FINAL - Data Summary Report for Annual Groundwater Monitoring for the Tidewater Fuel Leak Site, Pasco, Washington

Washington Department of Ecology Facility ID (FSID): 39378684 Cleanup Site ID (CSID): 2331

Prepared for

Tidewater Terminal Company

6305 NE Old Lower River Road Vancouver, WA 98660

January 2021

999 W. Riverside Ave. Spokane, WA 99201

12/19/2021

This report was prepared under the supervision of a licensed geologist, employed by Jacobs.

Jacobs Project No. D3383500

Contents

Section		Page
1.0 Introd	duction	1-1
1.1	Purpose	
1.2	Objectives	1-1
2.0 Field	Summary	2-1
2.1	Groundwater Measurements and Elevations	2-1
2.2	Groundwater Monitoring	2-1
2.3	Well AR-4 Damage	2-2
3.0 Resul	ts	3-1
3.1	Analytical Results	
3.2	Quality Assurance Summary	
	Field Quality Assurance Samples	
	Laboratory Quality Assurance Results	
	Assessment	
3.3	Water Quality and Field Parameters	3-3
4.0 Concl	usions	4-1
4.1	2021 Recommendations	4-2
	Recommendations to Include AR-1 in the CMP	4-2
	Recommendations for AR-4 Inspection and Repair	4-3
	Installation of Protective Casing to Site Wells	4-3
5 0 Refer	ences	L _1
J.U KEIEI		

Tables

Table 1 Groundwater Elevations and Field Parameter Readings

Table 2 Groundwater Quality Data

Figures

- Figure 1 Site Location Map
- Figure 2 Well Network
- Figure 3 Groundwater Elevations and Flow Direction
- Figure 4 Indicator Substances in Groundwater June 2020

Appendixes

- A Field Forms
- B Historic Groundwater Elevations
- C Laboratory Data Report
- D Historical Groundwater Monitoring Results
- E TPH-G and Benzene Time Series

1.0 Introduction

This data summary report presents results from groundwater monitoring conducted at the Tidewater Terminal Company (Tidewater) Fuel Leak Site (Site) in Pasco, Washington on June 24 and 26, 2020 (Figure 1). The field sampling was performed in accordance with the Compliance Monitoring Plan (CMP) dated November 30, 2017 (CH2M, 2017) and approved by the Washington Department of Ecology (Ecology) on December 8, 2017.

1.1 Purpose

This data summary report has been prepared by Jacobs to document field observations and analytical results from the June 2020 monitoring event conducted at the Site. As described in the CMP, the purpose of annual groundwater monitoring at the Site is to monitor indicator substances and secondary indicator parameters for the effectiveness of natural attenuation (NA) as the selected cleanup action for the Site (CH2M, 2017). Indicator substances from the CMP include Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX), and Gasoline, Diesel, and Heavy Oil-range Total Petroleum Hydrocarbons (TPH). Secondary indicator parameters include ferrous iron, manganese, methane, and sulfate, and will be used in conjugation with field parameters dissolved oxygen, oxidation reduction potential, and pH to evaluate effectiveness of NA at the Site. The CMP provides the cleanup levels for indicator substances for the Site (Table 1). The Sampling and Analysis Plan (Appendix A of the CMP, Table A-2) provides a full list of analytical parameters.

1.2 Objectives

This data summary report was prepared to summarize the sampling approach and methods, laboratory analytical methods, and results. The sampling approach is described in the Sampling and Analysis Plan (Appendix A) of the CMP (CH2M, 2017) and was designed to collect samples from compliance wells located within the Site monitoring network (Figure 2).

This data summary report includes the following:

- Summary of field activities, sampling methods and details, and field observations
- Summary of analytical results

All fieldwork and laboratory analyses were performed in general accordance with the Sampling and Analysis Plan as included in the 2017 CMP.

2.0 Field Summary

This section provides a summary of the sampling activities and field observations during groundwater monitoring activities. Groundwater monitoring was performed on June 24 and 26, 2020 and conducted in general accordance with the CMP.

2.1 Groundwater Measurements and Elevations

Groundwater levels were measured prior to pumping and sampling wells so as not to influence the flat groundwater gradient at the Site. Groundwater measurements were collected from 11 wells as listed in Table 1 of the CMP. Wells that have had historic measurable sheen, or historic high concentrations of indicator substances, were measured for the presence of sheen using an oil-water interface probe. No sheen was detected in the wells monitored as part of the June 2020 monitoring event.

Groundwater levels were measured from the top of casing of each well. Groundwater measurements, including measurements for sheen (if observed), are provided in Table 1. Groundwater measurements were recorded on the groundwater field forms in Appendix A. Depths to water for all measured wells at the site ranged from 78.24 feet below ground surface (bgs) in MW-4 to 83.26 feet bgs in MW-7.

Based on depth to water measurements, groundwater elevations were calculated and are shown in Table 1. Groundwater elevations at the site ranged from 343.95 feet above mean seal level (AMSL) in AR-4 to 344.16 feet AMSL in AR-1.

The groundwater gradient for the site is flat with only a 0.2-foot variation between all measured wells. These groundwater elevations are consistent with historical measurements. Groundwater elevations measured in the 2020 monitoring were 0.24 to 0.32 ft higher than were measured in May 2019. The groundwater flow direction to the south was inferred based on the 2020 measurements and historical groundwater elevations and groundwater plume geometry. Historical groundwater elevations are included in Appendix B.

Note that groundwater elevations are calculated from field depth to water measurements and surveyed top of well casing data. In 2010, a survey was performed for the wells at the site. Based on the 2010 survey, it was determined the survey data for AR-1 was incorrect. Well AR-1 was re-surveyed by Andeavor Logistics' (Andeavor) consultant CEECON on December 21, 2018. Groundwater elevation data for AR-1 has been included in the CMP Reports since 2019.

2.2 Groundwater Monitoring

Groundwater samples were collected from the six CMP network wells (Table 2 of the CMP) after groundwater levels were measured. Groundwater samples were collected using a nominal 2-inch diameter portable submersible pump powered by a direct current (DC) power car battery with disposable polyethylene tubing. Prior to use in each well, the submersible pump was decontaminated using a phosphate-free detergent and rinsed with de-ionized water.

Wells were sampled in order based on historical concentrations of petroleum hydrocarbons and starting with the lowest historical concentrations of petroleum hydrocarbons and moving to the highest. Wells sampled during the June 2020 monitoring event are listed in Table 2 of the CMP and include AR-4, AR-8, AR-11, MW-4, MW-6, and MW-8.

Well sampling was performed in accordance with the SAP using low-flow sampling techniques. Field parameters recorded on field forms for each well and are summarized in Table 1. Well Sampling Forms are provided in Appendix A of this report. Sampling occurred when stabilization of field parameters was indicated over three consecutive 5-minute intervals. Groundwater samples were collected in laboratory-provided sample containers. Ferrous iron field measurements were collected during groundwater collection activities and recorded on the Well Sampling Forms (Appendix A) and are summarized in Table 2.

As per the Quality Assurance Project Plan (QAPP) (Appendix B of the CMP), field duplicates (FDs), matrix spike/matrix spike duplicate (MS/MSDs), and equipment blank (EBs) were collected for quality control and verification of field and laboratory procedures. A FD and a MS/MSD sample were collected from AR-8.

Purge water was collected during sampling activities, contained in a labeled 55-gallon drum, and stored at the Site within a secured area pending characterization by groundwater results and disposal.

2.3 Well AR-4 Damage

After collecting groundwater samples from well AR-4, the PVC stickup of the well disengaged from a joint near the ground surface during retrieval of the submersible pump, causing the pump to drop into the well and allowed for the sloughing of sand and gravel into the well. The PVC casing was quickly placed back on the well, but not before sloughing of sand and gravel into the well.

After replacing the PVC stickup back on the coupler of the well, field staff attempted to retrieve the submersible pump. Several unsuccessful attempts to retrieve the submersible pump were performed using various strategies and methods. The pump was unable to be recovered, hitting a hard 'dislocation' in the well screen, a few feet from the bottom of the well.

Attempts were made to surge the well above and below the in-well obstruction, flush the well with water pumped from the submersible pump, and other methods with no success. Eventually, the cable attached to the pump broke near the surface of the well. The remaining excess cable from the pump was securely wrapped around the well, taped, and the well cap replaced on the well.

3.0 Results

Groundwater samples were submitted to Anatek Laboratories in Spokane (Anatek), Washington on June 27, 2020 for analysis and analyzed for the parameters listed in Table 2 of the CMP.

3.1 Analytical Results

Groundwater results for indicator substances for the June 2020 monitoring event are listed for each well below. Analytical results are provided in Table 2. Analytical reports are provided in Appendix C.

- AR-11 Petroleum hydrocarbons were not detected above laboratory method detection limits (MDL). AR-11 is considered the upgradient well for the site.
- MW-4 Petroleum hydrocarbons were not detected above laboratory MDLs. MW-4 is considered the down-gradient perimeter well for the site.
- MW-6 Petroleum hydrocarbons were not detected above laboratory MDLs.
- AR-4 TPH-G and BTEX constituents were detected in AR-4. TPH-G was detected at 20,100 μg/L, exceeding the Model Toxics Control Act (MTCA) cleanup level of 800 μg/L. Benzene was detected at 132 μg/L and exceeded the MTCA cleanup level of 5 μg/L. Total xylenes were detected at 3,780 ug/L exceeding the MTCA cleanup level of 1,600 ug/L. Ethylbenzene was detected in AR-4 at 276 μg/L, but did not exceed the MTCA Cleanup level. No other petroleum hydrocarbon constituents were detected in AR-4. AR-4 is located within the center of the petroleum hydrocarbon plume directly downgradient from the release.
- AR-8 Petroleum hydrocarbons ethylbenzene, total xylenes, and TPH-G were detected, but only TPH-G (3,520 ug/L) exceeded the MTCA Cleanup level.
- MW-8 TPH-G exceeded the MTCA Cleanup level at 8,130 μg/L. Ethylbenzene and total xylenes were detected, but below their respective MDLs. No other petroleum hydrocarbon constituents were detected in MW-8 for the June 2020 event.

Additionally, manganese, sulfate, nitrate, methane and ferrous iron were analyzed to determine if NA processes are still occurring at the site. Natural attenuation analytes are provided in Table 2. A short summary of NA parameters is below:

- Manganese Manganese was detected in upgradient well AR-11 and wells MW-8, AR-4, and AR-8. Manganese concentrations were highest in wells AR-4 and AR-8 at 2.00 mg/L and 0.997 mg/L, respectively. Manganese concentrations were detected in wells with higher groundwater petroleum hydrocarbon concentrations.
- Sulfate Sulfate concentrations ranged from highs of 134 mg/L (MW-4), 133 mg/L (AR-11), and 115 mg/L (MW-6) to lows of 51.5 mg/L (AR-4), and 57.7 mg/L (AR-8). Sulfate concentrations are lower within wells containing hydrocarbon concentrations.
- Nitrate Concentrations of nitrate ranged from 34.3 mg/L to 29.5 mg/L in wells AR-11, MW-4, and MW-6. Concentrations of nitrate were detected at 25.3 mg/L, 8.17 mg/L, and 0.288 mg/L in wells MW-8, AR-4, and AR-8, respectively, and are lower in wells with higher groundwater petroleum hydrocarbon concentrations.

Methane – Methane was detected in wells AR-4 and AR-8 at concentrations of 742 μg/L and 6.57 μg/L, respectively, elevated in the in wells with the highest groundwater petroleum hydrocarbon concentrations.

3.2 Quality Assurance Summary

Quality assurance samples were collected by Jacobs in the field (field duplicates, equipment blank, and trip blanks). Additionally, the analytical laboratory performed quality assurance on samples during analysis.

Field Quality Assurance Samples

A field duplicate was collected from AR-8 for the June 2020 event. The relative percent difference (RPD) for the field duplicate sample collected at AR-8 was within acceptable limits for all analytes. An equipment blank sample (EB-1) was also collected by Jacobs field staff from the submersible pump during the sampling event as a quality check of the effectiveness of field decontamination procedures. No analytes were detected for the equipment blank, indicating decontamination procedures were generally effective and no cross contamination is suspected.

No analytes were detected in two trip blanks.

Laboratory Quality Assurance Results

Laboratory performance criteria for calibration, precision (as measured by laboratory duplicate samples), and accuracy (as measured by spike and surrogate recovery and laboratory control sample analysis) were reviewed. Laboratory quality assurance results indicate laboratory quality control requirements were generally met for the analyses performed with the following exceptions:

- Hold time exceedance: The hold time for Nitrate exceeded the recommended hold time for samples MW-8 and AR-4
- Low matrix recovery: Matrix recovery for manganese did not meet the established criteria in laboratory in the matrix spike duplicate.
- Lab control RPD exceeded: The RPD of the lab control spike duplicate exceeded established criteria for NWTPH-Gx (Gasoline).

Assessment

- 1. No data were rejected
- 2. MS/MSD recovery for manganese (Method EPA 200.8) was below quality criteria. Four (4) results were qualified as estimated (J-flag). Three (3) results that were non-detect were flagged as non-detect, but approximated (UJ-flag)
- Primary/FD RPD exceedance was observed for Method NWTPH-Gx; Four (4) results were qualified as estimated (J-flag). Three (3) results that were non-detect were flagged as non-detect, but approximated (UJ-flag)
- 4. The hold time for nitrate (Method EPA 300.0) was exceeded for two (2) samples (MW-8 and AR-4) and are qualified as estimated (J-flag).

3.3 Water Quality and Field Parameters

During groundwater sampling, field parameters were recorded to provide additional details of water quality.

Dissolved oxygen (DO), pH, and oxidation-reduction potential (ORP) were recorded and provide additional data as to if biodegradation processes are occurring. Negative ORP field values, which indicate the potential of reducing conditions were recorded in AR-4, AR-8, and MW-8. Low DO readings, which indicate increasing anaerobic conditions, were recorded in AR-4 and AR-8. Field pH readings ranged from 6.91 (AR-4) to 7.30 (AR-11). Field parameters are recorded on the well sampling field sheets in Appendix A and are provided in Table 1.

4.0 Conclusions

No petroleum hydrocarbons were detected in wells AR-11, MW-4 and MW-6 for the June 2020 monitoring event. These data support the conclusion that the petroleum hydrocarbon plume continues to be contained within the monitoring network.

Well AR-4, located within the center of the petroleum hydrocarbon plume directly downgradient for the release area, has the most MTCA Cleanup Level exceedances for the site with benzene, total xylenes, and TPH-G exceeding cleanup levels. However, benzene has decreased to some of the lowest concentrations in AR-4 since June 2003. Historical groundwater monitoring results are provided in Appendix D. BTEX constituents did not exceed cleanup levels in the other compliance wells monitored in 2020. Time-series plots for benzene and TPH-G are provided in Appendix E.

Total xylenes and TPH-G concentrations were lower for the June 2020 monitoring event than the previous monitoring event conducted in May 2019.

Field parameter data indicate that wells with historic and existing petroleum hydrocarbon detections showed negative ORP values (indicating potential for reducing conditions), lower DO readings (indicating presence of anaerobic conditions), and lower pH.

Natural attenuation constituents indicate that biodegradation of petroleum indicator substances is occurring in groundwater at the Site. Manganese concentrations were much higher in wells with petroleum hydrocarbons as opposed to wells that have not had petroleum hydrocarbon detections. Conversely, sulfate concentrations were noticeably lower in wells AR-4, AR-8, and MW-8, than wells where petroleum hydrocarbons were historically not detected.

Biodegradation processes associated with natural attenuation have been shown to reduce nitrates as well as petroleum hydrocarbons and is illustrated by the low nitrate values detected in AR-4 and AR-8 when compared to other wells at the Site. Methane is indicative of biodegradation processes and was detected in wells AR-4 and AR-8 which are located in the area of highest elevated groundwater concentrations of indicator parameters.

The results of the June 2020 monitoring event continue to support the conclusions presented in the September 2011 Remedial Investigation/Feasibility Study Report (CH2M/URS, 2011) as follows:

- The hydraulic gradient at the site is relatively flat with limited fluctuations.
- The petroleum hydrocarbons source has been addressed through remedial activities.
- Residual dissolved-phase petroleum hydrocarbons remain on site and within localized areas of the former free product plume. These areas include AR-1, AR-4, and AR-8.
- The lateral extent of the dissolved-phase plume has generally continued to maintain or decrease in area since active remedial actions were discontinued.
- Measured concentrations of field parameters and analytical results of natural attenuation constituents, as well as the decreased lateral extent and concentration of petroleum hydrocarbons in sampled wells, suggest biodegradation processes continue at the Site. Biodegradation and associated natural attenuation processes have contributed to the observed reduction in petroleum concentrations. These processes are expected to continue, resulting in continued decreases in petroleum hydrocarbons in groundwater.

4.1 2021 Recommendations

Recommendations to Include AR-1 in the CMP

CMP Support for Including AR-1

The CMP allows for modification of the well network based on changing conditions and other factors. It is recommended, regardless of the condition and repair of AR-4 (described below), that AR-1 be included as a replacement groundwater monitoring well of AR-4. Well AR-1 is a suitable replacement for well AR-4 based on the objective stated in Section 2.1 of the CMP for protection to human health and the environment.

Additional support for replacing AR-4 with AR-1 as provided in the CMP:

<u>AR-1 Meets Point of Compliance definitions (CMP Section 2.2.2)</u>: Points of Compliance (POCs) are designated at on-site locations where cleanup levels are to be met. For the Site, the standard POC is the unconfined groundwater located in the sand and gravel deposits beneath the facility. Well AR-1 is located in this area and screened in the zone of degraded groundwater and provides an adequate assessment of the groundwater and indicator substances at the POC. Incorporating well AR-1 for monitoring would be required as part of cleanup demonstration and meeting the cleanup levels at the point of compliance.

<u>Meets CMP monitoring Objectives (CMP Section 3.1)</u>: The goal of compliance monitoring is to monitor the effectiveness of natural attenuation as the selected cleanup action for the Site. Specific objectives of the CMP are to:

- Document groundwater flow patterns, including changes that might adversely impact
- effectiveness of the natural attenuation remedy;
- Identify the wells to be sampled and analyses to be performed to demonstrate compliance with the cleanup standards;
- Establish a monitoring frequency that ensures that human health and the environment continue to be protected during performance and confirmational monitoring periods; and
- Provide periodic reports to demonstrate progress toward achieving Site cleanup standards.

Well AR-1 meets all the above objectives of the CMP monitoring network.

<u>Maintains Integrity of CMP Monitoring Well Network (CMP Section 3.2):</u> The Tidewater compliance monitoring network includes one upgradient monitoring location (AR-11), three sentinel wells (MW-4, MW-6, and MW-8), and two interior plume source area well (AR-4 and AR-8) (Section 3.2 of the CMP). Well AR-1 meets the definition of an interior plume source area well as it is located at the source of the historic release and subsequent plume. Interior plume source area well AR-8 is located hydraulically downgradient of both AR-4 and AR-1 and provides data on the farthest extent of the plume.

The CMP allows for modifications to the site monitoring network or monitoring frequency, without changes or re-negotiations to the 2016 Consent Decree (Ecology, 2016). Any proposed modifications to the CMP will be submitted to Ecology for review and approval prior to implementation.

Recommendations for AR-1 Inspection

Well AR-1 PVC casing and screen may be weakened by the prolonged exposure to fuel hydrocarbons as its located near the source of the original release. Before AR-1 is formally incorporated into the network as a replacement monitoring point for AR-4, the following will be performed:

1. Confirm well AR-1 continues to be free of floating product or sheen. AR-1 is currently monitored as a water level well in the CMP. Recent water level measurements in well AR-1 have not indicated the presence of free product or sheen.

- 2. If well AR-1 is free of floating product, A camera inspection will be conducted to check the integrity of the well casing and screen.
- 3. If no damage is observed based on the camera inspection, and AR-1 is free from floating product or sheen, it will be developed to reduce the presence of silt and fines in the well in accordance with well installation industry standards.
- 4. A caliper survey should be performed on AR-1 after the well development to confirm well screen integrity after well development.
- 5. If well AR-1 is determined to be damaged or unusable for groundwater sampling purposes now or in the future, it will not be included as a monitoring well replacement of AR-4. If well AR-4 is inspected and repaired (pump removed) and observed to be undamaged, well AR-4 will remain as the interior monitoring well for the network with AR-1 remaining as a water level well.
- 6. Replacement wells for both AR-1 and AR-4 will be installed if both existing AR-1 and AR-4 (see below) are observed as unusable as monitoring wells based on camera inspections. This requirement is accordance with monitoring and sampling requirements set forth in Table 2 in the November 2017, Compliance Groundwater Monitoring Report.

The above well inspection activities will occur in 2021, prior to performing the annual CMP monitoring event.

Recommendations for AR-4 Inspection and Repair

It is recommended that well AR-1 replace AR-4 at the site. Well AR-4 should still be inspected and repaired, if possible, as it is no longer functional as a monitoring well for the CMP Program due to a pump that was not retrievable within the well screen from the 2020 CMP monitoring event. Water levels may still be collected from AR-4, but groundwater samples cannot be collected presently as the presence of the pump prevents collecting representative groundwater samples from the target screen zone. The condition of AR-4 well screen is also unknown and requires inspection.

A camera investigation is recommended to observe the submersible pump and well conditions and determine if the pump can be recovered. If the pump can be retrieved, a camera inspection of the well screen will be performed to inspect if any damage to well screen is observed.

If the pump is removed successfully from AR-4, and the subsequent camera inspection indicates no damage has occurred to the well, AR-4 will be used as a groundwater elevation well and an alternate groundwater monitoring well in the event of free product observed in AR-1 which would preclude collection of samples. If the pump in AR-4 is not retrievable, or the camera inspection indicates damage to the integrity of the well that prevents use as a monitoring well, it is recommended that AR-4 be used as a water level only well, assuming the well is not damaged or blocked to make it inappropriate for such use.

If AR-4 is damaged and cannot be used for groundwater monitoring or groundwater level measurements, AR-4 will be abandoned in accordance with all applicable Washington State regulations governing groundwater well abandonment.

Installation of Protective Casing to Site Wells

Wells AR-4, AR-7, AR-8, and AR-12 are all PVC cased wells that lack protective casing. Years of exposure to the elements has weakened the PVC and PVC connections, and is a probable direct cause of the damage that occurred to well AR-4.

AR-8 is an unprotected PVC stickup with the top of the well just below surface level. The well is capped with a slotted plastic bio-vent cap and protected by a traffic cone. Care is needed during sampling events to

prevent gravel and sand sloughing into the well when accessing for measurements and sampling. Many of the AR wells are vulnerable to damage from typical site activities that could cause irreparable damage to the wells.

Jacobs recommends protecting exposed PVC monitoring and water level wells with flush-mount monuments or above ground steel protective casings to prevent further damage due to weathering and inadvertent physical damage. This work would be performed by a licensed driller and would be performed by the same drilling contractor performing the well camera inspections required by Ecology described in the section above.

5.0 References

CH2M/URS 2011. *Remedial Investigation/Feasibility Study Report for the NWTC Pasco Terminal, Pasco, Washington.* September 29.

CH2M 2017. Compliance Monitoring Plan for The Tidewater Fuel Leak Site, Pasco. October 3.

Washington Department of Ecology 2016. *State of Washington, Department of Ecology v. Tidewater Terminal Company, Inc., Consent Decree No. 16-250951-11.* November 22.

Tables

Table 1. Groundwater Elevations and Field Parameter Readings

Tidewater Fuel Leak Site Compliance Monitoring Program

		Reference Point	Depth to	Groundwater			Dissolved	Oxidation Reduction			
	Date	Elevation	Water	Elevation	Temp		Oxygen	Potential	Conductivity	Turbidity	
Well	Measured ¹	(ft)	(ft btc)	(ft)	(°C)	рН	(mg/L)	(mV)	(mS/cm)	(NTU)	Comments
AR-4	6/24/2020	426.47	82.52	343.95	21.7	6.91	0.19	-175	0.995	2.0	
AR-8	6/26/2020	423.02	78.99	344.03	20.3	7.13	0.04	-179	0.815	2.7	Also collected Field Duplicate and MS/MSD Lab QC Sample
AR-11	6/26/2020	422.62	78.54	344.08	20.1	7.30	5.34	125	1.04	11.5	
MW-4	6/26/2020	422.29	78.24	344.05	20.4	7.20	4.58	159	1.03	1.9	
MW-6	6/26/2020	422.50	78.44	344.06	20.5	7.16	5.61	151	0.972	2.7	
MW-8	6/24/2020	427.15	83.16	343.99	20.7	7.02	4.22	-76	0.943	6.0	
					_		Water Level	ls Only			
AR-1	6/24/2020	423.99	79.83	344.16							
AR-7	6/24/2020	425.44	81.41	344.03							
AR-12	6/24/2020	425.50	81.50	344.00							
MW-5	6/24/2020	425.02	80.97	344.05							
MW-7	6/24/2020	427.25	83.26	343.99							

Notes:

1 - Water level measurements were collected on June 24, 2020. Groundwater samples were collected on June 24 and June 26, 2020.

" -- " = Not applicable, not available, and/or not measured.

Reference point elevation is top of PVC casing; all elevations are in feet above mean sea level (NAVD88).

Field parameter readings represent final stabilized readings obtained during low-flow purge immediately prior to collection of water-quality sample.

ft = feet

ft btc = feet below top of casing

C = degrees celcius

mg/L = milligrams per liter

mV = millivolts

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Units

Table 2. Groundwater Quality Data

Tidewater Fuel Leak Site Compliance Monitoring Program

Well				AR-11	MW-4	MW-6	MW-8	AR-8	FD (AR-8)	AR-4	Equipment Blank
Sample ID				AR11-2006	MW4-2006	MW6-2006	MW8-2006	AR8-2006	FD-2006	AR4-2006	EB-2006
Sample Date				6/26/2020	6/26/2020	6/26/2020	6/24/2020	6/26/2020	6/26/2020	6/24/2020	6/26/2020
Field Parameters	Method	Units	MTCA Cleanup Level								
pH	Field Probe	units	-	7.30	7.20	7.16	7.02	7.13		6.91	
Temperature	Field Probe	°C	-	20.1	20.4	20.5	20.7	20.3		21.7	
Spec. Conductance	Field Probe	mS/cm	-	1.04	1.03	0.972	0.943	0.815		0.995	
Dissolved Oxygen	Field Probe	mg/L	-	5.34	4.58	5.61	4.22	0.04		0.19	
Oxygen Red. Potential	Field Probe	mV	-	125	159	151	-76	-179		-175	
Turbidity	Field Probe	NTU	-	11.5	1.9	2.7	6.0	2.7		2.0	
Ferrous Iron	Field Screen	mg/L	-								
Petroleum Hydrocarbons											
Benzene	EPA 8260D	ug/L	5	<0.500	<0.500	<0.500	<25	<1.25	<1.25	132	<0.500
Toluene	EPA 8260D	ug/L	320	<0.500	<0.500	<0.500	<25	<1.25	<1.25	<50	<0.500
Ethylbenzene	EPA 8260D	ug/L	400	<0.500	<0.500	<0.500	106	61.7	62.6	276	<0.500
Total Xylenes	EPA 8260D	ug/L	1,600	<0.500	<0.500	<0.500	1,241	109.7	103.8	3,780	<0.500
TPH-Gasoline Range	NWTPH-Gx	ug/L	800	<100 UJ	<100 UJ	<100 UJ	8,130 J	3,520 J	3,220 J	20,100 J	<100 UJ
TPH-Diesel Range	NWTPH-Dx	ug/L	500	<160	<160	<160	<160	<160	<160	<160	<160
TPH-Heavy Range	NWTPH-Dx	ug/L	500	<400	<400	<400	<400	<400	<400	<400	<400
MNA Parameters											
Manganese	EPA 200.8	mg/l	-	0.00364 J	<0.00100 UJ	<0.00100 UJ	0.268 J	0.997 J	1.05 J	2.00 J	
Sulfate	EPA 300.0	mg/l	-	133	134	115	100	57.7	55.7	51.5	
Nitrate	EPA 300.0	mg/l	-	34.2	34.3	29.5	25.3 J	0.288	0.240	8.17 J	
Methane	RSK-175 MOD	ug/L	-	<0.65	<0.65	<0.65	<0.65	6.57	6.38	742	
Ferrous Iron	SM-3500	mg/l	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Notes:

Field parameters represent final stabilized readings obtained during sampling immediately prior to sample collection.

BOLD - Exceeds MTCA Cleanup Level

Non-detect values reported as "<" with the laboratory method detection limit.

-- = not measured

J = Analyte was positively identified, the quantitation is an estimate.

UJ = the analyte was not detected above the detection limit. However, the detection limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

°C = degrees celcius

mg/L = milligrams per liter

mV = millivolts

mS/cm = millisiemens per centimeter

NTU = Nephelometric Turbidity Units

Figures

\ELM\25012081 CPL Pasco 2009\GIS\MXD\Site Aerial.I

Appendix A Field Forms

Tidewater Monitoring Wells - Screen and Field Measurements

JA	CO	BS			Field Team:	Bartow	liverson	n	Date: <u>6-24-2</u> 0
Well	As-built TD (bgs)	Screen Interval (bgs)	Well in Good Condition?	Sheen?	Depth to Free Product	DTW (btc)	TD (btc)	FP thick	Notes/Comments
AR-11	88	73 - 88	455	_	/	78.54	86.42		BLG-561 Tax
MW-4	90	75 - 90	485	2 7		78.24	89.25		Tag ATS-980, Missing b
MW-6	90	75 - 90	yes	-	-	18.44	8,9.88	-	TEX AF5-981
MW-5	90	75 - 90	izes	_	-	80.97	<u> </u>		Tay hay be at bot as menuin
AR-8	88	73 - 88	yes	-	-	78,99	85.05	-	The in gradel, black up, under
AR-4	88	73 - 88	yes			82.52	89.5 (Apro	k)	Tag BLG - 554, white PURpip
MW-8	90	75 - 90	1/24			83.16	43,78		Ack 343 tox nearly not
MW-7	90	75 - 90	yes	-	-	83.26	94.60		No the white cop, motel still
AR-12	88	73 - 88	ines	-	~	B1.50	82.82		BUG-SGER behind yellow borning
AR-7	88	73 - 88	Des			81.41	91.58		BLG-557 white puc pipe
AR-1	88	73 - 88	se belos			79.83	87,48	- 84	to the ist prepipe likelence
otes		M	N=6 med	s new v	sighers				
		ar in	o bolto,	flush moi	nt, tog.	BLG-551	odar by	concrete	pylon and odar plug is lop
)		
1			11 (2000)						
naded =	Free product	vsneen in v	vell (2006)						

SITE:	Tidewate	r Fuel Le	ak Site	Pro	ject Number	-70390	7.18.01	Well ID:	MW-8
ield Team:	S	5: BRITO	N.A.	hiersan				Date:	6/24/20
Veather/Te	mp:	91°F	Sunni	-			Arrival 1	Time to Well:	1200
urge Meth	od: XSubi	nersible 📋	Peristaltic	Grab	Other:		Initial DT	W (ft btc):	83.17
lotes:	15.4 -2	A V-H	-		FP Depth:	_	Total Well D	epth (ft btc);	92.78
-				Field	l Parameters	<u> </u>			
Time ¹	DTW ²	Purge Vol. (gal)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
12.25	Begin Pumpir	g							
1255	83.17	8	7,00	0 148	4.25	20.33	- 77	5.8	slight wellow
1300	83.18	8.5	7.01	0.940	4.13	20.74	- 78	6.0	Clean
1305	83.18	9.25	2.02	0943	4:22	20.73	-76	6-0	clear "
,					C.C.				
						_			
			· · · ·						
									<u>.</u>
	<u> </u>								
							-		
Stabilization			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	-
Collect field para Stabilization ach	meters in consistent leved once field para	3-5 minute interval ameters stabilize for	s for Low-Flow meth 3 successive reading	nod ngs for Low-Flow m	² DTW: Total drawd ethod; minimum par	own should not ex ameter subset: pH	ceed 0.33 ft for Lov , sp. cond., and tur	r-Flow method bidity or DO	
ample ID:	nings > 10 NTOs	1 Low-now target	OOC	5 L/min (0.03 - 0.13	gal/min}		c	Sample Time:	1213
nalueie									1010
andiyətə:	SO4, NO3 (3	00.0)	Manganese (6	ان ((10B)	Zi Methane (RS	K-175)		Iron (SM3500)	
	□						Fe2+ Field Sc	reen Result:	
C SAMPLE	E E Fi	eld Duplicate	MS/	usd 🗆	EQ Rinsate B	lank	TOTAL PUR	GED (GAL)	nit adloni
C Sample I	D :						QC	Sample Time:	
comments:		conden	sidia	in hor	The scre	en ha	d to a	ou no l	back r
		T.L.	7		to ere		e de me a		

.

ch2	M.	G	roundwat	er Purgin	ng and Sa	mpling F	orm 83500	25	
SITE:	Tidewate	r Fuel Le	ak Site	Pro	oject Number	70390	7.18.01 -	Well ID:	AR-4
Field Team:	(S BENto	W/A	Nerso	oi∕] :			Date:	6/24/20
Weather/Te	mp:	94	Frank	14			Arrival	Time to Well:	1410
Purge Meth	od: 🖌 Subr	nersible 🔲 I	Peristaltic	Grab	🗋 Other: 🔄		Initial DT	W (ft btc):	82.74
Notes:	Volts	15,8	3		FP Depth:		Total Well D	epth (ft btc):	
				Field	d Parameter	5			
Time ¹	DTW ²	Purge Vol. (gal)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1430	Begin Pumpin	g		_	-94974.000 -94-				
1448	32.58	25	6.07	1,00	0.20	19,32	- 187	10.4	NOW CLEAN
1455	82.57	4	6.90	0,973	0.14	20.04	-185	0	char
1500	82 55	4.5	6.7	1,00	0.23	21.47	-183	6-2	elear
1505	82.55	5.25	6.7	10,918	0.20	22.61	-182	6.4	elecr
1510	82 57	5.5	6.71	01995	0.19	21.67	-175	2.0	clear
							-		
								1	
				_					
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L.		± 10 mV	± 10% 4	
¹ Collect field para ³ Stabilization ach	ameters in consistent ieved once field para	3-5 minute interval meters stabilize for	s for Low-Flow met 3 successive readi	hod ngs for Low-Flow m	² DTW: Total draw hethod; minimum pa	down should not e rameter subset: pl	xceed 0.33 ft for Lov	N-Flow method bidity or DO	
⁴ For turbidity read	dings > 10 NTUs	⁵ Low-flow target (ourge rate is 0.1 - 0	.5 L/min (0.03 - 0.13	3 gal/min)				1 100 100
Sample ID:		ARY-	1005				'	Sample Time:	1217
Analysis:	BTEX (8260E	3) [Z] 00.0) [Z∕	NWTPH-Gx Manganese (6	010B)	⊠ NWTPH-Dx ☑ Methane (R	SK-175)		I-Rx Iron (SM3500)	
				,		v j	Fe2+ Field Sc	reen Result	
QC SAMPLE	E: 🗌 Fie	eld Duplicate	☐ MS/I	MSD 🗖	EQ Rinsale E	Slank			
QC Sample I	ID :						QC	Sample Time:	
Comments:		34 " 5	trikup 1	with			-	·	0
				ò					
					1				

ony 21.8 Och other parameters 1440

	JAC	OBS	Gr	oundwat	er Purgin	ig and Sa	mpling F	orm			
	SITE:	Tidewater	Fuel Lea	ak Site	Pro	ject Number	D33835	00	Well ID:	AR-11	
	Field Team:	S.	BArto	W. A.	luurion				Date:	6/26/20	
1	Weather/Ten	1045									
	Purge Metho	Initial DTW (ft btc):									
	Notes:	~ 16.1	, volts			FP Depth:		Total Well D	epth (ft btc):	86.42	
			Purge Vol.		Field Sp. Cond.	Parameters	Temp	ORP	Turbidity T	and the second second	
	Time ¹	DTW ²	(gal)	рН	(mS/cm)	(mg/L)	(°C)	(mV)	(NTU)	Note color, odor, etc.	
	1114	Begin Pumping	1						10. L S. S.		
	1120	79.58	1.25	7.36	1.03	6.77	18.67	107	93.9	Fron turbid	
	1125	78,58	2.5	7.33	1.02	5,61	19.75	113	25,9	lighttan	
	1130	78.59	3,5	7.31	1.03	5.32	19.92	118	5,25	clear colorle	
	1135	78,58	4.0	7.32	1.03	5.07	19.91	120	11.7	clear "	
-	140	78,58	4,5	7.31	1.03	5,10	30.10	122	10.7		
	1145	78.58	5.0	7.3	1.04	5.34	2008	125	11.5	UIG	
	11 12	10.00					40,00				
										Contraction of the local sectors of the local secto	
3											
2						_					
3											
1000	Stabilization Criteria ³	•	·	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% 4		
	¹ Collect field para ³ Stabilization ach	meters in consistent ieved once field para	3-5 minute interval meters stabilize for	s for Low-Flow met 3 successive read	hod ings for Low-Flow n	² DTW Total draw nethod, minimum pa	down should not e	ceed 0.33 ft for Lo	w-Flow method rbidity or DO	2 2	
	*For turbidity read	lings > 10 NTUs	Low-flow target	purge rate is 0.1 - 0) 5 L/min (0 03 - 0 1	3 gal/min)				11115	
	Sample ID:		AKII-	1000					Sample Time:		
	Analysis:	UBTEX (82608		NWTPH-Gx Mannanese /6	010B)		SK-175)		H-Rx From (SM3500)	-1	
				manganese (a			elerro)			SD V	
	OC SAMPLE		ald Duplicate			EO Dinosta (Plank	TOTAL OUT		í	
	OC Somole		era Duplicale	, L 1/13/1		EQ RINSALA E	JIdilk		KGED (GAL);	б	
5	Commonter	<u> </u>	12						sample (ime:		
J	Comments:									·····	

÷

1
JAC	JACOBS Groundwater Purging and Sampling Form											
SITE:	Tidewate	r Fuel Le	ak Site	Pro	ject Number	D33835	00	Well ID:	Mh	16		
Field Team:	<u> </u>	Barto	A.N	luerson	·		_	Date:	6/26	ho		
Weather/Ter	mp:	<u> </u>	92°F	Soni	up to	T	Arrival -	Fime to Well:	1240	<u>}</u>		
Purge Metho	od Subn	nersible 🔲 I	Peristaltic	🗌 Grab	Other:		Initial DT	W (ft btc):	78.4	14		
Notes:		16.4 \	lolts		FP Depth:		Total Well D	epth (ft btc):		, 		
		Purge Vol.		Field Sp. Cond.	l Parameter DO	5 Temp	ORP	Turbidity	-			
Time	DTW ²	(gal)	рН	(mS/cm)	(mg/L)	(°C)	(mV)	(NTU)	Note color,	odor, etc.		
1156	Begin Pumpin	9										
1257	78.48	0.5	7.29	0,948	5.89	19.84	120	16,8	clear	volork		
1302	78,47	1.0	7.2	0.774	5.82	19.48	130	5.65	13	+1		
1307	78.47	1.75	7:20	0.944	5,20	19,72	138	J. 35	11	n –		
1314	78.47	2.25	7.18	0-971	5.82	20:03	141	5,81	ŭ.	- 11		
1317	78,47	3.0	7.18	0.9	5.45	20.12	145	5,7	'n	¥		
1324	78,47	3.5	7,17	0:774	5.66	20.43	149	5.58	ls -	4		
1329	78.47	4	7.16	0772	5.61	20,54	15-1	2,7	ĸ	и		
			_									
							<u> </u>					
				· · · · · · · · · · · · · · · · · · ·								
			<u> </u>				<u> </u>					
Ctabilization												
Criteria ³		•	± 0.1 units	± 3%	± 0.3 mg/L	•	± 10 mV	± 10% 4	-			
³ Stabilization achi	meters in consistent ieved once field para	3-5 minute interval meters stabilize for	s for Low-Flow met 3 successive read	hod ings for Low-Flow n	² DTW Total draw nethod, minimum p	down should not e arameter subset: pl	xceed 0 33 ft for Lov H, sp. cond., and tu	w-Flow method bidity or DO				
* For turbidity read	lings > 10 NTUs	⁵ Low-flow target	purge rate is 0.1 - 0) 5 Umin (0.03 - 0.1	3 gal/min)					,		
Sample ID:	4		18 - 20	<u>a</u> U	- A.			Sample Time:)		
Analysis:	ビBTEX (82608 ダ SO4 NO3 (3	3) <u>1</u> 100.0\ 121	NWTPH-Gx Manganese (6	ار (0108)	NWTPH-Dx	SK-175)		I-Rx				
			manganese (o		- a methane (ry	31(-173)	- Perious					
OC BANDIE	. D iev	old Dumlingt			50 Bin ()	Plant.	ez+ rield Sc	reen Kesult:				
		eia Duplicate	, L MS/	พรม 🗆	EQ KINSAle l	siank	IOTAL PUR	RGED (GAL):				
Qu Sample I	<i>u</i>						_ QC.	Sample Time:				
/ comments:												

ă.

JAC	OBS	Gi	roundwat	er Purgir	ng and Sa	mpling F	orm		
SITE:	Tidewate	r Fuel Le	ak Site	Pro	ject Number	D338350	00	Well ID:	MH-04
Field Team:		Bartow	/ were	on				Date:	6/24/20
Weather/Ter	mp:	16°F /	Sunny				Arrival ⁻	Time to Well:	1345
Purge Metho	od: 🔄 Subr	nersible 🔲 I	Peristaltic	🗌 Grab	🗋 Other:		Initial DT	W (ft btc):	78.28
Notes:	<u>J-156</u>	<u> </u>			FP Depth:		Total Well D	epth (ft btc):	39.25
Marris 110	All and an and an and			Field	l Parameter	5			
Time ¹	DTW ²	(gal)	pH	(<u>mS/cm</u>)	(mg/L)	(°C)	(mV)	(NTU)	Note color, odor, etc.
1414	Begin Pumpin	g		107					
1419	78.28	lyal	7,23	13GA,	5.23	19,70	136	5,[
1424	78,25	1.75 gel	7.22	1,03	4.46	20.27	141	4,4	
1429	78,24	2,25	7.21	1.03	4.34	20.13	145	2.5	
1434	78,23	2 75	7.20	1,03	4.87	20,30	149	1.5	
1439	78.23	3.5	7.20	1,03	4.62	20.38	152	1.5	
1444	78,23	4.0	7,20	1.03	4.58	20,39	159	1.9	_
<i>N</i> .									
	ļ	····			<u> </u>				
			<u> </u>			<u> </u>			
Stabilization Criteria ³		-	± 0.1 units	± 3%	± 0.3 mg/L	P	± 10 mV	± 10% ⁴	
¹ Collect field para ³ Stabilization ach	meters in consistent ieved once field para	3-5 minute interval meters stabilize for	s for Low-Flow met 3 successive readi	nod nas for Low-Flaw m	² DTW Total draw hethod, minimum pa	down should not ex arameter subset: nH	ceed 0 33 ft for Lov	w-Flow method	
⁴ For turbidity read	tings > 10 NTUs	⁵ Low-flow target	purge rate is 0.1 - 0	5 L/min (0 03 - 0 1	3 gal/min)				111-6
Sample ID:		m	W4 -20	101				Sample Time:	1450
Analysis:	BTEX (8260)	3) 🛛	NWTPH-Gx] (100)		01/ 4751		I-Rx	
1	د sua, NU3 (3 		manganese (6	טוטש) נ		SK-175)	Ferrous	Iron (SM3500)	
						Fe	2+ Field Sc	reen Result:	
QC SAMPLE	:: ⊔ <i>Fi</i>	eld Duplicate	MS/I	usd 🗆	EQ Rinsate E	Blank	TOTAL PUF	RGED (GAL):	
QC Sample	ID :						QC	Sample Time:	,
Comments:									

	JAC	OBS	G	roundwat	te <mark>r Purg</mark> ir	ng and Sa	ampling H	Form				
-	SITE:	Tidewate	r Fuel Le	ak Site	Pro	ject Number	D33835	00	Well ID:	AR	- 8	
2	Field Team:	S	Burto	J. L		$\alpha \wedge$		_	- Date:	6/2	6h0	-
	Weather/Tei	mp:	99:1	F H	OT !	Sinny		Arrival	Time to Well:	152	10	-
	Purge Metho	od: 😿 Subn	nersible 🔲 i	Peristaltic	🔲 Grab	Other:		- Initial D1	W (ft btc):	78	99	_
	Notes:		p at	15.71	volts.	FP Depth:	1.000	Total Well D	epth (ft btc):	85	05	_
			Purge Vol.		Field	d Parameter	S Temp	ORP	Turbidiby			
	Time ¹	DTW ²	(gal)	pH	(mS/cm)	(mg/L)	(°C)	(mV)	(NTU)	Note colo	r, odor, etc.	
	1601	Begin Pumpin							and Steph	in a sub		
	1211	79.03	0.75	7.20	0.808	0.15	20.13	-171	0	o har	some the	sedimente
	1616	79.05	1.25	7.15	0.815	0.46	21.86	-171	0	odor	clear (plarless
	1221	79.03	2	7.14	0.813	0.20	20,31	-178	0	odar	28 /	P
	1626	79.03	2,5	7.14	0,814	0.11	20,28	-180	0	odor	() H]
	1631	79.03	3	7.13	0.815	0.04	20,33	-129	2,2	<i>14</i>	н И	
]
												1
									·			1
							<u> </u>	<u> </u>				-
												-
					·		<u> </u>					-
							<u> </u>				<u> </u>	-
							<u> </u>					-
	Stabilization			-					1			
	Criteria ³	•	•	± 0.1 units	± 3%	± 0.3 mg/L	•	± 10 mV	± 10% ⁴		+ 10h	
	³ Stabilization achi	eved once field parar	3-5 minute interval neters stabilize for	5 for Low-Flow met 3 successive read	hod ings for Low-Flow m	² DTW: Total draw tethod; minimum p	rdown should not e arameter subset: pl	xceed 0.33 ft for Lo H. sp. cond., and tu	w-Flow method rbidity or DO			-
	Sample ID:	ings≥ tu N+Us ∆u	RR 20	ourge rate is 0.1 - 0) 5 L/min (0.03 - 0.1)	3 gal/min)				. 1	25	
	Analysis:				r			-	sample (ime:	/ 6	20	-
	nilaiyata.	ZI SO4, NO3 (30	, 20.0) 互	Manganese (6	ب [010B)	\square Methane (R	: SK-175)		I-Rx Iron (SM3500)			
		.			/		F	e2+ Field Sc	reen Result			
	QC SAMPLE		ld Duplicate	D MS/	MSD D	EQ Rinsate I	Blank		RGED (GAL)			-
	QC Sample I	D:	FD	-2001				QC	Sample Time:			-
	Comments:		in s	1/msb								-
			EB-	- 2004								-

0

Appendix B Historic Groundwater Elevations

Appendix B - Historical Groundwater Elevation Measurements

Tidewater Fuel Leak Site Compliance Monitoring Program

		Reference Point			Groundwater	Groundwater Elevation
		Elevation	Depth to Water	Product Thickness	Elevation	Change in Feet
Well	Date Sampled	(feet NGVD)	(feet)	(feet)	(feet NGVD)	From Previous Reading
MW-1 ^a	6/28/2010	421.82	77.23	0	344.59	
	12/14/2010		77.72	0	344.1	-0.49
	5/28/2014		77.35	0	344.47	0.37
MW-2 ^a	6/29/2010	422.95	78.37	0	344.58	
	12/15/2010		78.86	0	344.09	-0.49
	5/28/2014		78.49	0	344.46	0.37
MW-3 ^a	6/29/2010	422.37	77.84	0	344.53	
	12/15/2010		78.33	0	344.04	-0.49
	5/28/2014		77.92	0	344.45	0.41
	- / /			-		
MW-4	6/29/2010	422.29	77.72	0	344.57	
	12/15/2010		/8.22	0	344.07	-0.5
	5/29/2014		//.82	0	344.47	0.4
	5/1/2018		//.80	0	344.49	0.02
	6/25/2019		78.52	0	343.77	-0.72
	6/24/2020		78.24	0	344.05	0.28
	6/20/2010	425.02	00.40	0	244 54	
10100-5	12/15/2010	425.02	80.48 80.0E	0	244.54	0.47
	12/15/2010		80.95	0	344.07	-0.47
	5/29/2014		80.59	0	344.43	0.36
	5/1/2018		80.51	0	344.51	0.08
	6/25/2019		81.29	0	343.73	-0.78
	6/24/2020		80.97	0	344.05	0.32
MW-6	6/28/2010	422.5	77.92	0	344.58	
	12/14/2010		78.41	0	344.09	-0.49
	5/28/2014		77.99	0	344.51	0.42
	5/1/2018		77.98	0	344.52	0.01
	6/25/2019		78.72	0	343.78	-0.74
	6/24/2020		78.44	0	344.06	0.28
	0, = ., =0=0				011100	0.20
MW-7	6/29/2010	427.25	82.74	sheen	344.51	
	12/16/2010		83.19	0	344.06	-0.45
	5/29/2014		82.79	0	344.46	0.4
	5/1/2018		82.78	0	344.47	0.01
	6/25/2019		83.55	0	343.7	-0.77
	6/24/2020		83.26	0	343.99	0.29
MW-8	6/29/2010	427.15	82.62	sheen	344.53	
	12/16/2010		83.09	0	344.06	-0.47
	5/29/2014		82.69	0	344.46	0.4
	5/1/2018		82.61	0	344.54	0.08
	6/25/2019		83.44	0	343.71	-0.83
	6/24/2020		83.16	0	343.99	0.28

Appendix B - Historical Groundwater Elevation Measurements

Tidewater Fuel Leak Site Compliance Monitoring Program

		Reference Point			Groundwater	Groundwater Elevation
		Elevation	Depth to Water	Product Thickness	Elevation	Change in Feet
Well	Date Sampled	(feet NGVD)	(feet)	(feet)	(feet NGVD)	From Previous Reading
AR-1	6/29/2010	425.80	81.28	0.01	344.52	
	12/16/2010		81.70	sheen	344.10	-0.42
	5/28/2014		79.56	sheen	346.24	2.14
	5/1/2018 ^b	423.99	79.38	0	344.61	-1.63
	6/25/2019		80.13	0	343.86	-0.75
	6/24/2020		79.83	0	344.16	0.30
AR-2 ^a	6/29/2010	NA	NA	NA	NA	
	12/16/2010		NA	NA	NA	NA
	5/28/2014		NA	NA	NA	NA
AR-3 ^a	6/29/2010	428.01	NA	NA	NA	
	12/15/2010		NA	NA	NA	NA
	5/28/2014		NA	NA	NA	NA
AR-4	6/29/2010	426.47	81.90	0	344.57	
	12/15/2010		82.38	0	344.09	-0.48
	5/29/2014		81.99	0	344.48	0.39
	5/1/2018		81.93	0	344.54	0.06
	6/25/2019		82.76	0	343.71	-0.83
	6/24/2020		82.52	0	343.95	0.24
AR-5 ^a	6/29/2010	423.08	78.52	0	344.56	
	12/15/2010		79.00	0	344.08	-0.48
	5/29/2014		78.62	0	344.46	0.38
AR-6 ^a	6/29/2010	425.17	80.61	0	344.56	
	12/15/2010		81.11	0	344.06	-0.5
	5/29/2014		80.72	0	344.45	0.39
AR-7	6/29/2010	425.44	80.82	sheen	344.62	
	12/16/2010		81.33	sheen	344.11	-0.51
	5/29/2014		80.96	0	344.48	0.37
	5/1/2018		80.92	0	344.52	0.04
	6/25/2019		81.68	0	343.76	-0.76
	6/24/2020		81.41	0	344.03	0.27
AR-8	6/29/2010	423.02	78.43	0	344.59	
	12/15/2010		78.94	0	344.08	-0.51
	5/29/2014		78.50	0	344.52	0.44
	5/1/2018		78.43	0	344.59	0.07
	6/25/2019		79.29	0	343.73	-0.86
	6/24/2020		78.99	0	344.03	0.30
AR-9 ^a	6/29/2010	423.05	78.46	0	344.59	
	12/15/2010		78.95	0	344.1	-0.49
	5/29/2014		78.60		344.45	0.35

Appendix B - Historical Groundwater Elevation Measurements

Tidewater Fuel Leak Site Compliance Monitoring Program

		Reference Point			Groundwater	Groundwater Elevation
		Elevation	Depth to Water	Product Thickness	Elevation	Change in Feet
Well	Date Sampled	(feet NGVD)	(feet)	(feet)	(feet NGVD)	From Previous Reading
AR-10 ^a	6/29/2010	422.59	78.01	0	344.58	
	12/14/2010		78.50	0	344.09	-0.49
	5/28/2014		78.13		344.46	0.37
AR-11	6/28/2010	422.62	78.00	0	344.62	
	12/14/2010		78.49	0	344.13	-0.49
	5/28/2014		78.15	0	344.47	0.34
	5/1/2018		78.09	0	344.53	0.06
	6/25/2019		78.83	0	343.79	-0.74
	6/24/2020		78.54	0	344.08	0.29
AR-12	6/29/2010	425.50	80.96	sheen	344.54	
	12/15/2010		dry	NA	NA	NA
	5/28/2014		dry	NA	NA	NA
	5/1/2018		81.02	0	344.48	NA
	6/25/2019		dry	NA	NA	NA
	6/24/2020		81.50	0	344.00	NA

Notes:

a - Well not part of CMP program

b - Well AR-1 was re-surveyed in December 2018 and is applied to calculating GW elevations starting in May 2018

NGVD = National Geodetic Vertical Datum of 1929

N/A = Not applicable or not available

Appendix C Laboratory Data Report

Client:	Jacobs	Work Order:	WAF1044
Address:	999 W. Riverside Ave., Ste. 500	Project:	Tidewater CMP
	Spokane, WA 99201	Reported:	7/20/2020 09:05
Attn:	Reuben Greer		

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	MW8-2006 WAF1044-01 06/27/20 11:01 Water	Collect Date: Collected By:	06/24/20 14:50 Anna Iverson				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate-N	25.3	mg/L	1.00	6/30/20 14:13	ARC	EPA 300.0	H3
Sulfate	100	mg/L	1.00	6/30/20 14:13	ARC	EPA 300.0	
Total Metals							
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B	
Metals by ICP-MS							
Manganese	0.268	mg/L	0.00100	7/10/20 13:47	TRC	EPA 200.8	M2
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	7/8/20 22:40	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	7/8/20 22:40	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	7/8/20 22:40	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92	2.6%	50-150	7/8/20 22:40	ARC	NWTPH-Dx	
Volatiles							
Gasoline	8.13	mg/L	0.100	6/30/20 11:36	NDE	NWTPH-Gx	R9
Surrogate: 4-Bromofluorobenze	ene 97	7.1%	50-150	6/30/20 11:36	NDE	NWTPH-Gx	
Benzene	ND	ug/L	25.0	7/7/20 20:55	NDE	EPA 8260D	
Toluene	ND	ug/L	25.0	7/7/20 20:55	NDE	EPA 8260D	
Ethylbenzene	106	ug/L	25.0	7/7/20 20:55	NDE	EPA 8260D	
m/p Xylenes (MCL for total)	843	ug/L	50.0	7/7/20 20:55	NDE	EPA 8260D	
o-Xylene (MCL for total)	398	ug/L	25.0	7/7/20 20:55	NDE	EPA 8260D	
Surrogate: 1,2-Dichlorobenzen	e-d4 99	9.6%	70-130	7/7/20 20:55	NDE	EPA 8260D	
Surrogate: 4-Bromofluorobenze	ene 1	01%	70-130	7/7/20 20:55	NDE	EPA 8260D	
Surrogate: Toluene-d8	1	01%	70-130	7/7/20 20:55	NDE	EPA 8260D	

Analytical Results Report (Continued)												
Sample Location: Lab/Sample Number:	AR4-2006 WAF1044-02	Collect Date:	06/24/20 13:13									
Date Received: Matrix:	06/27/20 11:01 Water	Collected By:	Anna Iverson									
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier					
Inorganics												
Nitrate-N Sulfate	8.17 51.5	mg/L mg/L	0.100 0.500	6/27/20 14:16 6/30/20 14:29	ARC ARC	EPA 300.0 EPA 300.0	H3					
Total Metals												
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B						
Metals by ICP-MS												
Manganese	2.00	mg/L	0.0100	7/10/20 14:40	TRC	EPA 200.8	M2					
Hydrocarbons												
Lube Oil	ND	mg/L	0.400	7/8/20 23:36	ARC	NWTPH-Dx						
Mineral Oil	ND	mg/L	0.160	7/8/20 23:36	ARC	NWTPH-Dx						
Diesel	ND	mg/L	0.160	7/8/20 23:36	ARC	NWTPH-Dx						
Surrogate: n-Hexacosane		90.6%	50-150	7/8/20 23:36	ARC	NWTPH-Dx						
Volatiles												
Gasoline	20.1	mg/L	0.250	6/30/20 18:34	NDE	NWTPH-Gx	R9					
Surrogate: 4-Bromofluorobenz	rene	101%	50-150	6/30/20 18:34	NDE	NWTPH-Gx						
Benzene	132	ug/L	50.0	7/7/20 21:26	NDE	EPA 8260D						
Toluene	ND	ug/L	50.0	7/7/20 21:26	NDE	EPA 8260D						
Ethylbenzene	276	ug/L	50.0	7/7/20 21:26	NDE	EPA 8260D						
m/p Xylenes (MCL for total)	1900	ug/L	100	7/7/20 21:26	NDE	EPA 8260D						
o-Xylene (MCL for total)	1880	ug/L	50.0	7/7/20 21:26	NDE	EPA 8260D						
Surrogate: 1,2-Dichlorobenzer	ne-d4	99.4%	70-130	7/7/20 21:26	NDE	EPA 8260D						
Surrogate: 4-Bromofluorobenz	rene	102%	70-130	7/7/20 21:26	NDE	EPA 8260D						
Surrogate: Toluene-d8		100%	70-130	7/7/20 21:26	NDE	EPA 8260D						

	Analytical Results Report												
(Continued)													
Sample Location:	Sample Location: AR11-2006												
Lab/Sample Number:	WAF1044-03	Collect Date:	06/26/20 11:45										
Date Received:	06/27/20 11:01	Collected By:	Anna Iverson										
Matrix:	Water	- ,											
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier						
Inorganics													
Nitrate-N	34.2	mg/L	1.00	6/30/20 14:46	ARC	EPA 300.0	H2						
Sulfate	133	mg/L	1.00	6/30/20 14:46	ARC	EPA 300.0							
Total Metals													
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B							
Metals by ICP-MS													
Manganese	0.00364	mg/L	0.00100	7/10/20 13:52	TRC	EPA 200.8	M2						
Hydrocarbons													
Lube Oil	ND	mg/L	0.400	7/9/20 1:27	ARC	NWTPH-Dx							
Mineral Oil	ND	mg/L	0.160	7/9/20 1:27	ARC	NWTPH-Dx							
Diesel	ND	mg/L	0.160	7/9/20 1:27	ARC	NWTPH-Dx							
Surrogate: n-Hexacosane	90	.7%	50-150	7/9/20 1:27	ARC	NWTPH-Dx							
Volatiles													
Gasoline	ND	mg/L	0.100	6/30/20 12:52	NDE	NWTPH-Gx	R9						
Surrogate: 4-Bromofluorobenze	ene 10	01%	50-150	6/30/20 12:52	NDE	NWTPH-Gx							
Benzene	ND	ug/L	0.500	7/7/20 18:22	NDE	EPA 8260D							
Toluene	ND	ug/L	0.500	7/7/20 18:22	NDE	EPA 8260D							
Ethylbenzene	ND	ug/L	0.500	7/7/20 18:22	NDE	EPA 8260D							
m/p Xylenes (MCL for total)	ND	ug/L	1.00	7/7/20 18:22	NDE	EPA 8260D							
o-Xylene (MCL for total)	ND	ug/L	0.500	7/7/20 18:22	NDE	EPA 8260D							
Surrogate: 1,2-Dichlorobenzen	e-d4 10	00%	70-130	7/7/20 18:22	NDE	EPA 8260D							
Surrogate: 4-Bromofluorobenze	ene 10	00%	70-130	7/7/20 18:22	NDE	EPA 8260D							
Surrogate: Toluene-d8	10	00%	70-130	7/7/20 18:22	NDE	EPA 8260D							

	Analytical Results Report												
(Continued)													
Sample Location: MW6-2006													
Lab/Sample Number:	WAF1044-04	Collect Date:	06/26/20 13:30										
Date Received:	06/27/20 11:01	Collected Bv:	Anna Iverson										
Matrix:	Water	- ,											
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier						
Inorganics													
Nitrate-N	29.5	mg/L	1.00	6/30/20 15:02	ARC	EPA 300.0	H2						
Sulfate	115	mg/L	1.00	6/30/20 15:02	ARC	EPA 300.0							
Total Metals													
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B							
Metals by ICP-MS													
Manganese	ND	mg/L	0.00100	7/10/20 13:54	TRC	EPA 200.8	M2						
Hydrocarbons													
Lube Oil	ND	mg/L	0.400	7/9/20 2:23	ARC	NWTPH-Dx							
Mineral Oil	ND	mg/L	0.160	7/9/20 2:23	ARC	NWTPH-Dx							
Diesel	ND	mg/L	0.160	7/9/20 2:23	ARC	NWTPH-Dx							
Surrogate: n-Hexacosane	9	3.4%	50-150	7/9/20 2:23	ARC	NWTPH-Dx							
Volatiles													
Gasoline	ND	mg/L	0.100	6/30/20 13:30	NDE	NWTPH-Gx	R9						
Surrogate: 4-Bromofluorobenz	ene	103%	50-150	6/30/20 13:30	NDE	NWTPH-Gx							
Benzene	ND	ug/L	0.500	7/7/20 18:53	NDE	EPA 8260D							
Toluene	ND	ug/L	0.500	7/7/20 18:53	NDE	EPA 8260D							
Ethylbenzene	ND	ug/L	0.500	7/7/20 18:53	NDE	EPA 8260D							
m/p Xylenes (MCL for total)	ND	ug/L	1.00	7/7/20 18:53	NDE	EPA 8260D							
o-Xylene (MCL for total)	ND	ug/L	0.500	7/7/20 18:53	NDE	EPA 8260D							
Surrogate: 1,2-Dichlorobenzen	e-d4	101%	70-130	7/7/20 18:53	NDE	EPA 8260D							
Surrogate: 4-Bromofluorobenz	ene g	9.0%	70-130	7/7/20 18:53	NDE	EPA 8260D							
Surrogate: Toluene-d8		100%	70-130	7/7/20 18:53	NDE	EPA 8260D							

	Analytical Results Report												
(Continued)													
Sample Location: MW4-2006													
Lab/Sample Number:	WAF1044-05	Collect Date:	06/26/20 14:50										
Date Received:	06/27/20 11:01	Collected Bv:	Anna Iverson										
Matrix:	Water	- ,											
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier						
Inorganics													
Nitrate-N	34.3	mg/L	1.00	6/30/20 15:19	ARC	EPA 300.0	H2						
Sulfate	134	mg/L	1.00	6/30/20 15:19	ARC	EPA 300.0							
Total Metals													
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B							
Metals by ICP-MS													
Manganese	ND	mg/L	0.00100	7/10/20 13:56	TRC	EPA 200.8	M2						
Hydrocarbons													
Lube Oil	ND	mg/L	0.400	7/9/20 3:18	ARC	NWTPH-Dx							
Mineral Oil	ND	mg/L	0.160	7/9/20 3:18	ARC	NWTPH-Dx							
Diesel	ND	mg/L	0.160	7/9/20 3:18	ARC	NWTPH-Dx							
Surrogate: n-Hexacosane	9	2.9%	50-150	7/9/20 3:18	ARC	NWTPH-Dx							
Volatiles													
Gasoline	ND	mg/L	0.100	6/30/20 14:07	NDE	NWTPH-Gx	R9						
Surrogate: 4-Bromofluorobenz	ene .	103%	50-150	6/30/20 14:07	NDE	NWTPH-Gx							
Benzene	ND	ug/L	0.500	7/7/20 19:24	NDE	EPA 8260D							
Toluene	ND	ug/L	0.500	7/7/20 19:24	NDE	EPA 8260D							
Ethylbenzene	ND	ug/L	0.500	7/7/20 19:24	NDE	EPA 8260D							
m/p Xylenes (MCL for total)	ND	ug/L	1.00	7/7/20 19:24	NDE	EPA 8260D							
o-Xylene (MCL for total)	ND	ug/L	0.500	7/7/20 19:24	NDE	EPA 8260D							
Surrogate: 1,2-Dichlorobenzen	e-d4 9	9.6%	70-130	7/7/20 19:24	NDE	EPA 8260D							
Surrogate: 4-Bromofluorobenz	ene g	9.4%	70-130	7/7/20 19:24	NDE	EPA 8260D							
Surrogate: Toluene-d8		101%	70-130	7/7/20 19:24	NDE	EPA 8260D							

		Analy	tical Results Repo	ort			
			(Continued)				
Sample Location:	AR8-2006						
Lab/Sample Number:	WAF1044-06	Collect Date:	06/26/20 16:35				
Date Received:	06/27/20 11:01	Collected By:	Anna Iverson				
Matrix:	Water						
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate-N	0.288	mg/L	0.100	6/27/20 15:22	ARC	EPA 300.0	
Sulfate	57.7	mg/L	0.500	6/30/20 15:35	ARC	EPA 300.0	
Total Metals							
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B	
Metals by ICP-MS							
Manganese	0.997	mg/L	0.00100	7/10/20 13:59	TRC	EPA 200.8	M2
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	7/9/20 4:14	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	7/9/20 4:14	ARC	NWTPH-Dx	
Diesel	Non targ analyte in	et mg/L the	0.160	7/9/20 4:14	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	:	92.9%	50-150	7/9/20 4:14	ARC	NWTPH-Dx	
Volatiles							
Gasoline	3.52	mg/L	0.100	6/30/20 14:46	NDE	NWTPH-Gx	R9
Surrogate: 4-Bromofluorobenz	zene :	96.8%	50-150	6/30/20 14:46	NDE	NWTPH-Gx	
Benzene	ND	ug/L	1.25	7/7/20 21:57	NDE	EPA 8260D	
Toluene	ND	ug/L	1.25	7/7/20 21:57	NDE	EPA 8260D	
Ethylbenzene	61.7	ug/L	1.25	7/7/20 21:57	NDE	EPA 8260D	
m/p Xylenes (MCL for total)	35.6	ug/L	2.50	7/7/20 21:57	NDE	EPA 8260D	
o-Xylene (MCL for total)	74.1	ug/L	1.25	7/7/20 21:57	NDE	EPA 8260D	
Surrogate: 1,2-Dichlorobenzer	ne-d4	99.0%	70-130	7/7/20 21:57	NDE	EPA 8260D	
Surrogate: 4-Bromofluorobenz	zene	98.8%	70-130	7/7/20 21:57	NDE	EPA 8260D	
Surrogate: Toluene-d8	2	99.2%	70-130	7/7/20 21:57	NDE	EPA 8260D	

		Analy	tical Results Repo (Continued)	ort			
Sample Location: Lab/Sample Number: Date Received: Matrix:	AR8-2006 WAF1044-06 06/27/20 11:01 Water	Collect Date: Collected By:	06/26/20 16:35 Anna Iverson				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Sulfate	55.8	mg/L	0.100	6/27/20 15:22	ARC	EPA 300.0	

		Analy	(Continued)	ort			
Sample Location: Lab/Sample Number: Date Received: Matrix:	FD-2006 WAF1044-07 06/27/20 11:01 Water	Collect Date: Collected By:	06/26/20 12:00 Anna Iverson				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate-N Sulfate	0.240 55.7	mg/L mg/L	0.100 0.500	6/27/20 16:11 6/30/20 16:59	ARC ARC	EPA 300.0 EPA 300.0	
Total Metals							
Iron (II)	0.00	mg/L		6/27/20 15:15	MMS	SM 3500-Fe B	
Metals by ICP-MS							
Manganese	1.05	mg/L	0.0100	7/10/20 14:42	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	7/9/20 7:00	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	7/9/20 7:00	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	7/9/20 7:00	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	9	1.9%	50-150	7/9/20 7:00	ARC	NWTPH-Dx	
Volatiles							
Gasoline	3.22	mg/L	0.100	6/30/20 15:23	NDE	NWTPH-Gx	R9
Surrogate: 4-Bromofluorobenzo	ene 9	6.7%	50-150	6/30/20 15:23	NDE	NWTPH-Gx	
Benzene	ND	ug/L	1.25	7/7/20 22:28	NDE	EPA 8260D	
Toluene	ND	ug/L	1.25	7/7/20 22:28	NDE	EPA 8260D	
Ethylbenzene	62.6	ug/L	1.25	7/7/20 22:28	NDE	EPA 8260D	
m/p Xylenes (MCL for total)	32.4	ug/L	2.50	7/7/20 22:28	NDE	EPA 8260D	
o-Xylene (MCL for total)	71.4	ug/L	1.25	7/7/20 22:28	NDE	EPA 8260D	
Surrogate: 1,2-Dichlorobenzen	e-d4 9.	9.4%	70-130	7/7/20 22:28	NDE	EPA 8260D	
Surrogate: 4-Bromofluorobenzo	ene 9.	8.4%	70-130	7/7/20 22:28	NDE	EPA 8260D	
Surrogate: Toluene-d8	9	9.8%	70-130	7/7/20 22:28	NDE	EPA 8260D	

		Analy	tical Results Repo	rt			
			(Continued)				
Sample Location:	EB-2006						
Lab/Sample Number:	WAF1044-08	Collect Date:	06/26/20 17:00				
Date Received:	06/27/20 11:01	Collected By:	Anna Iverson				
Matrix:	Water						
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	7/9/20 7:56	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	7/9/20 7:56	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	7/9/20 7:56	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	91	0.4%	50-150	7/9/20 7:56	ARC	NWTPH-Dx	
Volatiles							
Gasoline	ND	mg/L	0.100	6/30/20 16:02	NDE	NWTPH-Gx	R9
Surrogate: 4-Bromofluorobenz	rene <u>i</u>	102%	50-150	6/30/20 16:02	NDE	NWTPH-Gx	
Benzene	ND	ug/L	0.500	7/7/20 19:54	NDE	EPA 8260D	
Toluene	ND	ug/L	0.500	7/7/20 19:54	NDE	EPA 8260D	
Ethylbenzene	ND	ug/L	0.500	7/7/20 19:54	NDE	EPA 8260D	
m/p Xylenes (MCL for total)	ND	ug/L	1.00	7/7/20 19:54	NDE	EPA 8260D	
o-Xylene (MCL for total)	ND	ug/L	0.500	7/7/20 19:54	NDE	EPA 8260D	
Surrogate: 1,2-Dichlorobenzer	ne-d4 <u>i</u>	101%	70-130	7/7/20 19:54	NDE	EPA 8260D	
Surrogate: 4-Bromofluorobenz	rene <u>1</u>	101%	70-130	7/7/20 19:54	NDE	EPA 8260D	
Surrogate: Toluene-d8	9.	9.6%	70-130	7/7/20 19:54	NDE	EPA 8260D	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

	(Continued)									
Sample Location: Lab/Sample Number: Date Received: Matrix:	Trip Blank WAF1044-09 06/27/20 11:01 Water	Collect Date: Collected By:	06/26/20 17:00 Anna Iverson							
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier			
Volatiles										
Benzene	ND	ug/L	0.200	7/7/20 20:24	NDE	EPA 8260D				
Toluene	ND	ug/L	0.500	7/7/20 20:24	NDE	EPA 8260D				
Ethylbenzene	ND	ug/L	0.500	7/7/20 20:24	NDE	EPA 8260D				
m/p Xylenes (MCL for total)	ND	ug/L	1.00	7/7/20 20:24	NDE	EPA 8260D				
o-Xylene (MCL for total)	ND	ug/L	0.500	7/7/20 20:24	NDE	EPA 8260D				
Total Xylenes	ND	ug/L	0.500	7/7/20 20:24	NDE	EPA 8260D				
Surrogate: 1,2-Dichlorobenzei	ne-d4	100%	70-130	7/7/20 20:24	NDE	EPA 8260D				
Surrogate: 4-Bromofluorobenz	zene	100%	70-130	7/7/20 20:24	NDE	EPA 8260D				
Surrogate: Toluene-d8	i	100%	70-130	7/7/20 20:24	NDE	EPA 8260D				

Authorized Signature,

Jathleen a. Sattle

Kathleen Sattler, Laboratory Manager

- H2 Initial analysis within holding time, Reanalysis for the required dilution was past holding time.
- H3 Sample was received past holding time.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.
- R9 Sample RPD exceeded the laboratory acceptance limit.
- PQL Practical Quantitation Limit
- ND Not Detected
- MCL EPA's Maximum Contaminant Level
- Dry Sample results reported on a dry weight basis
- * Not a certified analyte
- RPD Relative Percent Difference
- %REC Percent Recovery
- Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Inorganics

Appleto	Deput	Qual	Reporting	Unito	Spike	Source	0/ DEC	%REC		RPD
Allalyte	Result	Quai	LITTIL	Units	Level	Result	%REC	LIMIUS	RPD	LIMIL
Batch: BAF0993 - W Ions										
Blank (BAF0993-BLK1)					Prepared 8	& Analyzed: 6	/27/2020			
Nitrate/N	ND		0.100	mg/L						
Sulfate	ND		0.100	mg/L						
LCS (BAF0993-BS1)					Prepared 8	& Analyzed: 6	/27/2020			
Nitrate/N	3.91			mg/L	4.00		97.6	90-110		
Sulfate	3.87			mg/L	4.00		96.8	90-110		
Matrix Spike (BAF0993-MS1)		Source: V	VAF1044-06		Prepared 8	& Analyzed: 6	/27/2020			
Nitrate/N	4.19		0.100	mg/L	4.02	0.288	97.2	80-120		
Sulfate	59.5		0.100	mg/L	4.02	55.8	90.4	80-120		
Matrix Spike Dup (BAF0993-MSD1)		Source: V	VAF1044-06		Prepared 8	& Analyzed: 6	/27/2020			
Nitrate/N	3.90		0.100	mg/L	4.02	0.288	90.0	80-120	7.07	20
Sulfate	59.4		0.100	mg/L	4.02	55.8	89.4	80-120	0.0713	20
Patchy PACOOO2 - W Tana										
							120 12020			
Blank (BAG0002-BLK1)					Prepared 8	& Analyzed: 6	/30/2020			
Nitrate/N	ND		0.100	mg/L						
Sulfate	ND		0.100	mg/L						
LCS (BAG0002-BS1)					Prepared 8	& Analyzed: 6	/30/2020			
Nitrato/N	3 0 2			ma/l	4 00		09.1	00-110		

111111111	0172			50.1	50 110		
Sulfate	3.89	mg/L	4.00	97.4	90-110		
LCS Dup (BAG0002-BSD1)			Prepared & Analyzed: 6/30,	/2020			
Nitrate/N	3.90	mg/L	4.00	97.6	90-110	0.575	20
Sulfate	3.87	mg/L	4.00	96.7	90-110	0.683	20

Quality Control Data

Metals by ICP-MS

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAF1039 - W 3010 Digest										
Blank (BAF1039-BLK1)					Prepared: 6/30/	2020 Analyze	d: 7/10/2020			
Manganese	ND		0.00100	mg/L						
LCS (BAF1039-BS1)					Prepared: 6/30/	2020 Analyze	d: 7/10/2020			
Manganese	0.0486		0.00100	mg/L	0.0500		97.2	85-115		
Matrix Spike (BAF1039-MS1)		Source: WAI	F1044-06		Prepared: 6/30/	2020 Analyze	d: 7/10/2020			
Manganese	1.05		0.00100	mg/L	0.0500	0.997	112	70-130		
Matrix Spike Dup (BAF1039-MSD1)		Source: WAI	F1044-06		Prepared: 6/30/	2020 Analyze	d: 7/10/2020			
Manganese	1.01	M2	0.00100	mg/L	0.0500	0.997	20.8	70-130	4.44	20

Quality Control Data

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Ratch: RAG0140 - W/TDH-Dy										
					Dronarod: 7	17/2020 Applyzod	7/0/2020			
Diasal			0 160	ma/l	Fiepaieu. 7	///2020 Analyzeu.	77072020			
Diesei			0.100	mg/L						
Mineral Oil			0.400	ma/l						
Surrogate: n-Hexacosane			46.2	ppm	50.0		92.4	50-150		
LCS (BAG0149-BS1)					Prepared: 7	/7/2020 Analyzed:	7/8/2020			
Diesel	0.832		0.160	ma/L	1.00	,,,	83.2	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			46.4	ррт	50.0		92.8	50-150		
Duplicate (BAG0149-DUP1)		Source: W	/AF1044-02		Prepared: 7	/7/2020 Analyzed:	7/9/2020			
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			45.0	ppm	50.0		90.0	50-150		
Matrix Spike (BAG0149-MS1)		Source: W	/AF1044-06		Prepared: 7	/7/2020 Analyzed:	7/9/2020			
Diesel	1.38		0.160	mg/L	1.00	te in the Diesel r	74.9	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			46.0	ppm	50.0		92.0	50-150		
Matrix Spike Dup (BAG0149-MSD1)		Source: W	/AF1044-06		Prepared: 7	/7/2020 Analyzed:	7/9/2020			
Diesel	1.40		0.160	mg/L	1.00	te in the Diesel r	77.3	70-130	1.75	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			45.5	ррт	50.0		91.1	50-150		

Quality Control Data (Continued)

Volatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAG0027 - W VOC										
Blank (BAG0027-BLK1)					Prepared 8	Analvzed: 6/	30/2020			
Gasoline	ND		0.100	mg/L	·	, ,				
Surrogate: 4-Bromofluorobenzene			102	ug/L	100		102	50-150		
LCS (BAG0027-BS1)					Prepared 8	Analyzed: 6/	30/2020			
Gasoline	2.93		0.100	mg/L	2.69		109	80-120		
Surrogate: 4-Bromofluorobenzene			99.8	ug/L	100		99.8	50-150		
Duplicate (BAG0027-DUP1)	9	Source: W	AF1044-08		Prepared 8	Analyzed: 6/	30/2020			
Gasoline	0.0232	R9	0.100	mg/L		0.0358			42.7	20
Surrogate: 4-Bromofluorobenzene			103	ug/L	100		103	50-150		
Matrix Spike (BAG0027-MS1)	9	Source: W	AF1044-06		Prepared 8	Analyzed: 6/	30/2020			
Gasoline	5.83		0.100	mg/L	2.69	3.52	85.7	70-130		
Surrogate: 4-Bromofluorobenzene			93.5	ug/L	100		93.5	50-150		
Matrix Spike Dup (BAG0027-MSD1)	9	Source: W	AF1044-06		Prepared 8	Analyzed: 6/	30/2020			
Gasoline	6.11		0.100	mg/L	2.69	3.52	96.3	70-130	4.76	20

Quality Control Data

(Continued)

Volatiles (Continued)

Analyte	Result	Qual	Reporting	Units	Spike	Source	%RFC	%REC	RPD	RPD Limit
Analyce	Result	Quui	Linic	011123	ECVCI	Result	JULEC	Elitiles		Linit
Batch: BAG0027 - W VOC (Continu	ed)									
Matrix Spike Dup (BAG0027-MSD1)		Source: W	/AF1044-06		Prepared 8	k Analyzed: 6/	30/2020			
Surrogate: 4-Bromofluorobenzene			97.4	ug/L	100		97.4	50-150		
Ratch: BAG0183 - W VOC										
Blank (BAG0183-BLK1)					Prenared	& Analyzed · 7	/7/2020			
Ethylbenzene	ND		0 500	ua/l	ricpuicu	a Analyzea. 7	11/2020			
m+n-Xvlene	ND		1.00	ug/L						
o-Xvlene	ND		0.500	ug/L						
Benzene	ND		0.500	ua/L						
Toluene	ND		0.500	ug/L						
Benzene	ND		0.200	ug/L						
Ethylbenzene	ND		0.500	ug/L						
Toluene	ND		0.500	ug/L						
m+p-Xylene	ND		1.00	ug/L						
o-Xylene	ND		0.500	ug/L						
Total Xylene	ND		0.500	ug/L						
Surrogate: Toluene-d8			4.97	ug/L	5.00		99.4	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			4.97	ug/L	5.00		99.4	70-130		
Surrogate: 4-Bromofluorobenzene			5.04	ug/L	5.00		101	70-130		
Surrogate: Toluene-d8			4.97	ug/L	5.00		99.4	70-130		
Surrogate: 4-Bromofluorobenzene			5.04	ug/L	5.00		101	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			4.97	ug/L	5.00		99.4	70-130		
LCS (BAG0183-BS1)					Prepared	& Analyzed: 7	/7/2020			
Benzene	4.05		0.500	ug/L	5.00		81.0	70-130		
Ethylbenzene	3.76		0.500	ug/L	5.00		75.2	70-130		
o-Xylene	4.22		0.500	ug/L	5.00		84.4	70-130		
Toluene	3.81		0.500	ug/L	5.00		76.2	70-130		
Benzene	4.05		0.200	ug/L	5.00		81.0	70-130		
Ethylbenzene	3.76		0.500	ug/L	5.00		75.2	70-130		
Toluene	3.81		0.500	ug/L	5.00		76.2	70-130		
o-Xylene	4.22		0.500	ug/L	5.00		84.4	70-130		
Surrogate: Toluene-d8			4.96	ug/L	5.00		99.2	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			4.97	ug/L	5.00		99.4	70-130		
Surrogate: 4-Bromofluorobenzene			5.04	ug/L	5.00		101	70-130		
Surrogate: Toluene-d8			4.96	ug/L	5.00		<i>99.2</i>	70-130		
Surrogate: 4-Bromofluorobenzene			5.04	ug/L	5.00		101	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			4.97	ug/L	5.00		99.4	70-130		

Anatek Labs, Inc. 50 Company Name: Jacobs Address:	Chain of Custon 1282 Alturas Drive, Moscow ID 83843 04 E Sprague Ste D, Spokane WA 9920 Project Manager Reference A	dy Record (208) 883-2839 FAX 882-9246 2 (509) 838-3999 FAX 838-4433 UBEN GREER	Anatek Log-In # Due: 07/13/20 Turn Around Time & Reporting Please refer to our normal turn around times at: http://www.anatek/abs.com/sepuices/auidaliaes/reporting.com
City: SPOKANE WA ? Phone: 509 - 464 - 7215 Fax: Provide Sample Description	Email Address ; 9201 Vewben ; Purchase Order #: Sampler Name & phone: ANNA	Green@Jacobs.com INCRSON 206-856- List Analyses Requested	Mormal *All rush order requests Phone
Lab IDSample IdentificationSampling Date/Time1 $MWS - 2006$ $4/24/2000$ 1450 2 $AR4 - 2006$ $4/24/2000$ 1450 3 $AR/I - 2006$ $6/26/1000$ 1450 4 $MW6 - 2006$ $6/26/2000$ 1450 5 $MW6 - 2006$ $6/26/2000$ 1450 6 $ARB - 2006$ $6/26/2000$ 1300 8 $EB - 2006$ $6/26/2000$ 1300 8 $EB - 2006$ $6/26/2000$ 1700 9 $Received by$ $Anna$ $VecrS07$ Received by $Mageus$ $Schmutz$ Relinquished by $Received by$ $Received by$ Relinquished by $Received by$ $Received by$	Matrix # 00000000000000000000000000000000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWBS SWBS MS/MSD Inspection Checklist Received Intact? MS/MSD Inspection Checklist Received Intact? N Labels & Chains Agree? N Containers Sealed? N Containers Sealed? N Coola.r I.co.l Hand MO3-200994 HN03-200994 Date & Time: L.21-200 Inspected By: KAS
Received by			

Page 14 of 30

07 July 2020

Kathy Sattler Anatek Labs, Inc. 504 East Sprague, Suite D Spokane, WA 99202

RE: WAF1044

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 20F0494 Associated SDG ID(s) N/A

Digitally signed by Shelly Fishel DN: c=US, st=Washington, I=Tukwila, o=Analytical Resources, Inc., cn=Shelly Fishel, email=shelly.fishel@arilabs.com Date: 2020.07.07 14:19:34 -07'00'

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Shelly & Fish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it^{*} entirety.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com

504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sending Laboratory:

Anatek Labs, Inc.- Spokane 504 E Sprague Ave, Suite D Spokane, WA 99202 Phone: 509-838-3999 Fax: 509-838-4433

Project Manager: Kathleen Sattler kathy@anateklabs.com

Subcontracted Laboratory:

Analytical Resources 4611 S. 134th Pl. #100 Tukwila, WA 98168 Phone: (206) 695-6200 Fax:

Work Order: WAF1044

Analysis			Due	Expire	s	Comments	
Lab Sample ID: WAF	1044-01	Water	Sampled:	06/24/202	0 14:50		
Client Sample Name	: MW8-200	06					
W Methane		(07/09/2020	07/08/2020	14:50		
<i>Containers Supplied:</i> G 44mL HCI (B)	G 44mL H	Cl (C)					
Lab Sample ID: WAF	1044-02	Water	Sampled:	06/24/202	0 13:13	e 19 maarde en skrigeren en en gegenne gewonder. I	
Client Sample Name	: AR4-200	6					
W Methane		(07/09/2020	07/08/2020	13:13		
<i>Containers Supplied:</i> G 44mL HCl (B)	G 44mL H	Cl (C)					
Lab Sample ID: WAF	1044-03	Water	Sampled:	06/26/202	0 11:45)	
Client Sample Name	: AR11-20	06					
W Methane		(07/09/2020	07/10/2020	11:45		
<i>Containers Supplied:</i> G 44mL HCI (B)	G 44mL H	Cl (C)					
Lab Sample ID: WAF	1044-04	Water	Sampled:	06/26/202	0 13:30		
Client Sample Name	: MW6-200	06		1000 · 1000 · 1000			
W Methane		(07/09/2020	07/10/2020	13:30		
<i>Containers Supplied:</i> G 44mL HCl (B)	G 44mL H	Cl (C)					
Lab Sample ID: WAF	1044-05	Water	Sampled:	06/26/202	0 14:50	9	
Client Sample Name	: MW4-20	06	1				
W Methane			07/09/2020	07/10/2020	14 <mark>:</mark> 50		
<i>Containers Supplied:</i> G 44mL HCl (B)	G 44mL H	CI (C)					
Mendula Released By			<u>6/29/2</u> Date	<u>v </u>	ok to Secol (Received	analyze out of multiples	holding - Miz 6/29/20 06/30/2020 Date 1129

Page 16 of 30 Page 2 of 16 20F0494 ARISample FINAL 07 Jul 2020 1418

20 F0494

Work Order: WAF1044 (Continued)

Analysis		Due	Expires	Com	iments
Lab Sample ID: WA	F1044-06 Water	Sampled:	06/26/2020	16:35	
Client Sample Name	: AR8-2006				
W Methane		07/09/2020	07/10/2020 16	6:35	
<i>Containers Supplied:</i> G 44mL HCI (B)	G 44mL HCI (C)	G 44	imL HCI (D)	G 44	mL HCI (M)
Lab Sample ID: WAI Client Sample Name	F1044-07 <i>Water</i> :: FD-2006	Sampled:	06/26/2020	12:00	
W Methane		07/09/2020	07/10/2020 12	2:00	
<i>Containers Supplied:</i> G 44mL HCI (B)	G 44mL HCI (C)				

Released By

Date

Date Received

Page 2 of 2

Page 3 of 16 20F0494 ARISample FINAL 07 Jul 2020 1418

Anatek Labs, Inc.	Project: WAF1044				
504 East Sprague, Suite D	Project Number: [none]	Reported:			
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18			
ANALYTICAL REPORT FOR SAMPLES					

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WAF1044-01	20F0494-01	Water	24-Jun-2020 14:50	30-Jun-2020 11:29
WAF1044-02	20F0494-02	Water	24-Jun-2020 13:13	30-Jun-2020 11:29
WAF1044-03	20F0494-03	Water	24-Jun-2020 11:45	30-Jun-2020 11:29
WAF1044-04	20F0494-04	Water	24-Jun-2020 13:30	30-Jun-2020 11:29
WAF1044-05	20F0494-05	Water	24-Jun-2020 14:50	30-Jun-2020 11:29
WAF1044-06	20F0494-06	Water	24-Jun-2020 16:35	30-Jun-2020 11:29
WAF1044-07	20F0494-07	Water	24-Jun-2020 12:00	30-Jun-2020 11:29

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Anatek Labs, Inc. 504 East Sprague, Suite D Spokane WA, 99202 Project: WAF1044 Project Number: [none] Project Manager: Kathy Sattler

Reported: 07-Jul-2020 14:18

Work Order Case Narrative

Client: Anatek Labs, Inc. Project: WAF1044 Work Order: 20F0494

Sample receipt

Samples as listed on the preceding page were received 30-Jun-2020 11:29 under ARI work order 20F0494. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatile Gases - MEE by RSK175

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD recoveries and RPD were within limits.

Sample specific QC was performed in association with sample 20F0494-06 in batch BIG0003. The duplicate RPD was within control limits. The matrix spike/matrix spike duplicate percent recoveries and RPD were within control limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Resource	ces, Incorporated ts and Consultants	Cooler Rec	eipt Fo	rm		
ARI Client: Anatek	i habs	Project Name:	F1044		<u>.</u>	
COC No(s):	NA	Delivered by: Fed-ExUPS Couri	er Hand Delivered	Other:		
Assigned ARI Job No: Preliminary Examination Phase:	-0494	Tracking No: 7708 2	567 766	.0	NA	
Were intact, properly signed and d	lated custody seals attached to the	e outside of the cooler?	YES		NO	
Were custody papers included with	h the cooler?		XES		NO	
Were custody papers properly fille Temperature of Cooler(s) (°C) (rec	d out (ink, signed, etc.) commended 2.0-6.0 °C for chemist	try)	YES		NO	
Time 1107		2.8	and the second			
If cooler temperature is out of com	pliance fill out form 00070F	11 1	Temp Gun ID#: D	00 520	26	
Cooler Accepted by:	J~	Date 06/30/2000 Time:	1129			
	Complete custody forms and	l attach all shipping documents				
Log-In Phase:						
Was a temperature blank include What kind of packing material v	ed in the cooler?	Wet Ice Gel Packs Baggies Foam B	Block Paper Other:	YES	NO	
Was sufficient ice used (if approp	priate)?		NA	TES	NO	
How were bottles sealed in plasti	c bags?		Individually	Grouped	Not	
Did all bottles arrive in good conc	dition (unbroken)?			YES	NO	
Were all bottle labels complete a	nd legible?			YES	NO	
Did the number of containers liste	ed on COC match with the number	r of containers received?		YES	NO	
Did all bottle labels and tags agree	ee with custody papers?			YES	NO	
Were all bottles used correct for t	he requested analyses?		~	FES	NO	
Do any of the analyses (bottles) r	equire preservation? (attach prese	ervation sheet, excluding VOCs)	NA	YES	NO	
Were all VOC vials free of air bub	bles?		NA	YES	NO	
Was sufficient amount of sample	sent in each bottle?		1	(ES)	NO	
Date VOC Trip Blank was made	at ARI		NA			
Were the sample(s) split NA YES Date/Time: Equipment: Split by: Samples Logged by: Date: Da						
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample II	on COC		

Additional Notes, Discrepancies, & Resolutions:

By:

Date:

Cooler Receipt Form

Revision 014A

WAF1044-01				
	Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18	
	504 East Sprague, Suite D	Project Number: [none]	Reported:	
	Anatek Labs, Inc.	Project: WAF1044		

20F0494-01 (Water)

Dissolved Gases							
Method: EPA RSK-175					Sa	ampled: 06/	24/2020 14:50
Instrument: FID6 Analy	st: PB				An	alyzed: 07/	01/2020 09:13
Sample Preparation:	Preparation Method: EPA 5030C (Purg Preparation Batch: BIG0003 Prepared: 07/01/2020	e and Trap) Sample Size: 10 Final Volume: 1		Η	Extract ID:	20F0494-01 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	ND	ug/L	U
Surrogate: Propane				72-122 %	81.4	%	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WAF1044-02				
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18		
504 East Sprague, Suite D	Project Number: [none]	Reported:		
Anatek Labs, Inc.	Project: WAF1044			

20F0494-02 (Water)

Dissolved Gases							
Method: EPA RSK-175					Sa	ampled: 06	5/24/2020 13:13
Instrument: FID6 Analy	st: PB				An	alyzed: 07	//01/2020 09:26
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIG0003 Prepared: 07/01/2020	and Trap) Sample Size: 10 Final Volume: 1	0 mL 10 mL		Ι	Extract ID:	20F0494-02 A
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	742	ug/L	
Surrogate: Propane				72-122 %	84.4	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	WAF1044-03				
	Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18		
	504 East Sprague, Suite D	Project Number: [none]	Reported:		
	Anatek Labs, Inc.	Project: WAF1044			
-					

20F0494-03 (Water)

Dissolved Gases									
Method: EPA RSK-175						Sampled: 06/24/2020 11:45			
Instrument: FID6 Analyst: PB					An	Analyzed: 07/01/2020 09:40			
Sample Preparation: Preparation Method: EPA 503 Preparation Batch: BIG0003 Prepared: 07/01/2020		and Trap) Sample Size: 1 Final Volume: 1		Extract I		D: 20F0494-03 A			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes		
Methane		74-82-8	1	0.65	ND	ug/L	U		
Surrogate: Propane				72-122 %	87.4	%			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WAF1044-04				
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18		
504 East Sprague, Suite D	Project Number: [none]	Reported:		
Anatek Labs, Inc.	Project: WAF1044			

20F0494-04 (Water)

Dissolved Gases							
Method: EPA RSK-175				Sampled: 06/24/2020 13:30			
Instrument: FID6 Analyst: PB				Analyzed: 07/01/2020 09:53			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIG0003 Prepared: 07/01/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ι	Extract ID:	20F0494-04 A
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	ND	ug/L	U
Surrogate: Propane				72-122 %	84.7	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WAF1044-05					
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18			
504 East Sprague, Suite D	Project Number: [none]	Reported:			
Anatek Labs, Inc.	Project: WAF1044				

20F0494-05 (Water)

Dissolved Gases								
Method: EPA RSK-175						Sampled: 06/24/2020 14:5		
Instrument: FID6 Analyst: PB					An	alyzed: 07	/01/2020 10:06	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIG0003 Prepared: 07/01/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		1	Extract ID:	20F0494-05 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Methane		74-82-8	1	0.65	ND	ug/L	U	
Surrogate: Propane				72-122 %	91.0	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

WAF1044-06					
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:1			
504 East Sprague, Suite D	Project Number: [none]	Reported:			
Anatek Labs, Inc.	Project: WAF1044				

20F0494-06 (Water)

Dissolved Gases								
Method: EPA RSK-175						Sampled: 06/24/2020 16:35		
Instrument: FID6 Analy	Instrument: FID6 Analyst: PB					alyzed: 07	/01/2020 10:19	
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIG0003 Prepared: 07/01/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		Ι	Extract ID:	20F0494-06 A	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Methane		74-82-8	1	0.65	6.57	ug/L		
Surrogate: Propane				72-122 %	82.0	%		

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

WAF1044-07				
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18		
504 East Sprague, Suite D	Project Number: [none]	Reported:		
Anatek Labs, Inc.	Project: WAF1044			

20F0494-07 (Water)

Dissolved Gases							
Method: EPA RSK-175					Sa	ampled: 06	/24/2020 12:00
Instrument: FID6 Analy		An	alyzed: 07	/01/2020 10:33			
Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BIG0003 Prepared: 07/01/2020	and Trap) Sample Size: 1 Final Volume:	0 mL 10 mL		1	Extract ID:	20F0494-07 A
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	6.38	ug/L	
Surrogate: Propane				72-122 %	85.8	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Analytical Report

Anatek Labs, Inc. 504 East Sprague, Suite D Spokane WA, 99202

Project: WAF1044 Project Number: [none] Project Manager: Kathy Sattler

Reported: 07-Jul-2020 14:18

Dissolved Gases - Quality Control

Batch BIG0003 - EPA 5030C (Purge and Trap)

Instrument: FID6 Analyst: PB

OC Samula/Analyta	Decult	Reporting	Unita	Spike	Source	% DEC	%REC	רות ת	RPD Limit	Notos
QC Sample/Analyte	Kesuit	Limit	Units	Level	Kesult	70KEU	Limits	KPD	Limit	Inotes
Blank (BIG0003-BLK1)			Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 08:1	17		
Methane	ND	0.65	ug/L							U
Surrogate: Propane	1680		ug/L	1800		93.3	72-122			
LCS (BIG0003-BS1)			Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 07:1	16		
Methane	673	0.65	ug/L	656		103	80-120			
Surrogate: Propane	1820		ug/L	1800		101	62-122			
LCS Dup (BIG0003-BSD1)			Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 07:2	29		
Methane	702	0.65	ug/L	656		107	80-120	4.24	30	
Surrogate: Propane	1840		ug/L	1800		102	62-122			
Duplicate (BIG0003-DUP1)	Source:	20F0494-06	Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 10:	59		
Methane	ND	0.65	ug/L		6.57					U
Surrogate: Propane	1520		ug/L	1800	1480	84.6	72-122			
Matrix Spike (BIG0003-MS1)	Source:	20F0494-06	Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 11:1	12		
Methane	605	0.65	ug/L	656	6.57	91.2	80-120			
Surrogate: Propane	1460		ug/L	1800	1480	81.2	62-122			
Recovery limits for target analytes in MS/MSD	QC samples are advisor	y only.								
Matrix Spike Dup (BIG0003-MSD1)	Source:	20F0494-06	Prepa	ared: 01-Jul-	2020 An	alyzed: 01-J	ul-2020 11:2	26		

Matrix Spike Dup (BIG0003-MSD1)	Source: 2	0F0494-06	Prepa	red: 01-Jul-	2020 Ana	alyzed: 01-J	ul-2020 11:2	26		
Methane	622	0.65	ug/L	656	6.57	93.8	80-120	2.71	30	
Surrogate: Propane	1570		ug/L	1800	1480	87.2	62-122			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Anatek Labs, Inc.	Project: WAF1044	
504 East Sprague, Suite D	Project Number: [none]	Reported:
Spokane WA, 99202	Project Manager: Kathy Sattler	07-Jul-2020 14:18

Certified Analyses included in this Report

Analyte		Certifications		
EPA RSK-17	5 in Water			
Methane		NELAP		
Methane				
Methane		NELAP		
Methane		NELAP		
Ethane		NELAP		
Ethane		NELAP		
Ethane				
Ethane		NELAP		
Ethene				
Ethene		NELAP		
Ethene		NELAP		
Ethene		NELAP		
Acetylene				
Code	Description		Number	Expires
ADEC	Alaska Dent of Environm	ental Conservation	17-015	01/31/2021

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Report

Anatek Labs, Inc.	
504 East Sprague, Suite D	
Spokane WA, 99202	

Project: WAF1044 Project Number: [none] Project Manager: Kathy Sattler

Reported: 07-Jul-2020 14:18

Notes and Definitions

- * Flagged value is not within established control limits.
- U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.

Appendix D Historical Groundwater Monitoring Results

Appendix D	
Tidewater Fuel Leak Site Historical Groundwater Monitoring Result	ts
Pasco, Washington	

Well ID	Date	Benzene (µg/L) MCL 5	Toluene (µg/L) MCL 1,000	Ethylbenzene (µg/L) MCL 700	Total Xylenes (µg/L) 1,000	TPH-G (µg/L) MCL 800/1,000	TPH-D (µg/L) MCL 500	TPH-D - Heavy Oil (µg/L) MCL 500
AR-1	Feb-03	191	2,130	153	4,570	31,700	NA	NA
	Jun-03	77	1,340	179	3,590	20,000	NA	NA
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10	NS	NS	NS	NS	NS	NS	NS
	May-14	NS	NS	NS	NS	NS	NS	NS
AR-3	Feb-03	754	3,870	148	6,350	38,900	NA	NA
	Jun-03	6,750	6,270	649	7,170	37,400	NA	NA
	Mar-06	NS	NS	NS	NS	NS	NS	NS
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10 May 14	NS	NS	NS	NS	NS	NS	NS
	Apr. 02	N3 52	337	13.0	1 989	10 500	NA	NA NA
AN-4	Api-02	90	337 816	10.7	705	6 400	NA	NA
	Nov-02	10.3	118	55	345	3 080	NA	NA
	Feb-03	1011	1011	1011	4.8	195	NA	NA
	Jun-03	10.1	66	10	326	5.090	NA	NA
	Sep-03	797	70	27	321	3,430	NA	NA
	Mar-06	2,210	3,430	481	5,600	26,600	4,400	NA
	Nov-07	640	2,800	220	4,400	28,000	4,500	1,400
	Oct-08	340	2,100	170	2,700	17,000	2,500	5,900
	Jun-10	380	1,900	270	4,400	21,000	5,300	650
	Dec-10	350	1,400	230	3,600	17,000	3,700	260 U
	May-14	535	789	385	10,290	45,900	20 U	50 U
	May-18	141	15.4	280	5,450	28,100	50 U	250 U
	Jun-19	123	10.5	305	4,870	22,000	100 U	500 U
15.5	Jun-20	132	50 0	276	3,780	20,100	160 U	400 U
AR-5	Jul-02	379	1,010	17.5	3,850	39,000	NA	NA
	Nov-02	0.7	10.6	ND	124	2,900	NA	NA
	Feb-03	4.3	12.2	24	90	830		NA NA
	Sep 03	8.5	0.0	3.4 1 3	33	557	NA	NA
	Dec-03	111	26.1	1.5	739	6 010	NA	NA
	Mar-06	0511	0.511	0.5.11	0.57	250	NA	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	0.9 U	0.9 U	0.5 U	10	65	120	95 U
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	250 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	260	730	270 U
	May-14	1.0 U	1.0 U	1.0 U	2.09	100 U	20 U	50 U
AR-6	Nov-01	29.8	402	82	2,800	2,390	NA	NA
	Apr-02	713	559	27	2,060	17,700	NA	NA
	Jul-02	1,820	3,100	85	4,780	24,700	NA	NA
	Nov-02	104	289	67	2,886	11,900	NA	NA
	Feb-03	531	1,280	93	2,900	23,700	NA	NA
	Jun-03	4/5	2,340	244	3,750	25,500	NA NA	NA
	Sep-03 Mar 06	0.5.11	0.5.1	241	4,010	23,000	260	NA
	Nov 07	0.00	2.5	0.5 0	73	670	1 500	990
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 U	2.4	50 U	120 U	250 U
	Dec-10	1.0 U	1.0 U	1.0 U	8.6	81	120 U	240 U
	May-14	1.0 U	1.0 U	21.2	331	4,640	20 U	50 U
AR-7	Mar-06	NS	NS	NS	NS	NS	NS	NS
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10	NS	NS	NS	NS	NS	NS	NS
15.0	May-14	1.0 U	1.4	21	86	1,280	20 U	50 0
AR-8	Jul-02	47.3	229	32	918	5,330	NA	NA
	NOV-UZ	19.2	1,0/0	384	4,170	57,400	INA NA	NA NA
		43.0	2050	210	3,410	22,700		NA NA
	Sen 03	3 350	2,050	1 / 20	2,100	16 000	NA NA	NA NA
	Mar-06	5,550 NS	NS	NS	2,320 NS	NS	NS	NS
	Nov-07	80	46	35	610	7 400	23 000	<4700
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	2.0	15	99	420	3,300	2.000	250
	Dec-10	1.7	26	100	460	3.700	1.500	260 U
	Mav-14	1.0 U	11	280	755	9,570	20 U	50 U
	May-18	0.5 U	0.90	145	200	4,970	50 U	250 U
	Jun-19	0.5 U	0.53	88.0	157.2	4,830	100 U	500 U
	Jun-20	1.25 U	1.25 U	61.7	109.7	3,520	160 U	400 U

Appendix D
Tidewater Fuel Leak Site Historical Groundwater Monitoring Results
Pasco, Washington

Well ID	Date	Benzene	Toluene (µg/L) MCL 1 000	Ethylbenzene (µg/L)	Total Xylenes (µg/L) 1 000	TPH-G (µg/L) MCL 800/1 000	TPH-D (µg/L) MCL 500	TPH-D - Heavy Oil (ug/L) MCL 500
	Nov 01	(µg/E) MOE 5	1 11	1 11	2.11	50 / I	NIA	(µg/L) NOL 000
AR-9	Nov-01	10	10	10	20	50 0	NA NA	NA NA
	Dec-03	111	111	111	211	50 11	NΔ	NΔ
	Mar-06	0511	0511	0.511	111	250 11	250 11	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	130 U	270 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U
AR-10	Nov-01	54	13.7	ND	221	311	NA	NA
	Apr-02	3.1	1.0 U	3.5	2.0 U	50 U	NA	NA
	Nov-02	1.0 U	1.0 U	1.0 U	2.0 U	78	NA	NA
	Feb-03	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Jun-03	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Sep-03	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Mar-06	0.5 U	0.5 U	0.5 U	1.0 U	250 U	250 U	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	Dec-10 May 14	1.00	1.0 0	1.00	2.00	50 0	120 0	240 U
AD 11	Mar 01	1.00	1.0 0	1.00	2.00	50.11	200	560 //
AR-11		1.00	1.0 0	1.00	2.00	50 0	230 0	560 0
	Nov 02	1.00	1.0 0	1.00	2.00	50 11	NA	NA
	Dec-03	1.00	19	1.00	1 1	50 11	NΔ	NA
	Mar-06	0.511	0511	0.511	1011	250 11	250 11	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U
	May-18	0.5 U	0.5 U	0.5 U	0.5 U	100 U	50 U	250 U
	Jun-19	0.5 U	0.5 U	0.5 U	1.0 U	100 U	100 U	500 U
	Jun-20	0.5 U	0.5 U	0.5 U	0.5 U	100 U	160 U	400 U
AR-12	Feb-03	3,860	10,400	1,000	13,560	84,700	NA	NA
	Jun-03	3,810	8,060	731	9,190	55,100	NA	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10 May 14	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS
M\\/_1	Mar-01	20	21	1011	211	110	23011	580 11
10100-1	Aug-01	1 890	1 900	95	1 109	5 980	NA	NA
	Nov-01	336	88	1.0	211	321	NA	NA
	Apr-02	880	33	5.3	43	667	NA	NA
	Jul-02	1,040	22	41	40	1,600	NA	NA
	Nov-02	434	36	57	131	1,040	NA	NA
	Nov-02	385	31	38	95	712	NA	NA
	Feb-03	369	15	32	33.8	240	NA	NA
	Jun-03	131	68	35	128	1,420	NA	NA
	Sep-03	112	69	26	NR	431	NA	NA
	Dec-03	8.0	22	1.2	9.3	143	NA	NA
	Mar-06	0.5 U	0.71	8.4	8.7	250	250 U	NA
	Nov-07	0.2 U	0.20	0.5	0.6 U	50 U	190	670
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 0	2.0 0	50 U	120 U	240 U
	Dec-10	1.00	1.0 0	1.0 U	2.00	50 U	120 U	240 U
MW 2	Iviay-14 Mar 01	1.00	1.00	1.00	2.00	50.11	200	540 11
10100-∠		1.00	1.00	1.00	2.00	50 0	220 U NA	NA
	Nov 01	1.00	1.00	1.00	2.00	50 0	NA NA	NA NA
	Nov-01	1.00	1.00	1.00	2.00	82	NA NA	NA NA
	Mar-06	0.511	0.511	0511	2.00	250 11	250 11	NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	0.211	0.211	0.211	0.611	50 11	78	96 17
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	250 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	130 U	260 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U

Appendix D
Tidewater Fuel Leak Site Historical Groundwater Monitoring Results
Pasco, Washington

		Benzene	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	TPH-G (µg/L)	TPH-D (µg/L)	TPH-D - Heavy Oil
Well ID	Date	(µg/L) MCL 5	MCL 1,000	MCL 700	1,000	MCL 800/1,000	MCL 500	(µg/L) MCL 500
MW-3	Mar-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	270	NA
	Aug-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-02	1.0 U	1.0 U	1.0 U	2.0 U	117	NA	NA
	Mar-06	0.5 0	0.5 0	0.50	1.00	250 0	250 0	NA
	NOV-07 Oct 08	0211	0211	NS 0211	NS 0.6.11	NS 50.11	80.11	100 //
	Jun-10	1011	101	1011	2011	50 U	140	270 []
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	250 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U
MW-4	Mar-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	200 U	680 U
	Aug-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-02	1.0 U	1.0 U	1.0 U	2.0 U	55	NA	NA
	Dec-03	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Mar-06	0.5 U	0.5 0	0.5 U	1.00	250 U	250 U	NA
	NOV-07	NS	0.211	NS	NS 0.6.1	NS	INS 77.11	NS 07.11
	Uun-10	1011	1011	1011	2011	50 11	12011	250 11
	Dec-10	100	101	100	2011	50 U	140 U	280 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U
	May-18	0.5 U	0.5 U	0.5 U	0.5 U	100 U	50 U	250 U
	Jun-19	0.5 U	0.5 U	0.5 U	1.0 U	100 U	100 U	500 U
	Jun-20	0.5 U	0.5 U	0.5 U	0.5 U	100 U	160 U	400 U
MW-5	Mar-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	200 U	NA
	Aug-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-02	1.0 U	1.0 U	1.0 U	2.0 U	954	NA	NA
	Nar-06	0.50	0.50	0.50	1.00	250 0	4,300	NA 1 100
	Oct-08	0.20	0.20	0.20	0.00	50 11	91	08 //
	Jun-10	1011	101	1011	2011	50 U	120 11	250 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	130 U	260 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	100 U	500 U
MW-6	Mar-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	190 U	480 U
	Aug-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-01	1.0 U	1.0 U	1.0 U	2.0 U	50 U	NA	NA
	Nov-02	1.0 U	1.0 U	1.0 U	2.0 U	62	NA	NA
	Sep-03	1.0 U	1.0 U	1.0 U	2.00	50 U	NA	NA
	Dec-03 Mar 06	1.00	0.5.1	1.00	2.00	250 11	250 LL	NA NA
	Nov-07	NS	NS	NS	NS	NS	NS	NS
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	Dec-10	1.0 U	1.0 U	1.0 U	2.0 U	50 U	120 U	240 U
	May-14	1.0 U	1.0 U	1.0 U	2.0 U	100 U	20 U	50 U
	May-18	0.5 U	0.5 U	0.5 U	0.5 U	100 U	50 U	250 U
	Jun-19	0.5 U	0.5 U	0.5 U	1.0 U	145	100 U	500 U
	Juli-20 Mor 01	0.50	2.000	120	1 260	11 000 000	1 240	400 0
10100-7	Mar-09	NS	3,000 NS	NS	NS	NS	NS	NS
	Nov-07	70	530	53	930	7.000	2.000	300
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10	1.0 U	4.1	1.0 U	27	350	120 U	240 U
	May-14	88	1,910	133	2,702	19,200	20 U	50 U
MW-8	Mar-01	5,300	17,000	1,500	10,800	77,000,000	72,400	1,210
	Feb-U3	3,630	ö,540	931 1 220	0,45U	51,500	INA NA	INA NA
	Mar 06	183	5 440	452	5 140	25 700	8 400	NA NA
	Nov-07	29	2,200	410	5,500	36,000	6,500	<1.900
	Oct-08	NS	NS	NS	NS	NS	NS	NS
	Jun-10	NS	NS	NS	NS	NS	NS	NS
	Dec-10	2.4	500	210	2,000	9,900	2,500	260 U
	May-14	1.0 U	286	462	4,920	27,000	20 U	50 U
	May-18	0.5 U	3.8	0.5 U	0.5 U	3,540	50 U	250 U
	Jun-19	0.5 U	8.10	61.8	810	5,190	100 U	500 U
	JUN-20	1/50	1/50	ni/	1097	3.520	1000	40011

 Jun-zu
 1.200
 1.200
 0.100

 Notes:
 MCL - Maximum Contaminant Level. Based on Washington Department of Ecology Method A cleanup levels in Table 720-1 of the Model Toxics Control Act, Oct 2007.

 µg/L - Micrograms per liter
 BOLD - Exceeds MCL

 U = Analyte not detected

 NS = Not Sampled for one of the following reasons: insufficient water in well, presence of liquid hydrocarbons, inaccessibility, date was between sampling events, or well no longer in sampling program.

 N/A = Not applicable or not available

Appendix E TPH-G and Benzene Time Series

MW-8 Benzene and TPH-GX Concentrations Tidewater Fuel Leak Site

