Tier II Vapor Intrusion Assessment Report

Taylor Way and Alexander Avenue Fill Area Former Potter Property 1801 E Alexander Avenue, Tacoma, WA

Agreed Order DE 14260 Facility/Site ID No. 1403183 Cleanup Site ID No. 4692

Final

Prepared for:

Port of Tacoma August 23, 2023 Project No. M0615.20.006

Prepared by:

Maul Foster & Alongi, Inc. 2815 2nd Avenue, Suite 540, Seattle, WA 98121

© 2023 Maul Foster & Alongi, Inc.

Tier II Vapor Intrusion Assessment Report

Taylor Way and Alexander Avenue Fill Area Former Potter Property 1801 E Alexander Avenue, Tacoma, WA

Agreed Order DE 14260 Facility/Site ID No. 1403183 Cleanup Site ID No. 4692

The material and data in this report were prepared under the supervision and direction of the undersigned.

Maul Foster & Alongi, Inc.

Audrey Hackett Senior Environmental Scientist

Derek Heitz Project Environmental Scientist

Amanda Bixby, GIT Staff Geologist

Contents

At	obrevia	tions		v
1	Intro	ducti	on	1
	1.1	Bac	kground	1
	1.2	Reg	ulatory Framework	1
2	Field	Inve	stigation	2
	2.1	Prop	perty Preparation	2
	2.2	Diffe	erential Manometer Installation and Reading	3
	2.3	Indo	or Air Sampling	3
	2.4	Amb	vient Air Sampling	3
	2.5	Sub	-slab Vapor Sampling	4
3	Analy	/tical	Methods	4
4	Resu	lts		5
	4.1	Diffe	erential Pressure	5
	4.2	Amb	vient and Indoor Air	6
	4.2.	1	Ambient Air	6
	4.2.	2	Indoor Air	6
	4.2.	3	Indoor Air Screening	7
	4.3	Sub	-slab Vapor	8
	4.4	Ana	erobic Biodegradation of TPH	9
5	Discu	ussio	n and Conclusions	9
	5.1	Diffe	erential Pressure	10
	5.2	Con	tributions from Outdoor and Ambient Sources	10
	5.3	Con	tributions from Sub-slab Vapor	10
	5.3.	1	Quonset Hut 2	10
	5.3.	2	Shop Building	11
	5.4	Con	tributions from Indoor and Occupational Sources	11
	5.4.	1	Quonset Hut 2	11
	5.4.	2	Shop Building	11
	5.5	Con	clusions	11
Re	eferenc	:es		12

Limitations

Figures

Following the Report

- 1-1 Property Location
- 1-2 Property Features
- 1-3 Building Features and Potential VOC Sources
- 2-1 Sample Locations

Tables

Following the Report

- 2-1 Summary of VOC Sources in Buildings
- 4-1 Summary of Indoor and Ambient Air Analytical Results
- 4-2 Summary of Calculated Indoor Air Analytical Results
- 4-3 Summary of Sub-slab Vapor Analytical Results

Appendixes

Appendix A

Field Photographs

Appendix B

Field Sampling Data Sheets

Appendix C

Manometer Readings

Appendix D

Analytical Laboratory Reports

Appendix E

Data Validation Memorandum

Abbreviations

CUL	cleanup level
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
MFA	Maul Foster & Alongi, Inc.
MTCA	Model Toxics Control Act
PCE	tetrachloroethene
PID	photoionization detector
ppm	parts per million
the Port	Port of Tacoma
the Potter Property	1801 E Alexander Avenue, Tacoma, Washington
TCE	trichloroethene
ТРН	total petroleum hydrocarbons
TWAAFA	Taylor Way and Alexander Avenue Fill Area
ug/m ³	micrograms per cubic meter
VI	vapor intrusion
VOC	volatile organic compound

1 Introduction

Maul Foster & Alongi, Inc. (MFA) conducted a Tier II vapor intrusion (VI) investigation on behalf of the Port of Tacoma (the Port) at the former Potter property, located at 1801 E Alexander Avenue in Tacoma, Washington (the Potter Property). The approximately 1.7-acre parcel is part of the Taylor Way and Alexander Avenue Fill Area (TWAAFA) site (Facility/Site No. 1403183; Cleanup Site ID No. 4692) (see Figure 1-1). The Potter Property is currently used for shipping container repair and vehicle maintenance operations by the Port's tenant, Handan Containers, and is located between two large-quantity hazardous waste generator facilities that treat, handle, and/or store hazardous waste (see Figure 1-2). The sampling and analyses described in this report were performed consistent with the Washington State Department of Ecology (Ecology)-approved *Indoor Air Sampling and Analysis Plan* (MFA 2023a).

1.1 Background

In July 2022, MFA completed a Tier I VI investigation consisting of sub-slab soil vapor sampling at the Potter Property (MFA 2022). Nine sub-slab vapor samples were collected from Quonset Hut 1, Quonset Hut 2, and the Shop Building (buildings and sample locations shown on Figure 1-3). Total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs), including chloroform, heptane, n-hexane, tetrachloroethene (PCE), and trichloroethene (TCE), exceeded applicable Model Toxics Control Act (MTCA) Method B and/or Method C cleanup levels (CULs) in one or more sub-slab vapor samples from Quonset Hut 2 and the Shop Building (exceedance locations are shown on Figure 1-3).

1.2 Regulatory Framework

The regulatory background for this scope of work is introduced in MFA's Vapor Intrusion Assessment Report (MFA 2022), which documents the Tier I VI investigation activities in support of the TWAAFA Data Gaps Work Plan (DOF 2020), consistent with the requirements of Ecology Enforcement Order No. 19410 and applicable VI guidance. As stated above, the previous investigation identified TPH and VOC concentrations in sub-slab vapor exceeding MTCA Method B and/or Method C CULs at the Potter Property. Ecology's Guidance for Evaluating Vapor Intrusion in Washington State (Ecology 2022a) states that a Tier II evaluation should be implemented when the Tier I evaluation concludes that groundwater and/or soil vapor VOC concentrations near a building exceed VI CULs.

2 Field Investigation

2.1 Property Preparation

MFA conducted a site visit on March 8, 2023, to inventory potential VOC sources and to coordinate a private utility locate to clear proposed sub-slab vapor pin installation locations. Ecology acknowledges that indoor air quality is almost always affected by indoor sources and in some cases ambient sources. Further, Ecology notes that conclusions of a Tier II evaluation are building-specific factors such as layout, construction, heating, ventilation, occupation, and use (Ecology 2022a).

MFA conducted an inventory of potential VOC sources from the buildings. Potential indoor VOC sources, including materials or equipment that may contain volatile compounds as identified through elevated photoionization detector (PID) readings, were inventoried and, to the extent practicable, removed prior to sub-slab vapor and indoor air sampling. Numerous potential occupational VOC sources were identified in the buildings (see Table 2-1 and Figure 1-3). Photographs are provided in Appendix A.

During the visit, MFA used a PID in each building during operating hours to assess the presence of VOCs. PID readings inside the Shop Building, which is where the majority of Handan's operations are conducted, ranged from 1.8 and 35.5 parts per million (ppm). The PID readings in Quonset Huts 1 and 2 were 0.0 ppm (see Figure 1-3).

Additionally, MFA documented building factors that may influence potential vapor intrusion (e.g., utility penetrations) and exchange with ambient air (e.g., no dedicated ventilation system and large entryways that remain open during business hours). Relevant building features are shown on Figure 1-3.

On March 17, 2023, MFA installed two sub-slab vapor pins (TWA-SV-44 and TWA-SV-45) in the Shop Building, per Ecology's request (Ecology 2022b).

On June 9, 2023, more than 24 hours before sampling, MFA worked with the tenant to reduce or eliminate occupational VOC sources to the extent practicable. VOC source removal included the following (see photographs in Appendix A):

- Sealing the door to the storage room with non-VOC masking tape (see photographs 2 and 3)
- Moving VOC sources into the flammable storage cabinets when practicable, then closing and sealing the cabinet doors with non-VOC masking tape (see photographs 1, 4, 5, 6, 8, 9, 10, and 12)
- Discarding spent materials on the work bench in the Shop Building (see photograph 10)
- Positioning the proposed indoor air sample location IA-05 farther west, away from the work bench in the Shop Building, which had particularly high PID readings (see Figure 1-3 and photograph 10)
- Covering and sealing the motor of the decommissioned compressor in the Shop Building (see photograph 7)
- Moving garbage cans outside buildings (see photograph 11)

Following removal of occupational VOC sources, MFA walked the buildings and used a PID to screen potential VOC sources. No VOCs were identified with the PID.

2.2 Differential Manometer Installation and Reading

On June 7, 2023, MFA installed two manometers to log differential pressure for four to five days prior to sample collection. Manometers were installed at two vapor pin locations: one at TWA-SV-37 in Quonset Hut 2 and one at TWA-SV-43 in the Shop Building (Figure 2-1). Differential pressure measurements continued through the completion of indoor air and sub-slab soil vapor sampling. Measurements were stopped at the end of the day on June 12, 2023.

2.3 Indoor Air Sampling

On June 11, 2023, MFA collected two samples in each building on the Potter Property, for a total of six primary indoor air samples (TWA-IA-O1 through TWA-IA-O6) and one field duplicate sample at TWA-IA-O1 (locations shown on Figure 2-1 and in field photographs in Appendix A). MFA positioned 6-liter stainless steel Summa canisters with eight-hour flow controllers in areas near the sub-slab vapor sampling locations that exhibited TPH or VOC exceedances during the Tier I investigation. Canisters were placed in the breathing zone, 3 to 5 feet above the floor, in areas with sufficient air flow. Further, indoor air samples were collected outside normal business hours with the gates closed in an attempt to minimize the inadvertent introduction of ambient or external VOC sources associated with adjacent operations. Sampling activities were conducted more than 24 hours after occupational VOC materials were removed/contained and occupational use of VOCs ceased.

MFA recorded field data on field sampling data sheets before and after sampling, including sampling start and stop times and initial and final canister vacuum readings (see Appendix B).

2.4 Ambient Air Sampling

On June 11, 2023, MFA collected eight ambient air samples: TWA-AA-01 through TWA-AA-04 from around the conjoined Quonset Huts, and TWA-AA-05 through TWA-AA-08 from around the Shop Building (locations shown on Figure 2-1 and in field photographs in Appendix A). MFA reviewed local weather station data from the day of sampling to identify the predominant wind direction. Using this information, MFA identified the two sample locations (TWA-AA-02 and TWA-AA-06) upwind of the buildings for laboratory analysis. Samples were collected in 6-liter Summa canisters with eight-hour flow controllers. Canisters were placed proximate to the buildings and at a height in the breathing zone, 3 to 5 feet above the floor.¹ Ambient air sampling began one hour before indoor air sample collection and was completed one hour before completion of indoor air sampling, as recommended by the U.S. Environmental Protection Agency (EPA) (EPA 2015). Ambient samples were collected during the tenant's non-operational hours to reduce the potential for operational emissions to influence the ambient air sample collection.

¹Ambient air samples are typically positioned at the height of the buildings' air intakes. However, the buildings have large gates, vents, and no roof intakes; therefore, ambient air samples were collected at heights similar to indoor air samples.

MFA recorded field data on field sampling data sheets before and after sampling, including sampling start and stop times and initial and final canister vacuum readings (see Appendix B).

2.5 Sub-slab Vapor Sampling

On June 12, 2023, MFA collected sub-slab vapor samples from seven locations (shown on Figure 2-1):

- Five samples from the sub-slab vapor pin locations with TPH or VOC exceedances identified during the Tier I VI investigation (TWA-SV-35 and TWA-SV-36 in Quonset Hut 2 and TWA-SV-41 through TWA-SV-43 in the Shop Building)
- Two samples from new permanent sub-slab vapor pin locations in the Shop Building (TWA-SV-44 and TWA-SV-45)

Samples were collected in Tedlar bags and 1-liter Summa canisters with five-minute flow regulators at a flow rate of 200 milliliters per minute. MFA deployed a helium shroud around the sampling apparatus at each location. MFA used an MGD-2002 helium leak detector to measure helium in and around the sampling location in the field. Samples were later analyzed for helium to assess leaks in the sample train. A sub-slab vapor field sampling data sheet is included in Appendix B.

MFA collected one field duplicate, using a T-splitter at the point of sample collection. The field duplicate sample was collected from location TWA-SV-41 (inside the Shop Building) (see Figure 2-1).

MFA recorded field data before and after sample collection at each location. Field parameters included purge start and stop times; sampling start and stop times; initial and final canister vacuum readings; and helium concentrations under the shroud, in the purge bag, and in ambient air (see Appendix B).

3 Analytical Methods

Consistent with the Indoor Air Sampling and Analysis Plan (MFA 2023a), sub-slab vapor, indoor air, and ambient air samples were collected and analyzed for the following:

- Air phase hydrocarbons by Massachusetts Air Phase Hydrocarbons Method
- VOCs by EPA Toxic Organics-15
- Helium by ASTM International D1946

Sub-slab vapor samples were also collected in Tedlar bags and analyzed for methane, oxygen, and carbon dioxide by EPA 3C.

Friedman & Bruya, Inc., of Seattle, Washington, performed the laboratory analyses, except for EPA 3C, which was subcontracted to Fremont Analytical, Inc., also of Seattle, Washington. All analyses were performed by Ecology-accredited laboratories.

4 Results

This section presents a summary of the results of the Tier II VI investigation. Differential pressure readings collected from manometers during the sampling events are presented in Appendix C, and laboratory analytical reports are provided in Appendix D.

Cleanup levels have yet to be established for the Potter Property. Therefore, consistent with the Data Gaps Work Plan (DOF 2020), MFA screened air samples (ambient and indoor air) to MTCA Method B (unrestricted indoor exposure) and MTCA Method C (industrial exposure cancer and noncancer CULs) for air. MFA screened sub-slab soil vapor concentrations to MTCA Method B (unrestricted indoor exposure) and MTCA Method C (industrial exposure) VI cancer and noncancer CULs for sub-slab soil gas. Additionally, MFA compared trichloroethene (TCE) concentrations to the short-term soil vapor action level of 250 micrograms per cubic meter (ug/m³) for nonresidential buildings (Ecology 2022a). TCE concentrations above this level are associated with acute health risks in women of childbearing age (see Appendix A of Ecology 2022a). Methane concentrations were also compared to the lower explosive limit of 5 percent, as methane presents an explosion hazard but does not have established MTCA Method B or Method C CULs.

Analytical lab reports are included in Appendix C. MFA performed data validation of laboratory analytical results, consistent with the Indoor Air Sampling and Analysis Plan (MFA 2023a). Appendix D summarizes the data evaluation procedures, data usability, and any deviations from specific field and/or laboratory methods. Data are considered acceptable for their intended use, with the appropriate qualifiers assigned.

4.1 Differential Pressure

Differential pressure readings collected during field activities are included in Appendix C. Differential pressure readings were interpreted as follows:

- If the differential pressure reading is positive, then the subsurface pressure exceeds the pressure inside the building and there is potential for an upward pressure gradient through the slab. This indicates that VI may be occurring.
- If the differential pressure reading is negative, then the inverse is true and there is potential for a downward pressure gradient through the slab. This indicates that VI is unlikely to be occurring.

The manometers used to measure the pressure differential between the interiors and beneath the concrete slabs indicated the following:

- The differential pressure in the Shop Building was generally slightly positive, indicating that VI was occurring in this building at the time of the June assessment.
- The differential pressure in Quonset Hut 2 was generally slightly negative, indicating that VI was less likely to occur in this building at the time of the June assessment.

Magnitudes of pressure differentials in the two buildings were substantially similar throughout testing, albeit with opposing sign notations as described above. However, pressure differentials in the Shop Building and Quonset Hut 2 were substantially similar in both magnitude and sign notation from approximately 3:00 a.m. until 2:00 p.m. on June 10, 2023. This corresponds with a time when

the predominant north-northwest wind direction changed to south-southeast. This indicates that pressure differentials may be impacted by wind direction, which is anticipated given the large, unsealed door on the south-southwest wall of the Shop Building and the similar door on the north-northeast wall of Quonset Hut 2. Both doors were closed during the period when the readings were similar in both magnitude and sign notation, indicating that wind and speed direction was likely a contributing factor to differential pressures.

4.2 Ambient and Indoor Air

4.2.1 Ambient Air

A summary of indoor and ambient air analytical data is presented in Table 4-1. The following chemicals were detected in ambient air:

- 1,2-Dichloroethane was detected in TWA-AA-02 at 0.069 ug/m³.
- Acetone was detected in both TWA-AA-02 and TWA-AA-06 at 13 and 14 ug/m³, respectively.
- Acrolein was detected in both TWA-AA-02 and TWA-AA-06 at 0.39 and 0.3 ug/m³, respectively. These concentrations are above both the MTCA Method B and C CULs of 0.0091 ug/m³ and 0.02 ug/m³, respectively.
- Benzene was detected in TWA-AA-06 at 0.22 ug/m³.
- Carbon tetrachloride was detected in both TWA-AA-02 and TWA-AA-06 at 0.45 and 0.46 ug/m³, respectively. These concentrations are above the MTCA Method B CUL of 0.42 ug/m³.
- Chloroform was detected in both TWA-AA-02 and TWA-AA-06 at 0.098 and 0.11 ug/m³, respectively.
- Dichlorodifluoromethane (Freon 12) was detected in both TWA-AA-02 and TWA-AA-06 at 2.4 and 2.3 ug/m³, respectively.
- **C5-C8 aliphatic hydrocarbons** were detected in both TWA-AA-02 and TWA-AA-06 at 96 and 140 ug/m³, respectively.
- TPH (calculated value) were detected in both TWA-AA-02 and TWA-AA-06 at 126 and 171 ug/m³, respectively, above the generic TPH screening level for vapor intrusion of 46 ug/m³.

4.2.2 Indoor Air

A suite of chemicals similar to those detected in ambient air samples was also detected in indoor air samples, and generally at similar concentrations. The following chemicals were detected in indoor air:

- 1,2-Dichloroethane was detected in six samples, with concentrations ranging from 0.049 to 0.073 ug/m³.
- Acetone was detected in all seven samples, with concentrations ranging from 9.7 to 15 ug/m³.
- Acrolein was detected in all seven samples, with concentrations ranging from 0.13 to 0.26 ug/m³.
- Benzene was detected in three samples, with concentrations ranging from 0.38 to 0.67 ug/m³.

- Carbon tetrachloride was detected in all seven samples, with concentrations ranging from 0.45 to 0.47 ug/m³.
- Chloroform was detected in all seven samples, with concentrations ranging from 0.098 to 0.11 ug/m³.
- Dichlorodifluoromethane (Freon 12) was detected in all seven samples, with concentrations ranging from 2.1 to 2.4 ug/m³.
- Ethanol was detected in all seven samples, with concentrations ranging from 8.8 to 16 ug/m³.
- m,p-Xylene was detected in three samples, with concentrations ranging from 1 to 1.3 ug/m³.
- n-Butane was detected in three samples, with concentrations ranging from 8.2 to 21 ug/m³.
- n-Hexane was detected in TWA-IA-02 at 3.9 ug/m³.
- n-Pentane was detected in three samples, with concentrations ranging from 7.4 to 14 ug/m³.
- o-Xylene was detected in TWA-IA-06 at 0.53 ug/m³.
- Total xylenes (calculated value) were detected in three samples, with concentrations ranging from 1.2 to 1.8 ug/m³.
- **C5-C8 aliphatic hydrocarbons** were detected in all seven samples, with concentrations ranging from 93 to 180 ug/m³.
- TPH (calculated value) were detected in all seven samples, with concentrations ranging from 123 to 232 ug/m³.

4.2.3 Indoor Air Screening

The Shop Building and Quonset Hut 2 are generally exposed to the outside environment through large, open gates; therefore, ambient air contributions to indoor air are significant. Indoor air results were adjusted based on ambient air results for the associated building (Quonset Hut 2 or the Shop Building), using the following equation from the Ecology vapor intrusion guidance:

$$C_{ia-vi} = C_{ia-m} - C_{aa}$$

Where: C_{ia-va} is the indoor air concentration of a constituent due to VI

 C_{ia-m} is the concentration of that constituent measured in indoor air

 C_{aa} is the concentration of that constituent measured in ambient air and represents the ambient air contribution to the measured indoor air concentration value

Final calculated results represent the building-specific indoor air pollutant concentration based on vapor intrusion or occupational sources, since the contribution from ambient air is accounted for in the calculation.

A summary of calculated indoor air results is presented in Table 4-2. Most of the chemicals detected in ambient air were at the same or higher concentrations than those observed in indoor air samples, indicating that ambient air is the primary source of chemical concentrations in indoor air, rather than VI from beneath the building. After the measured indoor air concentrations were adjusted to subtract the contribution from ambient air, the following chemicals exceeded MTCA Method B or C air CULs:

- Benzene exceeded the MTCA Method B CUL in both locations from Quonset Hut 2. Benzene was detected at 0.39 and 0.38 ug/m³ at TWA-IA-01 (the primary and field duplicate result, respectively) and at 0.67 ug/m³ at TWA-IA-02.
- TPH (calculated value) were detected at 85 ug/m³ at TWA-IA-02 and 61 ug/m³ at TWA-IA-05, in Quonset Hut 2 and the Shop Building, respectively, which are above the generic TPH screening level for vapor intrusion of 46 ug/m³.

Further evaluation of these chemicals in context of sub-slab vapor results are discussed in the next section.

4.3 Sub-slab Vapor

A summary of the sub-slab vapor analytical data is presented in Table 4-3. The following chemicals were detected in sub-slab vapor:

- 2,2,4-Trimethylpentane was detected in TWA-SV-35 at 42,000 ug/m³.
- Chloroform was detected in four samples, with concentrations ranging from 0.44 to 2.5 ug/m³.
- cis-1,2-Dichloroethene was detected in TWA-SV-44 at 18 ug/m³.
- Cyclohexane was detected in TWA-SV-35 at 20,000 ug/m³.
- Ethylbenzene was detected in TWA-SV-36 at 2.9 ug/m³.
- Heptane was detected in TWA-SV-35 at 29,000 ug/m³. This concentration exceeded the MTCA Method B and C CULs of 6,100 and 13,000 ug/m³, respectively.
- m,p-Xylene was detected in TWA-SV-36 at 10 ug/m³.
- n-Hexane was detected in TWA-SV-35 at 24,000 ug/m³. This concentration exceeded the MTCA Method B and C CULs of 11,000 and 23,000 ug/m³, respectively.
- n-Pentane was detected in TWA-SV-35 at 2,400 ug/m³.
- o-Xylene was detected in TWA-SV-35 and TWA-SV-36 at 170 and 2.6 ug/m³, respectively.
- PCE was detected in seven samples, with concentrations ranging from 43 to 6,100 ug/m³. PCE exceeded MTCA Method B or C CULs at four locations:
 - MTCA Method B CUL at TWA-SV-42 (730 ug/m³).
 - MTCA Method B and C CULs at TWA-SV-45 (2,300 ug/m³).
 - MTCA Method B and C CULs at TWA-SV-41 and TWA-SV-44 (4,900 for the primary sample and field duplicate at TWA-SV-41 and 6,100 ug/m³ at TWA-SV-44).
- trans-1,2-Dichloroethene was detected in TWA-SV-44 at 120 ug/m³.
- TCE was detected in three samples, with concentrations ranging from 75 to 930 ug/m³. TCE exceeded screening levels at two locations:
 - MTCA Method B and C CULs at TWA-SV-41 (75 ug/m³ for both the primary and field duplicate result).
 - Short-term action level, along with Method B and C CULs, at TWA-SV-44 (930 ug/m³).

- Total xylenes (calculated value) were detected in TWA-SV-35 and TWA-SV-36 at 280 and 13 ug/m³, respectively.
- **C5-C8 aliphatic hydrocarbons** were detected in four samples, with concentrations ranging from 410 to 670,000 ug/m³.
- C9-C12 aliphatic hydrocarbons were detected in TWA-SV-35 and TWA-SV-36 at 230,000 and 200 ug/m³, respectively.
- TPH (calculated value) were detected in four samples, with concentrations ranging from 712 to 904,000 ug/m³. Two detections exceeded the generic TPH screening level of 1,500 ug/m³.

The remaining VOCs were non-detect; however, several VOC reporting limits were above their respective CULs because some samples required dilution (see Table 4-3) due to the presence of elevated analyte concentrations (see Appendix D).²

A helium shroud was deployed around each sub-slab vapor sampling location to assess leaks in the sample train, as described in Section 2.5. Analytical laboratory results and field screening indicate that no leaks were present in the sample trains during collection of the eight sub-slab vapor samples (see data validation memorandum in Appendix E).

4.4 Anaerobic Biodegradation of TPH

Methane, oxygen, and carbon dioxide were analyzed to evaluate whether TPH biodegradation may be occurring in the subsurface. Oxygen was present in sub-slab vapor samples at concentrations ranging from 1.57 to 20.6 percent (TWA-SV-35 and TWA-SV-44, respectively). The lowest oxygen concentration (1.57 percent) was observed in the sub-slab vapor sample exhibiting the highest concentration of TPH (904,000 ug/m³): TWA-SV-35, inside Quonset Hut 2.

Concentrations of carbon dioxide ranged from 1.54 to 13.1 percent (TWA-SV-44 and TWA-SV-35, respectively). The highest concentration of carbon dioxide, observed in the sub-slab vapor sample TWA-SV-35, exhibited a concentration of methane of 0.818 percent. Methane was not detected at any other location. These observations are consistent with the 2022 sub-slab vapor sampling event.

The oxygen-depleted environment at TVA-SV-35, combined with the presence of methane and the high carbon dioxide concentration, indicates that anaerobic biodegradation of petroleum hydrocarbons is occurring in this area of the subsurface (ITRC 2014). No other soil-gas samples collected during this investigation or in 2022 exhibited these conditions.

5 Discussion and Conclusions

As stated above, Ecology acknowledges that indoor air quality is almost always affected by household products or other indoor sources and in some cases from ambient sources, and that

² At TWA-SV-35, elevated VOC concentrations required several sample dilutions by the laboratory, which increased reporting limits above applicable MTCA Method B and Method C screening levels. Non-detect reporting limits exceeded *all* screening levels for 1,1,2,2-tetrachloroethane; 1,2,4-trichlorobenzene; 2-hexanone; acrolein; allyl chloride; bromomethane; hexachlorobutadiene; and vinyl bromide.

conclusions of a Tier II evaluation are building specific, depending on factors such as layout, construction, heating, ventilation, occupation, and use (Ecology 2022a).

Indoor air concentrations were adjusted to subtract the contribution from ambient air, as described in Section 4.2.3. A summary of apparent contributions from sub-slab vapor, ambient sources, and indoor sources is included below.

5.1 Differential Pressure

Differential pressure readings during the June 2023 assessment indicate that conditions for VI were occurring in the Shop Building during sampling; whereas the differential pressure readings in Quonset Hut 2 during the same time period indicate conditions optimal for VI were not occurring. The cause of contrasting differential pressures in the buildings may be related to the wind direction compared to the locations of the main doors that are used on these buildings.

5.2 Contributions from Outdoor and Ambient Sources

Before ambient air results were subtracted from indoor air concentrations, selected VOCs (acrolein and carbon tetrachloride) exceeded screening levels in both indoor and ambient air samples (see Table 4-1) but were non-detect in sub-slab vapor samples (see Table 4-3), indicating a source other than VI.

Acrolein and carbon tetrachloride exceedances in ambient air samples are similar or higher than indoor air exceedances, suggesting widespread sources (i.e., emissions from nearby operations). Additionally, potential indoor and occupational sources are discussed in Section 5.4.

5.3 Contributions from Sub-slab Vapor

Analytical results for sub-slab vapor samples are presented in Table 4-3 and summarized in Section 4.3. With the exception of TPH, no VOCs that exceeded sub-slab vapor CULs were detected in indoor air, indicating that VI does not appear to be significant contributor to indoor air screening criteria exceedances.

5.3.1 Quonset Hut 2

Benzene was not detected in sub-slab vapor samples collected from beneath Quonset Hut 2; however, the sample location (TWA-SV-35) with the highest TPH concentration had an elevated reporting limit of 80 ug/m³ for benzene, above the MTCA Method B VI cancer CUL of 11 ug/m³.

Results from 2022 groundwater monitoring indicate elevated benzene in groundwater at MW-1, adjacent north of Quonset Hut 2 (DOF 2023). VI from impacted groundwater may be contributing to indoor air exceedances of TPH and benzene. Additionally, MFA identified petroleum-impacted soil containing benzene beneath the north portion of Quonset Hut 2 during a recent subsurface investigation at the Potter Property (MFA 2023b).

5.3.2 Shop Building

Numerous VOCs exceed sub-slab vapor CULs in the Shop Building, including TCE and PCE. Most VOCs that exceed sub-slab vapor CULs were not detected in indoor air, indicating that VI is not a significant contributor to indoor air concentrations.

5.4 Contributions from Indoor and Occupational Sources

5.4.1 Quonset Hut 2

Selected VOCs (cis-1,2-Dichloroethene, ethanol, m,p-Xylene, n-Butane, n-Hexane, and n-Pentane)³ were detected in indoor air that were not detected in sub-slab vapor or ambient air, indicating that sources other than VI or ambient air are contributing to indoor air concentrations.

Three vehicles and numerous vehicle parts were stored in Quonset Hut 2 at the time of sample collection (see photograph 21 in Appendix A). Vehicle and vehicle part storage may contribute to VOC concentrations in indoor air.

5.4.2 Shop Building

Selected VOCs (1,2-Dichloroethane, ethanol, m,p-Xylene, o-Xylene, and total xylenes) were detected in indoor air that were not detected in sub-slab vapor or ambient air, indicating that sources other than VI or ambient air are contributing to indoor air concentrations.

The Shop Building is the primary operational building, where the majority of repair and maintenance activities take place. The Shop Building is the main location where chemicals are used to perform trailer repair operations. MFA observed staining and spills on the slab of the Shop Building (see photograph 23 in Appendix A), which may have contributed to VOC concentrations in indoor air.

5.5 Conclusions

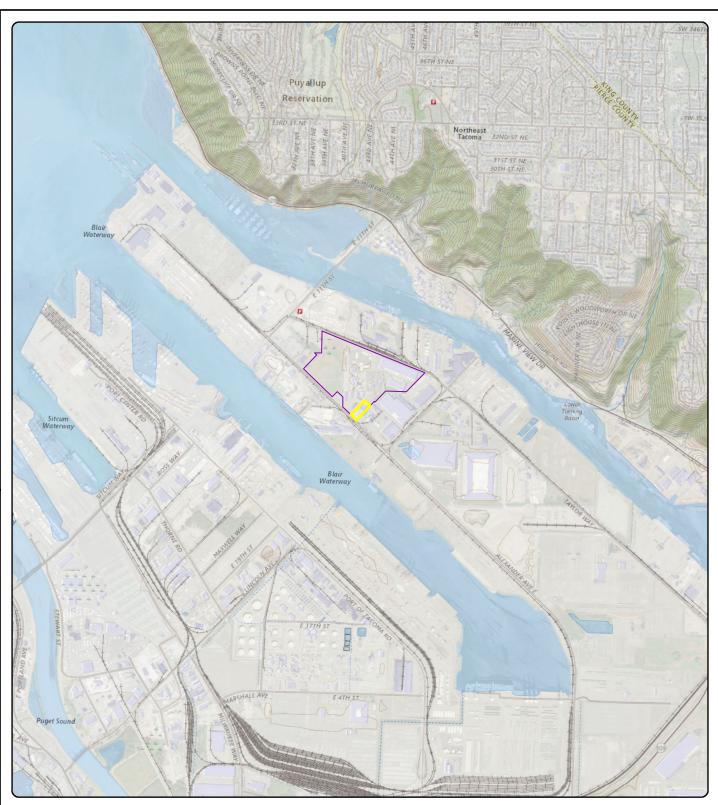
The results of the Tier II assessment indicate that for most VOCs present in sub-slab soil gas, VI resulting in indoor air concentrations above risk-based screening levels is not occurring. Potential exceptions include TPH and benzene, which were both detected in indoor air samples above CULs. However, these VOCs have been identified in indoor/occupational sources at the Potter Property that could not be completely removed before sampling.

³ Benzene was detected in indoor air in Quonset Hut 2, but not in sub-slab vapor or ambient air. However, benzene was not included in this list, as elevated TPH concentrations in sub-slab vapor sample TWA-SV-35 raised the benzene reporting limit above the applicable CUL.

References

- DOF. 2020. *Final Data Gaps Work Plan*. Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington. Prepared for General Metals, Glenn Springs Holdings, Port of Tacoma, and Clean Earth (formerly Stericycle Environmental Solutions). Dalton, Olmsted & Fuglevand, Inc.: Seattle, WA. July.
- DOF. 2023. Fourth Quarter 2022 Groundwater Data Analysis Report. Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington. Prepared for General Metals of Tacoma, Glenn Springs Holdings, and Clean Earth. Dalton, Olmsted & Fuglevand, Inc.: Seattle, WA. March 9.
- Ecology. 2022a. *Guidance for Evaluating Vapor Intrusion in Washington State*. Toxics Cleanup Program, Washington State Department of Ecology, Olympia, WA. March.
- Ecology. 2022b. Steve Teel, LHG, Washington State Department of Ecology. *RE: Resolution of Informal Dispute.* Email to Scott Hooton, Port of Tacoma. November 9.
- EPA. 2015. Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor. Office of Solid Waste and Emergency Response Publication 9200.2-154. June.
- ITRC. 2014. Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management. Interstate Technology & Regulatory Council, Petroleum Vapor Intrusion Team: Washington, DC. October.
- MFA. 2022. Vapor Intrusion Assessment Report, Taylor Way and Alexander Avenue Fill Area, Former Potter Property, 1801 E Alexander Avenue, Tacoma, Washington. Prepared for Port of Tacoma. Maul Foster & Alongi, Inc.: Seattle, WA. October 6.
- MFA. 2023a. Indoor Air Sampling and Analysis Plan, Taylor Way and Alexander Avenue Fill Area, Former Potter Property, 1801 E Alexander Avenue, Tacoma, Washington. Prepared for Port of Tacoma. Maul Foster & Alongi, Inc.: Seattle, WA. January 12.
- MFA. 2023b. Carolyn Wise, LHG, and Audrey Hackett, Maul Foster & Alongi, Inc. Supplemental Subsurface Investigation, Potter Property, Taylor Way and Alexander Avenue Fill Area. Letter to Steve Teel, LHG, Washington State Department of Ecology. In progress.

Limitations


The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Figures

Path: X:\0615.20\06\Fig1_1_Prop

M0615 20 006

Print Date: 8/16/2023

Note TWAAFA = Taylor Way and Alexander Avenue Fill Area.

Legend

Data Sources

Potter Property

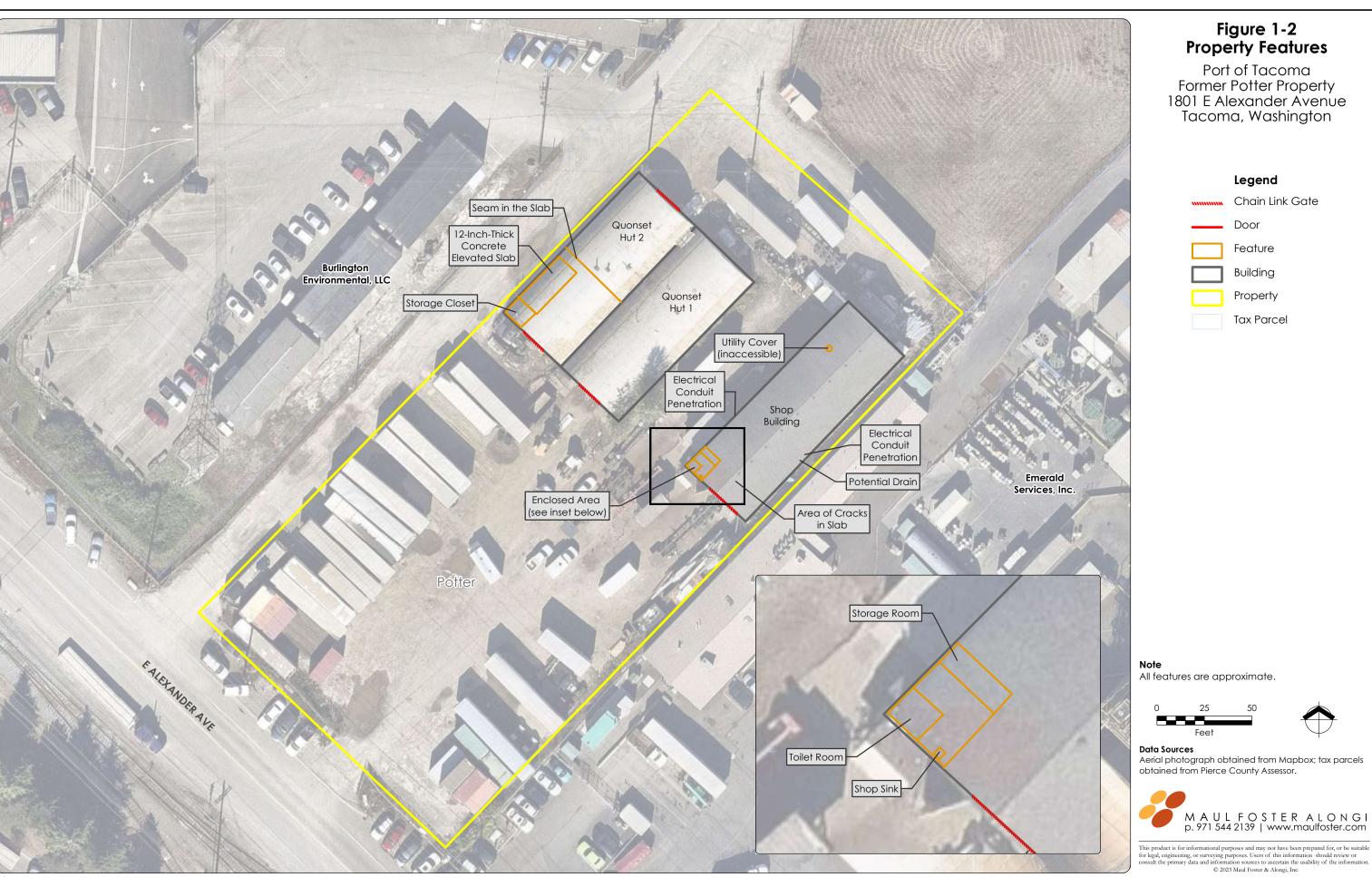

Data Sources
U.S. Geological Survey (2021) 7.5-minute topographic quadrangle: Tacoma, Washington.
Township 21 North, Range 3 East, Section 35.
Tax parcel obtained from Pierce County Assessor.
TWAAFA site boundary obtained from Exhibit A of Agreed Order No. DE 14260.


Figure 1-1 Property Location

Port of Tacoma Former Potter Property 1801 E Alexander Avenue Tacoma, Washington

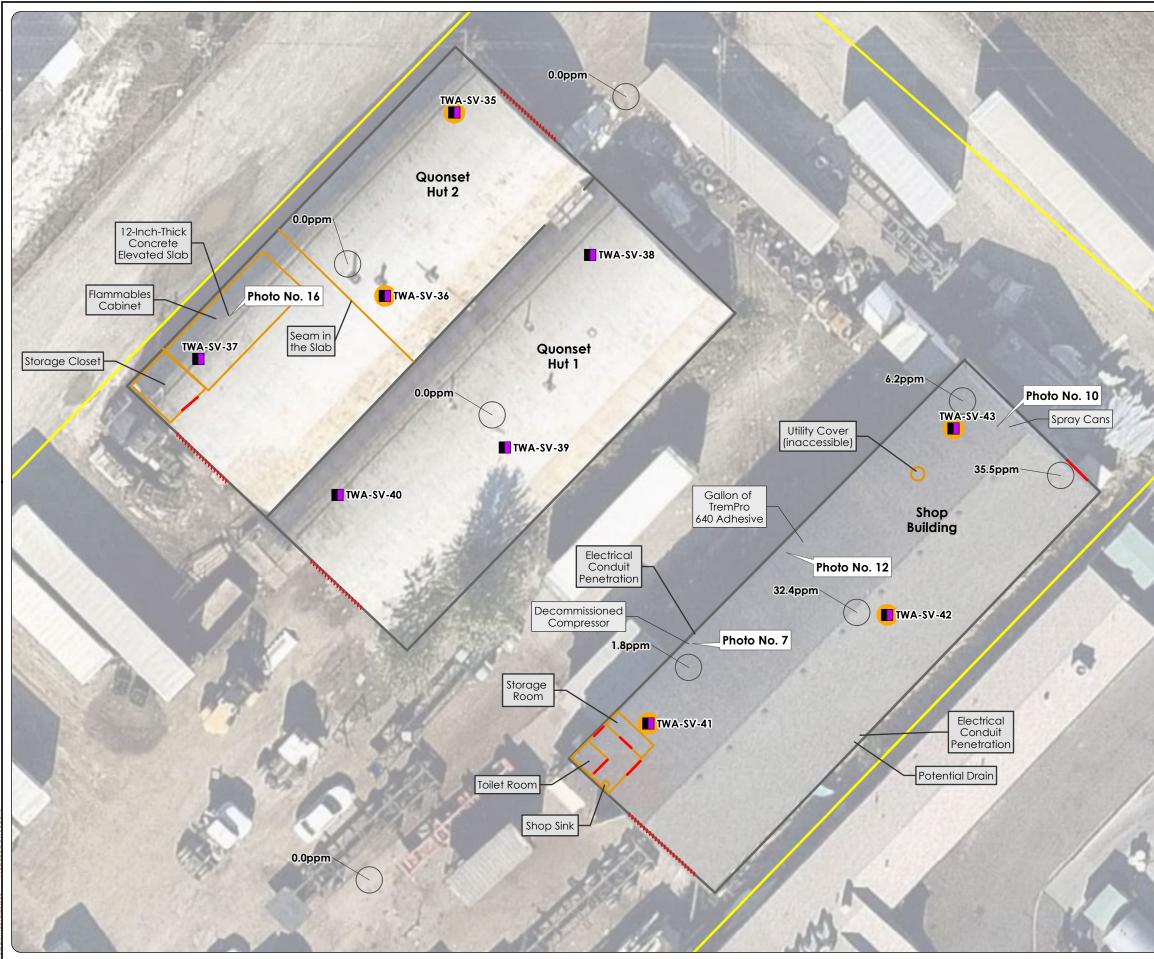


Figure 1-3 Building Features and Potential VOC Sources

Port of Tacoma Former Potter Property 1801 E Alexander Avenue Tacoma, Washington

Legend

Sub-Slab Vapor Pin

- Sub-Slab Soil Gas CUL Exceedance
- **VOC** Measurement

.... Chain Link Gate

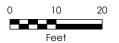
_ Door

- Building
- Feature

Property

Notes

All features are approximate.


- Potential VOC sources are shown in Appendix A. The potential sources with associated action items described in Appendix A are shown on this figure.
- Sub-slab soil gas CUL exceedances are based on MTCA Method B or Method C CULs.

VOC field measurements were made with a PID. CUL = cleanup level.

- MTCA = Model Toxics Control Act.
- PID = photoionization detector.

ppm = parts per million.

VOC = volatile organic compound.

Data Sources

Aerial photograph obtained from Mapbox; tax parcel obtained from Pierce County Assessor.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. © 2023 Maul Foster & Alongi, Inc.

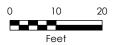
Figure 2-1 Sample Locations

Port of Tacoma Former Potter Property 1801 E Alexander Avenue Tacoma, Washington

Legend

0	Indoor Air Sample
	Sub-Slab Vapor Pin
	Ambient Air Sample
	Ambient Air Sample, Not Analyzed
	Previous Sub-Slab Vapor Pin
	Previous Sub-Slab Vapor Pin, Not Sampled
	Previous Sub-Slab Soil Gas CUL Exceedance
	Chain Link Gate
	Exterior Door
	Building
	Property

Notes


All features and sample locations are approximate.

Only two upwind ambient air samples were analyzed.

Sub-slab soil gas CUL exceedances are based on MTCA Method B or Method C CULs.

CUL = cleanup level.

MTCA = Model Toxics Control Act.

Data Sources Aerial photograph obtained from Mapbox; tax parcel obtained from Pierce County Assessor.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. \tilde{C} 2023 Maul Foster & Alongi, Inc.

Tables

Table 4-1Summary of Indoor and Ambient Air Analytical ResultsPort of Tacoma Former Potter Property

Building:			Quons	et Huts				Shop Building	
Sample Type:			Indoor Air			Ambient Air	Indo	or Air	Ambient Air
Location:	TWA-	IA-01	TWA-IA-02	TWA-IA-03	TWA-IA-04	TWA-AA-02	TWA-IA-05	TWA-IA-06	TWA-AA-06
Sample Name:	TWA-IA-01- 061123	TWA-IA-DUP- 061123	TWA-IA-02- 061123	TWA-IA-03- 061123	TWA-IA-04- 061123	TWA-AA-02- 061123	TWA-IA-05- 061123	TWA-IA-06- 061123	TWA-AA-06- 061123
Collection Date:	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023
VOCs (ug/m ³)		i			· ·				
1,1,1-Trichloroethane	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.65 U
1,1,2,2-Tetrachloroethane	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.16 U
1,1,2-Trichloroethane	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.065 U
1,1-Dichloroethane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.49 U
1,1-Dichloroethene	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.48 U
1,2,4-Trichlorobenzene	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.89 U
1,2,4-Trimethylbenzene	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	5.9 U
1,2-Dibromoethane	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U	0.092 U
1,2-Dichlorobenzene	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.72 U
1,2-Dichloroethane	0.069	0.049	0.04 U	0.065	0.069	0.069	0.073	0.073	0.049 U
1,2-Dichloropropane	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.28 U
1,3,5-Trimethylbenzene	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	5.9 U
1,3-Butadiene	0.044 UJ	0.044 UJ	0.044 UJ	0.044 UJ	0.044 UJ	0.044 UJ	0.044 UJ	0.044 UJ	0.053 U
1,3-Dichlorobenzene	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.72 U
1,4-Dichlorobenzene	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.27 U
1,4-Dioxane	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.43 U
2,2,4-Trimethylpentane	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	5.6 U
2-Butanone	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	7.1 U
2-Chlorotoluene	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	6.2 U
2-Hexanone	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.9 U
2-Propanol	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	10 U
4-Ethyltoluene	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	5.9 U
4-Methyl-2-pentanone	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	9.8 U
Acetone	13 J	9.7 J	15 J	13 J	10 J	13 J	15 J	14 J	14 J
Acrolein	0.17	0.13	0.2	0.19	0.2	0.39	0.26	0.26	0.3
Allyl chloride	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	3.8 U
Benzene	0.39	0.38	0.67	0.32 U	0.22 J				
Benzyl chloride	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.062 U
Bromodichloromethane	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.08 U
Bromoform	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.5 U
Bromomethane	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	4.7 U
Carbon disulfide	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	7.5 U
Carbon tetrachloride	0.45	0.46	0.45	0.45	0.45	0.45	0.47	0.47	0.46
Chlorobenzene	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.55 U
Chloroethane	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	3.2 U
Chloroform	0.11	0.11	0.11	0.1	0.098	0.098	0.11	0.098	0.11

Table 4-1Summary of Indoor and Ambient Air Analytical ResultsPort of Tacoma Former Potter Property

Sample Type:			Indoor Air			Ambient Air	Indo	or Air	Ambient Air
Location:	TWA-	IA-01	TWA-IA-02	TWA-IA-03	TWA-IA-04	TWA-AA-02	TWA-IA-05	TWA-IA-06	TWA-AA-06
	TWA-IA-01-	TWA-IA-DUP-	TWA-IA-02-	TWA-IA-03-	TWA-IA-04-	TWA-AA-02-	TWA-IA-05-	TWA-IA-06-	TWA-AA-06-
Sample Name:	061123	061123	061123	061123	061123	061123	061123	061123	061123
Collection Date:	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023
Chloromethane	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	4.5 U
cis-1,2-Dichloroethene	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.48 U
cis-1,3-Dichloropropene	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	1.1 U
Cyclohexane	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	8.3 U
Dibromochloromethane	0.085 U	0.085 U	0.085 U	0.085 U	0.085 U	0.085 U	0.085 U	0.085 U	0.1 U
Dichlorodifluoromethane (Freon 12)	2.3	2.2	2.4	2.2	2.1	2.4	2.1	2.4	2.3
Ethanol	11	11	16	9.6	8.8	7.5 U	9	9.4	9 U
Ethyl acetate	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	8.6 U
Ethylbenzene	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.52 U
Freon 113	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.8 U
Freon 114	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.5 U
Heptane	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.9 U
Hexachlorobutadiene	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.26 U
Isopropylbenzene	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	12 U
m,p-Xylene	0.87 U	0.87 U	1.2	0.87 U	0.87 U	0.87 U	1	1.3	1 U
Methyl methacrylate	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.9 U
Methyl tert-butyl ether	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	8.7 U
Methylene chloride	35 U	35 U	35 U	35 U	35 U	35 U	35 U	35 U	42 U
Naphthalene	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.31 U
n-Butane	8.9	8.2	21	4.8 U	4.8 U	4.8 U	4.8 U	4.8 U	5.7 U
n-Hexane	3.5 U	3.5 U	3.9	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	4.2 U
n-Nonane	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	6.3 U
n-Pentane	7.8	7.4	14	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	7.1 U
n-Propylbenzene	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	5.9 U
o-Xylene	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.53	0.52 U
Propylene	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.4 U
Styrene	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	1 U
tert-Butyl alcohol	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	15 U
Tetrachloroethene	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	8.1 U
Tetrahydrofuran	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.71 U
Toluene	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	9 U
trans-1,2-Dichloroethene	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.48 U
trans-1,3-Dichloropropene	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.54 U
Trichloroethene	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.13 U
Trichlorofluoromethane (Freon 11)	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.7 U
Vinyl acetate	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	8.5 U
Vinyl bromide	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.52 U
Vinyl chloride	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.31 U

Table 4-1 Summary of Indoor and Ambient Air Analytical Results Port of Tacoma Former Potter Property

		Indoor Air			Ambient Air	Indo	Ambient Air	
TWA-	IA-01	TWA-IA-02	TWA-IA-03	TWA-IA-04	TWA-AA-02	TWA-IA-05	TWA-IA-06	TWA-AA-06
TWA-IA-01- 061123	TWA-IA-DUP- 061123	TWA-IA-02- 061123	TWA-IA-03- 061123	TWA-IA-04- 061123	TWA-AA-02- 061123	TWA-IA-05- 061123	TWA-IA-06- 061123	TWA-AA-06- 061123
06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023
0.87 U	0.87 U	1.4	0.87 U	0.87 U	0.87 U	1.2	1.8	1 U
130	140	180	100	93	96	120	100	140
25 U	25 U	25 U	25 U	25 U	25 U	94	25 U	25 U
25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
160	170	211	130	123	126	232	131	171 J
	TWA-IA-01- 061123 06/11/2023 0.87 U 130 25 U 25 U	061123 061123 06/11/2023 06/11/2023 0.87 U 0.87 U 130 140 25 U 25 U 25 U 25 U	TWA-IA-01 TWA-IA-02 TWA-IA-01- TWA-IA-DUP- TWA-IA-02- 06/11/2023 06/11/2023 06/11/2023 06/11/2023 06/11/2023 06/11/2023 0.87 U 0.87 U 1.4 130 140 180 25 U 25 U 25 U 25 U 25 U 25 U	TWA-IA-01 TWA-IA-02 TWA-IA-03 TWA-IA-01- TWA-IA-DUP- TWA-IA-02- TWA-IA-03- 061123 061123 061123 061123 06/11/2023 06/11/2023 06/11/2023 06/11/2023 0.87 U 0.87 U 1.4 0.87 U 130 140 180 100 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	TWA-IA-01 TWA-IA-02 TWA-IA-03 TWA-IA-04 TWA-IA-01- TWA-IA-DUP- TWA-IA-02- TWA-IA-03- TWA-IA-04- 061123 061123 061123 061123 061123 061123 06/11/2023 06/11/2023 06/11/2023 06/11/2023 06/11/2023 06/11/2023 0.87 U 0.87 U 1.4 0.87 U 0.87 U 130 140 180 100 93 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	TWA-IA-01TWA-IA-02TWA-IA-03TWA-IA-04TWA-AA-02TWA-IA-01- 061123TWA-IA-DUP- 061123TWA-IA-02- 061123TWA-IA-03- 061123TWA-IA-04- 061123TWA-AA-02- 06112306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/202306/11/20230.87 U0.87 U1.40.87 U0.87 U0.87 U130140180100939625 U25 U	TWA-IA-01 TWA-IA-02 TWA-IA-03 TWA-IA-04 TWA-AA-02 TWA-IA-05 TWA-IA-01- 061123 TWA-IA-DUP- 061123 TWA-IA-02- 061123 TWA-IA-03- 061123 TWA-IA-04- 061123 TWA-AA-02- 061123 TWA-IA-05- 061123 TWA-IA-04- 061123 TWA-AA-02- 061123 TWA-IA-05- 061123 06/11/2023 01/20 1/20	TWA-IA-01 TWA-IA-02 TWA-IA-03 TWA-IA-04 TWA-AA-02 TWA-IA-05 TWA-IA-06 TWA-IA-01- 061123 TWA-IA-DUP- 061123 TWA-IA-02- 061123 TWA-IA-03- 061123 TWA-IA-04- 061123 TWA-AA-02- 061123 TWA-IA-05- 061123 06/11/2023 100 120 100 25 U25 U25 U25 U25 U

Notes

APH = air-phase petroleum hydrocarbons.

J = result is estimated.

TPH = total petroleum hydrocarbons.

U = result is non-detect at the method reporting limit.

 ug/m^3 = micrograms per cubic meter.

UJ = result is non-detect with an estimated reporting limit.

VOC = volatile organic compound.

^(a)Total xylenes is the sum of m,p-xylene and o-xylene. When results are non-detect, half the reporting limit is used. When both results are non-detect, the highest reporting limit is shown.

^(b)TPH is the sum of benzene, ethylbenzene, naphthalene, toluene, total xylenes, C5-C8 aliphatic hydrocarbons, C9-C12 aliphatic hydrocarbons, and C9-C10 aromatic hydrocarbons. Non-detect results are summed at one-half the reporting limit.

Reference

⁽¹⁾Ecology. 2022. Guidance for Evaluating Vapor Intrusion in Washington State. Washington State Department of Ecology—Toxics Cleanup Program, Publication No. 09-09-047, Olympia, Washington. March.

Table 4-2Summary of Calculated Indoor Air Analytical ResultsPort of Tacoma Former Potter Property

Building:								Quons	set Huts				Shop Building		
Sample Type:	MTCA Method B, Air ⁽¹⁾		MTCA Meth	MTCA Method C, Air ⁽¹⁾				Indoor Air	Ambient Air	nbient Air Indoor Air					
Location:					OSHA Permissible	TWA	-IA-01	TWA-IA-02	TWA-IA-03	TWA-IA-04	TWA-AA-02	TWA-IA-05	TWA-IA-06	TWA-AA-06	
Sample Name:	Noncancer Cancer	ancer Cancer	Cancer	Noncancer	Cancer	Exposure Limits ^{(a)(2)}	TWA-IA-01- 061123	TWA-IA-DUP- 061123	TWA-IA-02- 061123	TWA-IA-03- 061123	TWA-IA-04- 061123	TWA-AA-02- 061123	TWA-IA-05- 061123	TWA-IA-06- 061123	TWA-AA-06- 061123
Collection Date:						06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	06/11/2023	
VOCs (ug/m ³)	•		•		•		-					•		•	
1,2-Dichloroethane	3.2	0.096	7	0.96	202,000 ^(b)	ND T	ND T	ND	ND T	ND T	0.069	0.073	0.073	ND	
Acetone	NV	NV	NV	NV	2,400,000	ND T	ND T	2 JT	ND T	ND T	13 J	1 JT	ND T	14 J	
Acrolein	0.0091	NV	0.02	NV	250	ND T	ND T	ND T	ND T	ND T	0.39	ND T	ND T	0.3	
Benzene	14	0.32	30	3.2	31,900 ^(b)	0.39	0.38	0.67	ND	ND	ND	ND	ND	0.22 J	
Carbon tetrachloride	46	0.42	100	4.2	62,900 ^(b)	ND T	0.01 T	ND T	ND T	ND T	0.45	0.01 T	0.01 T	0.46	
Chloroform	45	0.11	98	1.1	240,000 ^(c)	0.012 T	0.012 T	0.012 T	0.002 T	ND T	0.098	ND T	ND T	0.11	
Dichlorodifluoromethane (Freon 12)	46	NV	100	NV	4,950,000	ND T	ND T	ND T	ND T	ND T	2.4	ND T	0.1 T	2.3	
Ethanol	NV	NV	NV	NV	1,900,000	11	11	16	9.6	8.8	ND	9	9.4	ND	
m,p-Xylene	NV	NV	NV	NV	NV	ND	ND	1.2	ND	ND	ND	1	1.3	ND	
n-Butane	NV	NV	NV	NV	NV	8.9	8.2	21	ND	ND	ND	ND	ND	ND	
n-Hexane	320	NV	700	NV	1,800,000	ND	ND	3.9	ND	ND	ND	ND	ND	ND	
n-Pentane	460	NV	1,000	NV	2,950,000	7.8	7.4	14	ND	ND	ND	ND	ND	ND	
o-Xylene	46	NV	100	NV	NV	ND	ND	ND	ND	ND	ND	ND	0.53	ND	
Xylenes, total ^(d)	46	NV	100	NV	435,000	ND	ND	1.4	ND	ND	ND	1.2	1.8	ND	
APH (ug/m ³)	•		-		•	•	•		•	•	•	-	•	•	
C5-C8 Aliphatic hydrocarbons	NV	NV	NV	NV	NV	34 T	44 T	84 T	4 T	ND T	96	ND T	ND T	140	
C9-C12 Aliphatic hydrocarbons	NV	NV	NV	NV	NV	ND	ND	ND	ND	ND	ND	94	ND	ND	
TPH (ug/m ³)	•		•		•	•	•		•	•	•	•	•	•	
TPH ^{(e)(3)}	46 ^(f)	NV	46 ^(f)	NV	NV	34 T	44 T	85 T	4 T	ND T	126	61 T	ND T	171 J	

Notes

Only analytes with one or more detections in indoor air are shown on this table.

Indoor air results are adjusted based on ambient air results for the associated building, using the following equation from Ecology vapor intrusion, guidance. Final calculated results represent the building-specific indoor air VOC concentration based on vapor intrusion, since the contribution from ambient air is accounted for.⁽²⁾

Cvi = Cia - Caa

Where:

Cvi = indoor air concentration due to vapor intrusion.

Cia = indoor air concentration.

Caa = ambient air concentration.

If Cvi equals zero or is a negative value, final indoor air results are shown as ND (with a T qualifier). Ambient contribution to indoor air concentration is likely near 100%.⁽²⁾

Where ambient air results are non-detect, indoor air results in the associated building are reported as final with no adjustments (no T qualifier). Indoor air concentrations are likely due to vapor intrusion.⁽²⁾

Final detected results were compared with screening criteria. Shading (color key below) indicates values that exceeded, results are shaded based on the highest value (or based on MTCA B and MTCA C have the same value).

MTCA Method B, Air, Noncancer MTCA Method B, Air, Cancer MTCA Method C, Air, Noncancer APH = air-phase petroleum hydrocarbons.

Ecology = Washington State Department of Ecology.

J = result is estimated.

JT = result is estimated and calculated.

MTCA = Model Toxics Control Act.

ND = not detected.

NV = no value.

OSHA = Occupational Safety and Health Administration.

T = calculated.

TPH = total petroleum hydrocarbons.

 ug/m^3 = micrograms per cubic meter.

VOC = volatile organic compound.

^(a)OSHA permissible exposure limits are 8-hour time weighted averages from OSHA Annotated Table Z-1 unless otherwise indicated.

^(b)Approximate value. The Annotated OSHA Z-2 Table 8-hour time weighted average concentration in parts per million converted to micrograms per cubic meter using the following formula and rounded to three significant figures: concentration in $ug/m^3 = 0.0409 \times concentration$ in ppb (ppm x 1,000) x molecular weight.

^(c)Ceiling limit.

^(d)Total xylenes is the sum of m,p-xylene and o-xylene.

(e) TPH is the sum of benzene, ethylbenzene, naphthalene, total xylenes, C5-C8 aliphatic hydrocarbons, C9-C12 aliphatic hydrocarbons, and C9-C10 aromatic hydrocarbons. Non-detect results are summed at one-half the reporting limit. ^(f)Generic TPH screening level for vapor intrusion to indoor air.

References

⁽¹⁾Ecology. 2023. Cleanup Levels and Risk Calculation (CLARC) table. Washington State Department of Ecology—Toxics Cleanup Program. January.

⁽²⁾OSHA. 2023. "Permissible Exposure Limits – Annotated Tables." OSHA Annotated Table Z-1 and Z-2. Accessed July 13, 2023. https://www.osha.gov/annotated-pels.

⁽³⁾Ecology. 2022. Guidance for Evaluating Vapor Intrusion in Washington State. Washington State Department of Ecology—Toxics Cleanup Program, Publication No. 09-09-047, Olympia, Washington. March.

Table 4-3Summary of Sub-slab Vapor Analytical ResultsPort of Tacoma Former Potter Property

Location:	MTCA Method B, Vapor Intrusion, Sub-slab Soil Gas ⁽¹⁾		MTCA Method C, Vapor Action Lev		Short-Term Action Level,	Methane Lower	TWA-SV-35	TWA-SV-36	TWA-	SV-41	TWA-SV-42	TWA-SV-43	TWA-SV-44	TWA-SV-45
Sample Name:					Subsurface Soil Gas ⁽²⁾	Explosive Limit ⁽³⁾	TWA-SV-35- 061223	TWA-SV-36- 061223	TWA-SV-41- 061223	TWA-SV-DUP- 061223	TWA-SV-42- 061223	TWA-SV-43- 061223	TWA-SV-44- 061223	TWA-SV-45- 061223
Collection Date:	Noncancer	Cancer	Noncancer Cancer		Nonresidential	2	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Permanent Gases (%)						•		•	•				•	•
Carbon dioxide	NV	NV	NV	NV	NA	NA	13.1	2.86	0.05 U	0.05 U	1.79	2.48	1.54 J	2.64
Methane	NV	NV	NV	NV	NA	5	0.818	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U
Oxygen	NV	NV	NV	NV	NA	NA	1.57	16.2	20.4	20.4	20.3	18.8	20.6 J	18.0
VOCs (ug/m³)														
1,1,1-Trichloroethane	76,000	NV	170,000	NV	NA	NA	140 U	2.9 U	8.7 U	8.7 U	8.7 U	4.4 U	9.3 UJ	8.7 U
1,1,2,2-Tetrachloroethane	NV	1.4	NV	14	NA	NA	34 U	0.73 U	2.2 U	2.2 U	2.2 U	1.1 U	2.3 UJ	2.2 U
1,1,2-Trichloroethane	3	5.2	6.7	52	NA	NA	14 U	0.29 U	0.87 U	0.87 U	0.87 U	0.44 U	0.93 UJ	0.87 U
1,1-Dichloroethane	NV	52	NV	520	NA	NA	100 U	2.1 U	6.5 U	6.5 U	6.5 U	3.3 U	6.9 UJ	6.5 U
1,1-Dichloroethene	3,000	NV	6,700	NV	NA	NA	99 U	2.1 U	6.3 U	6.3 U	6.3 U	3.2 U	6.7 UJ	6.3 U
1,2,4-Trichlorobenzene	30	NV	67	NV	NA	NA	190 U	3.9 U	12 U	12 U	12 U	6 U	13 UJ	12 U
1,2,4-Trimethylbenzene	910	NV	2,000	NV	NA	NA	1,200 U	26 U	79 U	79 U	79 U	40 U	84 UJ	79 U
1,2-Dibromoethane	140	0.14	300	1.4	NA	NA	19 U	0.41 U	1.2 U	1.2 U	1.2 U	0.62 U	1.3 UJ	1.2 U
1,2-Dichlorobenzene	3,000	NV	6,700	NV	NA	NA	150 U	3.2 U	9.6 U	9.6 U	9.6 U	4.9 U	10 UJ	9.6 U
1,2-Dichloroethane	110	3.2	230	32	NA	NA	10 U	0.21 U	0.65 U	0.65 U	0.65 U	0.33 U	0.69 UJ	0.65 U
1,2-Dichloropropane	61	23	130	230	NA	NA	58 U	1.2 U	3.7 U	3.7 U	3.7 U	1.9 U	3.9 UJ	3.7 U
1,3,5-Trimethylbenzene	910	NV	2,000	NV	NA	NA	1,200 U	26 U	79 U	79 U	79 U	40 U	84 UJ	79 U
1,3-Butadiene	30	2.8	67	28	NA	NA	11 U	0.23 U	0.7 UJ	0.7 UJ	0.7 UJ	0.36 UJ	0.75 UJ	0.71 U
1,3-Dichlorobenzene	NV	NV	NV	NV	NA	NA	150 U	3.2 U	9.6 U	9.6 U	9.6 U	4.9 U	10 UJ	9.6 U
1,4-Dichlorobenzene	12,000	7.6	27,000	76	NA	NA	57 U	1.2 U	3.7 U	3.7 U	3.7 U	1.9 U	3.9 UJ	3.7 U
1,4-Dioxane	460	17	1,000	170	NA	NA	90 U	1.9 U	5.8 U	5.8 U	5.8 U	2.9 U	6.1 UJ	5.8 U
2,2,4-Trimethylpentane	NV	NV	NV	NV	NA	NA	42,000 J	25 U	75 U	75 U	75 U	38 U	79 UJ	75 U
2-Butanone	76,000	NV	170,000	NV	NA	NA	1,500 U	31 U	94 U	94 U	94 U	48 U	100 UJ	94 U
2-Chlorotoluene	NV	NV	NV	NV	NA	NA	1,300 U	27 U	83 U	83 U	83 U	42 U	88 UJ	83 U
2-Hexanone	460	NV	1,000	NV	NA	NA	1,000 U	22 U	66 U	66 U	66 U	33 U	70 UJ	66 U
2-Propanol	NV	NV	NV	NV	NA	NA	2,200 U	46 U	140 U	140 U	140 U	70 U	150 UJ	140 U
4-Ethyltoluene	NV	NV	NV	NV	NA	NA	1,200 U	26 U	79 U	79 U	79 U	40 U	84 UJ	79 U
4-Methyl-2-pentanone	46,000	NV	100,000	NV	NA	NA	2,000 U	43 U	130 U	130 U	130 U	66 U	140 UJ	130 U
Acetone	NV	NV	NV	NV	NA	NA	1,200 U	25 U	76 U	76 U	76 U	38 U	81 UJ	76 U
Acrolein	0.3	NV	0.67	NV	NA	NA	29 U	0.61 U	1.8 U	1.8 U	1.8 U	0.93 U	1.9 UJ	1.8 U
Allyl chloride	15	14	33	140	NA	NA	780 U	17 U	50 U	50 U	50 U	25 U	53 UJ	50 U
Benzene	460	11	1,000	110	NA	NA	80 U	1.7 U	5.1 U	5.1 U	5.1 U	2.6 U	5.4 UJ	5.1 U
Benzyl chloride	15	1.7	33	17	NA	NA	13 U	0.27 U	0.83 U	0.83 U	0.83 U	0.42 U	0.88 UJ	0.83 U
Bromodichloromethane	NV	2.3	NV	23	NA	NA	17 U	0.36 U	1.1 U	1.1 U	1.1 U	0.54 U	1.1 UJ	1.1 U
Bromoform	NV	76	NV	760	NA	NA	520 U	11 U	33 U	33 U	33 U	17 U	35 UJ	33 U
Bromomethane	76	NV	170	NV	NA	NA	970 U	21 U	62 U	62 U	62 U	31 U	66 UJ	62 U
Carbon disulfide	11,000	NV	23,000	NV	NA	NA	1,600 U	33 U	100 U	100 U	100 U	50 U	110 UJ	100 U
Carbon tetrachloride	1,500	14	3,300	140	NA	NA	79 U	1.7 U	5 U	5 U	5 U	2.5 U	5.3 UJ	5 U

Table 4-3Summary of Sub-slab Vapor Analytical ResultsPort of Tacoma Former Potter Property

Location:	MTCA Method B, Vapor Intrusion, Sub-slab Soil Gas ⁽¹⁾			MICA Melhod C, Vupor Action Level,		Methane Lower	TWA-SV-35	TWA-SV-36	TWA-	SV-41	TWA-SV-42	TWA-SV-43	TWA-SV-44	TWA-SV-45
Sample Name:			Intrusion, Sub-slab Soil Gas ⁽¹⁾		Subsurface Soil Gas ⁽²⁾	Explosive Limit ⁽³⁾	TWA-SV-35- 061223	TWA-SV-36- 061223	TWA-SV-41- 061223	TWA-SV-DUP- 061223	TWA-SV-42- 061223	TWA-SV-43- 061223	TWA-SV-44- 061223	TWA-SV-45- 061223
Collection Date:	Noncancer	Cancer	Noncancer	Cancer	Nonresidential		06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Chlorobenzene	760	NV	1,700	NV	NA	NA	120 U	2.4 U	7.4 U	7.4 U	7.4 U	3.7 U	7.8 UJ	7.4 U
Chloroethane	150,000	NV	330,000	NV	NA	NA	660 U	14 U	42 U	42 U	42 U	21 U	45 UJ	42 U
Chloroform	1,500	3.6	3,300	36	NA	NA	12 U	2.5	1.2	1.2	0.78 U	0.44	1.8 J	0.78 U
Chloromethane	1,400	NV	3,000	NV	NA	NA	930 U	20 U	59 U	59 U	59 U	30 U	63 UJ	59 U
cis-1,2-Dichloroethene	610	NV	1,300	NV	NA	NA	99 U	2.1 U	6.3 U	6.3 U	6.3 U	3.2 U	18 J	6.3 U
cis-1,3-Dichloropropene	NV	NV	NV	NV	NA	NA	230 U	4.8 U	15 U	15 U	15 U	7.4 U	15 UJ	15 U
Cyclohexane	91,000	NV	200,000	NV	NA	NA	20,000 J	36 U	110 U	110 U	110 U	56 U	120 UJ	110 U
Dibromochloromethane	NV	NV	NV	NV	NA	NA	21 U	0.45 U	1.4 U	1.4 U	1.4 U	0.69 U	1.4 UJ	1.4 U
Dichlorodifluoromethane (Freon 12)	1,500	NV	3,300	NV	NA	NA	250 U	5.2 U	16 U	16 U	16 U	8 U	17 UJ	16 U
Ethanol	NV	NV	NV	NV	NA	NA	1,900 U	40 U	120 U	120 U	120 U	61 U	130 UJ	120 U
Ethyl acetate	1,100	NV	2,300	NV	NA	NA	1,800 U	38 U	120 U	120 U	120 U	58 U	120 UJ	120 U
Ethylbenzene	15,000	NV	33,000	NV	NA	NA	110 U	2.9	6.9 U	6.9 U	6.9 U	3.5 U	7.4 UJ	6.9 U
Freon 113	76,000	NV	170,000	NV	NA	NA	380 U	8.1 U	25 U	25 U	25 U	12 U	26 UJ	25 U
Freon 114	NV	NV	NV	NV	NA	NA	520 U	11 U	34 U	34 U	34 U	17 U	36 UJ	34 U
Heptane	6,100	NV	13,000	NV	NA	NA	29,000 J	22 U	66 U	66 U	66 U	33 U	70 UJ	66 U
Hexachlorobutadiene	NV	3.8	NV	38	NA	NA	53 U	1.1 U	3.4 U	3.4 U	3.4 U	1.7 U	3.6 UJ	3.4 U
Isopropylbenzene	6,100	NV	13,000	NV	NA	NA	2,500 U	52 U	160 U	160 U	160 U	80 U	170 UJ	160 U
m,p-Xylene	NV	NV	NV	NV	NA	NA	220 U	10	14 U	14 U	14 U	7 U	15 UJ	14 U
Methyl methacrylate	11,000	NV	23,000	NV	NA	NA	1,000 U	22 U	66 U	66 U	66 U	33 U	70 UJ	66 U
Methyl tert-butyl ether	46,000	320	100,000	3,200	NA	NA	1,800 U	38 U	120 U	120 U	120 U	58 U	120 UJ	120 U
Methylene chloride	9,100	2,200	20,000	83,000	NA	NA	8,700 U	180 U	560 U	560 U	560 U	280 U	590 UJ	560 U
Naphthalene	46	2.5	100	25	NA	NA	68 U	1.4 U	4.2 U	4.2 U	4.2 U	2.1 U	4.5 UJ	4.2 U
n-Butane	NV	NV	NV	NV	NA	NA	1,200 U	25 U	76 U	76 U	76 U	39 U	81 UJ	76 U
n-Hexane	11,000	NV	23,000	NV	NA	NA	24,000 J	19 U	56 U	56 U	56 U	29 U	60 UJ	56 U
n-Nonane	NV	NV	NV	NV	NA	NA	1,300 U	28 U	84 U	84 U	84 U	42 U	89 UJ	84 U
n-Pentane	NV	NV	NV	NV	NA	NA	2,400	31 U	94 U	94 U	94 U	48 U	100 UJ	94 U
n-Propylbenzene	15,000	NV	33,000	NV	NA	NA	1,200 U	26 U	79 U	79 U	79 U	40 U	84 UJ	79 U
o-Xylene	NV	NV	NV	NV	NA	NA	170	2.6	6.9 U	6.9 U	6.9 U	3.5 U	7.4 UJ	6.9 U
Propylene	NV	NV	NV	NV	NA	NA	300 U	6.4 U	19 U	19 U	19 U	9.8 U	20 UJ	19 U
Styrene	15,000	NV	33,000	NV	NA	NA	210 U	4.5 U	14 U	14 U	14 U	6.9 U	14 UJ	14 U
tert-Butyl alcohol	NV	NV	NV	NV	NA	NA	3,000 U	64 U	190 U	190 U	190 U	98 U	210 UJ	190 U
Tetrachloroethene	610	320	1,300	3,200	NA	NA	1,700 U	43	4,900 J	4,900 J	730	240	6,100 J	2,300 J
Tetrahydrofuran	30,000	NV	67,000	NV	NA	NA	150 U	3.1 U	9.4 U	9.4 U	9.4 U	4.8 U	10 UJ	9.4 U
Toluene	76,000	NV	170,000	NV	NA	NA	1,900 U	40 U	120 U	120 U	120 U	61 U	130 UJ	120 U
trans-1,2-Dichloroethene	610	NV	1,300	NV	NA	NA	99 U	2.1 U	6.3 U	6.3 U	6.3 U	3.2 U	120 J	6.3 U
trans-1,3-Dichloropropene	NV	NV	NV	NV	NA	NA	110 U	2.4 U	7.3 U	7.3 U	7.3 U	3.7 U	7.7 UJ	7.3 U
Trichloroethene	30	11	67	200	250	NA	27 U	0.57 U	75	75	1.7 U	0.87 U	930 J	1.7 U
Trichlorofluoromethane (Freon 11)	11,000	NV	23,000	NV	NA	NA	560 U	12 U	36 U	36 U	36 U	18 U	38 UJ	36 U

Table 4-3Summary of Sub-slab Vapor Analytical ResultsPort of Tacoma Former Potter Property

Location:	MTCA Meth	MTCA Method B, Vapor Intrusion, Sub-slab Soil Gas ⁽¹⁾		MTCA Method B, Vapor MTCA Method C		nod C, Vapor Action Level,		Methane	TWA-SV-35	TWA-SV-36	TWA-	SV-41	TWA-SV-42	TWA-SV-43	TWA-SV-44	TWA-SV-45
Sample Name:	Intrusion, Sub-			slab Soil Gas ⁽¹⁾	Subsurface Soil Gas ⁽²⁾	Lower Explosive Limit ⁽³⁾	TWA-SV-35- 061223	TWA-SV-36- 061223	TWA-SV-41- 061223	TWA-SV-DUP- 061223	TWA-SV-42- 061223	TWA-SV-43- 061223	TWA-SV-44- 061223	TWA-SV-45- 061223		
Collection Date:	Noncancer	Cancer	Noncancer	Cancer	Nonresidential	2	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023		
Vinyl acetate	3,000	NV	6,700	NV	NA	NA	1,800 U	37 U	110 U	110 U	110 U	57 U	120 UJ	110 U		
Vinyl bromide	46	5.6	100	56	NA	NA	110 U	2.3 U	7 U	7 U	7 U	3.5 U	7.4 UJ	7 U		
Vinyl chloride	1,500	9.5	3,300	95	NA	NA	64 U	1.4 U	4.1 U	4.1 U	4.1 U	2.1 U	4.3 UJ	4.1 U		
Xylenes, total ^(a)	1,500	NV	3,300	NV	NA	NA	280	13	14 U	14 U	14 U	7 U	15 UJ	14 U		
APH (ug/m³)		•	•	•	•	•	•	•	•	•	•	•				
C5-C8 Aliphatic hydrocarbons	NV	NV	NV	NV	NA	NA	670,000 J	410	1,200 U	1,200 U	1,200 U	840	1,300 UJ	2,100		
C9-C12 Aliphatic hydrocarbons	NV	NV	NV	NV	NA	NA	230,000 J	200	400 U	400 U	400 U	200 U	420 UJ	400 U		
C9-C10 Aromatic hydrocarbons	NV	NV	NV	NV	NA	NA	6,200 U	130 U	400 U	400 U	400 U	200 U	420 UJ	400 U		
TPH (ug/m ³)	•	:	-	-		:	-	-	:	-	:	•				
TPH ^{(b)(2)}	1,500 ^(c)	NV	1,500 ^(c)	NV	NA	NA	904,000 J	712	1,200 U	1,200 U	1,200 U	1,080	1,300 UJ	2,580		
N - I	•	8		•	•		•			•	8	•	•			

Notes

Shading (color key below) indicates values that exceed screening criteria; non-detects (U and UJ) were not compared with screening criteria. When multiple criteria are exceeded, results are shaded based on the highest value (or based on MTCA B when MTCA B and MTCA C have the same value).

MTCA Method B, Vapor Intrusion, Sub-slab Soil Gas, Noncancer

MTCA Method B, Vapor Intrusion, Sub-slab Soil Gas, Cancer

MTCA Method C, Vapor Intrusion, Sub-slab Soil Gas, Noncancer

MTCA Method C, Vapor Intrusion, Sub-slab Soil Gas, Cancer

Short-Term Action Level, Subsurface Soil Gas, Nonresidential

APH = air-phase petroleum hydrocarbons.

J = result is estimated.

MTCA = Model Toxics Control Act.

NA = not applicable.

NV = no value.

TPH = total petroleum hydrocarbons.

U = result is non-detect at the method reporting limit.

 ug/m^3 = micrograms per cubic meter.

UJ = result is non-detect with an estimated reporting limit.

VOC = volatile organic compound.

^(a)Total xylenes is the sum of m,p-xylene and o-xylene. When results are non-detect, half the reporting limit is used. When both results are non-detect, the highest reporting limit is shown.

^(b)TPH is the sum of benzene, ethylbenzene, naphthalene, toluene, total xylenes, C5-C8 aliphatic hydrocarbons, C9-C12 aliphatic hydrocarbons. Non-detect results are summed at one-half the reporting limit. When all results are non-detect, the highest reporting limit is shown.

^(c)TPH generic cleanup level.

References

⁽¹⁾Ecology. 2023. Cleanup Levels and Risk Calculation (CLARC) table. Washington State Department of Ecology—Toxics Cleanup Program. January.

⁽²⁾Ecology. 2022. Guidance for Evaluating Vapor Intrusion in Washington State. Washington State Department of Ecology—Toxics Cleanup Program, Publication No. 09-09-047, Olympia, Washington. March.

⁽³⁾National Toxicology Program. 1992. National Toxicology Program Chemical Repository Database. Institute of Environmental Health Sciences, National Institutes of Health (NTP). Research Triangle Park, North Carolina.

Appendix A

Field Photographs

Photographs

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photos from VOC Inventory-March 8, 2023

Photo No. 1.

Description

(a) Building and Location Shop Building - storage room near restroom

(b) Material or Chemical of Concern Flammables cabinet

(c) Est. Quantity and Description Multiple cans of spray paints and solvents

(d) PID Reading 5.1 ppm (open), 0.3 ppm (closed)

(e) Action Before Sampling Closed cabinet and left in place - closed

storage room door and sealed as described in Photo No. 3 below

Photo No. 2.

Description

(a) Building and Location Shop Building - storage room near restroom

(b) Material or Chemical of Concern Storage shelf near flammables cabinet

(c) Est. Quantity and Description Multiple greasy parts, caulk tubes, greasy coveralls

(d) PID Reading 0.1 ppm

(e) Action Before Sampling

Left in place - closed storage room door and sealed as described in Photo No. 3 below

R:\0615.20 Port of Tacoma - TWAAFA\Documents\006_2023.08.23 Tier II VI Report\Appendix A - Field Photographs\Tf_Field Photo Array.docx © 2023 Maul Foster & Alongi, Inc.

Photographs

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 3.

Description

(a) Building and Location Shop Building – storage room near restroom

(b) Material or Chemical of Concern n/a

(c) Est. Quantity and Description n/a

(d) PID Reading 0.0 ppm (closed door)

(e) Action Before Sampling

Storage room closed and sealed around perimeter; doorknob penetration with zero-VOC masking tape

Description

(a) Building and Location Shop Building – hallway near restroom

(b) Material or Chemical of Concern 2-part spray foam—"A Component" material and applicator

(c) Est. Quantity and Description 20# pressurized cylinder

(d) PID Reading 0.0 ppm

(e) Action Before Sampling Removed from area

Photographs

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 5.

Description

(a) Building and Location Shop Building – hallway near restroom

(b) Material or Chemical of Concern 2-part spray foam—"B Component" material and applicator

(c) Est. Quantity and Description 20# pressurized cylinder

(d) PID Reading 0.0 ppm

(e) Action Before Sampling Removed from area

Photo No. 6.

Description

(a) Building and Location Various areas throughout all buildings

(b) Material or Chemical of Concern General storage of greasy parts

(c) Est. Quantity and Description Various

(d) PID Reading

Readings not above backgrounds in their specific areas

(e) Action Before Sampling

Infeasible to move or isolate all parts from sampling, performed sampling as feasible away from parts storage areas

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 7.

Description

(a) Building and Location

Shop building—west wall near bolt storage and welders

(b) Material or Chemical of Concern Unknown material on motor of decommissioned compressor

(c) Est. Quantity and Description Unknown

(d) PID Reading 25.0 ppm

(e) Action Before Sampling

Isolated motor of compressor from sampling area with plastic sheeting and tape

Photo No. 8.

Description

(a) Building and Location Shop Building—west wall on welder

(b) Material or Chemical of Concern Rubberized undercoating material

(c) Est. Quantity and Description Three spray cans

(d) PID Reading 5.9 ppm

(e) Action Before Sampling Discarded spent cans and dirty materials.

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 9.

Description

(a) Building and Location Shop Building—Active work area in center of building

(b) Material or Chemical of Concern Denco Brake & Parts Cleaner

(c) Est. Quantity and Description 13 oz spray cans

(d) PID Reading

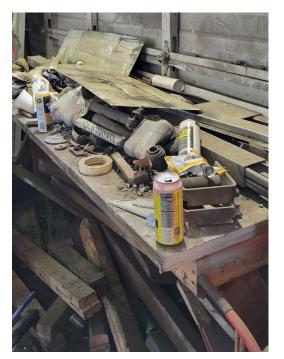
1,000+ ppm in work area (sample taken while worker was using material)

(e) Action Before Sampling

Moved unspent cans to flammables cabinet and or out of sampling areas, discarded spent cans

Description

(a) Building and Location Shop Building–bench on north wall


(b) Material or Chemical of Concern Multiple spray cans and clutter

(c) Est. Quantity and Description Various

(d) PID Reading 35.5 ppm

(e) Action Before Sampling

Dirty rags, spent and unspent spray cans, and other potential sources removed from bench and area.

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report
M0615.20.006
1801 E Alexander Avenue, Tacoma, Washington

Photo No. 11.

Description

(a) Building and Location All buildings—movable trash cans

(b) Material or Chemical of Concern Various

(c) Est. Quantity and Description Various

(d) PID Reading 0.0-23.9 ppm (dependent on can and contents)

(e) Action Before Sampling Moved all trash cans outside

Photo No. 12.

Description

(a) Building and Location Shop Building—central on west wall

(b) Material or Chemical of Concern TremPro 640 adhesive

(c) Est. Quantity and Description 1 gallon can (partial fill)

(d) PID Reading 5.6 ppm

(e) Action Before Sampling

Moved from sampling area, ensured that no similar materials had accumulated since inventory.

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 13.

Description

(a) Building and Location Quonset hut–Vapor pin TWA-SV-40

(b) Material or Chemical of Concern Spilled spray foam and cleanup product

(c) Est. Quantity and Description Unknown

(d) PID Reading 0.0 ppm

(e) Action Before Sampling No damage to vapor pin. No action needed

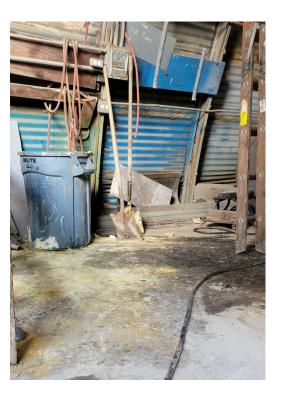


Photo No. 14.

Description

(a) Building and Location Quonset hut 1–northeast corner

(b) Material or Chemical of Concern Large air compressor

(c) Est. Quantity and Description n/a

(d) PID Reading 0.0 ppm

(e) Action Before Sampling

Per Photo No. 7 above, confirmation that other compressors are not VOC sources. No action needed.

R:\0615.20 Port of Tacoma - TWAAFA\Documents\006_2023.08.23 Tier II VI Report\Appendix A - Field Photographs\Tf_Field Photo Array.docx © 2023 Maul Foster & Alongi, Inc.

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 15.

Description

(a) Building and Location Quonset Hut 1–east wall (movable)

(b) Material or Chemical of Concern Oxypropane torch

(c) Est. Quantity and Description 50-pound cylinder (valves closed)

(d) PID Reading 0.0 ppm

(e) Action Before Sampling Ensured valves were closed and left in place

Photo No. 16.

Description

(a) Building and Location Quonset Hut 2–SW storage area

(b) Material or Chemical of Concern Flammables cabinet

(c) Est. Quantity and Description Multiple cans of spray paints and solvents

(d) PID Reading 0.7 ppm (open) 0.0 ppm (closed)

(e) Action Before Sampling

Closed cabinet, sealed door seams with zero-VOC masking tape, and left in place

Project Name: Project Number: Location:

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Field Photos from Sampling – June 11-12, 2023

Photo No. 17.

Description

Closed cabinet from Photo No. 16, sealed with zero-VOC masking tape.

Photo No. 18.

Description

PID reading at north bench in Shop Building (see Photo No. 10) after removing spent spray cans and other refuse.

Photo No. 19.

Description

Trash cans moved outdoors prior to indoor air sampling. All located away from ambient air sampling locations.

Photographs

Project Name: Project Number: Location:

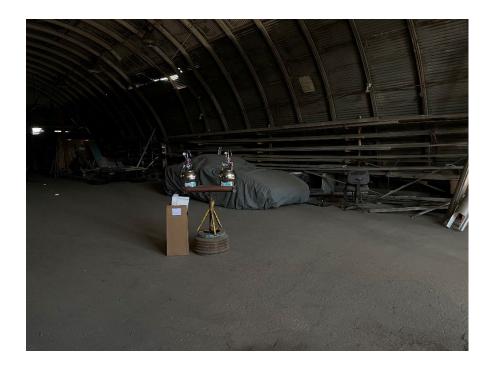
Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 20.

Description

TWA-AA-O3 ambient air sample location and sampling height. Sampling heights for all ambient and indoor air samples were near this height.

Photo No. 21.


Description

TWA-IA-01 indoor air sampling location—showing both parent and duplicate canisters. One of three indoor stored vehicles shown in background.

Photographs

Project Name: Project Number: Location:

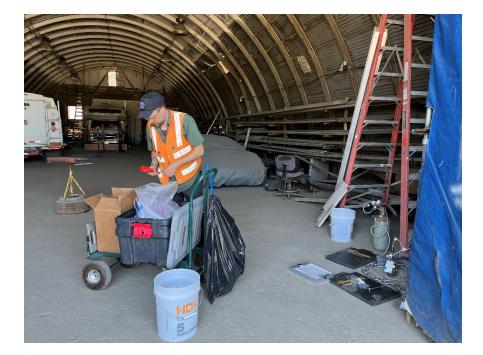

Tier II Vapor Intrusion Assessment Report M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Photo No. 22.

Description

Preparing for sub-slab vapor sampling at TWA-SV-35. All three indoor stored vehicles shown in background.

Photo No. 23.


Description

Example of general clutter, soiled materials, and concrete staining seen in the Shop Building.

Photographs

Project Name: Location:

Tier II Vapor Intrusion Assessment Report Project Number: M0615.20.006 1801 E Alexander Avenue, Tacoma, Washington

Appendix B

Field Sampling Data Sheets

Indoor Air and Soil Vapor Sampling Data Sheet Potter Property—Port of Tacoma 1801 Alexander Avenue, Tacoma, Washington

			Shut-in	C				F	urge		He	elium		Sc	ample	
Sample ID	Matrix	Date	Test Pass/ Fail	Summa Canister ID	Manifold ID	Canister Size (L)	Begin Time	End Time	Volume (L)	Helium (ppm)	Indoor Ambient Air (ppm)	Under Shroud (%) (ideal = 40)	Begin Time	End Time	Initial Pressure (''Hg)	Final Pressure ("Hg)
TWA-SV-35- 061223	SS	6/12/23	Pass	9893	66	1	14:41	14:46	1	0	0	47.2	14:50	14:55	-30+	-5
TWA-SV-36- 061223	SS	6/12/23	Pass	9882	52	1	15:25	15:30	1	0	0	50.3	15:31	15:36	-30	-5
TWA-SV-41- 061223	SS	6/12/23	Pass	8533	55	1	10:24	10:29	1	0	0	54.6	10:33	10:38	-29.5	-5
TWA-SV-DUP- 061223	SS	6/12/23	Pass	9987	241	1	10:24	10:29	1	0	0	54.6	10:33	10:38	-30+	-5
TWA-SV-42- 061223	SS	6/12/23	Pass	8207	301	1	12:32	12:37	1	50	0	53.6	12:39	12:44	-29.5	-5
TWA-SV -43- 061223	SS	6/12/23	Pass	8527	70	1	9:22	9:27	1	0	0	64.5	9:32	9:36	-29	-5
TWA-SV-44- 061223	SS	6/12/23	Pass	8255	64	1	11:53	11:58	1	425	0	40.6	11:59	12:04	-29	-5
TWA-SV-45- 061223	SS	6/12/23	Pass	9563	68	1	13:40	13:45	1	0	0	53	13:46	13:51	-30+	-5
TWA-IA-01- 061123	IA	6/11/23	NA	18567	7845	6				NA			8:30	16:46	-29	-6
TWA-IA-02- 061123	IA	6/11/23	NA	40703	6601	6				NA			8:33	16:41	-30	-9.5
TWA-IA-03- 061123	IA	6/11/23	NA	40705	5348	6				NA			8:41	16:51	-30+	-7
TWA-IA-04- 061123	IA	6/11/23	NA	20541	8183	6	NA			9:07	16:58	-30+	-9			
TWA-IA-05- 061123	IA	6/11/23	NA	23227	5356	6	NA			9:23	17:18	-30	-8			
TWA-IA-06- 061123	IA	6/11/23	NA	20551	7847	6				NA			9:27	17:21	-30+	-9

Indoor Air and Soil Vapor Sampling Data Sheet Potter Property—Port of Tacoma 1801 Alexander Avenue, Tacoma, Washington

			Shut-in	C				Purge Helium				Sample				
Sample ID	Matrix	Date	Test Pass/ Fail	Summa Canister ID	Manifold ID	Canister Size (L)	Begin Time	End Time	Volume (L)	Helium (ppm)	Indoor Ambient Air (ppm)	Under Shroud (%) (ideal = 40)	Begin Time	End Time	Initial Pressure (''Hg)	Final Pressure ("Hg)
TWA-IA-DUP- 061123	IA	6/11/23	NA	20555	5354	6				NA			8:26	16:47	-28	-9.5
TWA-AA-02- 061123	AA	6/11/23	NA	23229	07850	6				NA			7:46	15:53	-29	-11
TWA-AA-06- 061123	AA	6/11/23	NA	37089	05347	6				NA			8:11	16:07	-30+	-7

Notes:

To avoid data rejection during validation, the amount of helium in the sample must be less than 5% of the helium concentration under the shroud. For example, if there is 50% helium in the shroud, your sample may contain up to 2.5%, (25,000 ppm) helium.

1% = 10,000 ppm.

"Hg = inches of mercury.

AA = ambient air.

IA = indoor air.

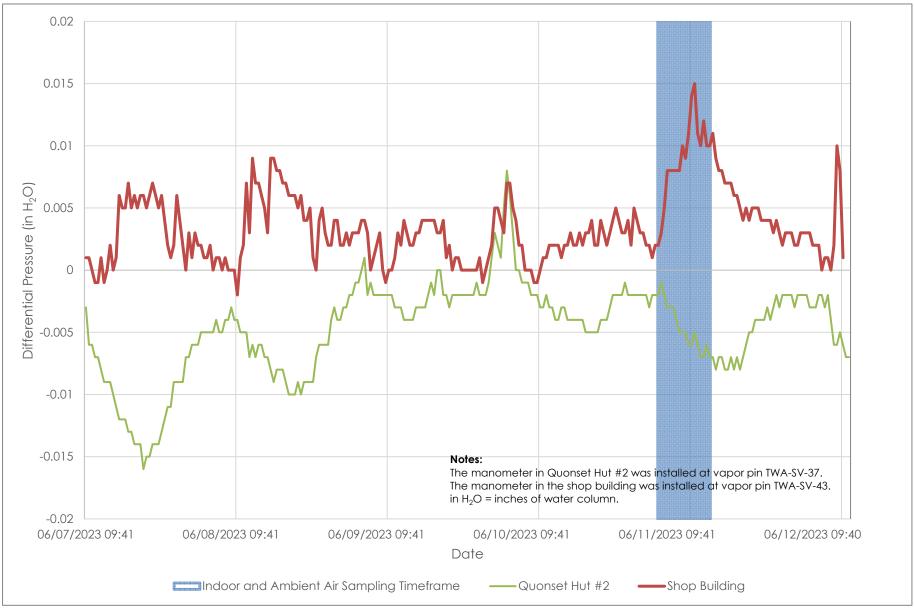
ID = identification.

L = liter.

NA = not applicable.

ppm = parts per million.

SS = sub-slab vapor.


Appendix C

Manometer Readings

Appendix C—Manometer Readings Chart Shop Building and Quonset Hut #2 Port of Tacoma, Former Potter Property 1801 Alexander Avenue, Tacoma, Washington

Appendix D

Analytical Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 23, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the results from the testing of material submitted on June 12, 2023 from the Potter Air Sampling M0615.20.006, F&BI 306187 project. There are 27 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0623R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2023 by Friedman & Bruya, Inc. from the Maul Foster Alongi Potter Air Sampling M0615.20.006, F&BI 306187 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
306187 -01	TWA-IA-01-061123
306187 -02	TWA-IA-02-061123
306187 -03	TWA-IA-03-061123
306187 -04	TWA-IA-04-061123
306187 -05	TWA-IA-05-061123
306187 -06	TWA-IA-06-061123
306187 -07	TWA-IA-DUP-061123
306187 -08	TWA-AA-01-061123
306187 -09	TWA-AA-02-061123
306187 -10	TWA-AA-03-061123
306187 -11	TWA-AA-04-061123
306187 -12	TWA-AA-05-061123
306187 -13	TWA-AA-06-061123
306187 -14	TWA-AA-07-061123
306187 -15	TWA-AA-08-061123
306187 -05 306187 -06 306187 -07 306187 -08 306187 -09 306187 -10 306187 -11 306187 -12 306187 -13 306187 -14	TWA-IA-05-061123 TWA-IA-06-061123 TWA-IA-DUP-061123 TWA-AA-01-061123 TWA-AA-02-061123 TWA-AA-03-061123 TWA-AA-04-061123 TWA-AA-05-061123 TWA-AA-06-061123 TWA-AA-07-061123

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

Naphthalene was detected in the TO-15 method blank at a level greater than one tenth the concentration detected in the samples. The data were flagged accordingly.

The TO-15 propene calibration standard exceeded the acceptance criteria. The compound was not detected, therefore the result did not represent an out of control condition.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Collected: 06/11/23 Analyzed: 06/16/23 ix: Air		: : ile: nent: or:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-01 061524.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ate Collected: 06/11/23 ate Analyzed: 06/16/23 atrix: Air		: : lile: ment: for:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-02 061523.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-03-06112 06/12/23 06/11/23 06/16/23 Air ug/m3	3 Client: Project Lab ID Data F Instrum Operat	::): 'ile: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-03 061522.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-04-06112 06/12/23 06/11/23 06/16/23 Air ug/m3	23 Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-04 061521.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-05-06112 06/12/23 06/11/23 06/15/23 Air ug/m3	23 Client: Project Lab ID Data F Instrum Operat	::): `ile: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-05 061520.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 94			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-06-06112 06/12/23 06/11/23 06/15/23 Air ug/m3	3 Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-06 061519.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<25

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-DUP-06112 06/12/23 06/11/23 06/15/23 Air ug/m3	23 Client: Project: Lab ID: Data Fil Instrum Operato	le: lent:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-07 061518.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-AA-02-06112 06/12/23 06/11/23 06/15/23 Air ug/m3	23 Client Projec Lab II Data H Instru Opera	t:): File: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-09 061517.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-AA-06-0611 06/12/23 06/11/23 06/15/23 Air ug/m3	Projec Lab I Data	ct: D: File: ument:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-13 061516.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Date Collected:Not ApplicableDate Analyzed:06/15/23Matrix:Air		: t:): File: ment: tor:	Maul Foster Alongi Potter Air Sampling M0615.20.006 03-1443 MB 061515.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/16/23 Air ug/m3	01-061123	Project: Lab ID: Data File: Instrument:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-01 061524.D GCMS7 bat		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		89	70	130			
		C	, ,·			C	, <u>,</u> .
Commune las		Concen		0	J		ntration
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene		<1.2 k	<0.7 k	1,2-Dic	chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	2.3	0.47	1,4-Dic		< 0.36	< 0.1
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Heptar		<4.1	<1
1,3-Butadiene		<0.044 j	<0.02 j	Bromo	dichloromethane	< 0.067	< 0.01
Butane		8.9	3.7	Trichlo	oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1	cis-1,3-	Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1	4-Meth	yl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1	trans-1	,3-Dichloropropene	< 0.45	< 0.1
Ethanol		11	5.9	Toluen	e	<7.5	<2
Acrolein		0.17	0.074	1,1,2-T	richloroethane	< 0.055	< 0.01
Pentane		7.8	2.6	2-Hexa	none	<4.1	<1
Trichlorofluoromet	hane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1
Acetone		13	5.7	Dibron	nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5	1,2-Dib	promoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1
trans-1,2-Dichloroe	thene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1
Methylene chloride		<35	<10	1,1,2,2	-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12	<4	Nonan	e	<5.2	<1
3-Chloropropene		<3.1	<1		oylbenzene	<9.8	<2
CFC-113		<1.5	< 0.2		rotoluene	<5.2	<1
Carbon disulfide		< 6.2	<2		benzene	<4.9	<1
Methyl t-butyl ethe	er (MTBE)	<7.2	<2		ltoluene	<4.9	<1
Vinyl acetate		<7	<2	m,p-Xy		< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyleı		< 0.43	< 0.1
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1	Styren		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		0.11	0.022		chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		hlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane		0.069	0.017		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorio	te	0.45	0.072		richlorobenzene	< 0.74	<0.1
Benzene		0.39	0.12	Naphtl			b0.014 j fb
Cyclohexane		< 6.9	<2	Hexacl	nlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/16/23 Air ug/m3	02-061123	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-02 061523.D GCMS7 bat		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		93	70	130			
		Concor	tration			Cone	entration
Compounds:		ug/m3	ppbv	Compo	unde.	ug/m3	ppbv
Compounds.		ug/III0	ppn	Compe	unus.	ug/mo	ppn
Propene		<1.2 k	<0.7 k	1,2-Die	chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	2.4	0.49	1,4-Die		< 0.36	< 0.1
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1
F-114		<2.1	< 0.3	Methy	l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Heptar	ne	<4.1	<1
1,3-Butadiene		<0.044 j	<0.02 j	Bromo	dichloromethane	< 0.067	< 0.01
Butane		21	9.0	Trichle	oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1	cis-1,3	-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1	4-Meth	nyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1	trans-	1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		16	8.3	Toluen	ie	<7.5	<2
Acrolein		0.2	0.088	1,1,2-T	richloroethane	< 0.055	< 0.01
Pentane		14	4.7	2-Hexa	anone	<4.1	<1
Trichlorofluoromet	hane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1
Acetone		15	6.2	Dibron	nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5	1,2-Dil	promoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1
trans-1,2-Dichloroe	thene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1
Methylene chloride	1	<35	<10	1, 1, 2, 2	-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12	<4	Nonan	e	<5.2	<1
3-Chloropropene		<3.1	<1	Isoproj	pylbenzene	<9.8	<2
CFC-113		<1.5	< 0.2	2-Chlo	rotoluene	<5.2	<1
Carbon disulfide		< 6.2	<2	Propyl	benzene	<4.9	<1
Methyl t-butyl ethe	er (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1
Vinyl acetate		<7	<2	m,p-Xy	vlene	1.2	0.27
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei	ne	< 0.43	< 0.1
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1	Styren		< 0.85	< 0.2
Hexane		3.9	1.1	Bromo		<2.1	< 0.2
Chloroform		0.11	0.023	-	chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane		< 0.04	< 0.01		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachloric	de	0.45	0.072		richlorobenzene	< 0.74	< 0.1
Benzene		0.67	0.21	Napht		0.084 j fb	
Cyclohexane		<6.9	<2	Hexacl	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/16/23 Air ug/m3	03-061123			306187-03 061522.D GCMS7	Alongi mpling M0615.20.006		
		%	Lower	Upper				
Surrogates:	R	ecovery:	Limit:	Limit:				
4-Bromofluorobenz		92	70	130				
		C	, , .			C	, , .	
Commune las			itration	C	J		entration	
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv	
Propene		<1.2 k	<0.7 k	1,2-Dic	chloropropane	< 0.23	< 0.05	
Dichlorodifluorome	thane	2.2	0.45	1,4-Die	oxane	< 0.36	< 0.1	
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar		<4.1	<1	
1,3-Butadiene		<0.044 j	<0.02 j	Bromo	dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2	Trichle	oroethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1	cis-1,3	-Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1	4-Meth	nyl-2-pentanone	<8.2	<2	
Vinyl bromide		< 0.44	< 0.1	trans-	1,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		9.6	5.1	Toluen	ie	<7.5	<2	
Acrolein		0.19	0.081	1,1,2 - T	richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa	anone	<4.1	<1	
Trichlorofluoromet	hane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1	
Acetone		13	5.7	Dibron	nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5	1,2-Dil	promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1	
trans-1,2-Dichloroe	thene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1	
Methylene chloride	1	<35	<10	1,1,2,2	-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TB	A)	<12	<4	Nonan	e	<5.2	<1	
3-Chloropropene		<3.1	<1	Isoproj	pylbenzene	<9.8	<2	
CFC-113		<1.5	< 0.2		rotoluene	<5.2	<1	
Carbon disulfide		< 6.2	<2		benzene	<4.9	<1	
Methyl t-butyl ethe	er (MTBE)	<7.2	<2	•	ltoluene	<4.9	<1	
Vinyl acetate		<7	<2	m,p-Xy		< 0.87	< 0.2	
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei		< 0.43	< 0.1	
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1	Styren		< 0.85	< 0.2	
Hexane		<3.5	<1	Bromo		<2.1	< 0.2	
Chloroform		0.1	0.021		chloride	< 0.052	< 0.01	
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1	
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1	
2-Butanone (MEK)		<5.9	<2		chlorobenzene	<0.6	< 0.1	
1,2-Dichloroethane		0.065	0.016		chlorobenzene	< 0.23	< 0.038	
1,1,1-Trichloroetha		< 0.55	<0.1		chlorobenzene	<0.6	< 0.1	
Carbon tetrachlorio	de	0.45	0.071		richlorobenzene	<0.74	<0.1	
Benzene		< 0.32	< 0.1	Napht		0.095 j fb		
Cyclohexane		<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/16/23 Air ug/m3	04-061123	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-04 061521.D GCMS7 bat			
		%	Lower	Upper				
Surrogates:	R	ecovery:	Limit:	Limit:				
4-Bromofluorobenz		91	70	130				
		Concor	tration			Cone	entration	
Compounds:		ug/m3	ppbv	Compo	unde.	ug/m3	ppbv	
Compounds.		ug/III0	ppn	Compe	unus.	ug/III0	ppnv	
Propene		<1.2 k	<0.7 k	1,2-Die	chloropropane	< 0.23	< 0.05	
Dichlorodifluorome	thane	2.1	0.43	1,4-Die		< 0.36	< 0.1	
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3	Methy	l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar	ne	<4.1	<1	
1,3-Butadiene		<0.044 j	<0.02 j	Bromo	dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2	Trichle	oroethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1	cis-1,3	Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1	4-Meth	nyl-2-pentanone	<8.2	<2	
Vinyl bromide		< 0.44	< 0.1	trans-	1,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		8.8	4.6	Toluen	e	<7.5	<2	
Acrolein		0.2	0.087	1,1,2-T	richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa	anone	<4.1	<1	
Trichlorofluorometh	nane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1	
Acetone		10	4.4	Dibron	nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5	1,2-Dil	promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1	
trans-1,2-Dichloroe	thene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1	
Methylene chloride		<35	<10	1, 1, 2, 2	-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TB	A)	<12	<4	Nonan	e	<5.2	<1	
3-Chloropropene		<3.1	<1	Isoproj	oylbenzene	<9.8	<2	
CFC-113		< 1.5	< 0.2	2-Chlo	rotoluene	<5.2	<1	
Carbon disulfide		< 6.2	<2	Propyl	benzene	<4.9	<1	
Methyl t-butyl ethe	r (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1	
Vinyl acetate		<7	<2	m,p-Xy	vlene	< 0.87	< 0.2	
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei	ne	< 0.43	< 0.1	
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1	Styren	e	< 0.85	< 0.2	
Hexane		<3.5	<1	Bromo	form	<2.1	< 0.2	
Chloroform		0.098	0.020	Benzyl	chloride	< 0.052	< 0.01	
Ethyl acetate		<7.2	<2	1,3,5-1	rimethylbenzene	<4.9	<1	
Tetrahydrofuran		< 0.59	< 0.2	1,2,4 - T	rimethylbenzene	<4.9	<1	
2-Butanone (MEK)		<5.9	<2	1,3-Dio	chlorobenzene	< 0.6	< 0.1	
1,2-Dichloroethane		0.069	0.017	1,4-Dio	chlorobenzene	< 0.23	< 0.038	
1,1,1-Trichloroetha	ne	< 0.55	< 0.1	1,2-Die	chlorobenzene	<0.6	< 0.1	
Carbon tetrachlorid	le	0.45	0.072	1,2,4 - T	richlorobenzene	< 0.74	< 0.1	
Benzene		< 0.32	< 0.1	Napht		•	0.020 j fb	
Cyclohexane		<6.9	<2	Hexac	nlorobutadiene	< 0.21	< 0.02	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/15/23 Air ug/m3	05-061123	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-05 061520.D GCMS7 bat			
		%	Lower	Upper				
Surrogates:	R	ecovery:	Limit:	Limit:				
4-Bromofluorobenz		91	70	130				
		Concer	tration			Conc	entration	
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv	
I I I I I I I I I I I I I I I I I I I		8 -	I I '	- I -		8 -	I I ·····	
Propene		<1.2 k	$<0.7 \mathrm{k}$		chloropropane	< 0.23	< 0.05	
Dichlorodifluorome	thane	2.1	0.43	1,4-Die		< 0.36	< 0.1	
Chloromethane		<3.7	<1.8		rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar		<4.1	<1	
1,3-Butadiene		<0.044 j	<0.02 j		dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2		proethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1		Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1		yl-2-pentanone	<8.2	<2	
Vinyl bromide		< 0.44	< 0.1		,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		9	4.8	Toluen		<7.5	<2	
Acrolein		0.26	0.11		richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa		<4.1	<1	
Trichlorofluoromet	hane	<2.2	< 0.4		hloroethene	<6.8	<1	
Acetone		15	6.3		nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5		promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1	
trans-1,2-Dichloroe		< 0.4	< 0.1		enzene	< 0.43	< 0.1	
Methylene chloride		<35	<10		-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TB	A)	<12	<4	Nonan		<5.2	<1	
3-Chloropropene		<3.1	<1		oylbenzene	<9.8	<2	
CFC-113		<1.5	< 0.2		rotoluene	<5.2	<1	
Carbon disulfide		< 6.2	<2		benzene	<4.9	<1	
Methyl t-butyl ethe	er (MTBE)	<7.2	<2		ltoluene	<4.9	<1	
Vinyl acetate		<7	<2	m,p-Xy		1.0	0.24	
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei		< 0.43	< 0.1	
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1	Styren		< 0.85	< 0.2	
Hexane		<3.5	<1	Bromo		<2.1	< 0.2	
Chloroform		0.11	0.022		chloride	< 0.052	< 0.01	
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1	
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1	
2-Butanone (MEK)		<5.9	<2		hlorobenzene	< 0.6	< 0.1	
1,2-Dichloroethane		0.073	0.018		chlorobenzene	< 0.23	< 0.038	
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	<0.6	<0.1	
Carbon tetrachlorid	ie	0.47	0.074		richlorobenzene	<0.74	<0.1	
Benzene		< 0.32	< 0.1	Napht			0.027 j fb	
Cyclohexane		<6.9	<2	Hexacl	nlorobutadiene	< 0.21	< 0.02	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA- 06/12/23 06/11/23 06/15/23 Air ug/m3	06-061123	B Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-06 061519.D GCMS7 bat			
		%	Lower	Upper				
Surrogates:	R	ecovery:	Limit:	Limit:				
4-Bromofluorobenz		93	70	130				
		Concor	tration			Cone	entration	
Compounds:		ug/m3	ppbv	Compo	unde	ug/m3	ppbv	
Compounds.		ug/III0	ppn	Compo	unus.	ug/III0	ppnv	
Propene		<1.2 k	<0.7 k		chloropropane	< 0.23	< 0.05	
Dichlorodifluorome	ethane	2.4	0.48	1,4-Dio	oxane	< 0.36	< 0.1	
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3	Methy	l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar	ne	<4.1	<1	
1,3-Butadiene		<0.044 j	<0.02 j	Bromo	dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2	Trichlo	oroethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1	cis-1,3-	Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1	4-Meth	yl-2-pentanone	<8.2	<2	
Vinyl bromide		< 0.44	< 0.1	trans-1	,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		9.4	5.0	Toluen	e	<7.5	<2	
Acrolein		0.26	0.11	1,1,2 - T	richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa	inone	<4.1	<1	
Trichlorofluoromet	hane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1	
Acetone		14	6.0	Dibron	nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5	1,2-Dił	promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1	
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1	
Methylene chloride	•	<35	<10	1,1,2,2	-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TB	A)	<12	<4	Nonan	e	<5.2	<1	
3-Chloropropene		<3.1	<1	Isoproj	oylbenzene	<9.8	<2	
CFC-113		<1.5	< 0.2	2-Chlo	rotoluene	<5.2	<1	
Carbon disulfide		< 6.2	<2	Propyl	benzene	<4.9	<1	
Methyl t-butyl ethe	er (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1	
Vinyl acetate		<7	<2	m,p-Xy	vlene	1.3	0.30	
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei	ne	0.53	0.12	
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1	Styren		< 0.85	< 0.2	
Hexane		<3.5	<1	Bromo		<2.1	< 0.2	
Chloroform		0.098	0.020		chloride	< 0.052	< 0.01	
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1	
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1	
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1	
1,2-Dichloroethane		0.073	0.018		chlorobenzene	< 0.23	< 0.038	
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1	
Carbon tetrachloric	de	0.47	0.075		richlorobenzene	< 0.74	< 0.1	
Benzene		< 0.32	< 0.1	Napht		•	0.032 j fb	
Cyclohexane		<6.9	<2	Hexacl	nlorobutadiene	< 0.21	< 0.02	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-IA-J 06/12/23 06/11/23 06/15/23 Air ug/m3	DUP-061	123	Client Projec Lab I Data Instru Opera	ct: D: File: ument		Maul Foster Alongi Potter Air Sampling 306187-07 061518.D GCMS7 bat	g M0615.20.0	06
		%	Lo	wer	T	pper			
Surrogates:	R	ecovery:		nit:		imit:			
4-Bromofluorobenz		91		70		30			
		~						~	
0 1		Conce			G	1	1		entration
Compounds:		ug/m3	\mathbf{p}	pbv	С	ompou	unds:	ug/m3	ppbv
Propene		<1.2 k	<0.	7 k	1.	2-Dic	hloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	2.2	0	0.45		4-Dio		< 0.36	< 0.1
Chloromethane		<3.7	<	1.8			rimethylpentane	<4.7	<1
F-114		<2.1	<	:0.3			methacrylate	<4.1	<1
Vinyl chloride		< 0.26	<	:0.1		leptan		<4.1	<1
1,3-Butadiene		<0.044 j	<0.0	02 j			lichloromethane	< 0.067	< 0.01
Butane		8.2		3.4	Т	richlo	roethene	< 0.11	< 0.02
Bromomethane		<3.9		<1	ci	s-1,3-	Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6		<1			yl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	<	0.1			,3-Dichloropropene	< 0.45	< 0.1
Ethanol		11		5.9		oluene		<7.5	<2
Acrolein		0.13	0.0	055	1.	$, 1, 2 - T_1$	richloroethane	< 0.055	< 0.01
Pentane		7.4		2.5		-Hexa		<4.1	<1
Trichlorofluoromet	hane	<2.2	<	:0.4	Т	etrach	nloroethene	<6.8	<1
Acetone		9.7		4.1	D	ibrom	ochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<	3.5	1.	,2-Dib	romoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	<	:0.1			oenzene	< 0.46	< 0.1
trans-1,2-Dichloroe	thene	< 0.4	<	:0.1	\mathbf{E}	thylbe	enzene	< 0.43	< 0.1
Methylene chloride		<35	~	<10			Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12		<4	N	lonane	9	<5.2	<1
3-Chloropropene		<3.1		<1	Is	soprop	ylbenzene	<9.8	<2
CFC-113		<1.5	<	:0.2	$2 \cdot$	-Chlor	otoluene	<5.2	<1
Carbon disulfide		< 6.2		<2	Р	ropylk	oenzene	<4.9	<1
Methyl t-butyl ethe	er (MTBE)	<7.2		<2	4.	-Ethyl	toluene	<4.9	<1
Vinyl acetate		<7		<2	m	n,p-Xy	lene	< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	<	:0.1	0-	Xylen	ie	< 0.43	< 0.1
cis-1,2-Dichloroethe	ene	< 0.4	<	:0.1	\mathbf{S}	tyrene	Э	< 0.85	< 0.2
Hexane		<3.5		<1	В	romof	orm	<2.1	< 0.2
Chloroform		0.11	0.0	022	В	enzyl	chloride	< 0.052	< 0.01
Ethyl acetate		<7.2		<2	1,	,3,5-Tı	rimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	<	0.2			rimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9		<2	1,	,3-Dic	hlorobenzene	<0.6	< 0.1
1,2-Dichloroethane	(EDC)	0.049	0.0	012	1,	,4-Dic	hlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		$<\!0.55$:0.1			hlorobenzene	< 0.6	< 0.1
Carbon tetrachlorid	le	0.46		073			richlorobenzene	< 0.74	< 0.1
Benzene		0.38	0	0.12			nalene		0.021 j fb
Cyclohexane		<6.9		<2	Η	lexach	lorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-AA 06/12/23 06/11/23 06/15/23 Air ug/m3	-02-061123	123 Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306187-09 061517.D GCMS7 bat			
		%	Lower	Upper				
Surrogates:	R	ecovery:	Limit:	Limit:				
4-Bromofluorobenz	ene	94	70	130				
		Concen	tration			Conc	entration	
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv	
I I I I I I I I I I I I I I I I I I I		8 -	I I	r r		0 -	1.1.	
Propene		<1.2 k	${<}0.7~{\rm k}$		chloropropane	< 0.23	< 0.05	
Dichlorodifluorome	thane	2.4	0.49	1,4-Die		< 0.36	< 0.1	
Chloromethane		<3.7	<1.8		rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar		<4.1	<1	
1,3-Butadiene		<0.044 j	<0.02 j		dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2		proethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1		Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1		yl-2-pentanone	<8.2	<2	
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		<7.5	<4	Toluen		<7.5	<2	
Acrolein		0.39	0.17		richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa		<4.1	<1	
Trichlorofluoromet	hane	<2.2	< 0.4		hloroethene	<6.8	<1	
Acetone		13	5.5		nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5		promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1	
trans-1,2-Dichloroe		< 0.4	< 0.1		enzene	< 0.43	< 0.1	
Methylene chloride		<35	<10		-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TB	A)	<12	<4	Nonan		<5.2	<1	
3-Chloropropene CFC-113		<3.1	<1		pylbenzene	<9.8	<2	
Carbon disulfide		<1.5 <6.2	<0.2 <2		rotoluene benzene	<5.2 <4.9	<1 <1	
Methyl t-butyl ethe	MTRE)	<0.2 <7.2	<2 <2		ltoluene	<4.9 <4.9	<1	
Vinyl acetate	er (MIIDE)	<1.2 <7	<2 <2	m,p-Xy		<0.87	<0.2	
1,1-Dichloroethane		<0.4	<0.1	o-Xylei		<0.43	<0.2	
cis-1,2-Dichloroethe		<0.4 <0.4	<0.1	Styren		<0.45	<0.1	
Hexane	ene	<0.4 <3.5	<0.1	Bromo		<2.1	<0.2	
Chloroform		0.098	0.020		chloride	< 0.052	< 0.01	
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<0.01	
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1	
2-Butanone (MEK)		<5.9	<2		chlorobenzene	<0.6	< 0.1	
1,2-Dichloroethane		0.069	0.017		chlorobenzene	< 0.23	< 0.038	
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	<0.6	< 0.1	
Carbon tetrachlorio		0.45	0.071		richlorobenzene	< 0.74	< 0.1	
Benzene		< 0.32	< 0.1	Napht			0.022 j fb	
Cyclohexane		<6.9	<2	-	nlorobutadiene	< 0.21	< 0.02	
· · · ·			-					

ENVIRONMENTAL CHEMISTS

Client Sample ID:TWA-AADate Received:06/12/23Date Collected:06/11/23Date Analyzed:06/20/23Matrix:AirUnits:ug/m3	-06-061123	3 Client: Project: Lab ID: Data Fil Instrum Operato	ent:	Maul Foster Alongi Potter Air Sampling 306187-13 1/1.2 062013.D GCMS7 bat	M0615.20.00	6
	%	Lower	Upper			
Surrogates: R	ecovery:	Limit:	Limit:			
4-Bromofluorobenzene	88	70	130			
~ .	Concen		~			ntration
Compounds:	ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene	<1.4	< 0.84	1.2-Dic	hloropropane	< 0.28	< 0.06
Dichlorodifluoromethane	2.3	0.47	1,4-Dio		< 0.43	< 0.12
Chloromethane	<4.5	<2.2		rimethylpentane	<5.6	<1.2
F-114	<2.5	< 0.36		methacrylate	<4.9	<1.2
Vinyl chloride	< 0.31	< 0.12	Heptar		<4.9	<1.2
1,3-Butadiene	< 0.053	< 0.024		lichloromethane	< 0.08	< 0.012
Butane	<5.7	<2.4		roethene	< 0.13	< 0.024
Bromomethane	<4.7	<1.2		Dichloropropene	<1.1	< 0.24
Chloroethane	<3.2	<1.2		yl-2-pentanone	<9.8	<2.4
Vinyl bromide	< 0.52	< 0.12		,3-Dichloropropene	< 0.54	< 0.12
Ethanol	<9	<4.8	Toluen		<9	<2.4
Acrolein	0.3	0.13		richloroethane	< 0.065	< 0.012
Pentane	<7.1	<2.4	2-Hexa		<4.9	<1.2
Trichlorofluoromethane	<2.7	< 0.48		nloroethene	<8.1	<1.2
Acetone	14	5.7	Dibrom	ochloromethane	< 0.1	< 0.012
2-Propanol	<10	<4.2	1,2-Dib	romoethane (EDB)	< 0.092	< 0.012
1,1-Dichloroethene	< 0.48	< 0.12		penzene	< 0.55	< 0.12
trans-1,2-Dichloroethene	< 0.48	< 0.12	Ethylbo	enzene	< 0.52	< 0.12
Methylene chloride	<42	<12		Tetrachloroethane	< 0.16	< 0.024
t-Butyl alcohol (TBA)	<15	<4.8	Nonane		<6.3	<1.2
3-Chloropropene	<3.8	<1.2	Isoprop	ylbenzene	<12	<2.4
CFC-113	<1.8	< 0.24	2-Chloi	otoluene	< 6.2	<1.2
Carbon disulfide	<7.5	<2.4	Propyll	penzene	<5.9	<1.2
Methyl t-butyl ether (MTBE)	<8.7	<2.4	4-Ethy	ltoluene	<5.9	<1.2
Vinyl acetate	<8.5	<2.4	m,p-Xy	lene	<1	< 0.24
1,1-Dichloroethane	< 0.49	< 0.12	o-Xyler	ne	< 0.52	< 0.12
cis-1,2-Dichloroethene	< 0.48	< 0.12	Styrene	Э	<1	< 0.24
Hexane	<4.2	<1.2	Bromof	form	<2.5	< 0.24
Chloroform	0.11	0.022	Benzyl	chloride	< 0.062	< 0.012
Ethyl acetate	<8.6	<2.4	1,3,5-T	rimethylbenzene	<5.9	<1.2
Tetrahydrofuran	< 0.71	< 0.24		rimethylbenzene	<5.9	<1.2
2-Butanone (MEK)	<7.1	<2.4		hlorobenzene	< 0.72	< 0.12
1,2-Dichloroethane (EDC)	< 0.049	< 0.012		hlorobenzene	< 0.27	< 0.046
1,1,1-Trichloroethane	< 0.65	< 0.12		hlorobenzene	< 0.72	< 0.12
Carbon tetrachloride	0.46	0.073		richlorobenzene	< 0.89	< 0.12
Benzene	0.22 j	0.068 j	Naphtł		0.082 j ca f	
Cyclohexane	<8.3	<2.4	Hexach	lorobutadiene	< 0.26	< 0.024

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl Not Appl 06/15/23 Air ug/m3	icable	Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	Maul Foster Alongi Potter Air Sampling 03-1443 MB 061515.D GCMS7 bat	M0615.20.0	06
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		91	70	130			
		-					
		Conce	ntration			Conce	entration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene		<1.2 k	<0.7 k		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	< 0.99	< 0.2	1,4-Di		< 0.36	< 0.1
Chloromethane		<3.7	<1.8		rimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		< 0.044	< 0.02		dichloromethane	< 0.067	< 0.01
Butane		<4.8	<2		proethene	< 0.11	< 0.02
Bromomethane		<3.9	<1		-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1		nyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		<7.5	<4	Toluer		<7.5	<2
Acrolein		<0.11	< 0.05		richloroethane	< 0.055	< 0.01
Pentane		<5.9	<2	2-Hexa		<4.1	<1
Trichlorofluoromet	nane	<2.2	< 0.4		hloroethene	<6.8	<1
Acetone		<4.8	<2		nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5		bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	41	< 0.4	<0.1		benzene	< 0.46	<0.1
trans-1,2-Dichloroe		< 0.4	< 0.1		enzene Matura al la sua at la sua a	< 0.43	< 0.1
Methylene chloride		<35	<10 <4	1,1,2,2 Nonan	-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12 <3.1				<5.2 <9.8	<1 <2
3-Chloropropene CFC-113		< 0.1 < 1.5	<1 <0.2		pylbenzene rotoluene	<9.8 <5.2	<2 <1
Carbon disulfide		< 1.3 < 6.2	<0.2 <2		benzene	< 3.2	<1
Methyl t-butyl ethe	r (MTRE)	<0.2 <7.2	<2		vltoluene	<4.9	<1
Vinyl acetate		<7	<2	m,p-X		<0.87	<0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		<0.43	<0.2
cis-1,2-Dichloroethe		<0.4	<0.1	Styrer		<0.45	<0.1
Hexane		<3.5	<1	Bromo		<2.1	<0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		Trimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorid		< 0.31	< 0.05		richlorobenzene	< 0.74	< 0.1
Benzene		<0.16 j	<0.05 j		halene	0.068 j lc	
Cyclohexane		<6.9	<2		hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 306187-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	140	130	7
APH EC9-12 aliphatics	ug/m3	<25	<25	nm
APH EC9-10 aromatics	ug/m3	<25	<25	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	104	70-130
APH EC9-12 aliphatics	ug/m3	67	127	70-130
APH EC9-10 aromatics	ug/m3	67	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306187-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<1.2	<1.2	nm
Dichlorodifluoromethane	ug/m3	2.3	1.9	19
Chloromethane	ug/m3	<3.7	<3.7	nm
F-114	ug/m3	<2.1	<2.1	nm
Vinyl chloride	ug/m3	< 0.26	< 0.26	nm
1,3-Butadiene	ug/m3	< 0.044	< 0.044	nm
Butane	ug/m3	8.9	8.3	7
Bromomethane	ug/m3	<3.9	<3.9	nm
Chloroethane	ug/m3	<2.6	<2.6	nm
Vinyl bromide	ug/m3	< 0.44	< 0.44	nm
Ethanol	ug/m3	11	11	0
Acrolein	ug/m3	0.17	< 0.11	nm
Pentane	ug/m3	7.8	7.4	5
Trichlorofluoromethane	ug/m3	<2.2	<2.2	nm
Acetone	ug/m3	13	8.3	44 vo
2-Propanol	ug/m3	<8.6	<8.6	nm
1,1-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
trans-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Methylene chloride	ug/m3	<35	<35	nm
t-Butyl alcohol (TBA)	ug/m3	<12	<12	nm
3-Chloropropene	ug/m3	<3.1	<3.1	nm
CFC-113	ug/m3	<1.5	<1.5	nm
Carbon disulfide	ug/m3	< 6.2	< 6.2	nm
Methyl t-butyl ether (MTBE)	ug/m3	<7.2	<7.2	nm
Vinyl acetate	ug/m3	<7	<7	nm
1,1-Dichloroethane	ug/m3	< 0.4	< 0.4	nm
cis-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Hexane	ug/m3	<3.5	<3.5	nm
Chloroform	ug/m3	0.11	0.11	0
Ethyl acetate	ug/m3	<7.2	<7.2	nm
Tetrahydrofuran	ug/m3	< 0.59	< 0.59	nm
2-Butanone (MEK)	ug/m3	<5.9	<5.9	nm
1,2-Dichloroethane (EDC)	ug/m3	0.069	< 0.04	nm
1,1,1-Trichloroethane	ug/m3	< 0.55	< 0.55	nm
Carbon tetrachloride	ug/m3	0.45	0.44	2
Benzene	ug/m3	0.39	0.38	3
Cyclohexane	ug/m3	<6.9	<6.9	nm
1,2-Dichloropropane	ug/m3	< 0.23	< 0.23	nm
1,4-Dioxane	ug/m3	< 0.36	< 0.36	nm
2,2,4-Trimethylpentane	ug/m3	<4.7	<4.7	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306187-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<4.1	<4.1	nm
Heptane	ug/m3	<4.1	<4.1	nm
Bromodichloromethane	ug/m3	< 0.067	< 0.067	nm
Trichloroethene	ug/m3	< 0.11	< 0.11	nm
cis-1,3-Dichloropropene	ug/m3	< 0.91	< 0.91	nm
4-Methyl-2-pentanone	ug/m3	<8.2	<8.2	nm
trans-1,3-Dichloropropene	ug/m3	$<\!0.45$	< 0.45	nm
Toluene	ug/m3	<7.5	<7.5	nm
1,1,2-Trichloroethane	ug/m3	< 0.055	< 0.055	nm
2-Hexanone	ug/m3	<4.1	<4.1	nm
Tetrachloroethene	ug/m3	<6.8	<6.8	nm
Dibromochloromethane	ug/m3	< 0.085	< 0.085	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.077	< 0.077	nm
Chlorobenzene	ug/m3	< 0.46	< 0.46	nm
Ethylbenzene	ug/m3	< 0.43	< 0.43	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.14	< 0.14	nm
Nonane	ug/m3	<5.2	<5.2	nm
Isopropylbenzene	ug/m3	<9.8	<9.8	nm
2-Chlorotoluene	ug/m3	$<\!\!5.2$	<5.2	nm
Propylbenzene	ug/m3	<4.9	<4.9	nm
4-Ethyltoluene	ug/m3	<4.9	<4.9	nm
m,p-Xylene	ug/m3	< 0.87	< 0.87	nm
o-Xylene	ug/m3	< 0.43	< 0.43	nm
Styrene	ug/m3	< 0.85	< 0.85	nm
Bromoform	ug/m3	<2.1	<2.1	nm
Benzyl chloride	ug/m3	< 0.052	< 0.052	nm
1,3,5-Trimethylbenzene	ug/m3	<4.9	<4.9	nm
1,2,4-Trimethylbenzene	ug/m3	<4.9	<4.9	nm
1,3-Dichlorobenzene	ug/m3	<0.6	< 0.6	nm
1,4-Dichlorobenzene	ug/m3	< 0.23	< 0.23	nm
1,2-Dichlorobenzene	ug/m3	<0.6	< 0.6	nm
1,2,4-Trichlorobenzene	ug/m3	< 0.74	< 0.74	nm
Naphthalene	ug/m3	< 0.26	< 0.26	nm
Hexachlorobutadiene	ug/m3	< 0.21	< 0.21	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sample		Percent	
	Departing	Gnileo	Recovery	Acceptores
Analyta	Reporting Units	Spike Level	LCS	Acceptance Criteria
Analyte				
Propene Diable a l'Channa anthana	ug/m3	23	134 vo	70-130
Dichlorodifluoromethane	ug/m3	67	114	70-130
Chloromethane	ug/m3	28	111	70-130
F-114	ug/m3	94	118	70-130
Vinyl chloride	ug/m3	35	107	70-130
1,3-Butadiene	ug/m3	30	97	70-130
Butane	ug/m3	32	111	70-130
Bromomethane	ug/m3	52	106	70-130
Chloroethane	ug/m3	36	113	70-130
Vinyl bromide	ug/m3	59	99	70-130
Ethanol	ug/m3	25	113	70-130
Acrolein	ug/m3	31	87	70-130
Pentane	ug/m3	40	97	70-130
Trichlorofluoromethane	ug/m3	76	121	70-130
Acetone	ug/m3	32	101	70-130
2-Propanol	ug/m3	33	91	70-130
1,1-Dichloroethene	ug/m3	54	101	70-130
trans-1,2-Dichloroethene	ug/m3	54	99	70-130
Methylene chloride	ug/m3	94	111	70-130
t-Butyl alcohol (TBA)	ug/m3	41	100	70-130
3-Chloropropene	ug/m3	42	108	70-130
CFC-113	ug/m3	100	116	70-130
Carbon disulfide	ug/m3	42	111	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	91	70 - 130
Vinyl acetate	ug/m3	48	97	70-130
1,1-Dichloroethane	ug/m3	55	113	70 - 130
cis-1,2-Dichloroethene	ug/m3	54	93	70 - 130
Hexane	ug/m3	48	92	70 - 130
Chloroform	ug/m3	66	108	70-130
Ethyl acetate	ug/m3	49	108	70-130
Tetrahydrofuran	ug/m3	40	97	70-130
2-Butanone (MEK)	ug/m3	40	93	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	113	70-130
1,1,1-Trichloroethane	ug/m3	74	111	70-130
Carbon tetrachloride	ug/m3	85	111	70-130
Benzene	ug/m3	43	95	70-130
Cyclohexane	ug/m3	46	80	70-130
1,2-Dichloropropane	ug/m3	62	120	70-130
1,4-Dioxane	ug/m3	49	94	70-130
2,2,4-Trimethylpentane	ug/m3	63	106	70-130
	0			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306187

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	117	70 - 130
Heptane	ug/m3	55	110	70 - 130
Bromodichloromethane	ug/m3	90	124	70 - 130
Trichloroethene	ug/m3	73	115	70 - 130
cis-1,3-Dichloropropene	ug/m3	61	114	70 - 130
4-Methyl-2-pentanone	ug/m3	55	89	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	108	70 - 130
Toluene	ug/m3	51	85	70 - 130
1,1,2-Trichloroethane	ug/m3	74	119	70 - 130
2-Hexanone	ug/m3	55	116	70 - 130
Tetrachloroethene	ug/m3	92	114	70 - 130
Dibromochloromethane	ug/m3	120	114	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	109	70 - 130
Chlorobenzene	ug/m3	62	108	70 - 130
Ethylbenzene	ug/m3	59	87	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	114	70 - 130
Nonane	ug/m3	71	105	70 - 130
Isopropylbenzene	ug/m3	66	97	70 - 130
2-Chlorotoluene	ug/m3	70	94	70 - 130
Propylbenzene	ug/m3	66	100	70 - 130
4-Ethyltoluene	ug/m3	66	92	70 - 130
m,p-Xylene	ug/m3	120	86	70 - 130
o-Xylene	ug/m3	59	93	70 - 130
Styrene	ug/m3	58	93	70 - 130
Bromoform	ug/m3	140	102	70 - 130
Benzyl chloride	ug/m3	70	110	70-130
1,3,5-Trimethylbenzene	ug/m3	66	96	70 - 130
1,2,4-Trimethylbenzene	ug/m3	66	93	70-130
1,3-Dichlorobenzene	ug/m3	81	109	70-130
1,4-Dichlorobenzene	ug/m3	81	103	70-130
1,2-Dichlorobenzene	ug/m3	81	106	70-130
1,2,4-Trichlorobenzene	ug/m3	100	88	70-130
Naphthalene	ug/m3	71	76	70 - 130
Hexachlorobutadiene	ug/m3	140	106	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

74119-1				SA	AMPL	E CHAI	N OF	CUST	ODY	•	С	X6/0		23	>	
306187 Report To Audrey Have	dent!	F			SAMPI	LERS (sign	ature)	\square	1	K.			7		Page	
Company Mail Foster	-			-	PROJE	CT NAME	E & AD	DRESS	/		PO				Standa	RNAROUND TIME
Address 2815 2nd Ave Ste 540				_	Bite	Airs	mal	e~se)		MDL	5.2		6	R	'RUSH_ Rush cha	rges authorized by:
City, State, ZIP Seattle WA 98121					NOTES	-	<u> </u>					CE TO				MPLE DISPOSAL
Phone 2010-331-KJS Email ahackette markerster. accounting e markerster. markerter.										Default:Clean following final report delivery Hold (Fee may apply):						
SAMPLE INFORMATION ANALYSIS REQUESTED																
	Lab	Canister	Flow Cont.	Le IA=Ind	orting vel: loor Air oil Gas	- Date	Initial Vac.	Field Initial	Final Vac.	Field Final	TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	Helium	
Sample Name	ID	ID	ID		e One)	Sampled	1	Time	("Hg)	Time	F	۲.	<i>H</i>			Notes
TWA-1A-01-061123	O	18567	07845	IA	/ SG	6-11-23	29	0830	Ь	1646	$\left \times \right $		乡	X		
TWA-14-02-061123	02	40703	00001	IA	/ SG	6-11-23	30	06333	9.5	1641	x	1	28	x		
TWA-14-03-061123	03	40705	0534KS	VIA /	/ SG	6-11-23	30+	0841	7	1651	X		×,	x		
TWA-1A-04-061123	04	20541	1551533	IA	/ SG	6-11-23	30+	1907	9	1658	X		Ż	X		Gacip Canaged
TWA-14-05-061123	05	23227	05356	ĮA,	/ SG	6-11-23	30	0923	8	1718	\mathbf{x}	2		X		
twA-1A-06-001123	06	20551	07547	IA /	' SG	6-11-23	30+	0927	9	1721	X	\$	A	X		•
TWA-1A-DUP-261123	07	20555	05354	IA /	SG	6-11-23	28	0826	9.5	341193	X	1	Ry	×		
				IA /	' SG											

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATETIME
5500 4th Avenue South	Relinquished by:	Derek Heitz	MFA	6/12/23 13/5
Seattle, WA 98108	Received by:	VINIH	FRI	6/12/23 1315
Ph. (206) 285-8282	Relinquished by:		Samples	received at 22
Fax (206) 283-5044	Received by:			
			l	I

FORMS\COC\COCTO-15.DOC

A

30616 Report To Audry Har	.bolt	_		SA		E CHAI		CUST	ody	U -	-	06	112	2	🗩 P	age #	
Company Marl Foster	A Alor	ni Ni		_				DRESS			PO				Stan RUS	dard H	
Address 1815 2nd Ave Ste Stp City, State, ZIP Seattle WA 98121 Phone 206-721-1875 Email abackett @maulfig				ister.	NOTES	Av San 3:	mplin	5		IN access may	VOIC	CE TC)		S Defa final	SAM ult:C	PLE DISPOSAL PLE DISPOSAL Plean following ort delivery may apply):
SAMPLE INFORMATION	AMPLE INFORMATION ANALYSIS REQUESTED																
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Le IA=In SG=S	orting evel: door Air oil Gas le One)	Date Sampled	Initial Vac. ("Hg)	Initial	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15	TO15 cVOCs	APH	Helium		per AB 6/13/13 Notes
TWA-AA-01-061123	08	37203	13966	ĨA	/ SG	12-11-23	30	0741	lo	1557	X		5	X		-	- hdd
twa-44-02-001123	09	23229	07850	IA	/ SG	01-11-23	24	D746	11	K83	\checkmark	ł	%	×			-analyze
TWA-AA -03-061123	10	40711	07551	ĮĄ	/ SG	00-11-23	24,5	0748	6.5	KSL	X			X			- hild
TWA-44-04-06/123	11	40704	07652	UA	/ SG	02-11-23	27	05 03	3.5	1601	X			×			-h.ld
TWA - AA - 05 - 06/123	12	40707	opro3	ĮIA	/ SG	06-11-23	30	045D6	4	1603	4			X		_	hold
twa-44-06-061123	13	37089	05347	IA	/ SG	06-11-23	30+	४६११	7	1903	4	Ĩ	2	X			-analyze
TWA-14-07-061123	14	23234	V535Z	IA	/ SG	06-11-23	307	05516	7	Jm1	γ	7	$\langle \rangle$	(-	- hold
twA-AA-08-061123	15	20549	07871	IA	/ SG	16-11-23	17.5	0822	6	1620	\aleph			7		-	- hold

Friedman & Bruya, Inc.	
5500 4 th Avenue South	Reli
Seattle, WA 98108	Rec
Ph. (206) 285-8282	Reli
Fax (206) 283-5044	Rec
FORMS\COC\COCTO-15.DOC	L

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Leek feite	NKA	6123	1315
Received by: 7944	VINH	FBI	6-12-22	1315
Relinquished by:				
Received by:		Samples re	ceived at	22.°C

T

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 26, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the amended results and invoice from the testing of material submitted on June 12, 2023 from the Potter Air Sampling M0615.20.006, F&BI 306188 project. The helium for TWA-SV-44-061223 was removed.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Amanda Bixby MFA0627R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 27, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the results from the testing of material submitted on June 12, 2023 from the Potter Air Sampling M0615.20.006, F&BI 306188 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Amanda Bixby MFA0627R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2023 by Friedman & Bruya, Inc. from the Maul Foster Alongi Potter Air Sampling M0615.20.006, F&BI 306188 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
306188 -01	TWA-SV-43-061223
306188 -02	TWA-SV-41-061223
306188 -03	TWA-SV-DUP-061223
306188 -04	TWA-SV-44-061223
306188 -05	TWA-SV-42-061223

The samples were sent to Fremont Analytical for major gases analysis. The report is enclosed.

The TO-15 ethanol laboratory control sample exceeded the acceptance criteria. The compound was not detected, therefore the result did no represent an out of control condition.

The tetrachloroethene concentration in samples TWA-SV-41-061223, TWA-SV-DUP-061223, and TWA-SV-44-061223 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-43-0612 06/12/23 06/12/23 06/17/23 Air ug/m3	23 Client: Project: Lab ID: Data File Instrume Operator	ent:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-01 1/8.1 061624.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <200			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-41-0612 06/12/23 06/12/23 06/17/23 Air ug/m3	23 Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-02 1/16 061625a.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 97	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <400			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<400

<400

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed:	TWA-SV-DUP-061 06/12/23 06/12/23 06/17/23	1223 Client Projec Lab II Data I	t: D:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-03 1/16 061626a.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
Surrogates: 4-Bromofluorobenz	Recovery: eene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <1,200			

4	
-	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-44-0612 06/12/23 06/12/23 06/17/23 Air ug/m3	23 Client: Project: Lab ID: Data Fi Instrum Operato	le: ient:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-04 1/17 061627b.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <420			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-42-0612 06/12/23 06/12/23 06/17/23 Air ug/m3	Projec Lab II Data I	et: D: File: ument:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-05 1/16 061628b.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <400			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable O6/16/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 03-1448 MB 061612.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID:TWA-SDate Received:06/12/2Date Collected:06/12/2Date Analyzed:06/17/2Matrix:AirUnits:ug/m3	23	Proje Lab I Data	ect: ID: File: rument:	Maul Foster Alongi Potter Air Sampling N 306188-01 1/8.1 061624.D GCMS7 bat	M0615.20.00	06
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene	93	70	130			
	Concer	itration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
-	-		_		U U	
Propene	<9.8	<5.7		chloropropane	<1.9	< 0.4
Dichlorodifluoromethane	<8	<1.6	1,4-Dic		<2.9	< 0.81
Chloromethane	<30	<15		rimethylpentane	<38	<8.1
F-114	<17	<2.4	•	l methacrylate	<33	<8.1
Vinyl chloride	<2.1	< 0.81	Heptar		<33	<8.1
1,3-Butadiene	<0.36 j	<0.16 j		dichloromethane	< 0.54	< 0.081
Butane	<39	<16		proethene	< 0.87	< 0.16
Bromomethane	<31	<8.1		Dichloropropene	<7.4	<1.6
Chloroethane	<21	<8.1		nyl-2-pentanone	<66	<16
Vinyl bromide	<3.5	< 0.81		1,3-Dichloropropene	<3.7	< 0.81
Ethanol	<61 k	<32 k	Toluen		<61	<16
Acrolein	< 0.93	< 0.4		richloroethane	< 0.44	< 0.081
Pentane	<48	<16	2-Hexa		<33	<8.1
Trichlorofluoromethane	<18	<3.2		hloroethene	240	35
Acetone	<38	<16		nochloromethane	<0.69	< 0.081
2-Propanol	<70	<28		promoethane (EDB)	< 0.62	< 0.081
1,1-Dichloroethene	<3.2	< 0.81		benzene	<3.7	< 0.81
trans-1,2-Dichloroethene	<3.2	< 0.81		enzene	<3.5	< 0.81
Methylene chloride	<280	<81	1,1,2,2	-Tetrachloroethane	<1.1	< 0.16
t-Butyl alcohol (TBA)	<98	<32	Nonan		<42	<8.1
3-Chloropropene	<25	<8.1		pylbenzene	<80	<16
CFC-113	<12	<1.6		rotoluene	<42	<8.1
Carbon disulfide	<50	<16		benzene	<40	<8.1
Methyl t-butyl ether (MTB)	E) <58	<16	4-Ethy	ltoluene	<40	<8.1
Vinyl acetate	<57	<16	m,p-Xy		<7	<1.6
1,1-Dichloroethane	<3.3	< 0.81	o-Xylei		<3.5	< 0.81
cis-1,2-Dichloroethene	<3.2	< 0.81	Styren		<6.9	<1.6
Hexane	<29	<8.1	Bromo		<17	<1.6
Chloroform	0.44	0.089	Benzyl	chloride	< 0.42	< 0.081
Ethyl acetate	<58	<16	1,3,5-T	rimethylbenzene	<40	<8.1
Tetrahydrofuran	<4.8	<1.6		rimethylbenzene	<40	<8.1
2-Butanone (MEK)	<48	<16		chlorobenzene	<4.9	< 0.81
1,2-Dichloroethane (EDC)	< 0.33	< 0.081		chlorobenzene	<1.9	< 0.31
1,1,1-Trichloroethane	<4.4	< 0.81		chlorobenzene	<4.9	< 0.81
Carbon tetrachloride	<2.5	< 0.4		richlorobenzene	<6	< 0.81
Benzene	<2.6	< 0.81	Napht		<2.1	< 0.4
Cyclohexane	<56	<16	Hexacl	nlorobutadiene	<1.7	< 0.16

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV- 06/12/23 06/12/23 06/17/23 Air ug/m3	41-061223	Proje Lab I Data	ct: D: File: ument:	Maul Foster Alongi Potter Air Sampling 306188-02 1/16 061625.D GCMS7 bat	M0615.20.00	6
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		94	70	130			
1 2101101101050112	0110	01		100			
		Concen	tration			Concer	ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
				_			
Propene		<19	<11		chloropropane	<3.7	< 0.8
Dichlorodifluorome	thane	<16	<3.2	1,4-Die		<5.8	<1.6
Chloromethane		<59	<29		rimethylpentane	<75	<16
F-114		<34	<4.8		l methacrylate	<66	<16
Vinyl chloride		<4.1	<1.6	Hepta		<66	<16
1,3-Butadiene		<0.71 j	<0.32 j		dichloromethane	<1.1	< 0.16
Butane		<76	<32		proethene	75	14
Bromomethane		<62	<16		-Dichloropropene	<15	<3.2
Chloroethane		<42	<16		nyl-2-pentanone	<130	<32
Vinyl bromide		<7	<1.6		1,3-Dichloropropene	<7.3	<1.6
Ethanol		<120 k	<64 k	Toluer		<120	<32
Acrolein		<1.8	<0.8		richloroethane	<0.87	< 0.16
Pentane Trichlorofluorometl		<94 <36	<32 <6.4	2-Hexa	hloroethene	<66>4 000 vo	<16
Acetone	lane	<36 <76	<0.4 <32		nochloromethane	4,900 ve <1.4	720 ve <0.16
		<140	<52 <56		bromoethane (EDB)	<1.4 <1.2	<0.16 <0.16
2-Propanol 1,1-Dichloroethene		<140 <6.3	<56 <1.6		benzene	<7.4	<0.16
trans-1,2-Dichloroe	thong	<0.3 <6.3	<1.6		penzene	<7.4 <6.9	<1.6
Methylene chloride	unene	< 560	<1.0 <160		-Tetrachloroethane	<0.9 <2.2	< 0.32
t-Butyl alcohol (TB.	Δ)	<500 <190	<64	Nonan		<84	<0.32
3-Chloropropene	(1)	<50	<16		pylbenzene	<160	<32
CFC-113		< <u>50</u> < <u>25</u>	<3.2		rotoluene	<83	<16
Carbon disulfide		<100	<32		benzene	<79	<16
Methyl t-butyl ethe	r (MTBE)	<120	<32		vltoluene	<79	<16
Vinyl acetate	1 (11101)	<110	<32	m,p-Xy		<14	<3.2
1,1-Dichloroethane		<6.5	<1.6	o-Xyle		<6.9	<1.6
cis-1,2-Dichloroethe	ene	< 6.3	<1.6	Styren		<14	<3.2
Hexane		<56	<16	Bromo		<33	<3.2
Chloroform		1.2	0.26		l chloride	< 0.83	< 0.16
Ethyl acetate		<120	<32		Trimethylbenzene	<79	<16
Tetrahydrofuran		<9.4	<3.2	1,2,4-7	rimethylbenzene	<79	<16
2-Butanone (MEK)		<94	<32		chlorobenzene	<9.6	<1.6
1,2-Dichloroethane	(EDC)	< 0.65	< 0.16	1,4-Die	chlorobenzene	<3.7	< 0.61
1,1,1-Trichloroetha	ne	<8.7	<1.6	1,2-Die	chlorobenzene	<9.6	<1.6
Carbon tetrachlorid	le	<5	< 0.8	1,2,4-7	richlorobenzene	<12	<1.6
Benzene		<5.1	<1.6	Napht		<4.2	< 0.8
Cyclohexane		<110	<32	Hexac	hlorobutadiene	<3.4	< 0.32

ENVIRONMENTAL CHEMISTS

Client Sample ID:TWA-SYDate Received:06/12/2Date Collected:06/12/2Date Analyzed:06/17/2Matrix:AirUnits:ug/m3	3	223 Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 306188-03 1/16 061626.D GCMS7 bat		
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene	93	70	130			
	Conco	ntration			Conco	ntration
Compounds:	ug/m3	ppbv	Compo	unde.	ug/m3	ppbv
Compounds.	ug/III0	ppn	Compo	Julius.	ug/mo	ppn
Propene	<19	<11		chloropropane	<3.7	< 0.8
Dichlorodifluoromethane	<16	<3.2	1,4-Di		<5.8	<1.6
Chloromethane	<59	<29		Trimethylpentane	<75	<16
F-114	<34	<4.8		l methacrylate	<66	<16
Vinyl chloride	<4.1	<1.6	Hepta		<66	<16
1,3-Butadiene	<0.71 j	<0.32 j		dichloromethane	<1.1	< 0.16
Butane	<76	<32		oroethene	75	14
Bromomethane	<62	<16		-Dichloropropene	<15	<3.2
Chloroethane	<42	<16		nyl-2-pentanone	<130	<32
Vinyl bromide	<7	<1.6		1,3-Dichloropropene	<7.3	<1.6
Ethanol	<120 k	<64 k	Toluer		<120	<32
Acrolein	<1.8	< 0.8	1,1,2-7	Frichloroethane	< 0.87	< 0.16
Pentane	<94	<32	2-Hexa	anone	<66	<16
Trichlorofluoromethane	<36	< 6.4	Tetrac	hloroethene	4,900 ve	720 ve
Acetone	<76	<32	Dibror	nochloromethane	<1.4	< 0.16
2-Propanol	<140	<56	1,2-Di	bromoethane (EDB)	<1.2	< 0.16
1,1-Dichloroethene	<6.3	<1.6	Chloro	benzene	<7.4	<1.6
trans-1,2-Dichloroethene	<6.3	<1.6	Ethylb	enzene	< 6.9	<1.6
Methylene chloride	<560	<160	1,1,2,2	-Tetrachloroethane	<2.2	< 0.32
t-Butyl alcohol (TBA)	<190	<64	Nonan	ie	<84	<16
3-Chloropropene	<50	<16	Isopro	pylbenzene	<160	<32
CFC-113	<25	<3.2	2-Chlo	rotoluene	<83	<16
Carbon disulfide	<100	<32	Propyl	benzene	<79	<16
Methyl t-butyl ether (MTBE) <120	<32	4-Ethy	vltoluene	<79	<16
Vinyl acetate	<110	<32	m,p-X	ylene	<14	<3.2
1,1-Dichloroethane	$<\!\!6.5$	<1.6	o-Xyle	ne	<6.9	<1.6
cis-1,2-Dichloroethene	<6.3	<1.6	Styren	ie	<14	<3.2
Hexane	<56	<16	Bromo	oform	<33	<3.2
Chloroform	1.2	0.24	Benzy	l chloride	< 0.83	< 0.16
Ethyl acetate	<120	<32	1,3,5-7	Frimethylbenzene	<79	<16
Tetrahydrofuran	<9.4	<3.2	1,2,4-7	Trimethylbenzene	<79	<16
2-Butanone (MEK)	<94	<32	1,3-Di	chlorobenzene	<9.6	<1.6
1,2-Dichloroethane (EDC)	< 0.65	< 0.16	1,4-Di	chlorobenzene	<3.7	< 0.61
1,1,1-Trichloroethane	<8.7	<1.6	1,2-Di	chlorobenzene	<9.6	<1.6
Carbon tetrachloride	<5	<0.8	1,2,4-7	Trichlorobenzene	<12	<1.6
Benzene	<5.1	<1.6	Napht	halene	<4.2	< 0.8
Cyclohexane	<110	<32	Hexac	hlorobutadiene	<3.4	< 0.32

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV 06/12/23 06/12/23 06/17/23 Air ug/m3	-44-061223	Proj Lab Data Inst	ect:	Maul Foster Alongi Potter Air Sampling 306188-04 1/17 061627.D GCMS7 bat	g M0615.20.00	6
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		93	70	130			
		Concen	tration				ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Duonono		~90	~19	1 9 D:	hlanannan an a	~2.0	<0.9E
Propene Dichlorodifluorome	thone	<20 <17	<12 <3.4	1,2-Dic 1,4-Dic	chloropropane	<3.9 <6.1	<0.85 <1.7
Chloromethane	unane	<63	<31		Yrimethylpentane	<0.1 <79	<1.7 <17
F-114		<05 <36	<5.1		l methacrylate	<79 <70	<17 <17
			< 0.1 < 1.7	Heptar		<70 <70	<17 <17
Vinyl chloride		<4.3		-	dichloromethane		
1,3-Butadiene		<0.75 j	<0.34 j			<1.1	< 0.17
Butane Bromomethane		<81 <66	<34 <17		Dichlemennenene	930	170
					-Dichloropropene	<15	<3.4
Chloroethane Viscal bases ide		<45	<17		nyl-2-pentanone	<140	<34
Vinyl bromide		<7.4	<1.7		1,3-Dichloropropene	<7.7	<1.7
Ethanol		<130 k	<68 k	Toluen		<130	<34
Acrolein		<1.9	< 0.85		richloroethane	< 0.93	< 0.17
Pentane		<100	<34	2-Hexa		<70	<17
Trichlorofluoromet	nane	<38	<6.8		hloroethene	6,100 ve	900 ve
Acetone		<81	<34		nochloromethane	<1.4	<0.17
2-Propanol		<150	<59		promoethane (EDB)	<1.3	< 0.17
1,1-Dichloroethene		<6.7	<1.7		benzene	<7.8	<1.7
trans-1,2-Dichloroe		120	29		enzene	<7.4	<1.7
Methylene chloride		<590	<170		-Tetrachloroethane	<2.3	< 0.34
t-Butyl alcohol (TB	A)	<210	<68	Nonan		<89	<17
3-Chloropropene		<53	<17		pylbenzene	<170	<34
CFC-113		<26	<3.4		rotoluene	<88	<17
Carbon disulfide		<110	<34		benzene	<84	<17
Methyl t-butyl ethe	er (MIBE)	<120	<34	-	ltoluene	<84	<17
Vinyl acetate		<120	<34	m,p-Xy		<15	<3.4
1,1-Dichloroethane		<6.9	<1.7	o-Xylei		<7.4	<1.7
cis-1,2-Dichloroethe	ene	18	4.5	Styren		<14	<3.4
Hexane Chloroform		<60 1.8	$<\!\!17\ 0.37$	Bromo		<35 <0.88	<3.4 <0.17
		<120	0.37 <34	-	l chloride	<0.88 <84	<0.17 <17
Ethyl acetate Tetrahydrofuran		<120 <10	<3.4		Trimethylbenzene Trimethylbenzene	<84 <84	<17 <17
2-Butanone (MEK)		<100	<34 <34		chlorobenzene	<04 <10	<1.7
1,2-Dichloroethane		<0.69	<0.17		chlorobenzene	<10 <3.9	<0.65
1,1,1-Trichloroetha		<0.0 <i>9</i> <9.3	<0.17 <1.7		chlorobenzene	<0.9 <10	<0.05 <1.7
Carbon tetrachloric		<9.5 <5.3	<0.85		richlorobenzene	<10 <13	<1.7 <1.7
Benzene		<5.4	<0.85 <1.7	Napht		<4.5	<0.85
Cyclohexane		<5.4 <120	<1.7 <34		hlorobutadiene	<4.5 <3.6	< 0.34
Cyclonexane		-140	r0,	поласт		-0.0	-0.04

ENVIRONMENTAL CHEMISTS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Propene<19<111,2-Dichloropropane<3.7<0.8Dichlorodifluoromethane<16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F-114<34<4.8Methyl methacrylate<66<16Vinyl chloride<4.1
Vinyl chloride<4.1<1.6Heptane<66<161,3-Butadiene<0.71 j
1,3-Butadiene<0.71 j<0.32 jBromodichloromethane<1.1<0.16Butane<76
Butane <76 <32 Trichloroethene <1.7 <0.32 Bromomethane <62 <16 cis-1,3-Dichloropropene <15 <3.2 Chloroethane <42 <16 4 -Methyl-2-pentanone <130 <32 Vinyl bromide <7 <1.6 trans-1,3-Dichloropropene <7.3 <1.6 Ethanol <120 k <64 kToluene <120 <32 Acrolein <1.8 <0.8 $1,1,2$ -Trichloroethane <0.87 <0.16 Pentane <94 <32 2 -Hexanone <666 <16 Trichlorofluoromethane <36 <6.4 Tetrachloroethene 730 110 Acetone <76 <32 Dibromochloromethane <1.4 <0.16 2-Propanol <140 <56 $1,2$ -Dibromoethane (EDB) <1.2 <0.16 1,1-Dichloroethene <6.3 <1.6 Chlorobenzene <7.4 <1.6 trans-1,2-Dichloroethene <6.3 <1.6 Ethylbenzene <6.9 <1.6 Methylene chloride <560 <160 $1,1,2,2$ -Tetrachloroethane <2.2 <0.32
Bromomethane < 62 < 16 cis-1,3-Dichloropropene < 15 < 3.2 Chloroethane < 42 < 16 4-Methyl-2-pentanone < 130 < 32 Vinyl bromide < 7 < 1.6 trans-1,3-Dichloropropene < 7.3 < 1.6 Ethanol < 120 k < 64 kToluene < 120 < 32 Acrolein < 1.8 < 0.8 $1, 1, 2$ -Trichloroethane < 0.87 < 0.16 Pentane < 94 < 32 2 -Hexanone < 66 < 16 Trichlorofluoromethane < 36 < 6.4 Tetrachloroethene 730 110 Acetone < 76 < 32 Dibromochloromethane < 1.4 < 0.16 2-Propanol < 140 < 56 $1, 2$ -Dibromoethane (EDB) < 1.2 < 0.16 1,1-Dichloroethene < 6.3 < 1.6 Chlorobenzene < 7.4 < 1.6 trans-1,2-Dichloroethene < 6.3 < 1.6 Ethylbenzene < 6.9 < 1.6 Methylene chloride < 560 < 160 $1,1,2,2$ -Tetrachloroethane < 2.2 < 0.32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Vinyl bromide <7 <1.6 trans-1,3-Dichloropropene <7.3 <1.6 Ethanol <120 k <64 kToluene <120 <32 Acrolein <1.8 <0.8 $1,1,2$ -Trichloroethane <0.87 <0.16 Pentane <94 <32 2 -Hexanone <66 <16 Trichlorofluoromethane <36 <6.4 Tetrachloroethene 730 110 Acetone <76 <32 Dibromochloromethane <1.4 <0.16 2-Propanol <140 <56 $1,2$ -Dibromoethane (EDB) <1.2 <0.16 1,1-Dichloroethene <6.3 <1.6 Chlorobenzene <7.4 <1.6 trans-1,2-Dichloroethene <6.3 <1.6 Ethylbenzene <6.9 <1.6 Methylene chloride <560 <160 $1,1,2,2$ -Tetrachloroethane <2.2 <0.32
Ethanol<120 k<64 kToluene<120<32Acrolein<1.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Acetone <76 <32 Dibromochloromethane <1.4 <0.16 2-Propanol <140 <56 $1,2$ -Dibromoethane (EDB) <1.2 <0.16 1,1-Dichloroethene <6.3 <1.6 Chlorobenzene <7.4 <1.6 trans-1,2-Dichloroethene <6.3 <1.6 Ethylbenzene <6.9 <1.6 Methylene chloride <560 <160 $1,1,2,2$ -Tetrachloroethane <2.2 <0.32
$\begin{array}{llllllllllllllllllllllllllllllllllll$
1,1-Dichloroethene< 6.3 < 1.6 Chlorobenzene< 7.4 < 1.6 trans-1,2-Dichloroethene< 6.3 < 1.6 Ethylbenzene< 6.9 < 1.6 Methylene chloride< 560 < 160 1,1,2,2-Tetrachloroethane< 2.2 < 0.32
trans-1,2-Dichloroethene < 6.3 < 1.6 Ethylbenzene < 6.9 < 1.6 Methylene chloride < 560 < 160 $1,1,2,2$ -Tetrachloroethane < 2.2 < 0.32
Methylene chloride <560 <160 1,1,2,2-Tetrachloroethane <2.2 <0.32
t-Butyl alcohol (TBA) <190 <64 Nonane <84 <16
3-Chloropropene <50 <16 Isopropylbenzene <160 <32
CFC-113 <25 <3.2 2-Chlorotoluene <83 <16
Carbon disulfide <100 <32 Propylbenzene <79 <16
Methyl t-butyl ether (MTBE) <120 <32 4-Ethyltoluene <79 <16
Vinyl acetate <110 <32 m,p-Xylene <14 <3.2
1,1-Dichloroethane <6.5 <1.6 o-Xylene <6.9 <1.6
cis-1,2-Dichloroethene <6.3 <1.6 Styrene <14 <3.2
Hexane <56 <16 Bromoform <33 <3.2
Chloroform <0.78 <0.16 Benzyl chloride <0.83 <0.16
Ethyl acetate<120<321,3,5-Trimethylbenzene<79<16
Tetrahydrofuran <9.4 <3.2 1,2,4-Trimethylbenzene <79 <16
2-Butanone (MEK) <94 <32 1,3-Dichlorobenzene <9.6 <1.6
1,2-Dichloroethane (EDC) <0.65 <0.16 1,4-Dichlorobenzene <3.7 <0.61
1,1,1-Trichloroethane <8.7 <1.6 1,2-Dichlorobenzene <9.6 <1.6
Carbon tetrachloride <5 <0.8 1,2,4-Trichlorobenzene <12 <1.6
Benzene <5.1 <1.6 Naphthalene <4.2 <0.8
Cyclohexane <110 <32 Hexachlorobutadiene <3.4 <0.32

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl Not Appl 06/16/23 Air ug/m3	icable	Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	Maul Foster Alongi Potter Air Sampling 03-1448 MB 061612.D GCMS7 bat	M0615.20.00	6
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		89	70	130			
		Conce	ntration			Concer	ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene		<1.2	< 0.7		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	< 0.99	< 0.2	1,4-Di		< 0.36	< 0.1
Chloromethane		<3.7	<1.8		Frimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		<0.044 j	<0.02 j		dichloromethane	< 0.067	< 0.01
Butane		<4.8	<2	Trichle	oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1	cis-1,3	-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1	4-Metl	nyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1	trans-	1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		$<\!7.5 \text{ k}$	<4 k	Toluer	ne	<7.5	<2
Acrolein		< 0.11	< 0.05	1,1,2-7	Trichloroethane	< 0.055	< 0.01
Pentane		<5.9	<2	2-Hexa	anone	<4.1	<1
Trichlorofluoromet	hane	<2.2	< 0.4	Tetrac	hloroethene	<6.8	<1
Acetone		<4.8	<2	Dibror	nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5	1,2-Di	bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroe	thene	< 0.4	< 0.1	Ethylk	enzene	< 0.43	< 0.1
Methylene chloride		<35	<10		-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB		<12	<4	Nonan		<5.2	<1
3-Chloropropene	,	<3.1	<1	Isopro	pylbenzene	<9.8	<2
CFC-113		<1.5	< 0.2		rotoluene	<5.2	<1
Carbon disulfide		< 6.2	<2	Propyl	benzene	<4.9	<1
Methyl t-butyl ethe	er (MTBE)	<7.2	<2		ltoluene	<4.9	<1
Vinyl acetate	. , ,	<7	<2	m,p-X	ylene	< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		< 0.43	< 0.1
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1	Styrer		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2	-	Frimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		Frimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorio		< 0.31	< 0.05	,	Frichlorobenzene	< 0.74	< 0.1
Benzene		< 0.32	< 0.1		halene	< 0.26	< 0.05
Cyclohexane		< 6.9	<2		hlorobutadiene	< 0.21	< 0.02
•					-		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188 Date Extracted: 06/26/23 Date Analyzed: 06/26/23

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
TWA-SV-43-061223 306188-01	<0.6
TWA-SV-41-061223 306188-02	<0.6
TWA-SV-DUP-061223 306188-03	<0.6
TWA-SV-42-061223 306188-05	<0.6
Method Blank ^{03-1465 MB}	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 306244-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	550	590	7
APH EC9-12 aliphatics	ug/m3	1,000	1,000	0
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	105	70-130
APH EC9-12 aliphatics	ug/m3	67	128	70-130
APH EC9-10 aromatics	ug/m3	67	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306244-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<6.6	<6.6	nm
Dichlorodifluoromethane	ug/m3	<5.4	<5.4	nm
Chloromethane	ug/m3	<20	<20	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	< 0.24	< 0.24	nm
Butane	ug/m3	<26	<26	nm
Bromomethane	ug/m3	<21	<21	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.4	<2.4	nm
Ethanol	ug/m3	<41	<41	nm
Acrolein	ug/m3	< 0.63	< 0.63	nm
Pentane	ug/m3	<32	<32	nm
Trichlorofluoromethane	ug/m3	<12	<12	nm
Acetone	ug/m3	32	30	6
2-Propanol	ug/m3	<47	<47	nm
1,1-Dichloroethene	ug/m3	<2.2	<2.2	nm
trans-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	<67	<67	nm
3-Chloropropene	ug/m3	$<\!\!17$	<17	nm
CFC-113	ug/m3	<8.4	<8.4	nm
Carbon disulfide	ug/m3	<34	<34	nm
Methyl t-butyl ether (MTBE)	ug/m3	<40	<40	nm
Vinyl acetate	ug/m3	<39	<39	nm
1,1-Dichloroethane	ug/m3	<2.2	<2.2	nm
cis-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
Hexane	ug/m3	<19	<19	nm
Chloroform	ug/m3	41	41	0
Ethyl acetate	ug/m3	<40	<40	nm
Tetrahydrofuran	ug/m3	<3.2	<3.2	nm
2-Butanone (MEK)	ug/m3	<32	<32	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	<3	<3	nm
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	<1.8	<1.8	nm
Cyclohexane	ug/m3	<38	<38	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2	<2	nm
2,2,4-Trimethylpentane	ug/m3	<26	<26	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306244-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	12	12	0
Trichloroethene	ug/m3	< 0.59	< 0.59	nm
cis-1,3-Dichloropropene	ug/m3	<5	<5	nm
4-Methyl-2-pentanone	ug/m3	<45	<45	nm
trans-1,3-Dichloropropene	ug/m3	<2.5	<2.5	nm
Toluene	ug/m3	<41	<41	nm
1,1,2-Trichloroethane	ug/m3	< 0.3	< 0.3	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<37	<37	nm
Dibromochloromethane	ug/m3	2.1	2.0	5
1,2-Dibromoethane (EDB)	ug/m3	< 0.42	< 0.42	nm
Chlorobenzene	ug/m3	<2.5	<2.5	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.76	< 0.76	nm
Nonane	ug/m3	<29	<29	nm
Isopropylbenzene	ug/m3	<54	<54	nm
2-Chlorotoluene	ug/m3	<28	<28	nm
Propylbenzene	ug/m3	<27	<27	nm
4-Ethyltoluene	ug/m3	<27	<27	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	<2.4	<2.4	nm
Styrene	ug/m3	<4.7	<4.7	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.28	< 0.28	nm
1,3,5-Trimethylbenzene	ug/m3	<27	<27	nm
1,2,4-Trimethylbenzene	ug/m3	<27	<27	nm
1,3-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,2,4-Trichlorobenzene	ug/m3	<4.1	<4.1	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	Dec. (*	0.1	Percent	A
N	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Propene	ug/m3	23	120	70-130
Dichlorodifluoromethane	ug/m3	67	125	70-130
Chloromethane	ug/m3	28	116	70-130
7-114	ug/m3	94	123	70-130
/inyl chloride	ug/m3	35	114	70-130
,3-Butadiene	ug/m3	30	98	70-130
Butane	ug/m3	32	114	70-130
Bromomethane	ug/m3	52	122	70-130
Chloroethane	ug/m3	36	117	70-130
/inyl bromide	ug/m3	59	102	70-130
Ethanol	ug/m3	25	133 vo	70-130
Acrolein	ug/m3	31	90	70-130
Pentane	ug/m3	40	104	70 - 130
Frichlorofluoromethane	ug/m3	76	129	70-130
Acetone	ug/m3	32	116	70 - 130
2-Propanol	ug/m3	33	108	70 - 130
,1-Dichloroethene	ug/m3	54	105	70-130
rans-1,2-Dichloroethene	ug/m3	54	102	70-130
Methylene chloride	ug/m3	94	117	70-130
-Butyl alcohol (TBA)	ug/m3	41	104	70-130
3-Chloropropene	ug/m3	42	109	70-130
CFC-113	ug/m3	100	119	70-130
Carbon disulfide	ug/m3	42	115	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	92	70-130
Vinyl acetate	ug/m3	48	104	70-130
,1-Dichloroethane	ug/m3	55	118	70-130
is-1,2-Dichloroethene	ug/m3	54	96	70-130
Hexane	ug/m3	48	91	70-130
Chloroform	ug/m3	66	113	70-130
Ethyl acetate	ug/m3	49	115	70-130
Fetrahydrofuran	ug/m3	40	102	70-130
2-Butanone (MEK)	ug/m3	40	101	70-130
,2-Dichloroethane (EDC)	ug/m3	55	118	70-130
1,1,1-Trichloroethane	ug/m3	74	115	70-130
Carbon tetrachloride	ug/m3	85	116	70-130
Benzene	ug/m3	43	98	70-130
Cyclohexane	ug/m3	46	84	70-130
,2-Dichloropropane	ug/m3	62	122	70-130
,4-Dioxane	ug/m3	49	96	70-130
2,2,4-Trimethylpentane	ug/m3 ug/m3	$\frac{49}{63}$	$\frac{90}{108}$	10-100

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Solution Gample	Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Methyl methacrylate	ug/m3	55	118	70-130			
Heptane	ug/m3	55	109	70-130			
Bromodichloromethane	ug/m3	90	127	70-130			
Trichloroethene	ug/m3	73	117	70-130			
cis-1,3-Dichloropropene	ug/m3	61	116	70-130			
4-Methyl-2-pentanone	ug/m3	55	108	70-130			
trans-1,3-Dichloropropene	ug/m3	61	110	70-130			
Toluene	ug/m3	51	87	70-130			
1,1,2-Trichloroethane	ug/m3	74	120	70-130			
2-Hexanone	ug/m3	55	117	70 - 130			
Tetrachloroethene	ug/m3	92	111	70 - 130			
Dibromochloromethane	ug/m3	120	116	70-130			
1,2-Dibromoethane (EDB)	ug/m3	100	112	70-130			
Chlorobenzene	ug/m3	62	108	70-130			
Ethylbenzene	ug/m3	59	87	70 - 130			
1,1,2,2-Tetrachloroethane	ug/m3	93	117	70 - 130			
Nonane	ug/m3	71	105	70 - 130			
Isopropylbenzene	ug/m3	66	92	70-130			
2-Chlorotoluene	ug/m3	70	98	70-130			
Propylbenzene	ug/m3	66	101	70 - 130			
4-Ethyltoluene	ug/m3	66	92	70-130			
m,p-Xylene	ug/m3	120	84	70-130			
o-Xylene	ug/m3	59	92	70-130			
Styrene	ug/m3	58	89	70-130			
Bromoform	ug/m3	140	98	70-130			
Benzyl chloride	ug/m3	70	110	70-130			
1,3,5-Trimethylbenzene	ug/m3	66	99	70-130			
1,2,4-Trimethylbenzene	ug/m3	66	91	70-130			
1,3-Dichlorobenzene	ug/m3	81	108	70-130			
1,4-Dichlorobenzene	ug/m3	81	103	70-130			
1,2-Dichlorobenzene	ug/m3	81	106	70-130			
1,2,4-Trichlorobenzene	ug/m3	100	85	70-130			
Naphthalene	ug/m3	71	73	70-130			
Hexachlorobutadiene	ug/m3	140	106	70-130			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/12/23 Project: Potter Air Sampling M0615.20.006, F&BI 306188

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	306188-05 (Dup	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

306188				SAMPL	E CHAI	N OF	CUST	ODY		l	06	י זנ	/2	3		
Report To Audrey	lack	ett		SAMPI	LERS (sign	lature)	An	1	Bily	/				1		
Company Maul Foster & Alongi Address 2815 2nd Ave, Ste 540				PROJECT NAME & ADDRESS Potter Air Sampling NOTES: One 1-L Summa and one 1-L Tedlar for sample				PO# MoGIS.20.006					Standard RUSH Rush charges authorized by: SAMPLE DISPOSAL Default: Clean after 3 days Archive (Fee may apply)			
City, State, ZIP Seaffle, WA 98121 Phone (206) 331-1835 Email ghackett Omaul foster								onel	acco	INVOICE TO accounting@ Maulfoster.com						
SAMPLE INFORMATION				······································			T		·	AN	ALYS	IS R	EQU	JEST	ED	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date Sampled	Initial Vac. ("Hg)	Initial	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	क T015 cV0Cs	APH	Helium	CH4, 02 (02	Notes
TWA-5N-43-061223	OB	8527	70	IA / SG	6/12/23	-29	093Z	-5	0936	X		煭	X	X	X	
TWA-SV-41-061223		F	55	LA / (SC)	6/12/23	-301	1033	-5	1038	X			Х	Х	X	
TWA-SV-DUP-061223	03	9987	241	IA / 60	6/12/23	-29.5	1033	-5	1038	X			X	X	Х	
TWA-5V-44-061223	04	8255	G 4	IA / SG	6/12/23	-29	1159	-5	1204	X			Х	X	Х	* MOT
TWA-SV-42-061223	osł	8207	301	IA / 🜀	6/12/23	-29.5	1239	-5	1244	X			X	X	Х	æ) =
				IA / SG												
				IA / 🜀												
				IA / (SG)						S	am	ple	s re	ce	ive	d at <u>23</u> °(

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: And Boby	Amanda Bixby	MFA	6/18/23	(315
Seattle, WA 98119-2029	Received by:	VINH	FRI	6/12/23	1315
Ph. (206) 285-8282	Relinquished by:		10.		
Fax (206) 283-5044	Received by:		;		· ·
FORMSNCOCNCOCTO45.DOC				l	

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 306188 Work Order Number: 2306186

June 20, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 6/13/2023 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 306188 2306186	Work Order Sample Summary	
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2306186-001	TWA-SV-43-061223	06/12/2023 9:36 AM	06/13/2023 1:30 PM
2306186-002	TWA-SV-41-061223	06/12/2023 10:38 AM	06/13/2023 1:30 PM
2306186-003	TWA-SV-DUP-061223	06/12/2023 10:38 AM	06/13/2023 1:30 PM
2306186-004	TWA-SV-44-061223	06/12/2023 12:04 PM	06/13/2023 1:30 PM
2306186-005	TWA-SV-42-061223	06/12/2023 12:44 PM	06/13/2023 1:30 PM

Case Narrative

WO#: **2306186** Date: **6/20/2023**

CLIENT:Friedman & BruyaProject:306188

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2306186** Date Reported: **6/20/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

 Work Order:
 2306186

 Date Reported:
 6/20/2023

CLIENT:	Friedman & Bruya
Project:	306188

Lab ID: 2306186-001 Client Sample ID: TWA-SV-4	3-061223		Collectio Matrix: A		6/12/2023 9:36:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method	<u>3C</u>		Batc	h ID: R8	4687 Analyst: LB
Carbon Dioxide	2.48	0.0500	%	1	6/14/2023 3:53:00 PM
Methane	ND	0.0500	%	1	6/14/2023 3:53:00 PM
Oxygen	18.8	0.0500	%	1	6/14/2023 3:53:00 PM
Lab ID: 2306186-002			Collectio	n Date:	6/12/2023 10:38:00 AM
Client Sample ID: TWA-SV-4	1-061223		Matrix: A	Air	
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method	<u>3C</u>		Batc	h ID: R8	4687 Analyst: LB

Carbon Dioxide	ND	0.0500	%	1	6/14/2023 4:06:00 PM
Methane	ND	0.0500	%	1	6/14/2023 4:06:00 PM
Oxygen	20.4	0.0500	%	1	6/14/2023 4:06:00 PM

Lab ID: 2306186-003 Client Sample ID: TWA-SV-DUP-	061223		Collectior Matrix: A		6/12/2023 10:38:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	ID: R8	4687 Analyst: LB
Carbon Dioxide	ND	0.0500	%	1	6/14/2023 4:47:00 PM
Methane	ND	0.0500	%	1	6/14/2023 4:47:00 PM
Oxygen	20.4	0.0500	%	1	6/14/2023 4:47:00 PM

Analytical Report

 Work Order:
 2306186

 Date Reported:
 6/20/2023

CLIENT:	Friedman & Bruya
Project:	306188

Lab ID: 2306186-004 Client Sample ID: TWA-SV-44-06	1223		Collectio Matrix: A		6/12/2023 12:04:00 PM		
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Major Gases by EPA Method 3C			Batc	h ID: R8	4687 Analyst: LB		
Carbon Dioxide	1.54	0.0500	%	1	6/14/2023 5:00:00 PM		
Methane	ND	0.0500	%	1	6/14/2023 5:00:00 PM		
Oxygen	20.6	0.0500	%	1	6/14/2023 5:00:00 PM		

Lab ID:	2306186-	005	
Client Sa	ample ID:	TWA-SV-42-061223	
Analyses	5	Result	RL Qual

Collection Date: 6/12/2023 12:44:00 PM

Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batc	h ID: R	34687 Analyst: LB
Carbon Dioxide	1.79	0.0500	%	1	6/14/2023 5:13:00 PM
Methane	ND	0.0500	%	1	6/14/2023 5:13:00 PM
Oxygen	20.3	0.0500	%	1	6/14/2023 5:13:00 PM

Project:

CLIENT: Friedman & Bruya

306188

QC SUMMARY REPORT

Major Gases by EPA Method 3C

Sample ID: LCS-R84687	SampType: LCS			Units: %		Prep Da	te: 6/14/20)23	RunNo: 846	687			
Client ID: LCSW	Batch ID: R84687					Analysis Da	te: 6/14/20)23	SeqNo: 176	SeqNo: 1767579			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Carbon Dioxide	103	0.0500	100.0	0	103	70	130						
Methane	103	0.0500	100.0	0	103	70	130						
Oxygen	102	0.0500	100.0	0	102	70	130						
Sample ID: 2306186-001AREP	SampType: REP			Units: %		Prep Da	te: 6/14/20)23	RunNo: 846	687			
Client ID: TWA-SV-43-061223	Batch ID: R84687					Analysis Da	te: 6/14/20)23	SeqNo: 176	67575			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Carbon Dioxide	2.50	0.0500						2.476	1.13	30			
Methane	ND	0.0500						0		30			
Wethane	ND	0.0000						0		00			

Sample Log-In Check List

Client Name: FE	3	Work Order Number: 2306186								
Logged by: Cl	are Griggs	Date Received:	1:30:00 PM							
Chain of Custod	v									
1. Is Chain of Cust	-	Yes 🗹	No 🗌	Not Present						
2. How was the sar		Client								
<u>Log In</u>										
	resent on shipping container/cooler? nts for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹						
4. Was an attempt	made to cool the samples?	Yes	No 🗌	NA 🖌						
5. Were all items re	eceived at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹						
6. Sample(s) in prop	per container(s)?	Yes 🖌	No 🗌							
7. Sufficient sample	e volume for indicated test(s)?	Yes 🗹	No 🗌							
8. Are samples prop	perly preserved?	Yes 🖌	No 🗌							
9. Was preservative	e added to bottles?	Yes	No 🗹	NA 🗌						
10. Is there headspa	ce in the VOA vials?	Yes	No 🗌	NA 🔽						
11. Did all samples of	containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌							
12. Does paperwork	match bottle labels?	Yes 🖌	No 🗌							
13. Are matrices corr	rectly identified on Chain of Custody?	Yes 🖌	No 🗌							
14. Is it clear what ar	nalyses were requested?	Yes 🖌	No 🗌							
15. Were all holding	times able to be met?	Yes 🖌	No 🗌							
Special Handling	<u>g (if applicable)</u>									
16. Was client notif	ied of all discrepancies with this order?	Yes	No 🗌	NA 🔽						
Person No	tified: Date	:								
By Whom:	Via:	eMail Ph	ione 🗌 Fax 🛛	In Person						
Regarding	:									
Client Inst	ructions:									

17. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			SUBCONT	RACT	SAMP	LE C	HAI	N OF	CU	STO	DY			2	23	Ø6	186	
Send Report <u>ToMichae</u>	el Erda	ahl		SUBC	CONTRA Fre	CTER mont] [TU	Page	#1 ROUND 7	of1 TIME	
CompanyFriedman and Bruya, Inc				ECT NA	ME/N	Ю.		PO #				Standard TAT RUSH					9 of	
					3	06188				D-3	328		R			uthorized	l by:	Page (
Address 3012 16				REM	ARKS							-			AMPL	SAL	<u>م</u>	
City, State, ZIP_Seattle	, WA 9	98119			EQu	IS 4 E	DD							Dispos Return		r 30 days oles		
Phone #(206) 285-8282	merd	ahl@friedma	anandbruya.con	n	Liqu							_				h instruct	ions	
									ANAL	YSE	S REG	QUES	TED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	major gases CH4, O2, CO2	COD	Nitrate	Sulfate	C02	dissolved methane					Ν	otes	
TWA-SV-43-061223		6/12/2023	936	vapor	1	x												
TWA-SV-41-061223		6/12/2023	1038	vapor	1	х												
TWA-SV-DUP-061223		6/12/2023	1038	vapor	1	x												
TWA-SV-44-061223		6/12/2023	1204	vapor	1	x												_
TWA-SV-42-061223		6/12/2023	1244	vapor	1	x												_
																		_
																DATE	mixer	
Friedman & Bruya, Inc. 3012 16th Avenue West	Relin	signished by	NATURE	9	Michae	l Erda	hl	JAME			Frie		MPAN & Br			DATE /12/13	TIME 03/01	pm
Seattle, WA 98119-2029		ived by:	with		Alli	Mil	llir				1	=A1			ć		313	30
Ph. (206) 285-8282	Relir	quished by:	1															
Fax (206) 283-5044	Rece	ived by:																

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 27, 2023

Audrey Hackett, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Hackett:

Included are the results from the testing of material submitted on June 13, 2023 from the Potter Air Sampling M0615.20.006, F&BI 306193 project. There are 17 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Amanda Bixby MFA0627R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 13, 2023 by Friedman & Bruya, Inc. from the Maul Foster Alongi Potter Air Sampling M0615.20.006, F&BI 306193 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
306193 -01	TWA-SV-45-061223
306193 -02	TWA-SV-35-061223
306193 -03	TWA-SV-36-061223

The samples were sent to Fremont Analytical for major gases analysis. The tedlar for TWA-SV-45-061223 was compromised, therefore a tedlar was prepared from the canister once the analysis was complete. The report from Fremont for samples TWA-SV-35-061223 and TWA-SV-36-061223 is included in the report. The report for TWA-SV-45-061223 will be forwarded upon receipt.

The APH EC5-8 aliphatics, APH EC9-12 aliphatics, hexane, cyclohexane, 2,2,4trimethylpentane, and heptane concentrations in sample TWA-SV-35-061223 exceeded the calibration range of the instrument. The data were flagged accordingly.

The tetrachloroethene concentration in sample TWA-SV-45-061223 exceeded the calibration range of the instrument. The data were flagged accordingly.

The TO-15 calibration standard exceeded the acceptance criteria for several analytes. The compounds were not detected, therefore the results do not represent an out of control condition.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-45-0612 06/13/23 06/12/23 06/27/23 Air ug/m3	Projec Lab II Data I	t: D: File: iment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306193-01 1/16 062630.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <400			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<6,200

APH EC9-12 aliphatics 230,000 ve

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-35-06122 06/13/23 06/12/23 06/27/23 Air ug/m3	23 Client: Project Lab II Data F Instru Operat	t:): File: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306193-02 1/250 062631.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 117	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 670,000 ve			

9	
U	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-36-06122 06/13/23 06/12/23 06/27/23 Air ug/m3	23 Client: Project Lab ID Data F Instrui Operat	: : 'ile: ment:	Maul Foster Alongi Potter Air Sampling M0615.20.006 306193-03 1/5.3 062629.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

AFTI E09-12 alignatics200APH EC9-10 aromatics<130</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 06/26/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 03-1461 MB 062612.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV- 06/13/23 06/12/23 06/27/23 Air ug/m3	45-061223	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Maul Foster Alongi Potter Air Sampling 306193-01 1/16 062630.D GCMS7 bat	M0615.20.00)6
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		95	70	130			
		Concen	tration			Conce	entration
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene		<19	<11	1,2-Dic	hloropropane	<3.7	< 0.8
Dichlorodifluorome	thane	<16	<3.2	1,4-Dic		<5.8	<1.6
Chloromethane		<59	<29	2,2,4-T	rimethylpentane	<75	<16
F-114		<34	<4.8	Methy	l methacrylate	<66	<16
Vinyl chloride		<4.1	<1.6	Heptai	ne	<66	<16
1,3-Butadiene		< 0.71	< 0.32	Bromo	dichloromethane	<1.1	< 0.16
Butane		<76	<32	Trichlo	proethene	<1.7	< 0.32
Bromomethane		<62	<16	cis-1,3-	Dichloropropene	<15	<3.2
Chloroethane		<42	<16	4-Meth	yl-2-pentanone	<130 k	<32 k
Vinyl bromide		<7	<1.6	trans-1	,3-Dichloropropene	<7.3	<1.6
Ethanol		<120 k	<64 k	Toluen		<120	<32
Acrolein		<1.8 k	<0.8 k		richloroethane	< 0.87	< 0.16
Pentane		<94	<32	2-Hexa		<66	<16
Trichlorofluoromet	hane	<36	< 6.4		hloroethene	2,300 ve	340 ve
Acetone		<76	<32		nochloromethane	<1.4	< 0.16
2-Propanol		<140	<56		promoethane (EDB)	<1.2	< 0.16
1,1-Dichloroethene	_	<6.3	<1.6		benzene	<7.4	<1.6
trans-1,2-Dichloroe		<6.3	<1.6		enzene	<6.9	<1.6
Methylene chloride		<560	<160		-Tetrachloroethane	<2.2	< 0.32
t-Butyl alcohol (TB	A)	<190 k	<64 k	Nonan		<84	<16
3-Chloropropene		<50	<16		oylbenzene	<160	<32
CFC-113		<25	<3.2		rotoluene	<83	<16
Carbon disulfide		<100	<32		benzene	<79	<16
Methyl t-butyl ethe	er (MTBE)	<120	<32	-	ltoluene	<79	<16
Vinyl acetate		<110 k	<32 k	m,p-Xy		<14	<3.2
1,1-Dichloroethane		<6.5	<1.6	o-Xylei		<6.9	<1.6
cis-1,2-Dichloroethe	ene	<6.3	<1.6	Styren		<14	<3.2
Hexane		<56	<16	Bromo		<33	<3.2
Chloroform		<0.78	<0.16		chloride	<0.83 k	<0.16 k
Ethyl acetate		<120	<32		'rimethylbenzene	<79 <79	<16
Tetrahydrofuran		<9.4 <94	<3.2 <32		rimethylbenzene		<16
2-Butanone (MEK)	(FDC)	<94 <0.65	<32 <0.16		chlorobenzene chlorobenzene	<9.6 k <3.7 k	<1.6 k <0.61 k
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.65 <8.7	<0.16 <1.6		chlorobenzene	<3.7 к <9.6 k	<0.61 k <1.6 k
Carbon tetrachloric		<8.7 <5	<1.6 <0.8		richlorobenzene	<9.6 k <12 k	<1.6 k <1.6 k
Benzene	ie.	<5.1	<0.8 <1.6	1,2,4-1 Napht		<12 K <4.2	<1.6 K <0.8
Cyclohexane		<0.1 <110	<1.6 <32	-	nlorobutadiene	<4.2 <3.4 k	<0.8 <0.32 k
Cyclonexalle		~110	~34	TIEXaci	norobutatiene	∿∂.4 K	~0.3⊿ K

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV-35-0612 06/13/23 06/12/23 06/27/23 Air ug/m3	Proj Lab Data Inst	ect:	Maul Foster Alongi Potter Air Sampling 306193-02 1/250 062631.D GCMS7 bat	g M0615.20.0	06
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenz		70	130			
1 Diomondorobenz	100	10	100			
	Conc	entration			Conce	entration
Compounds:	ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
-	C C		-		Ū.	
Propene	<300	<170	1,2-Dic	hloropropane	<58	<12
Dichlorodifluorome	thane <250	<50	1,4-Dio	oxane	<90	<25
Chloromethane	<930	<450	2,2,4-T	rimethylpentane	42,000 ve	9,000 ve
F-114	<520	<75	Methyl	methacrylate	<1,000	<250
Vinyl chloride	<64	<25	Heptar	ne	29,000 ve	7,100 ve
1,3-Butadiene	<11	<5	Bromo	dichloromethane	<17	<2.5
Butane	<1,200	<500	Trichlo	roethene	<27	<5
Bromomethane	<970	<250	cis-1,3-	Dichloropropene	<230	<50
Chloroethane	<660	<250	4-Meth	yl-2-pentanone	<2,000 k	<500 k
Vinyl bromide	<110	<25	trans-1	,3-Dichloropropene	<110	<25
Ethanol	<1,900 k	<1,000 k	Toluen	e	<1,900	<500
Acrolein	<29 k	<12 k	1,1,2-T	richloroethane	<14	<2.5
Pentane	2,400	830	2-Hexa	none	<1,000	<250
Trichlorofluoromet	hane <560	<100	Tetracl	nloroethene	<1,700	<250
Acetone	<1,200	<500	Dibron	nochloromethane	<21	<2.5
2-Propanol	<2,200	<870	1,2-Dib	promoethane (EDB)	<19	<2.5
1,1-Dichloroethene	<99	<25	Chloro	benzene	<120	<25
trans-1,2-Dichloroe	thene <99	<25	Ethylb	enzene	<110	<25
Methylene chloride	<8,700	<2,500	1,1,2,2	Tetrachloroethane	<34	<5
t-Butyl alcohol (TB	A) <3,000 k	<1,000 k	Nonan	e	<1,300	<250
3-Chloropropene	<780	<250	Isoprop	oylbenzene	<2,500	<500
CFC-113	<380	<50	2-Chlor	rotoluene	<1,300	<250
Carbon disulfide	<1,600	<500	Propyll	benzene	<1,200	<250
Methyl t-butyl ethe	er (MTBE) <1,800	<500	4-Ethy	ltoluene	<1,200	<250
Vinyl acetate	<1,800 k	<500 k	m,p-Xy	lene	<220	<50
1,1-Dichloroethane	<100	<25	o-Xyler	ne	170	38
cis-1,2-Dichloroeth	ene <99	<25	Styren	е	<210	<50
Hexane	24,000 ve	6,800 ve	Bromot	form	<520	<50
Chloroform	<12	<2.5	Benzyl	chloride	<13 k	<2.5 k
Ethyl acetate	<1,800	<500	1,3,5-T	rimethylbenzene	<1,200	<250
Tetrahydrofuran	<150	<50	1,2,4 - T	rimethylbenzene	<1,200	<250
2-Butanone (MEK)		<500		hlorobenzene	<150 k	<25 k
1,2-Dichloroethane	. ,	<2.5		hlorobenzene	<57 k	<9.5 k
1,1,1-Trichloroetha		<25		hlorobenzene	<150 k	$<\!25$ k
Carbon tetrachlorid		<12		richlorobenzene	<190 k	<25 k
Benzene	<80	<25	Naphtl		<68	<13
Cyclohexane	20,000 ve	5,900 ve	Hexach	nlorobutadiene	<53 k	<5 k

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	TWA-SV 06/13/23 06/12/23 06/27/23 Air ug/m3	-36-061223	Proje Lab Data Insti	ect:	Maul Foster Alongi Potter Air Sampling 306193-03 1/5.3 062629.D GCMS7 bat	M0615.20.0	06
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		94	70	130			
		Concen	tration			Conc	entration
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene		< 6.4	<3.7	1,2-Dic	hloropropane	<1.2	< 0.26
Dichlorodifluorome	thane	<5.2	<1.1	1,4-Dic	oxane	<1.9	< 0.53
Chloromethane		<20	<9.5	2,2,4-T	rimethylpentane	<25	<5.3
F-114		<11	<1.6	Methyl	l methacrylate	<22	<5.3
Vinyl chloride		<1.4	< 0.53	Heptar		<22	<5.3
1,3-Butadiene		< 0.23	< 0.11		dichloromethane	< 0.36	< 0.053
Butane		<25	<11		oroethene	< 0.57	< 0.11
Bromomethane		<21	<5.3		Dichloropropene	<4.8	<1.1
Chloroethane		<14	<5.3		yl-2-pentanone	<43 k	<11 k
Vinyl bromide		<2.3	< 0.53		,3-Dichloropropene	<2.4	< 0.53
Ethanol		<40 k	<21 k	Toluen		<40	<11
Acrolein			<0.26 k		richloroethane	< 0.29	< 0.053
Pentane		<31	<11	2-Hexa		<22	<5.3
Trichlorofluoromet	hane	<12	<2.1		hloroethene	43	6.3
Acetone		<25	<11		nochloromethane	< 0.45	< 0.053
2-Propanol		<46	<19		promoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene		<2.1	< 0.53		benzene	<2.4	< 0.53
trans-1,2-Dichloroe		<2.1	< 0.53		enzene	2.9	0.66
Methylene chloride		<180	<53		-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TB	A)	<64 k	<21 k	Nonan		<28	<5.3
3-Chloropropene		<17	<5.3		oylbenzene	<52	<11
CFC-113		<8.1	<1.1		rotoluene	<27	<5.3
Carbon disulfide		<33	<11		benzene	<26	<5.3
Methyl t-butyl ethe	er (MTBE)	<38	<11		ltoluene	<26	<5.3
Vinyl acetate		<37 k	<11 k	m,p-Xy		10	2.3
1,1-Dichloroethane		<2.1	< 0.53	o-Xyler		2.6	0.59
cis-1,2-Dichloroethe	ene	<2.1	< 0.53	Styren		<4.5	<1.1
Hexane		<19	<5.3	Bromo		<11	<1.1
Chloroform		2.5	0.52		chloride		<0.053 k
Ethyl acetate		<38	<11		rimethylbenzene	<26	<5.3
Tetrahydrofuran		<3.1 <31	<1.1 <11		rimethylbenzene	<26	<5.3
2-Butanone (MEK)		<0.21	<0.053		chlorobenzene	<3.2 k <1.2 k	<0.53 k <0.2 k
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.21 <2.9	<0.053 <0.53		chlorobenzene chlorobenzene	<1.2 k <3.2 k	<0.2 k <0.53 k
Carbon tetrachlorid		< 2.9 < 1.7	<0.53 <0.26		richlorobenzene	<3.2 k <3.9 k	<0.53 k <0.53 k
Benzene	16	<1.7 <1.7	<0.26 <0.53	1,2,4-1 Naphtl		<5.9 к <1.4	<0.35 K <0.26
Cyclohexane		<1.7 <36	<0.55 <11		nlorobutadiene	<1.4 <1.1 k	<0.26 <0.11 k
Cyclonexalle		~30	\11	Tiexact	norobutaulelle	∧1.1 K	~0.11 K

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appli Not Appli 06/26/23 Air ug/m3	cable	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Potter Air Sampling M0615.20.006 03-1461 MB 062612.D GCMS7 bat			
		%	Lower	Unnor				
Surrogates:	R	ecovery:	Lower Limit:	Upper Limit:				
4-Bromofluorobenze		91	70	130				
4-Dromondorobenize		01	10	100				
		Conce	entration			Conce	entration	
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv	
1		0	11	1		5	11	
Propene		<1.2	< 0.7	1,2-Dio	chloropropane	< 0.23	< 0.05	
Dichlorodifluoromet	hane	< 0.99	< 0.2	1,4-Die	oxane	< 0.36	< 0.1	
Chloromethane		<3.7	<1.8	2,2,4-T	rimethylpentane	<4.7	<1	
F-114		<2.1	< 0.3	Methy	l methacrylate	<4.1	<1	
Vinyl chloride		< 0.26	< 0.1	Heptar	ne	<4.1	<1	
1,3-Butadiene		< 0.044	< 0.02	Bromo	dichloromethane	< 0.067	< 0.01	
Butane		<4.8	<2	Trichle	oroethene	< 0.11	< 0.02	
Bromomethane		<3.9	<1	cis-1,3	Dichloropropene	< 0.91	< 0.2	
Chloroethane		<2.6	<1	4-Meth	nyl-2-pentanone	<8.2 k	<2 k	
Vinyl bromide		< 0.44	< 0.1	trans-1	1,3-Dichloropropene	< 0.45	< 0.1	
Ethanol		<7.5 k	<4 k	Toluen		<7.5	<2	
Acrolein		<0.11 k	< 0.05 k	1,1,2-T	richloroethane	< 0.055	< 0.01	
Pentane		<5.9	<2	2-Hexa		<4.1	<1	
Trichlorofluorometh	ane	<2.2	< 0.4		hloroethene	<6.8	<1	
Acetone		<4.8	<2		nochloromethane	< 0.085	< 0.01	
2-Propanol		<8.6	<3.5		promoethane (EDB)	< 0.077	< 0.01	
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1	
trans-1,2-Dichloroet	hene	< 0.4	< 0.1		enzene	< 0.43	< 0.1	
Methylene chloride		<35	<10		-Tetrachloroethane	< 0.14	< 0.02	
t-Butyl alcohol (TBA	A)	<12 k	<4 k	Nonan		<5.2	<1	
3-Chloropropene		<3.1	<1		pylbenzene	<9.8	<2	
CFC-113		<1.5	< 0.2		rotoluene	<5.2	<1	
Carbon disulfide		<6.2	<2		benzene	<4.9	<1	
Methyl t-butyl ether	r (MTBE)	<7.2	<2		ltoluene	<4.9	<1	
Vinyl acetate		<7 k	<2 k	m,p-Xy		< 0.87	< 0.2	
1,1-Dichloroethane		< 0.4	< 0.1	o-Xylei		< 0.43	< 0.1	
cis-1,2-Dichloroethe	ne	<0.4	< 0.1	Styren		< 0.85	< 0.2	
Hexane		<3.5	<1	Bromo		<2.1	< 0.2	
Chloroform		< 0.049	< 0.01		chloride	<0.052 k	<0.01 k	
Ethyl acetate		<7.2	<2		'rimethylbenzene	<4.9	<1	
Tetrahydrofuran		<0.59	<0.2		rimethylbenzene	<4.9	<1 <0.1 k	
2-Butanone (MEK) 1,2-Dichloroethane		<5.9	<2		chlorobenzene	<0.6 k	<0.1 k <0.038 k	
1,2-Dichloroethane	. ,	<0.04 <0.55	<0.01 <0.1		chlorobenzene chlorobenzene	<0.23 k <0.6 k	<0.038 k <0.1 k	
Carbon tetrachlorid		<0.55 <0.31	<0.1 <0.05	· ·	richlorobenzene	<0.6 k <0.74 k	<0.1 k <0.1 k	
Benzene	e	< 0.31	<0.05 <0.1	1,2,4-1 Napht		<0.74 K <0.26	<0.1 K <0.05	
Cyclohexane		<0.52 <6.9	<0.1 <2		nlorobutadiene	<0.26 <0.21 k	<0.05 <0.02 k	
Cyclonexane		~0.9	~4	Tiexacl	noroputatiene	~0.⊿1 K	~0.0⊿ K	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193 Date Extracted: 06/27/23 Date Analyzed: 06/27/23

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
TWA-SV-45-061223 306193-01	<0.6
TWA-SV-35-061223 306193-02	<0.6
TWA-SV-36-061223 306193-03	<0.6
Method Blank ^{03-1519 MB}	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 306327-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	430	420	2
APH EC9-12 aliphatics	ug/m3	710	730	3
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	74	70-130
APH EC9-12 aliphatics	ug/m3	67	99	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306327-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	52	56	7
Dichlorodifluoromethane	ug/m3	<5.5	<5.5	nm
Chloromethane	ug/m3	<21	<21	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	5.9	6.0	2
Butane	ug/m3	<27	<27	nm
Bromomethane	ug/m3	<22	<22	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.4	<2.4	nm
Ethanol	ug/m3	<42	<42	nm
Acrolein	ug/m3	2.4	2.4	0
Pentane	ug/m3	<33	<33	nm
Trichlorofluoromethane	ug/m3	<13	<13	nm
Acetone	ug/m3	70	74	6
2-Propanol	ug/m3	<48	<48	nm
1,1-Dichloroethene	ug/m3	<2.2	<2.2	nm
trans-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	<68	<68	nm
3-Chloropropene	ug/m3	<18	<18	nm
CFC-113	ug/m3	<8.6	<8.6	nm
Carbon disulfide	ug/m3	<35	<35	nm
Methyl t-butyl ether (MTBE)	ug/m3	<40	<40	nm
Vinyl acetate	ug/m3	<39	<39	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
Hexane	ug/m3	<20	<20	nm
Chloroform	ug/m3	0.41	0.41	0
Ethyl acetate	ug/m3	<40	<40	nm
Tetrahydrofuran	ug/m3	<3.3	<3.3	nm
2-Butanone (MEK)	ug/m3	<33	<33	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	< 0.23	nm
1,1,1-Trichloroethane	ug/m3	<3.1	<3.1	nm
Carbon tetrachloride	ug/m3	<1.8	<1.8	nm
Benzene	ug/m3	2.5	2.5	0
Cyclohexane	ug/m3	<39	<39	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2	<2	nm
2,2,4-Trimethylpentane	ug/m3	<26	<26	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306327-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.38	< 0.38	nm
Trichloroethene	ug/m3	<0.6	< 0.6	nm
cis-1,3-Dichloropropene	ug/m3	< 5.1	<5.1	nm
4-Methyl-2-pentanone	ug/m3	<46	<46	nm
trans-1,3-Dichloropropene	ug/m3	$<\!\!2.5$	<2.5	nm
Toluene	ug/m3	<42	<42	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<38	<38	nm
Dibromochloromethane	ug/m3	< 0.48	< 0.48	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.43	< 0.43	nm
Chlorobenzene	ug/m3	<2.6	<2.6	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.77	< 0.77	nm
Nonane	ug/m3	<29	<29	nm
Isopropylbenzene	ug/m3	$<\!\!55$	$<\!\!55$	nm
2-Chlorotoluene	ug/m3	<29	<29	nm
Propylbenzene	ug/m3	<28	<28	nm
4-Ethyltoluene	ug/m3	<28	<28	nm
m,p-Xylene	ug/m3	<4.9	<4.9	nm
o-Xylene	ug/m3	<2.4	<2.4	nm
Styrene	ug/m3	<4.8	<4.8	nm
Bromoform	ug/m3	<12	<12	nm
Benzyl chloride	ug/m3	< 0.29	< 0.29	nm
1,3,5-Trimethylbenzene	ug/m3	<28	<28	nm
1,2,4-Trimethylbenzene	ug/m3	<28	<28	nm
1,3-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,2,4-Trichlorobenzene	ug/m3	<4.2	<4.2	nm
Naphthalene	ug/m3	<1.5	<1.5	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Reporting AnalyteReporting UnitsSpike LevelRecovery LCSAcceptance CriteriaPropeneug/m32312670-130Dichlorodifluoromethaneug/m3288170-130Chloromethaneug/m3288170-130F-114ug/m39412870-130Vinyl chlorideug/m33510470-1301,3-Butadieneug/m33210270-130Butaneug/m33210270-130Bromomethaneug/m35211070-130Chloroethaneug/m35510970-130Ethanolug/m32511070-130Acroleinug/m33110270-130Pentaneug/m33110270-130Pentaneug/m3338470-1302-Propanolug/m3338470-1301,1-Dichloroetheneug/m35410470-1304-Butyl alcohol (TBA)ug/m3419170-1303-Chloropropeneug/m34210270-130Critoriaug/m34310011970-130Chloropteneug/m3499070-1301,1-Dichloroetheneug/m35510670-130Chloropteneug/m3419170-130Chloropteneug/m34210870-130Chloropteneug/m3499070-130 <td< th=""><th>Laboratory Code. Laboratory Co</th><th>Sample</th><th></th><th>Percent</th><th></th></td<>	Laboratory Code. Laboratory Co	Sample		Percent	
AnalyteUnitsLevelLCSCriteriaPropeneug/m32312670.130Dichlorodifluoromethaneug/m36711170.130Dichlorodifluoromethaneug/m36711170.130F-114ug/m39412870.130Vinyl chlorideug/m33510470.1301,3-Butadieneug/m33210270.130Butaneug/m33210270.130Bromomethaneug/m35211070.130Chloroethaneug/m35511070.130Chloroethaneug/m35511070.130Ethanolug/m33110270.130Pentaneug/m33110270.130Pentaneug/m3338470.130Acetoneug/m3338470.1302.Propanolug/m3338470.1301.1.Dichloroetheneug/m35410470.130trans-1.2.Dichloroetheneug/m3419170.1303.Chloropropeneug/m34210270.130Gerbon disulfideug/m34310070.130Chloroethaneug/m3489970.130JDichloroethaneug/m34910070.130Gerbon disulfideug/m3419170.130Chloropropeneug/m3489970.130Chloropthaneug/m34899		Reporting	Sniko		Accentance
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analyte				-
Dichlorodifluoromethane $ug/m3$ 67 111 70.130 Chloromethane $ug/m3$ 28 81 70.130 F-114 $ug/m3$ 94 128 70.130 Vinyl chloride $ug/m3$ 35 104 70.130 1,3-Butadiene $ug/m3$ 32 102 70.130 Butane $ug/m3$ 32 102 70.130 Bromomethane $ug/m3$ 32 102 70.130 Chloroethane $ug/m3$ 52 110 70.130 Chloroethane $ug/m3$ 52 110 70.130 Ethanol $ug/m3$ 25 110 70.130 Acrolein $ug/m3$ 31 102 70.130 Pentane $ug/m3$ 31 102 70.130 Acetone $ug/m3$ 31 102 70.130 2-Propanol $ug/m3$ 32 105 70.130 2-Propanol $ug/m3$ 34 105 70.130 1,1-Dichloroethene $ug/m3$ 54 105 70.130 4-Propanol $ug/m3$ 41 91 70.130 5-CFC-113 $ug/m3$ 42 102 70.130 CFC-113 $ug/m3$ 42 108 70.130 Carbon disulfide $ug/m3$ 43 100 70.130 Methyl t-butyl ether (MTBE) $ug/m3$ 48 93 70.130 1, 1-Dichloroethane $ug/m3$ 45 104 70.130 Hexane $ug/m3$ 48 99 <td></td> <td></td> <td></td> <td></td> <td></td>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			
F-114ug/m39412870-130Vinyl chlorideug/m33510470-1301,3-Butadieneug/m33010370-130Butaneug/m33210270-130Bromomethaneug/m35211070-130Chloroethaneug/m35910970-130Chloroethaneug/m35910970-130Ethanolug/m32511070-130Acroleinug/m3409970-130Pentaneug/m37611670-130Acetoneug/m33210570-130Pentaneug/m33210570-1302-Propanolug/m33410470-1301,1-Dichloroetheneug/m35410470-130trans-1,2-Dichloroetheneug/m3419170-130CFC-113ug/m3419170-130CFC-113ug/m34210270-130Carbon disulfideug/m3489370-130Vinyl acetateug/m3489370-130Vinyl acetateug/m3489370-130Hexaneug/m3489970-130Chloropthaneug/m3489970-130Lin-Dichloroethaneug/m3489970-130Lin-Dichloroethaneug/m3489970-130Lin-Dichloroethaneug/m3489970-130		0			
Vinyl chloride $ug/m3$ 35 104 70.130 1,3-Butadiene $ug/m3$ 30 103 70.130 Butane $ug/m3$ 32 102 70.130 Bromomethane $ug/m3$ 52 110 70.130 Chloroethane $ug/m3$ 52 110 70.130 Vinyl bromide $ug/m3$ 59 109 70.130 Ethanol $ug/m3$ 25 110 70.130 Acrolein $ug/m3$ 31 102 70.130 Pentane $ug/m3$ 40 99 70.130 Acetone $ug/m3$ 32 105 70.130 2.Propanol $ug/m3$ 33 84 70.130 1,1-Dichloroethene $ug/m3$ 54 104 70.130 trans-1,2-Dichloroethene $ug/m3$ 54 104 70.130 trans-1,2-Dichloroethene $ug/m3$ 41 91 70.130 trans-1,2-Dichloroethene $ug/m3$ 42 102 70.130 GCFC-113 $ug/m3$ 42 102 70.130 CFC-113 $ug/m3$ 42 108 70.130 Carbon disulfide $ug/m3$ 45 104 70.130 Methyl t-butyl ether (MTBE) $ug/m3$ 48 93 70.130 Lip-Lip-lochloroethane $ug/m3$ 48 93 70.130 Chloroform $ug/m3$ 48 99 70.130 Lip-Lip-lochloroethane $ug/m3$ 46 104 70.130 Chlorofo		0			
1,3-Butadiene $ug/m3$ 3010370-130Butane $ug/m3$ 3210270-130Bromomethane $ug/m3$ 5211070-130Chloroethane $ug/m3$ 5211070-130Chloroethane $ug/m3$ 5910970-130Ethanol $ug/m3$ 2511070-130Acrolein $ug/m3$ 3110270-130Pentane $ug/m3$ 409970-130Pentane $ug/m3$ 7611670-130Acetone $ug/m3$ 3210570-1302-Propanol $ug/m3$ 338470-1301,1-Dichloroethene $ug/m3$ 5410470-130tras-1,2-Dichloroethene $ug/m3$ 419170-1303-Chloropropene $ug/m3$ 4210270-130CFC-113 $ug/m3$ 4210870-130Carbon disulfide $ug/m3$ 4210870-130Vinyl acetate $ug/m3$ 489370-130Nethyl t-butyl ether (MTBE) $ug/m3$ 489370-130Vinyl acetate $ug/m3$ 489970-130Chloroform $ug/m3$ 489970-130Li-Dichloroethane $ug/m3$ 489970-130Li-Dichloroethane $ug/m3$ 489970-130Li-Dichloroethane $ug/m3$ 499070-130Li-Dichloroethane $ug/m3$ 409970-130L		0			
Butane $ug/m3$ 32 102 $70\cdot130$ Bromomethane $ug/m3$ 52 110 $70\cdot130$ Chloroethane $ug/m3$ 36 103 $70\cdot130$ Vinyl bromide $ug/m3$ 35 109 $70\cdot130$ Ethanol $ug/m3$ 25 110 $70\cdot130$ Acrolein $ug/m3$ 31 102 $70\cdot130$ Pentane $ug/m3$ 31 102 $70\cdot130$ Pentane $ug/m3$ 32 105 $70\cdot130$ Trichlorofluoromethane $ug/m3$ 32 105 $70\cdot130$ 2-Propanol $ug/m3$ 33 84 $70\cdot130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70\cdot130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70\cdot130$ Methylene chloride $ug/m3$ 41 91 $70\cdot130$ CFC-113 $ug/m3$ 41 91 $70\cdot130$ Carbon disulfide $ug/m3$ 42 108 $70\cdot130$ Vinyl acetate $ug/m3$ 48 93 $70\cdot130$ Vinyl acetate $ug/m3$ 48 99 $70\cdot130$ Hexane $ug/m3$ 48 99 $70\cdot130$ Chloroform $ug/m3$ 46 104 $70\cdot130$ Iterahydrofuran $ug/m3$ 48 99 $70\cdot130$ Iterahydrofuran $ug/m3$ 48 99 $70\cdot130$ Iterahydrofuran $ug/m3$ 40 99 $70\cdot130$ Iterahydrofuran $ug/m3$ 40 <td>-</td> <td>0</td> <td></td> <td></td> <td></td>	-	0			
Bromomethane $ug/m3$ 52 110 $70\cdot130$ Chloroethane $ug/m3$ 36 103 $70\cdot130$ Vinyl bromide $ug/m3$ 59 109 $70\cdot130$ Ethanol $ug/m3$ 25 110 $70\cdot130$ Acrolein $ug/m3$ 31 102 $70\cdot130$ Pentane $ug/m3$ 40 99 $70\cdot130$ Pentane $ug/m3$ 40 99 $70\cdot130$ Accone $ug/m3$ 32 105 $70\cdot130$ 2-Propanol $ug/m3$ 33 84 $70\cdot130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70\cdot130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70\cdot130$ trans-1,2-Dichloroethene $ug/m3$ 41 91 $70\cdot130$ trans-1,2-Dichloroethene $ug/m3$ 41 91 $70\cdot130$ dcFC-113 $ug/m3$ 42 102 $70\cdot130$ Carbon disulfide $ug/m3$ 42 108 $70\cdot130$ Vinyl acetate $ug/m3$ 48 93 $70\cdot130$ Vinyl acetate $ug/m3$ 48 93 $70\cdot130$ Libloroform $ug/m3$ 48 99 $70\cdot130$ Libloroform $ug/m3$ 48 99 $70\cdot130$ Liplacetate $ug/m3$ 48 99 $70\cdot130$ Liplacetate $ug/m3$ 40 99 $70\cdot130$ Liplacetate $ug/m3$ 40 99 $70\cdot130$ Liplacetate $ug/m3$ 40 <td< td=""><td>-</td><td>0</td><td></td><td></td><td></td></td<>	-	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0			
Vinyl bromide $ug/m3$ 5910970-130Ethanol $ug/m3$ 2511070-130Acrolein $ug/m3$ 3110270-130Pentane $ug/m3$ 409970-130Trichlorofluoromethane $ug/m3$ 3210570-130Acetone $ug/m3$ 3210570-1302-Propanol $ug/m3$ 338470-1301,1-Dichloroethene $ug/m3$ 5410470-130trans-1,2-Dichloroethene $ug/m3$ 5410570-130Methylene chloride $ug/m3$ 419170-130t-Butyl alcohol (TBA) $ug/m3$ 419170-130CFC-113 $ug/m3$ 4210270-130CFC-113 $ug/m3$ 4910070-130Methyl t-butyl ether (MTBE) $ug/m3$ 4910070-130Vinyl acetate $ug/m3$ 489370-130Vinyl acetate $ug/m3$ 5410470-130Hexane $ug/m3$ 5410470-130Hexane $ug/m3$ 489370-130Chloroform $ug/m3$ 5410470-130Hexane $ug/m3$ 5410470-130Hexane $ug/m3$ 5410470-130Chloroform $ug/m3$ 5510670-130Ethyl acetate $ug/m3$ 499870-1301,1-Dichloroethane $ug/m3$ 4010570-130Chloroform<		-			
Ethanol $ug/m3$ 25 110 $70-130$ Acrolein $ug/m3$ 31 102 $70-130$ Pentane $ug/m3$ 40 99 $70-130$ Trichlorofluoromethane $ug/m3$ 40 99 $70-130$ Acetone $ug/m3$ 32 105 $70-130$ 2-Propanol $ug/m3$ 32 105 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70-130$ Methylene chloride $ug/m3$ 94 117 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 91 $70-130$ 3-Chloropropene $ug/m3$ 42 102 $70-130$ CFC-113 $ug/m3$ 100 119 $70-130$ Carbon disulfide $ug/m3$ 49 100 $70-130$ Vinyl acetate $ug/m3$ 48 93 $70-130$ Vinyl acetate $ug/m3$ 48 93 $70-130$ Hexane $ug/m3$ 48 99 $70-130$ Chloroform $ug/m3$ 48 99 $70-130$ Ethyl acetate $ug/m3$ 49 98 $70-130$ Chloroform $ug/m3$ 40 105 $70-130$ Chloroform $ug/m3$ 40 99 $70-130$ Chloroform $ug/m3$ 40 99 $70-130$ Ithyl acetate $ug/m3$ 40 105 $70-130$ Ithyl acetate $ug/m3$ 40 </td <td></td> <td>0</td> <td></td> <td></td> <td></td>		0			
Acrolein $ug/m3$ 31 102 $70-130$ Pentane $ug/m3$ 40 99 $70-130$ Trichlorofluoromethane $ug/m3$ 76 116 $70-130$ Acetone $ug/m3$ 32 105 $70-130$ 2-Propanol $ug/m3$ 33 84 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 94 117 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 91 $70-130$ 3-Chloropropene $ug/m3$ 42 102 $70-130$ CFC-113 $ug/m3$ 100 119 $70-130$ Carbon disulfide $ug/m3$ 42 108 $70-130$ Vinyl acetate $ug/m3$ 48 93 $70-130$ Vinyl acetate $ug/m3$ 55 106 $70-130$ Hexane $ug/m3$ 54 104 $70-130$ Hexane $ug/m3$ 48 99 $70-130$ Chloroform $ug/m3$ 49 98 $70-130$ Ethyl acetate $ug/m3$ 40 99 $70-130$ Hexane $ug/m3$ 40 99 $70-130$ Chloroform $ug/m3$ 40 99 $70-130$ Lipylacetate $ug/m3$ 40 99 $70-130$ Lipylacetate $ug/m3$ </td <td></td> <td>-</td> <td></td> <td></td> <td></td>		-			
Pentane $ug/m3$ 409970-130Trichlorofluoromethane $ug/m3$ 7611670-130Acetone $ug/m3$ 3210570-1302-Propanol $ug/m3$ 338470-1301,1-Dichloroethene $ug/m3$ 5410470-130trans-1,2-Dichloroethene $ug/m3$ 5410570-130trans-1,2-Dichloroethene $ug/m3$ 5410570-130trans-1,2-Dichloroethene $ug/m3$ 9411770-130t-Butyl alcohol (TBA) $ug/m3$ 419170-1303-Chloropropene $ug/m3$ 4210270-130CFC-113 $ug/m3$ 4210870-130Carbon disulfide $ug/m3$ 439070-130Vinyl acetate $ug/m3$ 489370-130Vinyl acetate $ug/m3$ 489370-130cis-1,2-Dichloroethene $ug/m3$ 5410470-130Hexane $ug/m3$ 489970-130Chloroform $ug/m3$ 489970-130Ethyl acetate $ug/m3$ 4010570-130Z-Butanone (MEK) $ug/m3$ 409970-1301,1-Trichloroethane $ug/m3$ 7410770-130Carbon tetrachloride $ug/m3$ 4310370-130Benzene $ug/m3$ 4310370-130Chloroform $ug/m3$ 4610170-130		-			
Trichlorofluoromethane $ug/m3$ 7611670-130Acetone $ug/m3$ 3210570-1302-Propanol $ug/m3$ 338470-1301,1-Dichloroethene $ug/m3$ 5410470-130trans-1,2-Dichloroethene $ug/m3$ 5410570-130trans-1,2-Dichloroethene $ug/m3$ 9411770-130t-Butyl alcohol (TBA) $ug/m3$ 419170-1303-Chloropropene $ug/m3$ 4210270-130CFC-113 $ug/m3$ 10011970-130Carbon disulfide $ug/m3$ 4210870-130Methyl t-butyl ether (MTBE) $ug/m3$ 4910070-130Vinyl acetate $ug/m3$ 489370-1301,1-Dichloroethane $ug/m3$ 5510670-130kexane $ug/m3$ 489970-130Chloroform $ug/m3$ 489970-130Ethyl acetate $ug/m3$ 499870-130Ethyl acetate $ug/m3$ 4010570-1302-Butanone (MEK) $ug/m3$ 409970-1301,2-Dichloroethane $ug/m3$ 7410770-130Carbon tetrachloride $ug/m3$ 4310370-130Langene $ug/m3$ 4310370-130Chloroform $ug/m3$ 4610170-130		-			
Acetone $ug/m3$ 32 105 $70-130$ 2-Propanol $ug/m3$ 33 84 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 105 $70-130$ Methylene chloride $ug/m3$ 94 117 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 91 $70-130$ 3-Chloropropene $ug/m3$ 42 102 $70-130$ CFC-113 $ug/m3$ 100 119 $70-130$ Carbon disulfide $ug/m3$ 42 108 $70-130$ Methyl t-butyl ether (MTBE) $ug/m3$ 49 100 $70-130$ Vinyl acetate $ug/m3$ 48 93 $70-130$ i.i-1,2-Dichloroethene $ug/m3$ 54 104 $70-130$ Hexane $ug/m3$ 48 99 $70-130$ Chloroform $ug/m3$ 48 99 $70-130$ Chloroform $ug/m3$ 40 105 $70-130$ Ethyl acetate $ug/m3$ 40 99 $70-130$ Zutanone (MEK) $ug/m3$ 40 99 $70-130$ 2-Butanone (MEK) $ug/m3$ 85 107 $70-130$ Carbon tetrachloride $ug/m3$ 85 107 $70-130$ Benzene $ug/m3$ 43 103 $70-130$ Chloroethane $ug/m3$ 85 107 $70-130$		0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0			
1,1-Dichloroetheneug/m35410470-130trans-1,2-Dichloroetheneug/m35410570-130Methylene chlorideug/m39411770-130t-Butyl alcohol (TBA)ug/m3419170-1303-Chloropropeneug/m34210270-130CFC-113ug/m310011970-130Carbon disulfideug/m34210870-130Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m3499870-130Ethyl acetateug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,1-Trichloroethaneug/m35510170-1301,1,1-Trichloroethaneug/m35510170-1301,1,1-Trichloroethaneug/m34310370-130Benzeneug/m34310370-130Carbon tetrachlorideug/m34610170-130		0			
trans-1,2-Dichloroetheneug/m3 54 105 $70-130$ Methylene chlorideug/m3 94 117 $70-130$ t-Butyl alcohol (TBA)ug/m3 41 91 $70-130$ 3-Chloropropeneug/m3 42 102 $70-130$ CFC-113ug/m3 100 119 $70-130$ Carbon disulfideug/m3 42 108 $70-130$ Methyl t-butyl ether (MTBE)ug/m3 49 100 $70-130$ Vinyl acetateug/m3 48 93 $70-130$ 1,1-Dichloroethaneug/m3 55 106 $70-130$ cis-1,2-Dichloroetheneug/m3 54 104 $70-130$ Hexaneug/m3 48 99 $70-130$ Chloroformug/m3 46 101 $70-130$ Lethyl acetateug/m3 40 99 $70-130$ Z-Butanone (MEK)ug/m3 40 99 $70-130$ 1,1-Trichloroethaneug/m3 55 101 $70-130$ 1,1,1-Trichloroethaneug/m3 74 107 $70-130$ Lappeneug/m3 85 107 $70-130$ Benzeneug/m3 43 103 $70-130$ Carbon tetrachlorideug/m3 46 101 $70-130$		0			
Methylene chlorideug/m39411770-130t-Butyl alcohol (TBA)ug/m3419170-1303-Chloropropeneug/m34210270-130CFC-113ug/m310011970-130Carbon disulfideug/m34210870-130Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m34010570-130Z-Butanone (MEK)ug/m3409970-1301,1,1-Trichloroethaneug/m35510170-1301,1,1-Trichloroethaneug/m37410770-1301,1,1-Trichloroethaneug/m34310370-130Carbon tetrachlorideug/m34610170-130		0			
t-Butyl alcohol (TBA)ug/m3419170-1303-Chloropropeneug/m34210270-130CFC-113ug/m310011970-130Carbon disulfideug/m34210870-130Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-1302-Butanone (MEK)ug/m34010570-1301,1-Trichloroethaneug/m37410770-1301,1,1-Trichloroethaneug/m38510770-1302-Butanone (MEK)ug/m34310370-1302-glochorethaneug/m37410770-1301,2-Dichloroethaneug/m34310370-1301,1-Trichloroethaneug/m34610170-130		0			
3-Chloropropeneug/m3 42 102 $70-130$ CFC-113ug/m3 100 119 $70-130$ Carbon disulfideug/m3 42 108 $70-130$ Methyl t-butyl ether (MTBE)ug/m3 49 100 $70-130$ Vinyl acetateug/m3 48 93 $70-130$ 1,1-Dichloroethaneug/m3 55 106 $70-130$ cis-1,2-Dichloroetheneug/m3 54 104 $70-130$ Hexaneug/m3 48 99 $70-130$ Chloroformug/m3 48 99 $70-130$ Ethyl acetateug/m3 48 99 $70-130$ Ethyl acetateug/m3 40 105 $70-130$ Z-Butanone (MEK)ug/m3 40 99 $70-130$ 1,1,1-Trichloroethaneug/m3 74 107 $70-130$ 1,1,1-Trichloroethaneug/m3 85 107 $70-130$ Benzeneug/m3 43 103 $70-130$ Carbon tetrachlorideug/m3 46 101 $70-130$		0			
CFC-113ug/m310011970-130Carbon disulfideug/m34210870-130Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,1-Trichloroethaneug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m34310370-130Cyclohexaneug/m34610170-130		0			
Carbon disulfideug/m34210870-130Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethaneug/m35510170-1301,1.1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		0			
Methyl t-butyl ether (MTBE)ug/m34910070-130Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		0			
Vinyl acetateug/m3489370-1301,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		0			
1,1-Dichloroethaneug/m35510670-130cis-1,2-Dichloroetheneug/m35410470-130Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0			
Hexaneug/m3489970-130Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		0			
Chloroformug/m36610470-130Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		-	48	99	
Ethyl acetateug/m3499870-130Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130	Chloroform	-	66	104	70-130
Tetrahydrofuranug/m34010570-1302-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130	Ethyl acetate	ug/m3	49	98	70-130
2-Butanone (MEK)ug/m3409970-1301,2-Dichloroethane (EDC)ug/m35510170-1301,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130	-	ug/m3	40	105	70-130
1,1,1-Trichloroethaneug/m37410770-130Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130		ug/m3	40	99	70-130
Carbon tetrachlorideug/m38510770-130Benzeneug/m34310370-130Cyclohexaneug/m34610170-130	1,2-Dichloroethane (EDC)	ug/m3	55	101	70-130
Benzeneug/m34310370-130Cyclohexaneug/m34610170-130	1,1,1-Trichloroethane	ug/m3	74	107	70-130
Cyclohexane ug/m3 46 101 70-130	Carbon tetrachloride	ug/m3	85	107	70-130
	Benzene	-	43	103	70-130
1,2-Dichloropropane ug/m3 62 103 70-130	Cyclohexane	ug/m3	46	101	70-130
	1,2-Dichloropropane	ug/m3	62	103	70-130
1,4-Dioxane ug/m3 49 88 70-130		ug/m3	49	88	70-130
2,2,4-Trimethylpentane ug/m3 63 103 70-130	2,2,4-Trimethylpentane	ug/m3	63	103	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	102	70-130
Heptane	ug/m3	55	98	70-130
Bromodichloromethane	ug/m3	90	105	70-130
Trichloroethene	ug/m3	73	103	70-130
cis-1,3-Dichloropropene	ug/m3	61	111	70-130
4-Methyl-2-pentanone	ug/m3	55	88	70-130
trans-1,3-Dichloropropene	ug/m3	61	103	70-130
Toluene	ug/m3	51	98	70-130
1,1,2-Trichloroethane	ug/m3	74	104	70 - 130
2-Hexanone	ug/m3	55	92	70 - 130
Tetrachloroethene	ug/m3	92	109	70 - 130
Dibromochloromethane	ug/m3	120	109	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	105	70-130
Chlorobenzene	ug/m3	62	109	70 - 130
Ethylbenzene	ug/m3	59	100	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	105	70 - 130
Nonane	ug/m3	71	97	70 - 130
Isopropylbenzene	ug/m3	66	110	70 - 130
2-Chlorotoluene	ug/m3	70	103	70 - 130
Propylbenzene	ug/m3	66	105	70 - 130
4-Ethyltoluene	ug/m3	66	98	70 - 130
m,p-Xylene	ug/m3	120	94	70 - 130
o-Xylene	ug/m3	59	103	70 - 130
Styrene	ug/m3	58	103	70 - 130
Bromoform	ug/m3	140	108	70 - 130
Benzyl chloride	ug/m3	70	107	70 - 130
1,3,5-Trimethylbenzene	ug/m3	66	98	70 - 130
1,2,4-Trimethylbenzene	ug/m3	66	99	70 - 130
1,3-Dichlorobenzene	ug/m3	81	109	70-130
1,4-Dichlorobenzene	ug/m3	81	108	70-130
1,2-Dichlorobenzene	ug/m3	81	109	70-130
1,2,4-Trichlorobenzene	ug/m3	100	101	70-130
Naphthalene	ug/m3	71	94	70 - 130
Hexachlorobutadiene	ug/m3	140	108	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/13/23 Project: Potter Air Sampling M0615.20.006, F&BI 306193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 306193-03 (Duplicate)									
	Sample	Duplicate	Relative						
Analyte	Result	Result	Percent	Acceptance					
	(%)	(%)	Difference	Criteria					
Helium	<0.6	<0.6	nm	0-20					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

306193 Neport To <u>Audrey</u> H Company <u>Maul Fost</u> Address <u>28152nd Av</u> City, State, ZIP <u>Seat Ha</u>	<u>er b</u> 'e, S	te 540	>	- PROJE - Pc+t= - NOTES	LERS (sign CT NAME A Air	E & ADI Sam	DRESS pling	Ĺ		PO 15.2 VOI0	# 2c.0 CET	0	X	Sta: RU: tush	Page # TUR ndarc SH charg SAM	# of NAROUND TIME
Phone (200)331 - 1835 En	•								mad	fost	εr.(com		Hold	d (Fee	port delivery e may apply):
SAMPLE INFORMATION						1	·	- I		ANA	LYS	SIS R	EQU	JEST	TED	·
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date Sampled	Vac.	Field Initial Time	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	HdH	Helium	CH4, 02, CO2 by EPA 3C	Notes
TWA-5V-45-061223	01	9563	68	IA / SG	6/12/23	-30+	1346	-5	1351	X			X	Х	Х	
TWA-5V-35-061223	62	9893	66	IA / SG	6112123	-30+	1450	-5	1455	\times			Х	X	X	
TWA-5V-36-061223	03	9882	52	1A / 🚱	6/12/23	-30	1531	-5	1536	X			X	X	X	•
				IA / SG												
				IA / SG		ļ										
· · · · · · · · · · · · · · · · · · ·				IA / SG												
				IA / SG									Sar	aple	s re	coived at 22 oC
				IA / SG												

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
5500 4th Avenue South	Relinquished by: Tunk Bike	Amanda Bixby	MFA	6/13/23	835
Seattle, WA 98108	Received by: 2D. M.R.	Viz Mebber-Brys	Fib	6/13/23	835
Ph. (206) 285-8282	Relinque hed by:	0			
Fax (206) 283-5044	Received by:				
				I	d

FORMS\COC\COCTO-15.DOC

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 306193 Work Order Number: 2306185

June 20, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 6/13/2023 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 306193 2306185						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received				
2306185-001	TWA-SV-45-061223	06/12/2023 1:51 PM	06/13/2023 1:30 PM				
2306185-002	TWA-SV-35-061223	06/12/2023 2:55 PM	06/13/2023 1:30 PM				
2306185-003	TWA-SV-36-061223	06/12/2023 3:36 PM	06/13/2023 1:30 PM				

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2306185** Date: **6/20/2023**

CLIENT:Friedman & BruyaProject:306193

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

 WO#:
 2306185

 Date Reported:
 6/20/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2306185

 Date Reported:
 6/20/2023

CLIENT:	Friedman & Bruya
Project:	306193

Lab ID: 2306185-002 Client Sample ID: TWA-SV-35-06		Collection Date: 6/12/2023 2:55:00 PM Matrix: Air						
Analyses	Result	RL Qual	Units	DF	Date Analyzed			
Major Gases by EPA Method 3C			Batc	h ID: R8	4657 Analyst: NR			
Carbon Dioxide	13.1	0.0500	%	1	6/13/2023 4:35:00 PM			
Methane	0.818	0.0500	%	1	6/13/2023 4:35:00 PM			
Oxygen	1.57	0.0500	%	1	6/13/2023 4:35:00 PM			

Client Sample ID: TWA-SV-36-061223

Collection Date: 6/12/2023 3:36:00 PM

Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batc	h ID: R8	4657 Analyst: NR
Carbon Dioxide	2.86	0.0500	%	1	6/13/2023 4:49:00 PM
Methane	ND	0.0500	%	1	6/13/2023 4:49:00 PM
Oxygen	16.2	0.0500	%	1	6/13/2023 4:49:00 PM

Work Order: 2306185

Project:

CLIENT: Friedman & Bruya

306193

QC SUMMARY REPORT

Major Gases by EPA Method 3C

Sample ID: LCS-R84657	SampType: LCS			Units: %			ate: 6/13/20		RunNo: 846		
Client ID: LCSW	Batch ID: R84657					Analysis Da	ate: 6/13/20)23	SeqNo: 176	67077	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	102	0.0500	100.0	0	102	70	130				
Methane	101	0.0500	100.0	0	101	70	130				
Oxygen	101	0.0500	100.0	0	101	70	130				
Sample ID: 2305550-003AREP	SampType: REP			Units: %		Prep Da	nte: 6/13/20)23	RunNo: 846	657	
Client ID: BATCH	Batch ID: R84657					Analysis Da	ate: 6/13/20)23	SeqNo: 176	67076	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	42.1	0.100						44.63	5.84	30	D
Methane	60.0	0.100						62.30	3.75	30	D
Oxygen	0.165	0.100						0.1854	11.9	30	D

Sample Log-In Check List

Client Name: FB	Work Order Number: 2306185							
Logged by: Clare Griggs	Date Received:	6/13/2023	3 1:30:00 PM					
Chain of Custody								
1. Is Chain of Custody complete?	Yes 🖌	No	Not Present					
2. How was the sample delivered?	<u>Client</u>							
<u>Log In</u>								
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present 🗹					
4. Was an attempt made to cool the samples?	Yes	No 🗌	NA 🗹					
5. Were all items received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹					
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌						
7. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌						
8. Are samples properly preserved?	Yes 🖌	No 🗌						
9. Was preservative added to bottles?	Yes	No 🗹	NA 🗌					
10. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🔽					
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌						
12. Does paperwork match bottle labels?	Yes 🖌	No 🗌						
13. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌						
14. Is it clear what analyses were requested?	Yes 🗹	No 🗌						
15. Were all holding times able to be met?	Yes 🗹	No 🗌						
Special Handling (if applicable)								
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽					
Person Notified: Michael Erdahl Date	e:	6/13/2023						
By Whom: Morgan Wilson Via:	🖌 eMail 🗌 Pł	none 🗌 Fax	In Person					
Regarding: Tedlar 001A leaking, cannot run majo	r qas							
Client Instructions: Okav, will create another when TO-15 testing complete								

17. Additional remarks:

Item Information

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			SUBCON'	TRACT S	SAMP	LE C	HAI	N OF	CUS	STO	DY			2	30	6185)	
Send Report To Micl	nol Fr	dabl		SUBC	ONTRA Fr	ACTER	ł							TU	Page :	#1 0 ROUND TI	of1 ME	1
				PROJ	ECT NA		IO.			P) #			Standa	ard TA	AT		of 8
Company Fried	dman a	nd Bruya, Ir	nc			306193				D-	328			RUSH_ sh cha	rges a	uthorized	by:	
Address3012	2 16th A	ve W				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_	g	AMDI	E DISPOS	AT	Page
City, State, ZIP_Seat	tle. WA	98119		REMA	ARKS									Dispos	e after	r 30 days		
			nanandhruwa c	om	EQ	uIS4E	EDD							Return Will ca		oles h instructio	ons	
Phone #(206) 285-82	. <u>82</u> mei	rdani@iriedi	liananubruya.co							HODI	DEC	TIPO				-		-
									ANAL	YSES	S REG	UES	TED					1
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	major gases CH4, CO2, O2	COD	Nitrate	Sulfate	C02	dissolved methane					N	otes	
TWA-SV-45-061223		6/12/2023	1351	vapor	1	x												_
TWA-SV-35-061223		6/12/2023	1455	vapor	1	x												_
TWA-SV-36-061223		6/12/2023	1536	vapor	1	x												-
															-			-
									_	_				<u> </u>	-			-
						-									-			-
									_					-				-
															-			-
															-	+		-
					1								-		-			-
										<u> </u>					\vdash			-
												-			-			\neg
							DINTE	VANE					MPAN	IV	<u> </u>	DATE	TIME	4
Friedman & Bruya, In 3012 16th Avenue Wes		elinquished by:	IGNATURE	Λ	Micha	el Erd		NAME			Frie		& Br		4	6/13/25	0900	
Seattle, WA 98119-20.		eceived by:	here of			Mil						FA	1			E/13/2		_
Ph. (206) 285-8282		elinquished by:	hinter		710	11.1												
Fax (206) 283-5044	R	eceived by:																

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 306193 Work Order Number: 2306468

July 05, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 6/27/2023 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 07/10/2023

CLIENT: Project: Work Order:	Friedman & Bruya 306193 2306468	Work Order S	Work Order Sample Summary					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
2306468-001	TWA-SV-45-061223	06/12/2023 1:51 PM	06/27/2023 2:36 PM					

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2306468** Date: **7/5/2023**

CLIENT:Friedman & BruyaProject:306193

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

7/10/2023: Revision 1 includes report updates including sampling date/time, select list change and COC edits.

Qualifiers & Acronyms

WO#: **2306468** Date Reported: **7/5/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

 Work Order:
 2306468

 Date Reported:
 7/5/2023

Client: Friedman & Bruya			(Collection	Date:	6/12/2023 1:51:00 PM
Project: 306193						
Lab ID: 2306468-001			l	Matrix: A	ir	
Client Sample ID: TWA-SV-45-0612	223					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C				Batc	h ID: R	85020 Analyst: NR
Major Gases by EPA Method 3C Carbon Dioxide	2.64	0.0500		Batc %	h ID: R	85020 Analyst: NR 6/29/2023 3:01:00 PM
	2.64 ND	0.0500 0.0500			h ID: R 1 1	,

2306468

Work Order:

Client ID: LCSW

Sample ID: LCS-R85020

CLIENT:

Project:

2306468					QC SUMMARY REPORT	
Friedman	& Bruya				Major Gases by EPA Method 3C	
306193						
R85020	SampType: LCS	Units: %	Prep Date:	6/29/2023	RunNo: 85020	
v	Batch ID: R85020		Analysis Date:	6/29/2023	SeqNo: 1774648	

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	97.8	0.0500	100.0	0	97.8	70	130				
Methane	97.8	0.0500	100.0	0	97.8	70	130				
Oxygen	98.8	0.0500	100.0	0	98.8	70	130				
Sample ID: 2306406-001AREP	SampType: REP			Units: %		Prep Da	te: 6/29/20	023	RunNo: 850)20	
Client ID: BATCH	Batch ID: R85020					Analysis Da	te: 6/29/20	23	SeqNo: 177	74645	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	24.9	0.0500						24.41	1.85	30	
Methane	38.1	0.0500						37.37	1.91	30	
Oxygen	0.138	0.0500						0.1527	10.4	30	

Client Name: FB	Work Order Numb	oer: 2306468	
Logged by: Morgan Wilson	Date Received:		3 2:36:00 PM
Logged by. Worgan Wilson	Date Received.	0/21/2023	2.30.00 1 M
<u>Chain of Custody</u>			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present
4. Was an attempt made to cool the samples?	Yes	No 🗌	NA 🗹
5. Were all items received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples properly preserved?	Yes 🖌	No 🗌	
9. Was preservative added to bottles?	Yes	No 🖌	NA 🗌
10. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🖌
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
13. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
15. Were all holding times able to be met?	Yes 🖌	No 🗌	
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Date			
By Whom: Via:	🗌 eMail 🗌 Ph	none 🗌 Fax	In Person
Regarding:			
Client Instructions:			

17. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

		SI	UBCONTR	ACT S	AMPI	E C	CHA	IN	OF (CUST	ГOD	Y)36	640	3			
Send Report <u>To Michael</u>	Erdahl			SUBCO	ONTRA	CTEI								~50		Page #	1 OUND T		٦
				PROJE	ECT NA						PO	#			Standa	rd TAT			of 9
CompanyFriedma	n and B	ruya, Inc.		306193 D-357					RUSH Rush charges authorized by:				by:	Page 8 of					
Address 3012 161	th Ave W	7				.0100				12-	33	Г	_						Pag
City, State, ZIP_Seattle,	WA 981	19		REMA	RKS									D			DISPOS 30 days	SAL	
Phone #(206) 285-8282			ndbruya.com		EG	\uIS	4	Ti	ier l	V pau	kage	e				sample l with	es instructio	ons	
						Т				ANAI	YSE	S REG	UES	TED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Matri	x ^{# o} jar		major gases	COD	Nitrate	Sulfate	C02	dissolved methane					Ŋ	Jotes	
TWA-SV-45-061223		6/27/2023	1040	vapor		1	x										Dilution	n = 1.8	
								_											
						+	_								<u> </u>				_
					_	_	_								<u> </u>			_	_
						+	-												
	_				_	+	\rightarrow							-					-
						+	-												-
	_				_	+	\rightarrow							-		-			-
						+	-				-		_		-	+			-
						+	+								-	+			-
			· · · · · · · · · · · · · · · · · · ·			+	-							+	+				-
Friedman & Bruya, Inc.		- SIGNA	TURE			PF	RINT	ΓNAI	ME				COM	PANY	7)ATE	TIME	
3012 16th Avenue West	Relinqui		N		Michael	Erda	ahl]	Friedn	nan 8	z Bru	ya	6	27/23	0630	
Seattle, WA 98119-2029	Received	POLLE	/		Asinh	ey											27/23	1436	
Ph. (206) 285-8282	Refinqui		1			1													
Fax (206) 283-5044	Received	by:				_										-			

		SI	UBCONTR	ACT S	SAMI	PLE	CH	AIN	OF (CUST	rod	Y)35	640	3				
Send Report <u>ToMichael</u>	Erdahl			SUBC		RACT								~~ C		Page # RNAR				Ê
				PROJI							PO	#				rd TA	Т			of 9
CompanyFriedma	in and B	ruya, Inc.				3061	93			D	35	7			USH_ h chai	rges ai	uthori	zed	by:	Page 9 of
Address3012 16	th Ave W	/																		Pag
City, State, ZIP <u>Seattle</u> ,	WA 981	19		REMA		and	d porti			a can tedla			2		ispose	MPLI after sampl	30 da		AL	
Phone #(206) 285-8282	merdahl	@friedmana	ndbruya.com		3	EQul	15 4	Ti	er l	V pac	kage	e				l with		uctio	ons	
	_									ANAL	YSE	S REG	UES	TED		1]
	Lab	Date	Time			# of	gases *	Q	ate	ate)2	lved ane						/202	er M.E. 23 -BB	
Sample ID	ID	Sampled	Sampled	Matr	ıx j	jars	major gases	COD	Nitrate	Sulfate	C02	dissolved methane	1					N	lotes	
TWA-SV-45-061223	-	6/27/2023	-1040	vapor		1	x										Dilu	tior	n = 1.8	1
		6/12/2023	1351														*Cł	4,	CO2, O2	1
																				1-
																	\vdash			1
																	\vdash			1
																				1
																				1 -
																				1
																				1
																	\square			1
																	\square			1
																				1
Friedman & Bruya, Inc.		- SIGNA	THRE	1				T NAI	ME					PANY			DATE		TIME	
3012 16th Avenue West	Relingui	shed by C	N		Micha	ael Er	dahl]	Friedn	nan &	Bruy	7a	6	27/	23	0630	
Seattle, WA 98119-2029		Defe			ASI	nley	/ Salv	emini				Frem	ont Ai	nalyti	cal		127/2		1436	
Ph. (206) 285-8282	Refinqui	shed by:	<i>i</i>			(
Fax (206) 283-5044	Received	l by:																		-

Appendix E

Data Validation Memorandum

Data Quality Assurance/Quality Control Review

Project No. M0615.20.006 | July 26, 2023 | Port of Tacoma

Maul Foster & Alongi, Inc. (MFA), conducted an independent review of the quality of tier II analytical results for indoor air, ambient air, sub-slab soil vapor, and associated quality control samples collected on June 11 and 12, 2023, at the former Potter Property at 1801 E Alexander Avenue in Tacoma, Washington.

Friedman & Bruya, Inc. (F&B), and Fremont Analytical, Inc. (Fremont), performed the analyses. MFA reviewed F&B report numbers 306187; 306188; and 306193; subcontracted Fremont report numbers 2306186 and 2306185, which are appended to F&B reports 306188 and 306193, respectively; and subcontracted Fremont report number 2306468, which is reported separately. The analyses performed and the samples analyzed are listed in the following tables. Samples submitted on hold are indicated below. Not all analyses were performed on all samples.

Analysis	Reference
Air-phase petroleum hydrocarbons	MA-APH
Helium	ASTM D1946
Major gases	EPA 3C
Volatile organic compounds	EPA TO-15

Notes

ASTM = ASTM International.

EPA = U.S. Environmental Protection Agency.

MA-APH = Massachusetts Department of Environmental Protection Method for the Determination of Air-Phase Petroleum Hydrocarbons.

TO = toxic organics.

	Samples Analyzed								
	Report 306187								
TWA-IA-01-061123	TWA-IA-06-061123	TWA-AA-04-061123 (hold)							
TWA-IA-02-061123	TWA-IA-DUP-061123	TWA-AA-05-061123 (hold)							
TWA-IA-03-061123	TWA-AA-01-061123 (hold)	TWA-AA-06-061123							
TWA-IA-04-061123	TWA-AA-02-061123	TWA-AA-07-061123 (hold)							
TWA-IA-05-061123	TWA-AA-03-061123 (hold)	TWA-AA-08-061123 (hold)							
	Report 306188/2306186								
TWA-SV-43-061223	TWA-SV-DUP-061223	TWA-SV-42-061223							
TWA-SV-41-061223	TWA-SV-44-061223								
	Report 306193/2306185								
TWA-SV-45-061223	TWA-SV-35-061223	TWA-SV-36-061223							
	Report 2306468								
TWA-SV-45-061223									

Data Qualification

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratory- and method-specific guidelines (EPA 1986, F&B 2022, Fremont 2020).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Massachusetts Department of Environmental Protection Method for the Determination of Air-Phase Petroleum Hydrocarbons [MA-APH]).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- U = result is non-detect at the method reporting limit (MRL).
- UJ = result is non-detect with an estimated MRL.

The reviewer confirmed that sub-slab soil vapor samples were collected under a helium shroud to detect leaks in the collection system. According to reports 306188 and 306193, samples TWA-SV-43-061223, TWA-SV-41-061223, TWA-SV-DUP-061223, TWA-SV-42-061223, TWA-SV-45-061223, TWA-SV-35-061223, and TWA-SV-36-061223 were non-detect for helium by ASTM International [ASTM] Method D1946. According to report 306188, sample TWA-SV-44-061223 does not have any helium results. The reviewer confirmed with the laboratory that this was due to a laboratory system error. The sample was not able to be reanalyzed within the method-recommended holding time. Helium was screened in the field during sample collection. For sample TWA-SV-44-061223, helium was detected during the sample purge at 425 parts per million and the shroud had 40.6 percent helium, so the helium in the sample is likely less than five percent of the concentration under in the shroud; thus the impact on sample quality is presumed to be low. The reviewer qualified the associated sample results with J or UJ, as shown in the following table.

Reports	Sample	Analyses	Original Results	Qualification
306188		EPA TO-15	Detected	J
2306188	TWA-SV-44-061223	MA-APH EPA 3C	Non-detect	UJ

Notes

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

MA-APH = Massachusetts Department of Environmental Protection Method for the Determination of Air-Phase Petroleum Hydrocarbons.

UJ = result is non-detect with an estimated method reporting limit.

According to the case narrative accompanying report 306187, nonpetroleum compounds identified in the air-phase hydrocarbon ranges were subtracted, in accordance with the MA-APH method. Qualification by the reviewer was not required,

According to report 306187, the EPA Method TO-15 propene calibration standard exceeded acceptance criteria with a high bias. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

According to report 306187, the EPA Method TO-15 naphthalene result for sample TWA-AA-06-061123 was flagged as estimated because of an associated calibration result that was outside acceptance criteria. The result was qualified by the laboratory as estimated because of a result

below the standard reporting limit, and final qualification by the reviewer is shown in the Method Blanks section below.

According to report 306188, the EPA Method TO-15 ethanol calibration standard exceeded acceptance criteria with a high bias. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

According to report 306188, the EPA Method TO-15 tetrachloroethene results for samples TWA-SV-41-061223, TWA-SV-DUP-061223, and TWA-SV-44-061223 were above the calibration range of the instrument. The reviewer qualified the sample results with J, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/m³)	Qualified Result (ug/m ³)
	TWA-SV-41-061223		4,900	4,900 J
306188	TWA-SV-DUP-061223	Tetrachloroethene	4,900	4,900 J
	TWA-SV-44-061223		6,100	6,100 J ^(a)

Notes

J = result is estimated.

 $ug/m^3 = micrograms per cubic meter.$

^(a)Final qualification based on results above calibration and helium field screening results.

According to report 306193, some MA-APH and EPA Method TO-15 results for samples TWA-SV-35-061223 and TWA-SV-45-061223 were above the calibration range of the instrument. The reviewer qualified the sample results with J, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/m ³)	Qualified Result (ug/m ³)
		C5-C8 Aliphatic hydrocarbons	670,000	670,000 J
		C9-C12 Aliphatic hydrocarbons	230,000	230,000 J
	TWA-SV-35-061223	2,2,4-Trimethylpentane	42,000	42,000 J
306193	TWA-3V-33-001223	Cyclohexane	20,000	20,000 J
		Heptane	29,000	29,000 J
		Hexane	24,000	24,000 J
	TWA-SV-45-061223	Tetrachloroethene	2,300	2,300 J

Notes

J = result is estimated.

ug/m³ = micrograms per cubic meter.

According to report 306193, several EPA Method TO-15 analytes were associated with calibration standards that exceeded acceptance criteria with a high bias. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

Sample Conditions

Sample Custody

In reports 306187, 306188, and 2306468, the subcontracted Fremont chain-of-custody (COC) forms show gaps between relinquishment by F&B and receipt by Fremont, while the sample login checklists accompanying the subcontracted reports indicate that samples were delivered directly by the client. The reviewer confirmed with the laboratory that the gap in custody is due to the no-contact drop-off protocol at Fremont, and that samples were dropped off by F&B in a secure sample receipt location at Fremont.

Fremont report 2306468 has two accompanying COC forms. The second COC form is a revision, included at MFA's request, that corrects the analyte list and the collection date and time and properly completes the sample receipt information.

Sample custody was appropriately documented on the remaining COC forms accompanying the reports.

Holding Times, Preservation, and Sample Storage

There are no preservation or temperature requirements for the sample matrices.

According to the COC accompanying report 306187, the gauge for sample TWA-IA-04-061123 was damaged. The reviewer confirmed with the sampler that the gauge on the Summa canister was damaged during sample collection, but the sample was not compromised; thus, qualification by the reviewer was not required.

According to the case narrative accompanying report 306193, sample TWA-SV-45-061223 had a compromised Tedlar bag. The reviewer confirmed with the laboratory that the Tedlar bag was leaking upon receipt at Fremont, and therefore EPA Method 3C analysis could not be performed from the original Tedlar bag. F&B prepared a second Tedlar bag from the sample TWA-SV-45-061223 Summa canister after analysis at F&B was completed. EPA Method 3C results for this sample are included in Fremont report 2306468. According to the revised COC form accompanying report 2306468, the sample was initially collected in a Summa canister on June 12, 2023, and was portioned into the new Tedlar bag on June 27, 2023. EPA Method 3C analysis was performed from the new Tedlar bag within the method-recommended 72-hour holding time. Qualification by the reviewer was not required.

The remaining samples were stored appropriately, and extractions and analyses were performed within the recommended holding times.

Reporting Limits

The laboratories evaluated results to MRLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised MRLs.

In reports 306187 and 306188, F&B noted that some EPA Method TO-15 results were reported below standard reporting limits and are considered estimates. The laboratory flagged these samples with J, and the reviewer accepted the laboratory qualification. Final qualification for these results is UJ for non-detects and J for detects, except for naphthalene results in report 306187, which are qualified by the reviewer in the Method Blanks section below.

Blanks

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

In subcontracted reports 2306186 and 2306185, Fremont did not report laboratory method blanks for EPA Method 3C. The method does not require a laboratory method blank.

According to report 306187, the EPA Method TO-15 laboratory method blank had a naphthalene detection below the MRL, at a concentration of 0.068 micrograms per cubic meter. All associated sample results were detected below the MRL and were qualified by the reviewer with U, as not detected at the MRL, as shown in the following table.

Report	Sample	Analyte	Method Blank Result (ug/m ³)	Original Result (ug/m³)	Qualified Result (ug/m³)
	TWA-IA-01-061123			0.074 J	0.26 U
	TWA-IA-02-061123			0.084 J	0.26 U
	TWA-IA-03-061123			0.095 J	0.26 U
	TWA-IA-04-061123			0.11 J	0.26 U
306187	TWA-IA-05-061123	Naphthalene	0.068 J	0.14 J	0.26 U
	TWA-IA-06-061123			0.17 J	0.26 U
	TWA-IA-DUP-061123			0.11 J	0.26 U
	TWA-AA-02-061123			0.12 J	0.26 U
	TWA-AA-06-061123			0.082 J	0.31 U

Notes

J = result is estimated.

U = result is non-detect at the method reporting limit.

ug/m³ = micrograms per cubic meter.

All remaining laboratory method blank results were non-detect.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy.

F&B and Fremont did not report LCSDs for any methods; the reviewer evaluated laboratory precision using laboratory duplicate results. F&B did not report LCS results for ASTM D1946, as it is not required by the method; the reviewer confirmed with the laboratory that initial calibration and continuing calibration passed for this method.

According to report 306187, the EPA Method TO-15 LCS result for propene was above the upper percent recovery acceptance limit of 130 percent, at 134 percent. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

According to report 306188, the EPA Method TO-15 LCS result for ethanol was above the upper percent recovery acceptance limit of 130 percent, at 133 percent. All associated sample results were non-detect; thus, qualification by the reviewer was not required.

All remaining LCS results were within acceptance limits for percent recovery.

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were prepared and analyzed at the required frequency. Fremont reported laboratory duplicates as a sample type of "REP."

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory relative percent difference (RPD) control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the

absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

According to report 306187, the EPA Method TO-15 laboratory duplicate prepared with sample TWA-IA-01-061123 had an acetone RPD above the acceptance criteria of 30 percent, at 44 percent. Since indoor and ambient air samples can be considered similar matrices with low heterogeneity, the reviewer qualified all sample acetone results in report 306187 based on the laboratory duplicate result. Qualifications by the reviewer are shown in the following table.

Report	Sample	Analyte	Original Result (ug/m³)	Qualified Result (ug/m ³)
306187	TWA-IA-01-061123	Acetone	13	13 J
	TWA-IA-02-061123		15	15 J
	TWA-IA-03-061123		13	13 J
	TWA-IA-04-061123		10	10 J
	TWA-IA-05-061123		15	15 J
	TWA-IA-06-061123		14	14 J
	TWA-IA-DUP-061123		9.7	9.7 J
	TWA-AA-02-061123		13	13 J
	TWA-AA-06-061123		14	14 J

Notes

J = result is estimated.

ug/m³ = micrograms per cubic meter.

All remaining laboratory duplicate results met the acceptance criteria.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike and matrix spike duplicate results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

F&B and Fremont did not report matrix spikes or matrix spike duplicates, as they are not required by the methods.

Surrogate Recovery Results

The samples were spiked with surrogate compounds to evaluate laboratory performance of individual samples for organic analyses.

All surrogate results were within percent recovery acceptance limits.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pairs were submitted for analysis:

Report	Parent Sample	Field Duplicate Sample
306187	TWA-IA-01-061123	TWA-IA-DUP-061123
306188, 2306186	TWA-SV-41-061223	TWA-SV-DUP-061223

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when

both results in the sample pair were non-detect. When one result in the sample pair was non-detect, RPD was evaluated using the MRL of the non-detect result.

All field duplicate results met the RPD acceptance criteria.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

At MFA's request, Fremont report 2306468 was revised on June 10, 2023, to include a revised COC form, remove extraneous analytes from the report, and update the sample collection date and time.

F&B released a revision for report 306188 on July 26, 2023, to remove the ASTM Method D1946 results for sample TWA-SV-44-061223 due to a laboratory system error,

No other issues were found.

References

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2020. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

F&B. 2022. Quality Assurance Manual. Rev. 18. Friedman & Bruya, Inc.: Seattle, WA. December 9.

Fremont. 2020. Quality Assurance. Rev. 3.5. Fremont Analytical, Inc.: Seattle, WA. August 17.