

August 18, 2023 Project No. M0615.20.009

Steve Teel, LHG, Cleanup Project Manager/Hydrogeologist Washington State Department of Ecology Toxics Cleanup Program, Southwest P.O. Box 47775 Olympia, WA 98504

Re: Supplemental Subsurface Investigation, Potter Property Taylor Way and Alexander Avenue Fill Area

Dear Steve Teel:

On behalf of the Port of Tacoma (the Port), Maul Foster & Alongi, Inc. (MFA), has prepared this supplemental subsurface investigation report to describe the subsurface field activities executed and data collected at the Port-owned Potter Property, located at 1801 E Alexander Avenue in Tacoma, Washington (the Potter Property) (see Figure 1). This investigation was conducted to support the ongoing data gaps investigation at the Taylor Way and Alexander Avenue Fill Area Site (TWAAFA site) (Facility/Site ID No. 1403183; Cleanup Site ID No. 4692) that includes the Potter Property.

MFA performed field activities at the Potter Property consistent with the Washington State Department of Ecology (Ecology)-approved Supplemental Investigation Work Plan (MFA 2023).

# Purpose

The investigation activities described in this report were conducted in response to Ecology's December 19, 2022, comments (Ecology 2022) on MFA's *Indoor Air Sampling and Analysis Plan, Former Potter Property* (MFA 2022b).

The field investigation activities described in this report included subsurface investigation in three areas of the Potter Property not previously evaluated. The boring locations were within or immediately adjacent to the existing buildings where sub-slab total petroleum hydrocarbon (TPH) and volatile organic compound (VOC) concentrations have been measured above Model Toxics Control Act (MTCA) Method B soil gas screening levels (MFA 2022a).

## Background

# **Property Description**

The Potter Property is owned by the Port and operated by tenant Handan, Inc., a trailer and shipping container repair company. Two buildings are present on the Property: the shop building and the conjoined Quonset huts (Quonset Hut 1 and Quonset Hut 2) (see Figure 2).

# **Property History and Previous Investigations**

Releases from historical unlined waste-oil storage and treatment ponds on the adjacent Burlington Environmental Tacoma property resulted in light nonaqueous-phase liquid (LNAPL) in groundwater that extended to beneath the Potter Property (Figure 2). LNAPL recovery trenches were installed in 1999 and 2000 by Stericycle to address the migration of LNAPL. The trench installed in 1999 was located on the Stericycle property (north of the Potter property) and ceased operations in December 1999 after low LNAPL-recovery rates were observed and was abandoned as part of planned construction activities in 2019. The trench installed in 2000 is located partially on the Potter property; measurable quantities of LNAPL have not been detected in it (DOF 2020).

Auto fluff has been used as fill material on the adjacent Stericycle property and extends beyond the property boundary and onto portions of the Potter Property (Figure 2). Auto fluff consists of materials from the demolition and shredding of automobiles and may include wire fragments, glass shards, upholstery, shredded tires and rubber, paint, metal, string, and plastic. These materials are potential sources of petroleum hydrocarbons (gasoline-, diesel-, and oil-range hydrocarbons), metals, VOCs, semivolatile organic compounds (SVOCs); and polychlorinated biphenyls (PCBs; DOF 2020).

MFA conducted a sub-slab soil gas investigation in 2022, the results of which indicated TPH and some VOCs (heptane, n-hexane, and chloroform) exceeded MTCA Method B and/or Method C sub-slab soil gas screening levels in the Quonset hut 2; and tetrachloroethene (PCE), trichloroethene (TCE), and TPH exceeded MTCA Method B and/or MTCA Method C sub-slab soil gas screening levels in the shop building (see Figure 2) (MFA 2022a).

Based on the results of the soil gas sampling, Ecology requested that soil samples be collected from the Potter Property to investigate the source of elevated sub-slab concentrations identified in a June 2022 investigation (MFA 2022a).<sup>1</sup> Ecology requested soil samples be analyzed for TPH and VOCs, as well as PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals based on historical data collected from the TWAAFA site. PCBs exceeding site-specific screening levels have been historically detected in soil samples collected on the neighboring Burlington Environmental property (formerly referred to as Stericycle Parcel A) (Sweet-Edwards 1988). PCBs have not been detected at concentrations exceeding screening levels in six soil samples previously collected from the Potter Property. Benzo(a)pyrene (a PAH constituent) has been detected at a concentration exceeding site-specific screening level in one of the ten soil samples previously collected from the Potter Property. Annotated versions of relevant historical soil data tables and figures are included in Attachment A of the Supplemental Investigation Work Plan (MFA 2023).

# **Field Investigation Activities**

On June 27, 2023, MFA conducted fieldwork activities in accordance with the Ecology-approved *Supplemental Investigation Work Plan* (MFA 2023). Field photographs from the investigation are provided in Attachment A.

MFA coordinated public and private underground utility locates before beginning drilling on the Potter Property. Under MFA oversight, Anderson Environmental Contracting, LLC, of Kelso, Washington, advanced three borings via direct-push drilling methods to 10 feet below ground surface (bgs) on the Potter Property (see Figure 2):

<sup>&</sup>lt;sup>1</sup> Ecology provided comments (Ecology 2022) on MFA's *Indoor Air Sampling and Analysis Plan, Former Potter Property* (MFA 2022b). Ecology comments pertaining to sub-slab soil gas and indoor air sampling at the Potter Property are addressed in the version of the *Indoor Air Sampling and Analysis Plan, Former Potter Property*, that was revised on January 12, 2023 (MFA 2022b).

R:\0615.20 Port of Tacoma - TWAAFA\Documents\009\_2023.08.18 Potter Subsurface Investigation Report\Lf\_Potter Subsurface Investigation Report.docx

<sup>© 2023</sup> Maul Foster & Alongi, Inc.

- TWA-SB06: located in the northeast part of Quonset Hut 2
- TWA-SB07: located in the center of the shop building
- TWA-SB08: located in the southwest part of the shop building

Soil borings were advanced in locations on the Potter Property relative to existing sub-slab vapor pin locations and to historical sample locations that exhibited screening level exceedances, as shown in Figure 2.

MFA prepared geologic boring logs for each location under the direct supervision of a geologist licensed in the State of Washington (see Attachment B). Soil types were described; visual and olfactory observations were recorded; and soil headspace was screened for organic vapors using a photoionization detector. No auto fluff was identified in the soil cores of the borings. Soil conditions during drilling generally consisted of approximately 1.5 feet of sandy gravel/gravelly sand with silt overlying sand with silt to the maximum depth observed of 10 feet bgs. Soil samples were collected in laboratory-supplied containers. Strong odors and an oily sheen were observed in boring TWA-SB06 (Attachment A). Two soil samples, including one field duplicate (TWA-09-SB06\_2.2-2.8\_0627), were collected at TWA-SB06 between 2.2 and 2.8 feet bgs where the greatest field indications of contamination were observed. A deeper soil sample (TWA-SB06\_8.2-8.8\_0627) was collected between 8.2 and 8.8 feet bgs within TWA-SB06 where field indications of contamination were not observed. No field indications of contamination were observed in borings TWA-SB08.

Samples were collected from the following depths:

- TWA-SB06: between 2.2 and 2.8 feet bgs and between 8.2 and 8.8 feet bgs
- TWA-SB07: between 2.4 and 2.8 feet bgs
- TWA-SB08: between 2.6 and 3.2 feet bgs

Borings were backfilled with hydrated bentonite and the ground surface was restored to match existing grade following completion of sampling and logging.

### **Management of Investigation-Derived Waste**

Investigation-derived waste (i.e., soil cuttings) was drummed, labeled, and stored on the adjacent Parcel 110 property at 3401 Lincoln Avenue in Tacoma, Washington in a Washington State Department of Transportation–approved container, pending off-site disposal.

## Analytical Methods and Quality Control/Quality Assurance

Samples were submitted to Friedman & Bruya, Inc., a Washington-State accredited laboratory located in Seattle, Washington.

Soil samples were analyzed for the following, consistent with the Ecology (Ecology)-approved Supplemental Investigation Work Plan):

- TPH by Northwest Total Petroleum Hydrocarbons Method
- Full suite VOCs by U.S. Environmental Protection Agency (EPA) Method 8260D
- Semivolatile organic compounds (SVOCs, including PAHs) by EPA Method 8270E

Because the potential source(s) of the petroleum hydrocarbons and VOCs may be colocated with other contaminants, soil samples were also analyzed for the following:

- PCB Aroclors by EPA Method 8082A
- Metals (arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, and zinc) by EPA Method 6020B

The laboratory report is provided in Attachment C. Sample analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. A data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods is provided in Attachment D. All data, with the appropriate data qualifiers assigned, are considered acceptable for their intended use.

# Results

Analytical results are screened against the site-specific screening levels provided in DOF's *Final Data Gaps Work Plan, Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington* (DGWP, DOF 2022), referred to as the DGWP screening level in the table. Chemicals without site-specific screening levels were screened against MTCA Method A or Method B criteria if MTCA Method A criteria were not available. Washington state natural background concentrations for metals are provided in the table for reference.

The following analytes were detected above screening levels (see table):

- Gasoline-range hydrocarbons exceeded the DGWP screening level (500 mg/kg) in shallow soil from TWA-SB06 (530 mg/kg [estimated]).
- Diesel-range hydrocarbons exceeded the DGWP screening level (2,000 mg/kg) in shallow soil from TWA-SB06 (14,000 mg/kg [estimated]).<sup>2</sup>
- Motor oil-range hydrocarbons exceeded the DGWP screening level (2,000 mg/kg) in shallow soil from TWA-SB06 (7,400 mg/kg [estimated]).<sup>3</sup>
- 1-methylnaphthalene exceeded the MTCA Method B cleanup level (CUL) (34 mg/kg) in shallow soil from TWA-SB06 (53 mg/kg).<sup>4</sup>

PCB Aroclors, metals, VOCs, and SVOCs (excluding 1-methylnepthalene) remained below their respective screening levels in the samples analyzed.

## Summary

As requested by Ecology, soil samples were analyzed for TPH, VOCs, SVOCs, PCBs, and metals to investigate the source of the elevated sub-slab concentrations and extent of auto fluff on the Property.

Auto fluff was not identified in any of the soil borings advanced on the Property. Further, there were no detections of PCB Aroclors above screening levels in soil samples (see table). PCBs have been previously associated with auto fluff (DOF 2020). Therefore, it does not appear that auto fluff material extends below Quonset Hut 2 or the shop building.

 $<sup>^2</sup>$  In the shallow soil field duplicate collected from TWA-SB06, diesel-range hydrocarbons were detected at an estimated concentration of 13,000 mg/kg.

<sup>&</sup>lt;sup>3</sup> In the field duplicate collected from TWA-SB06, motor-oil-range hydrocarbons were detected at an estimated concentration of 7,200 mg/kg.

<sup>&</sup>lt;sup>4</sup> In the field duplicate collected from TWA-SB06, 1-methylnaphthalene was detected at a concentration of 49 mg/kg. R:\0615.20 Port of Tacoma - TWAAFA\Documents\009\_2023.08.18 Potter Subsurface Investigation Report\Lf\_Potter Subsurface Investigation Report.docx

<sup>© 2023</sup> Maul Foster & Alongi, Inc.

During the 2022 sub-slab soil gas investigation, tetrachloroethene (PCE) and trichloroethene (TCE) exceeded MTCA Method B and MTCA Method C sub-slab soil gas screening levels in the shop building (see Figure 2) (MFA 2022a). There were no detections above screening criteria in soil samples for TPH, metals, PCB Aroclors, VOCs (including PCE and TCE), or SVOCs collected in the shop building (TWA-SB07 and TWA-SB08) (see table). Therefore, subsurface soil beneath the shop building does not appear to be a source associated with the elevated PCE or TCE sub-slab concentrations.

There were no detections above screening levels for metals, PCBs, or VOCs in TWA-SB06 within Quonset Hut 2 (see Table). Detections of TPH (including gasoline-, diesel-, and motor oil-range hydrocarbons) and one SVOC (1-methylnaphthalene) were identified above screening levels in the shallow soil sample (and field duplicate) collected at TWA-SB06 between 2.2 and 2.8 feet bgs (see table). TWA-SB06 was located near monitoring well MW-1 in the northern portion of Quonset Hut 2. The soil core at TWA-SBO6 had observations of oily sheen and strong hydrocarbon odors, consistent with historical observations of free product at nearby monitoring well MW-1. A deeper soil sample collected at TWA-SB06 between 8.2 and 8.8 feet bgs did not exceed screening criteria. During the 2022 sub-slab soil gas investigation, TPH and a few VOCs (heptane, n-hexane, and chloroform) exceeded MTCA Method B and MTCA Method C sub-slab soil gas screening levels in the northern portion of Quonset Hut 2 (see Figure 2; MFA 2022a). The elevated detections and observations of TPH in soil are colocated with the elevated sub-slab concentrations of TPH at sub-slab vapor pins TWA-SV-35 and TWA-SV-36 within the northern portion of Quonset Hut 2. Therefore, it appears there is a shallow soil source of TPH in the vicinity of TWA-SB06 that is contributing to elevated TPH subslab soil gas concentrations in Quonset Hut 2 (MFA 2022a). There were detections of n-hexane in the shallow soil sample at TWA-SB06; however, the detections were well below screening levels. No other VOCs had detections in the soil samples collected at TWA-SB06.

If you have any questions regarding this letter, please contact us.

Sincerely,

Maul Foster & Alongi, Inc.

Alth

Audrey Hackett Senior Environmental Scientist

R:\0615.20 Port of Tacoma - TWAAFA\Documents\009\_2023.08.18 Potter Subsurface Investigation Report\Lf\_Potter Subsurface Investigation Report.docx © 2023 Maul Foster & Alongi, Inc.

Carolyn Wise, LHG Project Hydrogeologist

# Attachments

- References
- Limitations
- Figures
- Table
- A—Photo Array
- **B**—Boring Logs
- C-Analytical Laboratory Report
- D-Data Validation Memorandum

cc: Scott Hooton, Port of Tacoma

- Tasya Gray, Dalton, Olmsted & Fuglevand, Inc.
- Kim Seely, Coastline Law Group PLLC
- Douglas Steding, Northwest Resource Law PLLC

# References

- DOF. 2020. Final Data Gaps Work Plan, Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington. Prepared by Dalton, Olmsted & Fuglevand, Inc.: Seattle, WA. July 29.
- Ecology. 2021. Steve Teel, LHG, Washington State Department of Ecology. Comments on the Aboveground Site Conditions Memorandum and Existing Groundwater Monitoring Network Evaluation and Recommendations Memorandum. Letter to Tasya Gray, LG, Dalton, Olmsted & Fuglevand, Inc., and Scott Hooton, Port of Tacoma. May 5.
- Ecology. 2022. Steve Teel, LHG, Washington State Department of Ecology. *Comments on Indoor Air* Sampling and Analysis Plan, Former Potter Property. Letter to Tasya Gray, LG, Dalton, Olmsted & Fuglevand, Inc. and Scott Hooton, Port of Tacoma. December 19.
- MFA. 2022a. Vapor Intrusion Assessment Report, Taylor Way and Alexander Avenue Fill Area, Former Potter Property. Prepared for the Port of Tacoma. Maul Foster & Alongi, Inc.: Seattle, WA. October 6.
- MFA. 2022b. Indoor Air Sampling and Analysis Plan, Taylor Way and Alexander Avenue Fill Area, Former Potter Property. Prepared for the Port of Tacoma. Maul Foster & Alongi, Inc.: Seattle, WA. November 30. Revised January 12, 2023.
- MFA. 2023. Supplemental Investigation Work Plan, Port Parcel 110 and Potter Property, Taylor Way and Alexander Avenue Fill Area. Prepared for the Port of Tacoma. February 21.
- Sweet-Edwards. 1988. Phase II Hydrogeological Investigation, Parcel A. Prepared for Chemical Processors, Inc. Sweet-Edwards/EMCON, Inc.: Redmond, WA. April.

# Limitations

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

# **Figures**



Path: X:\0615.20\09\Fig1\_Prop



M0615 20 009

Notes Potter Property = 1801 E Alexander Avenue in Tacoma, Washington. TWAAFA = Taylor Way and Alexander Avenue Fill Area.

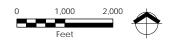


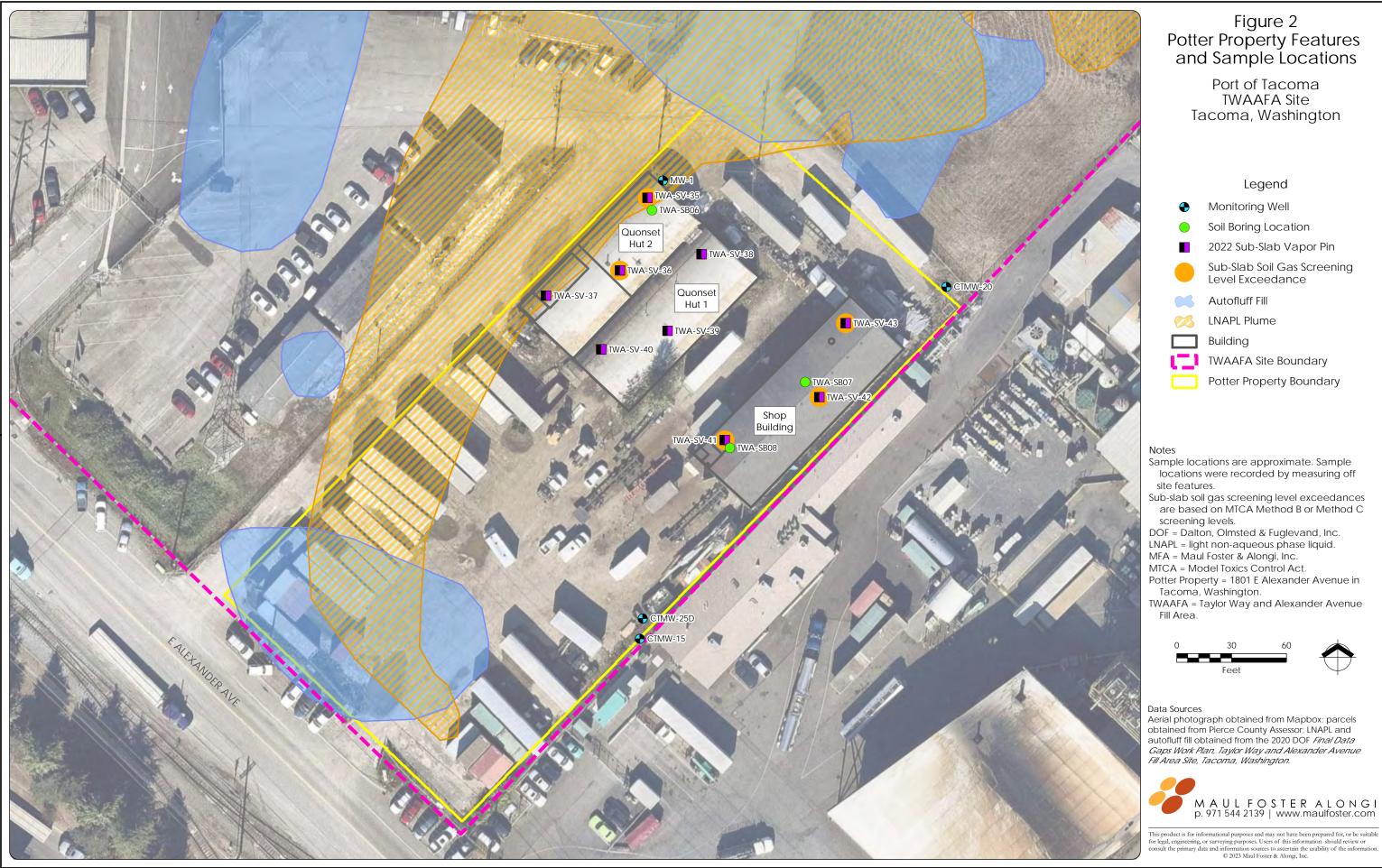
This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. © 2023 Maul Foster & Alongi, Inc.

## Legend



Potter Property





#### Data Sources

Data sources
U.S. Geological Survey (2021) 7.5-minute topographic quadrangle: Tacoma, Washington.
Township 21 North, Range 3 East, Section 35.
Tax parcel obtained from Pierce County Assessor.
TWAAFA site boundary obtained from Exhibit A of Agreed Order No. DE 14260.

# Figure 1 Property Location

Port of Tacoma Former Potter Property 1801 E Alexander Avenue Tacoma, Washington







# Table



### Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

| Location:                                  |       |                                                           |         |                                                    |                           | TWA-SB06                    |                           |                           | TWA-SB08                  |
|--------------------------------------------|-------|-----------------------------------------------------------|---------|----------------------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Building:                                  |       |                                                           |         |                                                    |                           | Quonset Hut 2               |                           | Shop Building             | Shop Building             |
| Sample Name:                               |       | MTCA Method<br>A, Unrestricted<br>Land Use <sup>(2)</sup> |         | Washington<br>State<br>Background<br>Metals, Puget | TWA-SB06_2.2-<br>2.8_0627 | TWA-9-SB06_2.2-<br>2.8_0627 | TWA-SB06_8.2-<br>8.8_0627 | TWA-SB07_2.4-<br>2.8_0627 | TWA-SB08_2.6-<br>3.2_0627 |
| Sample Date:                               | Level | Land Use                                                  |         | Sound <sup>(3)</sup>                               | 06/27/2023                | 06/27/2023                  | 06/27/2023                | 06/27/2023                | 06/27/2023                |
| Sample Type:                               |       |                                                           |         |                                                    | Ν                         | FD                          | Ν                         | Ν                         | Ν                         |
| Sample Depth (ft bgs):                     |       |                                                           |         |                                                    | 2.2-2.8                   | 2.2-2.8                     | 8.2-8.8                   | 2.4-2.8                   | 2.6-3.2                   |
| TPH (mg/kg)                                |       |                                                           |         |                                                    |                           |                             |                           | •                         |                           |
| Gasoline-range hydrocarbons <sup>(b)</sup> | 500   | 30                                                        | NV      | NA                                                 | 530 J                     | 470 J                       | 5 U                       | 5 U                       | 5 U                       |
| Diesel-range hydrocarbons                  | 2,000 | 2,000                                                     | NV      | NA                                                 | 14,000 J                  | 13,000 J                    | 120                       | 50 U                      | 50 U                      |
| Motor-oil-range hydrocarbons               | 2,000 | 2,000                                                     | NV      | NA                                                 | 7,400 J                   | 7,200 J                     | 250 U                     | 250 U                     | 250 U                     |
| Total Metals (mg/kg)                       |       |                                                           | •       | •                                                  |                           | •                           | •                         | •                         |                           |
| Arsenic                                    | 7.3   | 20                                                        | 0.67    | 7                                                  | 1.04                      | 1 U                         | 1.68                      | 1 U                       | 3.92                      |
| Cadmium                                    | NV    | 2                                                         | 80      | 1                                                  | 1 U                       | 1 U                         | 1 U                       | 1 U                       | 1 U                       |
| Chromium                                   | NV    | NV                                                        | NV      | 48                                                 | 6.78                      | 7.62                        | 6.73                      | 6.79                      | 8.31                      |
| Copper                                     | NV    | NV                                                        | 3,200   | 36                                                 | 7.34                      | 6.71 J                      | 7.12 J                    | 6.98 J                    | 13.6 J                    |
| Lead                                       | 24    | 250                                                       | NV      | 24                                                 | 2.22                      | 2.22                        | 1 U                       | 1 U                       | 3.7                       |
| Manganese                                  | NV    | NV                                                        | 3,700   | 1,200                                              | 41.1                      | 49.7                        | 58.9                      | 43.1 J                    | 35.7                      |
| Mercury                                    | NV    | 2                                                         | NV      | 0.07                                               | 1 U                       | 1 U                         | 1 U                       | 1 UJ                      | 1 U                       |
| Nickel                                     | NV    | NV                                                        | 1,600   | 48                                                 | 5.51                      | 5.95                        | 6.3                       | 6.39                      | 6.05                      |
| Selenium                                   | NV    | NV                                                        | 400     | NV                                                 | 1 U                       | 1 U                         | 1 U                       | 1 U                       | 1 U                       |
| Zinc                                       | NV    | NV                                                        | 24,000  | 85                                                 | 13.9                      | 13.6 J                      | 12.4 J                    | 12.7 J                    | 12 J                      |
| PCB Aroclors (mg/kg)                       |       |                                                           |         | •<br>•                                             |                           | -                           |                           | -                         |                           |
| Aroclor 1016                               | 1     | NV                                                        | 5.6     | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1221                               | 1     | NV                                                        | NV      | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1232                               | 1     | NV                                                        | NV      | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1242                               | 1     | NV                                                        | NV      | NA                                                 | 0.049                     | 0.045                       | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1248                               | 1     | NV                                                        | NV      | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1254                               | 1     | NV                                                        | 0.5     | NA                                                 | 0.03                      | 0.026                       | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1260                               | 1     | NV                                                        | 0.5     | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1262                               | 1     | NV                                                        | NV      | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| Aroclor 1268                               | 1     | NV                                                        | NV      | NA                                                 | 0.02 U                    | 0.02 U                      | 0.02 U                    | 0.02 U                    | 0.02 U                    |
| VOCs (mg/kg)                               |       |                                                           |         |                                                    |                           |                             |                           |                           |                           |
| 1,1,1,2-Tetrachloroethane                  | NV    | NV                                                        | 38      | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,1,1-Trichloroethane                      | NV    | 2                                                         | 160,000 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| 1,1,2,2-Tetrachloroethane                  | NV    | NV                                                        | 5       | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,1,2-Trichloroethane                      | NV    | NV                                                        | 18      | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,1-Dichloroethane                         | NV    | NV                                                        | 180     | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| 1,1-Dichloroethene                         | NV    | NV                                                        | 4,000   | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| 1,1-Dichloropropene                        | NV    | NV                                                        | NV      | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,2,3-Trichlorobenzene                     | NV    | NV                                                        | 64      | NA                                                 | 0.25 U                    | 0.25 U                      | 0.25 U                    | 0.25 U                    | 0.25 U                    |



Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

| Location:                   |                                           | [                                                         |                                    |                                                    |                           | TWA-SB06                    |                           | TWA-SB07                  | TWA-SB08                  |
|-----------------------------|-------------------------------------------|-----------------------------------------------------------|------------------------------------|----------------------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Building:                   |                                           |                                                           |                                    |                                                    |                           | Quonset Hut 2               |                           | Shop Building             | Shop Building             |
| Sample Name:                | DGWP<br>Screening<br>Level <sup>(1)</sup> | MTCA Method<br>A, Unrestricted<br>Land Use <sup>(2)</sup> | MTCA Method<br>B <sup>(a)(2)</sup> | Washington<br>State<br>Background<br>Metals, Puget | TWA-SB06_2.2-<br>2.8_0627 | TWA-9-SB06_2.2-<br>2.8_0627 | TWA-SB06_8.2-<br>8.8_0627 | TWA-SB07_2.4-<br>2.8_0627 | TWA-SB08_2.6-<br>3.2_0627 |
| Sample Date:                | Levei                                     | Land Use                                                  |                                    | Sound <sup>(3)</sup>                               | 06/27/2023                | 06/27/2023                  | 06/27/2023                | 06/27/2023                | 06/27/2023                |
| Sample Type:                |                                           |                                                           |                                    |                                                    | Ν                         | FD                          | Ν                         | Ν                         | N                         |
| Sample Depth (ft bgs):      |                                           |                                                           |                                    |                                                    | 2.2-2.8                   | 2.2-2.8                     | 8.2-8.8                   | 2.4-2.8                   | 2.6-3.2                   |
| 1,2,3-Trichloropropane      | NV                                        | NV                                                        | 0.0063                             | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,2,4-Trichlorobenzene      | NV                                        | NV                                                        | 34                                 | NA                                                 | 0.25 U                    | 0.25 U                      | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| 1,2,4-Trimethylbenzene      | NV                                        | NV                                                        | 800                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,2-Dibromo-3-chloropropane | NV                                        | NV                                                        | 0.23                               | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 1,2-Dibromoethane           | NV                                        | 0.005                                                     | 0.5                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.005 U                   | 0.005 U                   | 0.005 U                   |
| 1,2-Dichlorobenzene         | NV                                        | NV                                                        | 7,200                              | NA                                                 | 0.3                       | 0.34                        | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,2-Dichloroethane          | NV                                        | NV                                                        | 11                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| 1,2-Dichloropropane         | NV                                        | NV                                                        | 27                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,3,5-Trimethylbenzene      | NV                                        | NV                                                        | 800                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,3-Dichlorobenzene         | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,3-Dichloropropane         | NV                                        | NV                                                        | 1,600                              | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,4-Dichlorobenzene         | NV                                        | NV                                                        | 190                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 2,2-Dichloropropane         | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 2-Butanone                  | NV                                        | NV                                                        | 48,000                             | NA                                                 | 1 U                       | 1 U                         | 1 U                       | 1 U                       | 1 U                       |
| 2-Chlorotoluene             | NV                                        | NV                                                        | 1,600                              | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 2-Hexanone                  | NV                                        | NV                                                        | 400                                | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 4-Chlorotoluene             | NV                                        | NV                                                        | 1,600                              | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 4-Isopropyltoluene          | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 4-Methyl-2-pentanone        | NV                                        | NV                                                        | 6,400                              | NA                                                 | 1 U                       | 1 U                         | 1 U                       | 1 U                       | 1 U                       |
| Acetone                     | NV                                        | NV                                                        | 72,000                             | NA                                                 | 5 U                       | 5 U                         | 5 U                       | 5 U                       | 5 U                       |
| Benzene                     | 0.0274                                    | 0.03                                                      | 18                                 | NA                                                 | 0.03 U                    | 0.03 U                      | 0.021                     | 0.001 U                   | 0.001 U                   |
| Bromobenzene                | NV                                        | NV                                                        | 640                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bromodichloromethane        | NV                                        | NV                                                        | 16                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bromoform                   | NV                                        | NV                                                        | 130                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bromomethane                | NV                                        | NV                                                        | 110                                | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Carbon tetrachloride        | NV                                        | NV                                                        | 14                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Chlorobenzene               | NV                                        | NV                                                        | 1,600                              | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Chloroethane                | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.5 U                     | 0.5 U                       | 0.1 U                     | 0.1 U                     | 0.1 U                     |
| Chloroform                  | NV                                        | NV                                                        | 32                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Chloromethane               | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| cis-1,2-Dichloroethene      | NV                                        | NV                                                        | 160                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| cis-1,3-Dichloropropene     | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Dibromochloromethane        | NV                                        | NV                                                        | 12                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Dibromomethane              | NV                                        | NV                                                        | 800                                | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |



Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

| Location:                          |                                           |                                                           |        |                                                    |                           | TWA-SB06                    |                           | TWA-SB07                  | TWA-SB08                  |
|------------------------------------|-------------------------------------------|-----------------------------------------------------------|--------|----------------------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Building:                          |                                           |                                                           |        |                                                    |                           | Quonset Hut 2               |                           | Shop Building             | Shop Building             |
| Sample Name:                       | DGWP<br>Screening<br>Level <sup>(1)</sup> | MTCA Method<br>A, Unrestricted<br>Land Use <sup>(2)</sup> |        | Washington<br>State<br>Background<br>Metals, Puget | TWA-SB06_2.2-<br>2.8_0627 | TWA-9-SB06_2.2-<br>2.8_0627 | TWA-SB06_8.2-<br>8.8_0627 | TWA-SB07_2.4-<br>2.8_0627 | TWA-SB08_2.6-<br>3.2_0627 |
| Sample Date:                       | Levei                                     | Land Use                                                  |        | Sound <sup>(3)</sup>                               | 06/27/2023                | 06/27/2023                  | 06/27/2023                | 06/27/2023                | 06/27/2023                |
| Sample Type:                       |                                           |                                                           |        |                                                    | N                         | FD                          | N                         | Ν                         | Ν                         |
| Sample Depth (ft bgs):             |                                           |                                                           |        |                                                    | 2.2-2.8                   | 2.2-2.8                     | 8.2-8.8                   | 2.4-2.8                   | 2.6-3.2                   |
| Dichlorodifluoromethane (Freon 12) | NV                                        | NV                                                        | 16,000 | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Ethylbenzene                       | 6.05                                      | 6                                                         | 8,000  | NA                                                 | 0.05 U                    | 0.05 U                      | 0.0028                    | 0.001 U                   | 0.001 U                   |
| Hexachlorobutadiene                | NV                                        | NV                                                        | 13     | NA                                                 | 0.25 U                    | 0.25 U                      | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| Isopropylbenzene                   | NV                                        | NV                                                        | 8,000  | NA                                                 | 0.72                      | 0.83                        | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| m,p-Xylene                         | 13.1                                      | NV                                                        | NV     | NA                                                 | 0.1 U                     | 0.1 U                       | 0.0023                    | 0.002 U                   | 0.002 U                   |
| Methyl tert-butyl ether            | NV                                        | 0.1                                                       | 560    | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| Methylene chloride                 | NV                                        | 0.02                                                      | 94     | NA                                                 | 0.5 U                     | 0.5 U                       | 0.2 U                     | 0.2 U                     | 0.2 U                     |
| Naphthalene                        | NV                                        | 5                                                         | 1,600  | NA                                                 | 0.05 U                    | 0.05 U                      | 0.015                     | 0.01 U                    | 0.01 U                    |
| n-Hexane                           | NV                                        | NV                                                        | 4,800  | NA                                                 | 0.98                      | 0.69                        | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| n-Propylbenzene                    | NV                                        | NV                                                        | 8,000  | NA                                                 | 2                         | 2.2                         | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| o-Xylene                           | 13.1                                      | NV                                                        | 16,000 | NA                                                 | 0.056                     | 0.073                       | 0.001 U                   | 0.001 U                   | 0.001 U                   |
| sec-Butylbenzene                   | NV                                        | NV                                                        | 8,000  | NA                                                 | 0.84                      | 0.89                        | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Styrene                            | NV                                        | NV                                                        | 16,000 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| tert-Butylbenzene                  | NV                                        | NV                                                        | 8,000  | NA                                                 | 0.064                     | 0.07                        | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Tetrachloroethene                  | NV                                        | 0.05                                                      | 480    | NA                                                 | 0.025 U                   | 0.025 U                     | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| Toluene                            | 4.52                                      | 7                                                         | 6,400  | NA                                                 | 0.05 U                    | 0.05 U                      | 0.0071                    | 0.005 U                   | 0.005 U                   |
| trans-1,2-Dichloroethene           | NV                                        | NV                                                        | 1,600  | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| trans-1,3-Dichloropropene          | NV                                        | NV                                                        | NV     | NA                                                 | 0.05 U                    | 0.05 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Trichloroethene                    | NV                                        | 0.03                                                      | 12     | NA                                                 | 0.02 U                    | 0.02 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| Trichlorofluoromethane (Freon 11)  | NV                                        | NV                                                        | 24,000 | NA                                                 | 0.5 U                     | 0.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Vinyl chloride                     | NV                                        | NV                                                        | 0.67   | NA                                                 | 0.05 U                    | 0.05 U                      | 0.002 U                   | 0.002 U                   | 0.002 U                   |
| SVOCs (mg/kg)                      |                                           |                                                           | -      |                                                    |                           |                             |                           | -                         | -                         |
| 1,2,4-Trichlorobenzene             | NV                                        | NV                                                        | 34     | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,2-Dichlorobenzene                | NV                                        | NV                                                        | 7,200  | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,3-Dichlorobenzene                | NV                                        | NV                                                        | NV     | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1,4-Dichlorobenzene                | NV                                        | NV                                                        | 190    | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 1-Methylnaphthalene                | NV                                        | NV                                                        | 34     | NA                                                 | 53                        | 49                          | 0.86                      | 0.01 U                    | 0.01 U                    |
| 2,4,5-Trichlorophenol              | NV                                        | NV                                                        | 8,000  | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2,4,6-Trichlorophenol              | NV                                        | NV                                                        | 80     | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2,4-Dichlorophenol                 | NV                                        | NV                                                        | 240    | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2,4-Dimethylphenol                 | NV                                        | NV                                                        | 1,600  | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2,4-Dinitrophenol                  | NV                                        | NV                                                        | 160    | NA                                                 | 7.5 U                     | 7.5 U                       | 1.5 U                     | 1.5 U                     | 1.5 U                     |
| 2,4-Dinitrotoluene                 | NV                                        | NV                                                        | 3.2    | NA                                                 | 1.2 U                     | 1.2 U                       | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| 2,6-Dinitrotoluene                 | NV                                        | NV                                                        | 0.67   | NA                                                 | 1.2 U                     | 1.2 U                       | 0.25 U                    | 0.25 U                    | 0.25 U                    |



Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

| Location:                        |                                           |                                                           |         |                                                    |                           | TWA-SB06                    |                           | TWA-SB07                  | TWA-SB08                  |
|----------------------------------|-------------------------------------------|-----------------------------------------------------------|---------|----------------------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Building:                        |                                           |                                                           |         |                                                    |                           | Quonset Hut 2               |                           | Shop Building             | Shop Building             |
| Sample Name:                     | DGWP<br>Screening<br>Level <sup>(1)</sup> | MTCA Method<br>A, Unrestricted<br>Land Use <sup>(2)</sup> |         | Washington<br>State<br>Background<br>Metals, Puget | TWA-SB06_2.2-<br>2.8_0627 | TWA-9-SB06_2.2-<br>2.8_0627 | TWA-SB06_8.2-<br>8.8_0627 | TWA-SB07_2.4-<br>2.8_0627 | TWA-SB08_2.6-<br>3.2_0627 |
| Sample Date:                     | LCVCI                                     | Land Use                                                  |         | Sound <sup>(3)</sup>                               | 06/27/2023                | 06/27/2023                  | 06/27/2023                | 06/27/2023                | 06/27/2023                |
| Sample Type:                     |                                           |                                                           |         |                                                    | Ν                         | FD                          | N                         | Ν                         | N                         |
| Sample Depth (ft bgs):           |                                           |                                                           |         |                                                    | 2.2-2.8                   | 2.2-2.8                     | 8.2-8.8                   | 2.4-2.8                   | 2.6-3.2                   |
| 2-Chloronaphthalene              | NV                                        | NV                                                        | 6,400   | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 2-Chlorophenol                   | NV                                        | NV                                                        | 400     | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2-Methylnaphthalene              | NV                                        | NV                                                        | 320     | NA                                                 | 64                        | 60                          | 0.66                      | 0.01 U                    | 0.01 U                    |
| 2-Methylphenol                   | NV                                        | NV                                                        | 4,000   | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 2-Nitroaniline                   | NV                                        | NV                                                        | 800     | NA                                                 | 1.2 U                     | 1.2 U                       | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| 2-Nitrophenol                    | NV                                        | NV                                                        | NV      | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 3- & 4-Methylphenol (m,p-Cresol) | NV                                        | NV                                                        | NV      | NA                                                 | 5 U                       | 5 U                         | 1 U                       | 1 U                       | 1 U                       |
| 3-Nitroaniline                   | NV                                        | NV                                                        | NV      | NA                                                 | 25 U                      | 25 U                        | 5 U                       | 5 U                       | 5 U                       |
| 4,6-Dinitro-2-methylphenol       | NV                                        | NV                                                        | 6.4     | NA                                                 | 7.5 U                     | 7.5 U                       | 1.5 U                     | 1.5 U                     | 1.5 U                     |
| 4-Bromophenylphenyl ether        | NV                                        | NV                                                        | NV      | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 4-Chloro-3-methylphenol          | NV                                        | NV                                                        | 8,000   | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| 4-Chloroaniline                  | NV                                        | NV                                                        | 5       | NA                                                 | 25 U                      | 25 U                        | 5 U                       | 5 U                       | 5 U                       |
| 4-Chlorophenylphenyl ether       | NV                                        | NV                                                        | NV      | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| 4-Nitroaniline                   | NV                                        | NV                                                        | 50      | NA                                                 | 25 U                      | 25 U                        | 5 U                       | 5 U                       | 5 U                       |
| 4-Nitrophenol                    | NV                                        | NV                                                        | NV      | NA                                                 | 7.5 U                     | 7.5 U                       | 1.5 U                     | 1.5 U                     | 1.5 U                     |
| Acenaphthene                     | NV                                        | NV                                                        | 4,800   | NA                                                 | 4.9                       | 3.9                         | 0.16                      | 0.01 U                    | 0.19                      |
| Acenaphthylene                   | NV                                        | NV                                                        | NV      | NA                                                 | 0.05 U                    | 0.05 U                      | 0.01 U                    | 0.01 U                    | 0.01 U                    |
| Anthracene                       | NV                                        | NV                                                        | 24,000  | NA                                                 | 7.6                       | 7.4                         | 0.12                      | 0.021                     | 0.01 U                    |
| Benzo(a)anthracene               | NV                                        | NV                                                        | NV      | NA                                                 | 1.3                       | 1.2                         | 0.024                     | 0.051                     | 0.017                     |
| Benzo(a)pyrene                   | 5.14                                      | 0.19 <sup>(c)(4)</sup>                                    | 0.19    | NA                                                 | 0.64                      | 0.63                        | 0.01                      | 0.13                      | 0.016                     |
| Benzo(b)fluoranthene             | NV                                        | NV                                                        | NV      | NA                                                 | 0.45                      | 0.39                        | 0.01 U                    | 0.12                      | 0.018                     |
| Benzo(ghi)perylene               | NV                                        | NV                                                        | NV      | NA                                                 | 0.099                     | 0.086                       | 0.01 U                    | 0.25                      | 0.01 U                    |
| Benzo(k)fluoranthene             | NV                                        | NV                                                        | NV      | NA                                                 | 0.083                     | 0.085                       | 0.01 U                    | 0.054                     | 0.01 U                    |
| Benzoic acid                     | NV                                        | NV                                                        | 320,000 | NA                                                 | 12 U                      | 12 U                        | 2.5 U                     | 2.5 U                     | 2.5 U                     |
| Benzyl alcohol                   | NV                                        | NV                                                        | 8,000   | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Bis(2-chloro-1-methylethyl)ether | NV                                        | NV                                                        | 14      | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bis(2-chloroethoxy)methane       | NV                                        | NV                                                        | 240     | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bis(2-chloroethyl)ether          | NV                                        | NV                                                        | 0.91    | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Bis(2-ethylhexyl)phthalate       | NV                                        | NV                                                        | 71      | NA                                                 | 4 U                       | 4 U                         | 0.8 U                     | 0.8 U                     | 0.8 U                     |
| Butylbenzylphthalate             | NV                                        | NV                                                        | 530     | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Carbazole                        | NV                                        | NV                                                        | NV      | NA                                                 | 0.94                      | 0.52                        | 0.12                      | 0.05 U                    | 0.05 U                    |
| Chrysene                         | NV                                        | NV                                                        | NV      | NA                                                 | 1.8                       | 1.8                         | 0.041                     | 0.23                      | 0.017                     |
| Dibenzo(a,h)anthracene           | NV                                        | NV                                                        | NV      | NA                                                 | 0.064                     | 0.05 U                      | 0.01 U                    | 0.047                     | 0.01 U                    |
| Dibenzofuran                     | NV                                        | NV                                                        | 80      | NA                                                 | 2                         | 1.9                         | 0.13                      | 0.05 U                    | 0.05 U                    |



Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

| Location:                 |                                           |                                                           |                                    |                                                    |                           | TWA-SB06                    |                           | TWA-SB07                  | TWA-SB08                  |
|---------------------------|-------------------------------------------|-----------------------------------------------------------|------------------------------------|----------------------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Building:                 |                                           |                                                           |                                    |                                                    |                           | Quonset Hut 2               |                           | Shop Building             | Shop Building             |
| Sample Name:              | DGWP<br>Screening<br>Level <sup>(1)</sup> | MTCA Method<br>A, Unrestricted<br>Land Use <sup>(2)</sup> | MTCA Method<br>B <sup>(a)(2)</sup> | Washington<br>State<br>Background<br>Metals, Puget | TWA-SB06_2.2-<br>2.8_0627 | TWA-9-SB06_2.2-<br>2.8_0627 | TWA-SB06_8.2-<br>8.8_0627 | TWA-SB07_2.4-<br>2.8_0627 | TWA-SB08_2.6-<br>3.2_0627 |
| Sample Date:              | LOVOI                                     |                                                           |                                    | Sound <sup>(3)</sup>                               | 06/27/2023                | 06/27/2023                  | 06/27/2023                | 06/27/2023                | 06/27/2023                |
| Sample Type:              |                                           |                                                           |                                    |                                                    | Ν                         | FD                          | Ν                         | Ν                         | Ν                         |
| Sample Depth (ft bgs):    |                                           |                                                           |                                    |                                                    | 2.2-2.8                   | 2.2-2.8                     | 8.2-8.8                   | 2.4-2.8                   | 2.6-3.2                   |
| Diethyl phthalate         | NV                                        | NV                                                        | 64,000                             | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Dimethyl phthalate        | NV                                        | NV                                                        | NV                                 | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Di-n-butyl phthalate      | NV                                        | NV                                                        | 8,000                              | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Di-n-octyl phthalate      | NV                                        | NV                                                        | 800                                | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Fluoranthene              | NV                                        | NV                                                        | 3,200                              | NA                                                 | 1.4                       | 1.3                         | 0.059                     | 0.04                      | 0.043                     |
| Fluorene                  | NV                                        | NV                                                        | 3,200                              | NA                                                 | 8.8                       | 8.1                         | 0.21                      | 0.01 U                    | 0.11                      |
| Hexachlorobenzene         | NV                                        | NV                                                        | 0.63                               | NA                                                 | 0.25 UJ                   | 0.25 UJ                     | 0.05 UJ                   | 0.05 UJ                   | 0.05 UJ                   |
| Hexachlorobutadiene       | NV                                        | NV                                                        | 13                                 | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Hexachlorocyclopentadiene | NV                                        | NV                                                        | 480                                | NA                                                 | 0.75 U                    | 0.75 U                      | 0.15 U                    | 0.15 U                    | 0.15 U                    |
| Hexachloroethane          | NV                                        | NV                                                        | 25                                 | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Indeno(1,2,3-cd)pyrene    | NV                                        | NV                                                        | NV                                 | NA                                                 | 0.05 U                    | 0.05 U                      | 0.01 U                    | 0.21                      | 0.01                      |
| Isophorone                | NV                                        | NV                                                        | 1,100                              | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Naphthalene               | NV                                        | 5                                                         | 1,600                              | NA                                                 | 0.05 U                    | 0.05 U                      | 0.045                     | 0.01 U                    | 0.01 U                    |
| Nitrobenzene              | NV                                        | NV                                                        | 160                                | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| N-Nitrosodiphenylamine    | NV                                        | NV                                                        | 200                                | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| N-Nitrosodipropylamine    | NV                                        | NV                                                        | 0.14                               | NA                                                 | 0.25 U                    | 0.25 U                      | 0.05 U                    | 0.05 U                    | 0.05 U                    |
| Pentachlorophenol         | NV                                        | NV                                                        | 2.5                                | NA                                                 | 1.2 U                     | 1.2 U                       | 0.25 U                    | 0.25 U                    | 0.25 U                    |
| Phenanthrene              | NV                                        | NV                                                        | NV                                 | NA                                                 | 18                        | 17                          | 0.26                      | 0.013                     | 0.038                     |
| Phenol                    | NV                                        | NV                                                        | 24,000                             | NA                                                 | 2.5 U                     | 2.5 U                       | 0.5 U                     | 0.5 U                     | 0.5 U                     |
| Pyrene                    | NV                                        | NV                                                        | 2,400                              | NA                                                 | 3.5                       | 3.4                         | 0.072                     | 0.058                     | 0.04                      |



#### Table Summary of Soil Analytical Results Supplemental Subsurface Investigation, Potter Property, Port of Tacoma

#### Notes

Shading (color key below) indicates values that exceed screening criteria; non-detects (U, UJ) were not compared with screening criteria. Analytical results are preliminarily screened to DGWP screening levels. If a DGWP screening level is unavailable, MTCA Method A followed by MTCA Method B were used.

DGWP Screening Level

#### MTCA Method B

Washington state background metals values are shown for reference only and are not shaded for exceedances.

DGWP = data gap work plan.

FD = field duplicate sample.

ft bgs = feet below ground surface.

J = result is estimated.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act

N = normal environmental sample.

NA = not applicable.

NV = no value.

PCB = polychlorinated biphenyl.

SVOC = semivolatile organic compound.

TPH = total petroleum hydrocarbons.

U = result is non-detect at the method reporting limit.

UJ = result is non-detect with an estimated method reporting limit.

VOC = volatile organic compound.

<sup>(a)</sup>Lower of cancer and noncancer values are shown.

<sup>(D)</sup>Screening level for gasoline-range hydrocarbons with benzene present.

<sup>(C)</sup>MTCA Method A value for benzo(a)pyrene is not applicable. Screening level shown is the MTCA B value.

#### References

<sup>(1)</sup>DOF. 2020. Final Data Gaps Work Plan, Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington. Dalton, Olmsted, & Fuglevand. July 29.

<sup>(2)</sup>Ecology. 2023. Cleanup Levels and Risk Calculation (CLARC) table. Washington State Department of Ecology, Toxics Cleanup Program. January.

<sup>(3)</sup>Ecology. 1994. Natural Background Soil Metals Concentrations in Washington State. Publication 94-115. Washington State Department of Ecology. October.

<sup>(4)</sup>Ecology. 2021. Polycyclic Aromatic Hydrocarbons and Benzo(a) pyrene: Changes to MTCA Default Cleanup Levels for 2017. Washington State Department of Ecology, Toxics Cleanup Program. July.



Attachment A

**Photographs** 





#### Photo No. 1.

#### Description

Oily sheen at TWA-SB06. Photograph taken during field activities on June 27, 2023.

# Photographs

Project Name: Project Number: Location:

 Supplemental Subsurface Investigation, Potter Property
 m0615.20.009
 1801 E Alexander Avenue, Tacoma, WA



#### Photo No. 2.

#### Description

Oily sheen at TWA-SB06. Photograph taken during field activities on June 27, 2023.





#### Photo No. 3.

#### Description

TWA-SB06 soil core. Photograph taken during field activities on June 27, 2023.

# Photographs

Project Name: Project Number: Location:

Supplemental Subsurface Investigation, Potter Property r: M0615.20.009 1801 E Alexander Avenue, Tacoma, WA



#### Photo No. 4.

#### Description

Concrete coring at TWA-SB07. Photograph taken during field activities on June 27, 2023.





### Photo No. 5.

#### Description

TWA-SB07 sampling location. Photograph taken during field activities on June 27, 2023.

# **Photographs**

Project Name: Project Number: Location:

Supplemental Subsurface Investigation, Potter Property r: M0615.20.009 1801 E Alexander Avenue, Tacoma, WA



#### Photo No. 6.

#### Description

TWA-SB07 shell fragments in soil core. Photograph taken during field activities on June 27, 2023.





### Photo No. 7.

#### Description

TWA-SB07 soil core. Photograph taken during field activities on June 27, 2023.

# Photographs

Project Name: Project Number: Location:

Supplemental Subsurface Investigation, Potter Property r: M0615.20.009 1801 E Alexander Avenue, Tacoma, WA



#### Photo No. 8.

#### Description

TWA-SB08 sampling location. Photograph taken during field activities on June 27, 2023.





### Photo No. 9.

#### Description

TWA-SB08 shell fragments in soil core. Photograph taken during field activities on June 27, 2023.

# Photographs

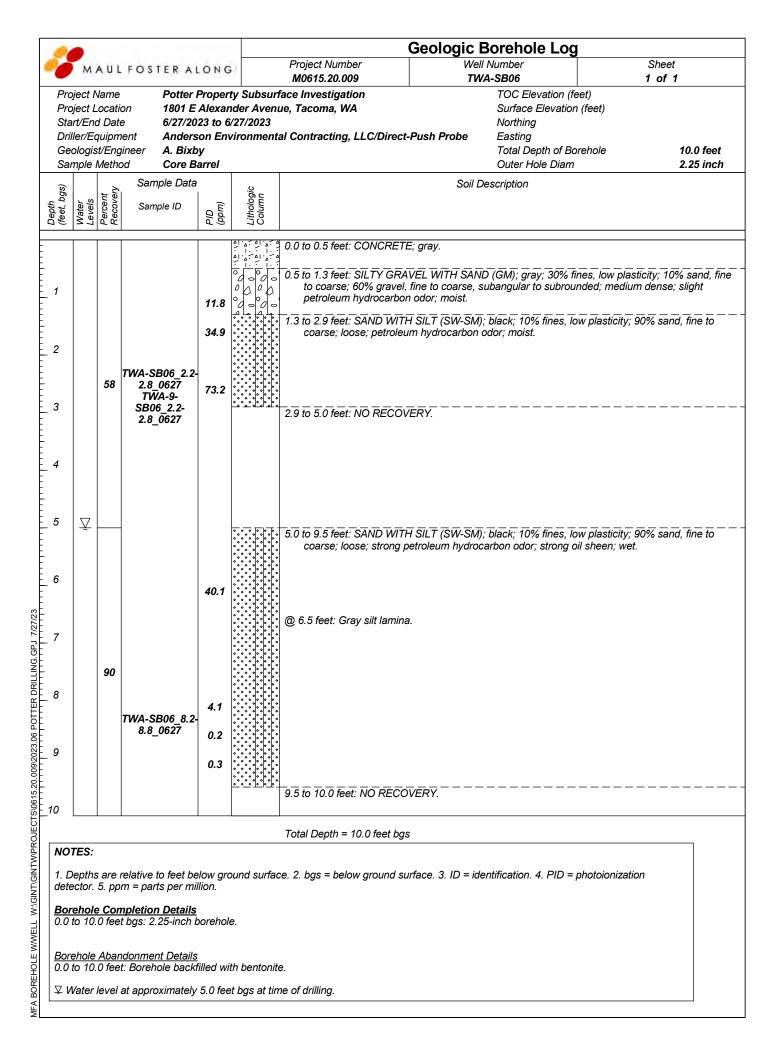
Project Name: Project Number: Location:

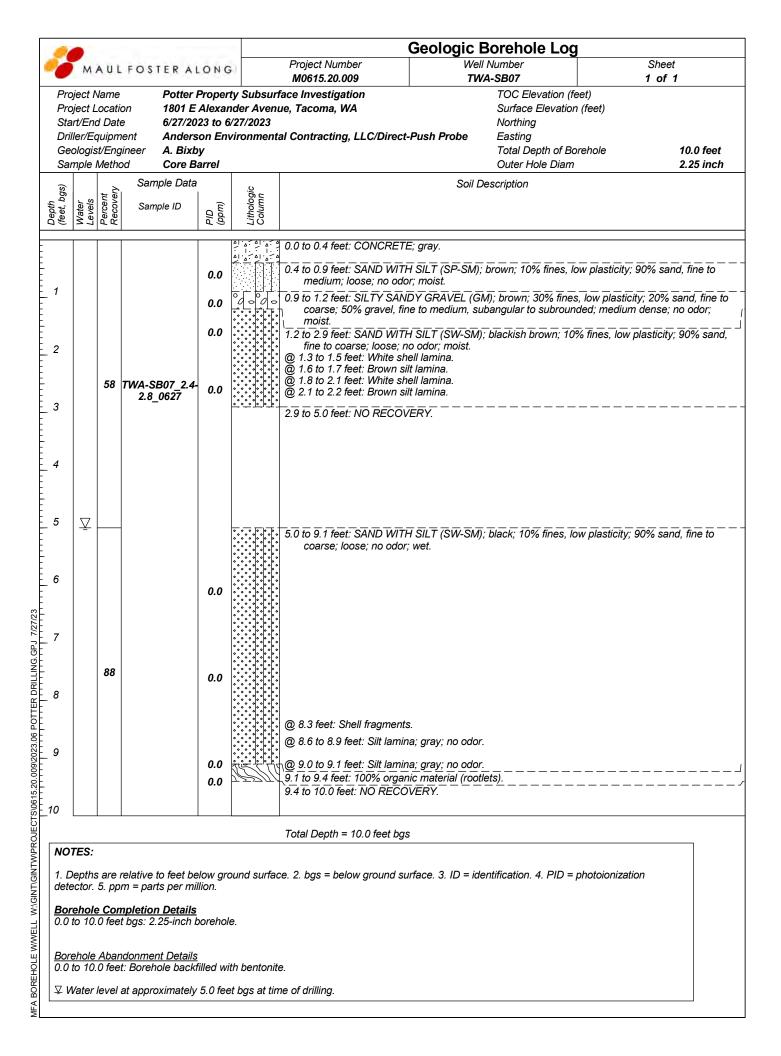
Supplemental Subsurface Investigation, Potter Property : M0615.20.009 1801 E Alexander Avenue, Tacoma, WA



#### Photo No. 10.

#### Description


TWA-SB08 soil core. Photograph taken during field activities on June 27, 2023.




**Attachment B** 

**Boring Logs** 









# Attachment C

# **Analytical Laboratory Report**



#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 21, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2<sup>nd</sup> Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the amended results from the testing of material submitted on June 28, 2023 from the Potter Subsurface M0615.20.009, F&BI 306441 project. The 6020B copper and zinc results were amended and 1-methylnaphthalene and 2-methylnaphthalene overrange results were removed.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Amanda Bixby, Fiona Bellows MFA0707R.DOC

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 7, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2<sup>nd</sup> Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the results from the testing of material submitted on June 28, 2023 from the Potter Subsurface M0615.20.009, F&BI 306441 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Amanda Bixby MFA0707R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on June 28, 2023 by Friedman & Bruya, Inc. from the Maul Foster Alongi Potter Subsurface M0615.20.009, F&BI 306441 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <u>Maul Foster Alongi</u> |
|----------------------|---------------------------|
| 306441 -01           | TWA-SB07_2.4-2.8_0627     |
| 306441 -02           | TWA-SB07_5.8-6.2_0627     |
| 306441 -03           | TWA-SB08_2.6-3.2_0627     |
| 306441 -04           | TWA-SB08_5.7-6.3_0627     |
| 306441 -05           | TWA-SB06_2.2-2.8_0627     |
| 306441 -06           | TWA-9-SB06_2.2-2.8_0627   |
| 306441 -07           | TWA-SB06_8.2-8.8_0627     |
| 306441 -08           | Trip Blank 1-0627         |

The 6020B matrix spike and matrix spike duplicate failed the relative percent difference for mercury and selenium. The metals were not detected therefore the data were acceptable.

The 8260D bromomethane and acetone and 8270E benzyl butyl phthalate calibration standards exceeded the acceptance criteria. The compounds were not detected, therefore this did not represent an out of control condition.

The 8270E hexachlorobenzene calibration standard failed the acceptance criteria. The data were flagged accordingly.

The 8270E matrix spike and matrix spike sample duplicate failed the relative percent difference for 2-nitroaniline. The analyte was not detected therefore the data were acceptable.

The 6020B internal standards associated with copper and zinc were outside of control limits for several samples. The data were qualified accordingly.

All other quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441 Date Extracted: NA Date Analyzed: 06/29/23

#### RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR PERCENT MOISTURE USING ASTM D2216-98

| <u>Sample ID</u><br>Laboratory ID                        | <u>% Moisture</u> |
|----------------------------------------------------------|-------------------|
| TWA-SB07_2.4-2.8_0627<br><sup>306441-01</sup>            | 15                |
| TWA-SB08_2.6-3.2_0627<br><sup>306441-03</sup>            | 20                |
| $\underset{306441-05}{\text{TWA-SB06}\_2.2-2.8\_0627}$   | 12                |
| $\underset{306441-06}{\text{TWA-9-SB06}\_2.2-2.8\_0627}$ | 12                |
| $\frac{\text{TWA-SB06\_8.2-8.8\_0627}}{_{306441-07}}$    | 23                |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441 Date Extracted: 06/29/23 Date Analyzed: 06/29/23

#### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

| <u>Sample ID</u><br>Laboratory ID                                                 | <u>Gasoline Range</u> | Surrogate<br>( <u>% Recovery</u> )<br>(Limit 50-150) |
|-----------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|
| $\underset{306441-01}{\text{TWA-SB07}\_2.4-2.8\_0627}$                            | <5                    | 137                                                  |
| $\underset{\scriptstyle 306441\text{-}03}{\text{TWA-SB08}\_2.6\text{-}3.2\_0627}$ | <5                    | 134                                                  |
| TWA-SB06_2.2-2.8_0627<br>306441-05 1/5                                            | 530                   | ip                                                   |
| TWA-9-SB06_2.2-2.8_0627<br>306441-06 1/5                                          | 470                   | ip                                                   |
| TWA-SB06_8.2-8.8_0627<br>306441-07                                                | <5                    | 139                                                  |
| Method Blank<br><sup>03-1406 MB</sup>                                             | <5                    | 138                                                  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441 Date Extracted: 06/29/23 Date Analyzed: 06/29/23

#### RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

| <u>Sample ID</u><br>Laboratory ID                      | Diesel Range<br>(C10-C25) | Motor Oil Range<br>(C25-C36) | <u>(% Recovery)</u><br>(Limit 50-150) |
|--------------------------------------------------------|---------------------------|------------------------------|---------------------------------------|
| TWA-SB07_2.4-2.8_0627<br>306441-01                     | <50                       | <250                         | 131                                   |
| TWA-SB08_2.6-3.2_0627<br>306441-03                     | <50                       | <250                         | 129                                   |
| $\underset{306441-05}{\text{TWA-SB06}\_2.2-2.8\_0627}$ | 14,000                    | 7,400                        | ip                                    |
| TWA-9-SB06_2.2-2.8_0627<br>306441-06                   | 13,000                    | 7,200                        | ip                                    |
| TWA-SB06_8.2-8.8_0627<br>306441-07                     | 120                       | <250                         | 130                                   |
| Method Blank<br><sup>03-1567 MB2</sup>                 | <50                       | <250                         | 135                                   |

### ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 6020B

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB07_2.4-2.8_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-01<br>306441-01.044<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                    |
| Arsenic                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Copper                                                                                 | $6.98~\mathrm{J}$                                                                           |                                                                          |                                                                                                    |
| Lead                                                                                   | <1                                                                                          |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                                          |                                                                          |                                                                                                    |
| Zinc                                                                                   | $12.7~\mathrm{J}$                                                                           |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB07_2.4-2.8_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-01 x5<br>306441-01 x5.047<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Onits.                                                                                 | ing/kg (ppin) Dry Weight                                                                    | Operator.                                                                | 51                                                                                                       |
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                          |
| Chromium<br>Manganese<br>Nickel                                                        | $     \begin{array}{r}       6.79 \\       43.1 \\       6.39     \end{array} $             |                                                                          |                                                                                                          |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB08_2.6-3.2_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-03<br>306441-03.050<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                    |
| Arsenic                                                                                | 3.92                                                                                        |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Copper                                                                                 | $13.6 \mathrm{J}$                                                                           |                                                                          |                                                                                                    |
| Lead                                                                                   | 3.70                                                                                        |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                                          |                                                                          |                                                                                                    |
| Zinc                                                                                   | $12.0 \mathrm{~J}$                                                                          |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB08_2.6-3.2_0627<br>06/28/23<br>06/28/23<br>06/30/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-03 x5<br>306441-03 x5.128<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                          |
| Chromium<br>Manganese<br>Nickel                                                        | 8.31<br>35.7<br>6.05                                                                        |                                                                          |                                                                                                          |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB06_2.2-2.8_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-05<br>306441-05.051<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                    |
| Arsenic                                                                                | 1.04                                                                                        |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Chromium                                                                               | 6.78                                                                                        |                                                                          |                                                                                                    |
| Copper                                                                                 | 7.34                                                                                        |                                                                          |                                                                                                    |
| Lead                                                                                   | 2.22                                                                                        |                                                                          |                                                                                                    |
| Manganese                                                                              | 41.1                                                                                        |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Nickel                                                                                 | 5.51                                                                                        |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                                          |                                                                          |                                                                                                    |
| Zinc                                                                                   | 13.9                                                                                        |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-9-SB06_2.2-2.8_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-06<br>306441-06.056<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                  |                                                                          |                                                                                                    |
| Arsenic                                                                                | <1                                                                                            |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                                            |                                                                          |                                                                                                    |
| Copper                                                                                 | $6.71~\mathrm{J}$                                                                             |                                                                          |                                                                                                    |
| Lead                                                                                   | 2.22                                                                                          |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                                            |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                                            |                                                                          |                                                                                                    |
| Zinc                                                                                   | 13.6 J                                                                                        |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix: | TWA-9-SB06_2.2-2.8_0627<br>06/28/23<br>06/28/23<br>06/30/23<br>Soil | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-06 x5<br>306441-06 x5.129<br>ICPMS2<br>SD |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Units:                                                                       | mg/kg (ppm) Dry Weight                                              | Operator:                                                   | SP                                                                                                       |
| Analyte:                                                                     | Concentration<br>mg/kg (ppm)                                        |                                                             |                                                                                                          |
| Chromium<br>Manganese<br>Nickel                                              | 7.62<br>49.7<br>5.95                                                |                                                             |                                                                                                          |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB06_8.2-8.8_0627<br>06/28/23<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-07<br>306441-07.057<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                    |
| Arsenic                                                                                | 1.68                                                                                        |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Copper                                                                                 | $7.12~\mathrm{J}$                                                                           |                                                                          |                                                                                                    |
| Lead                                                                                   | <1                                                                                          |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                                          |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                                          |                                                                          |                                                                                                    |
| Zinc                                                                                   | $12.4~\mathrm{J}$                                                                           |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | TWA-SB06_8.2-8.8_0627<br>06/28/23<br>06/28/23<br>06/30/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-07 x5<br>306441-07 x5.136<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                                |                                                                          |                                                                                                          |
| Chromium<br>Manganese<br>Nickel                                                        | 6.73<br>58.9<br>6.30                                                                        |                                                                          |                                                                                                          |

### ENVIRONMENTAL CHEMISTS

| Client ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Blank<br>NA<br>06/28/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>I3-519 mb<br>I3-519 mb.042<br>ICPMS2<br>SP |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Analyte:                                                                               | Concentration<br>mg/kg (ppm)                                                 |                                                                          |                                                                                                    |
| Arsenic                                                                                | <1                                                                           |                                                                          |                                                                                                    |
| Cadmium                                                                                | <1                                                                           |                                                                          |                                                                                                    |
| Chromium                                                                               | <1                                                                           |                                                                          |                                                                                                    |
| Copper                                                                                 | <5                                                                           |                                                                          |                                                                                                    |
| Lead                                                                                   | <1                                                                           |                                                                          |                                                                                                    |
| Manganese                                                                              | <1                                                                           |                                                                          |                                                                                                    |
| Mercury                                                                                | <1                                                                           |                                                                          |                                                                                                    |
| Nickel                                                                                 | <1                                                                           |                                                                          |                                                                                                    |
| Selenium                                                                               | <1                                                                           |                                                                          |                                                                                                    |
| Zinc                                                                                   | <5                                                                           |                                                                          |                                                                                                    |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

| LowerUpperSurrogates:% Recovery:Limit:1,2-Dichloroethane-d41028410284120Toluene-d8103734-Bromofluorobenzene9857146Concentration | Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 06/28/23<br>07/03/23<br>07/03/23<br>Soil | 7_2.4-2.8_0627<br>n) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M(<br>306441-01 1/0.5<br>070313.D<br>GCMS13<br>MD | 0615.20.009   |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|
| 1,2-Dichloroethane-d410284120Toluene-d8103731284-Bromofluorobenzene9857146Concentration                                         |                                                                                               |                                          |                                 | Lower                                                                    | Upper                                                                                     |               |
| Toluene-d8103731284-Bromofluorobenzene9857146ConcentrationConcentration                                                         | _                                                                                             | _                                        | -                               |                                                                          |                                                                                           |               |
| 4-Bromofluorobenzene 98 57 146<br>Concentration Concentration                                                                   |                                                                                               | -d4                                      |                                 |                                                                          |                                                                                           |               |
| Concentration Concentration                                                                                                     |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
|                                                                                                                                 | 4-Bromofluorobenz                                                                             | ene                                      | 98                              | 57                                                                       | 146                                                                                       |               |
| Compounds: mg/kg (ppm) Compounds: mg/kg (ppm)                                                                                   |                                                                                               |                                          | Concentration                   |                                                                          |                                                                                           | Concentration |
| Compounds. mg/kg (ppm) Compounds. mg/kg (ppm)                                                                                   | Compounds:                                                                                    |                                          | mg/kg (ppm)                     | Compou                                                                   | nds:                                                                                      | mg/kg (ppm)   |
| Dichlorodifluoromethane <0.5 1,3-Dichloropropane <0.05                                                                          | Dichlorodifluorome                                                                            | thane                                    | < 0.5                           | 1,3-Dich                                                                 | loropropane                                                                               | < 0.05        |
| Chloromethane <0.5 Tetrachloroethene <0.002                                                                                     |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| Vinyl chloride <0.002 Dibromochloromethane <0.05                                                                                | Vinyl chloride                                                                                |                                          | < 0.002                         | Dibromo                                                                  | ochloromethane                                                                            | < 0.05        |
| Bromomethane <0.5 k 1,2-Dibromoethane (EDB) <0.005                                                                              | Bromomethane                                                                                  |                                          | <0.5 k                          | 1,2-Dibr                                                                 | omoethane (EDB)                                                                           | < 0.005       |
| Chloroethane <0.1 Chlorobenzene <0.05                                                                                           | Chloroethane                                                                                  |                                          | < 0.1                           | Chlorobe                                                                 | enzene                                                                                    | < 0.05        |
| Trichlorofluoromethane <0.5 Ethylbenzene <0.001                                                                                 | Trichlorofluoromet                                                                            | hane                                     | < 0.5                           | Ethylber                                                                 | nzene                                                                                     | < 0.001       |
| Acetone <5 k 1,1,1,2-Tetrachloroethane <0.05                                                                                    |                                                                                               |                                          | <5 k                            | 1,1,1,2-7                                                                | etrachloroethane                                                                          |               |
| 1,1-Dichloroethene <0.002 m,p-Xylene <0.002                                                                                     |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| Hexane <0.25 o-Xylene <0.001                                                                                                    |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
|                                                                                                                                 | Methylene chloride                                                                            |                                          |                                 | -                                                                        |                                                                                           |               |
|                                                                                                                                 | Methyl t-butyl ether (MTBE)                                                                   |                                          |                                 |                                                                          |                                                                                           |               |
|                                                                                                                                 | trans-1,2-Dichloroethene                                                                      |                                          |                                 |                                                                          |                                                                                           |               |
| 1,1-Dichloroethane <0.002 n-Propylbenzene <0.05                                                                                 | -                                                                                             |                                          |                                 |                                                                          |                                                                                           |               |
| 2,2-Dichloropropane <0.05 Bromobenzene <0.05                                                                                    |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| cis-1,2-Dichloroethene <0.002 1,3,5-Trimethylbenzene <0.05                                                                      |                                                                                               | ene                                      |                                 |                                                                          |                                                                                           |               |
| Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05                                                                                |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| 2-Butanone (MEK) <1 1,2,3-Trichloropropane <0.05                                                                                |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| 1,2-Dichloroethane (EDC)<0.0022-Chlorotoluene<0.051,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,                                        |                                                                                               | · ,                                      |                                 |                                                                          |                                                                                           |               |
| 1,1,1-Trichloroethane<0.0024-Chlorotoluene<0.051,1 Dishlamananana<0.05                                                          |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| 1,1-Dichloropropene<0.05tert-Butylbenzene<0.05Carbon tetrachloride<0.05                                                         | · • • •                                                                                       |                                          |                                 |                                                                          |                                                                                           |               |
| Carbon tetrachloride<0.051,2,4-Trimethylbenzene<0.05Benzene<0.001                                                               |                                                                                               | ie                                       |                                 |                                                                          | -                                                                                         |               |
| Denzene<0.001sec-Dutymenzene<0.05Trichloroethene<0.002                                                                          |                                                                                               |                                          |                                 | •                                                                        |                                                                                           |               |
| 1,2-Dichloropropane<0.051,3-Dichlorobenzene<0.05                                                                                |                                                                                               | Α                                        |                                 |                                                                          |                                                                                           |               |
| Bromodichloromethane <0.05 1,4-Dichlorobenzene <0.05                                                                            |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| Dibromomethane <0.05 1,2-Dichlorobenzene <0.05                                                                                  |                                                                                               | lane                                     |                                 | ,                                                                        |                                                                                           |               |
| 4-Methyl-2-pentanone <1 1,2-Dibromo-3-chloropropane <0.5                                                                        |                                                                                               | ne                                       |                                 |                                                                          |                                                                                           |               |
| cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25                                                                      |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| Toluene<0.005Hexachlorobutadiene<0.25                                                                                           |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| trans-1,3-Dichloropropene <0.05 Naphthalene <0.01                                                                               |                                                                                               | ropene                                   |                                 |                                                                          |                                                                                           |               |
| 1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25                                                                        |                                                                                               |                                          |                                 |                                                                          |                                                                                           |               |
| 2-Hexanone <0.5                                                                                                                 |                                                                                               |                                          |                                 | , ,                                                                      |                                                                                           |               |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 06/28/23<br>07/03/23<br>07/03/23<br>Soil | 8_2.6-3.2_0627<br>n) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M(<br>306441-03 1/0.5<br>070314.D<br>GCMS13<br>MD | 0615.20.009   |
|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|
|                                                                                               |                                          |                                 | Lower                                                                    | Upper                                                                                     |               |
| Surrogates:                                                                                   | 1.                                       | % Recovery:                     | Limit:                                                                   | Limit:                                                                                    |               |
| 1,2-Dichloroethane                                                                            | -d4                                      | 98                              | 84                                                                       | 120                                                                                       |               |
| Toluene-d8<br>4-Bromofluorobenz                                                               |                                          | 103<br>100                      | 73<br>57                                                                 | $\frac{128}{146}$                                                                         |               |
| 4-bromolluorobenz                                                                             | ene                                      | 100                             | 57                                                                       | 140                                                                                       |               |
|                                                                                               |                                          | Concentration                   |                                                                          |                                                                                           | Concentration |
| Compounds:                                                                                    |                                          | mg/kg (ppm)                     | Compou                                                                   | nds:                                                                                      | mg/kg (ppm)   |
| Dichlorodifluorome                                                                            | ethane                                   | < 0.5                           | 1,3-Dich                                                                 | loropropane                                                                               | < 0.05        |
| Chloromethane                                                                                 |                                          | < 0.5                           |                                                                          | loroethene                                                                                | < 0.002       |
| Vinyl chloride                                                                                |                                          | < 0.002                         |                                                                          | ochloromethane                                                                            | < 0.05        |
| Bromomethane                                                                                  |                                          | <0.5 k                          | 1,2-Dibr                                                                 | omoethane (EDB)                                                                           | < 0.005       |
| Chloroethane                                                                                  |                                          | < 0.1                           | Chlorobe                                                                 | enzene                                                                                    | < 0.05        |
| Trichlorofluoromet                                                                            | hane                                     | < 0.5                           | Ethylber                                                                 | nzene                                                                                     | < 0.001       |
| Acetone                                                                                       |                                          | <5 k                            | 1,1,1,2-7                                                                | Tetrachloroethane                                                                         | < 0.05        |
| 1,1-Dichloroethene                                                                            |                                          | < 0.002                         | m,p-Xyle                                                                 |                                                                                           | < 0.002       |
| Hexane                                                                                        |                                          | < 0.25                          | o-Xylene                                                                 | 9                                                                                         | < 0.001       |
| Methylene chloride                                                                            |                                          | < 0.2                           | Styrene                                                                  |                                                                                           | < 0.05        |
| Methyl t-butyl ether (MTBE)                                                                   |                                          | < 0.002                         |                                                                          | vlbenzene                                                                                 | < 0.05        |
| trans-1,2-Dichloroethene                                                                      |                                          | < 0.002                         | Bromoform                                                                |                                                                                           | < 0.05        |
| 1,1-Dichloroethane                                                                            |                                          | < 0.002                         | n-Propylbenzene                                                          |                                                                                           | < 0.05        |
| 2,2-Dichloropropan                                                                            |                                          | < 0.05                          | Bromobenzene                                                             |                                                                                           | < 0.05        |
| cis-1,2-Dichloroeth                                                                           | ene                                      | < 0.002                         |                                                                          | imethylbenzene                                                                            | < 0.05        |
| Chloroform                                                                                    |                                          | < 0.05                          |                                                                          | Tetrachloroethane                                                                         | <0.05         |
| 2-Butanone (MEK)<br>1,2-Dichloroethane                                                        |                                          | <1                              | 1,2,3-1ri<br>2-Chloro                                                    | ichloropropane                                                                            | < 0.05 < 0.05 |
| 1,1,1-Trichloroetha                                                                           | · ,                                      | <0.002<br><0.002                | 4-Chlore                                                                 |                                                                                           | <0.05         |
| 1,1-Dichloropropen                                                                            |                                          | < 0.05                          |                                                                          | ylbenzene                                                                                 | <0.05         |
| Carbon tetrachlori                                                                            |                                          | <0.05                           |                                                                          | imethylbenzene                                                                            | < 0.05        |
| Benzene                                                                                       | ue                                       | <0.001                          |                                                                          | vlbenzene                                                                                 | < 0.05        |
| Trichloroethene                                                                               |                                          | < 0.002                         | •                                                                        | pyltoluene                                                                                | < 0.05        |
| 1,2-Dichloropropan                                                                            | ie                                       | < 0.05                          |                                                                          | lorobenzene                                                                               | < 0.05        |
| Bromodichloromet                                                                              |                                          | < 0.05                          |                                                                          | lorobenzene                                                                               | < 0.05        |
| Dibromomethane                                                                                |                                          | < 0.05                          | ,                                                                        | lorobenzene                                                                               | < 0.05        |
| 4-Methyl-2-pentan                                                                             | one                                      | <1                              |                                                                          | omo-3-chloropropane                                                                       | < 0.5         |
| cis-1,3-Dichloropro                                                                           |                                          | < 0.05                          |                                                                          | ichlorobenzene                                                                            | < 0.25        |
| Toluene                                                                                       |                                          | < 0.005                         |                                                                          | orobutadiene                                                                              | < 0.25        |
| trans-1,3-Dichlorop                                                                           | oropene                                  | < 0.05                          | Naphtha                                                                  |                                                                                           | < 0.01        |
| 1,1,2-Trichloroetha                                                                           | ne                                       | < 0.05                          | 1,2,3-Tri                                                                | ichlorobenzene                                                                            | < 0.25        |
| 2-Hexanone                                                                                    |                                          | < 0.5                           |                                                                          |                                                                                           |               |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06/28/23<br>07/03/23<br>07/03/23<br>Soil                                               | 5_2.2-2.8_0627<br>n) Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                                                                                                                                               | Maul Foster Alongi<br>Potter Subsurface M<br>306441-05<br>070316.D<br>GCMS13<br>MD                                                                    | 0615.20.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogates:<br>1,2-Dichloroethane<br>Toluene-d8<br>4-Bromofluorobenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        | % Recovery:<br>99<br>108<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lower<br>Limit:<br>84<br>73<br>57                                                                                                                                                                                                                                                                                      | Upper<br>Limit:<br>120<br>128<br>146                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Compounds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compou                                                                                                                                                                                                                                                                                                                 | nds:                                                                                                                                                  | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dichlorodifluorome<br>Chloromethane<br>Vinyl chloride<br>Bromomethane<br>Chloroethane<br>Trichlorofluoromet<br>Acetone<br>1,1-Dichloroethene<br>Hexane<br>Methylene chloride<br>Methyl t-butyl ethe<br>trans-1,2-Dichloroethane<br>2,2-Dichloropropan<br>cis-1,2-Dichloroethane<br>1,1-Dichloroethane<br>2-Butanone (MEK)<br>1,2-Dichloroethane<br>1,1,1-Trichloroethane<br>1,1,1-Trichloroethane<br>1,2-Dichloropropan<br>Carbon tetrachlorid<br>Benzene<br>Trichloroethene<br>1,2-Dichloropropan<br>Bromodichlorometh<br>Dibromomethane<br>4-Methyl-2-pentane<br>cis-1,3-Dichloropro | hane<br>er (MTBE)<br>ethene<br>ene<br>ene<br>e (EDC)<br>ine<br>de<br>de<br>hane<br>one | $\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $ | Tetrachl<br>Dibromo<br>1,2-Dibr<br>Chlorobe<br>Ethylber<br>1,1,1,2-T<br>m,p-Xyle<br>o-Xylene<br>Styrene<br>Isopropy<br>Bromofo<br>n-Propy!<br>Bromobe<br>1,3,5-Tri<br>1,1,2,2-T<br>1,2,3-Tri<br>2-Chloro<br>4-Chloro<br>tert-But<br>1,2,4-Tri<br>sec-Buty<br>p-Isopro<br>1,3-Dich<br>1,2-Dich<br>1,2-Dibr<br>1,2,4-Tri | nzene<br>Cetrachloroethane<br>ene<br>e<br>Vlbenzene<br>orm<br>lbenzene<br>enzene<br>imethylbenzene<br>Cetrachloroethane<br>ichloropropane<br>otoluene | $\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$ |
| trans-1,3-Dichlorop<br>1,1,2-Trichloroetha<br>2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                      | <0.05<br><0.05<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Naphtha                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | <0.05<br><0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06/28/23<br>07/03/23<br>07/03/23<br>Soil                                          | 06_2.2-2.8_0627<br>n) Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                                                                                                                                              | Maul Foster Alongi<br>Potter Subsurface MC<br>306441-06<br>070317.D<br>GCMS13<br>MD                                                                                                                                                                                                               | 0615.20.009                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogates:<br>1,2-Dichloroethane<br>Toluene-d8<br>4-Bromofluorobenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | % Recovery:<br>102<br>107<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower<br>Limit:<br>84<br>73<br>57                                                                                                                                                                                                                                                                                     | Upper<br>Limit:<br>120<br>128<br>146                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Compounds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compou                                                                                                                                                                                                                                                                                                                | nds:                                                                                                                                                                                                                                                                                              | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dichlorodifluorome<br>Chloromethane<br>Vinyl chloride<br>Bromomethane<br>Chloroethane<br>Trichlorofluoromet<br>Acetone<br>1,1-Dichloroethene<br>Hexane<br>Methylene chloride<br>Methyl t-butyl ethe<br>trans-1,2-Dichloroethane<br>2,2-Dichloroethane<br>2,2-Dichloroethane<br>Chloroform<br>2-Butanone (MEK)<br>1,2-Dichloroethane<br>1,1-Dichloroethane<br>1,1-Dichloropropen<br>Carbon tetrachlorid<br>Benzene<br>Trichloroethene<br>1,2-Dichloropropan<br>Bromodichlorometh<br>Dibromomethane<br>4-Methyl-2-pentane<br>cis-1,3-Dichloroprop | hane<br>er (MTBE)<br>othene<br>e<br>ene<br>(EDC)<br>ne<br>e<br>le<br>hane<br>pene | $\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0$ | Tetrachl<br>Dibromo<br>1,2-Dibr<br>Chlorobe<br>Ethylber<br>1,1,1,2-T<br>m,p-Xyle<br>o-Xylene<br>Styrene<br>Isopropy<br>Bromofo<br>n-Propyl<br>Bromobe<br>1,3,5-Tri<br>1,1,2,2-T<br>1,2,3-Tri<br>2-Chloro<br>4-Chloro<br>tert-But<br>1,2,4-Tri<br>sec-Buty<br>p-Isopro<br>1,3-Dich<br>1,2-Dibr<br>1,2,4-Tri<br>Hexachl | nzene<br>Petrachloroethane<br>ene<br>vilbenzene<br>rm<br>lbenzene<br>enzene<br>imethylbenzene<br>Petrachloroethane<br>ichloropropane<br>otoluene<br>ylbenzene<br>imethylbenzene<br>vibenzene<br>pyltoluene<br>lorobenzene<br>lorobenzene<br>omo-3-chloropropane<br>ichlorobenzene<br>orobutadiene | $\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.83 \\ < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$ |
| trans-1,3-Dichlorop<br>1,1,2-Trichloroetha<br>2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                 | <0.05<br><0.05<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Naphtha<br>1,2,3-Tri                                                                                                                                                                                                                                                                                                  | alene<br>ichlorobenzene                                                                                                                                                                                                                                                                           | <0.05<br><0.25                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | 06/28/23<br>07/03/23<br>07/05/23<br>Soil | 8_8.2-8.8_0627<br>n) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M(<br>306441-07 1/0.5<br>070509.D<br>GCMS13<br>MD | 0615.20.009        |
|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|
| ~                                                                                             |                                          |                                 | Lower                                                                    | Upper                                                                                     |                    |
| Surrogates:                                                                                   | 14                                       | % Recovery:                     | Limit:                                                                   | Limit:                                                                                    |                    |
| 1,2-Dichloroethane<br>Toluene-d8                                                              | e-04                                     | $101 \\ 103$                    | $\frac{84}{73}$                                                          | $\frac{120}{128}$                                                                         |                    |
| 4-Bromofluorobenz                                                                             | ene                                      | 98                              | 73<br>57                                                                 | $128 \\ 146$                                                                              |                    |
|                                                                                               |                                          | Concentration                   |                                                                          |                                                                                           | Concentration      |
| Compounds:                                                                                    |                                          | mg/kg (ppm)                     | Compou                                                                   | nds:                                                                                      | mg/kg (ppm)        |
| Dichlorodifluorome                                                                            | ethane                                   | < 0.5                           | 1,3-Dich                                                                 | loropropane                                                                               | < 0.05             |
| Chloromethane                                                                                 |                                          | < 0.5                           |                                                                          | loroethene                                                                                | < 0.002            |
| Vinyl chloride                                                                                |                                          | < 0.002                         | Dibromo                                                                  | ochloromethane                                                                            | < 0.05             |
| Bromomethane                                                                                  |                                          | < 0.5                           | 1,2-Dibr                                                                 | omoethane (EDB)                                                                           | < 0.005            |
| Chloroethane                                                                                  |                                          | < 0.1                           | Chlorob                                                                  | enzene                                                                                    | < 0.05             |
| Trichlorofluoromet                                                                            | hane                                     | < 0.5                           | Ethylber                                                                 | nzene                                                                                     | 0.0028             |
| Acetone                                                                                       |                                          | <5                              | 1,1,1,2-7                                                                | Tetrachloroethane                                                                         | < 0.05             |
| 1,1-Dichloroethene                                                                            | l.                                       | < 0.002                         | m,p-Xyle                                                                 | ene                                                                                       | 0.0023             |
| Hexane                                                                                        |                                          | < 0.25                          | o-Xylene                                                                 | e                                                                                         | < 0.001            |
| Methylene chloride                                                                            | )                                        | < 0.2                           | Styrene                                                                  |                                                                                           | < 0.05             |
| Methyl t-butyl ethe                                                                           |                                          | < 0.002                         |                                                                          | lbenzene                                                                                  | < 0.05             |
| trans-1,2-Dichloroe                                                                           |                                          | < 0.002                         | Bromofo                                                                  |                                                                                           | < 0.05             |
| 1,1-Dichloroethane                                                                            |                                          | < 0.002                         |                                                                          | lbenzene                                                                                  | < 0.05             |
| 2,2-Dichloropropan                                                                            |                                          | < 0.05                          | Bromobe                                                                  |                                                                                           | < 0.05             |
| cis-1,2-Dichloroeth                                                                           | ene                                      | < 0.002                         |                                                                          | imethylbenzene                                                                            | < 0.05             |
| Chloroform                                                                                    |                                          | < 0.05                          |                                                                          | Tetrachloroethane                                                                         | < 0.05             |
| 2-Butanone (MEK)                                                                              |                                          | <1                              |                                                                          | ichloropropane                                                                            | < 0.05             |
| 1,2-Dichloroethane                                                                            |                                          | < 0.002                         | 2-Chloro                                                                 |                                                                                           | < 0.05             |
| 1,1,1-Trichloroetha                                                                           |                                          | < 0.002                         | 4-Chloro                                                                 |                                                                                           | < 0.05             |
| 1,1-Dichloropropen                                                                            |                                          | < 0.05                          |                                                                          | ylbenzene                                                                                 | < 0.05             |
| Carbon tetrachlorie                                                                           | de                                       | < 0.05                          |                                                                          | imethylbenzene                                                                            | < 0.05             |
| Benzene                                                                                       |                                          | 0.021                           | •                                                                        | vlbenzene                                                                                 | < 0.05             |
| Trichloroethene                                                                               |                                          | < 0.002                         |                                                                          | pyltoluene                                                                                | <0.05              |
| 1,2-Dichloropropan<br>Bromodichlorometl                                                       |                                          | <0.05<br><0.05                  |                                                                          | lorobenzene                                                                               | $< 0.05 \\ < 0.05$ |
| Dibromomethane                                                                                | nane                                     | < 0.05                          |                                                                          | lorobenzene<br>lorobenzene                                                                | <0.05              |
| 4-Methyl-2-pentan                                                                             | ono                                      | <0.05<br><1                     |                                                                          | omo-3-chloropropane                                                                       | <0.05<br><0.5      |
| cis-1,3-Dichloropro                                                                           |                                          | <0.05                           |                                                                          | ichlorobenzene                                                                            | <0.5               |
| Toluene                                                                                       | hene                                     | 0.0071                          |                                                                          | orobutadiene                                                                              | <0.25              |
| trans-1,3-Dichlorop                                                                           | ronene                                   | < 0.05                          | Naphtha                                                                  |                                                                                           | 0.015              |
| 1,1,2-Trichloroetha                                                                           | -                                        | < 0.05                          | _                                                                        | ichlorobenzene                                                                            | < 0.25             |
| 2-Hexanone                                                                                    |                                          | <0.5                            | 1,2,0-11.                                                                |                                                                                           | -0.20              |
| - 11030110110                                                                                 |                                          | 0.0                             |                                                                          |                                                                                           |                    |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Bla<br>Not Applic<br>07/03/23<br>07/03/23<br>Soil<br>mg/kg (ppr |                  | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M(<br>03-1525 mb 1/0.5<br>070309.D<br>GCMS13<br>MD | 0615.20.009    |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|
|                                                                                               |                                                                        |                  | Lower                                                                    | Upper                                                                                      |                |
| Surrogates:                                                                                   | 1.                                                                     | % Recovery:      | Limit:                                                                   | Limit:                                                                                     |                |
| 1,2-Dichloroethane                                                                            | -d4                                                                    | 99               | 84                                                                       | 120                                                                                        |                |
| Toluene-d8<br>4-Bromofluorobenz                                                               |                                                                        | $\frac{102}{98}$ | $73 \\ 57$                                                               | $128\\146$                                                                                 |                |
| 4-bromolluorobenz                                                                             | ene                                                                    | 98               | 16                                                                       | 146                                                                                        |                |
|                                                                                               |                                                                        | Concentration    |                                                                          |                                                                                            | Concentration  |
| Compounds:                                                                                    |                                                                        | mg/kg (ppm)      | Compou                                                                   | nds:                                                                                       | mg/kg (ppm)    |
| Dichlorodifluorome                                                                            | ethane                                                                 | < 0.5            | 1.3-Dich                                                                 | loropropane                                                                                | < 0.05         |
| Chloromethane                                                                                 |                                                                        | < 0.5            |                                                                          | loroethene                                                                                 | < 0.002        |
| Vinyl chloride                                                                                |                                                                        | < 0.002          |                                                                          | ochloromethane                                                                             | < 0.05         |
| Bromomethane                                                                                  |                                                                        | <0.5 k           | 1,2-Dibr                                                                 | omoethane (EDB)                                                                            | < 0.005        |
| Chloroethane                                                                                  |                                                                        | < 0.1            | Chlorob                                                                  |                                                                                            | < 0.05         |
| Trichlorofluoromet                                                                            | hane                                                                   | < 0.5            | Ethylber                                                                 | nzene                                                                                      | < 0.001        |
| Acetone                                                                                       |                                                                        | <5 k             | 1,1,1,2-7                                                                | Tetrachloroethane                                                                          | < 0.05         |
| 1,1-Dichloroethene                                                                            |                                                                        | < 0.002          | m,p-Xyle                                                                 | ene                                                                                        | < 0.002        |
| Hexane                                                                                        |                                                                        | < 0.25           | o-Xylene                                                                 | 9                                                                                          | < 0.001        |
| Methylene chloride                                                                            |                                                                        | < 0.2            | Styrene                                                                  |                                                                                            | < 0.05         |
| Methyl t-butyl ether (MTBE)                                                                   |                                                                        | < 0.002          | Isopropylbenzene                                                         |                                                                                            | < 0.05         |
| trans-1,2-Dichloroe                                                                           |                                                                        | < 0.002          | Bromoform                                                                |                                                                                            | < 0.05         |
| 1,1-Dichloroethane                                                                            |                                                                        | < 0.002          | n-Propylbenzene                                                          |                                                                                            | < 0.05         |
| 2,2-Dichloropropan                                                                            |                                                                        | < 0.05           | Bromobenzene                                                             |                                                                                            | < 0.05         |
| cis-1,2-Dichloroeth                                                                           | ene                                                                    | < 0.002          | 1,3,5-Trimethylbenzene                                                   |                                                                                            | < 0.05         |
| Chloroform                                                                                    |                                                                        | < 0.05           |                                                                          | Tetrachloroethane                                                                          | < 0.05         |
| 2-Butanone (MEK)                                                                              |                                                                        | <1               |                                                                          | ichloropropane                                                                             | < 0.05         |
| 1,2-Dichloroethane                                                                            |                                                                        | < 0.002          | 2-Chloro                                                                 |                                                                                            | < 0.05         |
| 1,1,1-Trichloroetha                                                                           |                                                                        | < 0.002          | 4-Chloro                                                                 |                                                                                            | < 0.05         |
| 1,1-Dichloropropen                                                                            |                                                                        | < 0.05           |                                                                          | ylbenzene                                                                                  | <0.05          |
| Carbon tetrachlorie                                                                           | ae                                                                     | < 0.05           |                                                                          | imethylbenzene                                                                             | <0.05          |
| Benzene<br>Trichloroethene                                                                    |                                                                        | < 0.001          | •                                                                        | vlbenzene                                                                                  | <0.05          |
| 1,2-Dichloropropan                                                                            |                                                                        | <0.002<br><0.05  |                                                                          | pyltoluene<br>lorobenzene                                                                  | <0.05<br><0.05 |
| Bromodichloromet                                                                              |                                                                        | < 0.05           |                                                                          | lorobenzene                                                                                | <0.05          |
| Dibromomethane                                                                                | liane                                                                  | < 0.05           | ,                                                                        | lorobenzene                                                                                | <0.05          |
| 4-Methyl-2-pentan                                                                             | one                                                                    | <0.05            |                                                                          | omo-3-chloropropane                                                                        | <0.05          |
| cis-1,3-Dichloropro                                                                           |                                                                        | <0.05            |                                                                          | ichlorobenzene                                                                             | <0.25          |
| Toluene                                                                                       | pone                                                                   | < 0.005          |                                                                          | orobutadiene                                                                               | <0.25          |
| trans-1,3-Dichlorop                                                                           | propene                                                                | < 0.05           | Naphtha                                                                  |                                                                                            | < 0.01         |
| 1,1,2-Trichloroetha                                                                           | -                                                                      | <0.05            | -                                                                        | ichlorobenzene                                                                             | <0.25          |
| 2-Hexanone                                                                                    |                                                                        | <0.5             | 1, <b>2</b> ,0 11.                                                       |                                                                                            | 0.20           |
| 2-110xa110110                                                                                 |                                                                        | NU.0             |                                                                          |                                                                                            |                |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Trip Blank<br>06/28/23<br>06/30/23<br>06/30/23<br>Water<br>ug/L (ppb) | 1-0627           | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M<br>306441-08<br>063011.D<br>GCMS13<br>MD | 0615.20.009   |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|
| ~                                                                                             |                                                                       |                  | Lower                                                                    | Upper                                                                              |               |
| Surrogates:                                                                                   | 14                                                                    | % Recovery:      | Limit:                                                                   | Limit:                                                                             |               |
| 1,2-Dichloroethane<br>Toluene-d8                                                              | -04                                                                   | $\frac{98}{100}$ | $71\\68$                                                                 | $132 \\ 139$                                                                       |               |
| 4-Bromofluorobenz                                                                             | ene                                                                   | $100 \\ 102$     | 68<br>62                                                                 | 139                                                                                |               |
|                                                                                               |                                                                       | Concentration    |                                                                          |                                                                                    | Concentration |
| Compounds:                                                                                    |                                                                       | ug/L (ppb)       | Compou                                                                   | nds:                                                                               | ug/L (ppb)    |
| Dichlorodifluorome                                                                            | thane                                                                 | <1               | 1 3-Dich                                                                 | loropropane                                                                        | <1            |
| Chloromethane                                                                                 | liane                                                                 | <10              |                                                                          | loroethene                                                                         | <1            |
| Vinyl chloride                                                                                |                                                                       | < 0.02           |                                                                          | ochloromethane                                                                     | < 0.5         |
| Bromomethane                                                                                  |                                                                       | <5 k             |                                                                          | omoethane (EDB)                                                                    | <1            |
| Chloroethane                                                                                  |                                                                       | <1               | Chlorobe                                                                 |                                                                                    | <1            |
| Trichlorofluoromet                                                                            | hane                                                                  | <1               | Ethylber                                                                 | nzene                                                                              | <1            |
| Acetone                                                                                       |                                                                       | <50 k            | 1,1,1,2-7                                                                | Tetrachloroethane                                                                  | <1            |
| 1,1-Dichloroethene                                                                            |                                                                       | <1               | m,p-Xyle                                                                 | ene                                                                                | <2            |
| Hexane                                                                                        |                                                                       | <5               | o-Xylene                                                                 | e                                                                                  | <1            |
| Methylene chloride                                                                            |                                                                       | <5               | Styrene                                                                  |                                                                                    | <1            |
| Methyl t-butyl ether (MTBE)                                                                   |                                                                       | <1               | Isopropylbenzene                                                         |                                                                                    | <1            |
| trans-1,2-Dichloroe                                                                           |                                                                       | <1               | Bromoform                                                                |                                                                                    | <5            |
| 1,1-Dichloroethane                                                                            |                                                                       | <1               | n-Propylbenzene                                                          |                                                                                    | <1            |
| 2,2-Dichloropropan                                                                            |                                                                       | <1               | Bromobenzene                                                             |                                                                                    | <1            |
| cis-1,2-Dichloroeth                                                                           | ene                                                                   | <1               |                                                                          | imethylbenzene                                                                     | <1            |
| Chloroform                                                                                    |                                                                       | <1               |                                                                          | Tetrachloroethane                                                                  | < 0.2         |
| 2-Butanone (MEK)                                                                              |                                                                       | <20              |                                                                          | ichloropropane                                                                     | <1            |
| 1,2-Dichloroethane                                                                            |                                                                       | <0.2             | 2-Chloro                                                                 |                                                                                    | <1            |
| 1,1,1-Trichloroetha                                                                           |                                                                       | <1<br><1         | 4-Chloro                                                                 |                                                                                    | <1<br><1      |
| 1,1-Dichloropropen<br>Carbon tetrachlorid                                                     |                                                                       | <1<br><0.5       |                                                                          | ylbenzene<br>imethylbenzene                                                        | <1            |
| Benzene                                                                                       | le                                                                    | <0.3<br><0.35    |                                                                          | /lbenzene                                                                          | <1            |
| Trichloroethene                                                                               |                                                                       | <0.5             |                                                                          | pyltoluene                                                                         | <1            |
| 1,2-Dichloropropan                                                                            | P                                                                     | <1               |                                                                          | lorobenzene                                                                        | <1            |
| Bromodichlorometh                                                                             |                                                                       | <0.5             |                                                                          | lorobenzene                                                                        | <1            |
| Dibromomethane                                                                                | iune                                                                  | <1               |                                                                          | lorobenzene                                                                        | <1            |
| 4-Methyl-2-pentane                                                                            | one                                                                   | <10              |                                                                          | omo-3-chloropropane                                                                | <10           |
| cis-1,3-Dichloropro                                                                           |                                                                       | < 0.4            |                                                                          | ichlorobenzene                                                                     | <1            |
| Toluene                                                                                       | <u>.</u>                                                              | <1               |                                                                          | orobutadiene                                                                       | < 0.5         |
| trans-1,3-Dichlorop                                                                           | oropene                                                               | < 0.4            | Naphtha                                                                  | alene                                                                              | <1            |
| 1,1,2-Trichloroetha                                                                           |                                                                       | < 0.5            |                                                                          | ichlorobenzene                                                                     | <1            |
| 2-Hexanone                                                                                    |                                                                       | <10              |                                                                          |                                                                                    |               |

### ENVIRONMENTAL CHEMISTS

### Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Bla<br>Not Applica<br>06/30/23<br>06/30/23<br>Water<br>ug/L (ppb) |                             | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M(<br>03-1523 mb<br>063007.D<br>GCMS13<br>MD | 0615.20.009                 |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|
| Surrogates:                                                                                   |                                                                          | % Recovery:                 | Lower<br>Limit:                                                          | Upper<br>Limit:                                                                      |                             |
| 1,2-Dichloroethane                                                                            | -d4                                                                      | 94                          | 71                                                                       | 132                                                                                  |                             |
| Toluene-d8                                                                                    |                                                                          | 92                          | 68                                                                       | 139                                                                                  |                             |
| 4-Bromofluorobenz                                                                             | ene                                                                      | 101                         | 62                                                                       | 136                                                                                  |                             |
| Compounds:                                                                                    |                                                                          | Concentration<br>ug/L (ppb) | Compou                                                                   | nds:                                                                                 | Concentration<br>ug/L (ppb) |
| Dichlorodifluorome                                                                            | ethane                                                                   | <1                          | 1,3-Dich                                                                 | loropropane                                                                          | <1                          |
| Chloromethane                                                                                 |                                                                          | <10                         |                                                                          | loroethene                                                                           | <1                          |
| Vinyl chloride                                                                                |                                                                          | < 0.02                      | Dibromo                                                                  | ochloromethane                                                                       | < 0.5                       |
| Bromomethane                                                                                  |                                                                          | <5 k                        |                                                                          | omoethane (EDB)                                                                      | <1                          |
| Chloroethane                                                                                  |                                                                          | <1                          | Chlorobe                                                                 |                                                                                      | <1                          |
| Trichlorofluoromet                                                                            | hane                                                                     | <1                          | Ethylber                                                                 |                                                                                      | <1                          |
| Acetone                                                                                       |                                                                          | <50 k                       |                                                                          | Tetrachloroethane                                                                    | <1                          |
| 1,1-Dichloroethene                                                                            |                                                                          | <1                          | m,p-Xyle                                                                 |                                                                                      | <2                          |
| Hexane<br>Mathedana ablarida                                                                  |                                                                          | <5<br><5                    | o-Xylene<br>Styrene                                                      | ġ.                                                                                   | <1<br><1                    |
| Methylene chloride<br>Methyl t-butyl ether (MTBE)                                             |                                                                          | <5<br><1                    | Isopropylbenzene                                                         |                                                                                      | <1                          |
| trans-1,2-Dichloroe                                                                           |                                                                          | <1                          | Bromoform                                                                |                                                                                      | <5                          |
| 1,1-Dichloroethane                                                                            |                                                                          | <1                          |                                                                          | lbenzene                                                                             | <1                          |
| 2,2-Dichloropropan                                                                            |                                                                          | <1                          | Bromobenzene                                                             |                                                                                      | <1                          |
| cis-1,2-Dichloroeth                                                                           |                                                                          | <1                          |                                                                          | imethylbenzene                                                                       | <1                          |
| Chloroform                                                                                    |                                                                          | <1                          | 1,1,2,2-1                                                                | Tetrachloroethane                                                                    | < 0.2                       |
| 2-Butanone (MEK)                                                                              |                                                                          | <20                         |                                                                          | ichloropropane                                                                       | <1                          |
| 1,2-Dichloroethane                                                                            |                                                                          | < 0.2                       | 2-Chloro                                                                 |                                                                                      | <1                          |
| 1,1,1-Trichloroetha                                                                           |                                                                          | <1                          | 4-Chloro                                                                 |                                                                                      | <1                          |
| 1,1-Dichloropropen                                                                            |                                                                          | <1                          |                                                                          | ylbenzene                                                                            | <1                          |
| Carbon tetrachlorie                                                                           | de                                                                       | <0.5                        |                                                                          | imethylbenzene                                                                       | <1<br><1                    |
| Benzene<br>Trichloroethene                                                                    |                                                                          | <0.35<br><0.5               |                                                                          | vlbenzene<br>pyltoluene                                                              | <1                          |
| 1,2-Dichloropropan                                                                            | Δ                                                                        | <0.5<br><1                  |                                                                          | lorobenzene                                                                          | <1                          |
| Bromodichlorometl                                                                             |                                                                          | < 0.5                       |                                                                          | lorobenzene                                                                          | <1                          |
| Dibromomethane                                                                                |                                                                          | <1                          |                                                                          | lorobenzene                                                                          | <1                          |
| 4-Methyl-2-pentane                                                                            | one                                                                      | <10                         |                                                                          | omo-3-chloropropane                                                                  | <10                         |
| cis-1,3-Dichloropro                                                                           |                                                                          | < 0.4                       |                                                                          | ichlorobenzene                                                                       | <1                          |
| Toluene                                                                                       |                                                                          | <1                          |                                                                          | orobutadiene                                                                         | < 0.5                       |
| trans-1,3-Dichlorog                                                                           | -                                                                        | < 0.4                       | Naphtha                                                                  |                                                                                      | <1                          |
| 1,1,2-Trichloroetha                                                                           | ne                                                                       | < 0.5                       | 1,2,3-Tri                                                                | ichlorobenzene                                                                       | <1                          |
| 2-Hexanone                                                                                    |                                                                          | <10                         |                                                                          |                                                                                      |                             |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                            | TWA-SB07_2.4<br>06/28/23<br>06/29/23<br>06/30/23<br>Soil<br>mg/kg (ppm) Dr |                                                | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M<br>306441-01 1/5<br>062937.D<br>GCMS9<br>VM | 0615.20.009       |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromopher<br>Terphenyl-d14 |                                                                            | Recovery:<br>82<br>89<br>74<br>84<br>72<br>103 | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11<br>50                      | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                             |                   |
|                                                                                                                          |                                                                            | ncentration                                    | a                                                                        |                                                                                       | Concentration     |
| Compounds:                                                                                                               | m                                                                          | g/kg (ppm)                                     | Compou                                                                   | nds:                                                                                  | mg/kg (ppm)       |
| Phenol                                                                                                                   |                                                                            | < 0.5                                          | 2,6-Dini                                                                 | trotoluene                                                                            | < 0.25            |
| Bis(2-chloroethyl) e                                                                                                     | ether                                                                      | < 0.05                                         | 3-Nitroa                                                                 | niline                                                                                | <5                |
| 2-Chlorophenol                                                                                                           |                                                                            | < 0.5                                          | Acenaph                                                                  | ithene                                                                                | < 0.01            |
| 1,3-Dichlorobenzen                                                                                                       |                                                                            | < 0.05                                         |                                                                          | trophenol                                                                             | <1.5              |
| 1,4-Dichlorobenzen                                                                                                       |                                                                            | < 0.05                                         | Dibenzo                                                                  |                                                                                       | < 0.05            |
| 1,2-Dichlorobenzen                                                                                                       | e                                                                          | < 0.05                                         |                                                                          | trotoluene                                                                            | < 0.25            |
| Benzyl alcohol                                                                                                           |                                                                            | < 0.5                                          | 4-Nitrop                                                                 |                                                                                       | <1.5              |
| 2,2'-Oxybis(1-chlore                                                                                                     | opropane)                                                                  | < 0.05                                         |                                                                          | phthalate                                                                             | < 0.5             |
| 2-Methylphenol                                                                                                           |                                                                            | <0.5                                           | Fluorene                                                                 |                                                                                       | < 0.01            |
| Hexachloroethane                                                                                                         |                                                                            | < 0.05                                         |                                                                          | phenyl phenyl ether                                                                   | < 0.05            |
| N-Nitroso-di-n-prop                                                                                                      |                                                                            | < 0.05                                         |                                                                          | sodiphenylamine                                                                       | < 0.05            |
| 3-Methylphenol + 4                                                                                                       | -Methylphenol                                                              | <1                                             | 4-Nitroa                                                                 |                                                                                       | <5                |
| Nitrobenzene                                                                                                             |                                                                            | < 0.05                                         |                                                                          | tro-2-methylphenol                                                                    | <1.5              |
| Isophorone                                                                                                               |                                                                            | <0.05                                          |                                                                          | phenyl phenyl ether                                                                   | <0.05             |
| 2-Nitrophenol<br>2,4-Dimethylpheno                                                                                       | 1                                                                          | <0.5<br><0.5                                   |                                                                          | orobenzene<br>lorophenol                                                              | <0.05 ca<br><0.25 |
| Benzoic acid                                                                                                             | 1                                                                          | <0.5<br><2.5                                   | Phenant                                                                  | -                                                                                     | <0.25<br>0.013    |
| Bis(2-chloroethoxy)                                                                                                      | mothana                                                                    | <0.05                                          | Anthrac                                                                  |                                                                                       | 0.013             |
| 2,4-Dichlorophenol                                                                                                       | liletilalle                                                                | <0.05                                          | Carbazo                                                                  |                                                                                       | < 0.05            |
| 1,2,4-Trichlorobenz                                                                                                      | ene                                                                        | < 0.05                                         |                                                                          | yl phthalate                                                                          | <0.5              |
| Naphthalene                                                                                                              |                                                                            | < 0.01                                         | Fluorant                                                                 |                                                                                       | 0.040             |
| Hexachlorobutadie                                                                                                        | ne                                                                         | < 0.05                                         | Pyrene                                                                   |                                                                                       | 0.058             |
| 4-Chloroaniline                                                                                                          |                                                                            | <5                                             | -                                                                        | outyl phthalate                                                                       | <0.5 k            |
| 4-Chloro-3-methylp                                                                                                       | henol                                                                      | < 0.5                                          |                                                                          | anthracene                                                                            | 0.051             |
| 2-Methylnaphthale                                                                                                        |                                                                            | < 0.01                                         | Chrysen                                                                  |                                                                                       | 0.23              |
| 1-Methylnaphthale                                                                                                        |                                                                            | < 0.01                                         | -                                                                        | nylhexyl) phthalate                                                                   | < 0.8             |
| Hexachlorocycloper                                                                                                       |                                                                            | < 0.15                                         |                                                                          | yl phthalate                                                                          | < 0.5             |
| 2,4,6-Trichloropher                                                                                                      | nol                                                                        | < 0.5                                          | Benzo(a)                                                                 | )pyrene                                                                               | 0.13              |
| 2,4,5-Trichloropher                                                                                                      | nol                                                                        | < 0.5                                          | Benzo(b)                                                                 | )fluoranthene                                                                         | 0.12              |
| 2-Chloronaphthale                                                                                                        | ne                                                                         | < 0.05                                         |                                                                          | )fluoranthene                                                                         | 0.054             |
| 2-Nitroaniline                                                                                                           |                                                                            | < 0.25                                         |                                                                          | 1,2,3-cd)pyrene                                                                       | 0.21              |
| Dimethyl phthalate                                                                                                       | 9                                                                          | < 0.5                                          | ,                                                                        | a,h)anthracene                                                                        | 0.047             |
| Acenaphthylene                                                                                                           |                                                                            | < 0.01                                         | Benzo(g,                                                                 | ,h,i)perylene                                                                         | 0.25              |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:           | TWA-SB08_2.6<br>06/28/23<br>06/29/23<br>06/30/23<br>Soil<br>mg/kg (ppm) Dr |                                         | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M<br>306441-03 1/5<br>062938.D<br>GCMS9<br>VM | 0615.20.009                  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen |                                                                            | Recovery:<br>89<br>94<br>89<br>86<br>78 | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11                            | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158                                    |                              |
| Terphenyl-d14                                                                                           |                                                                            | 104                                     | 50                                                                       | 124                                                                                   |                              |
| Compounds:                                                                                              |                                                                            | ncentration<br>g/kg (ppm)               | Compou                                                                   | nds:                                                                                  | Concentration<br>mg/kg (ppm) |
|                                                                                                         | 111                                                                        |                                         |                                                                          |                                                                                       |                              |
| Phenol                                                                                                  |                                                                            | <0.5                                    |                                                                          | trotoluene                                                                            | < 0.25                       |
| Bis(2-chloroethyl) e                                                                                    | ether                                                                      | < 0.05                                  | 3-Nitroa                                                                 |                                                                                       | <5                           |
| 2-Chlorophenol                                                                                          |                                                                            | <0.5                                    | Acenaph                                                                  |                                                                                       | 0.19                         |
| 1,3-Dichlorobenzen                                                                                      |                                                                            | < 0.05                                  |                                                                          | trophenol                                                                             | <1.5                         |
| 1,4-Dichlorobenzen                                                                                      |                                                                            | < 0.05                                  | Dibenzo                                                                  |                                                                                       | < 0.05                       |
| 1,2-Dichlorobenzen                                                                                      | e                                                                          | < 0.05                                  |                                                                          | trotoluene                                                                            | < 0.25                       |
| Benzyl alcohol                                                                                          |                                                                            | <0.5                                    | 4-Nitrop                                                                 |                                                                                       | <1.5                         |
| 2,2'-Oxybis(1-chloro                                                                                    | opropane)                                                                  | < 0.05                                  |                                                                          | phthalate                                                                             | < 0.5                        |
| 2-Methylphenol                                                                                          |                                                                            | <0.5                                    | Fluorene                                                                 |                                                                                       | 0.11                         |
| Hexachloroethane                                                                                        |                                                                            | < 0.05                                  |                                                                          | phenyl phenyl ether                                                                   | < 0.05                       |
| N-Nitroso-di-n-prop                                                                                     |                                                                            | < 0.05                                  |                                                                          | sodiphenylamine                                                                       | < 0.05                       |
| 3-Methylphenol + 4                                                                                      | -Methylphenol                                                              | <1                                      | 4-Nitroa                                                                 |                                                                                       | <5                           |
| Nitrobenzene                                                                                            |                                                                            | < 0.05                                  |                                                                          | tro-2-methylphenol                                                                    | <1.5                         |
| Isophorone                                                                                              |                                                                            | <0.05                                   |                                                                          | phenyl phenyl ether                                                                   | < 0.05                       |
| 2-Nitrophenol                                                                                           | 1                                                                          | <0.5                                    |                                                                          | orobenzene                                                                            | <0.05 ca                     |
| 2,4-Dimethylpheno                                                                                       | 1                                                                          | <0.5                                    |                                                                          | lorophenol                                                                            | < 0.25                       |
| Benzoic acid                                                                                            |                                                                            | <2.5                                    | Phenant                                                                  |                                                                                       | 0.038                        |
| Bis(2-chloroethoxy)                                                                                     | metnane                                                                    | <0.05                                   | Anthrac                                                                  |                                                                                       | <0.01                        |
| 2,4-Dichlorophenol                                                                                      |                                                                            | <0.5<br><0.05                           | Carbazo<br>Di p hut                                                      |                                                                                       | $< 0.05 \\ < 0.5$            |
| 1,2,4-Trichlorobenz<br>Naphthalene                                                                      | lene                                                                       | <0.05<br><0.01                          |                                                                          | yl phthalate                                                                          | <0.5<br>0.043                |
| Hexachlorobutadie                                                                                       | no                                                                         | < 0.01                                  | Fluorant<br>Pyrene                                                       | unene                                                                                 | 0.043                        |
| 4-Chloroaniline                                                                                         | lle                                                                        | <0.03<br><5                             | -                                                                        | outyl phthalate                                                                       | <0.5 k                       |
| 4-Chloro-3-methylp                                                                                      | honol                                                                      | <0.5                                    | -                                                                        | anthracene                                                                            | <0.5 K<br>0.017              |
| 2-Methylnaphthale                                                                                       |                                                                            | <0.01                                   | Chrysen                                                                  |                                                                                       | 0.017                        |
| 1-Methylnaphthale                                                                                       |                                                                            | < 0.01                                  |                                                                          | nylhexyl) phthalate                                                                   | <0.8                         |
| Hexachlorocycloper                                                                                      |                                                                            | <0.15                                   |                                                                          | yl phthalate                                                                          | <0.5                         |
| 2,4,6-Trichloropher                                                                                     |                                                                            | <0.10                                   | Benzo(a)                                                                 |                                                                                       | 0.016                        |
| 2,4,5-Trichloropher                                                                                     |                                                                            | <0.5                                    |                                                                          | )fluoranthene                                                                         | 0.010                        |
| 2-Chloronaphthale                                                                                       |                                                                            | < 0.05                                  |                                                                          | )fluoranthene                                                                         | < 0.010                      |
| 2-Nitroaniline                                                                                          | -                                                                          | <0.25                                   |                                                                          | l,2,3-cd)pyrene                                                                       | 0.010                        |
| Dimethyl phthalate                                                                                      | e                                                                          | <0.5                                    |                                                                          | a,h)anthracene                                                                        | < 0.01                       |
| Acenaphthylene                                                                                          |                                                                            | < 0.01                                  |                                                                          | ,h,i)perylene                                                                         | < 0.01                       |
| 1 0                                                                                                     |                                                                            |                                         | - (8)                                                                    |                                                                                       |                              |

# ENVIRONMENTAL CHEMISTS

| Date Received:06/28/23Date Extracted:06/29/23Date Analyzed:06/30/23Matrix:Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                                                                                                                     | Maul Foster Alongi<br>Potter Subsurface M(<br>306441-05 1/25<br>062941.D<br>GCMS9<br>VM                                                                                                                                                                                                          | 0615.20.009                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophenol<br>Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % Recovery:<br>84 d<br>92 d<br>135 d<br>91 d<br>90 d<br>110 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11<br>50                                                                                                                                                                                                                                          | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                                                                                                                                                                                                                                        |                                              |
| Compounds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compou                                                                                                                                                                                                                                                                                       | nds:                                                                                                                                                                                                                                                                                             | Concentration<br>mg/kg (ppm)                 |
| Compounds:<br>Phenol<br>Bis(2-chloroethyl) ether<br>2-Chlorophenol<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Benzyl alcohol<br>2,2'-Oxybis(1-chloropropane)<br>2-Methylphenol<br>Hexachloroethane<br>N-Nitroso-di-n-propylamine<br>3-Methylphenol + 4-Methylp<br>Nitrobenzene<br>Isophorone<br>2-Nitrophenol<br>2,4-Dimethylphenol<br>Benzoic acid<br>Bis(2-chloroethoxy)methane<br>2,4-Dichlorophenol<br>1,2,4-Trichlorobenzene<br>Naphthalene<br>Hexachlorobutadiene<br>4-Chloroaniline<br>4-Chloro-3-methylphenol<br>Hexachlorocyclopentadiene<br>2,4,5-Trichlorophenol<br>2,4,5-Trichlorophenol | mg/kg (ppm) < 2.5 < 0.25 < 2.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 2.5 < 0.25 < 2.5 < 0.25 < 2.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 | 2,6-Dini<br>3-Nitroa<br>Acenaph<br>2,4-Dini<br>Dibenzo<br>2,4-Dini<br>4-Nitrop<br>Diethyl<br>Fluorene<br>4-Chloro<br>N-Nitroa<br>4-Nitroa<br>4,6-Dini<br>4-Bromo<br>Hexachl<br>Pentach<br>Phenant<br>Anthrac<br>Carbazo<br>Di-n-but<br>Fluorant<br>Pyrene<br>Benzyl b<br>Benz(a)<br>Benzo(a) | trotoluene<br>miline<br>thene<br>trophenol<br>furan<br>trotoluene<br>whenol<br>phthalate<br>e<br>ophenyl phenyl ether<br>sodiphenylamine<br>miline<br>tro-2-methylphenol<br>ophenyl phenyl ether<br>orobenzene<br>lorophenol<br>whrene<br>ene<br>le<br>cyl phthalate<br>thene<br>outyl phthalate |                                              |
| 2-Chloronaphthalene<br>2-Nitroaniline<br>Dimethyl phthalate<br>Acenaphthylene<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.25<br>< 1.2<br>< 2.5<br>< 0.05<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Indeno(<br>Dibenz(a<br>Benzo(g                                                                                                                                                                                                                                                               | )fluoranthene<br>1,2,3-cd)pyrene<br>a,h)anthracene<br>,h,i)perylene<br>hylhexyl) phthalate                                                                                                                                                                                                       | 0.083<br>< $0.05$<br>0.064<br>0.099<br>< $4$ |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                            | TWA-SB06_2.2-2.8_0627<br>06/28/23<br>06/29/23<br>07/03/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-05 1/250<br>070312.D<br>GCMS9<br>VM |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen<br>Terphenyl-d14 | % Recovery:<br>67 d<br>94 d<br>165 d<br>90 d<br>197 d<br>110 d                              | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11<br>50                      | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                                          |
| Compounds:<br>2-Methylnaphthale<br>1-Methylnaphthale                                                                     |                                                                                             |                                                                          |                                                                                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:TWA-9-SB06_2.2Date Received:06/28/23Date Extracted:06/29/23Date Analyzed:06/30/23Matrix:SoilUnits:mg/kg (ppm) Dry                                                                                                                                                                                                                                                                                                                                   | Project:<br>Lab ID:<br>Data File:<br>Instrument:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maul Foster Alongi<br>Potter Subsurface M<br>306441-06 1/25<br>062942.D<br>GCMS9<br>VM                                                                                                                                                                                             | 0615.20.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogates: % 1<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophenol<br>Terphenyl-d14                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccc} & & & & & & \\ \text{Recovery:} & & & & & \\ 90 \ d & & & 22 \\ 101 \ d & & & 38 \\ 137 \ d & & & 10 \\ 95 \ d & & & 45 \\ 99 \ d & & & 11 \\ 121 \ d & & & 50 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | centration<br>kg (ppm) Compos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unds:                                                                                                                                                                                                                                                                              | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol<br>Bis(2-chloroethyl) ether<br>2-Chlorophenol<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Benzyl alcohol<br>2,2'-Oxybis(1-chloropropane)<br>2-Methylphenol<br>Hexachloroethane<br>N-Nitroso-di-n-propylamine<br>3-Methylphenol + 4-Methylphenol<br>Nitrobenzene<br>Isophorone<br>2-Nitrophenol<br>2,4-Dimethylphenol<br>Benzoic acid<br>Bis(2-chloroethoxy)methane<br>2,4-Dichlorophenol<br>1,2,4-Trichlorobenzene<br>Naphthalene<br>Hexachlorobutadiene | < 2.5 $2,6$ -Din $< 0.25$ $3$ -Nitro $< 2.5$ Acenap $< 0.25$ $2,4$ -Din $< 0.25$ $2,4$ -Din $< 0.25$ $2,4$ -Din $< 2.5$ $4$ -Nitro $< 0.25$ $2,4$ -Din $< 2.5$ $4$ -Nitro $< 0.25$ $2,4$ -Din $< 2.5$ $4$ -Nitro $< 0.25$ $4$ -Chlor $< 0.25$ $4$ -Chlor $< 0.25$ $4$ -Chlor $< 0.25$ $4$ -Som $< 2.5$ $4$ -Som $< 2.5$ $4$ -Brom <t< td=""><td>itrotoluene<br/>aniline<br/>hthene<br/>itrophenol<br/>ofuran<br/>itrotoluene<br/>phenol<br/>phthalate<br/>ne<br/>ophenyl phenyl ether<br/>osodiphenylamine<br/>aniline<br/>itro-2-methylphenol<br/>ophenyl phenyl ether<br/>lorobenzene<br/>nlorophenol<br/>threne<br/>cene<br/>ole<br/>tyl phthalate</td><td><math display="block">\begin{array}{c} mg/kg \ (ppm) \\ &lt; 1.2 \\ &lt; 25 \\ 3.9 \\ &lt; 7.5 \\ 1.9 \\ &lt; 1.2 \\ &lt; 7.5 \\ &lt; 2.5 \\ 8.1 \\ &lt; 0.25 \\ &lt; 0.2</math></td></t<> | itrotoluene<br>aniline<br>hthene<br>itrophenol<br>ofuran<br>itrotoluene<br>phenol<br>phthalate<br>ne<br>ophenyl phenyl ether<br>osodiphenylamine<br>aniline<br>itro-2-methylphenol<br>ophenyl phenyl ether<br>lorobenzene<br>nlorophenol<br>threne<br>cene<br>ole<br>tyl phthalate | $\begin{array}{c} mg/kg \ (ppm) \\ < 1.2 \\ < 25 \\ 3.9 \\ < 7.5 \\ 1.9 \\ < 1.2 \\ < 7.5 \\ < 2.5 \\ 8.1 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.2$ |
| 2-Nitroaniline<br>Dimethyl phthalate<br>Acenaphthylene<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                   | <2.5 Dibenzy<br><0.05 Benzo(g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1,2,3-cd)pyrene<br>(a,h)anthracene<br>g,h,i)perylene<br>(hylhexyl) phthalate                                                                                                                                                                                                      | $< 0.05 \\ < 0.05 \\ 0.086 \\ < 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                            | TWA-9-SB06_2.2-2.8_0627<br>06/28/23<br>06/29/23<br>07/03/23<br>Soil<br>mg/kg (ppm) Dry Weight | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-06 1/250<br>070313.D<br>GCMS9<br>VM |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen<br>Terphenyl-d14 | % Recovery:<br>84 d<br>87 d<br>165 d<br>90 d<br>nol<br>204 d<br>120 d                         | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11<br>50                      | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                                          |
| Compounds:<br>2-Methylnaphthale<br>1-Methylnaphthale                                                                     |                                                                                               |                                                                          |                                                                                                    |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                                                                                                                                                                                                                  | TWA-SB06_8.2<br>06/28/23<br>06/29/23<br>06/30/23<br>Soil<br>mg/kg (ppm) Dr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:                                                                                                                  | Maul Foster Alongi<br>Potter Subsurface M<br>306441-07 1/5<br>062939.D<br>GCMS9<br>VM                                                                                                                          | 0615.20.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogates:<br>2-Fluorophenol<br>Phenol-d6<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>2,4,6-Tribromophen<br>Terphenyl-d14                                                                                                                                                                                                                       |                                                                            | Recovery:<br>81<br>89<br>77<br>78<br>84<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lower<br>Limit:<br>22<br>38<br>10<br>45<br>11<br>50                                                                                                                                       | Upper<br>Limit:<br>119<br>124<br>198<br>117<br>158<br>124                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Compounds:                                                                                                                                                                                                                                                                                                                                     |                                                                            | ncentration<br>g/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compou                                                                                                                                                                                    | nds:                                                                                                                                                                                                           | Concentration<br>mg/kg (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phenol<br>Bis(2-chloroethyl) et<br>2-Chlorophenol<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Benzyl alcohol<br>2,2'-Oxybis(1-chloro<br>2-Methylphenol<br>Hexachloroethane<br>N-Nitroso-di-n-prop<br>3-Methylphenol + 4-<br>Nitrobenzene<br>Isophorone<br>2-Nitrophenol                                                                   | cher<br>e<br>e<br>propane)<br>ylamine<br>Methylphenol                      | $\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,6-Dinit<br>3-Nitroa<br>Acenaph<br>2,4-Dinit<br>Dibenzot<br>2,4-Dinit<br>4-Nitrop<br>Diethyl p<br>Fluorenc<br>4-Chlorot<br>N-Nitros<br>4-Nitroa<br>4,6-Dinit<br>4-Bromot<br>Hexachl      | trotoluene<br>niline<br>athene<br>trophenol<br>furan<br>trotoluene<br>henol<br>phthalate<br>e<br>ophenyl phenyl ether<br>sodiphenylamine<br>niline<br>tro-2-methylphenol<br>ophenyl phenyl ether<br>orobenzene | < 0.25<br>< 5<br>0.16<br>< 1.5<br>0.13<br>< 0.25<br>< 1.5<br>< 0.5<br>0.21<br>< 0.05<br>< 0.05<br>< 1.5<br>< 0.05<br>< 0.05 |
| 2,4-Dimethylphenol<br>Benzoic acid<br>Bis(2-chloroethoxy)n<br>2,4-Dichlorophenol<br>1,2,4-Trichlorobenze<br>Naphthalene<br>Hexachlorobutadien<br>4-Chloro-3-methylpl<br>2-Methylnaphthalen<br>1-Methylnaphthalen<br>2,4,6-Trichlorophen<br>2,4,5-Trichlorophen<br>2-Chloronaphthalen<br>2-Nitroaniline<br>Dimethyl phthalate<br>Acenaphthylene | methane<br>ene<br>le<br>henol<br>he<br>tadiene<br>ol                       | < 0.5<br>< 2.5<br>< 0.05<br>< 0.5<br>< 0.05<br>< 0.045<br>< 0.05<br>< 0.5<br>< 0.5 | Phenant<br>Anthrac<br>Carbazo<br>Di-n-but<br>Fluorant<br>Pyrene<br>Benzyl b<br>Benz(a)a<br>Chrysen<br>Bis(2-eth<br>Di-n-octy<br>Benzo(a)<br>Benzo(b)<br>Benzo(k)<br>Indeno(1<br>Dibenz(a) | ene<br>le<br>yl phthalate<br>thene<br>putyl phthalate<br>anthracene<br>e<br>hylhexyl) phthalate<br>yl phthalate                                                                                                | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units: | Method Blank<br>Not Applicable<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dr | ry Weight                               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator:<br>Lower | Maul Foster Along<br>Potter Subsurface I<br>03-1568 mb 1/5<br>062934.D<br>GCMS9<br>VM<br>Upper |                |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|
| Surrogates:                                                                                   | %                                                                                | Recovery:                               | Limit:                                                                            | Limit:                                                                                         |                |
| 2-Fluorophenol                                                                                |                                                                                  | 82                                      | 22                                                                                | 119                                                                                            |                |
| Phenol-d6<br>Nitrobenzene-d5                                                                  |                                                                                  | $\begin{array}{c} 89 \\ 75 \end{array}$ | $\begin{array}{c} 38\\10\end{array}$                                              | $\begin{array}{c} 124 \\ 198 \end{array}$                                                      |                |
| 2-Fluorobiphenyl                                                                              |                                                                                  | 86                                      | $45^{10}$                                                                         | 100                                                                                            |                |
| 2,4,6 Tribromopher                                                                            | nol                                                                              | 72                                      | 11                                                                                | 158                                                                                            |                |
| Terphenyl-d14                                                                                 |                                                                                  | 111                                     | 50                                                                                | 124                                                                                            |                |
|                                                                                               | Co                                                                               | ncentration                             |                                                                                   |                                                                                                | Concentration  |
| Compounds:                                                                                    | m                                                                                | g/kg (ppm)                              | Compou                                                                            | nds:                                                                                           | mg/kg (ppm)    |
| Phenol                                                                                        |                                                                                  | -0 5                                    | 9 C Dini                                                                          | tratalyana                                                                                     |                |
| Bis(2-chloroethyl) e                                                                          | thor                                                                             | <0.5<br><0.05                           | 2,6-Dini<br>3-Nitroa                                                              | trotoluene                                                                                     | <0.25<br><5    |
| 2-Chlorophenol                                                                                | ether                                                                            | <0.05                                   | Acenaph                                                                           |                                                                                                | <0.01          |
| 1,3-Dichlorobenzen                                                                            | ρ                                                                                | < 0.05                                  |                                                                                   | trophenol                                                                                      | <1.5           |
| 1,4-Dichlorobenzen                                                                            |                                                                                  | < 0.05                                  | Dibenzo:                                                                          |                                                                                                | < 0.05         |
| 1,2-Dichlorobenzen                                                                            |                                                                                  | < 0.05                                  |                                                                                   | trotoluene                                                                                     | < 0.25         |
| Benzyl alcohol                                                                                |                                                                                  | <0.5                                    | 4-Nitrop                                                                          |                                                                                                | <1.5           |
| 2,2'-Oxybis(1-chlore                                                                          | opropane)                                                                        | < 0.05                                  | -                                                                                 | phthalate                                                                                      | < 0.5          |
| 2-Methylphenol                                                                                | T T T                                                                            | < 0.5                                   | Fluorene                                                                          | =                                                                                              | < 0.01         |
| Hexachloroethane                                                                              |                                                                                  | < 0.05                                  |                                                                                   | phenyl phenyl ether                                                                            |                |
| N-Nitroso-di-n-prop                                                                           | oylamine                                                                         | < 0.05                                  |                                                                                   | sodiphenylamine                                                                                | < 0.05         |
| 3-Methylphenol + 4                                                                            | -Methylphenol                                                                    | <1                                      | 4-Nitroa                                                                          | niline                                                                                         | <5             |
| Nitrobenzene                                                                                  |                                                                                  | < 0.05                                  | 4,6-Dini                                                                          | tro-2-methylphenol                                                                             | <1.5           |
| Isophorone                                                                                    |                                                                                  | < 0.05                                  |                                                                                   | phenyl phenyl ether                                                                            | < 0.05         |
| 2-Nitrophenol                                                                                 |                                                                                  | < 0.5                                   |                                                                                   | orobenzene                                                                                     | <0.05 ca       |
| 2,4-Dimethylpheno                                                                             | 1                                                                                | < 0.5                                   |                                                                                   | lorophenol                                                                                     | < 0.25         |
| Benzoic acid                                                                                  |                                                                                  | <2.5                                    | Phenant                                                                           |                                                                                                | < 0.01         |
| Bis(2-chloroethoxy)                                                                           | methane                                                                          | < 0.05                                  | Anthrac                                                                           |                                                                                                | < 0.01         |
| 2,4-Dichlorophenol                                                                            |                                                                                  | <0.5                                    | Carbazo                                                                           |                                                                                                | < 0.05         |
| 1,2,4-Trichlorobenz                                                                           | zene                                                                             | < 0.05                                  |                                                                                   | yl phthalate                                                                                   | < 0.5          |
| Naphthalene                                                                                   |                                                                                  | < 0.01                                  | Fluorant                                                                          | thene                                                                                          | < 0.01         |
| Hexachlorobutadie                                                                             | ne                                                                               | <0.05                                   | Pyrene                                                                            |                                                                                                | < 0.01         |
| 4-Chloroaniline                                                                               | h                                                                                | <5                                      | •                                                                                 | outyl phthalate                                                                                | <0.5 k         |
| 4-Chloro-3-methylp<br>2-Methylnaphthale                                                       |                                                                                  | <0.5<br><0.01                           | . ,                                                                               | anthracene                                                                                     | <0.01<br><0.01 |
| 1-Methylnaphthale                                                                             |                                                                                  | <0.01<br><0.01                          | Chrysen<br>Bis(2 oth                                                              | e<br>nylhexyl) phthalate                                                                       | <0.01<br><0.8  |
| Hexachlorocycloper                                                                            |                                                                                  | < 0.15                                  |                                                                                   | yl phthalate                                                                                   | <0.8           |
| 2,4,6-Trichloropher                                                                           |                                                                                  | <0.15                                   | Benzo(a)                                                                          | -                                                                                              | <0.01          |
| 2,4,5-Trichloropher                                                                           |                                                                                  | <0.5                                    | . ,                                                                               | fluoranthene                                                                                   | < 0.01         |
| 2-Chloronaphthale                                                                             |                                                                                  | < 0.05                                  |                                                                                   | )fluoranthene                                                                                  | < 0.01         |
| 2-Nitroaniline                                                                                |                                                                                  | <0.05                                   |                                                                                   | 1,2,3-cd)pyrene                                                                                | < 0.01         |
| Dimethyl phthalate                                                                            | 9                                                                                | <0.5                                    |                                                                                   | a,h)anthracene                                                                                 | < 0.01         |
| Acenaphthylene                                                                                | -                                                                                | < 0.01                                  |                                                                                   | h,i)perylene                                                                                   | < 0.01         |
| 1 - 0                                                                                         |                                                                                  |                                         | (8)                                                                               | · · · I · ·                                                                                    |                |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | TWA-SB07_2.4<br>06/28/23<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Da |                                                                                        | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-01 1/30<br>062922.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        | lene                                                                       | Recovery:<br>113<br>134                                                                | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                   |
| Compounds:                                                                                                                                   |                                                                            | ncentration<br>g/kg (ppm)                                                              |                                                                          |                                                                                                 |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 |                                                                            | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02 |                                                                          |                                                                                                 |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | TWA-SB08_2.6<br>06/28/23<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) D |                                                                                        | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-03 1/30<br>062923.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        | lene                                                                      | Recovery:<br>108<br>151                                                                | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                   |
| Compounds:                                                                                                                                   |                                                                           | ncentration<br>g/kg (ppm)                                                              |                                                                          |                                                                                                 |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 |                                                                           | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02 |                                                                          |                                                                                                 |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | TWA-SB06_2.2-2.8_0627<br>06/28/23<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight                 | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-05 1/30<br>062924.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        |                                                                                                             | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                   |
| Compounds:                                                                                                                                   | Concentration<br>mg/kg (ppm)                                                                                |                                                                          |                                                                                                 |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 | $< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.049 \\ < 0.02 \\ 0.030 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $ |                                                                          |                                                                                                 |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | TWA-9-SB06_2.2-2.8_0627<br>06/28/23<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight               | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-06 1/30<br>062925.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        |                                                                                                             | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                   |
| Compounds:                                                                                                                                   | Concentration<br>mg/kg (ppm)                                                                                |                                                                          |                                                                                                 |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 | $< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.045 \\ < 0.02 \\ 0.026 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $ |                                                                          |                                                                                                 |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | TWA-SB06_8.2<br>06/28/23<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Da |                                                                                                 | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>306441-07 1/30<br>062926.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        | lene                                                                       | Recovery:<br>86<br>106                                                                          | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                   |
| Compounds:                                                                                                                                   |                                                                            | ncentration<br>g/kg (ppm)                                                                       |                                                                          |                                                                                                 |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 |                                                                            | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02 |                                                                          |                                                                                                 |

### ENVIRONMENTAL CHEMISTS

| Client Sample ID:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>Matrix:<br>Units:                                                | Method Blank<br>Not Applicable<br>06/29/23<br>06/29/23<br>Soil<br>mg/kg (ppm) Dry Weight                                | Client:<br>Project:<br>Lab ID:<br>Data File:<br>Instrument:<br>Operator: | Maul Foster Alongi<br>Potter Subsurface M0615.20.009<br>03-1561 mb2 1/30<br>062921.D<br>GC7<br>MG |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Surrogates:<br>Tetrachlorometaxy<br>Decachlorobipheny                                                                                        |                                                                                                                         | Lower<br>Limit:<br>11<br>11                                              | Upper<br>Limit:<br>162<br>152                                                                     |
| Compounds:                                                                                                                                   | Concentration<br>mg/kg (ppm)                                                                                            |                                                                          |                                                                                                   |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1016<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260<br>Aroclor 1262<br>Aroclor 1268 | $< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $ |                                                                          |                                                                                                   |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

| Laboratory Code: 30 | 06440-01 (Duplic | ate)      |          |            |            |
|---------------------|------------------|-----------|----------|------------|------------|
|                     |                  | Samp      | le Di    | iplicate   |            |
|                     | Reporting        | Resu      | lt I     | Result     | RPD        |
| Analyte             | Units            | (Wet V    | Vt) (V   | /et Wt)    | (Limit 20) |
| Gasoline            | mg/kg (ppm)      | <5        |          | <5         | nm         |
| Laboratory Code: L  | aboratory Contro | ol Sample | Percent  |            |            |
|                     | Reporting        | Spike     | Recovery | Acceptance |            |
| Analyte             | Units            | Level     | LCS      | Criteria   | _          |
| Gasoline            | mg/kg (ppm)      | 40        | 95       | 70-130     | _          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

| Laboratory Code: 30 | 06431-03 (Matrix   | x Spike)       | (Wet wt)         | Percent        | Percent         |                        |                   |
|---------------------|--------------------|----------------|------------------|----------------|-----------------|------------------------|-------------------|
| Analyte             | Reporting<br>Units | Spike<br>Level | Sample<br>Result | Recovery<br>MS | Recovery<br>MSD | Acceptance<br>Criteria | RPD<br>(Limit 20) |
| Diesel Extended     | mg/kg (ppm)        | 5,000          | <50              | 102            | 100             | 64-136                 | (Linit 20)<br>2   |
| Laboratory Code: La | aboratory Contr    | ol Sampl       | e                |                |                 |                        |                   |
|                     |                    |                | Percent          |                |                 |                        |                   |
|                     | Reporting          | Spike          | Recovery         | y Accepta      | ance            |                        |                   |
| Analyte             | Units              | Level          | LCS              | Crite          | ria             |                        |                   |
| Diesel Extended     | mg/kg (ppm)        | 5,000          | 104              | 78-12          | 21              |                        |                   |

38

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 306441-01 x5 (Matrix Spike)

|           |             |          | Sample   | Percent  | Percent  |            |                      |
|-----------|-------------|----------|----------|----------|----------|------------|----------------------|
|           | Reporting   | Spike    | Result   | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte   | Units       | Level    | (Wet wt) | MS       | MSD      | Criteria   | (Limit 20)           |
| Arsenic   | mg/kg (ppm) | 10       | <5       | 98       | 112      | 75 - 125   | 13                   |
| Cadmium   | mg/kg (ppm) | 10       | <5       | 97       | 104      | 75 - 125   | 7                    |
| Chromium  | mg/kg (ppm) | 50       | 5.77     | 91       | 99       | 75 - 125   | 8                    |
| Copper    | mg/kg (ppm) | 50       | <25      | 95       | 104      | 75 - 125   | 9                    |
| Lead      | mg/kg (ppm) | 50       | <5       | 95       | 101      | 75 - 125   | 6                    |
| Manganese | mg/kg (ppm  | 20       | 36.7     | 90 b     | 149 b    | 75 - 125   | 49 b                 |
| Mercury   | mg/kg (ppm  | <b>5</b> | <5       | 48 vo    | 97       | 75 - 125   | 68 vo                |
| Nickel    | mg/kg (ppm) | 25       | 5.43     | 91 b     | 104 b    | 75 - 125   | 13 b                 |
| Selenium  | mg/kg (ppm) | <b>5</b> | <5       | 75       | 103      | 75 - 125   | 31 vo                |
| Zinc      | mg/kg (ppm) | 50       | <25      | 97       | 110      | 75 - 125   | 13                   |

Laboratory Code: Laboratory Control Sample

| Percent   |             |       |          |            |  |  |  |
|-----------|-------------|-------|----------|------------|--|--|--|
|           | Reporting   | Spike | Recovery | Acceptance |  |  |  |
| Analyte   | Units       | Level | LCS      | Criteria   |  |  |  |
| Arsenic   | mg/kg (ppm) | 10    | 99       | 80-120     |  |  |  |
| Cadmium   | mg/kg (ppm) | 10    | 94       | 80-120     |  |  |  |
| Chromium  | mg/kg (ppm) | 50    | 97       | 80-120     |  |  |  |
| Copper    | mg/kg (ppm) | 50    | 94       | 80-120     |  |  |  |
| Lead      | mg/kg (ppm) | 50    | 95       | 80-120     |  |  |  |
| Manganese | mg/kg (ppm) | 20    | 92       | 80-120     |  |  |  |
| Mercury   | mg/kg (ppm) | 5     | 90       | 80-120     |  |  |  |
| Nickel    | mg/kg (ppm) | 25    | 96       | 80-120     |  |  |  |
| Selenium  | mg/kg (ppm) | 5     | 92       | 80-120     |  |  |  |
| Zinc      | mg/kg (ppm) | 50    | 96       | 80-120     |  |  |  |

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306440-03 (Matrix Spike)

|                              |                            |               | Sample       |          | Percent  |                  |                      |
|------------------------------|----------------------------|---------------|--------------|----------|----------|------------------|----------------------|
|                              | Reporting                  | Spike         | Result       | Recovery | Recovery | Acceptance       | $\operatorname{RPD}$ |
| Analyte                      | Units                      | Level         | (Wet wt)     | MS       | MSD      | Criteria         | (Limit 20)           |
| Dichlorodifluoromethane      | mg/kg (ppm)                | 2             | < 0.5        | 50       | 49       | 10-142           | 2                    |
| Chloromethane                | mg/kg (ppm)                | 2             | < 0.5        | 75       | 75       | 10-126           | 0                    |
| Vinyl chloride               | mg/kg (ppm)                | 2             | < 0.05       | 78       | 79       | 10-138           | 1                    |
| Bromomethane                 | mg/kg (ppm)                | 2             | < 0.5        | 54       | 54       | 10-163           | 0                    |
| Chloroethane                 | mg/kg (ppm)                | 2             | < 0.5        | 58       | 59       | 10-176           | 2                    |
| Trichlorofluoromethane       | mg/kg (ppm)                | 2             | <0.5         | 78       | 80       | 10-176           | 3                    |
| Acetone                      | mg/kg (ppm)                | 10<br>2       | <5<br><0.05  | 75<br>85 | 74<br>88 | 10-163<br>10-160 | 1<br>3               |
| 1,1-Dichloroethene<br>Hexane | mg/kg (ppm)<br>mg/kg (ppm) | 2             | <0.05        | 88       | 88<br>87 | 10-160           | 3<br>1               |
| Methylene chloride           | mg/kg (ppm)<br>mg/kg (ppm) | 2             | <0.25        | 88<br>81 | 83       | 10-137           | $\frac{1}{2}$        |
| Methyl t-butyl ether (MTBE)  | mg/kg (ppm)                | 2             | <0.05        | 94       | 96       | 21-145           | 2                    |
| trans-1,2-Dichloroethene     | mg/kg (ppm)                | 2             | <0.05        | 94       | 95       | 14-137           | 1                    |
| 1.1-Dichloroethane           | mg/kg (ppm)                | 2             | <0.05        | 92       | 92       | 19-140           | 0                    |
| 2,2-Dichloropropane          | mg/kg (ppm)                | 2             | < 0.05       | 89       | 93       | 10-158           | 4                    |
| cis-1,2-Dichloroethene       | mg/kg (ppm)                | 2             | < 0.05       | 94       | 95       | 25-135           | 1                    |
| Chloroform                   | mg/kg (ppm)                | 2             | < 0.05       | 94       | 96       | 21-145           | 2                    |
| 2-Butanone (MEK)             | mg/kg (ppm)                | 10            | <1           | 88       | 87       | 19-147           | 1                    |
| 1.2-Dichloroethane (EDC)     | mg/kg (ppm)                | 2             | < 0.05       | 94       | 95       | 12-160           | 1                    |
| 1,1,1-Trichloroethane        | mg/kg (ppm)                | 2             | < 0.05       | 97       | 96       | 10-156           | 1                    |
| 1,1-Dichloropropene          | mg/kg (ppm)                | 2             | < 0.05       | 95       | 97       | 17-140           | 2                    |
| Carbon tetrachloride         | mg/kg (ppm)                | 2             | < 0.05       | 96       | 96       | 9-164            | 0                    |
| Benzene                      | mg/kg (ppm)                | 2             | < 0.03       | 92       | 93       | 29-129           | 1                    |
| Trichloroethene              | mg/kg (ppm)                | 2             | < 0.02       | 95       | 97       | 21-139           | 2                    |
| 1,2-Dichloropropane          | mg/kg (ppm)                | 2             | < 0.05       | 96       | 99       | 30-135           | 3                    |
| Bromodichloromethane         | mg/kg (ppm)                | 2             | < 0.05       | 96       | 97       | 23 - 155         | 1                    |
| Dibromomethane               | mg/kg (ppm)                | 2             | < 0.05       | 98       | 97       | 23 - 145         | 1                    |
| 4-Methyl-2-pentanone         | mg/kg (ppm)                | 10            | <1           | 98       | 100      | 24 - 155         | 2                    |
| cis-1,3-Dichloropropene      | mg/kg (ppm)                | 2             | < 0.05       | 97       | 99       | 28-144           | 2                    |
| Toluene                      | mg/kg (ppm)                | 2             | 0.079        | 93       | 92       | 35-130           | 1                    |
| trans-1,3-Dichloropropene    | mg/kg (ppm)                | 2             | < 0.05       | 91       | 94       | 26-149           | 3                    |
| 1,1,2-Trichloroethane        | mg/kg (ppm)                | 2             | < 0.05       | 91       | 92       | 10-205           | 1                    |
| 2-Hexanone                   | mg/kg (ppm)                | 10            | < 0.5        | 91       | 94       | 15-166           | 3                    |
| 1,3-Dichloropropane          | mg/kg (ppm)                | 2             | < 0.05       | 95       | 96       | 31-137           | 1                    |
| Tetrachloroethene            | mg/kg (ppm)                | 2             | < 0.025      | 95       | 97       | 20-133           | 2                    |
| Dibromochloromethane         | mg/kg (ppm)                | 2             | < 0.05       | 94       | 95       | 28-150           | 1                    |
| 1,2-Dibromoethane (EDB)      | mg/kg (ppm)                | 2             | < 0.05       | 95       | 96       | 28-142           | 1                    |
| Chlorobenzene                | mg/kg (ppm)                | 2             | < 0.05       | 94       | 94       | 32-129           | 0                    |
| Ethylbenzene                 | mg/kg (ppm)                | 2             | < 0.05       | 93       | 94       | 32-137           | 1                    |
| 1,1,1,2-Tetrachloroethane    | mg/kg (ppm)                | $\frac{2}{4}$ | < 0.05       | 95<br>92 | 99<br>93 | 31-143           | 4                    |
| m,p-Xylene                   | mg/kg (ppm)                | 4<br>2        | 0.15<br>0.15 | 92<br>89 | 93<br>92 | 34-136<br>33-134 | 1<br>3               |
| o-Xylene<br>Styrene          | mg/kg (ppm)<br>mg/kg (ppm) | 2             | <0.05        | 89<br>96 | 92<br>98 | 35-134           | 3<br>2               |
| Isopropylbenzene             | mg/kg (ppm)                | 2             | 0.078        | 93       | 98<br>95 | 31-142           | 2                    |
| Bromoform                    | mg/kg (ppm)                | 2             | <0.078       | 93<br>94 | 95<br>98 | 21-156           | 4                    |
| n-Propylbenzene              | mg/kg (ppm)                | 2             | 0.17         | 94<br>84 | 90<br>88 | 23-146           | 4<br>5               |
| Bromobenzene                 | mg/kg (ppm)                | 2             | <0.05        | 90       | 94       | 34-130           | 4                    |
| 1,3,5-Trimethylbenzene       | mg/kg (ppm)                | 2             | <0.05        | 91       | 97       | 18-149           | 6                    |
| 1.1.2.2-Tetrachloroethane    | mg/kg (ppm)                | 2             | <0.05        | 98       | 103      | 28-140           | 5                    |
| 1,2,3-Trichloropropane       | mg/kg (ppm)                | 2             | <0.05        | 88       | 94       | 25-140           | 7                    |
| 2-Chlorotoluene              | mg/kg (ppm)                | 2             | 2.3          | 0 b      | 6 b      | 31-134           | 0                    |
| 4-Chlorotoluene              | mg/kg (ppm)                | 2             | 2.7          | 0 b      | 0 b      | 31-136           | 0                    |
| tert-Butylbenzene            | mg/kg (ppm)                | 2             | < 0.05       | 92       | 98       | 30-137           | 6                    |
| 1,2,4-Trimethylbenzene       | mg/kg (ppm)                | 2             | 0.10         | 89       | 93       | 10-182           | 4                    |
| sec-Butylbenzene             | mg/kg (ppm)                | 2             | 0.27         | 84       | 88       | 23-145           | 5                    |
| p-Isopropyltoluene           | mg/kg (ppm)                | 2             | < 0.05       | 94       | 98       | 21-149           | 4                    |
| 1.3-Dichlorobenzene          | mg/kg (ppm)                | 2             | < 0.05       | 92       | 95       | 30-131           | 3                    |
| 1.4-Dichlorobenzene          | mg/kg (ppm)                | 2             | < 0.05       | 91       | 95       | 29-129           | 4                    |
| 1,2-Dichlorobenzene          | mg/kg (ppm)                | 2             | < 0.05       | 94       | 98       | 31-132           | 4                    |
| 1,2-Dibromo-3-chloropropane  | mg/kg (ppm)                | 2             | < 0.5        | 91       | 98       | 11-161           | 7                    |
| 1,2,4-Trichlorobenzene       | mg/kg (ppm)                | 2             | < 0.25       | 101      | 106      | 22-142           | 5                    |
| Hexachlorobutadiene          | mg/kg (ppm)                | 2             | < 0.25       | 104      | 108      | 10-142           | 4                    |
| Naphthalene                  | mg/kg (ppm)                | 2             | < 0.05       | 105      | 109      | 14-157           | 4                    |
|                              |                            | 2             |              |          |          |                  | 0                    |

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

|                                           | Ronanting                  | Spike  | Percent<br>Recovery | Acceptance       |
|-------------------------------------------|----------------------------|--------|---------------------|------------------|
|                                           | Reporting                  | -      | •                   |                  |
| Analyte                                   | Units                      | Level  | LCS                 | Criteria         |
| Dichlorodifluoromethane                   | mg/kg (ppm)                | 2      | 55                  | 10-146           |
| Chloromethane                             | mg/kg (ppm)                | 2      | 78                  | 27-133           |
| Vinyl chloride                            | mg/kg (ppm)                | 2      | 81                  | 22-139           |
| Bromomethane<br>Chloroethane              | mg/kg (ppm)                | 2<br>2 | 58<br>60            | 10-201           |
| Trichlorofluoromethane                    | mg/kg (ppm)<br>mg/kg (ppm) | 2      | 84                  | 10-163<br>10-196 |
| Acetone                                   | mg/kg (ppm)                | 10     | 119                 | 52-141           |
| 1,1-Dichloroethene                        | mg/kg (ppm)                | 2      | 91                  | 47-128           |
| Hexane                                    | mg/kg (ppm)                | 2      | 94                  | 43-142           |
| Methylene chloride                        | mg/kg (ppm)                | 2      | 92                  | 10-184           |
| Methyl t-butyl ether (MTBE)               | mg/kg (ppm)                | 2      | 97                  | 60-123           |
| trans-1,2-Dichloroethene                  | mg/kg (ppm)                | 2      | 97                  | 64-132           |
| 1,1-Dichloroethane                        | mg/kg (ppm)                | 2      | 96                  | 64-135           |
| 2,2-Dichloropropane                       | mg/kg (ppm)                | 2      | 97                  | 52-170           |
| cis-1,2-Dichloroethene                    | mg/kg (ppm)                | 2      | 100                 | 64-135           |
| Chloroform                                | mg/kg (ppm)                | 2      | 97                  | 61-139           |
| 2-Butanone (MEK)                          | mg/kg (ppm)                | 10     | 108                 | 30-197           |
| 1,2-Dichloroethane (EDC)                  | mg/kg (ppm)                | 2      | 98                  | 56 - 135         |
| 1,1,1-Trichloroethane                     | mg/kg (ppm)                | 2      | 102                 | 62-131           |
| 1,1-Dichloropropene                       | mg/kg (ppm)                | 2      | 97                  | 64-136           |
| Carbon tetrachloride                      | mg/kg (ppm)                | 2      | 102                 | 60-139           |
| Benzene                                   | mg/kg (ppm)                | 2      | 95                  | 65-136           |
| Trichloroethene                           | mg/kg (ppm)                | 2      | 98                  | 63-139           |
| 1,2-Dichloropropane                       | mg/kg (ppm)                | 2      | 98                  | 61-145           |
| Bromodichloromethane                      | mg/kg (ppm)                | 2      | 100                 | 57-126           |
| Dibromomethane                            | mg/kg (ppm)                | 2      | 101                 | 62-123           |
| 4-Methyl-2-pentanone                      | mg/kg (ppm)                | 10     | 103                 | 45-145           |
| cis-1,3-Dichloropropene                   | mg/kg (ppm)                | 2<br>2 | 99<br>95            | 65-143<br>66-126 |
| Toluene<br>trans-1.3-Dichloropropene      | mg/kg (ppm)<br>mg/kg (ppm) | 2      | 95<br>94            | 65-131           |
| 1,1,2-Trichloroethane                     | mg/kg (ppm)                | 2      | 96                  | 62-131           |
| 2-Hexanone                                | mg/kg (ppm)                | 10     | 98                  | 33-152           |
| 1.3-Dichloropropane                       | mg/kg (ppm)                | 2      | 95                  | 67-128           |
| Tetrachloroethene                         | mg/kg (ppm)                | 2      | 95                  | 68-128           |
| Dibromochloromethane                      | mg/kg (ppm)                | 2      | 99                  | 55-121           |
| 1,2-Dibromoethane (EDB)                   | mg/kg (ppm)                | 2      | 97                  | 66-129           |
| Chlorobenzene                             | mg/kg (ppm)                | 2      | 94                  | 67-128           |
| Ethylbenzene                              | mg/kg (ppm)                | 2      | 95                  | 64-123           |
| 1,1,1,2-Tetrachloroethane                 | mg/kg (ppm)                | 2      | 99                  | 64-121           |
| m,p-Xylene                                | mg/kg (ppm)                | 4      | 95                  | 68-128           |
| o-Xylene                                  | mg/kg (ppm)                | 2      | 95                  | 67-129           |
| Styrene                                   | mg/kg (ppm)                | 2      | 96                  | 67-129           |
| Isopropylbenzene                          | mg/kg (ppm)                | 2      | 95                  | 68-128           |
| Bromoform                                 | mg/kg (ppm)                | 2      | 101                 | 56 - 132         |
| n-Propylbenzene                           | mg/kg (ppm)                | 2      | 93                  | 68-129           |
| Bromobenzene                              | mg/kg (ppm)                | 2      | 95                  | 69-128           |
| 1,3,5-Trimethylbenzene                    | mg/kg (ppm)                | 2      | 96                  | 69-129           |
| 1,1,2,2-Tetrachloroethane                 | mg/kg (ppm)                | 2<br>2 | 96<br>93            | 56-143           |
| 1,2,3-Trichloropropane<br>2-Chlorotoluene | mg/kg (ppm)                | 2      |                     | 61-137           |
| 4-Chlorotoluene                           | mg/kg (ppm)                | 2      | 93<br>94            | 69-128<br>67-127 |
| tert-Butylbenzene                         | mg/kg (ppm)<br>mg/kg (ppm) | 2      | 94<br>95            | 69-129           |
| 1,2,4-Trimethylbenzene                    | mg/kg (ppm)                | 2      | 95<br>95            | 69-128           |
| sec-Butylbenzene                          | mg/kg (ppm)                | 2      | 95<br>96            | 69-128           |
| p-Isopropyltoluene                        | mg/kg (ppm)                | 2      | 97                  | 69-130           |
| 1,3-Dichlorobenzene                       | mg/kg (ppm)                | 2      | 94                  | 69-127           |
| 1,4-Dichlorobenzene                       | mg/kg (ppm)                | 2      | 95                  | 68-126           |
| 1,2-Dichlorobenzene                       | mg/kg (ppm)                | 2      | 96                  | 69-127           |
| 1,2-Dibromo-3-chloropropane               | mg/kg (ppm)                | 2      | 100                 | 58-138           |
| 1,2,4-Trichlorobenzene                    | mg/kg (ppm)                | 2      | 101                 | 64-135           |
| Hexachlorobutadiene                       | mg/kg (ppm)                | 2      | 104                 | 50-153           |
| Naphthalene                               | mg/kg (ppm)                | 2      | 103                 | 62-128           |
| 1,2,3-Trichlorobenzene                    | mg/kg (ppm)                | 2      | 114                 | 61-126           |

### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 306391-02 (Matrix Spike)

|                             |            |       |        | Percent  |            |
|-----------------------------|------------|-------|--------|----------|------------|
|                             | Reporting  | Spike | Sample | Recoverv | Acceptance |
| Analyte                     | Units      | -     | Result | MS       | Criteria   |
| Dichlorodifluoromethane     | ug/L (ppb) | 10    | <1     | 90       | 27-164     |
| Chloromethane               | ug/L (ppb) | 10    | <10    | 95       | 34-141     |
| Vinyl chloride              | ug/L (ppb) | 10    | <0.02  | 103      | 16-176     |
| Bromomethane                | ug/L (ppb) | 10    | <5     | 128      | 10-193     |
| Chloroethane                | ug/L (ppb) | 10    | <1     | 120      | 50-150     |
| Trichlorofluoromethane      | ug/L (ppb) | 10    | <1     | 102      | 50-150     |
| Acetone                     | ug/L (ppb) | 50    | <50    | 80       | 15-179     |
| 1,1-Dichloroethene          | ug/L (ppb) | 10    | <1     | 101      | 50-150     |
| Hexane                      | ug/L (ppb) | 10    | <5     | 101      | 49-161     |
| Methylene chloride          | ug/L (ppb) | 10    | <5     | 97       | 40-143     |
| Methyl t-butyl ether (MTBE) | ug/L (ppb) | 10    | <1     | 95       | 50-150     |
| trans-1.2-Dichloroethene    | ug/L (ppb) | 10    | <1     | 101      | 50-150     |
| 1,1-Dichloroethane          | ug/L (ppb) | 10    | <1     | 100      | 50 - 150   |
| 2,2-Dichloropropane         | ug/L (ppb) | 10    | <1     | 98       | 62-152     |
| cis-1,2-Dichloroethene      | ug/L (ppb) | 10    | <1     | 99       | 50-150     |
| Chloroform                  | ug/L (ppb) | 10    | 2.4    | 100 b    | 50-150     |
| 2-Butanone (MEK)            | ug/L (ppb) | 50    | <20    | 95       | 34-168     |
| 1,2-Dichloroethane (EDC)    | ug/L (ppb) | 10    | < 0.2  | 104      | 50-150     |
| 1,1,1-Trichloroethane       | ug/L (ppb) | 10    | <1     | 100      | 50-150     |
| 1,1-Dichloropropene         | ug/L (ppb) | 10    | <1     | 98       | 50-150     |
| Carbon tetrachloride        | ug/L (ppb) | 10    | < 0.5  | 102      | 50-150     |
| Benzene                     | ug/L (ppb) | 10    | < 0.35 | 103      | 50-150     |
| Trichloroethene             | ug/L (ppb) | 10    | < 0.5  | 102      | 43-133     |
| 1,2-Dichloropropane         | ug/L (ppb) | 10    | <1     | 97       | 50-150     |
| Bromodichloromethane        | ug/L (ppb) | 10    | < 0.5  | 99       | 50-150     |
| Dibromomethane              | ug/L (ppb) | 10    | <1     | 98       | 50 - 150   |
| 4-Methyl-2-pentanone        | ug/L (ppb) | 50    | <10    | 99       | 50-150     |
| cis-1,3-Dichloropropene     | ug/L (ppb) | 10    | < 0.4  | 100      | 48-145     |
| Toluene                     | ug/L (ppb) | 10    | <1     | 103      | 50 - 150   |
| trans-1,3-Dichloropropene   | ug/L (ppb) | 10    | < 0.4  | 96       | 37 - 152   |
| 1,1,2-Trichloroethane       | ug/L (ppb) | 10    | < 0.5  | 98       | 50 - 150   |
| 2-Hexanone                  | ug/L (ppb) | 50    | <10    | 95       | 50-150     |
| 1,3-Dichloropropane         | ug/L (ppb) | 10    | <1     | 98       | 50-150     |
| Tetrachloroethene           | ug/L (ppb) | 10    | <1     | 105      | 50-150     |
| Dibromochloromethane        | ug/L (ppb) | 10    | < 0.5  | 97       | 33-164     |
| 1,2-Dibromoethane (EDB)     | ug/L (ppb) | 10    | <1     | 96       | 50-150     |
| Chlorobenzene               | ug/L (ppb) | 10    | <1     | 98       | 50-150     |
| Ethylbenzene                | ug/L (ppb) | 10    | <1     | 106      | 50-150     |
| 1,1,1,2-Tetrachloroethane   | ug/L (ppb) | 10    | <1     | 97       | 50-150     |
| m,p-Xylene                  | ug/L (ppb) | 20    | <2     | 105      | 50-150     |
| o-Xylene                    | ug/L (ppb) | 10    | <1     | 103      | 50 - 150   |
| Styrene                     | ug/L (ppb) | 10    | <1     | 99       | 50 - 150   |
| Isopropylbenzene            | ug/L (ppb) | 10    | <1     | 98       | 50-150     |
| Bromoform                   | ug/L (ppb) | 10    | <5     | 92       | 23-161     |
| n-Propylbenzene             | ug/L (ppb) | 10    | <1     | 103      | 50 - 150   |
| Bromobenzene                | ug/L (ppb) | 10    | <1     | 102      | 50 - 150   |
| 1,3,5-Trimethylbenzene      | ug/L (ppb) | 10    | <1     | 103      | 50-150     |
| 1,1,2,2-Tetrachloroethane   | ug/L (ppb) | 10    | < 0.2  | 103      | 57-162     |
| 1,2,3-Trichloropropane      | ug/L (ppb) | 10    | <1     | 98       | 33-151     |
| 2-Chlorotoluene             | ug/L (ppb) | 10    | <1     | 101      | 50-150     |
| 4-Chlorotoluene             | ug/L (ppb) | 10    | <1     | 102      | 50 - 150   |
| tert-Butylbenzene           | ug/L (ppb) | 10    | <1     | 100      | 50-150     |
| 1,2,4-Trimethylbenzene      | ug/L (ppb) | 10    | <1     | 102      | 50-150     |
| sec-Butylbenzene            | ug/L (ppb) | 10    | <1     | 100      | 46-139     |
| p-Isopropyltoluene          | ug/L (ppb) | 10    | <1     | 102      | 46-140     |
| 1,3-Dichlorobenzene         | ug/L (ppb) | 10    | <1     | 99       | 50-150     |
| 1,4-Dichlorobenzene         | ug/L (ppb) | 10    | <1     | 99       | 50-150     |
| 1,2-Dichlorobenzene         | ug/L (ppb) | 10    | <1     | 98       | 50-150     |
| 1,2-Dibromo-3-chloropropane | ug/L (ppb) | 10    | <10    | 93       | 50-150     |
| 1,2,4-Trichlorobenzene      | ug/L (ppb) | 10    | <1     | 97       | 50-150     |
| Hexachlorobutadiene         | ug/L (ppb) | 10    | < 0.5  | 98       | 42-150     |
| Naphthalene                 | ug/L (ppb) | 10    | <1     | 95       | 50-150     |
| 1,2,3-Trichlorobenzene      | ug/L (ppb) | 10    | <1     | 94       | 44-155     |
|                             |            |       |        |          |            |

### ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

|                                                     |                          |          | Percent  | Percent                                   |                  |                      |
|-----------------------------------------------------|--------------------------|----------|----------|-------------------------------------------|------------------|----------------------|
|                                                     | Reporting                | Spike    | Recovery | Recovery                                  | Acceptance       | $\operatorname{RPD}$ |
| Analyte                                             | Units                    | Level    | LCS      | LCSD                                      | Criteria         | (Limit 20)           |
| Dichlorodifluoromethane                             | ug/L (ppb)               | 10       | 89       | 88                                        | 49-149           | 1                    |
| Chloromethane                                       | ug/L (ppb)               | 10       | 90       | 89                                        | 34-143           | 1                    |
| Vinyl chloride                                      | ug/L (ppb)               | 10       | 100      | 101                                       | 43-149           | 1                    |
| Bromomethane                                        | ug/L (ppb)               | 10       | 121      | 124                                       | 28-182           | 2                    |
| Chloroethane                                        | ug/L (ppb)               | 10       | 116      | 118                                       | 59-157           | 2                    |
| Trichlorofluoromethane<br>Acetone                   | ug/L (ppb)<br>ug/L (ppb) | 10<br>50 | 95<br>84 | 99<br>86                                  | 59-141<br>20-139 | 4                    |
| 1,1-Dichloroethene                                  | ug/L (ppb)               | 10       | 100      | 101                                       | 67-138           | 2<br>1               |
| Hexane                                              | ug/L (ppb)               | 10       | 100      | 101                                       | 50-161           | 3                    |
| Methylene chloride                                  | ug/L (ppb)               | 10       | 94       | 95                                        | 29-192           | 1                    |
| Methyl t-butyl ether (MTBE)                         | ug/L (ppb)               | 10       | 95       | 103                                       | 70-130           | 8                    |
| trans-1,2-Dichloroethene                            | ug/L (ppb)               | 10       | 96       | 100                                       | 70-130           | 4                    |
| 1.1-Dichloroethane                                  | ug/L (ppb)               | 10       | 96       | 100                                       | 70-130           | 4                    |
| 2.2-Dichloropropane                                 | ug/L (ppb)               | 10       | 108      | 122                                       | 71-148           | 12                   |
| cis-1,2-Dichloroethene                              | ug/L (ppb)               | 10       | 98       | 100                                       | 70-130           | 2                    |
| Chloroform                                          | ug/L (ppb)               | 10       | 94       | 99                                        | 70-130           | 5                    |
| 2-Butanone (MEK)                                    | ug/L (ppb)               | 50       | 92       | 98                                        | 50 - 157         | 6                    |
| 1,2-Dichloroethane (EDC)                            | ug/L (ppb)               | 10       | 100      | 106                                       | 70-130           | 6                    |
| 1,1,1-Trichloroethane                               | ug/L (ppb)               | 10       | 97       | 102                                       | 70-130           | 5                    |
| 1,1-Dichloropropene                                 | ug/L (ppb)               | 10       | 95       | 98                                        | 70-130           | 3                    |
| Carbon tetrachloride                                | ug/L (ppb)               | 10       | 97       | 102                                       | 70-130           | 5                    |
| Benzene                                             | ug/L (ppb)               | 10       | 98       | 104                                       | 70-130           | 6                    |
| Trichloroethene                                     | ug/L (ppb)               | 10       | 98       | 104                                       | 70-130           | 6                    |
| 1,2-Dichloropropane                                 | ug/L (ppb)               | 10       | 94       | 98                                        | 70-130           | 4                    |
| Bromodichloromethane                                | ug/L (ppb)               | 10       | 96       | 100                                       | 70-130           | 4                    |
| Dibromomethane                                      | ug/L (ppb)               | 10       | 95       | 97                                        | 70-130           | 2                    |
| 4-Methyl-2-pentanone                                | ug/L (ppb)               | 50       | 97       | 100                                       | 70-130           | 3                    |
| cis-1,3-Dichloropropene<br>Toluene                  | ug/L (ppb)<br>ug/L (ppb) | 10<br>10 | 98<br>97 | $\begin{array}{c} 103 \\ 104 \end{array}$ | 70-130<br>70-130 | 5<br>7               |
| trans-1,3-Dichloropropene                           | ug/L (ppb)               | 10       | 97<br>97 | 104 100                                   | 70-130           | 3                    |
| 1.1.2-Trichloroethane                               | ug/L (ppb)               | 10       | 97<br>91 | 97                                        | 70-130           | 5<br>6               |
| 2-Hexanone                                          | ug/L (ppb)               | 50       | 93       | 96                                        | 66-132           | 3                    |
| 1.3-Dichloropropane                                 | ug/L (ppb)               | 10       | 92       | 96                                        | 70-130           | 4                    |
| Tetrachloroethene                                   | ug/L (ppb)               | 10       | 99       | 106                                       | 70-130           | 7                    |
| Dibromochloromethane                                | ug/L (ppb)               | 10       | 91       | 103                                       | 63-142           | 12                   |
| 1.2-Dibromoethane (EDB)                             | ug/L (ppb)               | 10       | 93       | 99                                        | 70-130           | 6                    |
| Chlorobenzene                                       | ug/L (ppb)               | 10       | 91       | 97                                        | 70-130           | 6                    |
| Ethylbenzene                                        | ug/L (ppb)               | 10       | 101      | 107                                       | 70-130           | 6                    |
| 1,1,1,2-Tetrachloroethane                           | ug/L (ppb)               | 10       | 94       | 100                                       | 70-130           | 6                    |
| m,p-Xylene                                          | ug/L (ppb)               | 20       | 100      | 106                                       | 70-130           | 6                    |
| o-Xylene                                            | ug/L (ppb)               | 10       | 97       | 105                                       | 70-130           | 8                    |
| Styrene                                             | ug/L (ppb)               | 10       | 92       | 99                                        | 70-130           | 7                    |
| Isopropylbenzene                                    | ug/L (ppb)               | 10       | 93       | 100                                       | 70-130           | 7                    |
| Bromoform                                           | ug/L (ppb)               | 10       | 94       | 95                                        | 50-157           | 1                    |
| n-Propylbenzene                                     | ug/L (ppb)               | 10       | 97       | 105                                       | 70-130           | 8                    |
| Bromobenzene                                        | ug/L (ppb)               | 10       | 92       | 102                                       | 70-130           | 10                   |
| 1,3,5-Trimethylbenzene                              | ug/L (ppb)               | 10       | 95       | 105                                       | 52-150           | 10                   |
| 1,1,2,2-Tetrachloroethane<br>1,2,3-Trichloropropane | ug/L (ppb)               | 10<br>10 | 94<br>93 | $105 \\ 102$                              | 75-140<br>40-153 | 11<br>9              |
| 2-Chlorotoluene                                     | ug/L (ppb)<br>ug/L (ppb) | 10       | 93       | 102                                       | 40-153<br>70-130 | 9<br>11              |
| 4-Chlorotoluene                                     | ug/L (ppb)               | 10       | 96<br>96 | 104 105                                   | 70-130           | 9                    |
| tert-Butylbenzene                                   | ug/L (ppb)               | 10       | 95       | 105                                       | 70-130           | 5<br>11              |
| 1,2,4-Trimethylbenzene                              | ug/L (ppb)               | 10       | 93<br>94 | 106                                       | 70-130           | 10                   |
| sec-Butylbenzene                                    | ug/L (ppb)               | 10       | 95       | 104                                       | 70-130           | 10                   |
| p-Isopropyltoluene                                  | ug/L (ppb)               | 10       | 96       | 105                                       | 70-130           | 10                   |
| 1,3-Dichlorobenzene                                 | ug/L (ppb)               | 10       | 93       | 103                                       | 70-130           | 10                   |
| 1,4-Dichlorobenzene                                 | ug/L (ppb)               | 10       | 91       | 103                                       | 70-130           | 12                   |
| 1,2-Dichlorobenzene                                 | ug/L (ppb)               | 10       | 91       | 105                                       | 70-130           | 14                   |
| 1,2-Dibromo-3-chloropropane                         | ug/L (ppb)               | 10       | 86       | 98                                        | 70-130           | 13                   |
| 1,2,4-Trichlorobenzene                              | ug/L (ppb)               | 10       | 90       | 101                                       | 70-130           | 12                   |
| Hexachlorobutadiene                                 | ug/L (ppb)               | 10       | 92       | 104                                       | 70-130           | 12                   |
| Naphthalene                                         | ug/L (ppb)               | 10       | 91       | 101                                       | 61-133           | 10                   |
| 1,2,3-Trichlorobenzene                              | ug/L (ppb)               | 10       | 87       | 99                                        | 69-143           | 13                   |

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 306444-01 1/5 (Matrix Spike)

| ·                                               |                            | -            | Sample                  | Percent    | Percent   |                  |                      |
|-------------------------------------------------|----------------------------|--------------|-------------------------|------------|-----------|------------------|----------------------|
|                                                 | Reporting                  | Spike        | $\operatorname{Result}$ |            | Recovery  | Acceptance       | $\operatorname{RPD}$ |
| Analyte                                         | Units                      | Level        | (Wet wt)                | MS         | MSD       | Criteria         | (Limit 20)           |
| Phenol                                          | mg/kg (ppm)                | 0.83         | < 0.5                   | 94         | 87        | 36-118           | 8                    |
| Bis(2-chloroethyl) ether                        | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.05<br><0.5           | 82         | 77        | 24-116           | 6<br>7               |
| 2-Chlorophenol                                  | mg/kg (ppm)                | 0.83         | <0.05                   | 84<br>80   | 78<br>74  | 24-125<br>17-116 | 8                    |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene      | mg/kg (ppm)                | 0.83         | < 0.05                  | 80<br>85   | 74<br>79  | 17-116<br>18-118 | 7                    |
| 1,2-Dichlorobenzene                             | mg/kg (ppm)                | 0.83         | < 0.05                  | 86         | 81        | 22-117           | 6                    |
| Benzyl alcohol                                  | mg/kg (ppm)                | 4.2          | < 0.5                   | 89         | 84        | 36-121           | 6                    |
| 2,2'-Oxybis(1-chloropropane)                    | mg/kg (ppm)                | 0.83         | < 0.05                  | 91         | 86        | 20-126           | 6                    |
| 2-Methylphenol                                  | mg/kg (ppm)                | 0.83         | <0.5                    | 98         | 92        | 38-120           | 6                    |
| Hexachloroethane                                | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.05<br><0.05          | 86         | 78        | 10-207           | 10<br>4              |
| N-Nitroso-di-n-propylamine                      | mg/kg (ppm)                | 0.83         | <0.05                   | 96         | 92        | 10-176           | 6                    |
| 3-Methylphenol + 4-Methylphenol<br>Nitrobenzene | mg/kg (ppm)                | 0.83         | < 0.05                  | 93<br>87   | 88<br>82  | 39-121<br>10-186 | 6                    |
| Isophorone                                      | mg/kg (ppm)                | 0.83         | < 0.05                  | 93         | 90        | 29-155           | 3                    |
| 2-Nitrophenol                                   | mg/kg (ppm)                | 0.83         | < 0.5                   | 91         | 93        | 16-148           | 2                    |
| 2,4-Dimethylphenol                              | mg/kg (ppm)                | 0.83         | < 0.5                   | 88         | 83        | 17-130           | 6                    |
| Benzoic acid                                    | mg/kg (ppm)                | 2.5          | <2.5                    | 63         | 64        | 10-101           | 2                    |
| Bis(2-chloroethoxy)methane                      | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | $< 0.05 \\ < 0.5$       | 90         | 86        | 37-121           | 5<br>1               |
| 2,4-Dichlorophenol                              | mg/kg (ppm)                | 0.83         | <0.05                   | 88         | 87        | 19-144           | 6                    |
| 1,2,4-Trichlorobenzene<br>Naphthalene           | mg/kg (ppm)                | 0.83         | <0.01                   | 87<br>86   | 82<br>83  | 35-116<br>28-125 | 4                    |
| Hexachlorobutadiene                             | mg/kg (ppm)                | 0.83         | < 0.05                  | 103        | 83<br>98  | 28-125<br>25-126 | 5                    |
| 4-Chloroaniline                                 | mg/kg (ppm)                | 6.8          | <5                      | 85         | 83        | 23-120<br>21-117 | 2                    |
| 4-Chloro-3-methylphenol                         | mg/kg (ppm)                | 0.83         | < 0.5                   | 106        | 101       | 36-138           | 5                    |
| 2-Methylnaphthalene                             | mg/kg (ppm)                | 0.83         | < 0.01                  | 104        | 99        | 10-192           | 5                    |
| 1-Methylnaphthalene                             | mg/kg (ppm)                | 0.83         | <0.01<br><0.15          | 106        | 100       | 10-163           | $6 \\ 2$             |
| Hexachlorocyclopentadiene                       | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.15<br><0.5           | 81         | 79        | 10-136           | 2<br>5               |
| 2,4,6-Trichlorophenol                           | mg/kg (ppm)                | 0.83         | <0.5                    | 94<br>96   | 89        | 16-151           | 4                    |
| 2,4,5-Trichlorophenol<br>2-Chloronaphthalene    | mg/kg (ppm)                | 0.83         | < 0.05                  | 89         | 92<br>84  | 20-139<br>42-117 | 6                    |
| 2-Nitroaniline                                  | mg/kg (ppm)                | 4.2          | < 0.25                  | 120        | 91        | 50-150           | 27 vo                |
| Dimethyl phthalate                              | mg/kg (ppm)                | 0.83         | < 0.5                   | 98         | 95        | 50-150           | 3                    |
| Acenaphthylene                                  | mg/kg (ppm)                | 0.83         | < 0.01                  | 92         | 87        | 45-128           | 6                    |
| 2,6-Dinitrotoluene                              | mg/kg (ppm)                | 0.83<br>4.2  | <0.25<br><5             | 102        | 99        | 11-182           | 3<br>9               |
| 3-Nitroaniline                                  | mg/kg (ppm)<br>mg/kg (ppm) | 4.2<br>0.83  | <0.01                   | 96         | 88        | 36-110           | 3                    |
| Acenaphthene<br>2,4-Dinitrophenol               | mg/kg (ppm)                | 1.7          | <1.5                    | 93<br>100  | 90<br>97  | 36-125<br>10-135 | 3                    |
| Dibenzofuran                                    | mg/kg (ppm)                | 0.83         | < 0.05                  | 100        | 97<br>94  | 44-125           | 6                    |
| 2,4-Dinitrotoluene                              | mg/kg (ppm)                | 0.83         | < 0.25                  | 100        | 97        | 37-149           | 3                    |
| 4-Nitrophenol                                   | mg/kg (ppm)                | 1.7          | <1.5                    | 104        | 99        | 24-159           | 5                    |
| Diethyl phthalate                               | mg/kg (ppm)                | 0.83         | < 0.5                   | 98         | 95        | 48-126           | 3                    |
| Fluorene                                        | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.01<br><0.05          | 100        | 94        | 48-121           | 6<br>5               |
| 4-Chlorophenyl phenyl ether                     | mg/kg (ppm)                | 0.83         | <0.05                   | 97         | 92        | 50-150           | 3                    |
| N-Nitrosodiphenylamine<br>4-Nitroaniline        | mg/kg (ppm)                | 4.2          | <5                      | 95<br>92   | 92<br>87  | 10-190<br>10-150 | 6                    |
| 4,6-Dinitro-2-methylphenol                      | mg/kg (ppm)                | 0.83         | <1.5                    | 118        | 115       | 10-148           | 3                    |
| 4-Bromophenyl phenyl ether                      | mg/kg (ppm)                | 0.83         | < 0.05                  | 99         | 93        | 50-150           | 6                    |
| Hexachlorobenzene                               | mg/kg (ppm)                | 0.83         | < 0.05                  | 95         | 90        | 50-150           | 5                    |
| Pentachlorophenol                               | mg/kg (ppm)                | 0.83         | < 0.25                  | 94         | 90        | 18-159           | 4                    |
| Phenanthrene                                    | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.01<br><0.01          | 97         | 93        | 46-122           | 4 3                  |
| Anthracene                                      | mg/kg (ppm)                | 0.83         | <0.01                   | 102<br>99  | 99<br>97  | 30-144<br>50-150 | 2                    |
| Carbazole<br>Di-n-butyl phthalate               | mg/kg (ppm)                | 0.83         | < 0.5                   | 99<br>93   | 97<br>94  | 50-150<br>43-124 | 1                    |
| Fluoranthene                                    | mg/kg (ppm)                | 0.83         | < 0.01                  | 99         | 96        | 43-124<br>50-150 | 3                    |
| Pyrene                                          | mg/kg (ppm)                | 0.83         | < 0.01                  | 99         | 94        | 40-134           | 5                    |
| Benzyl butyl phthalate                          | mg/kg (ppm)                | 0.83         | < 0.5                   | 116        | 114       | 14-187           | 2                    |
| Benz(a)anthracene                               | mg/kg (ppm)                | 0.83         | < 0.01                  | 97         | 92        | 50 - 150         | 5                    |
| Chrysene                                        | mg/kg (ppm)<br>mg/kg (ppm) | 0.83<br>0.83 | <0.01<br><0.8           | 107        | 98        | 50-150           | 9<br>1               |
| Bis(2-ethylhexyl) phthalate                     | mg/kg (ppm)                | 0.83         | <0.8                    | 104        | 103       | 45-130           | 5                    |
| Di-n-octyl phthalate<br>Benzo(a)pyrene          | mg/kg (ppm)                | 0.83         | <0.01                   | 111<br>100 | 117<br>96 | 25-161<br>50-150 | 4                    |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene          | mg/kg (ppm)                | 0.83         | < 0.01                  | 96         | 98<br>92  | 50-150<br>50-150 | 4                    |
| Benzo(k)fluoranthene                            | mg/kg (ppm)                | 0.83         | < 0.01                  | 97         | 96        | 50-150           | 1                    |
| Indeno(1,2,3-cd)pyrene                          | mg/kg (ppm)                | 0.83         | < 0.01                  | 96         | 93        | 40-140           | 3                    |
| Dibenz(a,h)anthracene                           | mg/kg (ppm)                | 0.83<br>0.83 | <0.01<br><0.01          | 104        | 98        | 41-136           | 6<br>6               |
| Benzo(g,h,i)perylene                            | mg/kg (ppm)                | 0.00         | <b>NU.01</b>            | 100        | 94        | 29-139           | Ø                    |

### ENVIRONMENTAL CHEMISTS

### Date of Report: 07/21/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

|                                            | D II                       | a .1         | Percent  |                  |
|--------------------------------------------|----------------------------|--------------|----------|------------------|
|                                            | Reporting                  | Spike        | Recovery | Acceptanc        |
| Analyte                                    | Units                      | Level        | LCS      | Criteria         |
| Phenol                                     | mg/kg (ppm)                | 0.83         | 92       | 47-128           |
| Bis(2-chloroethyl) ether                   | mg/kg (ppm)                | 0.83         | 83       | 35-131           |
| -Chlorophenol                              | mg/kg (ppm)                | 0.83         | 83       | 58-111           |
| ,3-Dichlorobenzene                         | mg/kg (ppm)                | 0.83         | 80       | 47-109           |
| ,4-Dichlorobenzene                         | mg/kg (ppm)                | 0.83<br>0.83 | 84       | 46-110           |
| ,2-Dichlorobenzene                         | mg/kg (ppm)<br>mg/kg (ppm) | 4.2          | 86       | 50-110           |
| Benzyl alcohol                             | mg/kg (ppm)                | 4.2          | 95       | 36-147           |
| ,2'-Oxybis(1-chloropropane)                | mg/kg (ppm)                | 0.83         | 88       | 54-113           |
| Methylphenol                               | mg/kg (ppm)                | 0.83         | 94       | 60-114           |
| Iexachloroethane                           | mg/kg (ppm)                | 0.83         | 84       | 45-111           |
| V-Nitroso-di-n-propylamine                 | mg/kg (ppm)                | 0.83         | 95       | 70-130           |
| -Methylphenol + 4-Methylphenol             | mg/kg (ppm)                | 0.83         | 91<br>89 | 66-112           |
| Sophorone                                  | mg/kg (ppm)                | 0.83         | 89<br>96 | 59-111<br>52-128 |
| -Nitrophenol                               | mg/kg (ppm)                | 0.83         | 96<br>95 | 52-128<br>60-121 |
| ,4-Dimethylphenol                          | mg/kg (ppm)                | 0.83         | 95<br>88 | 53-119           |
| enzoic acid                                | mg/kg (ppm)                | 2.5          | 68       | 13-223           |
| senzoic acid<br>Sis(2-chloroethoxy)methane | mg/kg (ppm)                | 0.83         | 94       | 13-223<br>64-112 |
| ,4-Dichlorophenol                          | mg/kg (ppm)                | 0.83         | 93       | 63-112           |
| ,2,4-Trichlorobenzene                      | mg/kg (ppm)                | 0.83         | 90<br>90 | 56-111           |
| Japhthalene                                | mg/kg (ppm)                | 0.83         | 50<br>87 | 57-107           |
| lexachlorobutadiene                        | mg/kg (ppm)                | 0.83         | 107      | 49-119           |
| -Chloroaniline                             | mg/kg (ppm)                | 6.8          | 81       | 10-136           |
| -Chloro-3-methylphenol                     | mg/kg (ppm)                | 0.83         | 104      | 70-130           |
| -Methylnaphthalene                         | mg/kg (ppm)                | 0.83         | 104      | 63-112           |
| -Methylnaphthalene                         | mg/kg (ppm)                | 0.83         | 105      | 63-112           |
| lexachlorocyclopentadiene                  | mg/kg (ppm)                | 0.83         | 76       | 46-127           |
| ,4,6-Trichlorophenol                       | mg/kg (ppm)                | 0.83         | 93       | 65-116           |
| ,4,5-Trichlorophenol                       | mg/kg (ppm)                | 0.83         | 92       | 67-117           |
| -Chloronaphthalene                         | mg/kg (ppm)                | 0.83         | 89       | 67-109           |
| -Nitroaniline                              | mg/kg (ppm)                | 4.2          | 94       | 46-148           |
| Dimethyl phthalate                         | mg/kg (ppm)                | 0.83         | 96       | 70-130           |
| cenaphthylene                              | mg/kg (ppm)                | 0.83         | 89       | 70-130           |
| ,6-Dinitrotoluene                          | mg/kg (ppm)                | 0.83         | 99       | 70-130           |
| cenaphthene                                | mg/kg (ppm)                | 0.83         | 91       | 66-112           |
| ,4-Dinitrophenol                           | mg/kg (ppm)                | 1.7          | 91       | 63-132           |
| Dibenzofuran                               | mg/kg (ppm)                | 0.83         | 96       | 63-117           |
| ,4-Dinitrotoluene                          | mg/kg (ppm)                | 0.83         | 93       | 52-140           |
| Nitrophenol                                | mg/kg (ppm)                | 1.7          | 93       | 16-187           |
| iethyl phthalate                           | mg/kg (ppm)                | 0.83         | 94       | 64-120           |
| luorene                                    | mg/kg (ppm)                | 0.83         | 95       | 67-117           |
| -Chlorophenyl phenyl ether                 | mg/kg (ppm)                | 0.83         | 93       | 70-130           |
| Nitrosodiphenylamine                       | mg/kg (ppm)                | 0.83         | 94       | 61-118           |
| Nitroaniline                               | mg/kg (ppm)                | 4.2          | 86       | 28-121           |
| 6-Dinitro-2-methylphenol                   | mg/kg (ppm)                | 0.83         | 109      | 51 - 152         |
| -Bromophenyl phenyl ether                  | mg/kg (ppm)                | 0.83         | 98       | 70-130           |
| Iexachlorobenzene                          | mg/kg (ppm)                | 0.83         | 93       | 70-130           |
| entachlorophenol                           | mg/kg (ppm)                | 0.83         | 100      | 60-133           |
| henanthrene                                | mg/kg (ppm)                | 0.83         | 94       | 70-130           |
| nthracene                                  | mg/kg (ppm)                | 0.83         | 96       | 70-130           |
| arbazole                                   | mg/kg (ppm)                | 0.83         | 91       | 63-122           |
| i-n-butyl phthalate                        | mg/kg (ppm)                | 0.83         | 88       | 48-128           |
| luoranthene                                | mg/kg (ppm)                | 0.83         | 94       | 70-130           |
| yrene                                      | mg/kg (ppm)                | 0.83         | 104      | 70-130           |
| enzyl butyl phthalate                      | mg/kg (ppm)                | 0.83         | 118      | 64-135           |
| enz(a)anthracene                           | mg/kg (ppm)                | 0.83         | 97       | 70-130           |
| hrysene                                    | mg/kg (ppm)                | 0.83         | 106      | 70-130           |
| is(2-ethylhexyl) phthalate                 | mg/kg (ppm)                | 0.83         | 102      | 59-116           |
| Di-n-octyl phthalate                       | mg/kg (ppm)                | 0.83         | 103      | 46-129           |
| enzo(a)pyrene                              | mg/kg (ppm)                | 0.83         | 94       | 68-120           |
| enzo(b)fluoranthene                        | mg/kg (ppm)                | 0.83         | 93       | 67-128           |
| enzo(k)fluoranthene                        | mg/kg (ppm)                | 0.83         | 93       | 70-130           |
| ndeno(1,2,3-cd)pyrene                      | mg/kg (ppm)                | 0.83         | 90       | 67-129           |
| Dibenz(a,h)anthracene                      | mg/kg (ppm)                | 0.83         | 92       | 67-128           |
| Benzo(g,h,i)perylene                       | mg/kg (ppm)                | 0.83         | 90       | 65-130           |

### ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Potter Subsurface M0615.20.009, F&BI 306441

### **QUALITY ASSURANCE RESULTS** FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample

| Analyte      | Reporting<br>Units | Spike<br>Level | Percent<br>Recovery<br>LCS | Percent<br>Recovery<br>LCSD | Acceptance<br>Criteria | RPD<br>(Limit 20) |
|--------------|--------------------|----------------|----------------------------|-----------------------------|------------------------|-------------------|
| Aroclor 1016 | mg/kg (ppm)        | 0.25           | 126                        | 119                         | 47-158                 | 6                 |
| Aroclor 1260 | mg/kg (ppm)        | 0.25           | 130                        | 131                         | 69-141                 | 1                 |

### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

**b** - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$  calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$  - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| 806432 3064                           | 41                                                   | ;                                     | SAMPLE                                                              | CHAIN          | OF (           | US       | то         | DY            |             | 06            | 212           | 812           | ક                |                 | <b>N</b> 4                      | •      |                      |          |
|---------------------------------------|------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|----------------|----------------|----------|------------|---------------|-------------|---------------|---------------|---------------|------------------|-----------------|---------------------------------|--------|----------------------|----------|
| BOGH 32 3064<br>Report To AUDREY HACK | ETT                                                  |                                       | SAMPL                                                               | ERS (signa     | ture)          | Ch       |            | C .           | Bin         | h             | /             |               |                  | ] [             |                                 |        | of<br>IAROUND T      |          |
| Company MALL FOSTER                   |                                                      |                                       | PROJEC                                                              | CT NAME        |                |          |            |               | - 6         | P             | ) #           |               |                  | 1 1 7           | Stan<br>RUS                     |        | turnaround           |          |
| Address 2815 2no Ave,                 |                                                      |                                       | POTTER                                                              | L Sübsu        | Face           | -        |            | Мc            | 415         | 20            | . 00          | 29            |                  |                 |                                 |        | es authorized        | d by:    |
| City, State, ZIP Stame, V             | VA 98121                                             |                                       | $\begin{array}{c} \text{REMAR} \\ \chi = an \\ 0 = hol \end{array}$ | alyze.         |                |          |            | acca          | IN<br>xunti |               | ice'<br>C n   |               |                  | 1 1             |                                 | nive s | PLE DISPOS<br>amples | SAL      |
| Phone (22) 331-1835 Email             | abacket (?                                           | mail tester. in                       | n Project s                                                         | specific RL    | <u>s? - Ye</u> | s /      | No         |               |             |               |               | tosic;        | *.CN             |                 |                                 |        | ispose after         | 30 day   |
|                                       |                                                      | · · · · · · · · · · · · · · · · · · · |                                                                     | r              |                |          |            | <u></u>       |             |               |               | S RE          |                  | ESTE            | D <u>r</u>                      |        | r                    |          |
| Sample ID                             | Lab ID                                               | Date<br>Sampled                       | Time,<br>Sampled                                                    | Sample<br>Type | # of<br>Jars   | NWTPH-Dx | NWTPH-Gx   | BTEX EPA 8021 |             | VOCs EPA 8260 | PAHs EPA 8270 | PCBs EPA 8082 | SVUCS EPA SZIRSU | METRS EPA 6020B | see note on heits.<br>re metals |        | Not                  | es       |
| TWA-5807_2.4-2.2_062                  | 01 A-E                                               | 6127123                               | 1400                                                                | 5              | 5              | ×        | ×          |               |             | $\times$      |               | $\times$      | ×                | ×               | <br>                            |        |                      |          |
| TWA-5807_5.8-6.2-0627                 | az                                                   | 6127123                               | 1405                                                                | S              | 5              | Ô        | 0          |               |             | 0             |               | O             | 0                | 0               |                                 |        |                      |          |
| TWA-5B08_2.6-3.2_0627                 | 03                                                   | 6127123                               | 1440                                                                | S              | 5              | Х        | X          |               |             | X             |               | X             | Х                | X               |                                 |        |                      |          |
| TWA-5808_5.7-6.3_0627                 | 04                                                   | 6127123                               | 1445                                                                | S              | 5              | 0        | $\bigcirc$ |               |             | O             |               | O             | $\bigcirc$       | 0               |                                 |        |                      |          |
| TWA-5806_22-2-8_0627                  | ος                                                   | 6127123                               | 1530                                                                | S              | 5              | X        | X          |               |             | Х             |               | Х             | X                | X               |                                 |        | Impacted             | l        |
| TWA-9-5806_2.2-2.8_0627               |                                                      | 6/27/23                               | 1530                                                                | 5              | 6              | X        | X          |               | ľ           | X             |               | Х             | Х                | X               |                                 |        | Impacted             | k        |
| TWA-5B06_8.2-8.8_0627                 | 67                                                   | 6127/23                               | 1535                                                                | S              | 6              | Х        | Х          |               | ,           | X             |               | Х             | X                | Χ               |                                 |        |                      |          |
|                                       | OF A-B                                               | 6/27/23                               | NA                                                                  | W              | 2              |          |            |               | ,           | X             |               |               |                  | Í               |                                 |        |                      |          |
|                                       |                                                      |                                       |                                                                     |                |                |          |            |               |             |               |               |               |                  |                 |                                 |        |                      |          |
|                                       | · · · · · · · · · · · · · · · · · · ·                |                                       |                                                                     |                |                |          | rên.       | San           | nple        | es r          | ec            | eive          | ed a             | i               | 4                               | Č,     |                      |          |
|                                       |                                                      | GNATURE                               |                                                                     |                | PRIN           | N TV     | AM         | E             |             |               |               | Ċ             | COM              | PAN             | Y                               |        | DATE                 | TIM      |
| Dh (20(1) 205 0202                    | nquished by:                                         | Church 1/2                            | il                                                                  | An             | rando          | r E      | 3. XI      | by            |             |               |               | Λ             | HFA              | -               |                                 |        | 6/22/23              | 130      |
|                                       | eived by:<br>mail mail mail mail mail mail mail mail | man                                   | 0                                                                   | Nha            | n i            | pha      | ín         | 5             |             |               |               | Ŧ             | l ¢              | 3 T             | -                               |        | 6/28/23              | 1300     |
| Rec                                   | eived by:                                            |                                       |                                                                     |                |                |          |            |               |             |               |               |               |                  |                 |                                 |        |                      | <u> </u> |

\* Metals include As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Se, & Zn.

# Attachment D

# **Data Validation Memorandum**



# Data Quality Assurance/Quality Control Review

### Project No. M0615.20.009 | July 27, 2023 | Port of Tacoma

Maul Foster & Alongi, Inc. (MFA), conducted an independent review of the quality of analytical results for soil and associated quality control samples collected on June 27, 2023, at the Potter Property at 1801 E Alexander Avenue in Tacoma, Washington.

Friedman & Bruya, Inc. (F&B), performed the analyses. MFA reviewed F&B report number 306441. The analyses performed and the samples analyzed are listed in the following tables. Samples submitted on hold are indicated below.

| Analysis                                 | Reference     |
|------------------------------------------|---------------|
| Diesel- and motor-oil-range hydrocarbons | NWTPH-Dx      |
| Gasoline-range hydrocarbons              | NWTPH-Gx      |
| Percent moisture                         | ASTM D2216-98 |
| Polychlorinated biphenyls as Aroclors    | EPA 8082A     |
| Semivolatile organic compounds           | EPA 8270E     |
| Total metals                             | EPA 6020B     |
| Volatile organic compounds               | EPA 8260D     |

Notes

ASTM = ASTM International.

EPA = U.S. Environmental Protection Agency.

NWTPH = Northwest Total Petroleum Hydrocarbons.

| Samples Analyzed             |                         |  |  |  |  |
|------------------------------|-------------------------|--|--|--|--|
| Report 306441                |                         |  |  |  |  |
| TWA-SB07_2.4-2.8_0627        | TWA-SB06_2.2-2.8_0627   |  |  |  |  |
| TWA-SB07_5.8-6.2_0627 (hold) | TWA-9-SB06_2.2-2.8_0627 |  |  |  |  |
| TWA-SB08_2.6-3.2_0627        | TWA-SB06_8.2-8.8_0627   |  |  |  |  |
| TWA-SB08_5.7-6.3_0627 (hold) | Trip Blank 1-0627       |  |  |  |  |

### **Data Qualification**

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (EPA 1986, F&B 2022).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Northwest Total Petroleum Hydrocarbons [NWTPH]-Dx).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

• J = result is estimated.

- U = result is non-detect at the method reporting limit (MRL).
- UJ = result is non-detect with an estimated MRL.

According to report 306441, some EPA Method 6020B total copper and total zinc results had internal standards that were outside control limits. F&B noted that the results are considered estimates. These results were originally reported as non-detect from diluted analyses with passing internal standard recoveries, and F&B reported the undiluted analyses at MFA's request. Due to the internal standard issue, the reviewer qualified the associated sample results with J, as shown in the following table.

| Report | Sample                  | Analyte      | Original Result<br>(mg/kg) | Qualified Result<br>(mg/kg) |
|--------|-------------------------|--------------|----------------------------|-----------------------------|
|        | TWA-SB07_2.4-2.8_0627   | Total copper | 6.98                       | 6.98 J                      |
|        | TWA-3B07_2:4-2:8_0027   | Total zinc   | 12.7                       | 12.7 J                      |
|        |                         | Total copper | 13.6                       | 13.6 J                      |
| 306441 | TWA-SB08_2.6-3.2_0627   | Total zinc   | 12.0                       | 12.0 J                      |
| 300441 | TWA-9-SB06_2.2-2.8_0627 | Total copper | 6.71                       | 6.71 J                      |
|        | TWA-9-3B06_2.2-2.8_0627 | Total zinc   | 13.6                       | 13.6 J                      |
|        |                         | Total copper | 7.12                       | 7.12 J                      |
|        | TWA-SB06_8.2-8.8_0627   | Total zinc   | 12.4                       | 12.4 J                      |

Notes

J = result is estimated.

mg/kg = milligrams per kilogram.

According to report 306441, the EPA Method 8260D acetone and bromomethane calibration standards exceeded acceptance criteria with a high bias. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

According to report 306441, the EPA Method 8270E benzyl butyl phthalate calibration standard exceeded the acceptance criterion with a high bias. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

According to report 306441, the EPA Method 8270E hexachlorobenzene calibration standard exceeded the acceptance criterion with a low bias. The reviewer qualified all associated sample results with UJ, as shown in the following table.

| Report | Sample                  | Analyte           | Original Result<br>(mg/kg) | Qualified Result<br>(mg/kg) |
|--------|-------------------------|-------------------|----------------------------|-----------------------------|
|        | TWA-SB07_2.4-2.8_0627   |                   | 0.05 U                     | 0.05 UJ                     |
|        | TWA-SB08_2.6-3.2_0627   | Hexachlorobenzene | 0.05 U                     | 0.05 UJ                     |
| 306441 | TWA-SB06_2.2-2.8_0627   |                   | 0.25 U                     | 0.25 UJ                     |
|        | TWA-9-SB06_2.2-2.8_0627 |                   | 0.25 U                     | 0.25 UJ                     |
|        | TWA-SB06_8.2-8.8_0627   |                   | 0.05 U                     | 0.05 UJ                     |

Notes

mg/kg = milligrams per kilogram.

U = result is non-detect at the method reporting limit.

UJ = result is non-detect with an estimated method reporting limit.

# **Sample Conditions**

### Sample Custody

Sample custody was appropriately documented on the chain-of-custody form accompanying the report.

### **Holding Times**

Extractions and analyses were performed within the recommended holding times.

### **Preservation and Sample Storage**

The samples were preserved and stored appropriately.

# **Reporting Limits**

The laboratory evaluated results to MRLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised MRLs.

The reviewer confirmed that when samples were diluted for analysis or when a higher sample volume was used for the extraction, F&B provided the preparation or dilution factor after the laboratory sample identification number.

### Blanks

### **Method Blanks**

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blank results were non-detect to MRLs.

### **Equipment Rinsate Blanks**

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

### Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

A trip blank (Trip Blank 1-0627) was submitted with the sample delivery group 306441 for EPA Method 8260D analysis.

The trip blank was non-detect to MRLs for all target analytes.

# Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. Where LCSDs were

not reported, laboratory precision was evaluated using laboratory duplicate or matrix spike (MS) and matrix spike duplicate (MSD) results. The LCS and the remaining LCSD were prepared and analyzed at the required frequency.

All LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

# Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. Where laboratory duplicate results were not reported, laboratory precision was evaluated using LCS and LCSD or MS and MSD results. All remaining laboratory duplicate samples were prepared and analyzed at the required frequency.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

All laboratory duplicate results met the acceptance criteria.

# Matrix Spike and Matrix Spike Duplicate Results

MS and MSD results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. Where MS and/or MSD were not reported, laboratory precision and accuracy were evaluated using LCS, LCSD, and laboratory duplicate results. All remaining MS and MSD samples were prepared and analyzed at the required frequency.

When MS and MSD were prepared with samples from unrelated projects, the MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

According to report 306441, the EPA Method 6020B MS and MSD prepared with sample TWA-SB07\_2.4-2.8\_0627 had some total metals results outside the percent recovery acceptance limits of 75 percent to 125 percent, and some RPD results above the 20 percent acceptance limit. The MS and MSD were reported from an analysis with a dilution factor of 5, while some of the initial sample results were reported undiluted. Matrix effects present at a dilution of 5 can be presumed to also be present in an undiluted analysis. The MS had a low total mercury result, at 48 percent, and the MS and MSD had a total mercury RPD of 68 percent. The MSD had a high total manganese result, at 129 percent, and the MS and MSD had a total manganese RPD of 49 percent. The MS and MSD also had a total selenium RPD of 31 percent. The associated sample was non-detect for total selenium and thus did not require qualification based on the RPD exceedance. The reviewer qualified the associated total mercury and manganese results, as shown in the following table.

| Report | Sample                | Analyte         | Original Result<br>(mg/kg) | Qualified Result<br>(mg/kg) |
|--------|-----------------------|-----------------|----------------------------|-----------------------------|
| 306441 |                       | Total manganese | 43.1                       | 43.1 J                      |
| 306441 | TWA-SB07_2.4-2.8_0627 | Total mercury   | 1 U                        | 1 UJ                        |

Notes

J = result is estimated.

mg/kg = milligrams per kilogram.

U = result is non-detect at the method reporting limit.

 $\ensuremath{\mathsf{UJ}}$  = result is non-detect with an estimated method reporting limit.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

### Surrogate Recovery Results

The samples were spiked with surrogate compounds to evaluate laboratory performance of individual samples for organic analyses.

According to report 306441, the NWTPH-Gx surrogate results for samples TWA-SB06\_2.2-2.8\_0627 and TWA-9-SB06\_2.2-2.8\_0627 were outside percent recovery acceptance limits. F&B noted that this was due to matrix effects. The reviewer confirmed with the laboratory that the surrogates were above the upper percent recovery limit of 150 percent, at 184 percent and 155 percent, respectively. Sample results were reported from an analysis with a dilution factor of 5. The reviewer qualified the associated sample results with J, as shown in the following table.

| Report | Sample                  | Analyte                     | Original<br>Result<br>(mg/kg) | Qualified<br>Result<br>(mg/kg) |
|--------|-------------------------|-----------------------------|-------------------------------|--------------------------------|
| 206444 | TWA-SB06_2.2-2.8_0627   | Gasoline-range hydrocarbons | 530                           | 530 J                          |
| 306441 | TWA-9-SB06_2.2-2.8_0627 | Gasoline-range hydrocarbons | 470                           | 470 J                          |

Notes

J = result is estimated.

mg/kg = milligrams per kilogram.

According to report 306441, the NWTPH-Dx surrogate results for samples TWA-SB06\_2.2-2.8\_0627 and TWA-9-SB06\_2.2-2.8\_0627 were outside percent recovery acceptance limits. F&B noted that this was due to matrix effects. The reviewer confirmed with the laboratory that the surrogates were above the upper percent recovery limit of 150 percent, at 250 percent and 276 percent, respectively. Sample results were reported from an undiluted analysis. The reviewer qualified the associated sample results with J, as shown in the following table.

| Report | Sample                  | Analyte                      | Original<br>Result<br>(mg/kg) | Qualified<br>Result<br>(mg/kg) |
|--------|-------------------------|------------------------------|-------------------------------|--------------------------------|
| 306441 | TWA-SB06_2.2-2.8_0627   | Diesel-range hydrocarbons    | 14,000                        | 14,000 J                       |
|        |                         | Motor-oil-range hydrocarbons | 7,400                         | 7,400 J                        |
|        | TWA-9-SB06_2.2-2.8_0627 | Diesel-range hydrocarbons    | 13,000                        | 13,000 J                       |
|        |                         | Motor-oil-range hydrocarbons | 7,200                         | 7,200 J                        |

Notes

J = result is estimated.

mg/kg = milligrams per kilogram.

All remaining surrogate results were within percent recovery acceptance limits.

# **Field Duplicate Results**

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

| Report | Parent Sample         | Field Duplicate Sample  |
|--------|-----------------------|-------------------------|
| 306441 | TWA-SB06_2.2-2.8_0627 | TWA-9-SB06_2.2-2.8_0627 |

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect. When one result in the sample pair was non-detect, RPD was evaluated using the MRL of the non-detect result.

All field duplicate results met the RPD acceptance criteria.

### Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

On the chain-of-custody form accompanying report 306441, samples TWA-SB06\_2.2-2.8\_0627 and TWA-9-SB06\_2.2-2.8\_0627 are noted to be "impacted." The reviewer confirmed with the sampler that this was due to visible free product on the soil and was noted in order to indicate to the laboratory that the samples may have high concentrations of target and/or non-target analytes.

At MFA's request, report 306441 was revised on July 21, 2023, to include ASTM D2216-98 percent moisture results for soil samples, to remove extraneous EPA Method 8270E results that were over the calibration range of the instrument, and to report some EPA Method 6020B results from undiluted analyses rather than diluted analyses.

In report 306441, sample "Trip Blank #1-0627" was reported by F&B as Trip Blank 1-0627, The reviewer confirmed with the laboratory that this is due to system limitations that do not allow special characters in sample names. The sample name could not be revised in the laboratory report.

No other issues were found.

### References

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- F&B. 2022. Quality Assurance Manual. Rev. 18. Friedman & Bruya, Inc.: Seattle, WA. December 9.