

December 19, 2023

Kyle Parker Toxics Cleanup Program Department of Ecology – Central Regional Office 1250 W. Alder Street, Union Gap, WA 98903

Re: **September 2023 Groundwater Monitoring Report** for North Central Petroleum, Inc., Gasoline Spill, SR 17 Near MP 123, Bridgeport, WA, Facility Site# 25378742, Cleanup Site# 2088.

Dear Mr. Parker:

Enclosed for your review is the September 2023 Groundwater Monitoring Report for North Central Petroleum, Inc., Gasoline Spill, Bridgeport, Washington. Please call or contact me via email me at mmorris@wcec.com, if you have any questions or concerns. Thank you for your time and consideration of this report.

Sincerely,

Myles Morris

Senior Project Manager, WCEC

Enclosure

cc: Don Michelson, North Central Petroleum; 27 Hahn Road, Omak, WA 98841

ec: Kyle Parker, Department of Ecology; kypa461@ecy.wa.gov
John Roach, Federated Insurance; pcclaims@fedins.com

September 2023 Groundwater Monitoring Report

North Central Petroleum Spill

SR 17 Near MP 123

Bridgeport, WA 98813

Facility Site No.: 25378742, Cleanup Site No.: 2088

Prepared for:

Don Michelson 27 Hahn Rd. Omak, WA 98841

Prepared by:

West Central Environmental Consultants, Inc.

1030 South Ave. W.

Missoula, MT 59801

December 19, 2023 WCEC Project No. 99-2946-90

Nationwide Services www.wcec.com

TABLE OF CONTENTS

1.0	INTRODUCTION	ON	1
1.1 1.2 1.3	Site Histo	tion	1
2.0	GROUNDWA	TER MONITORING	4
2.1 2.2 2.3	Groundw	rater Monitoring Procedures	4
3.0	DISCUSSION	AND RECOMMENDATIONS	6
3.1 3.2 3.3	Discussio	n of Resultsendations	6
4.0	REFERENCES		8
Figur	es		
	Figure 1:	Site Location	
	Figure 2:	Site Details	
	Figure 3:	Potentiometric Surface 9-6-23	
	Figure 4:	Cleanup Level Exceedances	
Table	es		
	Table 1:	Groundwater Elevation Data	
	Table 2:	Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE	
	Table 3:	Groundwater Analytical Results – Natural Attenuation Parameters	
	Table 4:	Soil Borehole Analytical Results – WTPH-Gas, BTEX, MTBE	
	Table 5:	Soil Borehole Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE	

Appendix A: Laboratory Analytical Report

Appendix B: Groundwater Sampling Field Data Sheets

1.0 Introduction

This report documents the September 2023 groundwater monitoring event completed for the North Central Petroleum Spill located at mile post (MP) 122.6 of State Route (SR) Highway 17 near Bridgeport, WA. The Washington Department of Ecology (Ecology) requested additional investigation to define the extent of soil and groundwater impacts north of the highway as a required condition of a No Further Action (NFA) determination for the site [Ecology, 2018]. Groundwater monitoring activities were completed as outlined in the *June 2021 Soil Boring Investigation Report* submitted to Ecology on September 30, 2021.

1.1 Site Location

The site is located in a rural area of Douglas County, Washington where the primary land use is agricultural. The spill occurred adjacent to SR 17 approximately 14 miles east of Bridgeport, WA and 2.7 miles west of Leahy Junction at MP 122.6. The approximate geographic coordinates are 47.926169, -119.447942. The Public Land Survey System (PLSS) description for the site is the SW/4, NW/4, Section 16, and the SE/4, NE/4, Section 17, Township 28 North, Range 27 East. An intermittent stream (East Foster Creek) is located south of the spill site. Depth to first shallow groundwater varies from approximately 1 to 7 feet below ground surface (bgs) depending on seasonal fluctuations [WCEC, 2015]. The groundwater flow direction is generally to the west-northwest. Subsurface soil consists of silty sand with minor amounts of clay and gravel.

1.2 Site History

Approximately 6,900 gallons of unleaded gasoline were released at the site as the result of a petroleum transport trailer vehicle accident that occurred on December 1, 1994. Excavation of contaminated soil was conducted by LMH Environmental (LMH) in December 1994 at locations north and south of the highway [LMH, 1995]. The excavations were restricted laterally by the highway embankment and vertically by the presence of shallow groundwater. Approximately 770 cubic yards of contaminated soil was removed from the excavations. Soil samples were collected from the pit bottom and sidewalls of the excavations at the completion of excavation activities. The analytical results from these excavation soil samples indicated that gasoline constituents remained underneath the highway right-of-way (ROW) and to the north of the highway at concentrations exceeding applicable Model Toxics Control Act (MTCA) Method A cleanup levels (CULs).

Two sumps (North Sump and South Sump) were installed in the excavations during backfilling to provide a means for future sampling of groundwater in the excavation backfill [Figure 2]. The sumps were constructed of slotted 4-foot diameter pre-cast concrete manholes bedded in oversized gravel [LMH, 1995]. On the north side of the highway, a layer of oversized gravel was also placed along the entire length of the excavation floor

within the highway right-of-way to a depth of approximately 1 foot above the water table to facilitate total fluids recovery from the north excavation through the North Sump as a potential remedial method.

Four groundwater monitoring wells (MP1-MP4) were installed in September 1996 as part of a soil/groundwater investigation to assess constituent concentrations in source area and downgradient locations, primarily south of the highway [Summit, 1997]. Groundwater samples were obtained from 13 borehole locations during the September 1996 investigation, with maximum concentrations of benzene registered at nearly 5,000 μ g/L and TPH-G over 50,000 μ g/L. Groundwater monitoring of permanent wells MP1 through MP4 was conducted on at least an annual basis from 1997 to 2014. Groundwater concentrations in samples collected from all four monitoring wells were below the applicable Method A CULs for all constituents of concern (COCs) for four consecutive quarters in 2014/15 [WCEC, 2015].

In response to Ecology's request for further investigation in the source area north of the highway, WCEC supervised the installation of six soil boreholes (SB1-SB6) and three temporary wells (SB2, SB3, and SB5) on June 2, 2021. Two soil samples were obtained from each of the soil boreholes based on the results of field screening for hydrocarbon impacts. Groundwater samples were collected from the three temporary wells and the North Sump. Samples were submitted for laboratory analysis of WTPH-Gas, BTEX, and MTBE. Exceedances of Method A CULs for soil and groundwater were recorded at SB2, SB3, SB5, and the North Sump [WCEC, 2021].

Based on the results from the June 2021 soil boring investigation, four groundwater monitoring wells (MW1-MW4) were installed in the source area north of the highway on July 11, 2023 to delineate the extent and magnitude of source area groundwater impacts. An additional six soil boreholes (SB7-SB12) were advanced north of the highway ROW fence on Washington Department of Natural Resources (DNR) property to assess residual petroleum concentrations in this area [WCEC, 2023]. Soil samples were obtained from the soil boreholes and monitoring well borings depending on the results of field screening for hydrocarbon impacts. Soil and groundwater samples were submitted for laboratory analysis of WTPH-Gas, BTEX, and MTBE. According to the analytical results from boreholes SB7 through SB12, soil concentrations in the excavation area north of the ROW fence are below Method A CULs for all constituents of concern (COCs) [Table 4]. Method A CULs for groundwater were exceeded in samples from monitoring well MW3 [Table 2], coinciding with the location of soil borehole SB3 [Figure 4].

1.3 Scope of Work

The following scope of work was completed to further define the extent and magnitude of petroleum impacts at the spill source north of the highway:

- Conducting a groundwater monitoring event during low groundwater conditions in September 2023. Groundwater samples were submitted to Pace for analysis of NWTPH-Gx, EPA 8260B (BTEX and MTBE), EPA 300.0 (Sulfate), and EPA 353.2 (Nitrate + Nitrite).
- Preparation and submittal of a Groundwater Monitoring Report within 60 days of receipt of laboratory analytical data. Newly obtained data will also be uploaded into the Environmental Information Management (EIM) system database according to Ecology's requirements.

2.0 Groundwater Monitoring

2.1 Groundwater Monitoring Procedures

Groundwater sampling of monitoring wells MW1-MW4 was performed on September 26, 2023. Well sampling was conducted according to WCEC standard sampling procedures using a low flow peristaltic pump for purging and sample collection. Groundwater parameters for pH, dissolved oxygen, conductivity, salinity, temperature, oxidation-reduction potential, and turbidity were obtained using a multi-parameter YSI field meter with a flow through cell attached to the peristaltic pump. Groundwater sampling field data sheets are contained in Appendix B. Note that groundwater field parameters were not obtained from MW1 due to insufficient groundwater present.

Monitoring wells were purged until all groundwater parameters stabilized. Groundwater samples were collected in method-specific laboratory containers, packed on ice, and delivered under chain of custody to Pace in Minneapolis, Minnesota. Pace was instructed to analyze the groundwater samples for WTPH-Gx, BTEX, and MTBE via EPA 8260B. The groundwater samples were also analyzed for the biodegradation indicators sulfate (EPA 300.0) and nitrate (EPA 353.2) to assess microbial activity in the source area. Monitoring well MW1 did not yield enough groundwater to fill sample bottles for biodegradation indicators analysis.

2.2 Groundwater Analytical Results

Groundwater analytical results from the September 2023 monitoring event are summarized in the following paragraphs and in Tables 2 and 3. Method A CUL exceedances are displayed on Figure 4. The complete laboratory analytical results package is contained in Appendix A.

Groundwater sampled from monitoring wells MW1, MW2, and MW4 was below the Method A CULs for all constituents of concern.

Groundwater sampled from monitoring well MW3 contained WTPH-Gas (3,720 μ g/L) and benzene (27.2 μ g/L) at concentrations exceeding the Method A CULs.

2.3 Groundwater Flow Direction and Gradient

The depth to static water level in the monitoring wells was measured during the groundwater monitoring event using an electronic water level indicator accurate to 0.01 feet. Depth to water measurements varied

September 2023 Groundwater Monitoring Report

North Central Petroleum Spill Bridgeport, WA

from 3.66 feet bgs at MW3 to 8.91 feet bgs at MW1. Groundwater elevations were calculated using the established well survey data and the current depth to water measurements. Cumulative groundwater elevation data is presented in Table 1. A potentiometric surface map displaying the data collected during the September 2023 monitoring event is included as Figure 3. The calculated groundwater flow direction was to the west-northwest under a hydraulic gradient of 0.002. This flow direction generally follows the anticipated flow direction based on local surface topography and the drainage direction of East Foster Creek.

3.0 Discussion and Recommendations

3.1 Field Work Summary

Groundwater monitoring activities were completed on September 26, 2023, including the collection of depth to water measurements and groundwater samples from monitoring wells MW1-MW4. Groundwater samples were submitted for laboratory analysis of WTPH-Gas, BTEX, MTBE, sulfate, and nitrate. The September 2023 monitoring event was conducted during seasonal low groundwater conditions.

3.2 Discussion of Results

Based on the results of the June 2021 and July 2023 soil boring investigations and subsequent groundwater sampling events, soil and groundwater concentrations in the source area north of the highway exceed Method A CULs [Figure 4]. The greatest constituent concentrations in soil were encountered at a depth of 6 feet bgs in the SB3 borehole, with a WTPH-Gas concentration of 2,030 mg/kg and a benzene concentration of 0.956 mg/kg [Table 4]. Similarly, groundwater concentrations in the SB3 temporary well were elevated with a WTPH-Gas result of 12,300 μ g/L and a benzene result of 77.5 μ g/L [Table 5]. Monitoring well MW3 was installed at the SB3 borehole location and also currently exceeds Method A CULs for WTPH-Gas and benzene in groundwater [Table 2]. The highest benzene concentration in groundwater was found in the North Sump sample from June 2021, with a result of 198 μ g/L [Table 2]. MTBE was not detected above the laboratory MRLs in any of the soil or groundwater samples obtained during the June 2021 and July 2023 soil boring investigations and groundwater sampling events. Based on the analytical results from boreholes SB7 through SB12, soil concentrations in the excavation area north of the ROW fence are below Method A CULs for all constituents of concern (COCs) [Table 4].

In downgradient locations, the last detection of a COC at the site above Method A CULs was benzene at monitoring well MP2 in September 2012 [Table 2]. MTBE was first detected in downgradient well MP4 during the September 2004 sampling event. MTBE is the most soluble and readily mobilized constituent in gasoline. Samples from monitoring well MP4 contained MTBE at concentrations above the laboratory MRLs during the June 2015 and September 2015 monitoring events, however, the last exceedance of the Method A CUL for MTBE in MP4 occurred in September 2007. Groundwater sampled from all of the downgradient wells (MP1-MP4) was below the Method A CULs for all COCs for four consecutive quarterly monitoring events from December 2014 to June 2015. Sampling of the downgradient monitoring wells MP1 through MP4 has subsequently been discontinued with the approval of Ecology.

The cumulative analytical dataset indicates that natural attenuation processes at the site have been effective in reducing downgradient dissolved constituent concentrations to levels below Method A CULs. However,

natural attenuation alone has not sufficiently diminished COC concentrations in the source area north of the highway. An active remedial strategy will likely be necessary in the source area to augment natural attenuation processes and further reduce COC concentrations to below CULs. Analysis of natural attenuation parameters collected during the 2023 monitoring events indicate that dissolved oxygen and nitrate are depleted within the footprint of the plume when compared to background conditions as represented by upgradient monitoring well MW1 [Table 3]. The depletion of these terminal electron acceptors, in addition to the corresponding negative ORP values recorded, provides evidence that anaerobic degradation processes are occurring. This site-specific data will aid in selecting the appropriate remedial strategy for the source area that considers the current redox potential of the groundwater system.

3.3 Recommendations

The recent soil boring investigations and groundwater sampling events have provided sufficient data to delineate the extent and magnitude of residual source area contamination in both soil and groundwater. Impacts are primarily limited to the area north of the highway and south of the ROW fence, with the highest concentrations found in the vicinity of the North Sump and MW3/SB3. WCEC recommends semiannual groundwater monitoring of source area wells MW1 through MW4 during high and low groundwater conditions to evaluate fluctuations in constituent concentrations related to seasonal variations in groundwater inputs. Based on this schedule, the next groundwater monitoring event is tentatively planned for June 2024 during high groundwater conditions. WCEC will make further recommendations for potential remedial options at the site based on the results of the June 2024 groundwater monitoring event.

4.0 References

LMH Environmental. (LMH, 1995). Report of Gasoline Spill. March 25, 1995.

Summit Envirosolutions. (Summit, 1996). *Proposal for Land Application of Remediated Soil.* October 31, 1996.

Summit Envirosolutions. (Summit, 1997). Groundwater Assessment Report. April 11, 1997.

Washington State Department of Ecology. (Ecology, 2013). *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC.* Revised 2013. Washington State Department of Ecology Toxics Cleanup Program, Publication No. 94-06.

Washington State Department of Ecology. (Ecology, 2018). *North Central Petroleum Spill VCP Opinion Letter.* April 11, 2018.

Washington State Department of Ecology. (Ecology, 2022). *North Central Petroleum Spill VCP Opinion Letter.* May 31, 2022.

West Central Environmental Consultants. (WCEC, 2015). *December through September 2015 Groundwater Monitoring Summary Report.* October 6, 2015.

West Central Environmental Consultants. (WCEC, 2021). *June 2021 Soil Boring Investigation Report*. September 30, 2021.

West Central Environmental Consultants. (WCEC, 2023). *July 2023 Soil Boring Investigation & Monitoring Well Installation Report.* September 18, 2023.

Figures

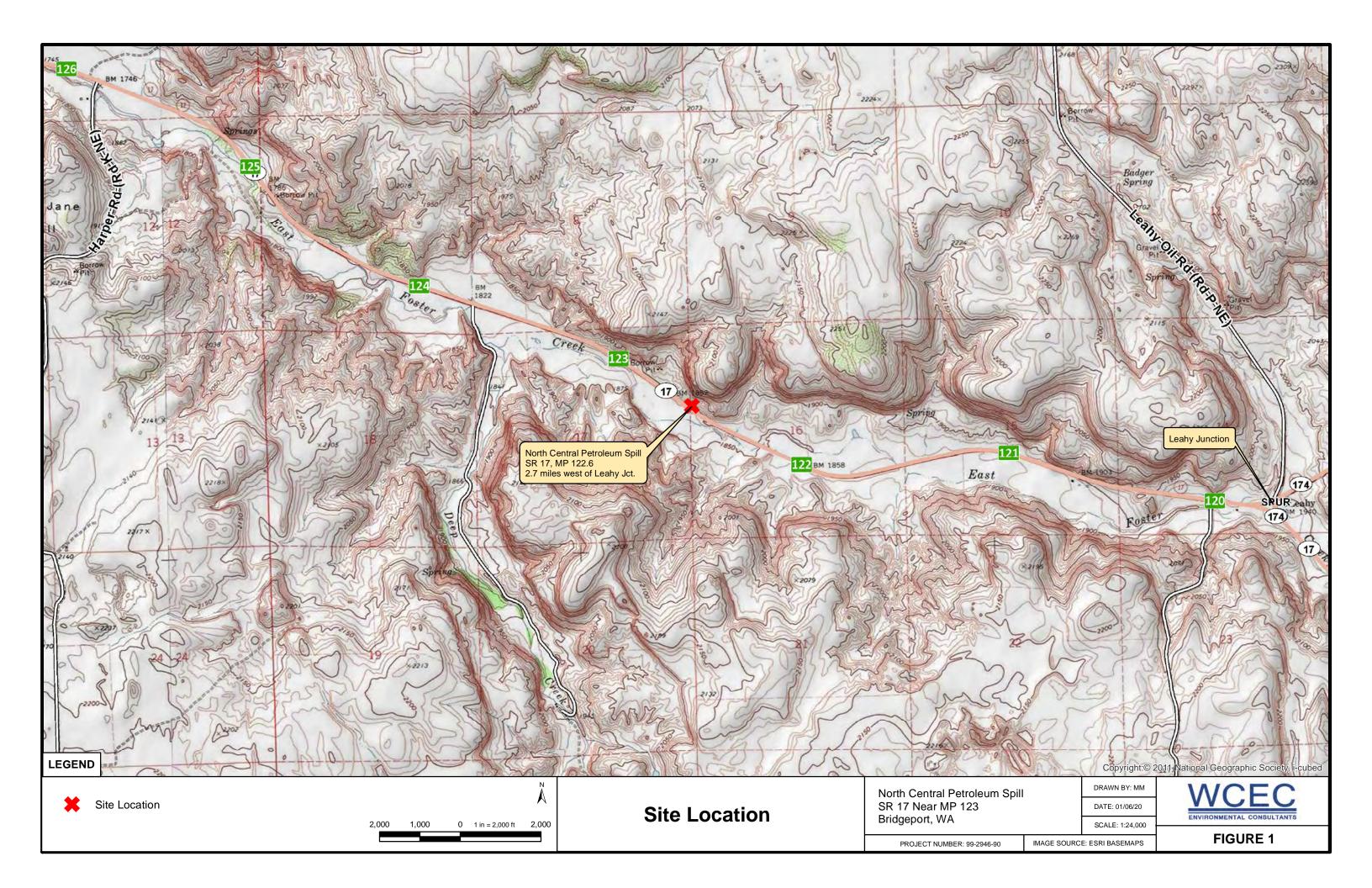
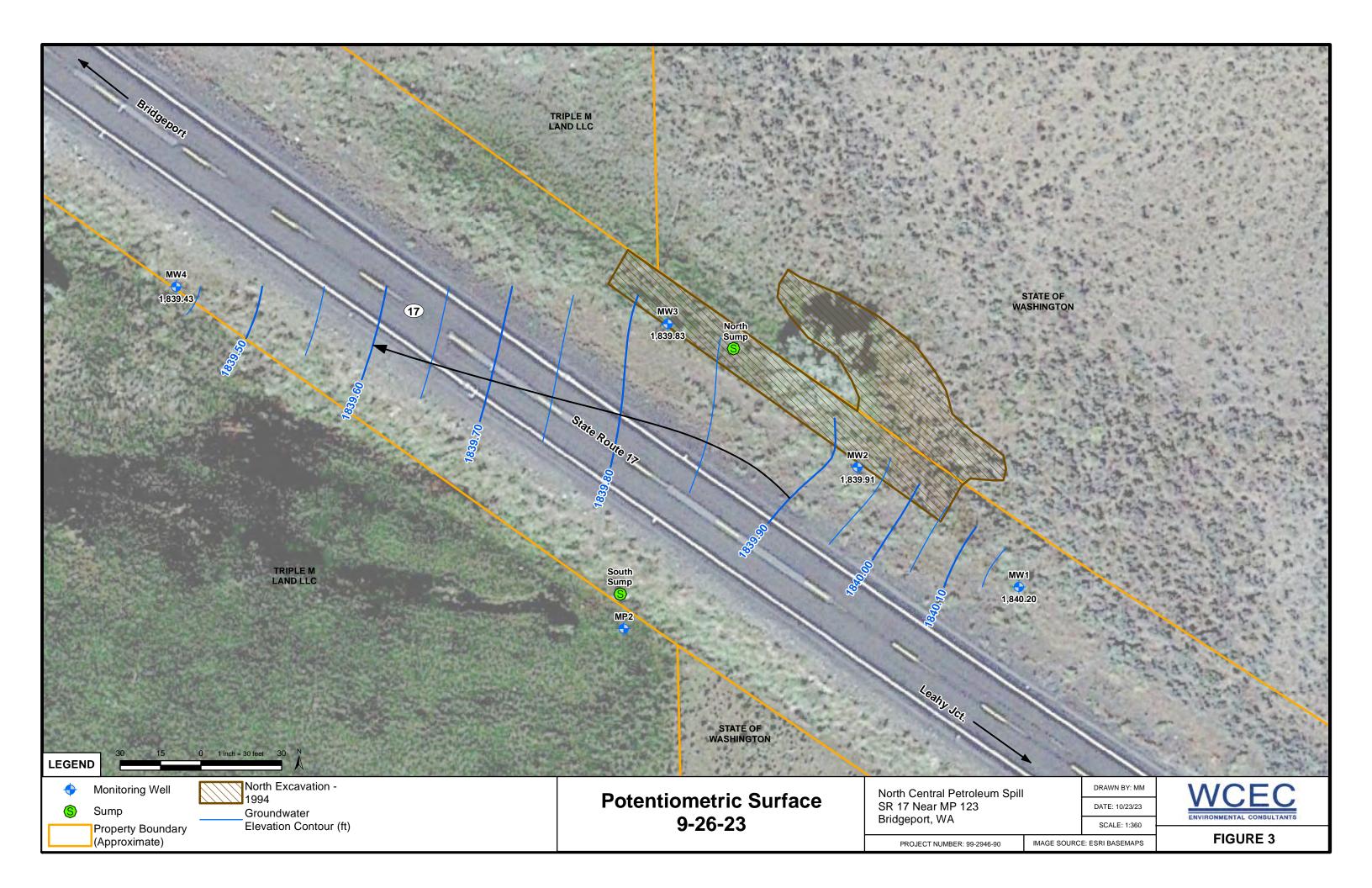
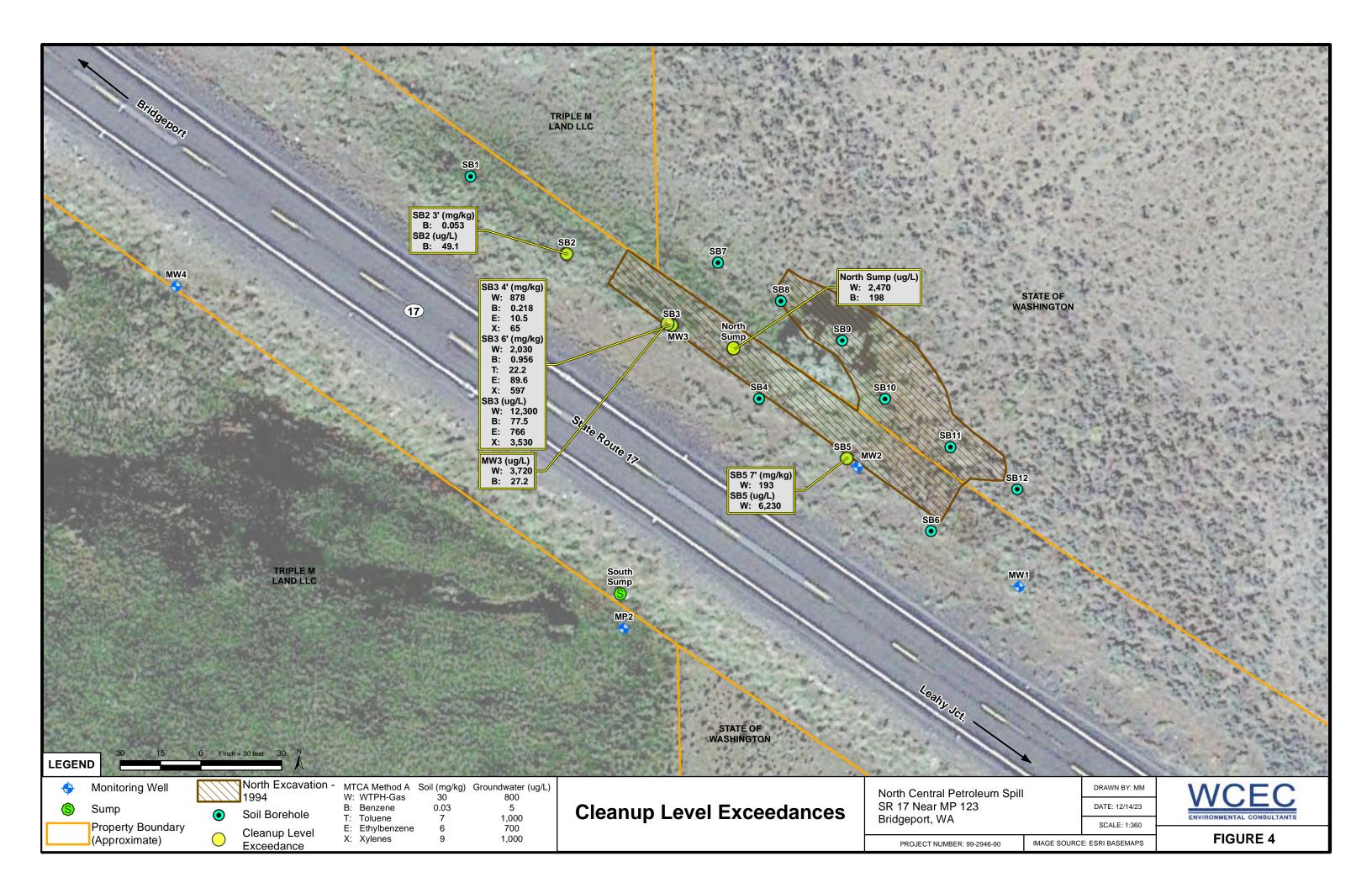

Figure 1: Site Location


Figure 2: Site Details


Figure 3: Potentiometric Surface 9-26-23


Figure 4: Cleanup Level Exceedances

Tables

Table 1: G	iroundwater E	levation Data
------------	---------------	---------------

Table 2: Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE

Table 3: Groundwater Analytical Results – Natural Attenuation Parameters

Table 4: Soil Borehole Analytical Results – WTPH-Gas, BTEX, MTBE

Table 5: Soil Borehole Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE

TABLE 1
Groundwater Elevation Data
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

		Groundwater	Elevation
07/12/23	1849.11	8.10	1841.01
09/26/23	1849.11	8.91	1840.20
07/12/23	1845.61	4.68	1840.93
09/26/23	1845.61	5.70	1839.91
07/12/23	1843.49	2.64	1840.85
09/26/23	1843.49	3.66	1839.83
07/12/23	1843.11	2.90	1840.21
09/26/23	1843.11	3.68	1839.43
	09/26/23 07/12/23 09/26/23 07/12/23 09/26/23	09/26/23 1849.11 07/12/23 1845.61 09/26/23 1845.61 07/12/23 1843.49 09/26/23 1843.49 07/12/23 1843.11	09/26/23 1849.11 8.91 07/12/23 1845.61 4.68 09/26/23 1845.61 5.70 07/12/23 1843.49 2.64 09/26/23 1843.49 3.66 07/12/23 1843.11 2.90

TABLE 1 Continued (Page 2 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP1				
	09/10/96	101.38	2.71	98.67
	09/17/97	101.38	2.33	99.05
	03/24/98	101.38	1.32	100.06
	10/11/98	101.38	1.31	100.07
	03/28/99	101.38	0.94	100.44
	09/28/99	101.38	2.53	98.85
	03/10/00	101.38	2.22	99.16
	09/20/00	101.38	2.41	98.97
	03/14/01	101.38	1.91	99.47
	03/21/02	101.38	2.20	99.18
	09/10/02	101.38	5.40	95.98
	09/03/03	101.38	4.41	96.97
	09/02/04	101.38	4.41	96.97
	09/06/05	101.38	5.20	96.18
	09/13/06	101.38	4.94	96.44
	09/24/07	101.38	5.13	96.25
	09/03/08	101.38	5.36	96.02
	09/02/09	101.38	5.64	95.74
	09/07/10	101.38	5.41	95.97
	09/28/11	101.38	4.74	96.64
	09/12/12	101.38	5.61	95.77
	09/10/13	101.38	5.62	95.76
	09/10/14	101.38	6.88	94.50
	12/15/14	101.38	5.30	96.08
	03/18/15	101.38	2.76	98.62
	06/10/15	101.38	4.68	96.70
	09/02/15	101.38	6.77	94.61

TABLE 1 Continued (Page 3 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP2				
	09/10/96	101.25	2.87	98.38
	09/17/97	101.25	2.22	99.03
	03/24/98	101.25	1.36	99.89
	10/11/98	101.25	1.23	100.02
	03/28/99	101.25	0.90	100.35
	09/28/99	101.25	2.50	98.75
	03/10/00	101.25	2.24	99.01
	09/20/00	101.25	2.63	98.62
	03/14/01	101.25	2.19	99.06
	08/28/01	101.25	5.05	96.20
	03/21/02	101.25	2.34	98.91
	09/10/02	101.25	5.42	95.83
	09/03/03	101.25	5.42	95.83
	09/02/04	101.25	3.75	97.50
	09/06/05	101.25	5.39	95.86
	09/13/06	101.25	4.87	96.38
	09/24/07	101.25	5.13	96.12
	09/03/08	101.25	5.49	95.76
	09/02/09	101.25	5.78	95.47
	09/07/10	101.25	5.56	95.69
	09/28/11	101.25	5.07	96.18
	09/12/12	101.25	5.87	95.38
	09/10/13	101.25	5.91	95.34
	09/10/14	101.25	6.53	94.72
	12/15/14	101.25	6.01	95.24
	03/18/15	101.25	3.71	97.54
	06/10/15	101.25	5.17	96.08
	09/02/15	101.25	6.97	94.28

TABLE 1 Continued (Page 4 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP3				
	09/10/96	99.20	1.95	97.25
	09/17/97	99.20	1.09	98.11
	03/24/98	99.20	0.90	98.30
	10/11/98	99.20	1.28	97.92
	03/28/99	99.20	0.38	98.82
	09/28/99	99.20	1.90	97.30
	03/10/00	99.20	1.80	97.40
	09/20/00	99.20	2.11	97.09
	03/14/01	99.20	1.93	97.27
	08/28/01	99.20	5.04	94.16
	09/10/02	99.20	5.41	93.79
	09/03/03	99.20	5.52	93.68
	09/02/04	99.20	3.40	95.80
	09/06/05	99.20	5.33	93.87
	09/13/06	99.20	4.70	94.50
	09/24/07	99.20	4.96	94.24
	09/03/08	99.20	5.57	93.63
	09/02/09	99.20	5.90	93.30
	09/07/10	99.20	5.55	93.65
	09/28/11	99.20	4.80	94.40
	09/12/12	99.20	5.94	93.26
	09/10/13	99.20	5.89	93.31
	09/10/14	99.20	-	-
	12/15/14	99.20	5.02	94.18
	03/18/15	99.20	2.91	96.29
	06/10/15	99.20	5.03	94.17
	09/02/15	99.20	7.27	91.93

(-) Well was dry.

TABLE 1 Continued (Page 5 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP4				
	09/10/96	98.10	1.79	96.31
	09/17/97	98.10	0.98	97.12
	03/24/98	98.10	0.77	97.33
	10/11/98	98.10	1.35	96.75
	03/28/99	98.10	0.65	97.45
	09/28/99	98.10	1.67	96.43
	03/10/00	98.10	1.86	96.24
	09/20/00	98.10	1.97	96.13
	03/14/01	98.10	1.92	96.18
	08/28/01	98.10	4.23	93.87
	03/21/02	98.10	1.50	96.60
	09/10/02	98.10	4.70	93.40
	09/03/03	98.10	4.95	93.15
	09/02/04	98.10	5.55	92.55
	09/06/05	98.10	4.98	93.12
	09/13/06	98.10	3.76	94.34
	09/24/07	98.10	5.04	93.06
	09/03/08	98.10	4.56	93.54
	09/02/09	98.10	5.29	92.81
	09/07/10	98.10	4.15	93.95
	09/28/11	98.10	3.08	95.02
	09/12/12	98.10	4.60	93.50
	09/10/13	98.10	4.79	93.31
	09/10/14	98.10	6.40	91.70
	12/15/14	98.10	2.64	95.46
	03/18/15	98.10	1.04	97.06
	06/10/15	98.10	3.43	94.67
	09/02/15	98.10	6.05	92.05

TABLE 2
Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor Point	Sample Date	WTPH-Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
MW1							
	07/12/23	<100	<1	3	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
MW2							
	07/12/23	<100	<1	6.4	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
MW3							
	07/12/23	3,550	79.8	10.4	128	263	<1
	09/26/23	3,720	27.2	1.3	216	1.3	<1
MW4							
	07/12/23	<100	<1	10.2	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
North Su	mp						
	12/10/94	191,000	42,500	48,000	4,700	28,000	-
	03/28/95	98,000	16,000	21,000	1,300	8,300	-
	08/14/95	240,000	25,000	43,000	2,800	24,000	-
	06/02/21	2,470	198	226	10.4	49.9	<2
Clean Up Lo	evel	800	5	1,000	700	1,000	20

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 2 Continued (Page 2 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP1							
	09/10/96	<50	< 0.5	< 0.5	<0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	4,470	3,390	<100	146	418	-
	03/14/01	< 50	0.613	< 0.5	< 0.5	<1	-
	03/21/02	<100	< 0.5	<2	<1	<1.5	-
	09/10/02	<100	< 0.5	<2	<1	<1.5	-
	09/03/03	<100	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	<1.5	<5
	09/06/05	<100	< 0.5	<2	<1	<1.5	<5
	09/13/06	<100	< 0.5	<2	<1	<1.5	<5
	09/24/07	<100	< 0.5	<2	<1	<1.5	<5
	09/03/08	<100	< 0.5	<2	<1	<1.5	<5
	09/02/09	<100	< 0.2	<1	<1	<1	<1
	09/07/10	<100	< 0.2	<1	<1	<3	<1
	09/28/11	159	<1	<1	<1	<3	<1
	09/12/12	< 50	<1	<1	<1	<3	<1
	09/10/13	<100	<1	<1	<1	<3	<1
	09/10/14	<100	<1	<1	<1	<3	<1
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	<100	<1	<1	<1	<3	<1
Clean Up Le	evel	800	5	1,000	700	1,000	20

(-) Sample not analyzed for constituent.

TABLE 2 Continued (Page 3 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP2							
	09/10/96	1,800	8.52	147	49.4	283	-
	09/17/97	1,990	47	106	33.7	332	-
	03/24/98	757	5.24	31.1	27.8	94.2	-
	10/11/98	1,080	30.6	43.3	29.2	115	-
	03/28/99	4,270	38	77.9	185	539	-
	09/28/99	11,200	3,540	78.2	397	1,120	-
	03/10/00	7,890	<68	65.8	299	900	-
	09/20/00	9,120	3,780	<53	178	520	-
	03/14/01	6,760	<19.8	8.18	188	539	-
	08/28/01	5,450	1,620	19.8	18	36.9	-
	03/21/02	2,840	71.5	<2	41	90.5	-
	09/10/02	10,700	4,140	58.1	289	763	-
	09/03/03	7,160	3,060	33.5	196	389	67
	09/02/04	5,200	2,100	20.3	227	94.2	45.5
	09/06/05	1,670	354	7.94	10.3	58	17.2
	09/13/06	3,370	1,030	<20	283	90.9	61.7
	09/24/07	1,960	484	8.99	348	11.6	41.2
	09/03/08	<1,000	205	<20	220	<15	<10
	09/02/09	597	38.7	<10	99.4	<10	<10
	09/07/10	<100	11.4	<1	5.95	<3	<1
	09/28/11	< 50	17.3	<1	4.1	<3	<1
	09/12/12	54.2	11.8	<1	3.9	<3	<1
	09/10/13	<100	1.6	<1	<1	<3	<1
	09/10/14	*	*	*	*	*	*
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	*	*	*	*	*	*
Clean Up Lo	evel	800	5	1,000	700	1,000	20
Dald in diameter		1- 41 MTC	A M-41 1 A -1				00.2046.00

^(*) Insufficient water for sample collection.

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 2 Continued (Page 4 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

- ·		WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP3							
	09/10/96	<50	31.4	0.586	< 0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	< 50	< 0.5	0.561	< 0.5	1.17	-
	03/14/01	50.8	< 0.5	< 0.5	< 0.5	< 0.5	-
	08/28/01	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/10/02	<100	2.71	<2	<1	<1.5	-
	09/03/03	106	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	<1.5	<5
	09/06/05	<100	1.16	<2	<1	<1.5	<5
	09/13/06	<100	0.872	<2	<1	<1.5	<5
	09/24/07	<100	< 0.5	<2	<1	<1.5	<5
	09/03/08	<100	< 0.5	<2	<1	<1.5	<5
	09/02/09	<100	< 0.2	<1	<1	<1	<1
	09/07/10	<100	< 0.2	<1	<1	<3	<1
	09/28/11	< 50	<1	<1	<1	<3	<1
	09/12/12	< 50	<1	<1	<1	<3	<1
	09/10/13	<100	<1	<1	<1	<3	<1
	09/10/14	*	*	*	*	*	*
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	<100	<1	<1	<1	<3	<1
Clean Up Le	evel	800	5	1,000	700	1,000	20

^(*) Insufficient water for sample collection.

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 2 Continued (Page 5 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP4		•					
	09/10/96	<50	< 0.5	< 0.5	< 0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/14/01	< 50	< 0.5	< 0.5	< 0.5	<1	=
	08/28/01	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/21/02	<100	< 0.5	<2	<1	<1.5	=
	09/10/02	<100	0.855	<2	<1	<1.5	-
	09/03/03	<100	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	< 0.5	29.7
	09/06/05	<100	< 0.5	<2	<1	<1.5	39.4
	09/13/06	<100	< 0.5	<2	<1	<1.5	36
	09/24/07	<100	< 0.5	<2	<1	<1.5	24.6
	09/03/08	<100	< 0.5	<2	<1	<1.5	10.2
	09/02/09	<100	< 0.2	<1	<1	<1	14.2
	09/07/10	<100	< 0.2	<1	<1	<3	10.8
	09/28/11	< 50	<1	<1	<1	<3	6.3
	09/12/12	< 50	<1	<1	<1	<3	4.7
	09/10/13	<100	<1	<1	<1	<3	3.1
	09/10/14	<100	<1	<1	<1	<3	3.9
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	1.2
	09/02/15	<100	<1	<1	<1	<3	2.4
Clean Up Lo	evel	800	5	1,000	700	1,000	20
Pold indicates	that the constitue	nt exceeds the MTC	A Mathad A alaany	n larval			99-2946-90

(-) Sample not analyzed for constituent.

TABLE 3
Groundwater Analytical Results - Natural Attenuation Parameters
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor Point	Sample	Lab A	nalysis	Field Parameters		
	Date	Sulfate	Nitrate/Nitrite	Dissolved	ORP	
		(mg/L)	(mg/L)	Oxygen (mg/L)	(mV)	
MW1						
	07/12/23	104	0.35	4.46	51.4	
	09/26/23	-	-	-	-	
MW2						
	07/12/23	118	<0.1	2.94	-88.6	
	09/26/23	84	< 0.1	1.44	-124.3	
MW3						
	07/12/23	135	< 0.1	1.26	-102.3	
	09/26/23	64.7	< 0.1	1.03	-127.5	
MW4						
	07/12/23	96.3	< 0.1	3.12	-75.9	
	09/26/23	101	< 0.1	0.97	-111.3	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 2 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample Date	Lab A	nalysis	Field Parameters		
Point		Sulfate	Nitrate/Nitrite	Dissolved		
	2	(mg/L)	(mg/L)	Oxygen (mg/L)	pН	
MP1						
	09/17/97	-	< 0.01	1.20	7.28	
	03/24/98	-	< 0.1	1.19	7.35	
	10/11/98	-	0.283	9.55	7.84	
	03/28/99	-	0.278	10.90	8.55	
	09/28/99	-	0.246	11.80	8.68	
	03/10/00	70.1	< 0.01	0.76	7.10	
	09/20/00	2.67	< 0.01	0.26	7.22	
	03/14/01	75.5	< 0.01	4.11	6.98	
	03/21/02	97.6	< 0.01	0.57	7.55	
	09/10/02	101	< 0.02	0.25	7.68	
	09/03/03	103	0.012	4.10	6.90	
	09/02/04	112	4.47	1.82	7.76	
	09/06/05	-	-	2.14	7.83	
	09/13/06	-	-	0.95	7.52	
	09/24/07	-	-	1.45	7.96	
	09/03/08	-	-	3.10	7.78	
	09/02/09	-	-	1.44	9.44	
	09/07/10	-	-	3.50	7.81	
	09/28/11	-	-	1.62	7.88	
	09/12/12	-	-	-	-	
	09/10/13	-	-	0.75	6.90	
	09/10/14	-	-	1.63	7.31	
	12/15/14		-	0.59	7.59	
	03/18/15	-	-	1.18	6.90	
	06/10/15	-	-	0.97	7.15	
	09/02/15	-	-	0.40	7.44	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 3 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample Date	Lab A	nalysis	Field Parameters		
Point		Sulfate	Nitrate/Nitrite	Dissolved		
	Buile	(mg/L)	(mg/L)	Oxygen (mg/L)	рН	
MP2						
	09/17/97	-	1.73	1.31	7.38	
	03/24/98	-	<0.1	2.58	7.39	
	10/11/98	-	0.342	5.15	7.51	
	03/28/99	-	< 0.01	1.45	7.50	
	09/28/99	-	0.252	<1.00	7.46	
	03/10/00	70.2	0.0439	0.60	6.98	
	09/20/00	3.39	0.0108	0.16	6.51	
	03/14/01	143	< 0.01	4.03	6.93	
	08/28/01	6.08	35.5	1.27	7.28	
	03/21/02	71.5	< 0.01	0.57	7.53	
	09/10/02	31.1	< 0.02	0.11	7.40	
	09/03/03	7.07	0.193	9.95	6.97	
	09/02/04	9.03	4.5	1.55	7.32	
	09/06/05	-	-	1.33	7.91	
	09/13/06	-	-	1.38	7.53	
	09/24/07	-	-	0.54	8.12	
	09/03/08	-	-	1.98	8.18	
	09/02/09	-	-	0.61	9.52	
	09/07/10	-	-	0.96	7.19	
	09/28/11	-	-	1.38	7.75	
	09/12/12	-	-	-	-	
	09/10/13	-	-	0.37	3.60	
	09/10/14	=	-	-	-	
	12/15/14	-	-	2.06	8.07	
	03/18/15	-	-	3.18	7.31	
	06/10/15	-	-	0.80	7.02	
	09/02/15	-	-	-	-	
		-	-		•	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 4 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample	Lab A	nalysis	Field Parameters		
Point	Date	Sulfate (mg/L)	Nitrate/Nitrite (mg/L)	Dissolved Oxygen (mg/L)	рН	
MP3		(mg/L)	(mg/L)	Oxygen (mg/L)	рп	
	09/17/97		< 0.01	1.85	7.39	
	03/24/98		<0.1	3.99	7.76	
	10/11/98		<0.1	5.10	7.63	
	03/28/99	-	<0.01	1.40	7.46	
	09/28/99	-	0.0546	<1.00	7.39	
	03/10/00	69.7	0.0284	0.72	7.43	
	09/20/00	80.1	<0.01	0.25	7.22	
	03/14/01	61.8	13.1	4.65	7.09	
	08/28/01	68.6	12.3	1.12	7.34	
	09/10/02	70	< 0.02	1.08	7.61	
	09/03/03	49.1	0.0182	5.98	6.71	
	09/02/04	86.5	4.43	1.24	7.89	
	09/06/05	-	-	1.61	7.58	
	09/13/06	-	-	2.96	7.39	
	09/24/07	-	-	7.31	8.00	
	09/03/08	-	-	3.64	7.47	
	09/02/09	-	-	7.99	9.45	
	09/07/10	-	-	6.93	7.18	
	09/28/11	-	-	11.30	6.61	
	09/12/12	-	-	-	-	
	09/10/13	-	-	0.55	5.30	
	09/10/14	-	-	-	-	
	12/15/14	-	-	1.81	7.37	
	03/18/15	-	-	1.81	6.49	
	06/10/15	-	-	1.10	6.42	
	09/02/15	-	-	-	-	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 5 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample	Lab A	nalysis	Field Parameters			
Point	Date	Sulfate (mg/L)	Nitrate/Nitrite (mg/L)	Dissolved Oxygen (mg/L)	На		
MP4		(8)	(8)	78 (87	1		
	09/17/97	-	< 0.01	1.55	6.92		
	03/24/98	-	0.1	3.54	7.41		
	10/11/98	-	< 0.1	9.63	7.20		
	03/28/99	-	0.594	1.05	7.33		
	09/28/99	-	0.01	1.53	7.25		
	03/10/00	71.8	0.0266	0.79	7.48		
	09/20/00	113	< 0.01	0.37	7.25		
	03/14/01	129	25.3	4.47	7.11		
	08/28/01	143	51.8	0.37	7.02		
	03/21/02	140	< 0.01	0.58	7.39		
	09/10/02	132	< 0.02	1.23	7.40		
	09/03/03	134	0.446	6.71	6.40		
	09/02/04	79.5	4.5	1.37	7.63		
	09/06/05	-	-	1.56	7.43		
	09/13/06	-	-	1.75	7.21		
	09/24/07	-	-	7.85	7.91		
	09/03/08	-	-	6.32	7.72		
	09/02/09	-	-	2.73	10.35		
	09/07/10	-	-	1.65	6.97		
	09/28/11	-	-	1.01	7.76		
	09/12/12	-	-	2.58	6.92		
	09/10/13	-	-	0.41	3.60		
	09/10/14	-	-	2.99	6.62		
	12/15/14	-	-	1.79	7.22		
	03/18/15	-	-	1.02	6.57		
	06/10/15	-	-	1.25	7.03		
	09/02/15	-	-	0.56	6.48		

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 4
Soil Borehole Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Sample	Sample	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Location	Depth (ft)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB1								
	3	06/02/21	<9.3	< 0.0373	< 0.0932	< 0.0932	< 0.279	< 0.0932
	6	06/02/21	<12	< 0.0435	< 0.109	< 0.109	< 0.326	< 0.109
SB2								
	3	06/02/21	<8.7	0.053	< 0.0809	< 0.0809	< 0.243	< 0.0809
	6	06/02/21	<14.4	< 0.061	< 0.153	< 0.153	< 0.458	< 0.153
SB3 (MV	V3)							
	4	06/02/21	878	0.218	1.27	10.5	65	< 0.0743
	6	06/02/21	2,030	0.956	22.2	89.6	597	< 0.0794
SB4								
	3	06/02/21	<8.3	< 0.0308	< 0.0771	< 0.0771	< 0.231	< 0.0771
	6	06/02/21	<12.1	< 0.0365	< 0.0912	< 0.0912	<0.274	< 0.0912
SB5 (MV	V2)							
•	3	06/02/21	<7	< 0.0243	< 0.0608	< 0.0608	< 0.182	< 0.0608
	7	06/02/21	193	< 0.0487	< 0.122	<0.122	< 0.365	< 0.122
SB6								
	3	06/02/21	<6.2	< 0.0265	< 0.0663	< 0.0663	< 0.199	< 0.0663
	6	06/02/21	<7.1	<0.0281	< 0.0702	< 0.0702	< 0.210	< 0.0702
SB7						***************************************		******
	3	07/11/23	<4.5	<0.0221	< 0.0552	< 0.0552	< 0.166	< 0.0552
SB8		07/11/25	-1.5	10.0221	10.0332	10.0332	-0.100	10.0332
	4	07/11/23	<7.6	<0.0208	< 0.052	< 0.052	< 0.156	< 0.052
	-	07/11/23	10.5	<0.0208	< 0.032	< 0.032	<0.130	< 0.032
SB9	/	07/11/23	10.5	10.0137	10.0371	10.0371	·0.11)	10.0371
	4	07/11/23	<4.7	< 0.0184	<0.046	<0.046	<0.138	< 0.046
SB10	- 4	07/11/23	\4. /	<u> </u>	<u> </u>	<0.040	<u> </u>	<u> </u>
SD10	1	07/11/23	<4.8	< 0.0171	<0.0428	<0.0428	<0.128	<0.0428
SB11	4	0//11/23	<4.8	<0.01/1	<0.0428	<0.0428	<0.128	<0.0428
SDII	4	07/11/02		10.0001	-0.0504	10.0504	.0.151	-0.0504
SB12	4	07/11/23	<5.5	< 0.0201	< 0.0504	< 0.0504	< 0.151	< 0.0504
SD12		0=144100		0.000	0.0501	0.0701	0.1.5	0.0504
N/XX/1	8	07/11/23	<5.2	< 0.0209	< 0.0521	< 0.0521	< 0.156	< 0.0521
MW1								
	5	07/11/23	<5.9	<0.0226	< 0.0565	<0.0565	<0.169	< 0.0565
N # X X 7 4	8	07/11/23	<4.5	< 0.0184	< 0.046	< 0.046	<0.138	< 0.046
MW4								
	5	07/11/23	<4.7	<0.020	<0.0499	< 0.0499	< 0.150	<0.0499
Clean Up I			he MTCA Method A	0.03	7	6	9	0.1

TABLE 5
Soil Borehole Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Sample Location	Sample Date	WTPH-Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
SB2							
	06/02/21	<100	49.1	<1	<1	<3	<1
SB3							
	06/02/21	12,300	77.5	254	766	3,530	<1
SB5							
	06/02/21	6,230	<1	<1	<1	<3	<1
Clean Up Level 80		800	5	1,000	700	1,000	20

Appendix A

Laboratory Analytical Report

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

October 11, 2023

Myles Morris WCEC (Montana) 1030 South Ave. W Missoula, MT 59801

RE: Project: 2946 Bridgeport

Pace Project No.: 10670452

Dear Myles Morris:

Enclosed are the analytical results for sample(s) received by the laboratory on September 28, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700

ENNI (-POSS

Project Manager

Enclosures

CERTIFICATIONS

Project: 2946 Bridgeport Pace Project No.: 10670452

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137
Florida Certification #: E87605
Georgia Certification #: 959
GMP+ Certification #: GMP050884
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062

Maine Certification #: MN00064 Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Louisiana DEQ Certification #: AI-03086

Louisiana DW Certification #: MN00064

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064
Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163

Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

SAMPLE SUMMARY

Project: 2946 Bridgeport Pace Project No.: 10670452

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10670452001	MW1	Water	09/26/23 14:00	09/28/23 08:50
10670452002	MW2	Water	09/26/23 14:40	09/28/23 08:50
10670452003	MW3	Water	09/26/23 16:35	09/28/23 08:50
10670452004	MW4	Water	09/26/23 17:30	09/28/23 08:50
10670452005	Trip Blank	Water	09/26/23 00:00	09/28/23 08:50

SAMPLE ANALYTE COUNT

Project: 2946 Bridgeport Pace Project No.: 10670452

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10670452001	MW1	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
10670452002	MW2	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
		EPA 300.0	AR3	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10670452003	MW3	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	JEM, PAB	8	PASI-M
		EPA 300.0	AR3	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10670452004	MW4	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
		EPA 300.0	AR3	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10670452005	Trip Blank	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

ANALYTICAL RESULTS

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

Sample: MW1	Lab ID: 106	70452001	Collected: 09/26/2	23 14:00	Received:	09/28/23 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Met	nod: NWTP	H-Gx					
	Pace Analytica	l Services -	Minneapolis					
TPH as Gas	ND	ug/L	100	1		10/06/23 05:2	1	CL,P2
Surrogates		3						- ,
a,a,a-Trifluorotoluene (S)	94	%.	50-150	1		10/06/23 05:2	1 98-08-8	
8260D MSV UST	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	l Services -	Minneapolis					
Benzene	ND	ug/L	1.0	1		10/03/23 05:1	9 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		10/03/23 05:1		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		10/03/23 05:1		
Toluene	ND	ug/L	1.0	1		10/03/23 05:1		
Xylene (Total)	ND	ug/L	3.0	1		10/03/23 05:1		
Surrogates		- y -	3.0	-		12,23,20 00.11		
1,2-Dichlorobenzene-d4 (S)	98	%.	75-125	1		10/03/23 05:1	9 2199-69-1	
4-Bromofluorobenzene (S)	97	%.	75-125	1		10/03/23 05:1		
Toluene-d8 (S)	98	%.	75-125	1		10/03/23 05:1		
Sample: MW2	Lab ID: 106	70452002	Collected: 09/26/2	23 14:40	Received:	09/28/23 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Met							
NWTPH-Gx GCV	Analytical Metl							
TPH as Gas	•			1		10/10/23 01:4	4	
TPH as Gas Surrogates	Pace Analytica ND	ıl Services - ug/L	Minneapolis					
TPH as Gas Surrogates	Pace Analytica	I Services -	Minneapolis	1		10/10/23 01:4 10/10/23 01:4		
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S)	Pace Analytica ND	l Services - ug/L %.	Minneapolis 100 50-150					
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S)	Pace Analytica ND 104	ug/L wg/L %. nod: EPA 82	Minneapolis 100 50-150 260D					
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST	Pace Analytica ND 104 Analytical Metl Pace Analytica	ug/L ug/L %. nod: EPA 82 Il Services -	Minneapolis 100 50-150 260D Minneapolis	1		10/10/23 01:4	4 98-08-8	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene	Pace Analytica ND 104 Analytical Metl Pace Analytica ND	ug/L %. nod: EPA 82 Il Services - ug/L	Minneapolis 100 50-150 260D Minneapolis 1.0	1		10/10/23 01:4- 10/03/23 05:3	4 98-08-8 5 71-43-2	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene	Pace Analytica ND 104 Analytical Metl Pace Analytica ND ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0	1 1 1		10/10/23 01:4- 10/03/23 05:3: 10/03/23 05:3:	4 98-08-8 5 71-43-2 5 100-41-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether	Pace Analytica ND 104 Analytical Metl Pace Analytica ND ND ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0	1 1 1		10/10/23 01:4- 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3:	5 71-43-2 5 100-41-4 5 1634-04-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total)	Pace Analytica ND 104 Analytical Metl Pace Analytica ND ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0	1 1 1		10/10/23 01:4- 10/03/23 05:3: 10/03/23 05:3:	5 71-43-2 5 100-41-4 5 1634-04-4 5 108-88-3	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates	Pace Analytica ND 104 Analytical Meth Pace Analytica ND ND ND ND ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L ug/L	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0	1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 5 108-88-3 5 1330-20-7	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 8260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S)	Pace Analytica ND 104 Analytical Meth Pace Analytica ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L ug/L %.	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125	1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 6 1634-04-4 5 1330-20-7 5 2199-69-1	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S)	Pace Analytica ND 104 Analytical Meth Pace Analytica ND ND ND ND ND ND ND	ug/L %. hod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L ug/L %. %.	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125	1 1 1 1 1 1		10/10/23 01:4- 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3:	5 71-43-2 5 100-41-4 5 1634-04-4 6 108-88-3 5 1330-20-7 6 2199-69-1 6 460-00-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 8260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	Pace Analytica ND 104 Analytical Metl Pace Analytica ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L yg/L %. %. %.	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125	1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 6 108-88-3 5 1330-20-7 6 2199-69-1 6 460-00-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	Pace Analytica ND 104 Analytical Metl Pace Analytica ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L yg/L . %. %. %. nod: EPA 30	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125	1 1 1 1 1 1		10/10/23 01:4- 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3: 10/03/23 05:3:	5 71-43-2 5 100-41-4 5 1634-04-4 6 108-88-3 5 1330-20-7 6 2199-69-1 6 460-00-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) 300.0 IC Anions	Pace Analytica ND 104 Analytical Metl Pace Analytica ND	ug/L %. nod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L yg/L . %. %. %. nod: EPA 30	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125	1 1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 6 108-88-3 5 1330-20-7 6 2199-69-1 6 460-00-4	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 8260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) 300.0 IC Anions Sulfate	Pace Analytica ND 104 Analytical Mettl Pace Analytica ND ND ND ND ND 98 95 98 Analytical Mettl Pace Analytical Mettl	ug/L whod: EPA 82 Il Services - ug/L ug/L ug/L ug/L ug/L ug/L d/L ug/L d/L ug/L d/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125 75-125 75-125 1.0 Minneapolis 1.2	1 1 1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 5 108-88-3 5 1330-20-7 5 2199-69-1 5 460-00-4 5 2037-26-5	
TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) 300.0 IC Anions Sulfate	Pace Analytical ND 104 Analytical Meth Pace Analytical ND ND ND ND ND 98 95 98 Analytical Meth Pace Analytical Analytical Meth Pace Analytical 84.0 Analytical Meth	ug/L %. hod: EPA 82 ll Services - ug/L ug/L ug/L ug/L y/L ug/L ag/L ug/L fod: EPA 30 ll Services - mg/L hod: EPA 38	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125 75-125 75-125 3.12	1 1 1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 5 108-88-3 5 1330-20-7 5 2199-69-1 5 460-00-4 5 2037-26-5	
NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 8260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) Surrogates 1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) 300.0 IC Anions Sulfate 353.2 Nitrate + Nitrite Nitrogen, NO2 plus NO3	Pace Analytica ND 104 Analytical Mettl Pace Analytica ND ND ND ND ND 98 95 98 Analytical Mettl Pace Analytical Mettl	ug/L %. hod: EPA 82 ll Services - ug/L ug/L ug/L ug/L y/L ug/L ag/L ug/L fod: EPA 30 ll Services - mg/L hod: EPA 38	Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0 75-125 75-125 75-125 75-125 75-125 3.12	1 1 1 1 1 1 1		10/10/23 01:4 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3 10/03/23 05:3	5 71-43-2 5 100-41-4 5 1634-04-4 5 108-88-3 5 1330-20-7 5 2199-69-1 5 460-00-4 5 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

Sample: MW3	Lab ID: 10	670452003	Collected: 09/26/2	3 16:35	Received: (09/28/23 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Me	thod: NWTP	H-Gx					
	Pace Analytic	al Services -	Minneapolis					
TPH as Gas	3720	ug/L	100	1		10/06/23 05:5	8	CL,P2
Surrogates		-9-						,-
a,a,a-Trifluorotoluene (S)	96	%.	50-150	1		10/06/23 05:5	8 98-08-8	
B260D MSV UST	Analytical Me	thod: EPA 82	260D					
	Pace Analytic	al Services -	Minneapolis					
Benzene	27.2	ug/L	1.0	1		10/03/23 14:2	3 71-43-2	
Ethylbenzene	216	ug/L	5.0	5		10/04/23 21:1		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		10/03/23 14:2		
Toluene	1.3	ug/L	1.0	1		10/03/23 14:2		
Kylene (Total)	297	ug/L	3.0	1		10/03/23 14:2		
Surrogates	201	~g/ -	3.0	•		. 5, 55, 25 1 7.2		
1,2-Dichlorobenzene-d4 (S)	100	%.	75-125	1		10/03/23 14:2	3 2199-69-1	
4-Bromofluorobenzene (S)	98	%.	75-125	1		10/03/23 14:2		
Foluene-d8 (S)	99	%.	75-125	1		10/03/23 14:2		
300.0 IC Anions	Analytical Me	thod: EPA 30	nn n					
000.0 TO ATHORIS	Pace Analytic							
Sulfate	64.7	mg/L	1.2	1		09/28/23 22:4	3 14808-79-8	
353.2 Nitrate + Nitrite	Analytical Me	othod: EPA 35	53.2					
555.2 Miliale + Milite	Pace Analytic							
	Face Analytic	ai Services -	Willineapolis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	1		10/05/23 11:50)	
Sample: MW4	Lab ID: 10	670452004	Collected: 09/26/2	3 17:30	Received: (09/28/23 08:50	Matrix: Water	
Sample: MW4 Parameters	Lab ID: 10	670452004 Units	Collected: 09/26/2 Report Limit	3 17:30 DF	Received: (09/28/23 08:50 Analyzed	Matrix: Water CAS No.	Qu
Parameters	Results	Units	Report Limit					Qu
Parameters	Results	Units	H-Gx					Qu
Parameters	Results	Units	H-Gx					- Qu
Parameters	Results	Units	H-Gx				CAS No.	Qu
Parameters NWTPH-Gx GCV IPH as Gas	Results Analytical Me Pace Analytic	Units ethod: NWTP cal Services -	Report Limit H-Gx Minneapolis	DF		Analyzed	CAS No.	Qu
Parameters NWTPH-Gx GCV IPH as Gas Surrogates	Results Analytical Me Pace Analytic	Units ethod: NWTP cal Services -	Report Limit H-Gx Minneapolis	DF		Analyzed	CAS No.	Qu
Parameters NWTPH-Gx GCV IPH as Gas Surrogates a,a,a-Trifluorotoluene (S)	Results Analytical Me Pace Analytic	Units ethod: NWTP cal Services - ug/L %.	Report Limit H-Gx Minneapolis 100 50-150	DF 1		Analyzed	CAS No.	Qu
Parameters NWTPH-Gx GCV IPH as Gas Surrogates a,a,a-Trifluorotoluene (S)	Analytical Me Pace Analytic ND	Units withod: NWTP cal Services - ug/L %. withod: EPA 82	H-Gx Minneapolis 100 50-150	DF 1		Analyzed	CAS No.	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST	Results Analytical Me Pace Analytic ND 100 Analytical Me	Units withod: NWTP cal Services - ug/L %. withod: EPA 82	H-Gx Minneapolis 100 50-150	DF 1		Analyzed	CAS No. 6 6 98-08-8	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene	Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic	Units thod: NWTP cal Services - ug/L %. thod: EPA 82 cal Services - ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis	1 1		Analyzed 10/10/23 02:10 10/10/23 02:10	CAS No. 6 6 98-08-8 9 71-43-2	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene	Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic	Units thod: NWTP cal Services - ug/L %. thod: EPA 82 cal Services - ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0	1 1 1		Analyzed 10/10/23 02:1(10/10/23 02:1(10/03/23 14:3(10/03/23 14:3(CAS No. 6 6 98-08-8 9 71-43-2 9 100-41-4	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether	Results Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic ND ND ND ND	Units othod: NWTP cal Services - ug/L %. ethod: EPA 82 cal Services - ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 10/10/23 02:10 10/10/23 02:10 10/03/23 14:30	CAS No. 6 6 98-08-8 9 71-43-2 9 100-41-4 9 1634-04-4	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Foluene	Results Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic ND ND ND ND ND	Units whod: NWTP cal Services - ug/L %. whod: EPA 82 cal Services - ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 1.0	1 1 1 1 1 1		10/10/23 02:10 10/10/23 02:10 10/03/23 14:3 10/03/23 14:3 10/03/23 14:3	CAS No. 6 6 98-08-8 9 71-43-2 9 100-41-4 9 1634-04-4 9 108-88-3	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Kylene (Total)	Results Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic ND ND ND ND	Units othod: NWTP cal Services - ug/L %. ethod: EPA 82 cal Services - ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10/10/23 02:10 10/10/23 02:10 10/10/23 02:10 10/03/23 14:3: 10/03/23 14:3: 10/03/23 14:3:	CAS No. 6 6 98-08-8 9 71-43-2 9 100-41-4 9 1634-04-4 9 108-88-3	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Kylene (Total) Surrogates	Results Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic ND ND ND ND ND	Units whod: NWTP cal Services - ug/L %. whod: EPA 82 cal Services - ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 1.0	1 1 1 1 1 1		10/10/23 02:10 10/10/23 02:10 10/10/23 02:10 10/03/23 14:3: 10/03/23 14:3: 10/03/23 14:3:	CAS No. 6 6 98-08-8 9 71-43-2 9 100-41-4 9 1634-04-4 9 108-88-3 9 1330-20-7	Qu
·	Results Analytical Me Pace Analytic ND 100 Analytical Me Pace Analytic ND ND ND ND ND ND ND ND ND	Units thod: NWTP cal Services - ug/L %. thod: EPA 82 cal Services - ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 260D Minneapolis 1.0 1.0 1.0 3.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10/10/23 02:10 10/10/23 02:10 10/10/23 02:10 10/03/23 14:30 10/03/23 14:30 10/03/23 14:30 10/03/23 14:30	CAS No. 66 698-08-8 971-43-2 9100-41-4 91634-04-4 9108-88-3 91330-20-7 92199-69-1	Qu

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

Sample: MW4	Lab ID: 1067	70452004	Collected: 09/2	6/23 17:30	Received:	09/28/23 08:50	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions	Analytical Meth	od: EPA 3	0.00					
	Pace Analytical	Services -	Minneapolis					
Sulfate	101	mg/L	2	.4 2		09/28/23 23:4	1 14808-79-8	
353.2 Nitrate + Nitrite	Analytical Meth Pace Analytical							
Nitrogen, NO2 plus NO3	ND	mg/L	0.	0 1		10/05/23 11:5	1	
Sample: Trip Blank	Lab ID: 1067	70452005	Collected: 09/2	6/23 00:00) Received:	09/28/23 08:50	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx					
	Pace Analytical	Services -	Minneapolis					
TPH as Gas Surrogates	ND	ug/L	10	00 1		10/06/23 06:5	4	CL,P2
a,a,a-Trifluorotoluene (S)	94	%.	50-18	50 1		10/06/23 06:5	4 98-08-8	
8260D MSV UST	Analytical Meth	od: EPA 8	260D					
	Pace Analytical	Services -	Minneapolis					
Benzene	ND	ug/L	1	.0 1		10/03/23 13:5	1 71-43-2	
Ethylbenzene	ND	ug/L	1	.0 1		10/03/23 13:5	1 100-41-4	
Methyl-tert-butyl ether	ND	ug/L	1	.0 1		10/03/23 13:5	1 1634-04-4	
Toluene	ND	ug/L	1	.0 1		10/03/23 13:5	1 108-88-3	
Xylene (Total) Surrogates	ND	ug/L	3	.0 1		10/03/23 13:5	1 1330-20-7	
1,2-Dichlorobenzene-d4 (S)	99	%.	75-12	25 1		10/03/23 13:5	1 2199-69-1	
4-Bromofluorobenzene (S)	97	%.	75-12	25 1		10/03/23 13:5	1 460-00-4	
Toluene-d8 (S)	100	%.	75-12	25 1		10/03/23 13:5	1 2037-26-5	

Project: 2946 Bridgeport
Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 910176 Analysis Method: NWTPH-Gx
QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Water

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452002, 10670452004

METHOD BLANK: 4791084 Matrix: Water

Associated Lab Samples: 10670452002, 10670452004

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers TPH as Gas ND 100 10/09/23 20:52 ug/L a,a,a-Trifluorotoluene (S) 113 50-150 10/09/23 20:52 %.

LABORATORY CONTROL SAMPLE & LCSD: 4791086 4791087 LCS Spike LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers TPH as Gas 807 10 ug/L 1000 891 89 81 68-125 20 a,a,a-Trifluorotoluene (S) 121 99 50-150 %.

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4791090 4791091 MS MSD 10671226003 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual TPH as Gas ug/L 158 1000 1000 1080 1060 92 90 57-132 30 a,a,a-Trifluorotoluene (S) 106 50-150 %. 104

SAMPLE DUPLICATE: 4791088 10671226003 Dup Max Parameter Units Result Result RPD **RPD** Qualifiers 158 TPH as Gas 172 8 30 ug/L 109 a,a,a-Trifluorotoluene (S) %. 107

SAMPLE DUPLICATE: 4791089 10670452002 Dup Max Units Result Result RPD RPD Qualifiers Parameter TPH as Gas ug/L ND ND 30 104 a,a,a-Trifluorotoluene (S) %. 103

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 910985 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Water

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452001, 10670452003, 10670452005

METHOD BLANK: 4795059 Matrix: Water

Associated Lab Samples: 10670452001, 10670452003, 10670452005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed TPH as Gas ND 100 10/05/23 23:30 CL ug/L a,a,a-Trifluorotoluene (S) %. 94 50-150 10/05/23 23:30

LABORATORY CONTROL SAMPLE & LCSD: 4795061 4795062 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers TPH as Gas 1000 78 6 20 CL ug/L 826 779 83 68-125 a,a,a-Trifluorotoluene (S) 95 95 50-150 %.

SAMPLE DUPLICATE: 4795063 10670452003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 3720 TPH as Gas ug/L 3690 30 CL 96 a,a,a-Trifluorotoluene (S) %. 96

SAMPLE DUPLICATE: 4795064 10671586001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers TPH as Gas 695 272 87 30 CL,D6 ug/L 96 a,a,a-Trifluorotoluene (S) 95 %.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 909336 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV UST-WATER

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452001, 10670452002

METHOD BLANK: 4787466 Matrix: Water

Associated Lab Samples: 10670452001, 10670452002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	10/03/23 01:02	
Ethylbenzene	ug/L	ND	1.0	10/03/23 01:02	
Methyl-tert-butyl ether	ug/L	ND	1.0	10/03/23 01:02	
Toluene	ug/L	ND	1.0	10/03/23 01:02	
Xylene (Total)	ug/L	ND	3.0	10/03/23 01:02	
1,2-Dichlorobenzene-d4 (S)	%.	99	75-125	10/03/23 01:02	
4-Bromofluorobenzene (S)	%.	96	75-125	10/03/23 01:02	
Toluene-d8 (S)	%.	99	75-125	10/03/23 01:02	

LABORATORY CONTROL SAMPLE:	4787467					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	18.8	94	75-125	_
Ethylbenzene	ug/L	20	19.2	96	75-125	
Methyl-tert-butyl ether	ug/L	20	19.4	97	75-125	
Toluene	ug/L	20	18.9	94	74-125	
Xylene (Total)	ug/L	60	57.9	96	75-125	
1,2-Dichlorobenzene-d4 (S)	%.			97	75-125	
4-Bromofluorobenzene (S)	%.			95	75-125	
Toluene-d8 (S)	%.			98	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 4787	468		4787469	1						
			MS	MSD								
	1	0670444027	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	1.6	20	20	18.8	19.5	86	90	66-127	4	30	
Ethylbenzene	ug/L	1.7	20	20	19.9	20.2	91	92	74-128	1	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	18.1	18.9	91	95	65-132	4	30	
Toluene	ug/L	ND	20	20	17.3	17.8	86	89	66-125	3	30	
Xylene (Total)	ug/L	ND	60	60	55.5	55.2	93	92	75-126	1	30	
1,2-Dichlorobenzene-d4 (S)	%.						99	100	75-125			
4-Bromofluorobenzene (S)	%.						97	97	75-125			
Toluene-d8 (S)	%.						98	99	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 909563 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV UST-WATER

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452003, 10670452004, 10670452005

METHOD BLANK: 4788337 Matrix: Water

Associated Lab Samples: 10670452003, 10670452004, 10670452005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	10/03/23 13:10	
Ethylbenzene	ug/L	ND	1.0	10/03/23 13:10	
Methyl-tert-butyl ether	ug/L	ND	1.0	10/03/23 13:10	
Toluene	ug/L	ND	1.0	10/03/23 13:10	
Xylene (Total)	ug/L	ND	3.0	10/03/23 13:10	
1,2-Dichlorobenzene-d4 (S)	%.	98	75-125	10/03/23 13:10	
4-Bromofluorobenzene (S)	%.	98	75-125	10/03/23 13:10	
Toluene-d8 (S)	%.	100	75-125	10/03/23 13:10	

LABORATORY CONTROL SAMPLI	E & LCSD: 4788338		47	788339		•		•		
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	19.1	19.4	96	97	75-125	2	20	
Ethylbenzene	ug/L	20	20.1	20.3	100	101	75-125	1	20	
Methyl-tert-butyl ether	ug/L	20	20.0	20.0	100	100	75-125	0	20	
Toluene	ug/L	20	19.4	19.3	97	96	74-125	0	20	
Xylene (Total)	ug/L	60	59.5	60.2	99	100	75-125	1	20	
1,2-Dichlorobenzene-d4 (S)	%.				99	98	75-125			
4-Bromofluorobenzene (S)	%.				99	99	75-125			
Toluene-d8 (S)	%.				100	99	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport

Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 909894 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV UST-WATER

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452003

METHOD BLANK: 4789671 Matrix: Water

Associated Lab Samples: 10670452003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/L	ND	1.0	10/04/23 20:11	
1,2-Dichlorobenzene-d4 (S)	%.	96	75-125	10/04/23 20:11	
4-Bromofluorobenzene (S)	%.	102	75-125	10/04/23 20:11	
Toluene-d8 (S)	%.	97	75-125	10/04/23 20:11	

LABORATORY CONTROL SAMPLE	& LCSD: 4789672		47	789674						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethylbenzene	ug/L	20	19.4	20.4	97	102	75-125	5	20	
1,2-Dichlorobenzene-d4 (S)	%.				103	96	75-125			
4-Bromofluorobenzene (S)	%.				100	105	75-125			
Toluene-d8 (S)	%.				98	97	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport

Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

QC Batch: 908579 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452002, 10670452003, 10670452004

METHOD BLANK: 4783286 Matrix: Water

Associated Lab Samples: 10670452002, 10670452003, 10670452004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.2 09/27/23 23:59

LABORATORY CONTROL SAMPLE: 4783287

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate mg/L 50 50.7 101 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4783288 4783289

MS MSD

10670120001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 20 Sulfate mg/L 6.7 50 50 54.6 54.6 96 96 80-120 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2946 Bridgeport Pace Project No.: 10670452

1 400 1 10,000 1 10... 1007 0 102

QC Batch: 910013 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10670452002, 10670452003, 10670452004

METHOD BLANK: 4790334 Matrix: Water

Associated Lab Samples: 10670452002, 10670452003, 10670452004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, NO2 plus NO3 mg/L ND 0.10 10/05/23 11:10

LABORATORY CONTROL SAMPLE: 4790335

Date: 10/11/2023 10:43 AM

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrogen, NO2 plus NO3 mg/L 1 1.0 104 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4790336 4790337

MS MSD

10670445003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Result Conc. % Rec Limits Qual Nitrogen, NO2 plus NO3 ND 20 mg/L 1 1.1 1.1 106 107 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4790338 4790339

MS MSD

10670599001 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Nitrogen, NO2 plus NO3 22.0 20 20 95 41.0 43.8 109 7 20 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2946 Bridgeport Pace Project No.: 10670452

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 909563

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 909894

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 910985

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 10/11/2023 10:43 AM

CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased

low.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2946 Bridgeport Pace Project No.: 10670452

Date: 10/11/2023 10:43 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10670452001	MW1	NWTPH-Gx	910985		
10670452002	MW2	NWTPH-Gx	910176		
10670452003	MW3	NWTPH-Gx	910985		
10670452004	MW4	NWTPH-Gx	910176		
10670452005	Trip Blank	NWTPH-Gx	910985		
10670452001 10670452002	MW1 MW2	EPA 8260D EPA 8260D	909336 909336		
10670452003	MW3	EPA 8260D	909563		
10670452003	MW3	EPA 8260D	909894		
10670452004 10670452005	MW4 Trip Blank	EPA 8260D EPA 8260D	909563 909563		
10670452002 10670452003 10670452004	MW2 MW3 MW4	EPA 300.0 EPA 300.0 EPA 300.0	908579 908579 908579		
10670452002 10670452003 10670452004	MW2 MW3 MW4	EPA 353.2 EPA 353.2 EPA 353.2	910013 910013 910013		

Pace* Location Requested (City/State): Pace Analytical Minnesota 1700 Elm Street, Suite 200 Minnespolis, MN SS414		CHAIN-OF-CUSTODY	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields	LAB USE ONLY. AM	LAB USE ONLY-Affix WorkorderLogin Label Here
Company Name. WCEC Street Address: 1030 South Ave. W, Missoula, MT 59801		Contact/Report To: Myles Morris Phone #: E-Mail: mmorris@wcec.cc	ree.com		
Customer Project #: F:cject Name: 2946 Bridgeport		Invoice To: Jeri Anderson Invoice E-Mail: andersoj@wcec.co	nn n	Specify Container Size **	**Container Sze: (1) 11, (2) 500mL (3) 250mL (4)
Site Collection Info/Facility (D (as applicable):		Purchase Order # (if applicable): Ouote #:		Identify Container Preservative Type***	Terradore, (1) Jubmu, (1) Encore, (8) Terradore, (10) Other Terradore, (10) Other Terradore, (10) Other Terradore, (10) NaOH, (10) Terradore, (11) H2SO4, (10) NaOH, (10) Acetate, (11) NaYSO4, (10) Sod. Thiosulfate, (10) Ascorbic Acid, (10)
Time Zone Collected: [] AK [] PT [] MT [] CT	[] []	County / State origin of sample(s):	Washington	Dana Shara	
Data Deliverables:	Regulatory Progr	Regulatory Program (DW, RCRA, etc.) as applicable:			Jennifer Gro ss Bactlum / Client ID:
[] [] [] [] [] [] [] [] [] []	Rus	Rush (Pre-approval required):	DW PWSID # or WW Permit # as applicable:		vino es
[] Other	Date Results Requested:		Field Filtered (if applicable): [] Yes [] No Analysis:		Profile / Template:
Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product (P), Soil/Solid (SS), Other (OT), Surface Water (SW), Sediment (SED), Studge (SI), Caulk	ound Water (GW), M	Vaste Water (WW), Product (P), Soil/Soli	id (SS), Oil (OL), Wipe (WP), Tissue (TS), Bioassay (B), Vapor (V),	ulfate itrate +	/ Bottle Ord. ID:
Customer Sample ID	Matrix * Gomp / Grab	Collected Collected Cor Composite Start) Date Time	Composite End Res. Number & Type of Containers Date Time CL2 Plastic Glass	300:0 S	Sample Comment
MW1	TW		0 00:41 52/0	×	100
MW2 .	WT		9 7 04:41	× × ×	200
MW3	WT			× × × ×	200
MW4	WT		9 2 8:21	××××	700
Trip Blank	WT			×	\$00
Customer Remarks / Special Conditions / Possible Hazards:			Collected By: Printed Name: My 125 Morn'S	Additional Instructions from Pace®:	
			Signature:	# Coolers: Thermometer ID: C	Correction Factor ("C): Obs. Temp. ("C) Corrected Temp. ("C)
Relinquished by/Company: (Signature)		9/27/23 - 15:30	Received by/Company: (Signature)	Date/The	Tracking Number:
Reinquifhed by/Company:(Signatufe)	Ω	Date/Aime: •	Received by/Compány:{Signature}	Date/Time: /	Delivered by: [] In- Person [] Courier
Relingsthed by/Company:(Signature)	o .	Date/Time:	Received by/Company:(Signature)	Date/Time:	[]FedEx []UPS []Other
Relinguished by/Company:(Signature)	d .	Date/Time:	Received by/Company:(Signature)	Date/Time:	Page: 1 of 1
Submering a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace ® Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/	ledgment and acce	eptance of the Pace ® Terms and Co	onditions found at https://www.pacelabs.com/resource-libra	ary/resource/pace-terms-and-conditions/	ENV-FRM-CORQ-0019_v01_082123 ©

₹

DC#_Title: ENV-FRM-MIN4-0150 v13_Sample Condition Upon Receipt (SCUR)

Effective Date: 4/14/2023

Sample Condition Upon Receipt Client Name:	···-	Project #	W	0#:10670452
Courier: V FedEx UPS USPS Client Pace SpeeDee Commercial		Exceptions	CLI	JMG Due Date: 10/12/23 ENT: WCEC WA
Tracking Number: 5923 7149 6492		1-MIN4-014		
Custody Seal on Cooler/Box Present? Yes No	Seals Intact	? Yes	☐ No	Biological Tissue Frozen? Yes No N/A
Packing Material: Bubble Wrap Bubble Bags	Non	e	Othe	r Temp Blank? Yes No
Thermometer: T1 (0461) T2 (0436) T3 (04 T6 (0235) T7 (0042) T8 (07	159) 🗋 T4 775) 🔲 T9		T5 (0178)	
Did Samples Originate in West Virginia? Yes VNo		1	Vere All Co	ntainer Temps Taken? Yes No N/A
Temp should be above freezing to 6 °C Cooler temp Read w/	Temp Blank	: 15	°C	Average Corrected Temp
Correction Factor: D Cooler Temp Corrected w,	/temp blank	: 1.7	_°C	(no temp blank only): °C See Exceptions ENV-FRM-MIN4-0142 1 Containe
USDA Regulated Soil: (N/A, water sample)other:		_)		Date/Initials of Person Examining Contents: 1
Did samples originate in a quarantine zone within the United St GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check ma	ıps)?	Yes N		Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
			RM-MIN4-0	0154) and include with SCUR/COC paperwork.
Location (Check one): Duluth Minner Chain of Custody Present and Filled Out?		Virginia		COMMENTS
Chain of Custody Present and Pried Out: Chain of Custody Relinquished?	✓ Yes ✓ Yes	No No		1. 2.
Sampler Name and/or Signature on COC?	/ Yes	No	N/A	· · · · · · · · · · · · · · · · · · ·
Samples Arrived within Hold Time?	V Yes	No		4. If fecal: <8 hrs >8 hr, <24 No
Short Hold Time Analysis (<72 hr)?	prina	No		5. Fecal Coliform HPC Total Coliform/E.coli BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?	Yes	√ No		6.
Sufficient Sample Volume?	√, Yes	No		7.
Correct Containers Used?	<u>V</u> Yes	No	∐ N/A	8.
-Pace Containers Used?	V Yes	No		
Containers Intact? Field Filtered Volume Received for Dissolved Tests?	i∕ Yes	No No	-, /	9.
Is sufficient information available to reconcile the samples to the	Yes	No No	√ N/A	10. Is sediment visible in the dissolved container? Yes No
COC? Matrix: Water Soil Oil Other	e 🛂 Yes	∐.No		11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-014
All containers needing acid/base preservation have been checked?	✓ Yes	☐ No	N/A	12. Sample #
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	Yes	☐ No	□ N/A	DaOH HNO3 Zinc Acetate
Exceptions (VOA) Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to	₩ Yes	☐ No	□ N/A	Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-014 pH Paper Lot #
associated field and equipment blanksverify with PM first.)	···			Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Headspace in Methyl Mercury Container?	Yes	No	// N/A	13.
Extra labels present on soil VOA or WIDRO containers? Headspace in VOA Vials (greater than 6mm)?	Yes	_/No	W N/A	,
3 Trip Blanks Present?	Yes Yes	//No No	N/A N/A	ENV-FRM-MIN4-014
Trip Blank Custody Seals Present?	Yes	☐ No	N/A	Pace Trip Blank Lot # (if purchased): 436308
CLIENT NOTIFICATION/RESOLUTION	-			Field Data Required? Yes No
Person Contacted:			_	Date/Time:
Comments/Resolution:				
Project Manager Review:	ن			Date: 9/29/23
NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples temp, incorrect containers).	, a copy of this f	form will be sen		Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of
			ı	Labeled By: Line:

Appendix B

Groundwater Sampling Field Data Sheets

Groundwa	iter Samp	ling Field	Data Sheet					-	AIA	
		_ 2	146	4						
Site Name:		N	CP BUY	dgiport				E	NVIRONMENTAL	CONSULTANTS
Address:			WX IF							
Well Identification	on:	MW		Field Team:	M	m		Date:	9/24/7	? 3
Well Inform	ation:				2 may 2 man 2 may 2 man 2 may	Purge Inform	nation:			
Well Diameter (in	ո.)			Screen interval		Set dept	h of pump inlet	t:		
Depth to Bottom	(ft.)		Midsecti	on saturated zone		Pumping Method	_ []Peristaltic P	'ump		
Initial Depth to V	Vater (ft.)	8,91		Free Product?	[] Yes [] No	-	[] Submersil			
Length of Water	Column (ft.)		_	Depth to FP (ft.)		Historic well purge rate:			Volume Purged	
1 Casing Volumes	s (L)			Thickness (ft.)		-		:	- Fill time	à:
3 Casing Volumes	s (L)			Volume (L)		Peristaltic contro			<u>-</u>	
Time	DTW	Liters	Conductivity	рН	Salinity	DO (mg/L)	D0%	Temperature	ORP	Turbidity
									F	
•										
										
							 			
	_			\rightarrow						
·							>			
		mind & V						1		
	T			Parameters Immed				_		
Sample Time	DTW	Total L	Conductivity	рН	Salinity	DO (mg/L)	DO%	Temperature	ORP	Turbidity
17,00		_			***************************************				<u> </u>	
Casing Condition	ition:[] Good :[] Good [] Moderate [eplacement Necess cement Necessary* for file.	ary* [] Bolt:	Missing (Number) []Yes []No		
Comments /	Exceptions	s:	heint	water h for	For	for am	ute,	S MTRE/	LITIOH.	
		V-149	<i></i>			/1512	1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/M D 3-/	-01 PM	<u> </u>
							-			
		ng Volume per F	•				Water Q	uality Indicator Pa	arameter Stabiliz	zation Range
Diameter	r of Casing or He	ole (in.)	Volume (L) 0.155	Volume (gal.)		pH				± 0.1 units
	2		0.617	0.041		Specific Conductan Dissolved Oxygen -		nsecutive reading	<0.5 mg/L	± 3% ± 10%
	4		2.472	0.653		Oxidation Reduction	on Potential (OF	RP)		± 10 millivolts
						Turbidity - 3 readin	ng <5 (NTU) or 1	.0% if reading >5 (I	NTU)	± 10%

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

If parameters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) Purge three well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

ved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L.

Groundwater San	npling Field	Data Sheet					N	MA			
,ect Number: Site Name: Address:	29°	46 P Brito twy 17	geport				EN	IVIRONMENTAL	CONSULTANTS		
Well Identification:	MW	12	Field Team:			^ mDat			te: 9/26/23		
Well Information:											
Well Diameter (in.) Depth to Bottom (ft.) Initial Depth to Water (ft.) Length of Water Column (ft.) 1 Casing Volumes (L) 3 Casing Volumes (L)	5,70	Midsectio		Screen interval on saturated zone Free Product? [] Yes [] No Depth to FP (ft.) Thickness (ft.) Volume (L)		h of pump inlet: [] Bladder Pump [] Submersible Pump well purge rate: Discharge time: pl-pump setting:		Volume Purged	:		
Time DTW	Liters	Conductivity	рН	Salinity	DO (mg/L)	DO%	Temperature	ORP	Turbidity		
14:35 7:55 14:35 7:55	y 2 1 2.5	1295 (276 1260 1275	7.15 7.11 7.11 7.11 7.11	0.65	1.45 2.26 1.40 1.43	14,2 2.2.1 13.7 14,8	19.1	-1049 -112.9 -122.7 -124.5	29.28 17.34 [3.83)4.31		
<u></u>			Parameters Imme	ı ediately Prior to	Sample Collection:	:					
Sample Time DTW	Total L	Conductivity	7.2/	Salinity	DO (mg/L)	140	Temperature	ORP -/24.5	Turbidity		
Well Condition: Monument Condition: [] G Casing Condition: [] Good *If replacement is recommen Comments / Exception	[] Moderate [ded, add notes belo] Poor [] Repla	cement Necessary		s Missing (Number		_) []Yes []No				
Well (Diameter of Casing of 1	Casing Volume per F or Hole (in.)	Volume (L)	Volume (gal.) 0.041 0.163		arameter Stabilization Range ± 0.1 units ± 3%						

Oxidation Reduction Potential (ORP)
Turbidity - 3 reading <5 (NTU) or 10% if reading >5 (NTU) Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

0.653

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

2.472

Directived oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

if parameters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) Purge three well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

± 10 millivolts ± 10%

Groundwate	Groundwater Sampling Field Data Sheet								MA	
Froject Number: Site Name: Address:		NUM	18, 7° 30 19	946 epsit			ENVIRONMENTAL CONSULTANTS			
Well Identification:		mu3	l	Field Team: M				Date:	9/26/	25
Well Informat Well Diameter (in.)	ion:	2		Screen interval		•	h of pump inlet:	-		
Depth to Bottom (ft Initial Depth to Wat Length of Water Col	er (ft.) lumn (ft.)	3.66	Midsect	Depth to FP (ft.)	[] Yes [] No	•	[] Submersib well purge rate:	le Pump	[] Peristaltic Pu [] Other: Volume Purged:	:
1 Casing Volumes (L 3 Casing Volumes (L	•	Liters	Conductivity	Thickness (ft.) Volume (L) pH	<u> </u>	Bladder control-Discharge time: Peristaltic control-pump setting: Salinity DO (mg/L) DO% Temperate				Turbidity
16:15	4.47 4.60 4.65 4.85	0.5 1 1.5 2	1202 187 174 176	7.51 752 752 752	0.60 0.59 0.59 0.59	1.04	//·/ /// /// /// /// ///	13.9 13.9 13.7	-104.1 -16.6 -122.3 -126.6	(7.76 12.48 13.50 16.40
Sample Time	DTW 4.72	Total L	Conductivity	рH	ediately Prior to Salinity	Sample Collection: DO (mg/L)	D0%	Temperature	ORP 727,5	Turbidity
Well Condition: Monument Condition: [] Good [] Moderate [] Poor [] Replacement Necessary* [] Bolts Missing (Number needed:) Casing Condition: [] Good [] Moderate [] Poor [] Replacement Necessary* Photo taken: [] Yes [] No *If replacement is recommended, add notes below and take picture for file.										
Comments / Exceptions:										
Diameter o	f Casing or H	ng Volume per Fo ole (in.)	Volume (L)	Volume (gal.)		pH		uality Indicator P	arameter Stabiliz	tation Range ± 0.1 units ± 3%
	1 2 4		0.155 0.617 2.472	0.041 0.163 0.653	0.041 Specific Conductance 0.163 Dissolved Oxygen - ± 10% or 3 consecutive reading <0.5 mg/L					

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

If parameters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) Purge three well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

^{&#}x27;ved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

Groundwa	iter Samp	ling Field	Data Sheet										
یر ا ject Number:		294	6										
Site Name:		NCF		20018	*****			EN	VIRONMENTAL	CONSULTANTS			
Address:			if my	17			-						
Well Identification	on:	mw	4	Field Team:	Field Team:			Date:	9/26/23				
Well Inform	ation:			Purge Information:									
Well Diameter (ir	ո.)	2		Screen interval		th of nump inlet	of pump inlet:						
Depth to Bottom	(ft.)		 Midsect	ion saturated zone	***************************************	Pumping Method			– [] Peristaltic Pi	ump			
Initial Depth to W	Vater (ft.)	3,68	- -	Free Product? [] Yes [] No			[] Submersit		[] Other:				
Length of Water	Column (ft.)		_					well purge rate:Volume Purged:					
1 Casing Volumes	s (L)							:	Fill time:	:			
3 Casing Volumes (L)				Volume (L)		Peristaltic contr	ol-pump setting:						
Time	DTW	Liters	Conductivity	pН	Salinity	DO (mg/L)	D0%	Temperature	ORP	Turbidity			
17:00													
17.55	3.54	0.5	1315	7.41	0,66	1.05	1/4.2	143	-//3,2	14:33			
17.10	3.55	ĺ	13,5	7,41	():66	1,35	103	14.3	-113,4	14,48			
17:15	4,01	1.5	1315	7:40	0,66	101	149	14.4	7/4.5	13.85			
17:20	4.07	ン	1214	7,39	1,66	0.99	G F	14.5	-117.9	13,38			
17:15	4.04	2.5	1313	7.39	0.66	0,97	15.6	114.5	-11/1	13,09			
							1	1/ / -	11// 3				
				Parameters Imme	distaly Orier to	Sample Collection							
Sample Time DTW Total L Conductivity				Parameters Immediately Prior to Sample Collection: pH Salinity DO (mg/L)			DO% Temperature ORP Turbidity						
17:30	4,06	3	1313	7.39	0,66	0.97	9.6	19.5	-/11.3	15,02			
Casing Condition	ition:[] Good : [] Good [] Moderate [Replacement Neces cement Necessary* e for file.		s Missing (Number) []Yes []No					
Comments /	Exceptions	5:			٠.								

		~~~											
	Well Casir	ng Volume per F	oot of Depth				Water O	uality Indicator Pa	rameter Stabiliz	ation Range			
Diameter	r of Casing or Ho	•	Volume (L)	Volume (gal.)		рН				± 0.1 units			
	<u>1</u> 2		0.155 0.617	0.041 0.163		Specific Conductar Dissolved Oxygen		secutive reading	<0.5 mg/l	± 3% ± 10%			
	4	·	2 472	0.503		Oxidation Reduction							

Turbidity - 3 reading <5 (NTU) or 10% if reading >5 (NTU)

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

If parameters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) Purge three well volumes from the well prior to sampling; (3) Contact project manager and/or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

± 10%

r lead oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.