

Soil Assessment

Klickitat County Public Works Department 1181 West Broadway Goldendale, Washington

for

Washington State Department of Ecology

June 28, 2019

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Soil Assessment

Klickitat County Public Works Department 1181 West Broadway Goldendale, Washington

File No. 0504-150-00
June 28, 2019

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 1250 West Alder Street Union Gap, Washington 98903-0009

Attention: Jeff Newschwander

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202

509.363.3125

Scott H. Lathen, PE Environmental Engineer

Bruce D. Williams

Principal

JWR:SHL:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SCOPE OF SERVICES	2
4.0	FIELD ACTIVITIES	3
	Direct-Push Soil Assessment	
4.2.	Subsurface Conditions	3
4	4.2.1. Groundwater Conditions	3
5.0	CHEMICAL ANALYTICAL RESULTS	4
6.0	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	4
7.0	LIMITATIONS	5
8.0	REFERENCES	5

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Exploration Locations

APPENDICES

Appendix A. Field Procedures and Boring Logs

Figure A-1 – Key to Exploration Logs

Figure A-2 through A-5 - Logs of Borings

Appendix B. Chemical Analytical Laboratory Reports and Data Validation

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes soil assessment activities conducted at the Klickitat County Public Works Department facility located at 1181 West Broadway in Goldendale, Washington (herein referred to as "site"). The approximate site location is shown in the attached Vicinity Map, Figure 1.

Site environmental activities are managed by the Washington State Department of Ecology (Ecology). This report describes field activities, observations and chemical analytical results associated with soil samples collected at the site. The purpose of the assessment activities described herein was to identify if remnant soil contamination is present at the site. Ecology will use the assessment results to conduct a Site Hazard Assessment (SHA), if necessary, or close the site.

2.0 SITE DESCRIPTION AND BACKGROUND

The Klickitat County Public Works Department facility is located in Goldendale, Washington, as shown in Figure 1. The site is developed with buildings and gravel parking areas for Klickitat County road service vehicles. The buildings consist of a maintenance garage and a storage area containing traffic control equipment, service equipment, and steel pipes and building supports in the location of the former washdown pad. The site is currently owned by Klickitat County. The adjacent property to the north and west is an equipment staging yard owned by the Regional Disposal Company.

In 1994, P-D Consultants (P-D) performed a site assessment near the washdown pad (P-D 1994). A drain located near the north end of the pad discharged wash water to the ground surface. Gasoline, solvents and herbicides were reportedly discharged at the washdown pad. Laboratory analytical results indicated volatile organic compounds (VOCs), including solvents, semi-volatile organic compounds (SVOCs), herbicides and Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were detected in soil near the washdown pad. P-D installed a monitoring well (Monitoring Well No. 1) screened in groundwater perched on the shallow basalt. The monitoring well was located downgradient from the area where wash water was discharged. Contaminants were not detected at concentrations greater than the Model Toxics Control Act (MTCA) cleanup levels in the groundwater sample collected from this well. The report does not indicate the condition of the well after the assessment. GeoEngineers was unable to obtain an access agreement from the Regional Disposal Company, and as a result, the monitoring well was not measured, purged or sampled. The location of the monitoring well is shown on Exploration Locations, Figure 2.

An above-ground 10,000-gallon heated and insulated asphalt tank was located on the property from 1969 until 2010. In 2011, the tank was cleaned and removed by Able Cleanup Technologies (Able). Contaminated soil was excavated from beneath the tank. The excavation proceeded to about 3 feet below ground surface, where bedrock was encountered. During the remedial excavation, about 296 tons of petroleum contaminated soil (PCS) was removed from the site. Confirmation samples were collected from the excavation and submitted for chemical analysis of diesel-range petroleum hydrocarbons (DRPH), oil-range petroleum hydrocarbons (ORPH) and polycyclic aromatic hydrocarbons (PAHs). Two of the seven confirmation samples collected exceeded cleanup levels for one or more of the analyzed petroleum compounds. Groundwater was not encountered in the excavation (Able 2011). A letter received by Ecology dated April 18, 2011, from the Klickitat County Public Works Department stated that the remaining

contamination was fairly immobile and did not present a significant risk to public health and safety; therefore, the area around the former aboveground storage tank (AST) was not assessed.

3.0 SCOPE OF SERVICES

The scope of services included the following:

- 1. Prepared a Work Plan that included a Sampling Plan, Quality Assurance Project Plan (QAPP) and Health and Safety Plan (HASP).
- Coordinated underground utility locating using the State of Washington Utility Notification and a private
 utility locator, Utilities Plus, LLC (Utilities Plus). GeoEngineers mobilized to/from the site from Spokane,
 Washington to mark the proposed boring locations prior to initiating the locate request.
- 3. Mobilized to/from the site from Spokane, Washington to conduct the sampling event.
- 4. Conducted 1 day of subsurface assessment using direct-push drilling techniques provided by Environmental West Explorations, Inc. (Environmental West). The borings were advanced near the location of the washdown pad to depths from 1 to 2 feet below ground surface (bgs). Soil samples were collected using a continuous core sampler for field screening and potential chemical analysis. Soil samples were collected per procedures outlined in the Work Plan.
- 5. Observed and documented subsurface soil conditions. Field screening consisted of visual observation, water sheen testing and headspace vapor measurements using a photoionization detector (PID).
- 6. Groundwater was not observed during drilling operations and therefore groundwater was not measured, purged or sampled.
- 7. Backfilled borings with bentonite clay and surface completed with an asphalt patch.
- 8. Submitted one soil sample from each boring to Eurofins Test America (TestAmerica) in Spokane Valley, Washington for chemical analysis. The soil sample was submitted for analysis for the following potential contaminants:
 - a. DRPH and ORPH using Northwest Method NWTPH-Dx;
 - b. Gasoline-range petroleum hydrocarbons (GRPH) using Northwest Method NWTPH-Gx;
 - c. VOCs using Environmental Protection Agency (EPA) Method 8260C; and
 - d. Cadmium using EPA Method 6010C.
- 9. Drummed and labeled investigative-derived waste (IDW). Subcontracted with Able Cleanup Technologies (ACT) to profile and transport the IDW for disposal at Waste Management's Graham Road Landfill located near Medical Lake, Washington.
- 10. Compared soil chemical analytical results to MTCA Method A cleanup levels.
- 11. Prepared this site assessment report summarizing field and laboratory data, comparing analytical results to MTCA Method A cleanup levels and providing recommendations.
- 12. Entered laboratory analytical data results into Ecology's Environmental Information Management (EIM) database.

4.0 FIELD ACTIVITIES

A site reconnaissance was conducted on April 23, 2019. During this visit, site access was assessed and soil boring locations were marked for the utility locate. Site utilities, located near the boring locations, were identified and marked by Utilities Plus prior to drilling. No utilities were observed near the marked boring locations.

4.1. Direct-Push Soil Assessment

Field assessment activities were conducted on May 6, 2019. Environmental West advanced four borings (DP-1 through DP-4) using direct-push drilling methods at the locations shown on Figure 2. Each boring was planned to reach a target depth of 5 feet bgs, or boring refusal, whichever is shallowest. The direct-push boring locations are summarized by the following:

- Soil boring GEI015-DP1 was drilled east of the former washdown pad to a depth of approximately 2 feet bgs. One soil sample for potential chemical analysis was collected from 0 to 2 feet bgs. A slight organic sheen was observed and volatile organic vapors were detected at 1.2 parts per million (ppm) in the 0- to 2-foot sample interval.
- Soil boring GEI015-DP2 was drilled southeast of the former washdown pad to a depth of approximately 1.5 feet bgs. One soil sample for potential chemical analysis was collected from 0 to 1.5 feet bgs. Petroleum sheens were not observed and volatile organic vapors were detected at 8.6 ppm in the 0- to 1.5-foot sample interval.
- Soil boring GEI015-DP3 was drilled south of the former washdown pad to a depth of approximately 1-foot bgs. One soil sample for potential chemical analysis was collected from 0 to 1 foot bgs. Petroleum sheens were not observed and volatile organic vapors were detected at 4.7 ppm in the 0- to 1-foot sample interval.
- Soil boring GEI015-DP4 was drilled south of the former was down pad and west of GEI015-DP4. GEI015-DP4 was drilled to a depth of approximately 2.25 feet bgs. One soil sample for potential chemical analysis was collected from 0 to 2 feet bgs. Petroleum sheens were not observed and volatile organic vapors were detected at 9.2 ppm in the 0- to 2-foot sample interval.

Environmental West backfilled each boring with the soil cuttings. Boring GEI015-DP4 was capped with an asphalt patch. Boring logs associated with the borings are included in Appendix A.

4.2. Subsurface Conditions

Subsurface soil conditions were observed and classified for each boring. Soil observed generally consisted of silt with varying amounts of sand and gravel. Soil borings terminated between about 1 and 2 feet bgs at refusal on basalt bedrock.

4.2.1. Groundwater Conditions

Groundwater was not observed in explorations and therefore groundwater was not measured, purged or sampled.

5.0 CHEMICAL ANALYTICAL RESULTS

Four soil samples were submitted to TestAmerica for the chemical analyses described in "Section 3.0 Scope of Services." TestAmerica's laboratory report is included in Appendix B; chemical analytical results are summarized and compared to MTCA Method A cleanup levels for unrestricted land use below and in Table 1.

- DRPH was detected at concentrations of 11 and 18 milligrams per kilograms (mg/kg) in the soil samples analyzed from GEI015-DP1 and GEI015-DP3, respectively. DRPH was not detected greater than the laboratory reporting limit in the remaining soil samples analyzed.
- ORPH was detected at concentrations of 60 and 130 milligrams per kilograms (mg/kg) in the soil samples analyzed from GEI015-DP1 and GEI015-DP3, respectively. ORPH was not detected greater than the laboratory reporting limit in the remaining soil samples analyzed.
- GRPH, VOCs and cadmium were not detected greater than the laboratory reporting limit in the remaining soil samples analyzed.

TABLE 1. SUMMARY OF CHEMICAL ANALYTICAL RESULTS - SOIL

Sample Identification	Date Sampled	GRPH ² (mg/kg)	DRPH ³ (mg/kg)	ORPH ³ (mg/kg)	Cadmium ⁴ (mg/kg)	VOCs ⁵ (mg/kg)
GEI015-DP1(0-2)	5/6/2019	<6.9	11	60	<0.96	ND
GEI015-DP2(0-1.5)	5/6/2019	<8.7	<11	<28	<0.90	ND
GEI015-DP3(0-1)	5/6/2019	<6.3	18	130	<0.88	ND
GEI009-DP4(0-2)	5/6/2019	<7.4	<12	<30	<0.94	ND
MTCA Method A CUL ¹		2,000	100/306	2,000	2	Varies

Notes:

6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Soil assessment activities were conducted on May 6, 2019, at the Klickitat County Public Works Department facility located at 1181 West Broadway in Goldendale, Washington.

Four soil samples were collected from site borings and submitted for analysis of potential GRPH, DRPH, ORPH, VOCs and cadmium contaminants. Contaminants were either not detected or detected at concentrations less than MTCA Method A Cleanup levels in the samples analyzed. Groundwater was not assessed because it was not encountered and the existing monitoring well was not accessible on the neighboring property.

¹MTCA Method A CUL - Washington State Model Toxics Control Act Method A unrestricted land use cleanup level

²GRPH analyzed using Northwest Method NWTPH-Gx.

³DRPH and ORPH analyzed using Northwest Method NWTPH-Dx.

⁴Cadmium analyzed using Environmental Protection Agency (EPA) Method 6010C.

⁵Volatile organic compounds (VOCs) analyzed using EPA Method 8260C. Refer to lab report for full list of VOCs; VOCs were not detected in the samples analyzed.

⁶GRPH cleanup level is 100 mg/kg if benzene is not present; 30 mg/kg if benzene is present.

mg/kg = milligrams per kilogram; ND = not detected

Bold indicates analyte was detected.

Based on these assessment results, contamination does not appear to be present and no further investigation appears to be warranted for the Klickitat County Public Works Department facility.

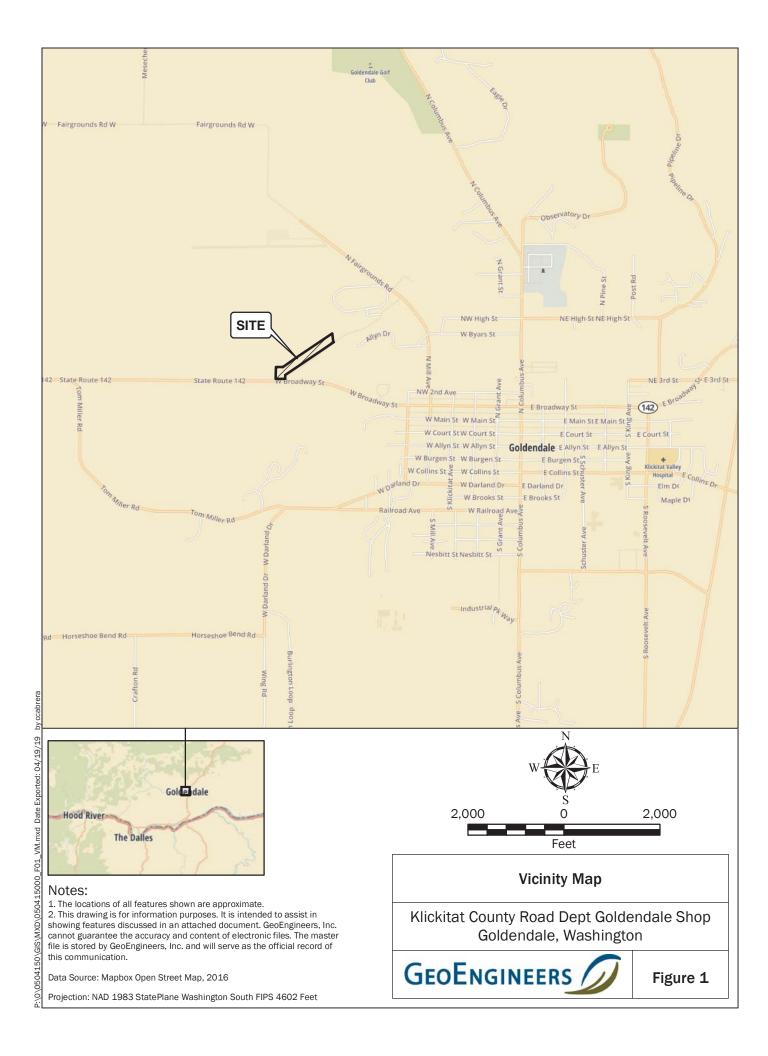
7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

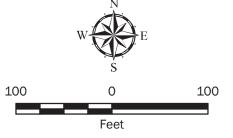
Please refer to "Report Limitations and Guidelines for Use," Appendix C, for additional information pertaining to use of this report.

8.0 REFERENCES


Able Cleanup Technologies. 2011. Report for Removal of Above Ground Storage Tank and Associated Contaminated Soils. Prepared for Klickitat County Public Works. August 2, 2011.

GeoEngineers, Inc. 2019. Work Plan, Klickitat County Public Works Department, Goldendale, Washington, April 22, 2019.

P-D Consultants, 1994. Site Assessment for Klickitat County Road Department, Goldendale, Washington. Prepared for Klickitat County Road Department. January 9, 1994.



- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Clarity, ESRI.

Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

- Direct Push Boring Number and Approximate Location (GeoEngineers 2019)
- Monitoring Well Number and Approximate Location (P-D 1994)
- Former AST Approximate Location (Able 2011)
- Approximate Site Boundary
 - Regional Disposal Company Property

Exploration Locations

Klickitat County Road Dept Goldendale Shop Goldendale, Washington

Figure 2

APPENDIX A Field Procedures and Boring Logs

APPENDIX A FIELD PROCEDURES AND BORING LOGS

General

Subsurface conditions at the Klickitat County Public Works facility were explored on May 6, 2019, by advancing four direct-push borings at the approximate locations shown on Figure 2. Borings were advanced to between 1 to 2 feet below ground surface (bgs). Boring locations were established in the field using a site plan and measurements from onsite structures. Consequently, exploration locations should be considered accurate to the degree implied by the method used.

Field methods generally were performed in compliance with the project Work Plan assessment procedures.

Soil Sample Collection

Soil samples obtained during direct-push drilling were removed from the sleeve using clean nitrile gloves, and transferred into a laboratory prepared container, labeled with a waterproof pen, and placed on wet ice in a clean plastic-lined cooler.

Drilling operations were observed by GeoEngineers staff who examined and classified the soil encountered, obtained soil samples, and maintained a continuous exploration log. Soil encountered in the borings was classified in general accordance with ASTM International (ASTM) D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Boring logs are presented in Figures A-2 through A-5. The logs are based on field data interpretation and indicate the depth at which subsurface materials, or their characteristics change, although these changes might actually be gradual.

Field Screening of Soil Samples

GeoEngineers' field representative performed field-screening tests on soil samples obtained from the borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) photoionization detector (PID) screening; (2) visual screening; and (3) water-sheen screening.

PID screening involves placing soil in a container and after agitating or warming, measuring total volatile organic compounds in the available head space. Visual screening consists of observing soil for stains indicative of metal- or petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen (NS)	No visible sheen on the water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type, and contaminant type and age.

SOIL CLASSIFICATION CHART

	MAJOR DIVIS	IONS	SYM	BOLS	TYPICAL	
	MAJUR DIVIS	IUNS	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Piston

Direct

Direct-Push

Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL							
GRAPH	LETTER	DESCRIPTIONS							
	AC	Asphalt Concrete							
	СС	Cement Concrete							
13	CR	Crushed Rock/ Quarry Spalls							
1 71 71 71 71 71 71 71 71 71 71 71 71 71	SOD	Sod/Forest Duff							
	TS	Topsoil							

Groundwater Contact

T

Measured groundwater level in exploration, well, or piezometer

%F

Measured free product in well or piezometer

Graphic Log Contact

- Distinct contact between soil strata

Approx

Approximate contact between soil strata

Material Description Contact

- Contact between geologic units

Contact between soil of the same geologic unit

Laboratory / Field Tests

%G Percent gravel Atterberg limits CA Chemical analysis CP CS DD Laboratory compaction test **Consolidation test** Dry density DS Direct shear ΗĀ Hydrometer analysis MC Moisture content MD Moisture density Mohs Mohs hardness scale

Percent fines

OC Organic content
PM Permeability or hydraulic conductivity
Pl Plasticity index

PP Pocket penetrometer
SA Sieve analysis
TX Triaxial compression
UC Unconfined compression
VS Vane shear

Sheen Classification

NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

Figure A-1

Drilled	<u>Start</u> 5/6/2019	<u>End</u> 5/6/2019	Total Depth (ft)	2	Logged By Checked By	JDO SHL	Driller Environmental West Explorations		Drilling Method Direct Push	
Surface Vertical I	Elevation (ft) Datum	10	647		Hammer Data		NA	Drilling GeoProbe 5400 Equipment		
Latitude Longitud							r not observed at time of exploration			
Notes:										

			FIEI	LD DATA						
Elevation (feet)	o Depth (feet) 	Interval Recovered (in)	Blows/foot	Collected Sample Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0	18				SM	Brown silty fine sand with gravel (medium dense, moist)			
_	1 _					ML	Dark brown sandy silt with occasional gravel (medium stiff, moist)	- SS	1.2	
				GEI 015-DI (0-2) CA	<u>'1</u>				212	
_16A5	2 _									

Boring refusal at 2 feet below ground surface

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring GEI015-DP1

Project: Klickitat County Road Dept Goldendale Shop

Project Location: Goldendale, Washington

Project Number: 0504-150-00

Figure A-2 Sheet 1 of 1

Drilled	<u>Start</u> 5/6/2019	<u>End</u> 5/6/2019	Total Depth (ft)	1.5	Logged By Checked By	JDO SHL	Driller Environmental West Explorations		Drilling Method Direct Push	
Surface Vertical I	Elevation (ft) Datum	10	647		Hammer Data		NA	Drilling GeoProbe 5400 Equipment		
Latitude Longitud			9' 30.36" 60' 30.84"		System Datum			Groundwater not observed at time of exploration		
Notes:										

			FIE	LD D	ATA						1
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	16					ML	Dark brown sandy silt (medium stiff, moist)			
	1 -			<u>(</u>	GEI015-DP2 (0-1.5) CA			-	NS	8.6	
					5. (

Boring refusal at 2 feet below ground surface

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Project: Klickitat County Road Dept Goldendale Shop

Project Location: Goldendale, Washington

Project Number: 0504-150-00

Drilled	<u>Start</u> 5/6/2019	<u>End</u> 5/6/2019	Total Depth (ft)	1	Logged By Checked By	JDO SHL	Driller Environmental West Explorations		Drilling Method Direct Push
Surface Vertical	Elevation (ft) Datum	10	646		Hammer Data		NA	Drilling Equipment	GeoProbe 5400
Latitude Longitud			9' 30.36" 50' 31.2"		System Datum			Groundwate	r not observed at time of exploration
Notes:									

\bigcap			FIEL	_D DATA						
Elevation (feet)			Collected Sample Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Headspace Vapor (ppm)	REMARKS	
	0-	10			Brown silty fine to coarse sand with gravel (medium dense, moist)					
Jours	4			GEI015-DP (0-1) CA	3	ML	Dark brown sandy silt with occasional gravel (medium stiff, moist)	NS	4.7	

Boring refusal at 1 foot below ground surface

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring GEI015-DP3

Project: Klickitat County Road Dept Goldendale Shop

Project Location: Goldendale, Washington

Project Number: 0504-150-00

Figure A-4 Sheet 1 of 1

Drilled	<u>Start</u> 5/6/2019	<u>End</u> 5/6/2019	Total Depth (ft)	2.25	Logged By Checked By	JDO SHL	Driller Environmental West Explorations		Drilling Method Direct Push	
Surface Vertical I	Elevation (ft) Datum	16	646		Hammer Data				GeoProbe 5400	
	Latitude 45 ° 49' 30.36" Longitude -120 ° 50' 31.56"			System Datum			Groundwater not observed at time of exploration			
Notes:										

			FIE	LD DA	AΤΑ						
Elevation (feet)		Interval	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	2	2				AC	Asphalt concrete			
_\p\ ⁶	1 _			<u>Gi</u>	EI015-DP4 (0-2) CA		ML	Brown sandy silt with occasional gravel (medium dense, moist)	NS NS	9.2	
>											

Boring refusal at 2.25 feet below ground surface

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring GEI015-DP4

Project: Klickitat County Road Dept Goldendale Shop

Project Location: Goldendale, Washington

Project Number: 0504-150-00

Figure A-5 Sheet 1 of 1

APPENDIX B Chemical Analytical Laboratory Report and Data Validation

APPENDIX B

CHEMICAL ANALYTICAL LABORATORY REPORTS AND DATA VALIDATION

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA 2009) of analytical data from the analyses of soil samples collected as part of the April 2019 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Columbia Basin College, Nurse Training Facility located at 901 Northgate Drive (formerly identified as 1011 Northgate Drive) in Richland, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional for Organic Superfund Methods Data Review (EPA 2017) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (QAPP), Appendix B of the Work Plan (GeoEngineers 2019), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table B-1.

TABLE B-1. SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-10899-1	GEI 009-DP1 (9.5-10), GEI 009-DP2 (9.5-10), GEI 009-DP3 (5-5.5), GEI 009-DP5 (6-6.5), GEI 009-DP6 (12.5-13), Trip Blank

CHEMICAL ANALYSIS PERFORMED

Eurofins TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Gasoline-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx; and
- Volatile Organic Compounds (VOCs) by Method EPA8260C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exception:

SDG 590-10899-1: The laboratory noted that sample vials were received for Sample GEI 009-DP5 (12-13); however, the sample was not listed on the COC. The sample analyses for this sample were placed on hold.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated

following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected in the trip blank.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated.

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) sample set was performed in lieu of a MS/MSD analysis.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD and laboratory duplicate RPD values.

No analytical results were qualified. The data are acceptable for the intended use.

REFERENCES

GeoEngineers, Inc. (GeoEngineers). 2019. "Work Plan, Columbia Basin College – Nurse Training Facility," prepared for Washington State Department of Ecology. April 19, 2019.

U.S. Environmental Protection Agency (EPA). 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (EPA). 2017. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-10950-1

Client Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Authorized for release by: 6/3/2019 2:12:37 PM

Randee Arrington, Project Manager II (509)924-9200

tarout trington

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

5

7

8

9

10

11

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	6
Client Sample Results	7
QC Sample Results	18
Chronicle	31
Certification Summary	34
Method Summary	35
Chain of Custody	
Receipt Checklists	38

Case Narrative

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Job ID: 590-10950-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 5/8/2019 4:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

GC/MS VOA

Method 8260C: The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-301360 was outside criteria for the following analytes: Dichlorobromomethane, Trichloroethene and 2-Butanone (MEK). As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analytes is considered estimated.

Method 8260C: The following sample was analyzed outside of analytical holding time: Trip Blank (590-10950-5).

Method 8260C: Reanalysis of Vinyl Chloride for the following samples were performed outside of the analytical holding time: GEI015-DP1(0-2) (590-10950-1), GEI015-DP2(0-1.5) (590-10950-2), GEI015-DP3(0-1) (590-10950-3), GEI015-DP4(0-2) (590-10950-4) and Trip Blank (590-10950-5).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 580-301539 and analytical batch 580-301553 recovered outside control limits for the following analytes: Vinyl chloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 580-301553 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: GEI015-DP1(0-2) (590-10950-1), GEI015-DP2(0-1.5) (590-10950-2), GEI015-DP3(0-1) (590-10950-3), GEI015-DP4(0-2) (590-10950-4), Trip Blank (590-10950-5) and (CCVIS 580-301553/3).

Method 8260C: The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-301553 was outside criteria for the following analytes: 1,1,2-Trichloro-1.2.2-trifluoroethane, 1,1-Dichloroethene, 2-Butanone (MEK), Benzene, Dichlorodifluoromethane and Tetrachloroethene. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analytes is considered estimated.

Method 8260C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch preparation batch 580-301539 and analytical batch 580-301553 recovered outside control limits for the following analytes: Vinyl chloride.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method NWTPH-Gx: The surrogate recovery for the blank associated with preparation batch 580-300559 and analytical batch 580-300565 was outside the upper control limits. The associated samples were non detect for target analytes and had surrogate recoveries within acceptance limits, therefore the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons in the diesel range appear to be due to oil overlap in the following samples: GEI015-DP1(0-2) (590-10950-1) and GEI015-DP3(0-1) (590-10950-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

Job ID: 590-10950-1

4

5

6

ا

9

1 1

Case Narrative

Client: GeoEngineers Inc

Job ID: 590-10950-1 Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Job ID: 590-10950-1 (Continued)

Laboratory: Eurofins TestAmerica, Spokane (Continued)

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Lab Sample ID **Client Sample ID** Matrix Collected Received Asset ID 590-10950-1 GEI015-DP1(0-2) Solid 05/06/19 10:40 05/08/19 16:10 GEI015-DP2(0-1.5) 590-10950-2 05/06/19 10:50 05/08/19 16:10 Solid 590-10950-3 GEI015-DP3(0-1) Solid 05/06/19 11:00 05/08/19 16:10 590-10950-4 GEI015-DP4(0-2) Solid 05/06/19 11:10 05/08/19 16:10 590-10950-5 Trip Blank Solid 05/06/19 10:40 05/08/19 16:10

Job ID: 590-10950-1

3

4

5

6

8

9

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS or LCSD is outside acceptance limits.

RPD of the LCS and LCSD exceeds the control limits

Н Sample was prepped or analyzed beyond the specified holding time

GC VOA

Qualifier **Qualifier Description**

Surrogate is outside control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP1(0-2)

Date Collected: 05/06/19 10:40 Date Received: 05/08/19 16:10 Lab Sample ID: 590-10950-1

Matrix: Solid

Percent Solids: 85.3

Job ID: 590-10950-1

Method: 8260C - Volatile Organalyte	Result Qua		MDL Unit	: D	Prepared	Analyzed	Dil Fa
,1,1,2-Tetrachloroethane	ND ND	31	ug/k		•	05/18/19 00:24	
,1,1-Trichloroethane	ND	31	ug/k	•	05/17/19 15:00	05/18/19 00:24	
,1,2,2-Tetrachloroethane	ND	16	ug/k	g ⇒	05/17/19 15:00	05/18/19 00:24	
,1,2-Trichloroethane	ND	16	ug/k		05/17/19 15:00	05/18/19 00:24	
,1,2-Trichlorotrifluoroethane	ND	47	ug/k	-	05/17/19 15:00	05/18/19 00:24	
,1-Dichloroethane	ND	31	ug/k	-	05/17/19 15:00	05/18/19 00:24	
,1-Dichloroethene	ND	31	ug/k		05/17/19 15:00	05/18/19 00:24	
,1-Dichloropropene	ND	31	ug/k	_		05/18/19 00:24	
,2,3-Trichlorobenzene	ND	120	ug/k	•		05/18/19 00:24	
,2,3-Trichloropropane	ND	31	ug/k			05/18/19 00:24	
,2,4-Trichlorobenzene	ND	47	ug/k	-		05/18/19 00:24	
,2,4-Trimethylbenzene	ND	31	ug/r	-		05/18/19 00:24	
,2-Dibromo-3-Chloropropane	ND	190	ug/k			05/18/19 00:24	
,2-Dibromoethane (EDB)	ND	16	ug/r ug/k	-	00,	05/18/19 00:24	
,2-Dichlorobenzene	ND ND	31	ug/r ug/k	-	00,	05/18/19 00:24	
,2-Dichloroethane	ND	16	ug/r ug/k			05/18/19 00:24	
,2-Dichloropropane	ND ND	16	ug/r ug/k	-	00,	05/18/19 00:24	
·	ND ND	31	_	-	00/11/10 10100		
,3,5-Trimethylbenzene ,3-Dichlorobenzene	ND	47	ug/k			05/18/19 00:24 05/18/19 00:24	
	ND ND	47	ug/k			05/18/19 00:24	
,3-Dichloropropane	ND ND	47	ug/k	-		05/18/19 00:24	
4-Dichlorobenzene			ug/k				
2-Dichloropropane	ND	31	ug/k	-	00,	05/18/19 00:24	
-Butanone (MEK)	ND	470	ug/k	-		05/18/19 00:24	
-Chlorotoluene	ND	31	ug/k			05/18/19 00:24	
-Chlorotoluene	ND	31	ug/k	-	00/11/10 10100	05/18/19 00:24	
-Methyl-2-pentanone (MIBK)	ND	310	ug/k	J	00,	05/18/19 00:24	
cetone	ND	620	ug/k			05/18/19 00:24	
llyl chloride	ND	160	ug/k	-		05/18/19 00:24	
enzene	ND	23	ug/k	J		05/18/19 00:24	
romobenzene	ND	78	ug/k			05/18/19 00:24	
romochloromethane	ND	31	ug/k	-	00,	05/18/19 00:24	
romodichloromethane	ND	47	ug/k	-		05/18/19 00:24	
romoform	ND	160	ug/k			05/18/19 00:24	
romomethane	ND	160	ug/k	•		05/18/19 00:24	
arbon tetrachloride	ND	16	ug/k	· ·		05/18/19 00:24	
Chlorobenzene	ND	31	ug/k			05/18/19 00:24	
hloroethane	ND	310	ug/k	-		05/18/19 00:24	
hloroform	ND	31	ug/k	-		05/18/19 00:24	
Chloromethane	ND	78	ug/k	ίg ∷		05/18/19 00:24	
is-1,2-Dichloroethene	ND	47	ug/k			05/18/19 00:24	
s-1,3-Dichloropropene	ND	16	ug/k	ίg ≎	05/17/19 15:00	05/18/19 00:24	
ibromochloromethane	ND	31	ug/k	ίg ≎	05/17/19 15:00	05/18/19 00:24	
Dibromomethane	ND	47	ug/k	-		05/18/19 00:24	
Pichlorodifluoromethane	ND	160	ug/k	(g ⇔		05/18/19 00:24	
Dichlorofluoromethane	ND	78	ug/k	(g ⇔	05/17/19 15:00	05/18/19 00:24	
thylbenzene	ND	31	ug/k	(g	05/17/19 15:00	05/18/19 00:24	
Ethyl ether	ND	160	ug/k	(g ⇔	05/17/19 15:00	05/18/19 00:24	
lexachlorobutadiene	ND	120	ug/k	(q ≎	05/17/19 15:00	05/18/19 00:24	

Eurofins TestAmerica, Spokane

6/3/2019

Page 7 of 39

2

3

5

7

0

10

11

Client Sample ID: GEI015-DP1(0-2)

Date Collected: 05/06/19 10:40

Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-1

Matrix: Solid

Percent Solids: 85.3

Job ID: 590-10950-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		160		ug/Kg	₩	05/17/19 15:00	05/18/19 00:24	1
Methyl tert-butyl ether	ND		31		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
Methylene Chloride	ND		190		ug/Kg	₽	05/17/19 15:00	05/18/19 00:24	1
Naphthalene	ND		78		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
n-Butylbenzene	ND		120		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
N-Propylbenzene	ND		31		ug/Kg	₽	05/17/19 15:00	05/18/19 00:24	1
o-Xylene	ND		47		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
p-Isopropyltoluene	ND		31		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
sec-Butylbenzene	ND		31		ug/Kg	₽	05/17/19 15:00	05/18/19 00:24	1
Styrene	ND		31		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
tert-Butylbenzene	ND		31		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
Tetrachloroethene	ND		31		ug/Kg	φ.	05/17/19 15:00	05/18/19 00:24	1
Tetrahydrofuran	ND		620		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
Toluene	ND		120		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
trans-1,2-Dichloroethene	ND		47		ug/Kg	φ.	05/17/19 15:00	05/18/19 00:24	1
trans-1,3-Dichloropropene	ND		31		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
Trichloroethene	ND		47		ug/Kg	☼	05/17/19 15:00	05/18/19 00:24	1
Trichlorofluoromethane	ND		160		ug/Kg	₩	05/17/19 15:00	05/18/19 00:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121				05/17/19 15:00	05/18/19 00:24	1
4-Bromofluorobenzene (Surr)	103		80 - 120				05/17/19 15:00	05/18/19 00:24	1
Dibromofluoromethane (Surr)	98		80 - 120				05/17/19 15:00	05/18/19 00:24	1
Toluene-d8 (Surr)	100		80 - 120				05/17/19 15:00	05/18/19 00:24	1

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	H *	210		ug/Kg	<u> </u>	05/23/19 12:00	05/23/19 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 121				05/23/19 12:00	05/23/19 19:09	1
4-Bromofluorobenzene (Surr)	99		80 - 120				05/23/19 12:00	05/23/19 19:09	1
Dibromofluoromethane (Surr)	97		80 - 120				05/23/19 12:00	05/23/19 19:09	1
Toluene-d8 (Surr)	100		80 - 120				05/23/19 12:00	05/23/19 19:09	1

Method: NWTPH-Gx - Northw	est - Volatile	Petroleui	m Products (GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		6.9		mg/Kg	<u> </u>	05/13/19 12:53	05/13/19 17:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		50 - 150				05/13/19 12:53	05/13/19 17:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	11		11		mg/Kg		05/20/19 14:09	05/20/19 21:59	1
Residual Range Organics (RRO) (C25-C36)	60		28		mg/Kg	₿	05/20/19 14:09	05/20/19 21:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	66		50 - 150				05/20/19 14:09	05/20/19 21:59	1
n-Triacontane-d62	76		50 - 150				05/20/19 14:09	05/20/19 21:59	1

Eurofins TestAmerica, Spokane

Page 8 of 39

6/3/2019

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP1(0-2)

Lab Sample ID: 590-10950-1 Date Collected: 05/06/19 10:40 **Matrix: Solid** Date Received: 05/08/19 16:10 Percent Solids: 85.3

Method: 6010C - Metals (ICP) Analyte Dil Fac RLMDL Unit D Prepared Analyzed Result Qualifier 05/09/19 11:33 05/13/19 12:53 Cadmium 0.96 ND mg/Kg

Client Sample ID: GEI015-DP2(0-1.5)

Lab Sample ID: 590-10950-2 Date Collected: 05/06/19 10:50 **Matrix: Solid** Date Received: 05/08/19 16:10 Percent Solids: 88.7

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	37	ug/Kg	\	05/17/19 15:00	05/18/19 00:50	1
1,1,1-Trichloroethane	ND	37	ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
1,1,2,2-Tetrachloroethane	ND	19	ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
1,1,2-Trichloroethane	ND	19	ug/Kg		05/17/19 15:00	05/18/19 00:50	1
1,1,2-Trichlorotrifluoroethane	ND	56	ug/Kg	₩		05/18/19 00:50	1
1,1-Dichloroethane	ND	37	ug/Kg	₩	05/17/19 15:00		1
1,1-Dichloroethene	ND	37	ug/Kg			05/18/19 00:50	1
1,1-Dichloropropene	ND	37	ug/Kg	₩		05/18/19 00:50	1
1,2,3-Trichlorobenzene	ND	140	ug/Kg	₩		05/18/19 00:50	1
1,2,3-Trichloropropane	ND	37	ug/Kg			05/18/19 00:50	1
1,2,4-Trichlorobenzene	ND	56	ug/Kg	₩		05/18/19 00:50	1
1,2,4-Trimethylbenzene	ND	37	ug/Kg	₽		05/18/19 00:50	1
1,2-Dibromo-3-Chloropropane	ND	230	ug/Kg			05/18/19 00:50	· · · · · · · · 1
1,2-Dibromoethane (EDB)	ND	19	ug/Kg	₩		05/18/19 00:50	1
1,2-Dichlorobenzene	ND	37	ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
1,2-Dichloroethane	ND	19	ug/Kg			05/18/19 00:50	1
1,2-Dichloropropane	ND	19	ug/Kg	₽		05/18/19 00:50	1
1,3,5-Trimethylbenzene	ND	37	ug/Kg	₩		05/18/19 00:50	1
1,3-Dichlorobenzene	ND	56	ug/Kg			05/18/19 00:50	1
1,3-Dichloropropane	ND	56	ug/Kg	₩		05/18/19 00:50	1
1,4-Dichlorobenzene	ND	56	ug/Kg	₩		05/18/19 00:50	1
2,2-Dichloropropane	ND	37	ug/Kg		05/17/19 15:00	05/18/19 00:50	1
2-Butanone (MEK)	ND	560	ug/Kg	₩		05/18/19 00:50	1
2-Chlorotoluene	ND	37	ug/Kg	₩		05/18/19 00:50	1
4-Chlorotoluene	ND	37	ug/Kg	 \$		05/18/19 00:50	1
4-Methyl-2-pentanone (MIBK)	ND	370	ug/Kg	₩		05/18/19 00:50	1
Acetone	ND	740	ug/Kg	₩		05/18/19 00:50	1
Allyl chloride	ND	190	ug/Kg			05/18/19 00:50	1
Benzene	ND	28	ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
Bromobenzene	ND	93	ug/Kg	₩		05/18/19 00:50	1
Bromochloromethane	ND	37	ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/18/19 00:50	1
Bromodichloromethane	ND	56	ug/Kg	₩		05/18/19 00:50	1
Bromoform	ND	190	ug/Kg	₩		05/18/19 00:50	1
Bromomethane	ND	190	ug/Kg			05/18/19 00:50	1
Carbon tetrachloride	ND	19	ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
Chlorobenzene	ND	37	ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
Chloroethane	ND	370	ug/Kg			05/18/19 00:50	1
Chloroform	ND	37	ug/Kg	₩		05/18/19 00:50	1
Chloromethane	ND	93	ug/Kg	₩		05/18/19 00:50	1
cis-1,2-Dichloroethene	ND	56	ug/Kg			05/18/19 00:50	1
cis-1,3-Dichloropropene	ND	19	ug/Kg	₩		05/18/19 00:50	1
Dibromochloromethane	ND	37	ug/Kg	₩		05/18/19 00:50	1

Eurofins TestAmerica, Spokane

Page 9 of 39 6/3/2019 Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP2(0-1.5)

Date Collected: 05/06/19 10:50 Date Received: 05/08/19 16:10

Surrogate

4-Bromofluorobenzene (Surr)

Lab Sample ID: 590-10950-2

Matrix: Solid

Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		56		ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
Dichlorodifluoromethane	ND		190		ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
Dichlorofluoromethane	ND		93		ug/Kg	≎	05/17/19 15:00	05/18/19 00:50	1
Ethylbenzene	ND		37		ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
Ethyl ether	ND		190		ug/Kg	≎	05/17/19 15:00	05/18/19 00:50	1
Hexachlorobutadiene	ND		140		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
Isopropylbenzene	ND		37		ug/Kg	φ.	05/17/19 15:00	05/18/19 00:50	1
m,p-Xylene	ND		190		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
Methyl tert-butyl ether	ND		37		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
Methylene Chloride	ND		230		ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
Naphthalene	ND		93		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
n-Butylbenzene	ND		140		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
N-Propylbenzene	ND		37		ug/Kg		05/17/19 15:00	05/18/19 00:50	1
o-Xylene	ND		56		ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
p-Isopropyltoluene	ND		37		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
sec-Butylbenzene	ND		37		ug/Kg		05/17/19 15:00	05/18/19 00:50	1
Styrene	ND		37		ug/Kg	₩	05/17/19 15:00	05/18/19 00:50	1
tert-Butylbenzene	ND		37		ug/Kg	≎	05/17/19 15:00	05/18/19 00:50	1
Tetrachloroethene	ND		37		ug/Kg		05/17/19 15:00	05/18/19 00:50	1
Tetrahydrofuran	ND		740		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
Toluene	ND		140		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
trans-1,2-Dichloroethene	ND		56		ug/Kg		05/17/19 15:00	05/18/19 00:50	1
trans-1,3-Dichloropropene	ND		37		ug/Kg	☼	05/17/19 15:00	05/18/19 00:50	1
Trichloroethene	ND		56		ug/Kg	₽	05/17/19 15:00	05/18/19 00:50	1
Trichlorofluoromethane	ND		190		ug/Kg		05/17/19 15:00	05/18/19 00:50	1
-									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121				05/17/19 15:00	05/18/19 00:50	1
4-Bromofluorobenzene (Surr)	102		80 - 120				05/17/19 15:00		1
Dibromofluoromethane (Surr)	98		80 - 120					05/18/19 00:50	
Toluene-d8 (Surr)	101		80 - 120				05/17/19 15:00	05/18/19 00:50	1
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	H *	260		ug/Kg		05/23/19 12:00	05/23/19 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 121					05/23/19 19:34	1
4-Bromofluorobenzene (Surr)	98		80 - 120				05/23/19 12:00	05/23/19 19:34	1
Dibromofluoromethane (Surr)	98		80 - 120				05/23/19 12:00	05/23/19 19:34	1
Toluene-d8 (Surr)	100		80 - 120				05/23/19 12:00	05/23/19 19:34	1
: Method: NWTPH-Gx - North	nwest - Volatile	Petroleui	m Producte //	GC)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		8.7		mg/Kg	— Ţ		05/13/19 17:53	

Analyzed

Prepared

<u>05/13/19 12:53</u> <u>05/13/19 17:53</u>

Limits

50 - 150

%Recovery Qualifier

96

Dil Fac

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP2(0-1.5)

Lab Sample ID: 590-10950-2 Date Collected: 05/06/19 10:50 **Matrix: Solid**

Date Received: 05/08/19 16:10 **Percent Solids: 88.7**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11		mg/Kg	<u> </u>	05/20/19 14:09	05/20/19 22:18	1
Residual Range Organics (RRO) (C25-C36)	ND		28		mg/Kg	₩	05/20/19 14:09	05/20/19 22:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				05/20/19 14:09	05/20/19 22:18	1
n-Triacontane-d62	85		50 - 150				05/20/19 14:09	05/20/19 22:18	1
- Marthaul 00400 Martala (100)									
Method: 6010C - Metals (ICP)									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: GEI015-DP3(0-1) Lab Sample ID: 590-10950-3

Date Collected: 05/06/19 11:00 **Matrix: Solid** Date Received: 05/08/19 16:10 Percent Solids: 90.4

Analyte		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND			ug/Kg	<u>₩</u>	05/17/19 15:00	05/18/19 01:15	1
1,1,1-Trichloroethane	ND	27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,1,2,2-Tetrachloroethane	ND	14		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,1,2-Trichloroethane	ND	14		ug/Kg	☼	05/17/19 15:00	05/18/19 01:15	1
1,1,2-Trichlorotrifluoroethane	ND	41		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,1-Dichloroethane	ND	27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,1-Dichloroethene	ND	27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
1,1-Dichloropropene	ND	27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,2,3-Trichlorobenzene	ND	100		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,2,3-Trichloropropane	ND	27		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2,4-Trichlorobenzene	ND	41		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2,4-Trimethylbenzene	ND	27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
1,2-Dibromo-3-Chloropropane	ND	170		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2-Dibromoethane (EDB)	ND	14		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2-Dichlorobenzene	ND	27		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2-Dichloroethane	ND	14		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,2-Dichloropropane	ND	14		ug/Kg	≎	05/17/19 15:00	05/18/19 01:15	1
1,3,5-Trimethylbenzene	ND	27		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,3-Dichlorobenzene	ND	41		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,3-Dichloropropane	ND	41		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
1,4-Dichlorobenzene	ND	41		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
2,2-Dichloropropane	ND	27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
2-Butanone (MEK)	ND	410		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
2-Chlorotoluene	ND	27		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
4-Chlorotoluene	ND	27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
4-Methyl-2-pentanone (MIBK)	ND	270		ug/Kg	≎	05/17/19 15:00	05/18/19 01:15	1
Acetone	ND	550		ug/Kg	☆	05/17/19 15:00	05/18/19 01:15	1
Allyl chloride	ND	140		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Benzene	ND	20		ug/Kg	≎	05/17/19 15:00	05/18/19 01:15	1
Bromobenzene	ND	68		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Bromochloromethane	ND	27		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Bromodichloromethane	ND	41		ug/Kg	☼	05/17/19 15:00	05/18/19 01:15	1

Eurofins TestAmerica, Spokane

Page 11 of 39

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP3(0-1)

Date Collected: 05/06/19 11:00 Date Received: 05/08/19 16:10 Lab Sample ID: 590-10950-3

Matrix: Solid

Percent Solids: 90.4

Method: 8260C - Volatile O Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	ND		140		ug/Kg	<u> </u>	05/17/19 15:00	05/18/19 01:15	1
Bromomethane	ND		140		ug/Kg	\$	05/17/19 15:00	05/18/19 01:15	1
Carbon tetrachloride	ND		14		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Chlorobenzene	ND		27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Chloroethane	ND		270		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Chloroform	ND		27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Chloromethane	ND		68		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
cis-1,2-Dichloroethene	ND		41		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
cis-1,3-Dichloropropene	ND		14		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Dibromochloromethane	ND		27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Dibromomethane	ND		41		ug/Kg	φ.	05/17/19 15:00	05/18/19 01:15	1
Dichlorodifluoromethane	ND		140		ug/Kg	☼	05/17/19 15:00	05/18/19 01:15	1
Dichlorofluoromethane	ND		68		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Ethylbenzene	ND		27		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Ethyl ether	ND		140		ug/Kg	☼	05/17/19 15:00	05/18/19 01:15	1
Hexachlorobutadiene	ND		100		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Isopropylbenzene	ND		27		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
m,p-Xylene	ND		140		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Methyl tert-butyl ether	ND		27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Methylene Chloride	ND		170		ug/Kg	φ.	05/17/19 15:00	05/18/19 01:15	1
Naphthalene	ND		68		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
n-Butylbenzene	ND		100		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
N-Propylbenzene	ND		27		ug/Kg	ф.	05/17/19 15:00	05/18/19 01:15	1
o-Xylene	ND		41		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
p-Isopropyltoluene	ND		27		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
sec-Butylbenzene	ND		27		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Styrene	ND		27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
tert-Butylbenzene	ND		27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Tetrachloroethene	ND		27		ug/Kg		05/17/19 15:00	05/18/19 01:15	1
Tetrahydrofuran	ND		550		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Toluene	ND		100		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
trans-1,2-Dichloroethene	ND		41		ug/Kg	φ.	05/17/19 15:00	05/18/19 01:15	1
trans-1,3-Dichloropropene	ND		27		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Trichloroethene	ND		41		ug/Kg	₽	05/17/19 15:00	05/18/19 01:15	1
Trichlorofluoromethane	ND		140		ug/Kg	₩	05/17/19 15:00	05/18/19 01:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121				05/17/19 15:00	05/18/19 01:15	1
4-Bromofluorobenzene (Surr)	101		80 - 120				05/17/19 15:00	05/18/19 01:15	1
Dibromofluoromethane (Surr)	100		80 - 120				05/17/19 15:00	05/18/19 01:15	1
Toluene-d8 (Surr)	99		80 - 120				05/17/19 15:00	05/18/19 01:15	1

Method: 8260C - Volatile Organic Compounds by GC/MS - RA										
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Vinyl chloride	ND	H *	190	ug/Kg	₩	05/23/19 12:00	05/23/19 20:00	1		
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac		
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 100	Qualifier	80 - 121				Analyzed 05/23/19 20:00	Dil Fac		
		Qualifier				05/23/19 12:00		Dil Fac 1 1		

Eurofins TestAmerica, Spokane

Page 12 of 39

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP3(0-1)

Date Collected: 05/06/19 11:00 Date Received: 05/08/19 16:10 Lab Sample ID: 590-10950-3

Matrix: Solid

Percent Solids: 90.4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120	05/23/19 12:00	05/23/19 20:00	1

Method: NWTPH-Gx - Northwest -	· Volatile Petroleum	Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Gasoline	ND		6.3		mg/Kg	₹	<u>{</u>	05/13/19 12:53	05/13/19 18:23	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	50 - 150	05/13/19 12:53	05/13/19 18:23	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	18		10		mg/Kg	<u> </u>	05/20/19 14:09	05/20/19 22:38	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	130		26		mg/Kg	₩	05/20/19 14:09	05/20/19 22:38	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	91		50 - 150	05/20/19 14:09 05/20/19 22:38	1
n-Triacontane-d62	104		50 - 150	05/20/19 14:09 05/20/19 22:38	1

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	0.88	mg/Kg	₩	05/09/19 11:33	05/13/19 13:10	1

Client Sample ID: GEI015-DP4(0-2)

Date Collected: 05/06/19 11:10 Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-4

Matrix: Solid Percent Solids: 82.8

	Method:	8260C -	Volatile	Organic	Compounds	by	GC/MS
--	---------	---------	----------	----------------	-----------	----	-------

Method: 8260C - Volatile Org Analyte	•	unds by GC/ Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		34		ug/Kg	<u> </u>	05/17/19 15:00	05/18/19 01:40	1
1,1,1-Trichloroethane	ND		34		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,1,2,2-Tetrachloroethane	ND		17		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,1,2-Trichloroethane	ND		17		ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
1,1,2-Trichlorotrifluoroethane	ND		51		ug/Kg	☆	05/17/19 15:00	05/18/19 01:40	1
1,1-Dichloroethane	ND		34		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,1-Dichloroethene	ND		34		ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
1,1-Dichloropropene	ND		34		ug/Kg	☆	05/17/19 15:00	05/18/19 01:40	1
1,2,3-Trichlorobenzene	ND		130		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,2,3-Trichloropropane	ND		34		ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
1,2,4-Trichlorobenzene	ND		51		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,2,4-Trimethylbenzene	ND		34		ug/Kg	☆	05/17/19 15:00	05/18/19 01:40	1
1,2-Dibromo-3-Chloropropane	ND		210		ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
1,2-Dibromoethane (EDB)	ND		17		ug/Kg	☆	05/17/19 15:00	05/18/19 01:40	1
1,2-Dichlorobenzene	ND		34		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,2-Dichloroethane	ND		17		ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
1,2-Dichloropropane	ND		17		ug/Kg	☆	05/17/19 15:00	05/18/19 01:40	1
1,3,5-Trimethylbenzene	ND		34		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,3-Dichlorobenzene	ND		51		ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
1,3-Dichloropropane	ND		51		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
1,4-Dichlorobenzene	ND		51		ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1

Eurofins TestAmerica, Spokane

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP4(0-2)

Date Collected: 05/06/19 11:10 Date Received: 05/08/19 16:10

4-Bromofluorobenzene (Surr)

Lab Sample ID: 590-10950-4

Matrix: Solid

Percent Solids: 82.8

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,2-Dichloropropane	ND ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
2-Butanone (MEK)	ND	510	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
2-Chlorotoluene	ND	34	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
4-Chlorotoluene	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
4-Methyl-2-pentanone (MIBK)	ND	340	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
Acetone	ND	680	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
Allyl chloride	ND	170	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Benzene	ND	25	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
Bromobenzene	ND	85	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Bromochloromethane	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Bromodichloromethane	ND	51	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
Bromoform	ND	170	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Bromomethane	ND	170	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Carbon tetrachloride	ND	17	ug/Kg	₩	05/17/19 15:00	05/18/19 01:40	1
Chlorobenzene	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Chloroethane	ND	340	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Chloroform	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Chloromethane	ND	85	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
cis-1,2-Dichloroethene	ND	51	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
cis-1,3-Dichloropropene	ND	17	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Dibromochloromethane	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Dibromomethane	ND	51	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Dichlorodifluoromethane	ND	170	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Dichlorofluoromethane	ND	85	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Ethylbenzene	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Ethyl ether	ND	170	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Hexachlorobutadiene	ND	130	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Isopropylbenzene	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
m,p-Xylene	ND	170	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Methyl tert-butyl ether	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Methylene Chloride	ND	210	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Naphthalene	ND	85	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
n-Butylbenzene	ND	130	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
N-Propylbenzene	ND	34	ug/Kg	φ.	05/17/19 15:00	05/18/19 01:40	1
o-Xylene	ND	51	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
p-Isopropyltoluene	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
sec-Butylbenzene	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Styrene	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
tert-Butylbenzene	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Tetrachloroethene	ND	34	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
Tetrahydrofuran	ND	680	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Toluene	ND	130	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
trans-1,2-Dichloroethene	ND	51	ug/Kg	₽	05/17/19 15:00	05/18/19 01:40	1
trans-1,3-Dichloropropene	ND	34	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Trichloroethene	ND	51	ug/Kg	☼	05/17/19 15:00	05/18/19 01:40	1
Trichlorofluoromethane	ND	170	ug/Kg		05/17/19 15:00	05/18/19 01:40	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	80 - 121			05/17/19 15:00	05/18/19 01:40	1

Eurofins TestAmerica, Spokane

6/3/2019

05/17/19 15:00 05/18/19 01:40

Page 14 of 39

80 - 120

102

2

3

5

7

9

4 4

10

14

Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP4(0-2)

Date Collected: 05/06/19 11:10 Date Received: 05/08/19 16:10

Client: GeoEngineers Inc

Lab Sample ID: 590-10950-4

Matrix: Solid

Percent Solids: 82.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		80 - 120	05/17/19 15:00	05/18/19 01:40	1
Toluene-d8 (Surr)	102		80 - 120	05/17/19 15:00	05/18/19 01:40	1

Method: 8260C - Volatile Organic Compounds by GC/MS - RA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	H *	220		ug/Kg	₩	05/23/19 12:00	05/23/19 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121				05/23/19 12:00	05/23/19 20:25	1
4-Bromofluorobenzene (Surr)	101		80 - 120				05/23/19 12:00	05/23/19 20:25	1
Dibromofluoromethane (Surr)	98		80 - 120				05/23/19 12:00	05/23/19 20:25	1
Toluene-d8 (Surr)	101		80 - 120				05/23/19 12:00	05/23/19 20:25	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		7.4		mg/Kg	₩	05/13/19 12:53	05/13/19 18:53	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	99		50 - 150				05/13/19 12:53	05/13/19 18:53		

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		12		mg/Kg	₩	05/20/19 14:09	05/20/19 22:58	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		30		mg/Kg	₩	05/20/19 14:09	05/20/19 22:58	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	76	50 - 150	05/20/19 14:09 05/20/19 22	58 1
n-Triacontane-d62	77	50 - 150	05/20/19 14:09 05/20/19 22	58 1

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND —	0.94	ma/Ka	\	05/09/19 11:33	05/13/19 13:14	

Client Sample ID: Trip Blank

Date Collected: 05/06/19 10:40 Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-5

Matrix: Solid

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	H	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,1,1-Trichloroethane	ND	Н	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,1,2,2-Tetrachloroethane	ND	Н	20		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,1,2-Trichloroethane	ND	Н	20		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,1-Dichloroethane	ND	Н	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2,3-Trichlorobenzene	ND	Н	150		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2,3-Trichloropropane	ND	Н	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2,4-Trichlorobenzene	ND	Н	60		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2,4-Trimethylbenzene	ND	Н	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2-Dibromo-3-Chloropropane	ND	Н	250		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
1,2-Dibromoethane (EDB)	ND	Н	20		ug/Kg		05/23/19 12:00	05/23/19 20:50	1

Eurofins TestAmerica, Spokane

Page 15 of 39

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: Trip Blank

Lab Sample ID: 590-10950-5 Date Collected: 05/06/19 10:40 **Matrix: Solid**

Date Received: 05/08/19 16:10

Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
1,2-Dichloroethane	ND H	20	ug/Kg		05/23/19 12:00	05/23/19 20:50	•
1,2-Dichloropropane	ND H	20	ug/Kg		05/23/19 12:00	05/23/19 20:50	•
1,3,5-Trimethylbenzene	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	•
1,3-Dichlorobenzene	ND H	60	ug/Kg		05/23/19 12:00	05/23/19 20:50	
1,3-Dichloropropane	ND H	60	ug/Kg		05/23/19 12:00	05/23/19 20:50	•
1,4-Dichlorobenzene	ND H	60	ug/Kg		05/23/19 12:00	05/23/19 20:50	•
2,2-Dichloropropane	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
2-Butanone (MEK)	ND H	600	ug/Kg		05/23/19 12:00	05/23/19 20:50	
2-Chlorotoluene	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
4-Chlorotoluene	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
4-Methyl-2-pentanone (MIBK)	ND H	400	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Acetone	ND H	800	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Allyl chloride	ND H	200	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Benzene	ND H	30	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Bromobenzene	ND H	100	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Bromochloromethane	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Bromodichloromethane	ND H	60	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Bromoform	ND H	200	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Bromomethane	ND H	200	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Chlorobenzene	ND H	40	ug/Kg		05/23/19 12:00	05/23/19 20:50	
Chloroethane	ND H		ug/Kg			05/23/19 20:50	
Chloroform	ND H		ug/Kg			05/23/19 20:50	
Chloromethane	ND H		ug/Kg			05/23/19 20:50	
cis-1,2-Dichloroethene	ND H		ug/Kg			05/23/19 20:50	
cis-1,3-Dichloropropene	ND H		ug/Kg			05/23/19 20:50	
Dibromochloromethane	ND H		ug/Kg			05/23/19 20:50	
Dibromomethane	ND H		ug/Kg			05/23/19 20:50	
Dichlorodifluoromethane	ND H		ug/Kg			05/23/19 20:50	
Dichlorofluoromethane	ND H		ug/Kg			05/23/19 20:50	
Ethylbenzene	ND H		ug/Kg			05/23/19 20:50	
Ethyl ether	ND H		ug/Kg			05/23/19 20:50	
Hexachlorobutadiene	ND H		ug/Kg			05/23/19 20:50	
sopropylbenzene	ND H		ug/Kg			05/23/19 20:50	
n,p-Xylene	ND H		ug/Kg			05/23/19 20:50	
Methyl tert-butyl ether	ND H		ug/Kg			05/23/19 20:50	
Methylene Chloride	ND H		ug/Kg			05/23/19 20:50	
Naphthalene	ND H		ug/Kg			05/23/19 20:50	
n-Butylbenzene	ND H		ug/Kg ug/Kg			05/23/19 20:50	
N-Propylbenzene	ND H		ug/Kg ug/Kg			05/23/19 20:50	
						05/23/19 20:50	
o-Xylene	ND H		ug/Kg			05/23/19 20:50	
o-Isopropyltoluene	ND H		ug/Kg				
sec-Butylbenzene	ND H		ug/Kg			05/23/19 20:50	
Styrene	ND H		ug/Kg			05/23/19 20:50	
rert-Butylbenzene	ND H		ug/Kg			05/23/19 20:50	
Tetrachloroethene	ND H		ug/Kg			05/23/19 20:50	
Tetrahydrofuran	ND H		ug/Kg			05/23/19 20:50	
Toluene	ND H	150	ug/Kg		05/23/19 12:00	05/23/19 20:50	•

Eurofins TestAmerica, Spokane

6/3/2019

Page 16 of 39

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: Trip Blank

Date Received: 05/08/19 16:10

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Date Collected: 05/06/19 10:40

95

101

Lab Sample ID: 590-10950-5 **Matrix: Solid**

05/30/19 17:25 05/31/19 00:47

05/30/19 17:25 05/31/19 00:47

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND	Н	40		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
Trichloroethene	ND	Н	60		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
Trichlorofluoromethane	ND	Н	200		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
Vinyl chloride	ND	H *	150		ug/Kg		05/23/19 12:00	05/23/19 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 121				05/23/19 12:00	05/23/19 20:50	1
4-Bromofluorobenzene (Surr)	98		80 - 120				05/23/19 12:00	05/23/19 20:50	1
Dibromofluoromethane (Surr)	95		80 - 120				05/23/19 12:00	05/23/19 20:50	1
Toluene-d8 (Surr)	100		80 - 120				05/23/19 12:00	05/23/19 20:50	1

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND	Н	60		ug/Kg		05/30/19 17:25	05/31/19 00:47	1
1,1-Dichloroethene	ND	Н	40		ug/Kg		05/30/19 17:25	05/31/19 00:47	1
1,1-Dichloropropene	ND	Н	40		ug/Kg		05/30/19 17:25	05/31/19 00:47	1
Carbon tetrachloride	ND	Н	20		ug/Kg		05/30/19 17:25	05/31/19 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 121				05/30/19 17:25	05/31/19 00:47	1
4-Bromofluorobenzene (Surr)	98		80 - 120				05/30/19 17:25	05/31/19 00:47	1

80 - 120

80 - 120

Eurofins TestAmerica, Spokane

Job ID: 590-10950-1 Client: GeoEngineers Inc

RL

MDL Unit

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Result Qualifier

Lab Sample ID: MB 580-301072/1-A

Matrix: Solid

Analyte

Analysis Batch: 301360

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 301072 Prepared Analyzed Dil Fac

1,1,1,2-Tetrachloroethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1,1-Trichloroethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1,2,2-Tetrachloroethane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1,2-Trichloroethane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1,2-Trichlorotrifluoroethane	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1-Dichloroethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1-Dichloroethene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,1-Dichloropropene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,2,3-Trichlorobenzene	ND	150	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,2,3-Trichloropropane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,2,4-Trichlorobenzene	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05
1,2,4-Trimethylbenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05

1,1,1-Trichloroethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1,2,2-Tetrachloroethane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1,2-Trichloroethane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1,2-Trichlorotrifluoroethane	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1-Dichloroethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1-Dichloroethene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,1-Dichloropropene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2,3-Trichlorobenzene	ND	150	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2,3-Trichloropropane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2,4-Trichlorobenzene	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2,4-Trimethylbenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2-Dibromo-3-Chloropropane	ND	250	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2-Dibromoethane (EDB)	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2-Dichlorobenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2-Dichloroethane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,2-Dichloropropane	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,3,5-Trimethylbenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,3-Dichlorobenzene	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,3-Dichloropropane	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
1,4-Dichlorobenzene	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
2,2-Dichloropropane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
2-Butanone (MEK)	ND	600	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
2-Chlorotoluene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
4-Chlorotoluene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
4-Methyl-2-pentanone (MIBK)	ND	400	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Acetone	ND	800	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Allyl chloride	ND	200	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Benzene	ND	30	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Bromobenzene	ND	100	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Bromochloromethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Bromodichloromethane	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Bromoform	ND	200	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Bromomethane	ND	200	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Carbon tetrachloride	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Chlorobenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Chloroethane	ND	400	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Chloroform	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Chloromethane	ND	100	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
cis-1,2-Dichloroethene	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
cis-1,3-Dichloropropene	ND	20	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Dibromochloromethane	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Dibromomethane	ND	60	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Dichlorodifluoromethane	ND	200	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Dichlorofluoromethane	ND	100	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Ethylbenzene	ND	40	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Ethyl ether	ND	200	ug/Kg	05/17/19 15:00 05/17/19 18:05 1
Hexachlorobutadiene	ND	150	ug/Kg	05/17/19 15:00 05/17/19 18:05 1

Eurofins TestAmerica, Spokane

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-301072/1-A

Matrix: Solid

Analysis Batch: 301360

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 301072**

Job ID: 590-10950-1

MB MB MDL Unit Prepared Analyte Result Qualifier RL Analyzed Dil Fac $\overline{\mathsf{ND}}$ 40 05/17/19 15:00 05/17/19 18:05 Isopropylbenzene ug/Kg m,p-Xylene ND 200 05/17/19 15:00 05/17/19 18:05 ug/Kg Methyl tert-butyl ether ND 40 ug/Kg 05/17/19 15:00 05/17/19 18:05 Methylene Chloride ND 250 ug/Kg 05/17/19 15:00 05/17/19 18:05 Naphthalene ND 100 05/17/19 15:00 05/17/19 18:05 ug/Kg n-Butylbenzene ND 150 ug/Kg 05/17/19 15:00 05/17/19 18:05 N-Propylbenzene ND 40 05/17/19 15:00 05/17/19 18:05 ug/Kg ND o-Xylene 60 ug/Kg 05/17/19 15:00 05/17/19 18:05 p-Isopropyltoluene ND 40 ug/Kg 05/17/19 15:00 05/17/19 18:05 sec-Butylbenzene ND 40 05/17/19 15:00 05/17/19 18:05 ug/Kg Styrene ND 40 ug/Kg 05/17/19 15:00 05/17/19 18:05 tert-Butylbenzene ND 40 05/17/19 15:00 05/17/19 18:05 ug/Kg Tetrachloroethene ND 40 ug/Kg 05/17/19 15:00 05/17/19 18:05 Tetrahydrofuran ND 800 ug/Kg 05/17/19 15:00 05/17/19 18:05 Toluene ND 150 ug/Kg 05/17/19 15:00 05/17/19 18:05 trans-1,2-Dichloroethene ND 60 ug/Kg 05/17/19 15:00 05/17/19 18:05 trans-1,3-Dichloropropene ND 40 05/17/19 15:00 05/17/19 18:05 ug/Kg Trichloroethene ND 60 ug/Kg 05/17/19 15:00 05/17/19 18:05 Trichlorofluoromethane ND 200 05/17/19 15:00 05/17/19 18:05 ug/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	100		80 - 121	05/17/19 15:00	05/17/19 18:05	1	
4-Bromofluorobenzene (Surr)	101		80 - 120	05/17/19 15:00	05/17/19 18:05	1	
Dibromofluoromethane (Surr)	97		80 - 120	05/17/19 15:00	05/17/19 18:05	1	
Toluene-d8 (Surr)	102		80 - 120	05/17/19 15:00	05/17/19 18:05	1	

Lab Sample ID: LCS 580-301072/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 301360	Spike	LCS	LCS				Prep Batch: 301072 %Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	800	742		ug/Kg		93	79 - 128
1,1,1-Trichloroethane	800	795		ug/Kg		99	69 - 150
1,1,2,2-Tetrachloroethane	800	715		ug/Kg		89	66 - 127
1,1,2-Trichloroethane	800	725		ug/Kg		91	80 - 123
1,1,2-Trichlorotrifluoroethane	800	840		ug/Kg		105	70 - 138
1,1-Dichloroethane	800	758		ug/Kg		95	70 - 135
1,1-Dichloroethene	800	836		ug/Kg		105	58 - 150
1,1-Dichloropropene	800	796		ug/Kg		100	69 - 150
1,2,3-Trichlorobenzene	800	774		ug/Kg		97	62 - 136
1,2,3-Trichloropropane	800	725		ug/Kg		91	70 - 127
1,2,4-Trichlorobenzene	800	763		ug/Kg		95	68 - 131
1,2,4-Trimethylbenzene	800	786		ug/Kg		98	73 - 127
1,2-Dibromo-3-Chloropropane	800	669		ug/Kg		84	62 - 135
1,2-Dibromoethane (EDB)	800	714		ug/Kg		89	77 - 123
1,2-Dichlorobenzene	800	743		ug/Kg		93	78 - 126
1,2-Dichloroethane	800	768		ug/Kg		96	68 - 132
1,2-Dichloropropane	800	761		ug/Kg		95	65 - 136

Eurofins TestAmerica, Spokane

Page 19 of 39

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Job ID: 590-10950-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-301072/2-A

Matrix: Solid

Analysis Batch: 301360

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 301072

Analysis Batch: 301360	Spike	LCS	LCS				Prep Batch: 30107 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,3,5-Trimethylbenzene		793		ug/Kg		99	72 - 136
1,3-Dichlorobenzene	800	761		ug/Kg		95	78 - 122
1,3-Dichloropropane	800	704		ug/Kg		88	75 ₋ 120
1,4-Dichlorobenzene	800	753		ug/Kg		94	77 ₋ 123
2,2-Dichloropropane	800	781		ug/Kg		98	62 - 150
2-Butanone (MEK)	4000	3540		ug/Kg		88	55 - 143
2-Chlorotoluene	800	762		ug/Kg		95	77 - 127
4-Chlorotoluene	800	767		ug/Kg		96	78 - 126
4-Methyl-2-pentanone (MIBK)	4000	3540		ug/Kg		88	68 - 125
Acetone	4000	3710		ug/Kg		93	25 - 150
Allyl chloride	800	811		ug/Kg		101	40 - 150
Benzene	800	752		ug/Kg		94	72 - 135
Bromobenzene	800	746		ug/Kg		93	78 ₋ 126
Bromochloromethane	800	769		ug/Kg		96	76 - 131
Bromodichloromethane	800	750		ug/Kg		94	73 - 125
Bromoform	800	731		ug/Kg		91	71 - 129
Bromomethane	800	717		ug/Kg		90	42 - 150
Carbon tetrachloride	800	795		ug/Kg		99	66 - 150
Chlorobenzene	800	757		ug/Kg		95	80 - 123
Chloroethane	800	818		ug/Kg		102	31 - 150
Chloroform	800	743		ug/Kg		93	74 - 133
Chloromethane	800	738		ug/Kg		92	43 - 150
cis-1,2-Dichloroethene	800	749		ug/Kg		94	68 - 143
cis-1,3-Dichloropropene	800	746		ug/Kg		93	80 - 122
Dibromochloromethane	800	733		ug/Kg		92	75 - 125
Dibromomethane	800	739		ug/Kg		92	72 - 130
Dichlorodifluoromethane	800	797		ug/Kg		100	10 - 150
Dichlorofluoromethane	800	778		ug/Kg		97	61 - 150
Ethylbenzene	800	767		ug/Kg		96	80 - 135
Ethyl ether	800	751		ug/Kg		94	65 ₋ 150
Hexachlorobutadiene	800	833		ug/Kg		104	65 - 150
Isopropylbenzene	800	804		ug/Kg		101	74 - 140
m,p-Xylene	800	783		ug/Kg		98	80 - 132
Methyl tert-butyl ether	800	724		ug/Kg		91	68 - 132
Methylene Chloride	800	766		ug/Kg		96	54 - 149
Naphthalene	800	738		ug/Kg		92	49 - 147
n-Butylbenzene	800	830		ug/Kg		104	69 - 143
N-Propylbenzene	800	781		ug/Kg		98	74 - 143
o-Xylene	800	762		ug/Kg		95	80 - 125
p-Isopropyltoluene	800	811		ug/Kg		101	71 - 142
sec-Butylbenzene	800	826		ug/Kg		103	77 - 143
Styrene	800	795		ug/Kg		99	79 - 1 2 9
tert-Butylbenzene	800	802		ug/Kg ug/Kg		100	79 - 129 72 - 144
Tetrachloroethene	800	789		ug/Kg ug/Kg		99	71 - 145
Tetrahydrofuran	1600	1460		ug/Kg ug/Kg		99	77 - 145 77 - 124
Toluene	800	759		ug/Kg ug/Kg		91 95	77 - 124 75 - 137
trans-1,2-Dichloroethene	800	768				96	61 - 150
-	800	768		ug/Kg ug/Kg		96 92	80 ₋ 121
trans-1,3-Dichloropropene							
Trichloroethene	800	772		ug/Kg		97	69 - 144

Eurofins TestAmerica, Spokane

6/3/2019

Page 20 of 39

2

6

8

9

10

15

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Trichlorofluoromethane

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-301072/2-A

Matrix: Solid

Analysis Batch: 301360

Spike
Analyte

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 301072

Rec.

Added
Result Qualifier Unit D %Rec Limits

836

ug/Kg

104

48 - 150

800

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		80 - 121
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: LCSD 580-301072/3-A

Matrix: Solid

Analysis Batch: 301360

Spike LCSD LCSD September 1 Spike LCSD LCSD September 2 Spike LCSD September 2 Spike LCSD LCSD

Analysis Batch: 301360	Spike		LCSD				Prep Ba %Rec.	tch: 30	01072 RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	800	742		ug/Kg		93	79 - 128	0	17
1,1,1-Trichloroethane	800	802		ug/Kg		100	69 - 150	1	14
1,1,2,2-Tetrachloroethane	800	717		ug/Kg		90	66 - 127	0	18
1,1,2-Trichloroethane	800	754		ug/Kg		94	80 - 123	4	20
1,1,2-Trichlorotrifluoroethane	800	857		ug/Kg		107	70 - 138	2	17
1,1-Dichloroethane	800	763		ug/Kg		95	70 - 135	1	21
1,1-Dichloroethene	800	867		ug/Kg		108	58 - 150	4	29
1,1-Dichloropropene	800	807		ug/Kg		101	69 - 150	1	11
1,2,3-Trichlorobenzene	800	795		ug/Kg		99	62 - 136	3	34
1,2,3-Trichloropropane	800	772		ug/Kg		97	70 - 127	6	16
1,2,4-Trichlorobenzene	800	787		ug/Kg		98	68 - 131	3	29
1,2,4-Trimethylbenzene	800	812		ug/Kg		102	73 - 127	3	20
1,2-Dibromo-3-Chloropropane	800	722		ug/Kg		90	62 - 135	8	25
1,2-Dibromoethane (EDB)	800	744		ug/Kg		93	77 - 123	4	20
1,2-Dichlorobenzene	800	765		ug/Kg		96	78 - 126	3	21
1,2-Dichloroethane	800	789		ug/Kg		99	68 - 132	3	17
1,2-Dichloropropane	800	786		ug/Kg		98	65 - 136	3	13
1,3,5-Trimethylbenzene	800	822		ug/Kg		103	72 - 136	4	21
1,3-Dichlorobenzene	800	796		ug/Kg		99	78 - 122	4	20
1,3-Dichloropropane	800	744		ug/Kg		93	75 - 120	5	18
1,4-Dichlorobenzene	800	782		ug/Kg		98	77 - 123	4	20
2,2-Dichloropropane	800	785		ug/Kg		98	62 - 150	0	20
2-Butanone (MEK)	4000	3910		ug/Kg		98	55 - 143	10	31
2-Chlorotoluene	800	803		ug/Kg		100	77 - 127	5	16
4-Chlorotoluene	800	812		ug/Kg		102	78 - 126	6	16
4-Methyl-2-pentanone (MIBK)	4000	3770		ug/Kg		94	68 - 125	6	20
Acetone	4000	3930		ug/Kg		98	25 - 150	6	39
Allyl chloride	800	801		ug/Kg		100	40 - 150	1	40
Benzene	800	766		ug/Kg		96	72 - 135	2	15
Bromobenzene	800	791		ug/Kg		99	78 - 126	6	19
Bromochloromethane	800	765		ug/Kg		96	76 - 131	1	15
Bromodichloromethane	800	775		ug/Kg		97	73 - 125	3	15
Bromoform	800	739		ug/Kg		92	71 - 129	1	17
Bromomethane	800	688		ug/Kg		86	42 - 150	4	22
Carbon tetrachloride	800	834		ug/Kg		104	66 - 150	5	12

Eurofins TestAmerica, Spokane

Page 21 of 39

2

3

4

6

8

1 N

11

12

Job ID: 590-10950-1

Client: GeoEngineers Inc Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-301072/3-A

Matrix: Solid

Analysis Batch: 301360

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 301072

Analyte	Added	Decult			_				
		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorobenzene	800	772		ug/Kg		97	80 - 123	2	18
Chloroethane	800	818		ug/Kg		102	31 - 150	0	31
Chloroform	800	738		ug/Kg		92	74 - 133	1	13
Chloromethane	800	711		ug/Kg		89	43 - 150	4	26
cis-1,2-Dichloroethene	800	766		ug/Kg		96	68 - 143	2	20
cis-1,3-Dichloropropene	800	745		ug/Kg		93	80 - 122	0	16
Dibromochloromethane	800	753		ug/Kg		94	75 - 125	3	18
Dibromomethane	800	775		ug/Kg		97	72 - 130	5	14
Dichlorodifluoromethane	800	788		ug/Kg		98	10 - 150	1	40
Dichlorofluoromethane	800	780		ug/Kg		97	61 - 150	0	37
Ethylbenzene	800	785		ug/Kg		98	80 - 135	2	16
Ethyl ether	800	765		ug/Kg		96	65 - 150	2	40
Hexachlorobutadiene	800	849		ug/Kg		106	65 - 150	2	36
Isopropylbenzene	800	801		ug/Kg		100	74 - 140	0	17
m,p-Xylene	800	798		ug/Kg		100	80 - 132	2	20
Methyl tert-butyl ether	800	814		ug/Kg		102	68 - 132	12	25
Methylene Chloride	800	787		ug/Kg		98	54 - 149	3	30
Naphthalene	800	784		ug/Kg		98	49 - 147	6	35
n-Butylbenzene	800	855		ug/Kg		107	69 - 143	3	26
N-Propylbenzene	800	825		ug/Kg		103	74 - 143	5	21
o-Xylene	800	764		ug/Kg		96	80 - 125	0	14
p-Isopropyltoluene	800	829		ug/Kg		104	71 - 142	2	23
sec-Butylbenzene	800	850		ug/Kg		106	77 - 143	3	24
Styrene	800	805		ug/Kg		101	79 - 129	1	15
tert-Butylbenzene	800	831		ug/Kg		104	72 - 144	4	24
Tetrachloroethene	800	812		ug/Kg		101	71 - 145	3	16
Tetrahydrofuran	1600	1550		ug/Kg		97	77 - 124	6	13
Toluene	800	780		ug/Kg		97	75 - 137	3	20
trans-1,2-Dichloroethene	800	768		ug/Kg		96	61 - 150	0	22
trans-1,3-Dichloropropene	800	761		ug/Kg		95	80 - 121	3	21
Trichloroethene	800	828		ug/Kg		103	69 - 144	7	21
Trichlorofluoromethane	800	837		ug/Kg		105	48 - 150	0	40

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 121
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: MB 580-301539/1-A

Matrix: Solid

Analysis Batch: 301553

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 301539

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,1,1-Trichloroethane	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,1,2,2-Tetrachloroethane	ND		20		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,1,2-Trichloroethane	ND		20		ug/Kg		05/23/19 12:00	05/23/19 17:54	1

Eurofins TestAmerica, Spokane

Page 22 of 39

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-301539/1-A

Matrix: Solid

Analysis Batch: 301553

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 301539

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		40		ug/Kg	_ <u>-</u>	•	05/23/19 17:54	1
1,2,3-Trichlorobenzene	ND		150		ug/Kg			05/23/19 17:54	1
1,2,3-Trichloropropane	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2,4-Trichlorobenzene	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2,4-Trimethylbenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2-Dibromo-3-Chloropropane	ND		250		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2-Dibromoethane (EDB)	ND		20		ug/Kg			05/23/19 17:54	1
1,2-Dichlorobenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2-Dichloroethane	ND		20		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,2-Dichloropropane	ND		20		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,3,5-Trimethylbenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,3-Dichlorobenzene	ND		60		ug/Kg			05/23/19 17:54	1
1,3-Dichloropropane	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
1,4-Dichlorobenzene	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
2,2-Dichloropropane	ND		40		ug/Kg			05/23/19 17:54	1
2-Butanone (MEK)	ND		600		ug/Kg			05/23/19 17:54	1
2-Chlorotoluene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
4-Chlorotoluene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
4-Methyl-2-pentanone (MIBK)	ND		400		ug/Kg			05/23/19 17:54	1
Acetone	ND		800		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Allyl chloride	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Benzene	ND		30		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Bromobenzene	ND		100		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Bromochloromethane	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Bromodichloromethane	ND		60		ug/Kg			05/23/19 17:54	1
Bromoform	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Bromomethane	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Chlorobenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Chloroethane	ND		400		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Chloroform	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Chloromethane	ND		100		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
cis-1,2-Dichloroethene	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
cis-1,3-Dichloropropene	ND		20		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Dibromochloromethane	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Dibromomethane	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Dichlorodifluoromethane	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Dichlorofluoromethane	ND		100		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Ethylbenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Ethyl ether	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Hexachlorobutadiene	ND		150		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Isopropylbenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
m,p-Xylene	ND		200		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Methyl tert-butyl ether	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Methylene Chloride	ND		250		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
Naphthalene	ND		100		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
n-Butylbenzene	ND		150		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
N-Propylbenzene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
o-Xylene	ND		60		ug/Kg		05/23/19 12:00	05/23/19 17:54	1
p-Isopropyltoluene	ND		40		ug/Kg		05/23/19 12:00	05/23/19 17:54	1

Eurofins TestAmerica, Spokane

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Job ID: 590-10950-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-301539/1-A

Matrix: Solid

Analysis Batch: 301553

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 301539

	MB MB							
Analyte	Result Qualifie	er RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND	40	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
Styrene	ND	40	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
tert-Butylbenzene	ND	40	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
Tetrachloroethene	ND	40	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
Tetrahydrofuran	ND	800	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
Toluene	ND	150	uç	g/Kg		05/23/19 12:00	05/23/19 17:54	1
trans-1,2-Dichloroethene	ND	60	uç	g/Kg		05/23/19 12:00	05/23/19 17:54	1
trans-1,3-Dichloropropene	ND	40	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1
Trichloroethene	ND	60	uç	g/Kg		05/23/19 12:00	05/23/19 17:54	1
Trichlorofluoromethane	ND	200	uç	g/Kg		05/23/19 12:00	05/23/19 17:54	1
Vinyl chloride	ND	150	u(g/Kg		05/23/19 12:00	05/23/19 17:54	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 121	05/23/19 12:00	05/23/19 17:54	1
4-Bromofluorobenzene (Surr)	100		80 - 120	05/23/19 12:00	05/23/19 17:54	1
Dibromofluoromethane (Surr)	97		80 - 120	05/23/19 12:00	05/23/19 17:54	1
Toluene-d8 (Surr)	101		80 - 120	05/23/19 12:00	05/23/19 17:54	1

Lab Sample ID: LCS 580-301539/2-A

Matrix: Solid

Analysis Batch: 301553

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 301539

Analysis Batch: 301553	Spike	LCS	LCS				Prep Batch: 301539 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	800	802		ug/Kg		100	79 - 128
1,1,1-Trichloroethane	800	967		ug/Kg		121	69 - 150
1,1,2,2-Tetrachloroethane	800	792		ug/Kg		99	66 - 127
1,1,2-Trichloroethane	800	763		ug/Kg		95	80 - 123
1,1-Dichloroethane	800	878		ug/Kg		110	70 - 135
1,2,3-Trichlorobenzene	800	673		ug/Kg		84	62 - 136
1,2,3-Trichloropropane	800	769		ug/Kg		96	70 - 127
1,2,4-Trichlorobenzene	800	700		ug/Kg		87	68 - 131
1,2,4-Trimethylbenzene	800	841		ug/Kg		105	73 - 127
1,2-Dibromo-3-Chloropropane	800	728		ug/Kg		91	62 - 135
1,2-Dibromoethane (EDB)	800	770		ug/Kg		96	77 - 123
1,2-Dichlorobenzene	800	765		ug/Kg		96	78 - 126
1,2-Dichloroethane	800	854		ug/Kg		107	68 - 132
1,2-Dichloropropane	800	824		ug/Kg		103	65 - 136
1,3,5-Trimethylbenzene	800	862		ug/Kg		108	72 - 136
1,3-Dichlorobenzene	800	778		ug/Kg		97	78 - 122
1,3-Dichloropropane	800	802		ug/Kg		100	75 - 120
1,4-Dichlorobenzene	800	775		ug/Kg		97	77 - 123
2,2-Dichloropropane	800	964		ug/Kg		121	62 - 150
2-Butanone (MEK)	4000	4090		ug/Kg		102	55 - 143
2-Chlorotoluene	800	818		ug/Kg		102	77 - 127
4-Chlorotoluene	800	830		ug/Kg		104	78 - 126
4-Methyl-2-pentanone (MIBK)	4000	4030		ug/Kg		101	68 - 125
Acetone	4000	4700		ug/Kg		118	25 - 150
Allyl chloride	800	857		ug/Kg		107	40 - 150

Eurofins TestAmerica, Spokane

Page 24 of 39

Spike

Added

800

800

800

800

800

800

Client: GeoEngineers Inc Job ID: 590-10950-1

LCS LCS

805

812

841

890

953

768

902

Result Qualifier

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-301539/2-A

Matrix: Solid

Analyte

Benzene Bromobenzene Bromochloromethane Bromodichloromethane

Bromoform Bromomethane Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Dichlorofluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

trans-1,2-Dichloroethene

Isopropylbenzene

Dibromomethane

Ethylbenzene

Ethyl ether

m,p-Xylene

Analysis Batch: 301553

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Limits

%Rec

Prep Batch: 301539 %Rec.

800	857	ug/Kg	107	72 - 135	
800	797	ug/Kg	100	78 - 126	
800	844	ug/Kg	106	76 - 131	
800	839	ug/Kg	105	73 - 125	
800	786	ug/Kg	98	71 - 129	
800	868	ug/Kg	108	42 - 150	
800	778	ug/Kg	97	80 - 123	
800	928	ug/Kg	116	31 - 150	
800	864	ug/Kg	108	74 - 133	
800	871	ug/Kg	109	43 - 150	
800	887	ug/Kg	111	68 - 143	

Unit

101 80 - 122 ug/Kg ug/Kg 101 75 - 125 ug/Kg 105 72 - 130 ug/Kg 111 10 - 150

119

96

113

61 - 150

68 - 132

61 - 150

800 838 105 ug/Kg 80 - 135 800 823 103 65 - 150 ug/Kg 800 805 101 ug/Kg 65 - 150800 944 118 74 - 140 ug/Kg 800 830 104 80 - 132 ug/Kg

ug/Kg

ug/Kg

ug/Kg

Methylene Chloride 54 - 149 800 800 ug/Kg 100 Naphthalene 800 711 ug/Kg 89 49 - 147 n-Butylbenzene 800 911 114 69 - 143 ug/Kg 800 889 N-Propylbenzene ug/Kg 111 74 - 143 o-Xylene 800 876 109 80 - 125 ug/Kg 800 894 71 - 142 p-Isopropyltoluene ug/Kg 112 800 958 120 sec-Butylbenzene ug/Kg 77 - 143

Styrene 800 103 79 - 129824 ug/Kg tert-Butylbenzene 800 906 ug/Kg 113 72 - 144 Tetrachloroethene 800 899 112 71 - 145 ug/Kg Tetrahydrofuran 1600 1660 104 77 - 124 ug/Kg Toluene 800 836 104 75 - 137 ug/Kg

trans-1,3-Dichloropropene 800 806 101 80 - 121 ug/Kg Trichloroethene 800 896 ug/Kg 112 69 - 144 Trichlorofluoromethane 800 976 122 48 - 150

800

ug/Kg 800 Vinyl chloride 1420 3 ug/Kg 178 13 - 150

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 121
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	99		80 - 120

6/3/2019

5

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-301539/3-A

Matrix: Solid Analysis Batch: 301553 Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Analysis Batch: 301553							Prep Batch: 301		
Analysia	Spike Added		LCSD	l lm:4	_	9/ Dag	%Rec. Limits	RPD	RPD
Analyte 1,1,1,2-Tetrachloroethane	Added	791	Qualifier	Unit ug/Kg	_ D	%Rec 99	79 - 128	1 T	Limit 17
1,1,1-Trichloroethane	800	971		ug/Kg ug/Kg		121	69 ₋ 150	0	14
1,1,2,2-Tetrachloroethane	800	793		ug/Kg ug/Kg		99	66 - 127	0	18
1,1,2-Trichloroethane	800	767					80 - 123		20
1,1-Dichloroethane	800	868		ug/Kg		96 109	70 ₋ 135	1 1	21
	800	758		ug/Kg			62 - 136		
1,2,3-Trichlorobenzene				ug/Kg		95		12	34
1,2,3-Trichloropropane	800	763		ug/Kg		95	70 - 127	1	16
1,2,4-Trichlorobenzene	800	768		ug/Kg		96 406	68 - 131	9	29
1,2,4-Trimethylbenzene	800	851		ug/Kg		106	73 - 127	1	20
1,2-Dibromo-3-Chloropropane	800	763		ug/Kg		95	62 - 135	5	25
1,2-Dibromoethane (EDB)	800	783		ug/Kg		98	77 - 123	2	20
1,2-Dichlorobenzene	800	775		ug/Kg		97	78 - 126	1	21
1,2-Dichloroethane	800	839		ug/Kg		105	68 - 132	2	17
1,2-Dichloropropane	800	828		ug/Kg		103	65 - 136	0	13
1,3,5-Trimethylbenzene	800	866		ug/Kg		108	72 - 136	0	21
1,3-Dichlorobenzene	800	799		ug/Kg		100	78 - 122	3	20
1,3-Dichloropropane	800	819		ug/Kg		102	75 - 120	2	18
1,4-Dichlorobenzene	800	783		ug/Kg		98	77 - 123	1	20
2,2-Dichloropropane	800	924		ug/Kg		115	62 - 150	4	20
2-Butanone (MEK)	4000	4290		ug/Kg		107	55 - 143	5	31
2-Chlorotoluene	800	827		ug/Kg		103	77 - 127	1	16
4-Chlorotoluene	800	843		ug/Kg		105	78 ₋ 126	2	16
4-Methyl-2-pentanone (MIBK)	4000	4140		ug/Kg		104	68 - 125	3	20
Acetone	4000	4990		ug/Kg		125	25 - 150	6	39
Allyl chloride	800	842		ug/Kg		105	40 - 150	2	40
Benzene	800	864		ug/Kg		108	72 - 135	1	15
Bromobenzene	800	810		ug/Kg		101	78 - 126	2	19
Bromochloromethane	800	836		ug/Kg		104	76 - 131	1	15
Bromodichloromethane	800	842		ug/Kg		105	73 - 125	0	15
Bromoform	800	777		ug/Kg		97	71 - 129	1	17
Bromomethane	800	793		ug/Kg		99	42 - 150	9	22
Chlorobenzene	800	787		ug/Kg		98	80 - 123	1	18
Chloroethane	800	894		ug/Kg		112	31 - 150	4	31
Chloroform	800	845		ug/Kg		106	74 - 133	2	13
Chloromethane	800	835		ug/Kg		104	43 - 150	4	26
cis-1,2-Dichloroethene	800	872		ug/Kg		109	68 - 143	2	20
cis-1,3-Dichloropropene	800	819		ug/Kg		102	80 - 122	2	16
Dibromochloromethane	800	820		ug/Kg		103	75 - 125	1	18
Dibromomethane	800	835		ug/Kg		104	72 - 130	1	14
Dichlorodifluoromethane	800	825		ug/Kg		103	10 - 150	8	40
Dichlorofluoromethane	800	932		ug/Kg		116	61 - 150	2	37
Ethylbenzene	800	846		ug/Kg		106	80 - 135	1	16
Ethyl ether	800	820		ug/Kg		103	65 - 150	0	40
Hexachlorobutadiene	800	884		ug/Kg		111	65 - 150	9	36
Isopropylbenzene	800	936		ug/Kg		117	74 - 140	1	17
m,p-Xylene	800	839		ug/Kg		105	80 - 132	1	20
Methyl tert-butyl ether	800	767		ug/Kg		96	68 - 132	0	25
Methylene Chloride	800	790		ug/Kg		99	54 - 149	1	30

Eurofins TestAmerica, Spokane

6/3/2019

Page 26 of 39

Job ID: 590-10950-1

Client: GeoEngineers Inc Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-301539/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 301553	Spike	LCSD	LCSD				Prep Batch: 3 %Rec.		301539 RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Naphthalene	800	779		ug/Kg		97	49 - 147	9	35	
n-Butylbenzene	800	932		ug/Kg		116	69 - 143	2	26	
N-Propylbenzene	800	905		ug/Kg		113	74 - 143	2	21	
o-Xylene	800	864		ug/Kg		108	80 - 125	1	14	
p-Isopropyltoluene	800	905		ug/Kg		113	71 - 142	1	23	
sec-Butylbenzene	800	967		ug/Kg		121	77 - 143	1	24	
Styrene	800	832		ug/Kg		104	79 - 129	1	15	
tert-Butylbenzene	800	912		ug/Kg		114	72 - 144	1	24	
Tetrachloroethene	800	928		ug/Kg		116	71 - 145	3	16	
Tetrahydrofuran	1600	1660		ug/Kg		104	77 - 124	0	13	
Toluene	800	844		ug/Kg		106	75 - 137	1	20	
trans-1,2-Dichloroethene	800	897		ug/Kg		112	61 - 150	1	22	
trans-1,3-Dichloropropene	800	817		ug/Kg		102	80 - 121	1	21	
Trichloroethene	800	894		ug/Kg		112	69 - 144	0	21	
Trichlorofluoromethane	800	966		ug/Kg		121	48 - 150	1	40	
Vinyl chloride	800	759	*	ug/Kg		95	13 - 150	61	40	

LCSD LCSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		80 - 121
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: MB 580-302038/1-A

Matrix: Solid

Analysis Batch: 302041

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 302038

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND	60	ug/Kg	05/30/19 17:25	05/30/19 23:31	1
1,1-Dichloroethene	ND	40	ug/Kg	05/30/19 17:25	05/30/19 23:31	1
1,1-Dichloropropene	ND	40	ug/Kg	05/30/19 17:25	05/30/19 23:31	1
Carbon tetrachloride	ND	20	ug/Kg	05/30/19 17:25	05/30/19 23:31	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121	05/30/19 17:25	05/30/19 23:31	1
4-Bromofluorobenzene (Surr)	100		80 - 120	05/30/19 17:25	05/30/19 23:31	1
Dibromofluoromethane (Surr)	97		80 - 120	05/30/19 17:25	05/30/19 23:31	1
Toluene-d8 (Surr)	103		80 - 120	05/30/19 17:25	05/30/19 23:31	1

Lab Sample ID: LCS 580-302038/2-A

Matrix: Solid

Analysis Batch: 302041

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 302038

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichlorotrifluoroethane	800	903		ug/Kg		113	70 - 138	
1,1-Dichloroethene	800	891		ug/Kg		111	58 - 150	
1,1-Dichloropropene	800	929		ug/Kg		116	69 - 150	
Carbon tetrachloride	800	912		ug/Kg		114	66 - 150	

Eurofins TestAmerica, Spokane

Page 27 of 39

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-302038/2-A

Matrix: Solid

Analysis Batch: 302041

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 302038

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 80 - 121 98 4-Bromofluorobenzene (Surr) 98 80 - 120 Dibromofluoromethane (Surr) 99 80 - 120 80 - 120 Toluene-d8 (Surr) 101

Lab Sample ID: LCSD 580-302038/3-A

Matrix: Solid

Analysis Batch: 302041

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 302038

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2-Trichlorotrifluoroethane	800	913		ug/Kg		114	70 - 138	1	17
1,1-Dichloroethene	800	900		ug/Kg		113	58 - 150	1	29
1,1-Dichloropropene	800	928		ug/Kg		116	69 - 150	0	11
Carbon tetrachloride	800	924		ug/Kg		115	66 - 150	1	12

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 121
4-Bromofluorobenzene (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

MB MB

Lab Sample ID: MB 580-300559/1-A

Matrix: Solid

Analysis Batch: 300565

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 300559

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		05/13/19 12:53	05/13/19 14:23	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		50 - 150				05/13/19 12:53	05/13/19 14:23	1
Trifluorotoluene (Surr)	177	X	50 - 150				05/13/19 12:53	05/13/19 14:23	1

Lab Sample ID: LCS 580-300559/2-A

Matrix: Solid

Analysis Batch: 300565

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 300559

%Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits 40.0 Gasoline 35.9 mg/Kg 90 80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		50 - 150
Trifluorotoluene (Surr)	104		50 ₋ 150

Client: GeoEngineers Inc Job ID: 590-10950-1

Spike

Added

40.0

LCSD LCSD

36.1

Result Qualifier

Unit

mg/Kg

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-300559/3-A

Matrix: Solid

Analyte

Gasoline

Analysis Batch: 300565

Client Sample ID: Lab Control Sample Dup

%Rec

90

Prep Type: Total/NA

Prep Batch: 300559 %Rec. **RPD** Limits RPD Limit

80 - 120 10

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 103 50 - 150 103 Trifluorotoluene (Surr) 50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-22223/1-A

Matrix: Solid

Analysis Batch: 22214

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 22223

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 10 05/20/19 14:09 mg/Kg 05/20/19 18:22 Diesel Range Organics (DRO) (C10-C25) ND 25 mg/Kg 05/20/19 14:09 05/20/19 18:22 Residual Range Organics (RRO) (C25-C36)

MB MB

%Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 73 50 - 150 05/20/19 14:09 05/20/19 18:22 n-Triacontane-d62 80 50 - 150 05/20/19 14:09 05/20/19 18:22

Lab Sample ID: LCS 590-22223/2-A

Matrix: Solid

Analysis Batch: 22214

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 22223

Spike LCS LCS %Rec. Result Qualifier Added Analyte Unit D %Rec Limits Diesel Range Organics (DRO) 66.7 59.2 mg/Kg 89 50 - 150 (C10-C25) 66.7 67.2 101 mg/Kg 50 - 150 Residual Range Organics (RRO)

(C25-C36)

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 85 n-Triacontane-d62 94 50 - 150

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-22110/2-A

Matrix: Solid

Analysis Batch: 22160

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 22110

MB MB

MDL Unit Result Qualifier RL Dil Fac Analyte D Prepared Analyzed Cadmium $\overline{\mathsf{ND}}$ 1.0 mg/Kg 05/09/19 11:33 05/13/19 11:41

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 590-22110/1-A

Matrix: Solid

Analysis Batch: 22160

Analyte Cadmium

Spike Added 50.0

53.0

LCS LCS Result Qualifier

Unit mg/Kg

D %Rec

106 80 - 120

Client Sample ID: Lab Control Sample

Prep Batch: 22110 %Rec. Limits

Prep Type: Total/NA

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP1(0-2)

Date Collected: 05/06/19 10:40 Date Received: 05/08/19 16:10 Lab Sample ID: 590-10950-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			22116	05/09/19 14:46	SJK	TAL SPK

Client Sample ID: GEI015-DP1(0-2)

Date Collected: 05/06/19 10:40 Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-1 **Matrix: Solid**

Percent Solids: 85.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.65 g	5 mL	301072	05/17/19 15:00	ASJ	TAL SE
Total/NA	Analysis	8260C		1	1.075 mL	43 mL	301360	05/18/19 00:24	TL1	TAL SE
Total/NA	Prep	5035	RA		9.65 g	10 mL	301539	05/23/19 12:00	ASJ	TAL SE
Total/NA	Analysis	8260C	RA	1	1.075 mL	43 mL	301553	05/23/19 19:09	CJ	TAL SE
Total/NA	Prep	5035			9.65 g	10 mL	300559	05/13/19 12:53	Z1R	TAL SE
Total/NA	Analysis	NWTPH-Gx		1	1.075 mL	43 mL	300565	05/13/19 17:23	T1W	TAL SE
Total/NA	Prep	3550C			15.70 g	5 mL	22223	05/20/19 14:09	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1			22214	05/20/19 21:59	NMI	TAL SP
Total/NA	Prep	3050B			1.22 g	50 mL	22110	05/09/19 11:33	JSP	TAL SP
Total/NA	Analysis	6010C		1			22160	05/13/19 12:53	JSP	TAL SP

Client Sample ID: GEI015-DP2(0-1.5)

Date Collected: 05/06/19 10:50

Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-2 **Matrix: Solid**

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			22116	05/09/19 14:46	SJK	TAL SPK	

Client Sample ID: GEI015-DP2(0-1.5)

Lab Sample ID: 590-10950-2 Date Collected: 05/06/19 10:50 **Matrix: Solid** Date Received: 05/08/19 16:10 Percent Solids: 88.7

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.01 g	5 mL	301072	05/17/19 15:00	ASJ	TAL SEA
Total/NA	Analysis	8260C		1	1.075 mL	43 mL	301360	05/18/19 00:50	TL1	TAL SEA
Total/NA	Prep	5035	RA		7.01 g	10 mL	301539	05/23/19 12:00	ASJ	TAL SEA
Total/NA	Analysis	8260C	RA	1	1.075 mL	43 mL	301553	05/23/19 19:34	CJ	TAL SEA
Total/NA	Prep	5035			7.01 g	10 mL	300559	05/13/19 12:53	Z1R	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	1.075 mL	43 mL	300565	05/13/19 17:53	T1W	TAL SEA
Total/NA	Prep	3550C			15.29 g	5 mL	22223	05/20/19 14:09	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			22214	05/20/19 22:18	NMI	TAL SPK
Total/NA	Prep	3050B			1.25 g	50 mL	22110	05/09/19 11:33	JSP	TAL SPK
Total/NA	Analysis	6010C		1			22160	05/13/19 13:06	JSP	TAL SPK

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: GEI015-DP3(0-1)

Date Collected: 05/06/19 11:00 Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-3

Matrix: Solid

Batch Batch Dil Initial Final **Batch** Prepared Method or Analyzed **Prep Type** Type Run **Factor** Amount Amount Number Analyst Lab Total/NA 22116 05/09/19 14:46 SJK Analysis Moisture TAL SPK

Client Sample ID: GEI015-DP3(0-1)

Date Collected: 05/06/19 11:00 Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-3 Matrix: Solid

Percent Solids: 90.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.6 g	5 mL	301072	05/17/19 15:00	ASJ	TAL SE
Total/NA	Analysis	8260C		1	1.075 mL	43 mL	301360	05/18/19 01:15	TL1	TAL SE
Total/NA	Prep	5035	RA		9.6 g	10 mL	301539	05/23/19 12:00	ASJ	TAL SE
Total/NA	Analysis	8260C	RA	1	1.075 mL	43 mL	301553	05/23/19 20:00	CJ	TAL SE
Total/NA	Prep	5035			9.6 g	10 mL	300559	05/13/19 12:53	Z1R	TAL SE
Total/NA	Analysis	NWTPH-Gx		1	1.075 mL	43 mL	300565	05/13/19 18:23	T1W	TAL SE
Total/NA	Prep	3550C			15.95 g	5 mL	22223	05/20/19 14:09	NMI	TAL SPI
Total/NA	Analysis	NWTPH-Dx		1			22214	05/20/19 22:38	NMI	TAL SP
Total/NA	Prep	3050B			1.26 g	50 mL	22110	05/09/19 11:33	JSP	TAL SP
Total/NA	Analysis	6010C		1			22160	05/13/19 13:10	JSP	TAL SP

Client Sample ID: GEI015-DP4(0-2)

Date Collected: 05/06/19 11:10

Date Received: 05/08/19 16:10

Lab Sample ID: 590-10950-4

Matrix: Solid

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			22116	05/09/19 14:46	SJK	TAL SPK

Client Sample ID: GEI015-DP4(0-2)

Lab Sample ID: 590-10950-4 Date Collected: 05/06/19 11:10 **Matrix: Solid** Date Received: 05/08/19 16:10 Percent Solids: 82.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.42 g	5 mL	301072	05/17/19 15:00	ASJ	TAL SEA
Total/NA	Analysis	8260C		1	1.075 mL	43 mL	301360	05/18/19 01:40	TL1	TAL SEA
Total/NA	Prep	5035	RA		9.42 g	10 mL	301539	05/23/19 12:00	ASJ	TAL SEA
Total/NA	Analysis	8260C	RA	1	1.075 mL	43 mL	301553	05/23/19 20:25	CJ	TAL SEA
Total/NA	Prep	5035			9.42 g	10 mL	300559	05/13/19 12:53	Z1R	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	1.075 mL	43 mL	300565	05/13/19 18:53	T1W	TAL SEA
Total/NA	Prep	3550C			15.25 g	5 mL	22223	05/20/19 14:09	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1			22214	05/20/19 22:58	NMI	TAL SPK
Total/NA	Prep	3050B			1.28 g	50 mL	22110	05/09/19 11:33	JSP	TAL SP
Total/NA	Analysis	6010C		1			22160	05/13/19 13:14	JSP	TAL SP

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Client Sample ID: Trip Blank

Lab Sample ID: 590-10950-5 Date Collected: 05/06/19 10:40

Matrix: Solid

Date Received: 05/08/19 16:10

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5035 8260C	Run	Dil Factor	Initial Amount 10 g 1.075 mL	Final Amount 10 mL 43 mL	Batch Number 301539 301553	Prepared or Analyzed 05/23/19 12:00 05/23/19 20:50	 Lab TAL SEA TAL SEA
Total/NA Total/NA	Prep Analysis	5035 8260C	RA RA	1	1.075 IIIL 10 g 1.075 mL	10 mL 43 mL	302038 302041	05/30/19 17:25 05/31/19 00:47	 TAL SEA TAL SEA

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-10950-1

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Laboratory: Eurofins TestAmerica, Spokane

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-025	12-07-19
Oregon	NELAP	10	4137	12-07-19
Washington	State Program	10	C569	01-06-20

Laboratory: Eurofins TestAmerica, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-20
ANAB	DoD		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-22
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-20

6/3/2019

2

3

4

_

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Klickitat Cty Rd Dept Golden Shop/00504-

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SEA
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC)	NWTPH	TAL SEA
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
5035	Closed System Purge and Trap	SW846	TAL SEA

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

-

Job ID: 590-10950-1

3

4

5

0

_

9

10

44

10

Page 36 of 39

Eurofins TestAmerica, Spokane

11922 East 1st Ave Spokane. WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

Chain of Custody Record

					-		
÷	e	u	r	O	ti	n	S

Environment Testing TestAmerica

Client Information	Sampler:	rr	Lab	PM:					Carrier Tracking No(s):		COC No: 590-4574-1476.29
Client Contact: Scott Lathen	Phone: (406) 890		E-Ma	ail:			-				Page:
cont Latrieri	1906) 070)-1310		_							Page 29 of 29 Job #:
GeoEngineers Inc							Ana	alysis Req	uested		300 #-
523 East Second Ave	Due Date Requested:	STD									Preservation Codes:
Sity: Spokane	TAT Requested (days	3):									A - HCL
State, Zip:	STD			1100			1				C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S
NA, 99202						1				18	E - NaHSO4 Q - Na2SO3
Phone:	PO#: 0500	1-150-00				ORPH				16	F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
mail:	WO#:	1 130-00		No.	1	100					H - Ascorbic Acid T - TSP Dodecahydrate U - Acetone U - Acetone
lathen@geoengineers.com Project Name:	Project #:			No)	1	1 40				5	J - DI Water V - MCAA K - EDTA W - pH 4-5
	0504-	150-00		le (Yes	100	HA				container	L - EDA Z - other (specify)
ite:	SSOW#:			Sample ISD (Ye	6	5 6	13			of con	
,		Sample	Matrix	Bred S	5	7-	13			1000	
		Туре	(Wewater, Sesolid,	Filte	0	š Č	0	141		Number	
Sample Identification	Sample Date	Sample (C=comp, Time G=grab)	D=waste/off,	Field	3	5	Cad			Total	
Authors are the second of the	Sample Bate	Preservat		XX	1988	100	A STORY	333 623 627		×	Special Instructions/Note:
GEIOIS-DPI (0-2) GEIOIS-DPI (0-1.5) GEIOIS-DPI (0-1)	5/4/19	040 G	5	T	X,	< X	X				
GEI015-DP2(6-1.5)	1	050	1		X	XX					
GEI015-DP3(0-1)	1	100			X	< x	X				
GEI015-DP4(0-2)	4 1	110			X	XX	X				
GEIO15-DP4(0-2) Trip blank	V 1	1040	1		X						Custody
				+		+	\forall		590-10950 CF	ain of	Custody —
			_	++-		+	++				
				+-		+	\vdash			-	
										19	
										13	
				+						13	
Possible Hazard Identification			_	Sai	mple L	ispos	al (Af	ee may be a	ssessed if samples are	retain	ned longer than 1 month)
	Poison B Unknow	wn Radiological			Rel	urn To	Client		Disposal By Lab		hive For Months
Deliverable Requested: I, II, III, IV, Other (specify)								Requiremen	nts:		
Empty Kit Relinquished by:	D	Pate:		Time:	_	_	_		Method of Shipment:	_	
Relinguished by:	Date/Time:		Company		Receive	ed by	1	1.	Date/Time:		Company
My Justin Orr	5/7/19/	0945	(25-6			5.	LA	they	Date/Time:	117	0943 (9-ET
the HI the	Date/Time: 5/8/19		Company	7	Receive	26	2		Date/Time/		0800 Company GET
Relinquished by	Date/Time:		Company	_	Reseiv	ed by:	~ 21	17/06	Datestinie	3/19	Company Company
Custody Seals Intact: Custody Seal No.:	5/8/17	1610	UC!		1	WI	11.11	CALOR	5/6	119	16-10 TASTO
Δ Yes Δ No	5/8/17	1610	Copipany			AL.	ature(s),	C and Other Rei		119	16:10 Company SPO

Eurofins TestAmerica, Spokane

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

🐉 eurofins

Environment Testing TestAmerica

Phone (509) 924-9200 Fax (509) 924-9290																							
Client Information (Sub Contract Lab)						PM: Car ngton, Randee E					Carrier Tracking No(s):						COC No: 590-4328.1						
Client Contact: Shipping/Receiving	Phone:			1	Mail: indee.							State of Origin: Washington						Page: Page 1 of 1					
Company: TestAmerica Laboratories, Inc.						creditati ate Pri								<u> </u>	***************************************				Job#:				
Address:	Due Date Reques	ted:			- 100	ate i i	ograii	1 - 444	351111	Bioli									590-10950-1 Preservation Cod	ine:			
5755 8th Street East,	5/20/2019								Α	nalys	is	Regi	uest	ed					A - HCL	M - Hexane			
City: Tacoma	TAT Requested (c	lays):													T				B - NaOH C - Zn Acetate	N - None O - AsNaO2			
State, Zip: WA, 98424																			D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3			
Phone: 253-922-2310(Tel) 253-922-5047(Fax)	PO #:						GRO												F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4			
Email:	WO #:				ON NO														H - Ascorbic Acid I - Ice J - DI Water	T - TSP Dode U - Acetone V - MCAA	canydrate		
Project Name: Klickitat Cty Rd Dept Golden Shop/00504-	Project #: 59001774					Ž	orth,											aliners	K - EDTA L - EDA	W - pH 4-5 Z - other (spec	cify)		
Site:	SSOW#:				ᇻ	مِي الْحُدِي	F											cont	Other:				
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wewater, S=solid, O=waste/oil, BY=Tissue, A=A	Field Filtered St	Perform MS/MSD (Yes or No)	NWTPH_Gx/5035A_FM Northwest							7774477				Total Number of	Special In	structions/N	lote:		
	><	><	\$654022900A72040A00003550064956	ation Code:	対	X												₹	Special III	ia de aoris/i	ote.		
GEI015-DP1(0-2) (590-10950-1)	5/6/19	10:40 Pacific		Solid		×	X			W. 100 (100 100 100 100 100 100 100 100 10								2	Samples collected	in 5ml MeOH	vials		
GEI015-DP2(0-1.5) (590-10950-2)	5/6/19	10:50 Pacific		Solid	11	×	×	 			_	\dagger	1			+		2	Samples collected	n 5ml MeOH	vials		
GEI015-DP3(0-1) (590-10950-3)	5/6/19	11:00 Pacific		Solid	11	×	×	1			\top	\top		+	1			第410章	Samples collected	n 5ml MeOH	vials		
GEI015-DP4(0-2) (590-10950-4)	5/6/19	11:10 Pacific		Solid	11	×	×				1	1	1		 			2	Samples collected	n 5ml MeOH	vials		
Trip Blank (590-10950-5)	5/6/19	10:40 Pacific		Solid		×									1	\prod		7	Samples collected	n 5ml MeOH	vials		

			***************************************		Ш																		
					Ш																		
					Ш																		
Note: Since laboratory accreditations are subject to change, TestAmerica Laborato currently maintain accreditation in the State of Origin listed above for analysis/tests Laboratories, Inc. attention immediately. If all requested accreditations are current	anduk berig analyzi	eo, u le sambles	inusi de sni	poed back to it	18 LAST	America	langes	וח יחחוני	Other	inetnicti	SEC 14	s. This vill be p	samp provide	e shipr d. Any	nent is chang	forwar jes to a	ded un	ider c	chain-of-custody. If the status should be bro	e laboratory do ught to TestAm	es not erica		
Possible Hazard Identification					[5	Sampl	e Dis	posa	I(A	fee ma	y b	e ass	esse	d if sa	mple	es are	reta	inec	l longer than 1 i	nonth)			
Unconfirmed						\Box	Returi	r To (Client			"1		By La			_		ve For	Months			
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ible Rank: 2			S					Requ	iren	nents	:		-								
Empty Kit Relinquished by:		Date:			Time	e:							Ме	thod of	Shipm	ent:	· · · · · · · · · · · · · · · · · · ·						
Relinquished by: VC (900 C	Date/Time: 5 9 1 C	1	2,02	Company TA-RI	\mathcal{DC}		eived b		Y 5,	ر ق (an	Į.,			Date/	Time:	/15	,	0935	Company TA -	Sea		
Relinquished by:	Date/Time:			Company	· ·	Rec	eived b	y:							Date/	Time:				Company			
Relinquished by:	Date/Time:			Company	***************************************	Rec	eived b	y:							Date/	Time:				Company			
Custody Seals Intact: Custody Seal No.:						Coo	er Ten	perati	ıre(s) °	C and O	ther	Remar	ks:				Λ ο						

Client: GeoEngineers Inc

Job Number: 590-10950-1

Login Number: 10950

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Client: GeoEngineers Inc

Job Number: 590-10950-1

Login Number: 10950

List Number: 2 Creator: McMorris, Regan List Source: Eurofins TestAmerica, Seattle

List Creation: 05/10/19 02:28 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Refer to Job Narrative for details.</td>	N/A	Refer to Job Narrative for details.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Klickitat County Public Works Department facility located at 1181 West Broadway in Goldendale, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations"

provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

