHpA	375-85-9	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.169	0.502	1.00	
PFOA	335-67-1	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.215	0.502	1.00	
PFNA	375-95-1	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.158	0.502	1.00	
PFDA	335-76-2	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.159	0.502	1.00	
PFUnA	2058-94-8	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.157	0.502	1.00	
PFDoA	307-55-1	0.502 U	E5334-FS(0)	1.000	9/9/2022	0,161	0.502	1,00	
PFTrDA	72629-94-8	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.162	0.502	1.00	
PFTeDA	376-06-7	0.502 🔰 🙀	E5334-FS(0)	1.000	10/29/2022	0.163	0,502	2.01	HT
NMeFOSAA	2355-31-9	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.160	0.502	2.01	
NEtFOSAA	2991-50-6	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.166	0.502	2.01	
PFBS	375-73-5	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.172	0.502	1.00	
PFHxS	355-46-4	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.174	0.502	1.00	
PFOS	1763-23-1	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.176	0.502	1.00	
HFPO-DA	13252-13-6	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.160	0.502	2.01	
Adona	919005-14-4	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.161	0.502	2.01	
9CI-PF3ONS	756426-58-1	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.155	0.502	2.01	
11CI-PF3OUds	763051-92-9	0.502 U	E5334-FS(0)	1.000	9/9/2022	0.151	0.502	2.01	

3

Analyzed by: Burkitt, Nathan Printed: 11/2/2022

Project Client: CH2M

Client ID		NRCPB-B106-SB01-1314						
Battelle ID		E5337-FS						
Sample Type		SA						
Collection Date		08/03/2022						
Extraction Date		08/16/2022						
Analytical Instrumen	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		10.10						
Matrix		SO						
Sample Size		4.980						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.179	0.502	1.00
PFHpA	375-85-9	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.169	0.502	1.00
PFOA	335-67-1	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.215	0.502	1.00
PFNA	375-95-1	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.158	0.502	1.00
PFDA	335-76-2	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.159	0.502	1.00
PFUnA	2058-94-8	0.502 U	E5937-FS(0)	1.000	9/9/2022	0.157	0.502	1.00
PFDoA	307-55-1	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.161	0.502	1.00
PFTrDA	72629-94-8	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.162	0.502	1.00
PFTeDA	376-06-7	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.163	0.502	2.01
NMEFOSAA	2355-31-9	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.160	0.502	2.01
NEtFOSAA	2991-50-6	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.166	0.502	2.01
PFBS	375-73-5	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.172	0.502	1.00
PFHxS	355-46-4	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.174	0.502	1.00
PEOS	1763-23-1	0.502 U	E5337-FS(0)	1.000	9/9/2022	0,176	0.502	1.00
HFPO-DA	13252-13-6	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.160	0.502	2.01
Adona	919005-14-4	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.161	0.502	2.01
9CI-PF3ON5	756426-58-1	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.155	0.502	2.01
11CI-PF3OUds	763051-92-9	0.502 U	E5337-FS(0)	1.000	9/9/2022	0.151	0.502	2.01

Project Client: CH2M

Client ID		NRCPB-B106-SB02-0910						
Battelle ID		E5340-FS						
Sample Type		SA						
Collection Date		08/04/2022						
Extraction Date		08/15/2022						
Analytical Instrumen	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		21.33						
Matrix		SO						
Sample Size		5.020						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.177	0.498	0.996
PFHpA	375-85-9	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.167	0.498	0.996
PFOA	335-67-1	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.213	0.498	0.996
PFNA	375-95-1	0.498 U	E5340-FS(0)	1.000	9/9/2022	0:156	0.498	0.996
PFDA	335-76-2	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.157	0.498	0.996
PFUnA	2058-94-8	0.498 U	E5340-FS(0)	1.000	9/9/2022	0,155	0.498	0.996
PFDoA	307-55-1	0.498 U	E5340-FS(0)	1.000	9/9/2022	0,159	0.498	0.996
PFTrDA	72629-94-8	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.160	0.498	0.996
PFTeDA	376-06-7	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.161	0.498	1.99
MeFOSAA	2355-31-9	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.158	0.498	1.99
NEtFOSAA	2991-50-6	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.164	0.498	1.99
PFBS	375-73-5	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.170	0.498	0.996
PFHxS	355-46-4	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.172	0.498	0.995
PFOS	1763-23-1	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.174	0.498	0.996
HFPO-DA	13252-13-6	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.158	0.498	1.99
Adona	919005-14-4	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.159	0.498	1.99
9CI-PF3ONS	756426-58-1	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.153	0.498	1.99
11Cl-PF3OUdS	763051-92-9	0.498 U	E5340-FS(0)	1.000	9/9/2022	0.149	0.498	1.99

MUI2/16/22 Analyzed by: Burkitt, Nathan Printed: 11/2/2022

b

Project Client: CH2M

Client ID		NRCPB-B106-SS03-0001							
Battelle ID		E5343-FS							
Sample Type		SA							
Collection Date		08/08/2022							
Extraction Date		08/16/2022							
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS							
% Moisture		17.25							
Matrix		SO							
Sample Size		5,010							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.178	0.499	0.998	
PFHpA	375-85-9	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.168	0.499	0.998	
PFOA	335-67-1	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.214	0.499	0.998	
PFNA	375-95-1	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.157	0.499	0.998	
PFDA	335-76-2	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.158	0.499	0.998	
PFUnA	2058-94-8	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.156	0.499	0.998	
PFDoA	307-55-1	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.160	0.499	0.998	
PFTrDA	72629-94-8	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.161	0.499	0.998	
PFTeDA	376-06-7	0.499 🎽 🗖	E5343-FS(0)	1.000	9/9/2022	0.162	0.499	2.00	SSL
NMeFOŞAA	2355-31-9	0.499 U	E5343-F5(0)	1.000	9/9/2022	0.159	0.499	2.00	
NEtFOSAA	2991-50-6	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.165	0.499	2.00	
PF8S	375-73-5	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.171	0.499	0.998	
PFHxS	355-46-4	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.173	0.499	0.998	
PFQS	1763-23-1	0.621 J	E5343-FS(0)	1.000	9/9/2022	0.175	0.499	0.998	
HFPO-DA	13252-13-6	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.159	0.499	2.00	
Adona	919005-14-4	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.160	0.499	2.00	
9CI-PF3ONS	756426-58-1	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.154	0.499	2.00	
11Cl-PF3OUdS	763051-92-9	0.499 U	E5343-FS(0)	1.000	9/9/2022	0.150	0.499	2.00	

MI2/16/22 Analyzed by: Burkitt, Nathan Printed: 11/2/2022

þ

Project Client: CH2M

NRCPB-B106-SS03-0001
E5343-FS
SA
08/08/2022
08/16/2022
Sciex 6500+ (AE) LC/MS/MS

Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS						
			Analysis				
Surrogate Recoveries (%)	Recovery	Extract ID	Date				
13C5-PFHxA	69	E5343-FS(0)	9/9/2022				
13C4-PFHpA	77	E5343-FS(0)	9/9/2022				
13C8-PFOA	81	E5343-FS(0)	9/9/2022				
13C9-PFNA	66	E5343-FS(0)	9/9/2022				
13C6-PFDA	69	E5343-FS(0)	9/9/2022				
13C7-PFUnA	69	E5343-FS(0)	9/9/2022				
13C2-PFDoA	68	E5343-FS(0)	9/9/2022				
13C2-PFTeDA	43	E5343-F5(0)	9/9/2022				
d3-MeFOSAA	79	E5343-FS(0)	9/9/2022				
d5-EtFOSAA	72	E5343-P5(0)	9/9/2022				
13C3-PFBS	98	E5343-FS(0)	9/9/2022				
13C3-PFHxS	90	E5343-F5(0)	9/9/2022				
13C8-PFOS	74	E5343-FS(0)	9/9/2022				
13C3-HEPO-DA	66	E5343-FS(0)	9/9/2022				

MI2/16/22 Analyzed by: Burkitt, Nathan Printed: 11/2/2022

Project Client: CH2M

Client ID		NRCPB-B106-SB03-0506							
Battelle ID		E5345-FS							
Sample Type		SA							
Collection Date		08/08/2022							
Extraction Date		08/16/2022							
Analytical Instrument	t	Sciex 6500+ (AE) LC/MS/MS							
% Moisture		25.52							
Matrix		SO							
Sample Size		5.020							
Size Unit-Basis		g			Analysis				
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ	
									_
PFHxA	307-24-4	0.498 U	E5345-F5(0)	1.000	9/9/2022	0.177	0.498	0.996	
PFHpA	375-85-9	0.498 U	E5345-F5(0)	1.000	9/9/2022	0.167	0.498	0.996	
PFOA	335-67-1	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.213	0.498	0.996	
PFNA	375-95-1	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.156	0.498	0.996	
PFDA	335-76-2	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.157	0.498	0.996	
PFUnA	2058-94-8	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.155	0,498	0.996	
PFDoA	307-55-1	0.498 👭 📈	E5345-F5(0)	1.000	10/29/2022	0.159	0.498	0.996	HT
PFTrDA	72629-94-8	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.160	0.498	0.996	
PFTeDA	376-06-7	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.161	0.498	1.99	
NMeFOSAA	2355-31-9	0;498 U	E5345-FS(0)	1.000	9/9/2022	0.158	0.498	1.99	
NEtFOSAA	2991-50-6	0.498 4 45	E5345-FS(0)	1.000	9/9/2022	0.164	0.498	1.99	SSL
PFBS	375-73-5	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.170	0.498	0.996	
PFHxS	355-46-4	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.172	0.498	0.996	
PFOS	1763-23-1	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.174	0.498	0.996	
HFPO-DA	13252-13-6	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.158	0.498	1.99	
Adona	919005-14-4	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.159	0.498	1.99	
9CI-PF3ONS	756426-58-1	0.498 U	E5345-FS(0)	1.000	9/9/2022	0.153	0.498	1.99	
11Cl-PFBOUdS	763051-92-9	0.498 U	E5345-FS(0)	1.000	9/9/2022	0,149	0.498	1.99	

Project Client: CH2M

Client ID	NRCPB-B106-SB03-0506
Battelle ID	E5345-FS
Sample Type	SA
Collection Date	08/08/2022
Extraction Date	08/16/2022
Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS

			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C5-PFHxA	68	E5345-FS(0)	9/9/2022
13C4-PFHpA	72	E5345-FS(0)	9/9/2022
13C8-PFOA	74	E5345-FS(0)	9/9/2022
13C9-PFNA	59	E5345-P5(0)	9/9/2022
13C6-PFDA	57	E5345-FS(0)	9/9/2022
13C7-PFUnA	56	E5345-FS(0)	9/9/2022
13C2-PFDoA	55	E5345-FS(0)	10/29/2022
13C2-PFTeDA	53	E5345-FS(0)	9/9/2022
d3-MeFOSAA	54	E5345-FS(0)	9/9/2022
ds-EtFOSAA	45	E5345-PS(0)	9/9/2022
13C3-PFBS	63	E5345-FS(0)	9/9/2022
13C3-PFHxS	69	E5345-FS(0)	9/9/2022
13C8-PFOS	58	E5345-FS(0)	9/9/2022
13C3-HFPO-DA	60	E5345-FS(0)	9/9/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1386
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

		PFAS		
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix	
1	NRCPB-B106-EB01-080322	E5335-FS	Water	
2	NRCPB-B106-FB01-080322	E5336-FS	Water	
3	NRCPB-B106-EB01-080422	E5341-FS	Water	
4	NRCPB-B106-FB01-080822	E5342-FS	Water	
5	NRCPB-B106-EB01-080822	E5344-FS	Water	
6	NRCPB-B106-EB01-080922	E5346-FS	Water	
7	NRCPB-B106-EB02-080022	E5347-FS	Water	
8	NRCPB-B106-GW01-0822	E5348-FS	Water	
9	NRCPB-B106-GW01P-0822	E5349-FS	Water	
10	NRCPB-B106-GW02-0822	E5350-FS	Water	
11	NRCPB-B106-GW03-0822	E5351-FS	Water	
11MS	NRCPB-B106-GW03-0822MS	E5352-FSMS	Water	
11MSD	NRCPB-B106-GW03-0822MSD	E5353-FSMSD	Water	
12	NRCPB-B106-EB01-081022	E5354-FS	Water	

A Stage 2B/4 data validation was performed on the analytical data for four water samples, six aqueous equipment blank samples, and two aqueous field blank samples collected on August 3-10, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References			
PFAS	Battelle SOP 5-369-09			

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were serious deficiencies of data. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

• PFTeDA was qualified (X) in one sample due to a severely low surrogate recovery.

The remaining data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRCPB-B106-EB01-080322	None - ND		-	-
NRCPB-B106-FB01-080322	None - ND	u	a/	2
NRCPB-B106-EB01-080422	None - ND	2		2
NRCPB-B106-FB01-080822	None - ND	-	27	2
NRCPB-B106-EB01-080822	None - ND	2		2
NRCPB-B106-EB01-080922	None - ND	3		-
NRCPB-B106-EB02-080022	None - ND	=	2	5
NRCPB-B106-EB01-081022	None - ND	-	.=./	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
8	13C2-PFTeDA	19%	UI
9	13C2-PFTeDA	21%	UJ
10	13C2-PFTeDA	6%	X

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

- EDS Sample 10 exhibited PFOS with an ion ratio outside of QC criteria and was flagged (Q) by the laboratory. The reviewer qualified this result as estimated (J).
- EDS Sample 10 was re-extracted in SDG 22-1979 outside of holding times to confirm surrogate recoveries. The original analysis results in this SDG should be used for reporting purposes.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	NRCPB-B106-GW01-0822 ng/L	NRCPB-B106-GW01P-0822 ng/L	RPD	Qualifier
PFOA	3.61	3.42	5%	None
PFHxS	3.70	3.21	14%	
PFOS	2.90	2.55	13%	

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22

Senior Chemist

Qualifier	Definition			
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.			
J	The reported result was an estimated value with an unknown bias.			
J+	The result was an estimated quantity, but the result may be biased high.			
J-	The result was an estimated quantity, but the result may be biased low.			
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."			
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.			
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.			
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.			

Project Client: CH2M

.

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRCPB-B106-EB01-080322						
Battelle ID		E5335-FS						
Sample Type		SA						
Collection Date		08/03/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.256						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.892	2.44	4.88
PFHpA	375-85-9	2.44 U	E5335-FS(0)	1,000	9/9/2022	0.919	2.44	4.88
PFOA	335-67-1	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.986	2.44	4.88
PFNA	375-95-1	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.813	2.44	4.88
PFDA	335-76-2	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.766	2.44	4.88
PFUnA	2058-94-8	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.734	2.44	4.88
PFDoA	307-55-1	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.742	2.44	4.88
PFFrDA-	72629-94-8	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.725	2.44	4.88
PFTeDA	376-06-7	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.772	2.44	4.88
NMeFOSAA	2355-31-9	2.44 U	£5335-F5(0)	1.000	9/9/2022	1.01	2.44	4.88
NELFOSAA	2991 50-6	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.967	2.44	4.88
PFBS	375-73-5	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.846	2.44	4.88
PFHxS	355 46 4	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.974	2.44	4.88
PFOS	1763-23-1	2.44 U	E5335-FS(0)	1.000	9/9/2022	1.04	2.44	4.88
HFPO-DA	13252-13-6	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.845	2.44	4.88
Adona	919005-14-4	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.849	2.44	4.88
9CI-PF3ONS	756426-58-1	2.44 U	E5335-FS(0)	1.000	9/9/2022	1.01	2.44	4.88
11CI-PF3OUdS	753051-92-9	2.44 U	E5335-FS(0)	1.000	9/9/2022	0.880	2.44	4.88

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

1

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRCP8-B106-FB01-080322						
Battelle ID		E5336-FS						
Sample Type		SA						
Collection Date		08/03/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.242						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.943	2.58	5.17
PFHpA	375-85-9	2.58 U	E5336-FS(0)	1,000	9/9/2022	0.972	2.58	5.17
PFOA	335 67 1	2.58 U	E5336-FS(0)	1.000	9/9/2022	1.04	2.58	5 17
PFNA	375-95-1	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.861	2.58	5.17
PFDA	335 76 2	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.810	2.58	5.17
PFUnA	2058-94-8	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.777	2.58	5.17
PFDoA	307-55-1	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.785	2.58	5.17
PFTrDA	72629-94-8	2:58 U	25350-FS(0)	1:000	9/9/2022-	0.707-	2:58	5:17
PFTeDA	376-06-7	2.58 U	E5336-F5(0)	1.000	9/9/2022	0.817	2.58	5.17
NMeFOSAA	2355-31-9	2.58 U	E5336-FS(0)	1.000	9/9/2022	1.06	2.58	5.17
NEtFOSAA	2991 50 6	2.58 U	E5336 FS(0)	1.000	9/9/2022	1.02	2.58	5.17
PFBS	375-73-5	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.895	2.58	5.17
PFHxS	355-46-4	2.58 U	E5336-F5(0)	1.000	9/9/2022	1.03	2.58	5.17
PFOS	1763-23-1	2.58 U	E5336-FS(0)	1.000	9/9/2022	1.11	2.58	5.17
HFPO-DA	13252 13 6	2.58 U	E5336 FS(0)	1.000	9/9/2022	0.894	2.58	5.17
Adona	919005-14-4	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.898	2.58	5.17
9CI-PF3ONS	755426-58-1	2.58 U	E5336 FS(0)	1.000	9/9/2022	1.06	2.58	5.17
11CI-PF3OUdS	763051-92-9	2.58 U	E5336-FS(0)	1.000	9/9/2022	0.931	2.58	5.17

NW 12/16/22

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Client ID		NRCPB-B106-EB01-080422						
Battelle ID		E5341-FS						
Sample Type		SA						
Collection Date		08/04/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.277						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.824	2.26	4.51
PFHpA	375-85-9	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.849	2.26	4.51
PFOA	335-67-1	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.912	2.26	4.51
PFNA	375-95-1	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.752	2.26	4.51
PFDA	335-76-2	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.708	2.26	4.51
PFUnA	2058-94-8	2,26 U	E5341-FS(0)	1.000	9/9/2022	0.679	2.26	4.51
PFDoA	307-55-1	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.686	2.26	4.51
PFTrDA	-72829-94-8	2:20 U	E9341*FS(0)	1:000	9/9/2022	0:070	-226-	
PFTeDA	376-06-7	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.714	2.26	4.51
NMeFOSAA	2355-31-9	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.930	2.26	4.51
NEtFOSAA	2991-50-6	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.894	2.26	4.51
PFBS	375-73-5	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.782	2.26	4.51
PFHxS	355-46-4	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.900	2.26	4.51
PFOS	1763-23-1	2.26 U	E5341-FS(0)	1.000	9/9/2022	0,966	2.26	4.51
HFPO-DA	13252-13-6	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.781	2.26	4.51
Adona	919005-14-4	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.784	2.26	4.51
9CI-PF3ONS	756426-58-1	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.930	2.26	4.51
11Cl-PF3OUds	763051-92-9	2.26 U	E5341-FS(0)	1.000	9/9/2022	0.813	2.26	4.51

Client ID		NRCPB-B106-FB01-080822						
Battelle ID		E5342-FS						
Sample Type		SA						
Collection Date		08/08/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0,235						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.66 U	E5342-FS(0)	1.000	9/9/2022	0,971	2.66	5.32
PFHpA	375-85-9	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.00	2.66	5.32
PFOA	335-67-1	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.07	2.66	5.32
PFNA	375-95-1	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.886	2.66	5.32
PFDA	335-76-2	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.834	2.66	5.32
PFUnA	2058-94-8	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.800	2.66	5.32
PFDoA	307-55-1	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.809	2.66	5.32
PFTrDA	72629-94-8	2:65 U	E5342=PS(0)	1:000	-9/9/2022	0.789	2.66	5:32
PFTeDA	376-06-7	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.841	2.66	5.32
NMEFOSAA	2355-31-9	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.10	2.66	5.32
NEtFOSAA	2991-50-6	2.66 U	E5342-FS(0)	1,000	9/9/2022	1.05	2.66	5.32
PFBS	375-73-5	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.921	2.66	5.32
PFHxS	355-46-4	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.06	2.66	5.32
PFOS	1763-23-1	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.14	2.66	5.32
HFPO-DA	13252-13-6	2,66 U	E5342-FS(0)	1.000	9/9/2022	0.920	2.66	5.32
Adona	919005-14-4	2.66 U	E5342-FS(0)	1.000	9/9/2022	0.924	2.66	5.32
9CI-PF3ONS	756426-58-1	2.66 U	E5342-FS(0)	1.000	9/9/2022	1.10	2.66	5.32
11CI-PF3OUdS	763051-92-9	2.66 U	E5342-F\$(0)	1.000	9/9/2022	0.959	2.66	5.32

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Client ID		NRCPB-8106-EB01-080822						
Battelle ID		E5344-FS						
Sample Type		SA						
Collection Date		08/08/2022						
Extraction Date		08/15/2022						
Analytical Instrument	t	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.231						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.988	2.71	5.41
PFHpA	375-85-9	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.02	2.71	5.41
PFOA	335-67-1	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.09	2.71	5.41
PFNA	375-95-1	2.71 U	E5344-F5(0)	1.000	9/9/2022	0.902	2.71	5.41
PFDA	335-76-2	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.848	2.71	5.41
PFUnA	2058-94-8	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.814	2.71	5.41
PFDoA	307-55-1	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.823	2.71	5.41
PFTrDA	72629-94-8	-2:71-0	-E5344-F5(0)		9/9/2022	0:809	2:71	
PFTeDA	376-06-7	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.856	2.71	5.41
NMeFOSAA	2355-31-9	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.17	2.71	5.41
NELFOSAA	2991-50-6	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.07	2.71	5.41
PFBS	375-73-5	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.937	2.71	5.41
PFHxS	355-46-4	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.08	2.71	5.41
PFOS	1763-23-1	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.16	2.71	5.41
HFPO-DA	13252-13-6	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.936	2.71	5.41
Adona	919005-14-4	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.940	2.71	5.41
9CI-PF3ONS	756426-58-1	2.71 U	E5344-FS(0)	1.000	9/9/2022	1.11	2.71	5.41
11Cl-PF3OUds	763051-92-9	2.71 U	E5344-FS(0)	1.000	9/9/2022	0.975	2.71	5.41

MIZILIZZ Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Client ID		NRCPB-B106-EB01-080922						
Battelle ID		E5346-FS						
Sample Type		SA						
Collection Date		08/09/2022						
Extraction Date		08/15/2022						
Analytical Instrument	t	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.266						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.35 U	E5346-F5(0)	1.000	9/9/2022	0.858	2.35	4.70
FHpA	375-85-9	2.35 U	E5346-FS(0)	1.000	9/9/2022	0,884	2.35	4.70
PFOA	335-67-1	2.35 U	E5346-F5(0)	1.000	9/9/2022	0.949	2.35	4.70
PFNA	375-95-1	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.783	2.35	4.70
PFDA	335-76-2	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.737	2.35	4.70
PFUnA	2058-94-8	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.707	2.35	4.70
PFDoA	307-55-1	2.35 U	E5346 FS(0)	1.000	9/9/2022	0.714	2.35	4.70
PFFrDA		2.35 U	E5346-FS(0)	1.000	9/9/2022	0.697		4:70
PFTeDA	376-06-7	2.35 U	E5346 FS(0)	1.000	9/9/2022	0.743	2.35	4.70
Mefosaa	2355-31-9	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.968	2.35	4.70
NELFOSAA	2991-50-6	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.930	2.35	4.70
PFBS	375-73-5	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.814	2.35	4.70
PFHxS	355-46-4	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.937	2.35	4.70
PFQS	1763-23-1	2.35 U	E5346-FS(0)	1.000	9/9/2022	1.01	2.35	4.70
HFPO-DA	13252 13 6	2.35 U	E5346 FS(0)	1.000	9/9/2022	0.813	2.35	4.70
Adona	919005-14-4	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.817	2.35	4.70
9CI-PF3ONS	756426 58 1	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.968	2.35	4.70
11CI-PF3OUdS	763051-92-9	2.35 U	E5346-FS(0)	1.000	9/9/2022	0.847	2.35	4.70

6

Project Client: CH2M

Client ID		NRCPB-B106-EB02-080922						
Battelle ID		E5347-FS						
Sample Type		SA						
Collection Date		08/09/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.278						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LÓD	LOQ
PFHxA	307-24-4	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.821	2.25	4.50
PFHpA	375-85-9	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.846	2.25	4.50
PFOA	335-67-1	2,25 U	E5347-FS(0)	1.000	9/9/2022	0.908	2.25	4.50
PFNA	375-95-1	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.749	2.25	4.50
PFDA	335-76-2	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.705	2.25	4.50
PFUnA	2058-94-8	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.676	2.25	4.50
PFDoA	307-55-1	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.683	2.25	4.50
PFTrDA	-72629-94-8	225-0-	- E5347-FS(0)-	-1:000 -	-9/9/2022	0:667	-2:25	4:50
PFTeDA	376-06-7	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.711	2.25	4.50
NMeFOSAA	2355-31-9	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.926	2.25	4.50
NETFOSAA	2991-50-6	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.890	2.25	4.50
PFBS	375-73-5	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.779	2.25	4.50
PFHxS	355-46-4	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.897	2.25	4.50
PFOS	1763-23-1	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.962	2.25	4.50
HFPO-DA	13252-13-6	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.778	2.25	4.50
Adona	919005-14-4	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.781	2.25	4.50
9CI-PF3ONS	756426-58-1	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.926	2.25	4.50
11Cl-PF3OUds	763051-92-9	2.25 U	E5347-FS(0)	1.000	9/9/2022	0.810	2.25	4.50

Ami 12/16/22 Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRCPB-B106-GW01-0822							
Battelle ID		E5348-FS							
Sample Type		SA							
Collection Date		08/09/2022							
Extraction Date		08/15/2022							
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.231							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	_
0511.4					- /- /				
PFHxA	307-24-4	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.988	2.71	5.41	
PFHpA	375-85-9	2.71 U	E5348-FS(0)	1.000	9/9/2022	1.02	2.71	5.41	
PFOA	335-67-1	3.61 J	E5348-FS(0)	1.000	9/9/2022	1.09	2.71	5.41	
PFNA	375-95-1	2.71 U	E5348-FS(0)	1,000	9/9/2022	0.902	2.71	5.41	
PFDA	335-76-2	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.848	2.71	5.41	
PFUNA	2058-94-8	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.814	2.71	5.41	
PFDoA	307-55-1	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.823	2.71	5.41	
PPTrDA	72629-94-8	2:71 U		1.000	9/9/2022	0:803	2:71	5:41	
PFTeDA	376-06-7	2.71 💋 🚺		1.000	9/9/2022	0.856	2.71	5.41	SSL
NMeFOSAA	2355-31-9	2.71 U	E5348 FS(0)	1.000	9/9/2022	1.11	2.71	5.41	
NEtFOSAA	2991-50-6	2.71 U	E5348-FS(0)	1.000	9/9/2022	1.07	2.71	5.41	
PFBS	375-73-5	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.937	2.71	5,41	
PFHxS	355-46-4	3.70 J	E5348-FS(0)	1.000	9/9/2022	1.08	2.71	5.41	
PFOS	1763-23-1	2,90 J	E5348-FS(0)	1.000	9/9/2022	1116	2.71	5.41	
HFPO-DA	13252-13-6	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.936	2.71	5.41	
Adona	919005-14-4	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.940	2.71	5.41	
9CI-PF3ONS	756426-58-1	2.71 U	E5348-FS(0)	1.000	9/9/2022	1.11	2.71	5.41	
11CI-PF3OUds	763051-92-9	2.71 U	E5348-FS(0)	1.000	9/9/2022	0.975	2.71	5.41	

MIZ (16/22 Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Isotope Dilution

Client ID	NRCPB-B106-GW01-0822			
Battelle ID	E5348-FS			
Sample Type	SA			
Collection Date	08/09/2022			
Extraction Date	08/15/2022			
Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	113	E5348 FS(0)	9/9/2022	
13C4-PFHpA	121	E5348-FS(0)	9/9/2022	
13C8-PFOA	130	E5348-FS(0)	9/9/2022	
13C9-PFNA	117	E5348-FS(0)	9/9/2022	
13C6-PFDA	108	E5348-FS(0)	9/9/2022	
13C7-PFUnA	98	E5348-FS(0)	9/9/2022	
13C2-PFDoA	84	E5348-FS(0)	9/9/2022	
13C2-PFTeDA	19 1	E5348-F5(0)	9/9/2022	
d3-MeFOSAA	92	E5348-FS(0)	9/9/2022	
d5-EtFOSAA	86	E5348-FS(0)	9/9/2022	
13C3-PFBS	116	E5348-FS(0)	9/9/2022	
13C3:PFHXS	119	E5348-FS(0)	9/9/2022	-
13C8-PFOS	103	E5348-FS(0)	9/9/2022	
13C3-HFPO-DA	96	E5348-FS(0)	9/9/2022	

Miz(16162 Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Client ID		NRCPB-B106-GW01P-0822							
Battelle 1D		E5349-FS							
Sample Type		SA							
Collection Date		08/09/2022							
Extraction Date		08/15/2022							
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.245							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	-
PFHxA	307-24-4	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.932	2.55	5.10	
PFHpA	375-85-9	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.960	2.55	5.10	
PFOA	335-67-1	3.42 J	E5349-FS(0)	1.000	9/9/2022	1.03	2.55	5.10	
PFNA	375-95-1	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.850	2.55	5.10	
PFDA	335-76-2	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.800	2.55	5.10	
PFUnA	2058-94-8	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.767	2.55	5.10	
PFDoA	307-55-1	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.776	2.55	5.10	
PFTIDA	72629-94-8	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.757	2.55	5.10	
PFTeDA	376-06-7	2.55 1		1.000	9/9/2022	0.807	2.55	5.10	SSL
NMeFOSAA	2355-31-9	2.55 U	E5349-FS(0)	1.000	9/9/2022	1.05	2.55	5.10	
NEtFOSAA	2991-50-6	2.55 U	E5349-FS(0)	1.000	9/9/2022	1.01	2.55	5.10	
PFBS	375-73-5	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.884	2.55	5.10	
PFHxS	355-46-4	3.21 J	E5349-FS(0)	1.000	9/9/2022	1.02	2.55	5.10	
PFOS	1763-23-1	2.55 J	E5349-FS(0)	1.000	9/9/2022	1.09	2.55	5.10	
HFPO-DA	13252-13-6	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.883	2.55	5.10	
Adona	919005-14-4	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.887	2.55	5.10	
9CI-PF3ONS	756426-58-1	2.55 U	E5349-F5(0)	1.000	9/9/2022	1.05	2.55	5.10	
11CI-PF3OUdS	763051-92-9	2.55 U	E5349-FS(0)	1.000	9/9/2022	0.919	2.55	5.10	

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID	NRCPB-B106-GW01P-0822			
Battelle ID	E5349-FS			
Sample Type	SA			
Collection Date	08/09/2022			
Extraction Date	08/15/2022			
Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
3C5-PFHxA	114	E5349-FS(0)	9/9/2022	
3C4-PFHpA	120	E5349-FS(0)	9/9/2022	
3C8-PFOA	129	E5349-FS(0)	9/9/2022	
L3C9-PFNA	116	E5349-FS(0)	9/9/2022	
I3C6-PFDA	107	E5349-FS(0)	9/9/2022	
I3C7-PFUnA	105	E5349-FS(0)	9/9/2022	
L3C2-PFDoA	89	E5349-FS(0)	9/9/2022	
I3C2-PFTeDA	21	E5349-FS(0)	9/9/2022	
I3-MeFOSAA	91	E5349-FS(0)	9/9/2022	
IS-EtFOSAA	80	E5349-FS(0)	9/9/2022	
L3C3-PFBS	115	E5349-FS(0)	9/9/2022	
13C3=PFHx5	114	1349-PS(0)	9/9/2022	
13C8-PFOS	106	E5349-FS(0)	9/9/2022	
13C3-HFPO-DA	101	E5349-FS(0)	9/9/2022	

9

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRCPB-B106-GW02-0822							
Battelle ID		E5350-FS							
Sample Type		SA							
Collection Date		08/09/2022							
Extraction Date		08/15/2022							
Analytical Instrument	t	Sciex 6500+ (AE) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.254							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
_									
PFHxA	307-24-4	2.05 J	E5350-FS(0)	1.000	9/9/2022	0.899	2.46	4.92	
PFHpA	375-85-9	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.926	2.46	4.92	
PFOA	335-67-1	2.08 J	E5350-FS(0)	1.000	9/9/2022	0.994	2.46	4.92	
PFNA	375-95-1	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.820	2.46	4.92	
PFDA	335-76-2	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.772	2.46	4.92	
PFUnA	2058-94-8	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.740	2.46	4.92	
PFDoA	307-55-1	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.748	2.46	4.92	
PFTrDA	72629-94-8-	2:40 U	E5350-F9(0)	1.000	9/9/2022	0:790	2:46	4:92	
PFTeDA	376-06-7	2.46 🔰 🎽	E5350-FS(0)	1.000	9/9/2022	0.779	2.46	4.92	SSL
NMeFOSAA	2355-31-9	2.46 U	E5350-FS(0)	1.000	9/9/2022	1.01	2.46	4.92	
NEtFOSAA	2991-50-6	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.974	2.46	4.92	
PFBS	375-73-5	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.852	2.46	4.92	
PFHxS	355-46-4	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.981	2.46	4.92	
PFOS	1763-23-1	5.53 👷 🞜	E5350-FS(0)	1.000	9/9/2022	1.05	2.46	4.92	OT
HFPO-DA	13252-13-6	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.851	2.46	4.92	
Adona	919005-14-4	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.855	2.46	4.92	
9CI-PF3ONS	756426-58-1	2.46 U	E5350-FS(0)	1.000	9/9/2022	1.01	2.46	4.92	
11Cl-PF3OUdS	763051-92-9	2.46 U	E5350-FS(0)	1.000	9/9/2022	0.887	2.46	4.92	

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

0

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID	NRCPB-B106-GW02-0822			
Batteile ID	E5350-FS			
Sample Type	SA			
Collection Date	08/09/2022			
Extraction Date	08/15/2022			
Analytical Instrument	Sciex 6500+ (AE) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	99	E5350-FS(0)	9/9/2022	
13C4-PFHpA	131	E5350-FS(0)	9/9/2022	
13C8-PFOA	130	E5350-FS(0)	9/9/2022	
13C9-PFNA	111	E5350-FS(0)	9/9/2022	
13C6-PFDA	101	E5350-FS(0)	9/9/2022	
13C7-PFUnA	94	E5350-FS(0)	9/9/2022	
13C2-PFDoA	52	E5350-FS(0)	9/9/2022	
13C2-PFTeDA	6	E5350-FS(0)	9/9/2022	
d3-MeFOSAA	69	E5350-FS(0)	9/9/2022	
5-EtFOSAA	60	E5350-FS(0)	9/9/2022	
13C3-PFBS	118	E5350-FS(0)	9/9/2022	
1363-PFHx5 -	119	-E9350-FS(0)	9/9/2022	
13C8-PFOS	100	E5350-FS(0)	9/9/2022	
13C3-HFPO-DA	98	E5350-FS(0)	9/9/2022	

N

Maiyzed by: Burkitt, Nathan Printed: 10/27/2022

Client ID		NRCPB-B106-GW03-0822						
Battelle ID		E5351-FS						
Sample Type		SA						
Collection Date		08/10/2022						
Extraction Date		08/15/2022						
Analytical Instrumen	ıt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		GW						
Sample Size		0.250						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.913	2.50	5.00
PFHpA	375-85-9	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.941	2.50	5.00
PFOA	335-67-1	2.50 U	E5351-F5(0)	1.000	9/9/2022	1.01	2.50	5.00
PFNA	375-95-1	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.833	2.50	5.00
PFDA	335-76-2	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.784	2.50	5.00
PFUnA	2058-94-8	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.752	2.50	5.00
PFDoA	307-55-1	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.760	2.50	5.00
PFTrDA	··· 72629-94-8	2.50 U	E9351-F9(0)	1:000-	9/9/2022	0:742	2.50	5.00
PFTeDA	376-06-7	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.791	2.50	5.00
NMeFOSAA	2355-31-9	2.50 U	E5351-F5(0)	1.000	9/9/2022	1.03	2.50	5,00
NEtFOSAA	2991-50-6	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.990	2.50	5.00
PFBS	375-73-5	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.866	2.50	5.00
PFHxS	355-46-4	2.40 J	E5351-FS(0)	1.000	9/9/2022	0.997	2.50	5.00
PFOS	1763-23-1	14.1	E5351-FS(0)	1.000	9/9/2022	1.07	2.50	5.00
HFPO-DA	13252-13-6	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.865	2.50	5.00
Adona	919005-14-4	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.869	2.50	5.00
9CI-PF3ONS	756426-58-1	2.50 U	E5351-FS(0)	1.000	9/9/2022	1.03	2.50	5.00
11CI-PF3OUdS	763051-92-9	2.50 U	E5351-FS(0)	1.000	9/9/2022	0.901	2.50	5.00

Analyzed by: Burkitt, Nathan Printed: 10/27/2022

٩

Client ID		NRCPB-B106-EB01-081022						
Battelle ID		E5354-FS						
Sample Type		SA						
Collection Date		08/10/2022						
Extraction Date		08/15/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.241						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.947	2.59	5.19
PFHpA	375-85-9	2.59 U	E5354-FS(0)	1,000	9/9/2022	0.976	2.59	5.19
PFOA	335-67-1	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.05	2.59	5.19
PFNA	375-95-1	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.664	2.59	5.19
PFDA	335-76-2	2,59 U	E5354-FS(0)	1.000	9/9/2022	0.813	2.59	5.19
PFUnA	2058-94-8	2,59 U	E\$354-FS(0)	1.000	9/9/2022	0.780	2.59	5.19
PFDoA	307-55-1	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.788	2.59	5.19
PPTrDA-	-72029-94-8	2.59 U	25354=PS(0)	1.000	9/9/2022	0.770	-2:59	5:19
PFTeDA	376-06-7	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.821	2.59	5.19
NMeFOSAA	2355-31-9	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.07	2.59	5,19
NELFOSAA	2991-50-6	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.03	2.59	5.19
PFBS	375-73-5	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.898	2.59	5.19
PFHxS	355-46-4	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.03	2.59	5.19
PFOS	1763-23-1	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.11	2.59	5.19
HFPO-DA	13252-13-6	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.897	2.59	5.19
Adona	919005-14-4	2.59 U	E5354-FS(0)	1.000	9/9/2022	0.901	2.59	5.19
9CI-PF3ONS	756426-58-1	2.59 U	E5354-FS(0)	1.000	9/9/2022	1.07	2.59	5.19
11Cl-PF3OUdS	763051-92-9	2.59 U	E5354-F5(0)	1.000	9/9/2022	0.935	2.59	5.19

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1394
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NSE-B2114-GW01-0822	E5390-FS	Water
2	NSE-B2114-GW01P-0822	E5391-FS	Water
3	NSE-B2114-GW02-0822	E5392-FS	Water
4	NSE-B2114-GW03-0822	E5393-FS	Water
4MS	NSE-B2114-GW03-0822MS	E5394-FSMS	Water
4MSD	NSE-B2114-GW03-0822MSD	E5395-FSMSD	Water
5	NSE-B2114-EB01-081122	E5396-FS	Water
6	NSE-B2114-FB01-081122	E5397-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for four water samples, one aqueous equipment blank sample, and one aqueous field blank sample collected on August 11, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NSE-B2114-EB01-081122	None - ND	-	<u>11</u>	224
NSE-B2114-FB01-081122	None - ND	e	-	(a)

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
1	13C2-PFTeDA	36%	UJ
2	13C2-PFTeDA	36%	U
3	13C2-PFTeDA	30%	UJ
4	13C2-PFTeDA	46%	U

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R),

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria except for the following. •

EDS Sample	Surrogate	Area Count	Qualifier
3	13C4-PFOS	High	J - Associated Cmpd
4	13C4-PFOS	High	J - Associated Cmpd

Target Compound Identification

All mass spectra and quantitation criteria were met. •

Compound Quantitation

All criteria were met. .

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NSE-B2114-GW01-0822 ng/L	NSE-B2114-GW01P-0822 ng/L	RPD	Qualifier
PFHxA	13.9	15.4	10%	None
PFHpA	4.27	4.51	5%	
PFOA	8.90	9.47	6%	
PFNA	1.93	2.19	13%	
PFBS	10.1	10.6	5%	
PFHxS	223	224	0%	
PFOS	514	516	0%	

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 12/16/22

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J+:	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NSE-B2114-GW01-0822							
Battelle ID		E5390-FS							
Sample Type		SA							
Collection Date		08/11/2022							
Extraction Date		08/16/2022							
Analytical Instrumer	nt	Sciex 5500 (AC) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.237							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	13.9	E5390-FS(0)	1.000	8/18/2022	0.963	2.64	5.27	
PFHpA	375-85-9	4.27 J	E5390-PS(0)	1.000	8/18/2022	0.993	2.64	5.27	
PFOA	335-67-1	8.90	E5390-FS(0)	1.000	8/18/2022	1.07	2,64	5.27	
PFNA	375-95-1	1.93 J	E5390-F5(0)	1.000	8/18/2022	0.879	2.64	5.27	
PFDA	335-76-2	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.827	2.64	5.27	
PFUnA	2058-94-8	2,64 U	E5390-FS(0)	1.000	8/18/2022	0.793	2.64	5.27	
PFDoA	307-55-1	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.802	2.64	5.27	
PFTrDA	72629-94-8	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.783	2.64	5.27	
PFTeDA	376-06-7	2.64 🖌 🛵 🖯		1.000	8/18/2022	0.834	2.64	5.27	SSL
NMeFOSAA	2355-31-9	2.64 U	E5390-FS(0)	1.000	8/18/2022	1.09	2.64	5.27	
NELFOSAA	2991-50-6	2.64 U	E5390-FS(0)	1.000	8/18/2022	1.04	2.64	5.27	
PFBS	375-73-5	10.1	E5390-FS(0)	1.000	8/18/2022	0.914	2.64	5.27	
PFHxS	355-46-4	223	E5390-FS(0)	1.000	8/18/2022	1.05	2.64	5.27	
PFOS	1763-23-1	514	E5390-FS(0)	1.000	8/18/2022	1.13	2.64	5.27	
HFPO-DA	13252-13-6	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.912	2.64	5.27	
Adona	919005-14-4	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.917	2.64	5.27	
9CI-PF3ONS	756426-58-1	2.64 U	E5390-FS(0)	1.000	8/18/2022	1.09	2.64	5.27	
11Cl-PF3OUdS	763051-92-9	2.64 U	E5390-FS(0)	1.000	8/18/2022	0.950	2.64	5.27	

MU 201622 Analyzed by: Griffith, Lauren Printed: 8/18/2022

Client	ID

Client ID	NSE-B2114-GW01-0822
Battelle ID	E5390-FS
Sample Type	SA
Collection Date	08/11/2022
Extraction Date	08/16/2022
Analytical Instrument	Sciex 5500 (AC) LC/MS/MS

			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	63	E5390-FS(0)	8/18/2022	
13C4-PFHpA	73	E5390-F5(0)	8/18/2022	
13C8-PFOA	71	E5390-FS(0)	8/18/2022	
13C9-PFNA	62	E5390-FS(0)	8/18/2022	
13C6-PFDA	67	E5390-FS(0)	8/18/2022	
13C7-PFUnA	67	E5390-FS(0)	8/18/2022	
13C2-PFDoA	59	E5390-FS(0)	8/18/2022	
13C2-PFTeDA	36	E5390-F5(0)	8/18/2022	
d3-MeFOSAA	72	E5390-FS(0)	8/18/2022	
d5-EtFOSAA	63	E5390-FS(0)	8/18/2022	
13C3-PFBS	72	E5390-FS(0)	8/18/2022	
13C3-PFHx\$	71	E5390-FS(0)	8/18/2022	
13C8-PFOS	64	E5390-F5(0)	8/18/2022	
13C3-HFPO-DA	62	E5390-FS(0)	8/18/2022	

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161 X1.XX 0026.000001

۰.

Client ID		NSE-B2114-GW01P-0822							
Battelle ID		E5391-FS							
Sample Type		SA							
Collection Date		08/11/2022							
Extraction Date		08/16/2022							
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.249							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	15.4	E5391-FS(0)	1.000	8/18/2022	0.917	2.51	5.02	
PFHpA	375-85-9	4.51 J	E5391-F5(0)	1.000	8/18/2022	0.945	2.51	5.02	
PFOA	335-67-1	9.47	E5391-FS(0)	1.000	8/18/2022	1.01	2.51	5.02	
PFNA	375-95-1	2.19 J	E5391-FS(0)	1.000	8/18/2022	0.836	2.51	5.02	
PFDA	335-76-2	2.51 U	E5391-FS(0)	1.000	8/18/2022	0.787	2.51	5.02	
PFUnA	2058-94-8	2.51 U	E5391-FS(0)	1.000	8/18/2022	0.755	2.51	5.02	
PFDoA	307-55-1	2.51 l	E5391-FS(0)	1.000	8/18/2022	0.763	2.51	5.02	
PFTrDA	72629-94-8	2.51 1		1.000	8/18/2022	0.745	2.51	5.02	
PFTeDA	376-06-7	2.51	E5391-FS(0)	1.000	8/18/2022	0.794	2.51	5.02	- 55
NMeFOSAA	2355-31-9	2.51 0	E5391-FS(0)	1.000	8/18/2022	1.03	2.51	5.02	
NELFOSAA	2991-50-6	2.51 U	E5391-FS(0)	1.000	8/18/2022	0.994	2.51	5.02	
PFBS	375-73-5	10.6	E5391-FS(0)	1.000	8/18/2022	0.869	2.51	5.02	
PFHxS	355-46-4	224	E5391-FS(0)	1.000	8/18/2022	1.00	2.51	5.02	
PFOS	1763-23-1	516	E5391-FS(0)	1.000	8/18/2022	1.07	2.51	5.02	
HFPO-DA	13252-13-6	2.51 0	E5391-FS(0)	1.000	8/18/2022	0.868	2.51	5.02	
Adona	919005-14-4	2.51 () E5391-FS(0)	1.000	8/18/2022	0.872	2.51	5.02	
9CI-PF3ONS	756426-58-1	2.51 U	J £5391-FS(0)	1.000	8/18/2022	1.03	2.51	5.02	
11Cl-PF3OUdS	763051-92-9	2.51 0	E5391-FS(0)	1.000	8/18/2022	0.905	2.51	5.02	

NW 2116122 Analyzed by: Griffith, Lauren Printed: 8/18/2022

Client ID	NSE-B2114-GW01P-0822	
Battelle ID	E5391-FS	
Sample Type	SA	
Collection Date	08/11/2022	
Extraction Date	08/16/2022	
Analytical Instrument	Sciex 5500 (AC) LC/MS/MS	
Surrogate Recoveries (%)	Recovery	Đ
13C5-PFHxA	64	E53

	Analysis							
Surrogate Recoveries (%)	Recovery	Extract ID	Date					
13C5-PFHxA	64	E5391-FS(0)	8/18/2022					
13C4-PFHpA	73	E5391-FS(0)	8/18/2022					
13C8-PFOA	67	E5391-FS(0)	8/18/2022					
13C9-PFNA	66	E5391-FS(0)	8/18/2022					
13C6-PFDA	65	E5391-FS(0)	8/18/2022					
13C7-PFUnA	61	E5391-FS(0)	8/18/2022					
13C2-PFDoA	57	E5391-FS(0)	8/18/2022					
13C2-PFTeDA	36 1	E5391-FS(0)	8/18/2022					
d3-MeFOSAA	68	E5391-FS(0)	8/18/2022					
d5-EtFOSAA	62	E5391-FS(0)	8/18/2022					
13C3-PFBS	70	E5391-FS(0)	8/18/2022					
13C3-PFHxS	72	E5391-FS(0)	8/18/2022					
13C8-PFOS	65	E5391-FS(0)	8/18/2022					
13C3-HFPO-DA	59	E5391-FS(0)	8/18/2022					

MIZIBICZ Analyzed by: Griffith, Lauren Printed: 8/18/2022

Client 1D		NSE-B2114-GW02-0822							
Battelle ID		E5392-FS							
Sample Type		SA							
Collection Date		08/11/2022							
Extraction Date		08/16/2022							
Analytical Instrumen	t	Sciex 5500 (AC) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0,244							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	13.3	E5392-FS(0)	1.000	8/18/2022	0.935	2.56	5.12	
PFHpA	375-85-9	6:98	E5392-FS(0)	1.000	8/18/2022	0.964	2.56	5.12	
PFOA	335-67-1	12.9	E5392-FS(0)	1.000	8/18/2022	1.03	2.56	5.12	
PFNA	375-95-1	0:869 J	E5392-F5(0)	1.000	8/18/2022	0.853	2.56	5.12	
PFDA	335-76-2	2.56 U	E5392-FS(0)	1.000	8/18/2022	0.803	2.56	5.12	
PEUnA	2058-94-8	2.56 U	E5392-FS(0)	1.000	8/18/2022	0.770	2.56	5.12	
PFDoA	307-55-1	2.56 U	E5392-FS(0)	1.000	8/18/2022	0.779	2.56	5.12	
PFTrDA	72629-94-8	2.56 U	E5392-FS(0)	1.000	8/18/2022	0.760	2.56	5.12	
PFTeDA	376-06-7	2.56 🗸 🗖		1.000	8/18/2022	0.810	2.56	5.12	SSL
NMeFOSAA	2355-31-9	2.56 U	E5392-FS(0)	1.000	8/18/2022	1.06	2.56	5,12	
NEtFOSAA	2991-50-6	2.56 U	E5392-FS(0)	1.000	8/18/2022	1.01	2.56	5.12	
PFBS	375-73-5	14.3	E5392-FS(0)	1.000	8/18/2022	0.887	2.56	5.12	
PFHxS	355-46-4	59.6	E5392-FS(0)	1.000	8/18/2022	1.02	2.56	5.12	
PFOS	1763-23-1	6.79 🦪	E5392-FS(0)	1.000	8/18/2022	1.10	2.56	5.12	I SH
HFPO-DA	13252-13-6	2.56 U	E5392-FS(0)	1.000	8/18/2022	10.886	2.56	5.12	
Adona	919005-14-4	2.56 U	E5392-FS(0)	1.000	8/18/2022	0.890	2.56	5.12	
9CI-PF3ONS	756426-58-1	2.56 U	E5392-FS(0)	1.000	8/18/2022	1.06	2.56	5.12	
11CI-PF3OUdS	763051-92-9	2.56 U	E5392-F5(0)	1.000	8/18/2022	0.923	2.56	5.12	

3

MI2114122 Analyzed by: Griffith, Lauren Printed: 8/18/2022

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1,XX.0026.000001

13C5-PFHxA	68	ES
Surrogate Recoveries (%)	Recovery	
Analytical Instrument	Sciex 5500 (AC) LC/MS/MS	
Extraction Date	08/16/2022	
Collection Date	08/11/2022	
Sample Type	SA	
Battelle ID	E5392-FS	
Client ID	NSE-B2114-GW02-0822	

Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	68	E5392-FS(0)	8/18/2022	
13C4-PFHpA	78	E5392-FS(0)	8/18/2022	
13C8-PFOA	72	E5392-FS(0)	8/18/2022	
13C9-PFNA	66	E5392-FS(0)	8/18/2022	
13C6-PFDA	63	E5392-FS(0)	8/18/2022	
13C7-PFUnA	67	E5392-PS(0)	8/18/2022	
13C2-PFDoA	70	E5392-FS(0)	8/18/2022	
13C2-PFTeDA	30	E5392-FS(0)	8/18/2022	
d3-MeFOSAA	58	E5392-FS(0)	8/18/2022	
d5-EtFOSAA	57	E5392-FS(0)	8/18/2022	
13C3-PFBS	67	E5392-FS(0)	8/18/2022	
13C3-PFHxS	72	E5392-FS(0)	8/18/2022	
13C8-PFOS	61	E5392-FS(0)	8/18/2022	
13C3-HFPO-DA	60	E5392-FS(0)	8/18/2022	

Analysis

Client ID		NSE-B2114-GW03-0822							
Battelle ID		E5393-FS							
Sample Type		SA							
Collection Date		08/11/2022							
Extraction Date		08/16/2022							
Analytical Instrument		Sciex 5500 (AC) LC/MS/MS							
% Moisture		NA							
Matrix		GW							
Sample Size		0.259							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	8.63	E5393-FS(0)	1.000	8/18/2022	0.881	2.41	4.83	
PFHpA	375-85-9	4.12 J	E5393-FS(0)	1.000	8/18/2022	0.908	2.41	4.83	
PFOA	335-67-1	5.19	E5393-F5(0)	1.000	8/18/2022	0.975	2.41	4.83	
PFNA	375-95-1	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.804	2.41	4.83	
PFDA	335-76-2	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.757	2.41	4,83	
PEUnA	2058-94-8	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.726	2.41	4.83	
PFDoA	307-55-1	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.734	2.41	4.83	
PFTrDA	72629-94-8	2.41 U	E5393-F5(0)	1.000	8/18/2022	0.716	2.41	4.83	
PFTeDA	376-06-7	2.41	E5393-FS(0)	1.000	8/18/2022	0.764	2.41	4.83	SSL
NMeFOSAA	2355-31-9	2.41 U	E5393-F5(0)	1.000	8/18/2022	0.994	2.41	4.83	
NEtFOSAA	2991-50-6	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.956	2.41	4.83	
PFBS	375-73-5	7.97	E5393-F5(0)	1.000	8/18/2022	0.836	2.41	4.83	
PFHxS	355-46-4	4.29 J	E5393-FS(0)	1.000	8/18/2022	0.962	2.41	4.83	
PFOS	1763-23-1	3.30 🖌 ブ	E5393-FS(0)	1.000	8/18/2022	1.03	2.41	4.83	≠ SH
HFPO-DA	13252-13-6	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.835	2.41	4.83	
Adona	919005-14-4	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.839	2.41	4.83	
9CI-PF3ONS	756426-58-1	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.994	2.41	4.83	
11Cl-PF3OUdS	763051-92-9	2.41 U	E5393-FS(0)	1.000	8/18/2022	0.870	2.41	4.83	

Analyzed by: Griffith, Lauren Printed: 8/18/2022

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID	NSE-B2114-GW03-0822
Battelle ID	E5393 -FS
Sample Type	SA
Collection Date	08/11/2022
Extraction Date	08/16/2022
Analytical Instrument	Sciex 5500 (AC) LC/MS/MS

Analytical Instrument	SCIEX SSUU (AC) LC/MS/MS			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
L3C5-PFHxA	64	E5393-FS(0)	8/18/2022	
I3C4-PFHpA	71	E5393-FS(0)	8/18/2022	
L3C8-PFOA	71	E5393-FS(0)	8/18/2022	
13C9-PFNA	62	E5393-FS(0)	8/18/2022	
I3C6-PFDA	68	E5393-FS(0)	8/18/2022	
3C7-PFUnA	73	E5393-FS(0)	8/18/2022	
3C2-PFDoA	65	E5393-FS(0)	8/18/2022	
3C2-PFTeDA	46 1	E5393-FS(0)	8/18/2022	
3-MeFOSAA	70	E5393-FS(0)	8/18/2022	
IS-ELFOSAA	66	E5393-FS(0)	8/18/2022	
3C3-PFBS	73	E5393-FS(0)	8/18/2022	
3C3-PFHxS	77	E5393-FS(0)	8/18/2022	
3C8-PFOS	64	E5393-FS(0)	8/18/2022	
3C3-HFPO-DA	63	E5393-FS(0)	8/18/2022	

4

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Battelle ID		E5396-FS						
Sample Type		SA						
Collection Date		08/11/2022						
Extraction Date		08/16/2022						
Analytical Instrumen	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.215						
Size Unit-Basis		L			Analysis			
Analyte ,	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.06	2.91	5.81
PFHpA	375-85-9	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.09	2.91	5.81
PFOA	335-67-1	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.17	2.91	5.81
PFNA	375-95-1	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.969	2.91	5.81
PFDA	335-76-2	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.912	2.91	5.81
PFUnA	2058-94-8	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.874	2.91	5.81
PFDoA	307-55-1	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.884	2.91	5.81
PFTrDA	72629-94-8	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.863	2.91	5.81
PFTeDA	376-06-7	2.91 U	E5396-FS(0)	1.000	8/18/2022	0.920	2.91	5.81
NMeFOSAA	2355-31-9	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.20	2.91	5.81
NELFOSAA	2991-50-6	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.15	2.91	5.81
PFBS	375-73-5	2.91 U	E5396-F5(0)	1.000	8/18/2022	1.01	2.91	5.81
PFHxS	355-46-4	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.16	2.91	5.81
PFOS	1763-23-1	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.24	2.91	5.81
HFPO-DA	13252-13-6	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.01	2.91	5.81
Adona	919005-14-4	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.01	2.91	5.81
9CI-PF3ONS	756426-58-1	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.20	2.91	5.81
11Cl-PF3OUdS	763051-92-9	2.91 U	E5396-FS(0)	1.000	8/18/2022	1.05	2.91	5.81

NSE-B2114-EB01-081122

MILIBZZ Analyzed by: Griffith, Lauren Printed: 8/18/2022

Project Client: CH2M

Client ID		NSE-B2114-FB01-081122						
Battelle ID		E5397-FS						
Sample Type		SA						
Collection Date		08/11/2022						
Extraction Date		08/16/2022						
Analytical Instrumen	nt	Sciex 5500 (AC) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.253						
Size Unit-Basis		Ĺ			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.902	2.47	4.94
PFHpA	375-85-9	2.47 U	E5397-FS(0)	1.000	8/18/2022	0,930	2.47	4.94
PFOA	335-67-1	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.998	2.47	4.94
PFNA	375-95-1	2.47 U	E5397-F5(0)	1.000	8/18/2022	0.823	2.47	4.94
PFDA	335-76-2	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.775	2.47	4.94
PFUnA	2058-94-8	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.743	2.47	4.94
PFDoA	307-55-1	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.751	2.47	4,94
PFTrDA	72629-94-8	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.733	2.47	4.94
PFTeDA	376-06-7	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.782	2.47	4.94
NMeFOSAA	2355-31-9	2.47 U	E5397-F\$(0)	1.000	8/18/2022	1.02	2.47	4.94
NEtFOSAA	2991-50-6	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.978	2.47	4.94
PFBS	375-73-5	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.856	2.47	4,94
PFHxS	355-46-4	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.985	2.47	4.94
PFOS	1763-23-1	2.47 U	E5397-FS(0)	1.000	8/18/2022	1.06	2.47	4.94
HFPO-DA	13252-13-6	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.855	2,47	4.94
Adona	919005-14-4	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.859	2.47	4.94
9CI-PF3ONS	756426-58-1	2.47 U	E5397-FS(0)	1.000	8/18/2022	1.02	2.47	4.94
11CI-PF3OUds	763051-92-9	2.47 U	E5397-FS(0)	1.000	8/18/2022	0.890	2.47	4.94

NW12116122 Analyzed by: Griffith, Lauren Printed: 8/18/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1785
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

]	PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-FB01-100622	E8244-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for one aqueous field blank sample collected on October 6, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References			
PFAS	Battelle SOP 5-369-09			

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries

- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-FB01-100622	None - ND	5	a l	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/3/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRSJC-FB01-100622						
Battelle ID		E8244-FS						
Sample Type		SA						
Collection Date		10/06/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0.257						
Size Unit-Basis		~ L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.43 U	E8244-FS(0)	1,000	11/9/2022	0.888	2.43	4.86
PFHpA	375-85-9	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.915	2.43	4.86
PFOA	335-67-1	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.982	2.43	4 86
PFNA	375-95-1	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.810	2.43	4.86
PFDA	335-76-2	2.43 U	E8244-F5(0)	1.000	11/9/2022	0.763	2.43	4.86
PFUnA	2058-94-8	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.732	2.43	4.86
PFDoA	307-55-1	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.739	2.43	4.86
PFTrDA	72629-94-8	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.722	2.43	4.86
PFTeDA	376-06-7	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.769	2.43	4.86
NMeFOSAA	2355-31-9	2.43 U	E8244-FS(0)	1.000	11/9/2022	1.00	2.43	4.86
NEtFOSAA	2991-50-6	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.963	2,43	4.86
PFBS	375-73-5	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.842	2.43	4.86
PFHxS	355-46-4	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.970	2.43	4.86
PFOS	1763-23-1	2.43 U	E8244-FS(0)	1.000	11/9/2022	1.04	2.43	4.86
HFPO-DA	13252-13-6	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.841	2.43	4.86
Adona	919005-14-4	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.845	2.43	4.86
9CI-PF3ONS	756426-58-1	2.43 U	E8244-FS(0)	1.000	11/9/2022	1.00	2.43	4.86
11CI-PF3OUdS	763051-92-9	2.43 U	E8244-FS(0)	1.000	11/9/2022	0.876	2.43	4.86

NW313/23 Analyzed by: Harnden, Kelsey Printed: 12/21/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1786
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

PFAS						
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix			
1	NRSJC-S7-SB12-9697	E8240-FS	Soil			
2	NRSJC-S7-SB12-145146	E8241-FS	Soil			
3	NRSJC-S7-SB12-174175	E8242-FS	Soil			
4	NRSJC-S7-SB12-210211	E8243-FS	Soil			
5	NRSJC-S7-SB12-229230	E8245-FS	Soil			
6	NRSJC-S7-SS12-000H	E8246-FS	Soil			

A Stage 2B/4 data validation was performed on the analytical data for six soil samples collected on October 5-10, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References		
PFAS	Battelle SOP 5-369-09		

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:
PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-FB01-100622	None - ND		-	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 313123

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J=	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161,X1,XX,0026,000001

Client ID		NRSJC-S7-SB12-9697						
Battelle ID		E8240-FS						
Sample Type		SA						
Collection Date		10/05/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		6,20						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E8240-F5(0)	1.000	11/11/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.157	0.500	1.00
PFDA	335-76-2	0,500 U	E8240-FS(0)	1.000	11/11/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E8240-F5(0)	1.000	11/11/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E8240-FS(0)	1,000	11/11/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E8240-FS(0)	1.000	11/11/2022	0.150	0.500	2.00

Analyzed by: Harnden, Kelsey Printed: 12/28/2022

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No : G25161.X1.XX.0026 000001

Client ID		NRSJC-S7-SB12-145146						
Battelle ID		E8241-F5						
Sample Type		SA						
Collection Date		10/05/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		4.50						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E8241-FS(0)	1,000	11/11/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E8241-FS(0)	1,000	11/11/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.154	0.500	2.00
11CI-PF3OUdS	763051-92-9	0.500 U	E8241-FS(0)	1.000	11/11/2022	0.150	0.500	2.00

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SB12-174175						
Battelle ID		E8242-FS						
Sample Type		SA						
Collection Date		10/06/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		5.37						
Matrix		SOIL						
Sample Size		4_990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.157	0.501	1.00
PFDA	335-76-2	0,501 U	E8242-FS(0)	1.000	11/11/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E8242-F5(0)	1.000	11/11/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0,501 U	E8242-FS(0)	1.000	11/11/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E8242-F5(0)	1.000	11/11/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E8242-FS(0)	1.000	11/11/2022	0.150	0.501	2.00

Analyzed by: Harnden, Kelsey Printed: 12/28/2022

3

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SB12-210211						
Battelle ID		E8243-FS						
Sample Type		SA						
Collection Date		10/06/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		6.49						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DŁ	LOD	LOQ
PFHxA	307-24-4	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E8243-FS(0)	1.000	11/11/2022	0 162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.154	0.500	2.00
11Ct-PF3OUdS	763051-92-9	0.500 U	E8243-FS(0)	1.000	11/11/2022	0.150	0.500	2.00

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161 X1 XX 0026 000001

Client ID		NRSJC-S7-SB12-229230						
Battelle ID		E8245-FS						
Sample Type		SA						
Collection Date		10/10/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		1.17						
Matrix		SOIL						
Sample Size		4 990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E8245-FS(0)	1.000	11/11/2022	0 178	0.501	1.00
PFHpA	375-85-9	0.501 U	E8245-F5(0)	1.000	11/11/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.154	0.501	2.00
11Cl-PF3OUdS	763051-92-9	0.501 U	E8245-FS(0)	1.000	11/11/2022	0.150	0.501	2.00

5

Isotope Dilution

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SS12-000H						
Battelle ID		E8246-FS						
Sample Type		SA						
Collection Date		10/07/2022						
Extraction Date		10/18/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		1.56						
Matrix		SOIL						
Sample Size		5 000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E8246-FS(0)	1.000	11/11/2022	0,158	0.500	1,00
PFUnA	2058-94-8	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E8246-F5(0)	1.000	11/11/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E8246-F5(0)	1.000	11/11/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.154	0.500	2.00
11CI-PF3OUdS	763051-92-9	0.500 U	E8246-FS(0)	1.000	11/11/2022	0.150	0.500	2.00

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1824
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

	PFAS								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1	NRSJC-FB01-101322	E8448-FS	Water						

A Stage 2B/4 data validation was performed on the analytical data for one aqueous field blank sample collected on October 13, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries

- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSIC-FB01-101322	None - ND	741		

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R) except for the following.

LCS Sample	Compound	%R	Qualifier	Affected Samples
DK597LCS-FS	PFUnA	152%	None	Sample ND
	NMeFOSAA	142%	None	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23 Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-FB01-101322						
Battelle ID		E8448-FS						
Sample Type		SA						
Collection Date		10/13/2022						
Extraction Date		10/26/2022						
Analytical Instrumer	nt	Sciex 6500 (AD) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.275						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.830	2.27	4.55
PFHpA	375-85-9	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.855	2.27	4.55
PFOA	335-67-1	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.918	2.27	4.55
PFNA	375-95-1	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.757	2.27	4.55
PFDA	335-76-2	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.713	2.27	4.55
PFUnA	2058-94-8	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.684	2.27	4.55
PFDoA	307-55-1	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.691	2.27	4.55
PFTrDA	72629-94-8	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.675	2.27	4.55
PFTeDA	376-06-7	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.719	2.27	4.55
NMEFOSAA	2355-31-9	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.936	2.27	4.55
NELFOSAA	2991-50-6	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.900	2.27	4,55
PFBS	375-73-5	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.787	2.27	4.55
PFHxS	355-46-4	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.906	2.27	4,55
PFOS	1763-23-1	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.973	2.27	4.55
HFPO-DA	13252-13-6	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.786	2.27	4.55
Adona	919005-14-4	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.790	2.27	4.55
9CI-PF3ONS	756426-58-1	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.936	2.27	4.55
11CI-PF3OUdS	763051-92-9	2.27 U	E8448-FS(0)	1.000	11/17/2022	0.819	2.27	4.55

Analyzed by: Harnden, Kelsey Printed: 1/10/2023

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1825
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S7-SB13-3839	E8447-FS	Soil
2	NRSJC-S7-SB13-8485	E8449-FS	Soil

A Stage 2B/4 data validation was performed on the analytical data for two soil samples collected on October 13-14, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References		
PFAS	Battelle SOP 5-369-09		

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning

- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-FB01-101322	None - ND		8	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R) except for the following.

LCS Sample	Compound	%R	Qualifier	Affected Samples
DK599LCS-FS	PFHxS	139%	None	Samples ND

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not analyzed. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
Ja	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

1

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX,0026.000001

Client ID		NRSJC-S7-SB13-3839						
Battelle ID		E8447-FS						
Sample Type		SA						
Collection Date		10/13/2022						
Extraction Date		10/25/2022						
Analytical Instrumen	t	Sciex 6500 (AD) LC/MS/MS						
% Moisture		5.98						
Matrix		SOIL						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.214	0.499	0.998
PFNA	375-95-1	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.159	0.499	2.00
NEtfosaa	2991-50-6	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.160	0.499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.154	0.499	2.00
11Cl-PF3OUdS	763051-92-9	0.499 U	E8447-FS(0)	1.000	11/19/2022	0.150	0.499	2.00

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SB13-8485						
Battelle ID		E8449-FS						
Sample Type		SA						
Collection Date		10/14/2022						
Extraction Date		10/25/2022						
Analytical Instrument		Sciex 6500 (AD) LC/MS/MS						
% Moisture	23	3.37						
Matrix		SOIL						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.214	0.499	0.998
PFNA	375-95-1	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E8449-F5(0)	1.000	11/19/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E8449-F5(0)	1.000	11/19/2022	0.159	0.499	2.00
NELFOSAA	2991-50-6	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 U	E8449-F5(0)	1.000	11/19/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.160	0.499	2.00
9C1-PF3ONS	756426-58-1	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.154	0.499	2.00
11Cl-PF3OUdS	763051-92-9	0.499 U	E8449-FS(0)	1.000	11/19/2022	0.150	0.499	2.00

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1933
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S7-FB01-102622	E9320-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for one aqueous field blank sample collected on October 26, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries

- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S7-FB01-102622	None - ND	2000 - 100 -	Ξ.	5

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

۱

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-FB01-102622						
Battelle ID		E9320-FS						
Sample Type		SA						
Collection Date		10/26/2022						
Extraction Date		11/04/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		WATER						
Sample Size		0_251						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2,49 U	E9320-FS(0)	1.000	12/1/2022	0.909	2.49	4.98
PFHpA	375-85-9	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.937	2.49	4.98
PFOA	335-67-1	2.49 U	E9320-FS(0)	1.000	12/1/2022	1.01	2.49	4.98
PFNA	375-95-1	2.49 U	E9320-F5(0)	1.000	12/1/2022	0.830	2.49	4.98
PFDA	335-76-2	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.781	2.49	4.98
PFUnA	2058-94-8	2.49 U	E9320-F5(0)	1.000	12/1/2022	0.749	2.49	4.98
PFDoA	307-55-1	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.757	2.49	4.98
PFTrDA	72629-94-8	2.49 U	E9320-F5(0)	1.000	12/1/2022	0.739	2.49	4.98
PFTeDA	376-06-7	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.788	2.49	4.98
NMeFOSAA	2355-31-9	2.49 U	E9320-FS(0)	1.000	12/1/2022	1.03	2.49	4.98
NELFOSAA	2991-50-6	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.986	2.49	4.98
PFBS	375-73-5	2,49 U	E9320-F5(0)	1.000	12/1/2022	0.863	2.49	4.98
PFHxS	355-46-4	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.993	2.49	4.98
PFOS	1763-23-1	2.49 U	E9320-FS(0)	1.000	12/1/2022	1.07	2.49	4.98
HFPO-DA	13252-13-6	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.862	2.49	4.98
Adona	919005-14-4	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.866	2.49	4.98
9CI-PF3ONS	756426-58-1	2.49 U	E9320-FS(0)	1.000	12/1/2022	1.03	2.49	4.98
11CI-PF3OUdS	763051-92-9	2.49 U	E9320-FS(0)	1.000	12/1/2022	0.897	2.49	4.98

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1934
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

PFAS							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S7-SB13-177178	E9316-FS	Soil				
2	NRSJC-S7-SB13-128129	E9317-FS	Soil				
2MS	NRSJC-S7-SB13-128129MS	E9318-FSMS	Soil				
2MSD	NRSJC-S7-SB13-128129MSD	E9319-FSMSD	Soil				
3	NRSJC-S7-SB13-215216	E9321-FS	Soil				
4	NRSJC-S7-SB13P-215216	E9322-FS	Soil				

A Stage 2B/4 data validation was performed on the analytical data for four soil samples collected on October 25-27, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

Analysis	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Natrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• The samples were analyzed outside of holding time and were flagged (T) by the laboratory. However, the extracts were stored per draft method EPA Method 1633 which allows for a 90-day holding time. The (T) flags were removed.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S7-FB01-102622	None - ND	57		2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S7-SB13-215216 ng/g	NRSJC-S7-SB13P-215216 ng/g	RPD	Qualifier
None	ND	ND		1.51

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J=	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

1

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161,X1.XX.0026.000001

Client ID		NRSJC-S7-SB13-177178						
Battelle ID		E9316-FS						
Sample Type		SA						
Collection Date		10/25/2022						
Extraction Date		11/04/2022						
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS						
% Moisture		14.38						
Matrix		SOIL						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.214	0,499	0.998
PFNA	375-95-1	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E9316-FS(0)	1.000	12/4/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.161	0.499	0,998
PFTeDA	376-06-7	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.159	0.499	2.00
NEtFOSAA	2991-50-6	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E9316-FS(0)	1.000	12/4/2022	0.160	0.499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E9316-FS(0)	1.000	12/4/2022	0.154	0.499	2.00
11CI-PF3OUdS	763051-92-9	0.499 UT	E9316-FS(0)	1.000	12/4/2022	0.150	0,499	2.00

W12/20/22

Analyzed by: Urso, Vincent Printed: 12/5/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SB13-128129						
Battelle ID		E9317-FS						
Sample Type		SA						
Collection Date Extraction Date		10/25/2022						
		11/04/2022						
Analytical Instrumen	ıt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		13.24						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.168	0,500	1.00
PFOA	335-67-1	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.162	0.500	2.00
NMEFOSAA	2355-31-9	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 UT	E9317-FS(0)	1,000	12/4/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.175	0.500	1.00
HFPO DA	13252-13-6	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.154	0.500	2.00
11CI-PF3OUd5	763051-92-9	0.500 UT	E9317-FS(0)	1.000	12/4/2022	0.150	0.500	2.00

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1,XX,0026.000001

Client ID		NRSJC-S7-SB13-215216						
Battelle ID		E9321-FS						
Sample Type		SA						
Collection Date		10/27/2022						
Extraction Date		11/04/2022						
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS						
% Moisture		7.50						
Matrix		SOIL						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.214	0.499	0.998
PFNA	375-95-1	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.159	0.499	2.00
NELFOSAA	2991-50-6	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 ut	E9321-FS(0)	1.000	12/4/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E9321-FS(0)	1.000	12/4/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.160	0.499	2.00
9CI-PF3ON5	756426-58-1	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.154	0.499	2.00
11Cl-PF3OUdS	763051-92-9	0.499 UT	E9321-FS(0)	1.000	12/4/2022	0.150	0.499	2.00

Analyzed by: Urso, Vincent Printed: 12/5/2022

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161,X1,XX.0026.000001

Client ID		NRSJC-S7-SB13P-215216						
Battelle ID		E9322-FS						
Sample Type		SA						
Collection Date		10/27/2022						
Extraction Date		11/04/2022						
Analytical Instrument		Sciex 6500+ (AE) LC/MS/MS						
% Moisture		9.42						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 UT	E9322-F5(0)	1.000	12/4/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0,161	0.500	1.00
PFTeDA	376-06-7	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.162	0.500	2.00
NMEFOSAA	2355-31-9	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.173	0.500	1,00
PFOS	1763-23-1	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.154	0.500	2.00
11CI-PF3OUdS	763051-92-9	0.500 UT	E9322-FS(0)	1.000	12/4/2022	0.150	0.500	2.00

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1979
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	December 16, 2022

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRCPB-B106-GW02-0822	E5350-FS1	Water

A Stage 2B/4 data validation was performed on the analytical data for one water sample collected on August 9, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References		
PFAS	Battelle SOP 5-369-09		

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries

- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were serious deficiencies of data. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

• PFTeDA was qualified (X) in one sample due to a severely low surrogate recovery.

The remaining data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• The sample was re-extracted outside of the 14-day holding time. All results were qualified as estimated (J/UJ) unless already qualified (X).

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRCPB-B106-EB02-080922	None - ND		54 V	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
1	13C2-PFTeDA	9%	Х

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• The sample was re-extracted outside of holding times to confirm surrogate recoveries. The original analysis results in SDG 22-1386 should be used for reporting purposes.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Senior Chemist

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver

Dated: 12/16/22

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRCPB-B106-GW02-0822			/				
Battelle ID		E5350-FS1				1100	.139b		
Sample Type		SA			1	WIE	46		
Collection Date		08/09/2022			1		1314		
Extraction Date		11/15/2022			/	72	11 - 1		
Analytical Instrument		Sciex 6500 (AD) LC/MS/MS		1			110	P	
% Moisture		NA		1		F	en		
Matrix		GW		/					
Sample Size		0.242		1					
Size Unit-Basis		L		1	Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
									_
PFHxA	307-24-4	2.17 /1	E5350 FS1(0)	1.000	11/16/2022	0.943	2.58	5.17	— н
PFHpA	375-85-9	2.58 UT	E5350 FS1(0)	1.000	11/16/2022	0.972	2.58	5.17	
PFOA	335-67-1	2.95 /	E5390-FS1(0)	1.000	11/16/2022	1.04	2.58	5.17	
PFNA	375-95-1	2.58 UT	E9350-F51(0)	1.000	11/16/2022	0.861	2.58	5.17	- 1
PFDA	335-76-2	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	0.810	2.58	5.17	
PEUnA	2058-94-8	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	0.777	2.58	5.17	
PFDoA	307-55-1	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	0.785	2.58	5.17	- J
PFTrDA	72629-94-8	2.58 17	E5350-FS1(0)	1.000	11/16/2022	0.767	2.58	5.17	
PFTeDA	376-06-7	2.58	¥ E5350-FS1(0)	1.000	11/16/2022	0.817	2.58	5.17	SS
NMeFOSAA	2355-31-9	2.58 UT	E5850-FS1(0)	1.000	11/16/2022	1.06	2.58	5.17	H I
NEtFOSAA	2991-50-6	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	1.02	2.58	5.17	
PFBS	375-73-5	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	0.895	2.58	5.17	
PFHxS	355-46-4	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	1.03	2.58	5.17	
PFOS	1763-23-1	4.20 /	🗂 E5350-FS1(0)	1.000	11/16/2022	1.11	2.58	5.17	- C
HFPO-DA	13252-13-6	2.58 UT	5350-FS1(0)	1.000	11/16/2022	0.894	2.58	5.17	
Adona	919005-14-4	2.58 UT	E5350-F51(0)	1.000	11/16/2022	0.898	2.58	5.17	
9CI-PF3ONS	756426-58-1	2.58 UT	E5350-FS1(0)	1.000	11/16/2022	1.06	2.58	5.17	
11CI-PF3OUdS	763051-92-9	2.58 4	E5350-F51(0)	1.000	11/16/2022	0.931	2.58	5.17	

Analyzed by: Harnden, Kelsey Printed: 11/18/2022

Client ID	NRCPB-B106-GW02-0822			
Battelle ID	E5350-FS1			We 1386 22-1386 results
Sample Type	SA			130
Collection Date	08/09/2022			2115
Extraction Date	11/15/2022			
Analytical Instrument	Sciex 6500 (AD) LC/MS/MS			Nº0
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C5-PFHxA	111	E5350 FS1(0)	11/16/2022	
13C4-PFHpA	122	E5350-F51(0)	11/16/2022	/
13C8-PFOA	100	E5350-FS1(0)	11/16/2022 /	
13C9-PFNA	116	E5350-FS1(0)	11/16/2022	
13C6-PFDA	83	E5350-FS1(0)	11/16/2022	
13C7-PFUnA	71	E5350-F51(0)	11/18/2022	
13C2-PFDoA	63	E5350-FS1(0)	11/16/2022	
1302-PFTeDA	9	E5350-FS1(0)	11/16/2022	
d3-MeFOSAA	78	E5350-FS1(0)	11/16/2022	
d5-EtFOSAA	82	E5350-FS1(0)	11/16/2022	
13C3-PFBS	117	E5350 F81(0)	11/16/2022	
13C3-PFHxS	117	E5350 FS1(0)	11/16/2022	
13C8-PFOS	104	E5350 F\$1(0)	11/16/2022	
13C3-HFPO-DA	107	5350-FS1(0)	11/16/2022	
		1		

NW 12/16/22

Analyzed by: Harnden, Kelsey Printed: 11/18/2022

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1990
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S7-FB01-110122	E9617-FS	Water
2	NRSJC-S7-EB01-110122	E9618-FS	Water

A Stage 2B/4 data validation was performed on the analytical data for one aqueous field blank sample and one aqueous equipment blank sample collected on November 1, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times

- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

<u>Method Blank</u>

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples	
NRSJC-S7-FB01-110122	None - ND	12	5		
NRSJC-S7-EB01-110122	None - ND	-	-		

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R),

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not analyzed. •

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 315123

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
Ν	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Client ID		NRSJC-S7-F801-110122						
Battelle 1D		E9617-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0 249						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.917	2.51	5.02
PFHpA	375-85-9	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.945	2.51	5.02
PFOA	335-67-1	2.51 U	E9617-FS(0)	1.000	12/3/2022	1.01	2.51	5.02
PFNA	375-95-1	2.51 U	E9617-F5(0)	1.000	12/3/2022	0.836	2.51	5.02
PFDA	335-76-2	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.787	2,51	5.02
PFUnA	2058-94-8	2.51 V	E9617-FS(0)	1.000	12/3/2022	0.755	2.51	5.02
PFDoA	307-55-1	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.763	2.51	5.02
PFTrDA	72629-94-8	2,51 U	E9617-FS(0)	1.000	12/3/2022	0.745	2.51	5.02
PFTeDA	376-06-7	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.794	2.51	5.02
MeFOSAA	2355-31-9	2.51 U	E9617-FS(0)	1.000	12/3/2022	1.03	2.51	5.02
NEtFOSAA	2991-50-6	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.994	2.51	5.02
PFBS	375-73-5	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.869	2.51	5.02
PFHxS	355-46-4	2.51 U	E9617-FS(0)	1.000	12/3/2022	1.00	2.51	5.02
PFOS	1763-23-1	2.51 U	E9617-FS(0)	1.000	12/3/2022	1.07	2.51	5.02
HFPO-DA	13252-13-6	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.868	2.51	5.02
Adona	919005-14-4	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.872	2.51	5.02
9CI-PF3ONS	756426-58-1	2.51 U	E9617-FS(0)	1.000	12/3/2022	1.03	2.51	5.02
11Cl-PF3OUdS	763051-92-9	2.51 U	E9617-FS(0)	1.000	12/3/2022	0.905	2.51	5.02

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-EB01-110122						
Battelle 1D		E9618-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/08/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.238						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	D L	LOD	LOQ
PFHxA	307-24-4	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.959	2.63	5.25
PFHpA	375-85-9	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.988	2.63	5.25
PFOA	335-67-1	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.06	2.63	5.25
PFNA	375-95-1	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.875	2.63	5.25
PFDA	335-76-2	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.824	2.63	5.25
PFUnA	2058-94-8	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.790	2.63	5.25
PFDoA	307-55-1	2,63 U	E9618-FS(0)	1,000	12/3/2022	0.798	2.63	5.25
PFTrDA	72629-94-8	2.63 U	E9618-FS(0)	1,000	12/3/2022	0.779	2.63	5.25
PFTeDA	376-06-7	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.831	2.63	5.25
NMeFOSAA	2355-31-9	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.08	2.63	5.25
NEtFOSAA	2991-50-6	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.04	2.63	5.25
PFBS	375-73-5	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.910	2.63	5.25
PFHxS	355-46-4	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.05	2.63	5.25
PFOS	1763-23-1	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.12	2.63	5.25
HFPO-DA	13252-13-6	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.909	2.63	5.25
Adona	919005-14-4	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.913	2.63	5.25
9CI-PF3ONS	756426-58-1	2.63 U	E9618-FS(0)	1.000	12/3/2022	1.08	2.63	5.25
11CI-PF3OUdS	763051-92-9	2.63 U	E9618-FS(0)	1.000	12/3/2022	0.946	2.63	5.25

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-1991
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

	PFAS						
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	NRSJC-S7-SS11-000H	E9615-FS	Soil				
2	NRSJC-S7-SS11P-000H	E9616-FS	Soil				
3	NRSJC-S7-SB11-42H43H	E9619-FS	Soil				
4	NRSJC-S7-SB11-9394	E9620-FS	Soil				
5	NRSJC-S7-SB11-146147	E9621-FS	Soil				
6	NRSJC-S7-SB11-191192	E9622-FS	Soil				
7	NRSJC-S7-SB11-231232	E9623-FS	Soil				

A Stage 2B/4 data validation was performed on the analytical data for seven soil samples collected on November 1-3, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes. There were no qualifications.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

Field QC Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S7-FB01-110122	None - ND		#	ч
NRSJC-S7-EB01-110122	None - ND	543	2	2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

• All mass spectra and quantitation criteria were met.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S7-SS11-000H ng/g	NRSJC-S7-SS11P-000H ng/g	RPD	Qualifier
None	ND	ND	-	2 0 1

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J=	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

ſ

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SS11-000H						
Battelle ID		E9615-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		18.36						
Matrix		SOIL						
Sample Size		4.990						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Drγ)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.178	0.501	1.00
PFHpA	375-85-9	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.168	0.501	1.00
PFOA	335-67-1	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.214	0.501	1.00
PFNA	375-95-1	0.501 U	E9615-F5(0)	1.000	12/7/2022	0.157	0.501	1.00
PFDA	335-76-2	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.158	0.501	1.00
PFUnA	2058-94-8	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.156	0.501	1.00
PFDoA	307-55-1	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.160	0.501	1.00
PFTrDA	72629-94-8	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.161	0.501	1.00
PFTeDA	376-06-7	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.162	0.501	2.00
NMeFOSAA	2355-31-9	0.501 U	E9615-FS(0)	1.000	12/7/2022	0,159	0.501	2.00
NEtFOSAA	2991-50-6	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.165	0.501	2.00
PFBS	375-73-5	0.501 U	E9615-F5(0)	1.000	12/7/2022	0.171	0.501	1.00
PFHxS	355-46-4	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.173	0.501	1.00
PFOS	1763-23-1	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.175	0.501	1.00
HFPO-DA	13252-13-6	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.159	0.501	2.00
Adona	919005-14-4	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.160	0.501	2.00
9CI-PF3ONS	756426-58-1	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.154	0.501	2.00
11CI-PF3OUdS	763051-92-9	0.501 U	E9615-FS(0)	1.000	12/7/2022	0.150	0.501	2.00

Client ID		NRSJC-S7-SS11P-000H						
Battelle 1D		E9616-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		15.41						
Matrix		SOIL						
Sample Size		5.010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.:	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0,499 U	E9616-FS(0)	1.000	12/7/2022	0.178	0,499	0.998
PFHpA	375-85-9	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.214	0.499	0,998
PFNA	375-95-1	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E9616-FS(0)	1.000	12/7/2022	0,156	0.499	0.998
PFDoA	307-55-1	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.161	0.499	0.998
PFTeDA	376-06-7	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.159	0.499	2.00
NEtFOSAA	2991-50-6	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.160	0.499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E9616-FS(0)	1.000	12/7/2022	0.154	0.499	2.00
11CI-PF3OUdS	763051-92-9	0.499 U	E9616-FS(0)	1.000	12/7/2022	0,150	0.499	2.00

Client ID		NRSJC-S7-SB11-42H43H						
Battelle ID		E9619-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		7.66						
Matrix		SOIL						
Sample Size		5,000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E9619-F5(0)	1.000	12/7/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0,500 U	E9619-FS(0)	1.000	12/7/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.160	0.500	2,00
9CI-PF3ONS	756426-58-1	0.500 ป	E9619-FS(0)	1.000	12/7/2022	0.154	0.500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E9619-FS(0)	1.000	12/7/2022	0.150	0.500	2.00

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-SB11-9394						
Battelle ID		E9620-FS						
Sample Type		SA						
Collection Date		11/01/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500- (AE) LC/MS/MS						
% Moisture		4.01						
Matrix		SOIL						
Sample Size		5 000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E9620-FS{0}	1.000	12/7/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E9620-F5(0)	1.000	12/7/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E9620-F5(0)	1.000	12/7/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.165	0.500	2,00
PFBS	375-73-5	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E9620-F\$(0)	1.000	12/7/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.160	0.500	2.00
9CI-PF3ON5	756426-58-1	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.154	0,500	2.00
11Cl-PF3OUdS	763051-92-9	0.500 U	E9620-FS(0)	1.000	12/7/2022	0.150	0.500	2.00

4

Client ID		NRSJC-S7-SB11-146147						
Battelle ID		E9621-FS						
Sample Type		SA						
Collection Date		11/02/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500÷ (AE) LC/MS/MS						
% Moisture		3.73						
Matrix		SOIL						
Sample Size		5.000						
Size Unit Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.214	0.500	1.00
PFNA	375-95-1	0.500 U	E9621-F5(0)	1.000	12/7/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E9621-FS(0)	1.000	12/7/2022	0,162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
NEtFOSAA	2991-50-6	0,500 U	E9621-FS(0)	1.000	12/7/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0,500 U	E9621-FS(0)	1.000	12/7/2022	0.154	0.500	2.00
11CI-PF3OUdS	763051-92-9	0.500 U	E9621-FS(0)	1.000	12/7/2022	0.150	0.500	2,00

Client ID		NRSJC-S7-SB11-191192						
Battelle ID		E9622-FS						
Sample Type		SA						
Collection Date		11/02/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		5.59						
Matrix		SOIL						
Sample Size		5 010						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
			50600 50(0)		12/2/2022	0.470	0.400	0.998
PFHxA	307-24-4	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.178	0.499	0.998
PFHpA	375-85-9	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.168	0.499	0.998
PFOA	335-67-1	0.499 U	E9622-F5(0)	1.000	12/7/2022	0.214	0.499	
PFNA	375-95-1	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.157	0.499	0.998
PFDA	335-76-2	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.158	0.499	0.998
PFUnA	2058-94-8	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.156	0.499	0.998
PFDoA	307-55-1	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.160	0.499	0.998
PFTrDA	72629-94-8	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.161	0.499	0,998
PFTeDA	376-06-7	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.162	0.499	2.00
NMeFOSAA	2355-31-9	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.159	0.499	2.00
NEtFOSAA	2991-50-6	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.165	0.499	2.00
PFBS	375-73-5	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.171	0.499	0.998
PFHxS	355-46-4	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.173	0.499	0.998
PFOS	1763-23-1	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.175	0.499	0.998
HFPO-DA	13252-13-6	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.159	0.499	2.00
Adona	919005-14-4	0.499 U	E9622-F5(0)	1.000	12/7/2022	0.160	0.499	2.00
9CI-PF3ONS	756426-58-1	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.154	0.499	2.00
11CI-PF3OUdS	763051-92-9	0.499 U	E9622-FS(0)	1.000	12/7/2022	0.150	0.499	2.00

Client ID		NRSJC-57-SB11-231232						
Battelle ID		E9623-FS						
Sample Type		SA						
Collection Date		11/03/2022						
Extraction Date		11/11/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		3.03						
Matrix		SOIL						
Sample Size		5.000						
Size Unit-Basis		g			Analysis			
Analyte	CAS No.	Result (ng/g_Dry)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	0.500 U	E9623-FS(0)	1_000	12/7/2022	0.178	0.500	1.00
PFHpA	375-85-9	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.168	0.500	1.00
PFOA	335-67-1	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.214	0.500	1,00
PFNA	375-95-1	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.157	0.500	1.00
PFDA	335-76-2	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.158	0.500	1.00
PFUnA	2058-94-8	0.500 U	E9623-F5(0)	1.000	12/7/2022	0.156	0.500	1.00
PFDoA	307-55-1	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.160	0.500	1.00
PFTrDA	72629-94-8	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.161	0.500	1.00
PFTeDA	376-06-7	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.162	0.500	2.00
NMeFOSAA	2355-31-9	0.500 U	E9623-FS(0)	1.000	12/7/2022	0,159	0.500	2.00
NEtFOSAA	2991-50-6	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.165	0.500	2.00
PFBS	375-73-5	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.171	0.500	1.00
PFHxS	355-46-4	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.173	0.500	1.00
PFOS	1763-23-1	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.175	0.500	1.00
HFPO-DA	13252-13-6	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.159	0.500	2.00
Adona	919005-14-4	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.160	0.500	2.00
9CI-PF3ONS	756426-58-1	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.154	0.500	2,00
11CI-PF3OUdS	763051-92-9	0.500 U	E9623-FS(0)	1.000	12/7/2022	0.150	0.500	2.00

Analyzed by: Harnden, Kelsey Printed: 1/31/2023

DATA VALIDATION SUMMARY REPORT NAVAL STATION EVERETT, WASHINGTON

Client:	CH2M HILL, Inc., Corvallis, Oregon
SDG:	22-2042
Laboratory:	Battelle Norwell Operations, Norwell, Massachusetts
Site:	Northwest PFAS Investigation, Naval Station Everett, WA, CTO-4117
Date:	March 3, 2023

		PFAS	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	NRSJC-S7-FB01-110822	E9826-FS	Water
2	NRSJC-S7-GW11-1122	E9827 FS	Water
3	NRSJC-S7-GW11P-1122	E9828-FS	Water
4	NRSJC-S7-EB01-110922	E9829-FS	Water
5	NRSJC-S7-GW12A-1122	E9830-FS	Water
5MS	NRSJC-S7-GW12A-1122MS	E9831-FSMS	Water
5MSD	NRSJC-S7-GW12A-1122MSD	E9832-FSMSD	Water

A Stage 2B/4 data validation was performed on the analytical data for three water samples, one aqueous field blank samples, and one aqueous equipment blank sample collected on November 8-10, 2022 by CH2M HILL at the Naval Station Everett site in Washington. The samples were analyzed under the Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Specific method references are as follows:

<u>Analysis</u>	Method References
PFAS	Battelle SOP 5-369-09

The data have been validated according to the protocols and quality control (QC) requirements of the analytical method, the Draft Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Washington, February 2022, the DoD Final General Data Validation Guidelines, November 2019, including the following Module:

- The Department of Defense (DoD) Data Validation Guidelines Module 3, Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories (QSM) Table B-15, May 2020;
- The Department of Defense (DoD) Data Validation Guidelines Module 1, 2, and 4 Revised Blank Qualification Table, May 2021;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

PFAS

- Date Completeness, Case Narrative & Custody Documentation
- Holding times
- Liquid Chromatography/Mass Spectrometry (LC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Laboratory Fortified Blank (LFB)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

A Stage 2B/4 data validation was performed with this review including a recalculation of 10% of the detected results in the samples.

Data Usability Assessment

There were no serious deficiencies of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Polyfluoroalkyl Substances (PFAS)

Data Completeness, Case Narrative & Custody Documentation

• The case narrative and chain-of-custody documentation were included in the data package as required. All criteria were met.

Holding Times

• All holding time criteria were met.

LC/MS Tuning

• All criteria were met.

Initial Calibration

• All relative standard deviation (%RSD) and/or correlation coefficients criteria were met.

Continuing Calibration

• All percent recovery (%R) criteria were met.

Method Blank

• The method blanks were free of contamination.

<u>Field QC Blank</u>

• Field QC results are summarized below.

Blank ID	Compound	Conc. ng/L	Qualifier	Affected Samples
NRSJC-S7-FB01-110822	None - ND	8		
NRSJC-S7-EB01-110922	None - ND	н н		

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R) except for the following.

EDS Sample	Surrogate	%R	Qualifier
2	13C2-PFTeDA	40%	UJ
5	13C2-PFTeDA	12%	UĴ

Laboratory Fortified Blank (LFB)

• The LFB samples exhibited acceptable percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Target Compound Identification

All mass spectra and quantitation criteria were met. .

Compound Quantitation

All criteria were met. •

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

Compound	NRSJC-S7-GW11-1122 ng/L	NRSJC-S7-GW11P-1122 ng/L	RPD	Qualifier
None	ND	ND	(4)	

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.

Signed:

Nancy Weaver Dated: 3/5/23

Senior Chemist

Qualifier	Definition
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J+	The result was an estimated quantity, but the result may be biased high.
J-	The result was an estimated quantity, but the result may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification."
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-57-FB01-110822						
Battelle ID		E9826-FS						
Sample Type		SA						
Collection Date		11/08/2022						
Extraction Date		11/22/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.265						
Size Unit-Basis		L	100 100		Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.36 U	E9826-FS(0)	1.000	12/18/2022	0,861	2,36	4,72
PFHpA	375-85-9	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.888	2.36	4.72
PFOA	335-67-1	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.953	2.36	4.72
PFNA	375-95-1	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.786	2.36	4.72
PFDA	335-76-2	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.740	2.36	4.72
PFUnA	2058-94-8	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.709	2.36	4.72
PFDoA	307-55-1	2.36 U	E9826-FS(0)	1,000	12/18/2022	0.717	2.36	4.72
PFTrDA	72629-94-8	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.700	2.36	4.72
PFTeDA	376-06-7	2.36 U	E9826-FS(0)	1,000	12/18/2022	0.746	2.36	4.72
NMeFOSAA	2355-31-9	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.972	2.36	4.72
NEtFOSAA	2991-50-6	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.934	2.36	4.72
PFBS	375-73-5	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.817	2.36	4.72
PFHxS	355-46-4	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.941	2.36	4.72
PFOS	1763-23-1	2.36 U	E9826-FS(0)	1.000	12/18/2022	1.01	2.36	4.72
HFPO-DA	13252-13-6	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.816	2.36	4.72
Adona	919005-14-4	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.820	2.36	4.72
9CÍ-PF3ONS	756426-58-1	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.972	2.36	4.72
11Cl-PF3OUdS	763051-92-9	2.36 U	E9826-FS(0)	1.000	12/18/2022	0.850	2.36	4.72

Malyzed by: Boger, Warren Printed: 2/8/2023

Client ID		NRSJC-S7-GW11-1122							
Battelle ID		E9827-FS							
Sample Type		SA							
Collection Date		11/09/2022							
Extraction Date		11/22/2022							
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS							
% Moisture		NA							
Matrix		AQ							
Sample Size		0.270							
Size Unit-Basis		~~ L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
									-02
PFHxA	307-24-4	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.845	2.31	4.63	
PFHpA	375-85-9	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.871	2.31	4.63	
PFOA	335-67-1	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.935	2.31	4.63	
PFNA	375-95-1	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.771	2.31	4.63	
PFDA	335-76-2	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.726	2 31	4.63	
PFUnA	2058-94-8	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.696	2.31	4.63	
PFDoA	307-55-1	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.704	2.31	4.63	
PFTrDA	72629-94-8	2.31 U	E9827-F5(0)	1.000	12/18/2022	0.687	2.31	4.63	
PFTeDA	376-06-7	2.31 🖌 🗖	E9827-FS(0)	1.000	12/18/2022	0.732	2.31	4.63	SSL
NMeFOSAA	2355-31-9	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.954	2.31	4.63	
NEtFOSAA	2991-50-6	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.917	2.31	4.63	
PFBS	375-73-5	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.802	2.31	4.63	
PFHxS	355-46-4	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.923	2,31	4.63	
PFOS	1763-23-1	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.991	2.31	4.63	
HFPO-DA	13252-13-6	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.801	2.31	4.63	
Adona	919005-14-4	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.805	2.31	4.63	
9CI-PF3ONS	756426-58-1	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.954	2,31	4.63	
11Cl-PF3OUdS	763051-92-9	2.31 U	E9827-FS(0)	1.000	12/18/2022	0.834	2.31	4.63	

Analyzed by: Boger, Warren Printed: 2/8/2023

Project Client: CH2M

Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-GW11P 1122						
Battelle ID		E9828-FS						
Sample Type		SA						
Collection Date		11/09/2022						
Extraction Date		11/22/2022						
Analytical Instrumen	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0.232						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.69 U	E9828-FS(0)	1.000	12/18/2022	0_984	2.69	5.39
PFHpA	375-85-9	2.69 U	E9828-FS(0)	1.000	12/18/2022	1.01	2.69	5.39
PFOA	335-67-1	2.69 U	E9828-FS(0)	1.000	12/18/2022	1,09	2.69	5.39
PFNA	375-95-1	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.898	2.69	5.39
PFDA	335-76-2	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.845	2.69	5 39
PFUnA	2058-94-8	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.810	2.69	5.39
PFDoA	307-55-1	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.819	2.69	5.39
PFTrDA	72629-94-8	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.800	2.69	5.39
PFTeDA	376-06-7	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.852	2.69	5.39
NMeFOSAA	2355-31-9	2.69 U	E9828-FS(0)	1.000	12/18/2022	1.11	2.69	5.39
NEtFOSAA	2991-50-6	2.69 U	E9828-FS(0)	1.000	12/18/2022	1.07	2.69	5.39
PFBS	375-73-5	2.69 U	E9828-F5(0)	1.000	12/18/2022	0.933	2.69	5.39
PFHxS	355-46-4	2.69 U	E9828-FS(0)	1.000	12/18/2022	1.07	2.69	5.39
PFOS	1763-23-1	2.69 U	E9828-F\$(0)	1.000	12/18/2022	1.15	2.69	5.39
HFPO-DA	13252-13-6	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.932	2,69	5.39
Adona	919005-14-4	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.936	2.69	5.39
9CI-PF3ONS	756426-58-1	2.69 U	E9828-FS(0)	1.000	12/18/2022	1.11	2,69	5,39
11CI-PF3OUdS	763051-92-9	2.69 U	E9828-FS(0)	1.000	12/18/2022	0.971	2.69	5.39

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161 X1 XX 0026,000001

Client ID		NRSJC-S7-EB01-110922						
Battelle ID		E9829-FS						
Sample Type		SA						
Collection Date		11/09/2022						
Extraction Date		11/22/2022						
Analytical Instrumer	nt	Sciex 6500+ (AE) LC/MS/MS						
% Moisture		NA						
Matrix		AQ						
Sample Size		0_252						
Size Unit-Basis		24 L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PFHxA	307-24-4	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.906	2.48	4.96
PFHpA	375-85-9	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.934	2.48	4.96
PFOA	335-67-1	2.48 U	E9829-FS(0)	1.000	12/18/2022	1.00	2.48	4.96
PFNA	375-95-1	2.48 U	E9829-F5(0)	1.000	12/18/2022	0.826	2.48	4.96
PFDA	335-76-2	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.778	2.48	4.96
PFUnA	2058-94-8	2.48 U	E9829-F5(0)	1.000	12/18/2022	0.746	2.48	4.96
PFDoA	307-55-1	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.754	2.48	4.96
PFTrDA	72629-94-8	2.48 U	E9829-F5(0)	1.000	12/18/2022	0.736	2.48	4.96
PFTeDA	376-06-7	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.785	2.48	4.96
NMeFOSAA	2355-31-9	2.48 U	E9829-FS(0)	1.000	12/18/2022	1.02	2.48	4.96
NELFOSAA	2991-50-6	2.48 U	E9829-FS(0)	1,000	12/18/2022	0.982	2.48	4.96
PFBS	375-73-5	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.859	2.48	4.96
PFHxS	355-46-4	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.989	2.48	4.96
PFOS	1763-23-1	2.48 U	E9829-FS(0)	1.000	12/18/2022	1.06	2,48	4.96
HFPO-DA	13252-13-6	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.858	2.48	4.96
Adona	919005-14-4	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.862	2.48	4.96
9CI-PF3ONS	756426-58-1	2.48 U	E9829-FS(0)	1.000	12/18/2022	1.02	2.48	4.96
11CI-PF3OUdS	763051-92-9	2.48 U	E9829-FS(0)	1.000	12/18/2022	0.894	2.48	4.96

4

Project Client: CH2M Project Name: CTO-4117: Northwest PFAS Investigation Project No.: G25161.X1.XX.0026.000001

Client ID		NRSJC-S7-GW12A-1122							
Battelle ID		E9830-FS							
Sample Type		SA							
Collection Date		11/10/2022							
Extraction Date		11/22/2022							
Analytical Instrumer	nt	Sciex 6500- (AE) LC/MS/MS							
% Moisture		NA							
Matrix		AQ							
Sample Size		0.233							
Size Unit-Basis		L			Analysis				
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ	
PFHxA	307-24-4	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.980	2.68	5.36	
PFHpA	375-85-9	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.01	2.68	5.36	
PFOA	335-67-1	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.08	2.68	5,36	
PFNA	375-95-1	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.894	2.68	5.36	
PFDA	335-76-2	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.841	2.68	5,36	
PFUnA	2058-94-8	2.68 U	E9830-F5(0)	1.000	12/18/2022	0.807	2.68	5.36	
PFDoA	307-55-1	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.815	2.68	5.36	
PFTrDA	72629-94-8	2.68 U	E9830-F5(0)	1.000	12/18/2022	0.796	2.68	5.36	
PFTeDA	376-06-7	2.68 🖋 🛵 🗂	E9830-FS(0)	1.000	12/18/2022	0,849	2.68	5.36	SSL
NMeFOSAA	2355-31-9	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.11	2.68	5.36	
NEtFOSAA	2991-50-6	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.06	2.68	5.36	
PFBS	375-73-5	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.929	2.68	5.36	
PFHxS	355-46-4	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.07	2.68	5.36	
PFOS	1763-23-1	2.68 U	E9830-FS(0)	1.000	12/18/2022	1.15	2.68	5.36	
HFPO-DA	13252-13-6	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.928	2.68	5.36	
Adona	919005-14-4	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.932	2.68	5.36	
9CI-PF3ONS	756426-58-1	2.68 U	E9830-FS(0)	1.000	12/18/2022	1,11	2.68	5,36	
11CI-PF3OUdS	763051-92-9	2.68 U	E9830-FS(0)	1.000	12/18/2022	0.967	2.68	5.36	

5

Appendix I Data Quality Assessment Report

Data Quality Assessment, Per- and Polyfluoroalkyl Substances Naval Station Everett, Washington Naval Radio Station Jim Creek Arlington, Washington Naval Recreation Complex Pacific Beach Pacific Beach, Washington

DATE:

April 2023

Introduction

The purpose of this technical memorandum is to present the results of the data validation process for the soil and water samples collected from June through November 2022.

Soil and water samples were submitted to Battelle Laboratories for per- and polyfluoroalkyl substances (PFAS) analysis by analytical method Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) compliant with Department of Defense (DoD) Quality Systems Manual (QSM) Version 5.3 Table B-15 (DoD, 2019).

The sample results were validated by Environmental Data Services, Inc. (EDS) for compliance with the guidance documents *DoD Final General Data Validation Guidelines* (DoD, 2019), *Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories Table B-15* (DoD, 2020), the *Department of Defense Data Validation Guidelines Module 1, 2 and 4 Revised Blank Qualification Table* (DoD, 2022), the *Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Everett, Washington, Naval Radio Station Jim Creek, Arlington, Washington, Naval Recreation Complex Pacific Beach, Washington* (CH2M, 2022) and professional judgment.

The data validation findings for the following sample delivery groups were reviewed by Jacobs for this data quality assessment:

Sample Delivery Groups										
22-1049	22-1785	22-1934								
22-1191	22-1786	22-1979								
22-1325	22-1824	22-1990								
22-1385	22-1825	22-1991								
22-1386	22-1933	22-2042								
22-1394										

During data validation, EDS assigned qualifying flags to sample results for associated quality assurance/quality control (QA/QC) results outside of acceptance criteria, as specified in the guidance documents. This qualification also included the use of secondary qualifier flags. The secondary qualifiers provide the reasoning behind the assignment of a qualifier to these data. The data quality assessment evaluated the data validation findings against precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS) criteria as qualitative and quantitative indicators of data quality. The findings are documented within the appropriate criteria sections as follows.

DATA QUALITY ASSESSMENT FOR PFAS SI AT NAVAL STATION EVERETT, NAVAL RADIO STATION JIM CREEK, AND NAVAL RECREATION COMPLEX PACIFIC BEACH, WASHINGTON

The definitions of the primary qualifiers are presented as follows. The secondary qualifiers are listed in **Attachment 1**.

Validation Flag Definitions

The following primary qualifiers were used to qualify the data:

- [NULL] **Detected.** The analyte was analyzed for and detected at the concentration shown.
- [J] **Estimated.** The reported result was an estimated value with an unknown bias.
- [U] **Undetected.** The analyte was not detected and was reported as less than the limit of detection (LOD) or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
- [UJ] **Detection limit estimated.** The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
- [X] **Recommended for Rejection.** The data should be evaluated further by the project team, but are recommended for rejection due to serious QA/QC deficiencies.

[Exclude] **Excluded.** Data were not used due to another value being more appropriate.

Quality Control Measures

The following list represents the QA/QC measures that were reviewed during the data quality evaluation procedure:

- Holding Times: The holding times are evaluated to verify that samples were extracted and analyzed within holding times.
- **Blank samples:** Method blank, equipment blank, and trip blank samples were provided for this project. Blank samples enable the reviewer to determine if an analyte may be attributed to sampling or laboratory procedures, rather than environmental contamination from site activities.
- Lab Control Sample (LCS)/Lab Control Sample Duplicate (LCSD): These samples are a "controlled matrix", laboratory reagent water, in which target compounds have been added prior to extraction/analysis. The recoveries serve as a monitor of the overall performance of each step during the analysis, including sample preparation.
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples: Spike recovery is used to evaluate potential matrix interferences, as well as accuracy. Precision information is also determined by calculating the reproducibility between the recoveries of each spiked parameter.
- Field Duplicate/Triplicate Samples: These samples are collected to determine the precision between a native and its duplicates. This information can only be determined when target compounds are detected.
- Ion Ratio: Ion ratios can be used to help determine if the matrix of the sample has resulted in a bias in the data. To determine if a bias has potentially occurred, the ion ratio is evaluated against the ion ratio of standards, which do not contain matrix interferences. Ion ratio failures could be caused by matrix interference and/or be the result of the presence of isomers in the sample at different ratios than the ratio of isomers present in the calibration standards.
- Extracted Internal Standard (EIS) Recovery: These recoveries are used to correct for bias associated with matrix interferences and sample preparation efficiencies, injection volume variances, chromatographic behavior, and mass spectrometry ionization efficiency.

- Internal Standards: These are compounds added to the sample extracts prior to analysis. Their retention times and response are evaluated for method compliance. The internal standards are used in the quantification of the target parameters and to monitor the instrument sensitivity and response for stability during analysis.
- Initial Calibration: The initial calibration ensures the instrument is capable of producing acceptable qualitative and quantitative data for the compounds of interest. Multiple standard solutions are analyzed to determine the response and linearity of the instrument over a varying concentration range.
- **Continuing Calibration:** The continuing calibration checks the satisfactory performance of the instrument and its predicted response to the target compounds by analysis of a standard solution(s) at known concentrations.

PARCCS Review

Evaluation of the PARCCS criteria for all samples is discussed as follows.

Precision

Precision is defined as the agreement between duplicate results and was calculated as relative percent difference (RPD) by comparing duplicate MS/MSD and LCS/LCSD recoveries and field duplicate sample results.

MS/MSD and LCS/LCSD

MS/MSD and LCS/LCSD RPDs met acceptance criteria with no results qualified for high RPD.

Field Duplicates

Field duplicate precision met acceptance criteria with no results qualified for high RPD.

Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. For organic analyses, each sample was spiked with EIS compounds. Additionally, an MS/MSD and LCS were spiked with a known parameter concentration before preparation. Internal standards also provide a measure of accuracy. EIS, MS/MSD, and internal standards provide a measure of the matrix effects on analytical accuracy. The LCS demonstrates the accuracy of the method and the laboratory's ability to meet the method criteria. Accuracy is also assessed by calibration responses. Potential biases and trends were evaluated by first determining whether a QA/QC exceedance may indicate a potential bias or trend. If so, then the exceedance was examined to determine whether the bias or trend was significant enough to warrant the rejection of data.

MS, MSD, LCS, LCSD

MS/MSD and LCS/LCSD recoveries met acceptance criteria with no results qualified for percent recoveries outside of SAP specified criteria.

Extracted Internal Standards

EIS recoveries met acceptance criteria with the following exceptions:

- Perfluorotetradecanoic acid (PFTeDA) in sample NRCPB-B106-GW02-0822 exhibited a grossly low recovery (less than 10%) in the EIS. Based on the low recovery the result has been R-qualified and is unusable for evaluating project goals.
- Various compounds exhibited low EIS recoveries in groundwater samples NRSJC-S5-GW16-0722, NRCPB-B106-GW01-0822, NSE-B2114-GW01-0822, NSE-B2114-GW01-0822, NSE-B2114-GW02-0822, NSE-B2114-GW03-0822, NRSJC-S7-GW11-1122, and NRSJC-S7-GW12A-1122. All of the records

DATA QUALITY ASSESSMENT FOR PFAS SI AT NAVAL STATION EVERETT, NAVAL RADIO STATION JIM CREEK, AND NAVAL RECREATION COMPLEX PACIFIC BEACH, WASHINGTON

are for PFTeDA which does not have a screening level and the potential low bias does not impact the usability of the results.

Various compounds exhibited low EIS recoveries in soil samples NSE-B2114-SS02-0001, NRCPB-B106-SS01P-0001, NRCPB-B106-SS03-0001, and NRCPB-B106-SB03-0506. None of the PFAS compounds qualified for low EIS have screening levels, with the exception of perfluorooctane sulfonate (PFOS) in sample NSE-B2114-SS02-0001. The result is significantly higher than the screening level and the potential high bias may impact the usability of the data as reported. The remaining compounds do not have screening levels and the potential high bias does not impact the usability of the results.

Affected data are summarized in Attachment 2.

Internal Standards

• Internal standards exhibited high responses for PFOS in samples NSE-B2114-GW02-0822 and NSE-B2114-GW03-0822. The result for sample NSE-B2114-GW03-0822 is lower than the screening level and the potential low bias may impact the usability of the data as reported. The result for sample NSE-B2114-GW02-0822 is significantly higher than the screening level and the potential low bias is not interpreted to impact the usability of the data as reported.

Affected data are summarized in Attachment 2.

Ion Ratios

 Sample NRCPB-B106-GW02-0822 did not meet the ion ratio criteria for PFOS. The result from this sample is significantly above the project screening level and the potential bias does not impact the usability of the result.

Affected data are summarized and qualified as OT (for Other) in Attachment 2.

Analytical and Laboratory Blanks

PFOS was detected in the laboratory method blank associated with samples NRSJC-S5-GW16-0722 and NRSJC-S5-GW16P-0722. However, because the concentration in the associated samples was less than the LOD no bias is assigned to the results. No target analytes were detected in the remaining analytical and laboratory blanks.

Calibration

All acceptance criteria were met.

Representativeness

Representativeness is a qualitative measure of the degree to which sample data accurately and precisely represent a characteristic environmental condition (for example, nature and extent of contamination). Representativeness is a subjective parameter and is used to evaluate the efficacy of the sample planning design. In terms of data quality, representativeness was assured because the sampling team followed approved standard operating procedures (SOPs) for sample collection and handling, and the laboratory followed approved SOPs for sample handling, preparation, and analysis.

Holding Times

All holding time requirements were met, except for samples NRCPB-B106-SS02-0001 and NRCPB-B106-SB03-0506. The holding times were less than two times the allowed holding time and usability is not impacted by the exceedance.

Affected data are summarized in Attachment 2.

Completeness

Completeness is defined as the percentage of measurements that are judged to be valid; validity being defined by the data quality objectives. Therefore, completeness is calculated as the number of analytically sound results that are available for use compared to the total number of measurements made. The National Functional Guidelines data validation guidance designates all results except those R-qualified as "rejected" to be available for use as analytically sound results. The R-qualifier is the only qualifier that negatively affects a data point's availability. The data set is 100% complete and the completeness goal of 95% was exceeded.

Comparability

Comparability is another qualitative measure designed to express the confidence with which one data set may be compared to another. Factors that affect comparability are sample collection and handling techniques, sample matrix, and analytical methods. In this case, because approved SOPs were used for sample collection and handling, common sample matrices were evaluated, and adherence to the DoD QSM Version 5.3 was followed, the data user may express confidence in the fact that this data set is comparable to others of acceptable data quality. Comparability is controlled by the other PARCCS parameters because data sets can be compared with confidence only when precision and accuracy are known. Precision and accuracy were demonstrated to be acceptable, and the data user may be confident that this data set is comparable to others of high data quality.

The recalculation of the laboratory quantitation was performed at a 10% frequency as per the statement of work with no anomalies found. The assumptions made about the PARCCS were proper and correct. No error in judgment was found during this review of the data validation reports, which are included in **Attachment 3**.

Sensitivity

Sensitivity is the ability of an analytical method or instrument to discriminate between measurement responses representing different concentrations. This capability is established during the planning phase to meet project-specific objectives. It is important to be able to detect the target analytes at the levels of interest. Sensitivity requirements include the establishment of various limits such as calibration requirements, instrument LODs, and limits of quantitation. Limits were not raised above the screening levels.

Conclusion

A review of the analytical data submitted regarding the Naval Station Everett sampling event from June through November 2022 has been completed. The validation review demonstrated that the analytical systems were generally in control and that all of the data results can be used in the project decision-making process.

References

Department of Defense (DoD). 2019. DoD Final General Data Validation Guidelines. November.

DoD. 2020. Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by Quality Systems Manual for Environmental Laboratories Table B-15. May.

DoD. 2022. Data Validation Guidelines Modules 1,2, 3, and 4 Revised Table for Sample Qualification in the Presence of Blank Contamination.

CH2M HILL, Inc. (CH2M).2022. Final Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Everett, Washington, Naval Radio Station Jim Creek, Arlington, Washington, Naval Recreation Complex Pacific Beach, Washington. May.

Attachment 1 Secondary Data Qualifier Codes

Secondary Data Qualifier	Description
%SOL	High Moisture content
2C	Second Column – Poor Dual Column Reproducibility
25	Second Source – Bad reproducibility between tandem detectors
BD	Blank Spike/Blank Spike Duplicate (LCS/LCSD) Precision
BRL	Below Reporting Limit
BSH	Blank Spike/LCS – High Recovery
BSL	Blank Spike/LCS – Low Recovery
CC	Continuing Calibration
CCBL	Continuing Calibration Blank Contamination
ССН	Continuing Calibration Verification – High Recovery
CCL	Continuing Calibration Verification – Low Recovery
DL	Redundant Result – due to Dilution
EBL	Equipment Blank Contamination
EMPC	Estimated Possible Maximum Concentration
ESH	Extraction Standard - High Recovery
ESL	Extraction Standard - Low Recovery
FBL	Field Blank Contamination
FD	Field Duplicate
GBL	Grinding Blank Contamination
GBSH	Ground Blank Spike/LCS – High Recovery
GBSL	Ground Blank Spike/LCS – Low Recovery
HT	Holding Time
ICB	Initial Calibration – Bad Linearity or Curve Function
ICH	Initial Calibration – High Relative Response Factors
ICL	Initial Calibration – Low Relative Response Factors
IR15	Ion ratio exceeds +/- 15% difference
ISH	Internal Standard – High Recovery
ISL	Internal Standard – Low Recovery
LD	Lab Duplicate Reproducibility
LR	Concentration Exceeds Linear Range
MBL	Method Blank Contamination
MDP	Matrix Spike/Matrix Spike Duplicate Precision
MI	Matrix interference obscuring the raw data
MSH	Matrix Spike and/or Matrix Spike Duplicate – High Recovery
MSL	Matrix Spike and/or Matrix Spike Duplicate – Low Recovery
ОТ	Other
PD	Pesticide Degradation

Attachment 1. Secondary Data Qualifier, or Validation Reason, Codes

Secondary Data Qualifier	Description
RE	Redundant Result - due to Reanalysis or Re-extraction
SD	Serial Dilution Reproducibility
SSH	EIS – High Recovery
SSL	EIS – Low Recovery
TBL	Trip Blank Contamination
TN	Tune

Attachment 1. Secondary Data Qualifier, or Validation Reason, Codes

Attachment 2 Assigned Qualifiers

Sample ID	Sample Type	Analyte	Lab Result	Lab Qual	Final Result	Primary Qualifier	Units	Secondary Qualifier
NRSJC-S5-GW16-0722	N	Perfluorotetradecanoic Acid (PFTeDA)	2.44	U	2.44	UJ	NG_L	SSL
NRSJC-S5-GW16-0722	N	Perfluorooctane Sulfonate (PFOS)	2.44	J	1.06	U	NG_L	MBL
NRSJC-S5-GW16P-0722	FD	Perfluorooctane Sulfonate (PFOS)	2.36	J	1.06	U	NG_L	MBL
NSE-B2114-SS02-0001	N	Perfluoroundecanoic Acid (PFUnA)	0.267	J	0.267	J	NG_G	SSL
NSE-B2114-SS02-0001	N	Perfluorododecanoic Acid (PFDoA)	0.478	J	0.478	J	NG_G	SSL
NSE-B2114-SS02-0001	N	Perfluorotetradecanoic Acid (PFTeDA)	0.501	UT	0.501	UJ	NG_G	SSL
NSE-B2114-SS02-0001	N	N-Methyl Perfluorooctanesulfonamidoacetic Acid (MeFOSAA)	0.501	U	0.501	UJ	NG_G	SSL
NSE-B2114-SS02-0001	ISE-B2114-SS02-0001 N N-Ethyl Perfluorooctanesulfonamidoacetic Acid (EtFOSAA)		0.501	U	0.501	UJ	NG_G	SSL
NSE-B2114-SS02-0001	0001 N Perfluorooctane Sulfonate (PFOS)		14.8		14.8	J	NG_G	SSL
NRCPB-B106-SS01P-0001	B-B106-SS01P-0001 FD N-Ethyl Perfluorooctanesulfonamidoacetic Acid (EtFOSAA)		0.498	U	0.498	UJ	NG_G	SSL
NRCPB-B106-SS02-0001	N	Perfluorotetradecanoic Acid (PFTeDA)	0.502	UT	0.502	UJ	NG_G	HT
NRCPB-B106-SS03-0001	Ν	Perfluorotetradecanoic Acid (PFTeDA)	0.499	U	0.499	UJ	NG_G	SSL
NRCPB-B106-SB03-0506	N	Perfluorododecanoic Acid (PFDoA)	0.498	UT	0.498	UJ	NG_G	HT
NRCPB-B106-SB03-0506	N	N-Ethyl Perfluorooctanesulfonamidoacetic Acid (EtFOSAA)	0.498	U	0.498	UJ	NG_G	SSL
NRCPB-B106-GW01-0822	N	Perfluorotetradecanoic Acid (PFTeDA)	2.71	U	2.71	UJ	NG_L	SSL
NRCPB-B106-GW01P-0822	FD	Perfluorotetradecanoic Acid (PFTeDA)	2.55	U	2.55	UJ	NG_L	SSL
NRCPB-B106-GW02-0822	N	Perfluorotetradecanoic Acid (PFTeDA)	2.46	U	2.46	R	NG_L	SSL
NRCPB-B106-GW02-0822	N	Perfluorooctane Sulfonate (PFOS)	5.53	Q	5.53	J	NG_L	ОТ
NSE-B2114-GW01-0822	N	Perfluorotetradecanoic Acid (PFTeDA)	2.64	U	2.64	UJ	NG_L	SSL
NSE-B2114-GW01P-0822	FD	Perfluorotetradecanoic Acid (PFTeDA)	2.51	U	2.51	UJ	NG_L	SSL
NSE-B2114-GW02-0822	N	Perfluorotetradecanoic Acid (PFTeDA)	2.56	U	2.56	UJ	NG_L	SSL

Attachment 2. Assigned Qualifiers.												
Sample ID Sample Type		Analyte	Lab Result	Lab Qual	Final Result	Primary Qualifier	Units	Secondary Qualifier				
NSE-B2114-GW02-0822	Ν	Perfluorooctane Sulfonate (PFOS)	6.79		6.79	J	NG_L	ISH				
NSE-B2114-GW03-0822	Ν	Perfluorotetradecanoic Acid (PFTeDA)	2.41	U	2.41	UJ	NG_L	SSL				
NSE-B2114-GW03-0822	Ν	Perfluorooctane Sulfonate (PFOS)	3.3	J	3.3	J	NG_L	ISH				
NRSJC-S7-GW11-1122	Ν	Perfluorotetradecanoic Acid (PFTeDA)	2.31	U	2.31	UJ	NG_L	SSL				
NRSJC-S7-GW12A-1122 N Perfluorotetradecanoic Acid (PFTeDA)		2.68	U	2.68	UJ	NG_L	SSL					

Appendix J Human Health Risk Screening

APPENDIX J Human Health Risk Screening Evaluation

The Human Health Risk Screening (HHRS) evaluation was performed to assess potential human health risks associated with exposure to per- and polyfluoroalkyl substances (PFAS) in surface soil, subsurface soil, and groundwater at sites across Naval Station (NAVSTA) Everett in Everett, Washington and two associated facilities, Naval Radio Station (NRS) Jim Creek in Arlington, Washington, and Naval Recreation Complex (NRC) Pacific Beach in Pacific Beach, Washington.

NAVSTA Everett occupies approximately 117 acres in western Snohomish County adjacent to Port Gardner Bay, within the city of Everett, Washington. NAVSTA Everett was constructed in the early 1990s under Department of the Navy (Navy) Strategic Homeport Initiative and is currently the home port for six Navy destroyers and two United States Coast Guard vessels (Navy, 2018). The installation includes buildings and facilities that support ship operations and maintenance, and provide housing and support to homeported sailors.

NRS Jim Creek occupies approximately 3,854 acres in northern Snohomish County approximately 13 miles east of Arlington, Washington. NRS Jim Creek operates and maintains a communication system (Navy, 2018). The Navy acquired land at NRS Jim Creek in 1949 and constructed the communication system and associated support facilities between 1949 and 1953 (NEESA, 1990). In addition to communication system operations, the Navy currently uses NRS Jim Creek as an outdoor recreational facility for activities such as camping, fishing, boating, hiking, and biking. Current-day buildings include a communication system, outdoor recreational facilities such as cabins and campsites, and supporting facilities.

NRC Pacific Beach occupies approximately 53 acres in western Grays Harbor County adjacent to the Pacific Ocean approximately 36 miles northwest of Aberdeen, Washington. The installation was initially developed by the Navy at the start of World War II as a communications center and range for training purposes (NEESA, 1991). By 1956, the Navy moved training operations closer to Puget Sound and Seattle. Defense equipment and associated infrastructure such as gun mounts, ammunition magazines, and related buildings were demolished and replaced with more conventional structures (NEESA, 1991). By the late 1970s, military housing was no longer required, and the installation was converted into a recreational facility with single-family homes and dormitory-type buildings. In 1984, a 1-acre recreational vehicle and motor home park was built along the northern boundary of the installation and exists to this day. There are currently no active military operations at NRC Pacific Beach.

A Preliminary Assessment for PFAS at NAVSTA Everett and associated facilities, including NRS Jim Creek and NRC Pacific Beach (CH2M, 2021), was conducted to identify potential PFAS release areas. Of the 50 areas identified for evaluation (22 areas at NAVSTA Everett, 22 areas at NRS Jim Creek, and 6 areas at NRC Pacific Beach), 9 were classified as potential release areas. However, one of the nine areas, the Bio Pit Disposal Area at NRS Jim Creek, which received sludge from stormwater catch basins at the facility, did not have confirmation that aqueous filmforming foam or other PFAS-containing chemicals were released and was not recommended for further evaluation. A No Further Action recommendation for the Bio Pit Disposal Area was deferred until the Site Investigation (SI) pending PFAS sampling results at Building 6, where PFAS-containing chemicals could have migrated to a nearby catch basin and been released to the Bio Pit Disposal Area. Therefore, the following eight potential release areas were recommended for further investigation as part of an SI and are included in this HHRS:

- NAVSTA Everett (1 area)
 - Building 2114 (Fire Station)
- NRS Jim Creek (6 areas)
 - Building 6 (Former Fire Station)
 - Site 1 (Building 11 Landfill)
 - Site 6 (Blue Campground Landfill)
 - Site 7 (Pit Road Landfill)

- Site 4 (Metal Burial Pit)
- Site 5 (Mixed Waste Landfill)
- NRC Pacific Beach (1 area)
 - Building 106 (Former Fire Station)

Potential risks associated with exposure to six PFAS (perfluorobutanesulfonic acid [PFBS], perfluorooctanoic acid [PFOA], perfluorooctane sulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS], perfluorononanoic acid [PFNA], and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) were quantified in the HHRS. As discussed in the SI, the samples were also analyzed for additional PFAS by the laboratory; however, consistent with Assistant Secretary of Defense guidance (ASD, 2022) only PFBS, PFOA, PFOS, PFHxS, PFNA, and HFPO-DA were quantitatively evaluated in the HHRS. The Navy acknowledges that there are now RSLs for PFBA and PFHxA in the May 2023 RSL update (USEPA, 2023). While PFBA was not analyzed under the SI, it is unlikely to impact site management decisions based on results and concentrations at similar Navy sites. PFHxA was analyzed in the samples and is discussed in the HHRS for each potential PFAS release area.

Potential current receptors include workers and visitors/trespassers at NAVSTA Everett, and workers, visitors/trespassers, and recreational users at NRS Jim Creek and NRC Pacific Beach. These receptors could potentially be exposed to PFAS in soil through incidental ingestion of and dermal contact with surface soil or respiration of surface soil dust in the air. Potential future receptors at all three facilities include current receptors, and future construction workers and residents if the site is developed for future site use. Potential future exposure to combined surface and subsurface soil assumes that the subsurface soil will be excavated and mixed with the surface soil and placed on the ground surface. Future receptors could be exposed to combined surface and subsurface soil durface include the subsurface and subsurface soil or respiration of soil through incidental ingestion of and dermal contact with surface and subsurface soil or respiration of soil through incidental ingestion of and dermal contact with surface and subsurface soil or respiration of soil dust in the air.

Groundwater is not used as a public water supply source for the City of Everett or NAVSTA Everett, and no private drinking water wells have been definitively identified within 1 mile of NAVSTA Everett. Therefore, it is assumed that no aquifers potentially affected by PFAS are used as a drinking water source in this area, making the exposure pathway from water supply use incomplete. However, in areas where groundwater is within the potential depth of construction activities, construction workers could be exposed to PFAS in groundwater through dermal contact during excavation activities.

Based on data obtained from Washington State Department of Ecology (2018) and Department of Health, at least nine private drinking water wells (total depths ranging from 25 to 320 feet below ground surface [bgs]) are within 1 mile of NRS Jim Creek, northwest of NRS Jim Creek. Based on regional stratigraphy, vertical migration of PFAS constituents to the deeper regional aquifer is unlikely. Because the drinking water wells are upgradient of groundwater flowing into Jim Creek, exposure to PFAS in groundwater used as drinking water is unlikely.

Groundwater is used as a drinking water source near NRC Pacific Beach; however, all known active drinking water supply wells are screened much deeper than the shallow water-bearing unit. In addition, all known drinking water wells are upgradient of the potential PFAS source areas at NRC Pacific Beach. However, in areas where groundwater is within the potential depth of construction activities, construction workers could be exposed to PFAS in groundwater through dermal contact during excavation activities.

Although groundwater at NAVSTA Everett or the two associated facilities is not a current water supply and is unlikely to be a future potable water supply, human health risk-based levels for potable use were used for the screening evaluation for the groundwater because screening criteria for other exposure scenarios have not been developed.

The results of the HHRS provide a preliminary indication of potential risks to human receptors from exposure to PFAS at potential release areas and are used to help evaluate whether an area requires further evaluation (that is, potential unacceptable risks are identified for an area). Human health risk-based screening levels based on residential exposure and potable use of groundwater were used for the screening evaluation.

1 Data Evaluation

Surface soil, subsurface soil, and groundwater samples collected at the potential PFAS release areas within the three facilities (one area at NAVSTA Everett, six areas at NRS Jim Creek, and one area at NRC Pacific Beach) were evaluated in the HHRS. Potential human health risks were evaluated separately for each of the eight potential PFAS release areas. Table 1 in **Attachment 1** lists the available PFAS samples for the eight areas and identifies the samples that were included in the HHRS. All available data were included in the HHRS except subsurface soil samples collected from depths greater than 15 feet bgs; a receptor (that is, a construction worker) would not typically contact subsurface soil at depths greater than 15 feet bgs. Soil samples were collected in May, June, July, August, October, and November 2022, and groundwater samples were collected in June, July, August, and November 2022. The data are discussed in Section 4 of the SI Report.

The PFAS data evaluated in the HHRS were validated. Validation of the data identified the following criteria for data usability:

- Estimated values flagged with a J qualifier were treated as unqualified detected concentrations. The J qualifier indicates that the analyte is present, and the concentration is estimated because it is below the quantitation limit or because of an associated quality control exceedance and may be inaccurate or imprecise.
- Values flagged with a U qualifier indicate an analyte was not detected.
- For duplicate samples, the maximum concentration between the two samples was used as the sample concentration. If the analyte was only detected in one of the samples, the detected concentration was used as the sample concentration. If the analyte was not detected in either of the samples, the higher detection limit was used as the sample detection limit.

2 Human Health Risk Screening Methodology

The HHRS was conducted in two steps using a risk-ratio technique.

Step 1

Following current Assistant Secretary of Defense guidance (ASD, 2022), United States Environmental Protection Agency (USEPA) Regional screening levels (RSLs) based on a hazard quotient (HQ) of 0.1 were used to screen concentrations of six PFAS (PFBS, PFHxS, PFOS, PFOA, PFNA, and HFPO-DA) in site media. The Navy acknowledges that there are now RSLs for PFBA and PFHxA in the May 2023 RSL update (USEPA, 2023). While PFBA was not analyzed under the SI, it is unlikely to impact site management decisions based on results and concentrations at similar Navy sites. PFHxA was analyzed in the samples and is discussed in the HHRS for each potential PFAS release area. The detected concentrations of these six PFAS chemicals in the surface soil and subsurface soil samples were compared to USEPA residential soil RSLs from the November 2022 RSL Table (USEPA, 2022) and the detected concentrations of these PFAS in groundwater were compared to USEPA tap water RSLs (USEPA, 2022).

If the maximum detected concentration exceeded the RSL, the chemical was identified as a Step 1 chemical of potential concern (COPC) and was evaluated in Step 2.

Step 2

A risk level was calculated for each area and medium for COPCs identified in Step 1.

For potential carcinogenic analytes identified as COPCs in Step 1 (PFOA is the only potential carcinogen evaluated in the HHRS), the carcinogenic risk was calculated using the following equation:

Carcinogenic risk = MDC x target risk level of RSL RSL

Where:

MDC = maximum detected concentration (nanograms per gram[ng/g] or nanograms per liter [ng/L])target risk level of RSL = 1×10^{-6} (unitless)

RSL = screening level based on carcinogenic risk of 1×10^{-6} (ng/g or ng/L)

For noncarcinogenic analytes identified as COPCs in Step 1, the noncarcinogenic HQ was calculated using the following equation:

> Noncarcinogenic HQ = MDC x target HQ of RSL RSL

Where:

MDC = maximum detected concentration (ng/g or ng/L)target HQ of RSL = 1 (unitless) RSL = screening level based

The HQs for each medium in an area were summed to calculate the cumulative hazard index (HI). A cumulative HI was also calculated for each target organ/effect. The source of the target organs is the Agency for Toxic Substances Disease Registry (ATSDR) for PFOS, PFOA, and PFHxS (2023). If the cumulative HI for a target organ/effect was greater than 0.5, the analytes significantly contributing to the HI were identified as preliminary human health COPCs for further evaluation. Only one of the PFAS (PFOA) is a potential carcinogen and has a currently available cancer toxicity value. If the carcinogenic risk was greater than 5×10⁻⁵, PFOA was identified as a preliminary human health COPC. A conservative benchmark (HI=0.5 and cancer risk = 5×10^{-5}) is being applied as the HHRS does not sum the HIs or risks across media and therefore, does not calculate a cumulative site risk from soil and groundwater, if both are present, and the HHRS only evaluates potential risks from exposure to six PFAS.

2.1 Building 2114

Surface soil, subsurface soil, and groundwater samples were collected at Building 2114 and evaluated in this HHRS.

The risk-based screening and risk-ratio evaluation for surface soil is provided in Tables 2 and 2a in Attachment 1. The maximum detected concentration of PFOS exceeded its RSL, and PFOS was identified as a Step 1 COPC. Based on Step 2, the cumulative target organ HI was below 0.5 (developmental HI = 0.3), and PFOS was not identified as a COPC.

The one PFAS detected in subsurface soil with an RSL (PFOS) was detected at a concentration below the RSL (Table 3 [Attachment 1]).

The risk-based screening and risk-ratio evaluation for groundwater is provided in Tables 4 and 4a in Attachment 1. The maximum detected concentrations of PFOA, PFOS, and PFHxS exceeded their RSLs, and PFOA, PFOS, and PFHxS were identified as Step 1 COPCs. Based on Step 2, the cumulative target organ HIs were greater than 0.5 (developmental HI = 13 and endocrine HI = 0.6), and PFOS and PFHxS were identified as preliminary COPCs; they contributed to the target organ HIs. PFOA (HQ = 0.2, target organ developmental) was not considered a COPC since it does not significantly contribute to the cumulative target organ HI of 13.

The detected concentrations of PFHxA in soil and groundwater were evaluated against the May 2023 RSLs and there are no exceedances.

COPCs were not identified for surface soil or subsurface soil at Building 2114. PFOS and PFHxS were identified as preliminary COPCs for groundwater.

2.2 Building 6

Surface soil, subsurface soil, and groundwater samples were collected at Building 6 and evaluated in this HHRS.

The risk-based screening evaluations for surface soil and subsurface soil are provided in Tables 5 and 6 in **Attachment 1**, respectively. PFAS detected in surface soil and subsurface soil with RSLs were detected at concentrations below their RSLs.

The risk-based screening and risk-ratio evaluation for groundwater is provided in Tables 7 and 7a in **Attachment 1**. The maximum detected concentrations of PFOS and PFHxS exceeded their RSLs, and PFOS and PFHxS were identified as Step 1 COPCs. Based on Step 2, the target organ HI for PFHxS did not exceed the target organ HI of 0.5 (endocrine HI = 0.4), and PFHxS was not identified as a COPC. However, the target organ HI for PFOS exceeded the target organ HI for PFOS was retained as a preliminary COPC for further evaluation.

The detected concentrations of PFHxA in soil and groundwater were evaluated against the May 2023 RSLs and there are no exceedances.

COPCs were not identified for surface soil or subsurface soil at Building 6. PFOS was identified as a preliminary COPC for groundwater.

2.3 Site 1

Surface soil, subsurface soil, and groundwater samples were collected at Site 1 and evaluated in this HHRS. PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in subsurface soil; therefore, a screening table is not shown for subsurface soil.

The risk-based screening evaluations for surface soil and groundwater are provided in Tables 8 and 9 in **Attachment 1**, respectively. PFAS detected in surface soil and groundwater with RSLs were detected at concentrations below their RSLs.

PFHxA was not detected in soil or groundwater at Site 1.

COPCs were not identified for surface soil, subsurface soil, or groundwater at Site 1.

2.4 Site 6

Surface soil, subsurface soil, and groundwater samples were collected at Site 6 and evaluated in this HHRS. PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in subsurface soil; therefore, a screening table is not shown for subsurface soil.

The risk-based screening evaluations for surface soil and groundwater are provided in Tables 10 and 11 in **Attachment 1**, respectively. PFAS detected in surface soil and groundwater with RSLs were detected at concentrations below their RSLs.

PFHxA was not detected in soil or groundwater at Site 6.

COPCs were not identified for surface soil, subsurface soil, or groundwater at Site 6.

2.5 Site 7

Surface soil and groundwater samples were collected at Site 7 and evaluated in this HHRS. Although subsurface soil samples were collected at this site, the samples were collected from depths greater than would likely be contacted by human receptors (greater than 15 feet bgs) and were not evaluated in the HHRS.

PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in surface soil or groundwater; therefore, a screening table is not shown for subsurface soil.

PFHxA was not detected in soil or groundwater at Site 7.

COPCs were not identified for surface soil or groundwater at Site 7.

2.6 Site 4

Subsurface soil and groundwater samples were collected at Site 4 and evaluated in this HHRS. PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in subsurface soil or groundwater; therefore, screening tables are not shown for these media.

PFHxA was not detected in soil or groundwater at Site 4.

COPCs were not identified for subsurface soil or groundwater at Site 4.

2.7 Site 5

Surface soil, subsurface soil, and groundwater samples were collected at Site 5 and evaluated in this HHRS. PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in surface soil, subsurface soil, or groundwater; therefore, screening tables are not shown for these media.

PFHxA was not detected in soil or groundwater at Site 5.

COPCs were not identified for surface soil, subsurface soil, or groundwater at Site 5.

2.8 Building 106

Surface soil, subsurface soil, and groundwater samples were collected at Building 106 and evaluated in this HHRS. PFOA, PFOS, PFBS, PFHxS, PFNA, and HFPO-DA were not detected in subsurface soil; therefore, a screening table is not shown for this media.

The risk-based screening evaluation for surface soil is provided in Table 12 in **Attachment 1**. The one PFAS detected in surface soil with an RSL was detected at a concentration below the RSL.

PFHxA was not detected in soil and the concentration detected in groundwater was below the May 2023 RSL.

The risk-based screening and risk-ratio evaluation for groundwater is provided in Tables 13 and 13a in **Attachment 1**. The maximum detected concentration of PFOS exceeded its RSLs, and PFOS was identified as a Step 1 COPC. Based on Step 2, the cumulative target organ HI was below 0.5 (developmental HI = 0.4), and PFOS was not identified as a COPC.

COPCs were not identified for surface soil, subsurface soil, or groundwater at Building 106.

2.9 Uncertainty Assessment

The objective of the SI is to determine whether PFAS are present in groundwater and soil at potential release areas at concentrations warranting further investigation. Only a limited number of samples, typically one to five samples, targeting the most likely areas with the highest concentrations, were collected from each potential release area and included in the HHRS. Therefore, there is some uncertainty associated with the data, including whether the most contaminated area was sampled. Additionally for areas where Step 2 was performed, the maximum detected concentration was used to calculate the risk.

Subsurface soil samples were collected from 1 foot to 232 feet bgs. As discussed in **Section 1**, subsurface soil samples collected from depths greater than 15 feet bgs were not evaluated in the HHRS because a receptor (such as a construction worker) would not typically contact subsurface soil at depths greater than 15 feet bgs.

3 Human Health Risk Screening Findings

Table 14 in **Attachment 1** lists the Step 1 and Step 2 COPCs for each area and medium in each facility included in the HHRS. The following is a summary of the HHRS results for each area:

3.1 NAVSTA Everett

- Building 2114
 - PFAS were not identified as COPCs for surface soil or subsurface soil.
 - PFOS and PFHxS were identified as preliminary COPCs for groundwater.

3.2 NRS Jim Creek

- Building 6
 - PFAS were not identified as COPCs for surface soil or subsurface soil.
 - PFOS was identified as a preliminary COPC for groundwater.
- Site 1
 - PFAS were not identified as COPCs for surface soil, subsurface soil, or groundwater.
- Site 6
 - PFAS were not identified as COPCs for surface soil, subsurface soil, or groundwater.
- Site 7
 - PFAS were not identified as COPCs for surface soil or groundwater.
- Site 4
 - PFAS were not identified as COPCs for subsurface soil or groundwater.
- Site 5
 - PFAS were not identified as COPCs for surface soil, subsurface soil, or groundwater.

3.3 NRS Pacific Beach

- Building 106
 - PFAS were not identified as COPCs for surface soil, subsurface soil, or groundwater.

The HHRS identified potential unacceptable risks associated with exposure to PFAS for groundwater at one site at NAVSTA Everett (Building 2114) and one site at NRS Jim Creek (Building 6). No unacceptable risks associated with exposure to PFAS were identified for surface soil or subsurface soil at either of these sites or for any media sampled at the other PFAS areas.

4 References

Assistant Secretary of Defense (ASD). 2022. *Memorandum for Assistant Secretary of the Army, Assistant Secretary of the Navy, Assistant Secretary of the Air Force, Director, National Guard Bureau, Director, Defense Logistics Agency, Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program.* July.

Agency for Toxic Substances Disease Registry (ATSDR). 2023. Minimum Risk Levels for Hazardous Substances. <u>https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx.</u> April.

CH2M HILL, Inc. (CH2M). 2021. Preliminary Assessment for Per- and Polyfluoroalkyl Substances, Naval Station Everett and Associated Special Areas, Everett, Washington. February.

CH2M. 2022. Sampling and Analysis Plan Site Inspection for Per- and Polyfluoroalkyl Substances, Naval Station Everett, Everett, Washington, Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington. May. Department of the Navy (Navy). 2018. CNIC Naval Station Everett. <u>https://www.cnic.navy.mil/regions/cnrnw/installations/ns_everett.html</u>. Accessed November 5, 2018.

Naval Energy and Environmental Activity (NEESA). 1990. Preliminary Assessment Report, Naval Radio Station Jim Creek, Oso, Washington. Final. July.

NEESA. 1991. Preliminary Assessment Report Naval Station Puget Sound Family Housing Annexes. December 16.

Washington State Department of Ecology (DOE). 2018. *Washington State Well Report Viewer*. <u>https://fortress.wa.gov/ecy/wellconstruction/map/WCLSWebMap/default.aspx</u>. Accessed September 21.

United States Environmental Protection Agency (USEPA). 2022. *Regional Screening Level Summary Table*. November.

USEPA. 2023. Regional Screening Level Summary Table. May.

Attachment 1 Human Health Risk Screening Tables

Table 1. Summary of Available Data

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

PFAS Area	Medium	Station ID	Sample ID	Date of Sample	Analysis	Depth of Soil Sample (ft bgs) ^b	Included in HHRS?
Building 2114	Surface Soil	NSE-B2114-MW01	NSE-B2114-SS01-0001	7/26/2022	PFAS	0-0.5	Yes
		NSE-B2114-MW01	NSE-B2114-SS01P-0001 ^a	7/26/2022	PFAS	0-0.5	Yes
		NSE-B2114-MW02	NSE-B2114-SS02-0001	7/26/2022	PFAS	0-0.5	Yes
		NSE-B2114-MW03	NSE-B2114-SS03-0001	7/27/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NSE-B2114-MW01	NSE-B2114-SB01-0910	7/27/2022	PFAS	9-10	Yes
		NSE-B2114-MW02	NSE-B2114-SB02-1920	7/27/2022	PFAS	19-20	No
		NSE-B2114-MW03	NSE-B2114-SB03-1920	7/28/2022	PFAS	19-20	No
	Groundwater	NSE-B2114-MW01	NSE-B2114-GW01-0822	8/11/2022	PFAS		Yes
		NSE-B2114-MW01	NSE-B2114-GW01P-0822 ^a	8/11/2022	PFAS		Yes
		NSE-B2114-MW02	NSE-B2114-GW02-0822	8/11/2022	PFAS		Yes
		NSE-B2114-MW03	NSE-B2114-GW03-0822	8/11/2022	PFAS		Yes
Building 6	Surface Soil	NRSJC-B6-MW02	NRSJC-B6-SS02-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-B6-MW03	NRSJC-B6-SS03-000H	6/6/2022	PFAS	0-0.5	Yes
		NRSJC-B6-MW03	NRSJC-B6-SS03P-000H ^a	6/6/2022	PFAS	0-0.5	Yes
		NRSJC-B6-MW04	NRSJC-B6-SS04-000H	6/8/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRSJC-B6-MW01	NRSJC-B6-SB01-0102	6/1/2022	PFAS	1-2	Yes
		NRSJC-B6-MW01	NRSJC-B6-SB01-2930	6/2/2022	PFAS	29-30	No
		NRSJC-B6-MW02	NRSJC-B6-SB02-3637	6/3/2022	PFAS	36-37	No
		NRSJC-B6-MW03	NRSJC-B6-SB03-2930	6/7/2022	PFAS	29-30	No
		NRSJC-B6-MW04	NRSJC-B6-SB04-2728	6/9/2022	PFAS	27-28	No
		NRSJC-B6-MW04	NRSJC-B6-SB04-2930	6/9/2022	PFAS	29-30	No
	Groundwater	NRSJC-B6-MW01	NRSJC-B6-GW01-0622	6/30/2022	PFAS		Yes
		NRSJC-B6-MW02	NRSJC-B6-GW02-0622	6/30/2022	PFAS		Yes
		NRSJC-B6-MW03	NRSJC-B6-GW03-0622	6/30/2022	PFAS		Yes
		NRSJC-B6-MW04	NRSJC-B6-GW04-0722	7/1/2022	PFAS		Yes
Site 1	Surface Soil	NRSJC-S1-MW05	NRSJC-S1-SS05-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-S1-MW06	NRSJC-S1-SS06-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-S1-MW07	NRSJC-S1-SS07-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-S1-SB20	NRSJC-S1-SS20-000H	5/24/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRSJC-S1-MW05	NRSJC-S1-SB05-3H4H	6/16/2022	PFAS	3.5-4.5	Yes
		NRSJC-S1-MW06	NRSJC-S1-SB06-0708	6/20/2022	PFAS	7-8	Yes
		NRSJC-S1-MW07	NRSJC-S1-SB07-0304	6/17/2022	PFAS	3-4	Yes
		NRSJC-S1-SB20	NRSJC-S1-SB20-0203	5/24/2022	PFAS	2-3	Yes
		NRSJC-S1-SB20	NRSJC-S1-SB20P-0203 ^a	5/24/2022	PFAS	2-3	Yes
		NRSJC-S1-MW06	NRSJC-S1-SB06-2526	6/21/2022	PFAS	25-26	No
	Groundwater	NRSJC-S1-MW05	NRSJC-S1-GW05-0722	7/11/2022	PFAS		Yes
		NRSJC-S1-MW06	NRSJC-S1-GW06-0722	7/11/2022	PFAS		Yes
		NRSJC-S1-MW07	NRSJC-S1-GW07-0722	7/12/2022	PFAS		Yes
		NRSJC-S1-MW07	NRSJC-S1-GW07P-0722 ^a	7/12/2022	PFAS		Yes
Site 6	Surface Soil	NRSJC-S6-MW08	NRSJC-S6-SS08-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-S6-MW09	NRSJC-S6-SS09-000H	5/24/2022	PFAS	0-0.5	Yes
		NRSJC-S6-MW10	NRSJC-S6-SS10-000H	5/24/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRSJC-S6-MW08	NRSJC-S6-SB08-3H04	6/15/2022	PFAS	3.5-4	Yes
		NRSJC-S6-MW09	NRSJC-S6-SB09-3H05	6/15/2022	PFAS	3.5-5	Yes
		NRSJC-S6-MW10	NRSJC-S6-SB10-1415	6/10/2022	PFAS	14-15	Yes
		NRSJC-S6-MW10	NRSJC-S6-SB10P-1415 ^a	6/10/2022	PFAS	14-15	Yes
	Groundwater	NRSJC-S6-MW08	NRSJC-S6-GW08-0722	7/13/2022	PFAS		Yes
	Groundwater	NRSJC-S6-MW08	NRSJC-S6-GW08-0722	7/12/2022	PFAS		Yes
		NRSJC-S6-MW09	NRSJC-S6-GW09P-0722 ^a	7/12/2022	PFAS		Yes
	1	NRSJC-S6-MW10	NRSJC-S6-GW09P-0722 NRSJC-S6-GW10-0722	7/13/2022	PFAS	-	Yes

Table 1. Summary of Available Data

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

PFAS Area	Medium	Station ID	Sample ID	Date of Sample	Analysis	Depth of Soil Sample (ft bgs) ^b	Included in HHRS?
Site 7	Surface Soil	NRSJC-S7-MW11	NRSJC-S7-SS11-000H	11/1/2022	PFAS	0-0.5	Yes
		NRSJC-S7-MW11	NRSJC-S7-SS11P-000H ^a	11/1/2022	PFAS	0-0.5	Yes
		NRSJC-S7-MW12	NRSJC-S7-SS12-000H	10/7/2022	PFAS	0-0.5	Yes
		NRSJC-S7-MW13	NRSJC-S7-SS13-000H	5/24/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRSJC-S7-MW11	NRSJC-S7-SB11-42H43H	11/1/2022	PFAS	42.5-43.5	No
		NRSJC-S7-MW11	NRSJC-S7-SB11-9394	11/1/2022	PFAS	93-94	No
		NRSJC-S7-MW11	NRSJC-S7-SB11-146147	11/2/2022	PFAS	146-147	No
		NRSJC-S7-MW11	NRSJC-S7-SB11-191192	11/2/2022	PFAS	191-192	No
		NRSJC-S7-MW11	NRSJC-S7-SB11-231232	11/3/2022	PFAS	231-232	No
		NRSJC-S7-MW12	NRSJC-S7-SB12-145146	10/5/2022	PFAS	145-146	No
		NRSJC-S7-MW12	NRSJC-S7-SB12-174175	10/6/2022	PFAS	174-175	No
		NRSJC-S7-MW12	NRSJC-S7-SB12-210211	10/6/2022	PFAS	210-211	No
		NRSJC-S7-MW12	NRSJC-S7-SB12-229230	10/10/2022	PFAS	229-230	No
		NRSJC-S7-MW12	NRSJC-S7-SB12-9697	10/5/2022	PFAS	96-97	No
		NRSJC-S7-MW13	NRSJC-S7-SB13-128129	10/25/2022	PFAS	128-129	No
		NRSJC-S7-MW13	NRSJC-S7-SB13-177178	10/25/2022	PFAS	177-178	No
		NRSJC-S7-MW13	NRSJC-S7-SB13-215216	10/27/2022	PFAS	215-216	No
		NRSJC-S7-MW13	NRSJC-S7-SB13P-215216 ^a	10/27/2022	PFAS	215-216	No
		NRSJC-S7-MW13	NRSJC-S7-SB13-3839	10/13/2022	PFAS	38-39	No
		NRSJC-S7-MW13	NRSJC-S7-SB13-8485	10/14/2022	PFAS	84-85	No
	Groundwater	NRSJC-S7-MW11	NRSJC-S7-GW11-1122	11/9/2022	PFAS		Yes
	er our numerication	NRSJC-S7-MW11	NRSJC-S7-GW11P-1122 ^a	11/9/2022	PFAS		Yes
		NRSJC-S7-MW12	NRSJC-S7-GW12A-1122	11/10/2022	PFAS		Yes
Site 4	No surface soil sa			11/10/2022	117.5		105
	Subsurface Soil	NRSJC-S4-MW14	NRSJC-S4-SB14-0203	6/29/2022	PFAS	2-3	Yes
	Subsurface son	NRSJC-S4-MW14	NRSJC-S4-SB14-1718	6/29/2022	PFAS	17-18	No
		NRSJC-S4-MW15	NRSJC-S4-SB15-1617	6/30/2022	PFAS	16-17	No
	Groundwater	NRSJC-S4-MW14	NRSJC-S4-GW14-0722	7/13/2022	PFAS		Yes
	Groundwater	NRSJC-S4-MW14	NRSJC-S4-GW14P-0722 ^a	7/13/2022	PFAS		Yes
		NRSJC-S4-MW15	NRSJC-S4-GW14F-0722	7/13/2022	PFAS		Yes
Site 5	Surface Soil	NRSJC-S5-MW16	NRSJC-S5-SS16-000H	5/25/2022	PFAS	0-0.5	Yes
	Surface Soli	NRSJC-S5-MW18	NRSJC-S5-SS18-000H	5/25/2022	PFAS	0-0.5	Yes
		NRSJC-S5-MW19	NRSJC-S5-SS19-000H	5/25/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRSJC-S5-MW18	NRSJC-S5-SB18-0708	6/22/2022	PFAS	7-8	Yes
		NRSJC-S5-MW19	NRSJC-S5-SB19-1011	6/23/2022	PFAS	10-11	Yes
		NRSJC-S5-MW16	NRSJC-S5-SB16-1314	6/27/2022	PFAS	13-14	Yes
		NRSJC-S5-MW18	NRSJC-S5-SB18-1415	6/22/2022	PFAS	14-15	Yes
		NRSJC-S5-MW18	NRSJC-S5-SB18P-1415 ^a	6/22/2022	PFAS	14-15	Yes
	Groundwater	NRSJC-S5-MW18	NRSJC-S5-SB18P-1415 NRSJC-S5-GW16-0722	7/12/2022	PFAS		Yes
		NRSJC-S5-MW16	NRSJC-S5-GW16P-0722 ^a	7/12/2022	PFAS		Yes
		NRSJC-S5-MW18	NRSJC-SS-GW16P-0722 NRSJC-S5-GW18-0722	7/13/2022	PFAS		Yes
		NRSJC-S5-MW18	NRSJC-S5-GW18-0722	7/12/2022	PFAS		Yes

Table 1. Summary of Available Data

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

PFAS Area	Medium	Station ID	Sample ID	Date of Sample	Analysis	Depth of Soil Sample (ft bgs) ^b	Included in HHRS?
Building 106	Surface Soil	NRCPB-B106-MW01	NRCPB-B106-SS01-0001	8/3/2022	PFAS	0-0.5	Yes
		NRCPB-B106-MW01	NRCPB-B106-SS01P-0001 ^a	8/3/2022	PFAS	0-0.5	Yes
		NRCPB-B106-MW02	NRCPB-B106-SS02-0001	8/3/2022	PFAS	0-0.5	Yes
		NRCPB-B106-MW03	NRCPB-B106-SS03-0001	8/8/2022	PFAS	0-0.5	Yes
	Subsurface Soil	NRCPB-B106-MW02	NRCPB-B106-SB02-0910	8/4/2022	PFAS	9-10	Yes
		NRCPB-B106-MW03	NRCPB-B106-SB03-0506	8/8/2022	PFAS	5-6	Yes
		NRCPB-B106-MW01	NRCPB-B106-SB01-1314	8/3/2022	PFAS	13-14	Yes
	Groundwater	NRCPB-B106-MW01	NRCPB-B106-GW01-0822	8/9/2022	PFAS		Yes
		NRCPB-B106-MW01	NRCPB-B106-GW01P-0822 ^a	8/9/2022	PFAS		Yes
		NRCPB-B106-MW02	NRCPB-B106-GW02-0822	8/9/2022	PFAS		Yes
		NRCPB-B106-MW03	NRCPB-B106-GW03-0822	8/10/2022	PFAS		Yes

^a Duplicate of sample listed above

^b Included subsurface soil samples up to 15 ft bgs in the HHRS. -- = Not applicable/Not available

ft bgs = feet below ground surface

HHRS = Human health risk screening

PFAS = Per- and polyfluoroalkyl substances

Table 2. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Current
Medium: Soil
Exposure Medium: Surface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
-	1763-23-1 375-95-1	Perfluorooctanoic acid (PFOA) Perfluorooctane sulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS)	3.5E-01 J 4.0E-01 J 2.4E-01 J 9.8E-01 J	3.5E-01 J 3.5E+01 2.4E-01 J 2.8E+00	NG/G NG/G	NSE-B2114-SS02-0001 NSE-B2114-SS01-0001 NSE-B2114-SS02-0001 NSE-B2114-SS01-0001	1/3 3/3 1/3 2/3	0.5 - 0.501 0.5 - 0.501 0.5 - 0.501 0.5 - 0.501	3.5E-01 3.5E+01 2.4E-01 2.8E+00	N/A N/A N/A N/A	1.9E+01 N 1.3E+01 N 1.9E+01 N 1.3E+02 N	N/A N/A N/A N/A	N/A N/A N/A N/A	NO YES NO NO	BSL ASL BSL BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic NG/G = Nanograms per gram N/A = Not available RSL = Regional Screening Level

Table 2a. Risk Ratio Screening, Maximum Detected Concentration, Surface Soil - Building 2114

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington

Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Analyte	Detection Frequency	Maximum Detected Concentration (Qualifier) (NG/G)	Sample Location of Maximum Detected Concentration	Carcinogenic Residential Soil RSL (NG/G)	Target Risk Level of RSL	Cancer Risk ^a	Non-carcinogenic Residential Soil RSL (NG/G)	Target HQ of RSL	HQ⁵	Target Organ
Perfluorooctane Sulfonate (PFOS)	3 / 3	3.5E+01	NSE-B2114-SS01-0001	N/A	N/A	N/A	1.3E+02	1	0.27	Developmental
Cumulative Hazard Index ^c									0.3	
Cumulative Cancer Risk ^d						N/A				
							Total	Developme	ntal HI =	0.3

Notes:

Chemical selected as COPC if it significantly contributes to a target organ HI greater than 0.5 or a cumulative cancer risk greater than 5E-05.

Chemicals selected as COPCs are indicated by bold and shading.

^a Cancer Risk equals maximum detected concentration divided by the RSL divided by the target risk level of RSL.

^b HQ equals maximum detected concentration divided by the RSL divided by the target HQ of RSL.

^c Cumulative Hazard Index equals sum of HQ for each chemical.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each chemical.

COPC = Constituent of Potential Concern

N/A = Not available/not applicable

NG/G = Nanograms per gram

HI = Hazard Index

HQ = Hazard Quotient

RSL = Regional Screening Level

Table 3. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

> Scenario Timeframe: Future Medium: Soil Exposure Medium: Subsurface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier		Location of Maximum Concentration	Detection Frequency	_	Concentration [2] Used for Screening		Screening [4] Toxicity Value			COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Building 2114	1763-23-1	Perfluorooctane sulfonic acid (PFOS)	6.4E-01 J	6.4E-01 J	NG/G	NSE-B2114-SB01-0910	1/1	0.498 - 0.501	6.4E-01	N/A	1.3E+01 N	N/A	N/A	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] **Rationale Codes**

> Selection Reason: **Deletion Reason:**

Above Screening Levels (ASL) Below Screening Level (BSL)

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

COPC = Chemical of Potential Concern J = Estimated Value

N = Noncarcinogenic

N/A = Not available

NG/G = Nanograms per gram

RSL = Regional Screening Level

Table 4. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

> Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	. 0	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Building 2114	375-73-5 335-67-1 1763-23-1 375-95-1 355-46-4	Perfluorobutanesulfonic acid (PFBS) Perfluorooctanoic acid (PFOA) Perfluorooctane Sulfonate (PFOS) Perfluorononanoic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS)	8.0E+00 5.2E+00 3.3E+00 J 8.7E-01 J 4.3E+00 J	1.4E+01 1.3E+01 5.2E+02 2.2E+00 J 2.2E+02	NG/L	NSE-B2114-GW02-0822 NSE-B2114-GW02-0822 NSE-B2114-GW01P-0822 NSE-B2114-GW01P-0822 NSE-B2114-GW01P-0822	3/3 3/3 3/3 2/3 3/3	2.41 - 2.64 2.41 - 2.64 2.41 - 2.64 2.41 - 2.64 2.41 - 2.64	1.4E+01 1.3E+01 5.2E+02 2.2E+00 2.2E+02	N/A N/A N/A N/A	6.0E+02 N 6.0E+00 N 4.0E+00 N 5.9E+00 N 3.9E+01 N	N/A N/A N/A N/A	N/A N/A N/A N/A	NO YES YES NO YES	BSL ASL ASL BSL ASL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Tap Water. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] **Rationale Codes**

> Selection Reason: Deletion Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/L = Nanograms per liter RSL = Regional Screening Level

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

Table 4a. Risk Ratio Screening, Maximum Detected Concentration, Groundwater - Building 2114

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Chemical	Detection Frequency	Concentration	Sample Location of Maximum Detected Concentration	Carcinogenic Tap Water RSL (NG/L)	Target Risk Level of RSL	Cancer Risk ^a	Non-carcinogenic Tap Water RSL (NG/L)	Target HQ of RSL	HQ⁵	Critical Effect
Perfluorooctanoic acid (PFOA)	3/3	1.3E+01	NSE-B2114-GW02-0822	1.1E+03	1E-06	1.2E-08	6.0E+01	1	0.22	Developmental
Perfluorooctane Sulfonate (PFOS)	3/3	5.2E+02	NSE-B2114-GW01P-0822	N/A	N/A	N/A	4.0E+01	1	13	Developmental
Perfluorohexanesulfonic acid (PFHxS)	3/3	2.2E+02	NSE-B2114-GW01P-0822	N/A	N/A	N/A	3.9E+02	1	0.57	Endocrine
Cumulative Hazard Index ^c									14	
Cumulative Cancer Risk ^d						1E-08				
							Tota	Developme	ntal HI =	13

Total Endocrine HI =

0.6

Notes:

Chemical selected as COPC if it significantly contributes to a target organ HI greater than 0.5 or a cumulative cancer risk greater than 5E-05.

Chemicals selected as COPCs are indicated by bold and shading.

^a Cancer Risk equals maximum detected concentration divided by the RSL divided by the target risk level of RSL.

^b HQ equals maximum detected concentration divided by the RSL divided by the target HQ of RSL.

^c Cumulative Hazard Index equals sum of HQ for each chemical.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each chemical.

COPC = Chemical of Potential Concern

HI = Hazard Index

HQ = Hazard Quotient

N/A = Not available/not applicable

NG/L = Nanograms per liter

RSL = Regional Screening Level

Table 5. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

> Scenario Timeframe: Current Medium: Soil Exposure Medium: Surface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier			Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening			Potential ARAR/TBC Value			Rationale for [5] Contaminant Deletion or Selection
Building 6	1763-23-1	Perfluorobutanesulfonic acid (PFBS) Perfluorooctane sulfonic acid (PFOS) Perfluorohexanesulfonic acid (PFHxS)	3.6E-01 J 3.1E-01 J 2.6E+00	3.6E-01 J 3.6E-01 J 2.6E+00	NG/G NG/G NG/G		1/3 2/3 1/3	0.499 - 0.502 0.499 - 0.502 0.499 - 0.502	3.6E-01 3.6E-01 2.6E+00	N/A N/A N/A	1.9E+03 N 1.3E+01 N 1.3E+02 N	-	N/A N/A N/A	NO NO NO	BSL BSL BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil. [4] RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

> Selection Reason: Deletion Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

To Be Considered COPC = Chemical of Potential Concern

J = Estimated Value

N = Noncarcinogenic

N/A = Not available

NG/G = Nanograms per gram

RSL = Regional Screening Level

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

Table 6. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

> Scenario Timeframe: Future Medium: Soil Exposure Medium: Subsurface Soil

Exposure Point	CAS Number	Chemical		Maximum [1] Concentration Qualifier		Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Building 6	355-46-4	Perfluorohexanesulfonic acid (PFHxS)	7.5E-01 J	7.5E-01 J	NG/G	NRSJC-B6-SB01-0102	1/1	0.501 - 0.501	7.5E-01	N/A	1.3E+02 N	N/A	N/A	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/G = Nanograms per gram RSL = Regional Screening Level

Table 7. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Future	
Medium: Groundwater	
Exposure Medium: Groundwater	

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value			Rationale for [5] Contaminant Deletion or Selection
Building 6	335-67-1 1763-23-1	Perfluorobutanesulfonic acid (PFBS) Perfluorooctanoic acid (PFOA) Perfluorooctane Sulfonate (PFOS) Perfluorohexanesulfonic acid (PFHxS)	1.0E+00 J 1.3E+00 J 4.2E+00 J 1.5E+00 J	1.7E+01 3.0E+00 J 6.1E+01 1.5E+02	NG/L NG/L NG/L NG/L	NRSJC-B6-GW03-0622 NRSJC-B6-GW03-0622 NRSJC-B6-GW04-0722 NRSJC-B6-GW03-0622	4/4 4/4 4/4 4/4	2.21 - 2.4 2.21 - 2.4 2.21 - 2.4 2.21 - 2.4	1.7E+01 3.0E+00 6.1E+01 1.5E+02	N/A N/A N/A N/A	6.0E+02 N 6.0E+00 N 4.0E+00 N 3.9E+01 N	N/A	N/A N/A N/A N/A	NO NO YES YES	BSL BSL ASL ASL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Tap Water. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/L = Nanograms per liter RSL = Regional Screening Level

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

Table 7a. Risk Ratio Screening, Maximum Detected Concentration, Groundwater - Building 6

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Chemical	Detection Frequency	Maximum Detected Concentration (Qualifier) (NG/L)	Sample Location of Maximum Detected Concentration	Carcinogenic Tap Water RSL (NG/L)		Cancer Risk ^a	Non-carcinogenic Tap Water RSL (NG/L)	Target HQ of RSL	но₽	Critical Effect
Perfluorooctane Sulfonate (PFOS)	4/4	6.1E+01	NRSJC-B6-GW04-0722	N/A	N/A	N/A	4.0E+01	1	1.5	Developmental
Perfluorohexanesulfonic acid (PFHxS)	4/4	1.5E+02	NRSJC-B6-GW03-0622	N/A	N/A	N/A	3.9E+02	1	0.39	Endocrine
Cumulative Hazard Index ^c									2	
Cumulative Cancer Risk ^d						0E+00				
L							Tot	al Developmer	ntal HI =	2
								Total Endocr	ine HI =	0.4

Notes:

Chemical selected as COPC if it significantly contributes to a target organ HI greater than 0.5 or a cumulative cancer risk greater than 5E-05.

Chemicals selected as COPCs are indicated by bold and shading.

^a Cancer Risk equals maximum detected concentration divided by the RSL divided by the target risk level of RSL.

^b HQ equals maximum detected concentration divided by the RSL divided by the target HQ of RSL.

^c Cumulative Hazard Index equals sum of HQ for each chemical.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each chemical.

COPC = Chemical of Potential Concern

HI = Hazard Index

HQ = Hazard Quotient

N/A = Not available/not applicable

NG/L = Nanograms per liter

RSL = Regional Screening Level

Table 8. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Current
Medium: Soil
Exposure Medium: Surface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value		Flag	Rationale for [5] Contaminant Deletion or Selection
Site 1	1763-23-1	Perfluorooctane sulfonic acid (PFOS)	2.2E-01 J	2.2E-01 J	NG/G	NRSJC-S1-SS06-000H	1/4	0.499 - 0.513	2.2E-01	N/A	1.3E+01 N	N/A	N/A	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil.
 RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/G = Nanograms per gram RSL = Regional Screening Level

Table 9. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Future	
Medium: Groundwater	
Exposure Medium: Groundwater	

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier		Location of Maximum Concentration	Detection Frequency	-	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
Site 1		Perfluorobutanesulfonic acid (PFBS) Perfluorooctanoic acid (PFOA)	1.3E+00 J 1.1E+00 J	1.3E+00 J 2.2E+00 J	·	NRSJC-S1-GW05-0722 NRSJC-S1-GW05-0722	1/3 2/3	2.27 - 2.31 2.27 - 2.31	1.3E+00 2.2E+00	N/A N/A	6.0E+02 N 6.0E+00 N	N/A N/A	N/A N/A	NO NO	BSL BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Tap Water. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/G = Nanograms per gram RSL = Regional Screening Level

Table 10. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Current
Medium: Soil
Exposure Medium: Surface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening					Flag	Rationale for [5] Contaminant Deletion or Selection
Site 6	1763-23-1	Perfluorooctane sulfonic acid (PFOS)	2.8E-01 J	2.8E-01 J	NG/G	NRSJC-S6-SS09-000H	1/3	0.497 - 0.501	2.8E-01	N/A	1.3E+01 N	N/A	N/A	NO	BSL

[1]	Minimum/Maximum dete	cted concentrations.		ARAR/TBC =
[2]	Maximum concentration i	s used for screening.		
[3]	Background values not ava	ailable.		COPC = Cher
[4]	Oak Ridge National Labora	atory (ORNL). November, 2022. Re	egional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil.	J = Estimated
	RSLs based o	on non-cancer (N) based on HQ =	0.1.	N = Noncarc
[5]	Rationale Codes			N/A = Not av
		Selection Reason:	Above Screening Levels (ASL)	NG/G = Nan
		Deletion Reason:	Below Screening Level (BSL)	RSL = Regior

- C = Applicable or Relevant and Appropriate Requirement/
- To Be Considered
- hemical of Potential Concern
- ted Value
- arcinogenic
- t available
- lanograms per gram
- ional Screening Level

Table 11. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Future
Medium: Groundwater
Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical		Maximum [1] Concentration Qualifier		Location of Maximum Concentration		Range of Detection Limits	Concentration [2] Used for Screening		Screening [4] Toxicity Value		Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
Site 6	335-67-1	Perfluorooctanoic acid (PFOA)	1.2E+00 J	1.2E+00 J	NG/L	NRSJC-S6-GW09P-0722	1/3	2.16 - 2.43	1.2E+00	N/A	6.0E+00 N	N/A	N/A	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Tap Water. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] **Rationale Codes**

> Selection Reason: Deletion Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/G = Nanograms per gram

RSL = Regional Screening Level

Table 12. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

> Scenario Timeframe: Current Medium: Soil Exposure Medium: Surface Soil

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier			Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Screening [4] Toxicity Value				Rationale for [5] Contaminant Deletion or Selection
Building 106	1763-23-1	Perfluorooctane sulfonic acid (PFOS)	2.6E-01 J	6.2E-01 J	NG/G	NRCPB-B106-SS03-0001	2/3	0.498 - 0.502	6.2E-01	N/A	1.3E+01 N	N/A	N/A	NO	BSL

Minimum/Maximum detected concentrations. [1]

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Resident Soil. RSLs based on non-cancer (N) based on HQ = 0.1.

[5] **Rationale Codes**

> Selection Reason: **Deletion Reason:**

Above Screening Levels (ASL) Below Screening Level (BSL)

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

COPC = Chemical of Potential Concern J = Estimated Value

N = Noncarcinogenic

N/A = Not available

NG/G = Nanograms per gram

RSL = Regional Screening Level

Table 13. Occurrence, Distribution and Selection of Chemicals of Potential Concern

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater	
Medium: Groundwater	
Exposure Medium: Groundwater	

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier		Location of Maximum Concentration		Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value				Rationale for [5] Contaminant Deletion or Selection
Building 106	1763-23-1	Perfluorooctanoic acid (PFOA) Perfluorooctane Sulfonate (PFOS) Perfluorohexanesulfonic acid (PFHxS)	2.1E+00 J 2.9E+00 J 2.4E+00 J	1.4E+01	NG/L NG/L NG/L	NRCPB-B106-GW03-0822	2/3 3/3 2/3	2.46 - 2.71 2.46 - 2.71 2.46 - 2.71	1.4E+01	N/A N/A N/A	6.0E+00 N 4.0E+00 N 3.9E+01 N	N/A N/A N/A	N/A N/A N/A	NO YES NO	BSL ASL BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] Oak Ridge National Laboratory (ORNL). November, 2022. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Tap Water.
 RSLs based on non-cancer (N) based on HQ = 0.1.

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered COPC = Chemical of Potential Concern J = Estimated Value N = Noncarcinogenic N/A = Not available NG/G = Nanograms per gram RSL = Regional Screening Level

Table 13a. Risk Ratio Screening, Maximum Detected Concentration, Groundwater - Building 106

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

Chemical	Detection Frequency	Maximum Detected Concentration (Qualifier) (NG/L)	Sample Location of Maximum Detected Concentration	• •	Target Risk Level of RSL	1	Non-carcinogenic Tap Water RSL (NG/L)	Target HQ of RSL	HQ⁵	Critical Effect
Perfluorooctane Sulfonate (PFOS)	3/3	1.4E+01	NRCPB-B106-GW03-0822	N/A	N/A	N/A	4.0E+01	1	0.35	Developmental
Cumulative Hazard Index ^c									0.4	
Cumulative Cancer Risk ^d						N/A				
L							Tota	al Developme	ental HI =	0.4

Notes:

Chemical selected as COPC if it significantly contributes to a target organ HI greater than 0.5 or a cumulative cancer risk greater than 5E-05.

Chemicals selected as COPCs are indicated by bold and shading.

^a Cancer Risk equals maximum detected concentration divided by the RSL divided by the target risk level of RSL.

^b HQ equals maximum detected concentration divided by the RSL divided by the target HQ of RSL.

^c Cumulative Hazard Index equals sum of HQ for each chemical.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each chemical.

COPC = Chemical of Potential Concern

HI = Hazard Index

HQ = Hazard Quotient

N/A = Not available/not applicable

NG/L = Nanograms per liter

RSL = Regional Screening Level

Table 14. Summary of Human Health Risk Screening Results

Site Inspection Report for Per- and Polyfluoroalkyl Substances at Naval Station Everett, Everett, Washington Naval Radio Station Jim Creek, Arlington, Washington, and Naval Recreation Complex Pacific Beach, Pacific Beach, Washington

PFAS Area	Medium	Step 1 COPC	Step 2 COPC
Building 2114			
	Surface Soil	PFOS	None
	Subsurface Soil	None	
	Groundwater	PFOA, PFOS, PFHxS	PFOS, PFHxS
Building 6			
	Surface Soil	None	
	Subsurface Soil	None	
	Groundwater	PFOS, PFHxS	PFOS
Site 1			
	Surface Soil	None	
	Subsurface Soil	None (a)	
	Groundwater	None	
Site 6			
	Surface Soil	None	
	Subsurface Soil	None (a)	
	Groundwater	None	
Site 7			
	Surface Soil	None (a)	
	Subsurface Soil	NA (no subsurface soil samples co	ollected below 12 feet bgs)
	Groundwater	None (a)	
Site 4			
	Surface Soil	N/A (no surface soil samples c	ollected from this area)
	Subsurface Soil	None (a)	
	Groundwater	None (a)	
Site 5			
	Surface Soil	None (a)	
	Subsurface Soil	None (a)	
	Groundwater	None (a)	
Building 106			
	Surface Soil	None	
	Subsurface Soil	None (a)	
	Groundwater	PFOS	None

Notes:

(a) = No detections of PFBS, PFOA, PFOS, PFNA, PFHxS, or HFPO-DA, therefore, no screening table is shown.

-- = The step was not performed because there were no COPCs in previous step.

bgs = below ground surface	PFOA = Perfluorooctanoic acid
COPC = Chemical of potential concern	PFBS = Perfluorobutane sulfonate
N/A = Not applicable/not available	PFNA = Perfluorononanoic acid
PFAS = Per- and polyfluoroalkyl substances	PFHxS = Perfluorohexanesulfonic acid
PFOS = Perfluorooctane sulfonate	HFPO-DA = Hexafluoropropylene oxide dimer acid