

January 23, 2017

Whitley Fuel Company c/o Mr. Ben Whitley 1617 2nd Avenue N. Okanogan, WA 98840

RE: Whitley Fuels Tanker Spill Groundwater Monitoring Wells near Monitor, Washington -

Groundwater Sampling Event, December 2016

Loss 83A012312-1 Whitley Fuel LLC

WA Facility/Site ID No.: 357 Cleanup Site ID No.: 4757

Dear Mr. Whitley,

Fulcrum Environmental Consulting, Inc. (Fulcrum) has completed groundwater sampling of monitoring wells at the Whitley Tanker Spill, located on Highway 2, approximately one half mile east of Monitor, Washington (site). Sampling was completed to evaluate groundwater conditions as a result of a 1991 fuel tanker accident.

Groundwater sampling was completed by Kyle Ames, an environmental technician with Fulcrum. Project services were completed under the direction of Travis Trent, a Washington State Licensed Hydrogeologist with Fulcrum. See Attachment A for professional certifications. See Figure 1 in Attachment B for the site location map.

Background

The site is situated south of Highway 2 along the southern boundary of a Washington Department of Transportation Right-of-Way and northern boundary of property owned by Washington State (Chelan County Parcel No. 231913625077). The southern property is currently known as the Wenatchee River County Park.

On July 24, 1991, a transporter tanker owned by Whitley Fuels Company of Okanogan, Washington was involved in an accident and released 10,000 gallons of gasoline along the south side of Highway 2. A resulting fire consumed an unknown amount of fuel.

In 1992, approximately 1,300 cubic yards of petroleum contaminated soil was removed under the supervision of DRT Environmental Consultants, Inc. Two soil samples collected from along the edge of the highway were reported with gasoline concentrations above the current Models Toxic Control Act (MTCA) Method A cleanup level; one of the two samples was reported with benzene concentrations above the cleanup level. Contaminated soils located beneath the highway were not removed to avoid impacting the highway.

Three groundwater monitoring wells were installed in 1994 to assess groundwater conditions. Wells were completed to the following depths:

- MW-01, Western Well: 8.31 feet below ground surface (bgs)
- MW-02, North-Central Well: 11.78 feet bgs (within original gasoline footprint)
- MW-03, Eastern Well: 10.48 feet bgs

Since 1994, sampling had occurred on an about-annual schedule. However, MW-01 and MW-02 were "lost" during extensive flooding in 1996 and were not sampled. MW-03 remained accessible and continued to show

FULCRUM

Invitonmental consulting

In MW-02 through the utilization

elevated gasoline and benzene impact. In 2016, Fulcrum, located MW-01 and MW-02 through the utilization of metal-detecting equipment and was able to excavate the wells by hand. See Attachment B, Figure 2 for monitoring well locations.

MW-01 is viewed as hydrogeologically upgradient; until the December, 2016 sampling event no analytes had been detected at or above the method reporting limits. While Toluene was found at a concentration of 4.84 μ g/L, it is well below MTCA clean up levels. MW-02 is located within the footprint of the original gasoline release. Since sampling began in 1994, MW-02 has shown progressively lower values of gasoline and gasoline constituents. Since the recovery of MW-02 in 2016, all analytes detected have been below MTCA clean up levels. Similarly, MW-03 initially exhibited high values for gasoline, benzene and xylenes in a 1994 sampling event. During the sampling event of September 1995, gasoline was detected at 5,200 μ g/L and benzene was detected at 46 μ g/L. While in general, these values have decreased since the 1995 sampling event, there have been occasional increases in contamination concentrations. See tables 1 to 3 for the last four monitoring event results.

Scope of Work

Fulcrum's scope of work for this groundwater monitoring event consisted of collection and analysis of groundwater samples from the three onsite monitoring wells. Fulcrum utilized portions of the following documents as guidance criteria for current confirmation sampling protocol:

- Practical Guidance for Ground-Water Sampling, Michael J. Barcelona, James P. Gibb, John A. Helfrich, and Edward E. Garske, dated November 1985.
- American Standard of Testing and Materials International (ASTM) D4448 01(2013) Standard Guide for Sampling Ground-Water Monitoring Wells.
- Model Toxics Control Act Statute and Regulations, Washington State Department of Ecology Publication No. 94-06, Revised November 2007.

Samples were collected using a peristaltic pump with disposable tubing following standard sample collection procedures. Field measurements for pH, total dissolved solids, dissolved oxygen content, turbidity, conductivity, temperature and oxygen-reduction potential were collected utilizing a Horiba W-20 Series water quality monitoring system which was calibrated prior to sampling. Collected groundwater samples were submitted under chain-of-custody to Fremont Analytical, Inc., a Washington State Department of Ecology accredited laboratory in Seattle, Washington, for analysis.

Fulcrum has evaluated analytical results against both MTCA Method A and Method B cleanup levels where appropriate. Where Method A cleanup levels have not been established, Fulcrum has defaulted to using Method B cleanup levels established for site-specific conditions. Application of the MTCA Method A or Method B cleanup levels during this portion of the project does not exclude the potential for reevaluation of site contaminants by other methods or other applicable standards at any time.

Field Activities

On December 7, 2016, Fulcrum completed sampling of site groundwater wells. All wells were found with sufficient water; wells were sampled and purged using a peristaltic pump with clean and new disposable polyethylene tubing. A field duplicate sample was collected concurrently with MW-01 and labeled as MW-04.

Fulcrum utilized pH, total dissolved solids, turbidity, conductivity, temperature, oxygen-reduction potential, and purge volume in accordance with ASTM Standards to confirm adequate purging of the wells prior to sample collection.

Analytical Results

Samples were submitted for the following analysis:

- Northwest Total Petroleum Hydrocarbon (NWTPH) Gasoline (Gx)
- Volatile Organic Compounds by Environmental Protection Agency (EPA) Method 8260 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Methane by RSK-175
- Ions (Nitrite, Nitrate, Sulfate, Alkalinity) by EPA Method 300.0
- Dissolved Manganese (Mn) by EPA Method 200.8

See Attachment C for a summary of laboratory analytical results presented in Table 1. Results are presented in micrograms of analyte per Liter of water ($\mu g/L$) which is equal to parts per billion (ppb). See Attachment D for complete laboratory analytical results. See Figure 2 for a groundwater concentration and flow map.

Table 1: Laboratory Data for MW-01

Contaminants	Analyte	12/4/1995	6/16/2016	9/19/2016	12/7/2016	MTCA Method A CUL
ling	Gasoline	ND	ND	ND	ND	800
tan	Benzene	ND	ND	ND	ND	5
ont	Toluene	ND	ND	ND	4.84	1,000
	Ethylbenzene	ND	ND	ND	ND	700
	Xylenes	ND	ND	ND	ND	1,000
1	Nitrite	-	-	ND	ND	NE
ica	Nitrate	-	-	2,430	1,330	NE
em ato	Sulfate	-	-	9,510	8,930	NE
eochemica Indicators	Manganese	-	-	28	23.9	NE
Geochemical Indicators	Alkalinity	-	-	103,000	104,000	NE
	Methane	-	-	5	74.0	NE

All values are presented in micrograms per Liter (µg/L) Contaminant Concentrations above MTCA are shown in **BOLD**

ND - Non Detect

NE - Not Established

Table 2: Laboratory Data for MW-02

Contaminants	Analyte	9/11/1995	6/16/2016	9/19/2016	12/7/2016	MTCA Method A CUL
liji	Gasoline	5,400	235	ND	140	800
[am	Benzene	120	ND	ND	ND	5
On (Toluene	64	ND	ND	ND	1,000
	Ethylbenzene	ND	4.54	ND	ND	700
	Xylenes	770	3.54	ND	ND	1,000
	Nitrite	-	ND	ND	ND	NE
ica]	Nitrate	-	135	ND	897	NE
em ato	Sulfate	-	18,800	28,400	4,600	NE
Geochemical Indicators	Manganese	-	2,870	4,980	2,640	NE
§ 4	Alkalinity	-	392,000	597,000	384,000	NE
	Methane	-	20.5	34.6	34.6	NE

All values are presented in micrograms per Liter (µg/L)

Contaminant Concentrations above MTCA are shown in BOLD

ND - Non Detect

NE - Not Established

Table 3: Laboratory Data for MW-03

ıts	Analyte	9/10/2013	6/16/2016	9/19/2016	12/7/2016	MTCA Method A CUL
nan	Gasoline	401	471	ND	391	800
l <u>i</u>	Benzene	11.5	6.65	1.94	4.87	5
Contaminants	Toluene	<1	ND	ND	ND	1,000
Ŝ	Ethylbenzene	1.7	1.5	ND	ND	700
	Xylenes	<3	ND	ND	ND	1,000
	Nitrite	-	ND	ND	ND	NE
=	Nitrate	-	364	ND	1,120	NE
nice	Sulfate	-	12,800	ND	1,640	NE
len cat	Manganese	-	1,600	790	1,480	NE
Geochemical Indicators	Alkalinity	-	802,000	543,000	675,000	NE
35 1	Methane	-	43.3	810	879	NE

All values are presented in micrograms per Liter $(\mu g/L)$

Contaminant Concentrations above MTCA are shown in BOLD

ND - Non Detect

NE - Not Established

The following data qualifiers were noted in the laboratory results. All analytical quality assurance parameters were within acceptable ranges.

- Dilution required for samples from MW-02 and MW-03 for Nitrite, Nitrate and Sulfate.
- Dilution required for samples from MW-03 for Methane.

Toluene was present in the duplicate sample, labeled MW-04, at a concentration of 4.29 μ g/L. No other analytes were detected at or above the method reporting limit.

Review of these notes indicates that laboratory QA/QC is satisfactory and identified laboratory QA/QC should not affect project data or objectives.

Discussion and Conclusions

Groundwater elevation and gradient data collected during the sampling event identified groundwater at elevations ranging from 7.03 feet bgs to 8.20 feet bgs. Groundwater at the site flows in a southeast direction. A groundwater gradient map is presented in Attachment B, Figure 2.

No contaminants were identified above MTCA Method A clean up levels.

Elevated concentrations of geochemical parameters, including Nitrate, Sulfate, Manganese, Alkalinity and Methane indicates that degradation of petroleum hydrocarbons is likely occurring within the historic plume boundaries.

Please contact Travis Trent at 509.459.9200 if you have any questions or comments.

Sincerely,

Kyle Ames

Environmental Technician

Travis Trent, LHG Hydrogeologist Hydrogeologist 364

Travis Lyle Trent

ATTACHMENT A

Professional Certificates

STATE OF WASHINGTON

AND CONTROL OF THE CO

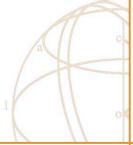
DEPARTMENT OF LICENSING - BUSINESS AND PROFESSIONS DIVISION THIS CERTIFIES THAT THE PERSON NAMED HEREON IS AUTHORIZED, AS PROVIDED BY LAW, AS A

GEOLOGIST HYDROGEOLOGIST

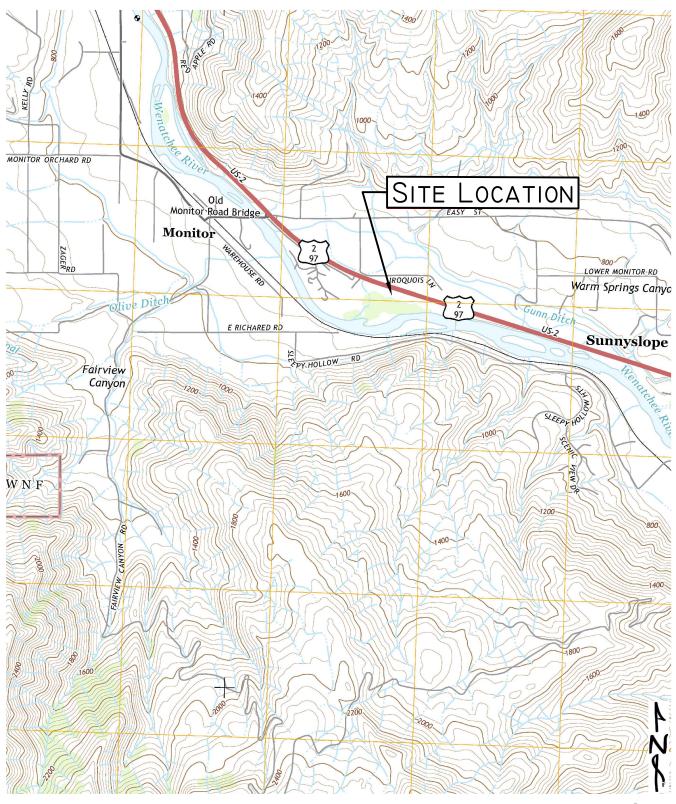
TRAVIS LYLE TRENT FULCRUM ENVIRONMENTAL CONSULT. 207 WEST BOONE AVENUE SPOKANE WA 99201

Cert/Lic No.

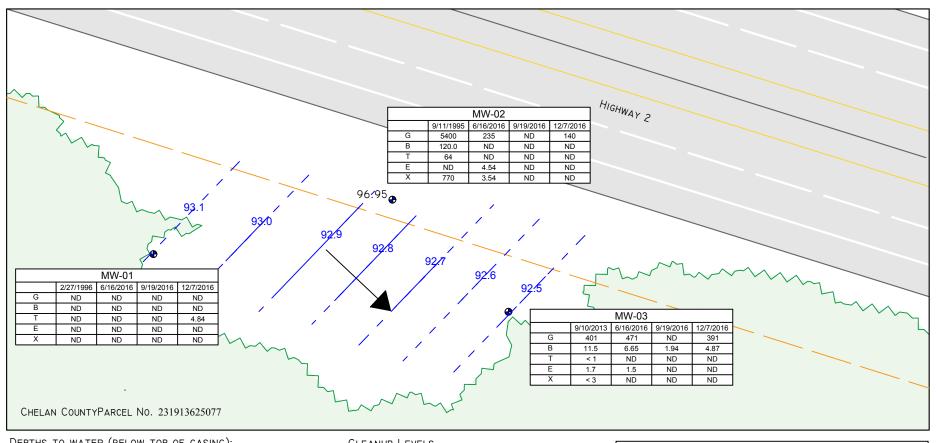
Issued Date 01/08/2002


Expiration Date 06/06/2014 Director

PL-630-159 (R/2/04)



ATTACHMENT B


Figures

BACKGROUND IMAGE COURTESY OF USGS

DEPTHS TO WATER (BELOW TOP OF CASING):

MW-01: 7.03 FT MW-02: 7.12 FT MW-03: 9.06 FT

CLEANUP LEVELS

G (GASOLINE): 800/1000 B (BENZENE): 5.0 T (TOLUENE): 1,000 E (ETHYLBENZENE): 700

X (TOTAL XYLENES): 1.000

- I) GROUNDWATER ELEVATION WAS CALCUATED USING AN ARBITRARY DATUM. GROUNDWATER MEASUREMENTS IN MONITORING WELLS ARE RELATIVE TO EACH OTHER.
- 2) DRAWING IS NOT TO EXACT SCALE AND IS FOR REFERENCE ONLY.
- 3) SELECT ANALYTICAL DATA PRESENTED; SEE EVENT LETTER FOR ADDITIONAL DETAILS.
- 4) RESULTS PRESENTED IN UG/L.

Fulcrum Environmental Consulting, Inc. 406 North Second Street, Yakima, Washington 98901 p: 509.574.0839 f: 509.575.8453 efulcrum.net Whitley Fuel Tanker Spill. 141310. ALY. 071116

Whitley Fuel Tanker Truck Spill Monitor, Washington

Groundwater Elevation and Analytical Results - December 2106

GROUNDWATER ELEVATION CONTOUR (FT)

GROUNDWATER MONITORING WELL

GROUNDWATER FLOW DIRECTION

PROPERTY BOUNDARY

LEGEND

ATTACHMENT C

Laboratory Analytical Results Summary Table

Table 1. Groundwater Analytical Summary - December 2016 Quarterly Event

		•		<u> </u>	
	Analyte	MTCA Cleanup Level	MW-01	MW-02	MW-03
		Depth to Water	7.03 ft.	5.60 ft. 7.38 >9,999 - 2.3 13.42 >99 -184 140 ND ND ND ND ND ND ND ND ND AD ND N	8.20 ft.
S	pH	NE	6.55	7.38	7.36
Field Parameters	Conductivity (m S/M)	NE	35.8	>9,999	0.139
me	Turbidity (NTU)	NE	-	-	-
ara	DO (g/L)	NE	6.0	2.3	4.9
д Б	Temperature (°C)	NE	12.95	13.42	11.98
iel	TDS (g/L)	NE	0.23	>99	0.9
щ	ORP (mV)	NE	-121	-184	-153
s ₁	Gasoline	800 / 1,000	ND	140	391
Regulatory Requirements ¹	Benzene	5.0	ND	ND	4.87
Regulatory equirement	Toluene	1,000	4.84	ND	ND
igu	Ethylbenzene	700	ND	ND	ND
Re leg	m,p-Xylene	1,0003	ND	ND	ND
	o-Xylene	1,000	ND	ND	ND
<u>.</u>	Nitrite ⁴	1,600	ND	ND	ND
ate:	Nitrate ⁴	25,600	1,330	897	1,120
dw. Jity	Sulfate ⁴	NE	8.93	4,600	1,640
oundwat Quality ¹	Manganese ⁴	2,240	23.9	2,640	1,480
Groundwater Quality ¹	Alkalinity	NE	104,000	384,000	675,000
	Methane	NE	74.0	34.6	879

NE – Not Established.

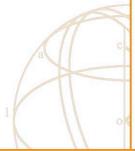
ND - Non-Detect

¹ Results presented in ug/L.

² Readings surpassed equipment reporting limits.

³ Results for total xylenes present.

⁴ Nitrite, Nitrate, and Manganese cleanup levels are MTCA Method B Non-Cancer



The color The	Whitley I	uels Tan	ker Spill Groudwater Mo	nitoring Data (199	4 to Current))																			
Part	Well		Date		3/10/1995	6/12/1995	9/11/1995	12/4/1995	2/27/1996	9/10/2002	9/3/2003	9/2/2004	9/7/2005	9/13/2006	9/24/2007	8/3/2008	9/2/2009	9/7/2010	9/28/2011	9/12/2012	9/10/2013	6/16/2016	9/19/2016	12/7/2016	
March Marc		S	Gasoline	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	,	-	-	-	-	-	ND	ND	ND	800
Part		nant	Benzene	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	5
Mary		ami	Toluene	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	4.84	1,000
Second S		ont	Ethylbenzene	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	700
March Marc		0	Xylene	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	1,000
March Marc			Nitrite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	NE
Part			Nitrate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	170	2,430	1,330	NE
March Marc			Sulfate	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	1,400	9,510	8,930	NE
March Marc	11		Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	51.2	28	23.9	NE
March Marc	W-0	tors	Alkalinity	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	183,000	103,000	104,000	NE
Part	X	dica	Methane	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17.9	5	74	NE
## MEMOLY M. MEM		a I	pН	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.93	5.86	6.55	NE
Part		mica	Cond. (m S/M)	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	99.9	11.6	35.8	NE
Part		cheı		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		NE
Table Tabl		Geo		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	6	NE
Part				-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	12.47	15.81	12.95	NE
THE THE TREE STATES AND STATES ASSOCIATION AN				-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	0.4	1.4	0.23	NE
Marie Mari				-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-				NE
Part			Total Iron (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	10	NE
Part		SS.	Gasoline	91,400,00	ND	ND	5,400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	235	ND	140	800
## Manifectation SN SN SN SN SN SN SN S		nant	Benzene	5,010	ND	1	120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	5
Value		am ii	Toluene	14	ND	ND	64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	1,000
Marchan Marc		ont	Ethylbenzene	0.8	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.54	ND	ND	700
Marker M			Xylene	4,590	ND	ND	770	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.54	ND	ND	1,000
Figure F			Nitrite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	NE
Magnetic No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			Nitrate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	135	ND	897	NE
Part			Sulfate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18,800	28,400	4,600	NE
March Marc	2		Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,870	4,980	2,640	NE
March Marc	W-(tors	Alkalinity	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	392,000	597,000	384,000	NE
PAR Part Par	M	dica	Methane	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20.5	35.6	34.6	NE
Page		Ä	pН	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	7.60	6.92	7.38	NE
Part		nica	Cond. (m S/M)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.113	18.1	>9.99 S/M	NE
Tayler C		che	Turb. (NTU)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20.1	11.9	-	NE
Fig. 10 10 10 10 10 10 10 1		99	DO (g/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.0	-	2.3	NE
Figure F			Temp. °C	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	12.62	18.25	13.42	NE
Total lond (ingl.)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.7	1.2	>99	NE
Part			ORP (mV)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-181	-138	-184	NE
Section Page			Total Iron (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	10	NE
Figure 197 ND ND 6.6 2.7 ND 2.2 2.0 2.57 2.38 2.2 2.2 2.1 2.1 1 2.1 2.1 ND ND ND ND ND ND ND N			TPH (Gas)	23,700,000	311	280	5200	2400	ND	134	<100	696	837	<100	157	<100	239	377	491	484	401	471	ND	391	800
Figure No		nts	Benzene	203	ND	ND	46	21	ND	2	<0.5	47.9	46	1.33	12.5	4.3	10.3	14.7	8.5	10.6	11.5	6.65	1.94	4.87	5
Notice 1050 9.3 ND 180 230 ND 4.1.5 <1.5 67.3 82.8 <1.5 617 <1.5 3.3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 ND		uinaı	Toluene		ND	ND	6.6	2.7	ND	<2	<2.0	2.57	2.38	<2		<2	<1	<1	1	<1	<1	ND	ND	ND	1,000
Nitrice		ntan	Ethylbenzene	ND	ND	ND	93	8.4	ND	<1	<1.0	76.2	47.8	<1	3.87	<1	6.29	3.54	<1	1.1	1.7	1.5	ND	ND	700
Nitrate		Con	Xylene	1050	9.3	ND	180	230	ND	<1.5	<1.5	67.3	82.8	<1.5	6.17	<1.5	3.3	<3	<3	<3	<3	ND	ND	ND	1,000
No.			Nitrite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	NE
No.			Nitrate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	364	ND	1,120	NE
No.			Sulfate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12,800	ND	1,640	NE
Methane Part Part	63		Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,600	790	1,480	_
Methane Part Part	IW-	ator	Alkalinity	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	802,000	543,000	675,000	_
For the first of t	2	ıdica	Methane	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	43.3	810	879	NE
Turb. (NTU)		al In	рН	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.66	7.14	7.36	NE
\$\frac{8}{2}\$ DO (g/L) - - - - - - - - - - 4.9 NE Temp. °C - <td< td=""><td></td><td>mic</td><td>Cond. (m S/M)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.182</td><td>56.9</td><td>0.139</td><td>NE</td></td<>		mic	Cond. (m S/M)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.182	56.9	0.139	NE
Temp. °C		oche.	Turb. (NTU)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.0	12.6	480	NE
TDS (g/L) 1.2 3.9 0.9 NE ORP (mV)		ž	DO (g/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.9	-	4.9	NE
TDS (g/L) 1.2 3.9 0.9 NE ORP (mV)			Temp. °C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12.20	15.95	11.98	NE
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	3.9	0.9	NE
Total Iron (mg/L) 10 NE			ORP (mV)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-154	-145	-153	NE
			Total Iron (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	NE

ATTACHMENT D

Complete Laboratory Analytical Results

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Fulcrum Environmental Ryan Mathews 406 N. 2nd Street Yakima. WA 98901

RE: Whitley Tanker Spill Work Order Number: 1612076

December 15, 2016

Attention Ryan Mathews:

Fremont Analytical, Inc. received 4 sample(s) on 12/8/2016 for the analyses presented in the following report.

Dissolved Gases by RSK-175
Dissolved Metals by EPA Method 200.8
Gasoline by NWTPH-Gx
Ion Chromatography by EPA Method 300.0
Total Alkalinity by SM 2320B
Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: Fulcrum Environmental Work Order Sample Summary

Project: Whitley Tanker Spill

Work Order: 1612076

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1612076-001	120716-MW-01	12/07/2016 12:00 PM	12/08/2016 10:17 AM
1612076-002	120716-MW-02	12/07/2016 1:00 PM	12/08/2016 10:17 AM
1612076-003	120716-MW-03	12/07/2016 1:40 PM	12/08/2016 10:17 AM
1612076-004	120716-MW-04	12/07/2016 2:00 PM	12/08/2016 10:17 AM

Case Narrative

WO#: **1612076**Date: **12/15/2016**

CLIENT: Fulcrum Environmental
Project: Whitley Tanker Spill

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1612076**

Date Reported: 12/15/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1612076**Date Reported: **12/15/2016**

Client: Fulcrum Environmental Collection Date: 12/7/2016 12:00:00 PM

Project: Whitley Tanker Spill

Lab ID: 1612076-001 Matrix: Groundwater

Analyses	Result	RL	Qual	Units	DF	- Da	ate Analyzed
Dissolved Gases by RSK-175				Batc	h ID:	R33311	Analyst: BC
Methane	0.0740	0.00500		mg/L	1	12/9	/2016 12:16:00 PM
Gasoline by NWTPH-Gx				Batc	h ID:	15648	Analyst: MW
Gasoline	ND	50.0		μg/L	1	12/1	0/2016 6:12:50 AM
Surr: Toluene-d8	101	65-135		%Rec	1	12/1	0/2016 6:12:50 AM
Surr: 4-Bromofluorobenzene	98.1	65-135		%Rec	1	12/1	0/2016 6:12:50 AM
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	15648	Analyst: MW
Benzene	ND	1.00		μg/L	1	12/1	0/2016 6:12:50 AM
Toluene	4.84	1.00		μg/L	1	12/1	0/2016 6:12:50 AM
Ethylbenzene	ND	1.00		μg/L	1	12/1	0/2016 6:12:50 AM
m,p-Xylene	ND	1.00		μg/L	1	12/1	0/2016 6:12:50 AM
o-Xylene	ND	1.00		μg/L	1	12/1	0/2016 6:12:50 AM
Surr: Dibromofluoromethane	99.0	45.4-152		%Rec	1	12/1	0/2016 6:12:50 AM
Surr: Toluene-d8	97.6	40.1-139		%Rec	1	12/1	0/2016 6:12:50 AM
Surr: 1-Bromo-4-fluorobenzene	96.6	64.2-128		%Rec	1	12/1	0/2016 6:12:50 AM
Ion Chromatography by EPA Met	hod 300.0			Batc	h ID:	R33307	Analyst: KT
Nitrite (as N)	ND	0.100		mg/L	1	12/8	/2016 2:39:00 PM
Nitrate (as N)	1.33	0.100		mg/L	1	12/8	/2016 2:39:00 PM
Sulfate	8.93	0.300		mg/L	1	12/8	/2016 2:39:00 PM
Dissolved Metals by EPA Method	1 200.8			Batc	h ID:	15661	Analyst: TN
Manganese	23.9	2.00		μg/L	1	12/1	3/2016 1:15:31 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R33430	Analyst: KT
Alkalinity, Total (As CaCO3)	104	2.50		mg/L	1	12/1	5/2016 12:00:00 PM

Work Order: **1612076**Date Reported: **12/15/2016**

Client: Fulcrum Environmental Collection Date: 12/7/2016 1:00:00 PM

Project: Whitley Tanker Spill

Lab ID: 1612076-002 Matrix: Groundwater

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Dissolved Gases by RSK-175				Bato	h ID:	R33311	Analyst: BC
Methane	0.0346	0.00500		mg/L	1	12/9	/2016 12:18:00 PM
Gasoline by NWTPH-Gx				Batc	h ID:	15648	Analyst: MW
Gasoline	140	50.0		μg/L	1	12/1	0/2016 7:10:02 AM
Surr: Toluene-d8	100	65-135		%Rec	1	12/1	0/2016 7:10:02 AM
Surr: 4-Bromofluorobenzene	98.3	65-135		%Rec	1	12/1	0/2016 7:10:02 AM
Volatile Organic Compounds by	y EPA Method	8260C		Bato	h ID:	15648	Analyst: MW
Benzene	ND	1.00		μg/L	1	12/1	0/2016 7:10:02 AM
Toluene	ND	1.00		μg/L	1	12/1	0/2016 7:10:02 AM
Ethylbenzene	ND	1.00		μg/L	1	12/1	0/2016 7:10:02 AM
m,p-Xylene	ND	1.00		μg/L	1	12/1	0/2016 7:10:02 AM
o-Xylene	ND	1.00		μg/L	1	12/1	0/2016 7:10:02 AM
Surr: Dibromofluoromethane	98.5	45.4-152		%Rec	1	12/1	0/2016 7:10:02 AM
Surr: Toluene-d8	98.2	40.1-139		%Rec	1	12/1	0/2016 7:10:02 AM
Surr: 1-Bromo-4-fluorobenzene	96.2	64.2-128		%Rec	1	12/1	0/2016 7:10:02 AM
Ion Chromatography by EPA M	ethod 300.0			Bato	h ID:	R33307	Analyst: KT
Nitrite (as N)	ND	1.00	D	mg/L	10	12/8	/2016 2:49:00 PM
Nitrate (as N)	0.897	1.00	JD	mg/L	10	12/8	/2016 2:49:00 PM
Sulfate	4.60	3.00	D	mg/L	10	12/8	/2016 2:49:00 PM
NOTES: Diluted due to high levels of non-target	analytes.			-			
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID:	15661	Analyst: TN
Manganese	2,640	2.00		μg/L	1	12/1	3/2016 1:19:03 PM
Total Alkalinity by SM 2320B				Bato	h ID:	R33430	Analyst: KT
Alkalinity, Total (As CaCO3)	384	2.50		mg/L	1	12/1	5/2016 12:20:00 PM

Work Order: **1612076**Date Reported: **12/15/2016**

Client: Fulcrum Environmental Collection Date: 12/7/2016 1:40:00 PM

Project: Whitley Tanker Spill

Lab ID: 1612076-003 Matrix: Groundwater

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Dissolved Gases by RSK-175				Batc	h ID:	R33311	Analyst: BC
Methane	0.879	0.0250	D	mg/L	5	12/9	/2016 12:27:00 PM
Gasoline by NWTPH-Gx				Bato	h ID:	15648	Analyst: MW
Gasoline	391	50.0		μg/L	1	12/1	0/2016 7:38:39 AM
Surr: Toluene-d8	99.6	65-135		%Rec	1	12/1	0/2016 7:38:39 AM
Surr: 4-Bromofluorobenzene	99.7	65-135		%Rec	1	12/1	0/2016 7:38:39 AM
Volatile Organic Compounds by	y EPA Method	8260C		Bato	h ID:	15648	Analyst: MW
Benzene	4.87	1.00		μg/L	1	12/1	0/2016 7:38:39 AM
Toluene	ND	1.00		μg/L	1	12/1	0/2016 7:38:39 AM
Ethylbenzene	ND	1.00		μg/L	1	12/1	0/2016 7:38:39 AM
m,p-Xylene	ND	1.00		μg/L	1		0/2016 7:38:39 AM
o-Xylene	ND	1.00		μg/L	1	12/1	0/2016 7:38:39 AM
Surr: Dibromofluoromethane	99.8	45.4-152		%Rec	1	12/1	0/2016 7:38:39 AM
Surr: Toluene-d8	99.2	40.1-139		%Rec	1	12/1	0/2016 7:38:39 AM
Surr: 1-Bromo-4-fluorobenzene	97.6	64.2-128		%Rec	1	12/1	0/2016 7:38:39 AM
Ion Chromatography by EPA M	ethod 300.0			Bato	h ID:	R33307	Analyst: KT
Nitrite (as N)	ND	1.00	D	mg/L	10	12/8	/2016 3:00:00 PM
Nitrate (as N)	1.12	1.00	D	mg/L	10	12/8	/2016 3:00:00 PM
Sulfate	1.64	3.00	JD	mg/L	10	12/8	/2016 3:00:00 PM
NOTES: Diluted due to high levels of non-target	analytes.			3			
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID:	15661	Analyst: TN
Manganese	1,480	2.00		μg/L	1	12/1	3/2016 1:22:36 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R33430	Analyst: KT
Alkalinity, Total (As CaCO3)	675	2.50		mg/L	1	12/1	5/2016 12:30:00 PM

Work Order: **1612076**Date Reported: **12/15/2016**

Client: Fulcrum Environmental Collection Date: 12/7/2016 2:00:00 PM

Project: Whitley Tanker Spill

Lab ID: 1612076-004 Matrix: Groundwater

Analyses	Result	RL	Qual	Units	DF	- Da	ate Analyzed
Dissolved Gases by RSK-175				Bato	h ID:	R33311	Analyst: BC
Methane	0.0676	0.00500		mg/L	1	12/9	/2016 12:23:00 PM
Gasoline by NWTPH-Gx				Bato	h ID:	15648	Analyst: MW
Gasoline	ND	50.0		μg/L	1	12/1	0/2016 8:07:17 AM
Surr: Toluene-d8	101	65-135		%Rec	1	12/1	0/2016 8:07:17 AM
Surr: 4-Bromofluorobenzene	96.4	65-135		%Rec	1	12/1	0/2016 8:07:17 AM
Volatile Organic Compounds by	EPA Method	8260C		Bato	h ID:	15648	Analyst: MW
Benzene	ND	1.00		μg/L	1	12/1	0/2016 8:07:17 AM
Toluene	4.29	1.00		μg/L	1	12/1	0/2016 8:07:17 AM
Ethylbenzene	ND	1.00		μg/L	1	12/1	0/2016 8:07:17 AM
m,p-Xylene	ND	1.00		μg/L	1	12/1	0/2016 8:07:17 AM
o-Xylene	ND	1.00		μg/L	1	12/1	0/2016 8:07:17 AM
Surr: Dibromofluoromethane	99.1	45.4-152		%Rec	1	12/1	0/2016 8:07:17 AM
Surr: Toluene-d8	97.5	40.1-139		%Rec	1	12/1	0/2016 8:07:17 AM
Surr: 1-Bromo-4-fluorobenzene	94.7	64.2-128		%Rec	1	12/1	0/2016 8:07:17 AM
Ion Chromatography by EPA Met	hod 300.0			Bato	h ID:	R33307	Analyst: KT
Nitrite (as N)	ND	0.100		mg/L	1	12/8	/2016 3:11:00 PM
Nitrate (as N)	1.32	0.100		mg/L	1	12/8	/2016 3:11:00 PM
Sulfate	8.87	0.300		mg/L	1	12/8	/2016 3:11:00 PM
Dissolved Metals by EPA Method	200.8			Bato	h ID:	15661	Analyst: TN
Manganese	23.8	2.00		μg/L	1	12/1	3/2016 1:26:08 PM
Total Alkalinity by SM 2320B				Bato	h ID:	R33430	Analyst: KT
Alkalinity, Total (As CaCO3)	104	2.50		mg/L	1	12/1	5/2016 12:40:00 PM

Date: 12/15/2016

Work Order: 1612076

Alkalinity, Total (As CaCO3)

QC SUMMARY REPORT

104.0

1.90

20

CLIENT: Fulcrum Environmental
Project: Whitley Tanker Spill

Total Alkalinity by SM 2320B

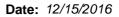
Sample ID MB-R33430	SampType: MBLK	Units: mg/L	Prep Date: 12/15/2016	RunNo: 33430

Client ID: **MBLKW** Batch ID: **R33430** Analysis Date: **12/15/2016** SeqNo: **634189**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS-R33430	SampType: LCS			Units: mg/L		Prep Dat	te: 12/15/2	2016	RunNo: 334	130	
Client ID: LCSW	Batch ID: R33430					Analysis Da	te: 12/15/2	2016	SeqNo: 634	1190	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual


Alkalinity, Total (As CaCO3) 116 2.50 100.0 0 116 80 120

2.50

106

;	Sample ID	1612076-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	12/15/2016	RunNo: 334	30	
(Client ID:	120716-MW-01	Batch ID: R33430					Analysis Date:	12/15/2016	SeqNo: 634	192	
,	Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

Original Page 9 of 21

Work Order: 1612076

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Project: Whitley Tar	nker Spill						Ion Ch	romatograp	ohy by EP	4 Method	300.0
Sample ID MB-R33307	SampType: MBLK			Units: mg/L		Prep Date:	12/8/20	116	RunNo: 333	307	
Client ID: MBLKW	Batch ID: R33307					Analysis Date:	12/8/20	16	SeqNo: 631	880	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									
Sample ID LCS-R33307	SampType: LCS			Units: mg/L		Prep Date:	12/8/20	16	RunNo: 333	307	
Client ID: LCSW	Batch ID: R33307					Analysis Date:	12/8/20	16	SeqNo: 631	881	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.90	0.100	3.000	0	96.6	90	110				
Nitrate (as N)	2.98	0.100	3.000	0	99.4	90	110				
Sulfate	15.8	0.300	15.00	0	105	90	110				
Sample ID 1612072-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	12/8/20)16	RunNo: 333	307	
Client ID: BATCH	Batch ID: R33307					Analysis Date:	12/8/20	16	SeqNo: 631	883	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	0.772	0.100						0.7920	2.60	20	
Sulfate	4.76	0.300						4.777	0.449	20	
Sample ID 1612072-001BMS	SampType: MS			Units: mg/L		Prep Date:	12/8/20	116	RunNo: 333	307	
Client ID: BATCH	Batch ID: R33307					Analysis Date:	12/8/20	116	SeqNo: 631	884	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.57	0.100	3.000	0	85.6	80	120				
Nitrate (as N)	3.61	0.100	3.000	0.7920	94.0	80	120				
Titiato (ao Ti)	0.01					•					

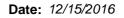
Page 10 of 21 Original

Date: 12/15/2016

Work Order: 1612076

Project:

QC SUMMARY REPORT


CLIENT: Fulcrum Environmental

Whitley Tanker Spill

Ion Chromatography by EPA Method 300.0

Sample ID 1612072-001BMSD Client ID: BATCH	SampType: MSD Batch ID: R33307			Units: mg/L		Prep Da Analysis Da	te: 12/8/20 te: 12/8/20	-	RunNo: 333 SeqNo: 63 1		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	2.59	0.100	3.000	0	86.2	80	120	2.568	0.699	20	
Nitrate (as N)	3.61	0.100	3.000	0.7920	93.9	80	120	3.612	0.126	20	
Sulfate	20.5	0.300	15.00	4.777	105	80	120	20.52	0.125	20	

Original Page 11 of 21

Work Order: 1612076

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Dissolved Metals by EPA Method 200.8

Project: Whitley Tar	nker Spill				Dissolved Meta	als by EPA Method 200.8
Sample ID MB-15645FB	SampType: MBLK			Units: µg/L	Prep Date: 12/13/2016	RunNo: 33364
Client ID: MBLKW	Batch ID: 15661				Analysis Date: 12/13/2016	SeqNo: 632987
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese NOTES: Filter Blank	ND	2.00				
Sample ID MB-15660FB	SampType: MBLK			Units: µg/L	Prep Date: 12/13/2016	RunNo: 33364
Client ID: MBLKW	Batch ID: 15661				Analysis Date: 12/13/2016	SeqNo: 632988
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese NOTES: Filter Blank	ND	2.00				
Sample ID MB-15661	SampType: MBLK			Units: µg/L	Prep Date: 12/13/2016	RunNo: 33364
Client ID: MBLKW	Batch ID: 15661				Analysis Date: 12/13/2016	SeqNo: 632989
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	ND	2.00				
Sample ID LCS-15661	SampType: LCS			Units: µg/L	Prep Date: 12/13/2016	RunNo: 33364
Client ID: LCSW	Batch ID: 15661				Analysis Date: 12/13/2016	SeqNo: 632990
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	101	2.00	100.0	0	101 85 115	
Sample ID 1612091-001DDUP	SampType: DUP			Units: µg/L	Prep Date: 12/13/2016	RunNo: 33364
Client ID: BATCH	Batch ID: 15661				Analysis Date: 12/13/2016	SeqNo: 632994
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	2,750	2.00			2,865	3.98 30

Original Page 12 of 21

Date: 12/15/2016

Work Order: 1612076

QC SUMMARY REPORT

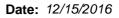
CLIENT: Fulcrum Environmental

Dissolved Metals by EPA Method 200.8

Project: Whitley Tan	ker Spill						DIS	ssoivea iviet	als by EP	4 Wethod	200.8
Sample ID 1612091-001DMS	SampType: MS			Units: µg/L		Prep Da	te: 12/13/ 2	2016	RunNo: 333	364	
Client ID: BATCH	Batch ID: 15661					Analysis Da	te: 12/13/2	2016	SeqNo: 632	2995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	3,210	2.00	500.0	2,865	69.2	70	130				S
Sample ID 1612091-001DMSD	SampType: MSD			Units: µg/L		Prep Da	te: 12/13/ 2	2016	RunNo: 333	364	
Client ID: BATCH	Batch ID: 15661					Analysis Da	te: 12/13/2	2016	SeqNo: 632	2996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	3,710	2.00	500.0	2,865	168	70	130	3,211	14.3	30	S

Original Page 13 of 21

Date: 12/15/2016


Work Order: 1612076

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Project:	Whitley Tar	nker Spill							Diss	olved Gas	ses by RS	SK-175
Sample ID Client ID:	LCS-R33311 LCSW	SampType: LCS Batch ID: R33311			Units: mg/L		Prep Date: Analysis Date			RunNo: 33: SeqNo: 63:		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		0.465	0.00500	0.5000	0	92.9	80	120				
Sample ID	MB-R33311	SampType: MBLK			Units: mg/L		Prep Date:	12/9/20	16	RunNo: 33	311	
Client ID:	MBLKW	Batch ID: R33311					Analysis Date	12/9/20	116	SeqNo: 63	2068	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		ND	0.00500									
Sample ID	1612015-008AREP	SampType: REP			Units: mg/L		Prep Date:	: 12/9/20	116	RunNo: 33	311	
Client ID:	ВАТСН	Batch ID: R33311					Analysis Date	12/9/20	116	SeqNo: 63	2058	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		0.0456	0.00500						0.04206	8.16	30	
Sample ID	1612076-004CREP	SampType: REP			Units: mg/L		Prep Date	12/9/20	116	RunNo: 33	311	
Client ID:	120716-MW-04	Batch ID: R33311					Analysis Date	12/9/20	16	SeqNo: 63	2064	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		0.0754	0.00500						0.06755	11.0	30	

Page 14 of 21 Original

Work Order: 1612076

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

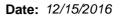
Gasoline by NWTPH-Gx

Project: Whitley Tar	nker Spill								Gasoline	by NWT	PH-G
Sample ID LCS-15648	SampType: LCS			Units: µg/L		Prep Dat	e: 12/9/2016		RunNo: 333	556	
Client ID: LCSW	Batch ID: 15648					Analysis Dat	e: 12/9/2016		SeqNo: 632	820	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	537	50.0	500.0	0	107	65	135				
Surr: Toluene-d8	25.0		25.00		100	65	135				
Surr: 4-Bromofluorobenzene	25.0		25.00		100	65	135				
Sample ID MB-15648	SampType: MBLK			Units: µg/L		Prep Dat	e: 12/9/2016		RunNo: 333	356	
Client ID: MBLKW	Batch ID: 15648					Analysis Dat	e: 12/9/2016		SeqNo: 632	821	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	24.8		25.00		99.2	65	135				
Surr: 4-Bromofluorobenzene	24.4		25.00		97.4	65	135				
Sample ID 1612091-003AMS	SampType: MS			Units: µg/L		Prep Dat	e: 12/9/2016		RunNo: 333	356	
Client ID: BATCH	Batch ID: 15648					Analysis Dat	e: 12/10/201 0	6	SeqNo: 632	2834	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	3,020	50.0	500.0	2,715	60.7	65	135				SE
Surr: Toluene-d8	26.1		25.00		104	65	135				
Surr: 4-Bromofluorobenzene	26.2		25.00		105	65	135				
NOTES: S - Outlying spike recovery(ies)	observed. A duplicate analy	ysis was pe	erformed and r	ecovered within ran	ge.						
Sample ID 1612091-003AMSD	SampType: MSD			Units: µg/L		Prep Dat	e: 12/9/2016		RunNo: 333	356	
Client ID: BATCH	Batch ID: 15648					Analysis Dat	e: 12/10/201 0	6	SeqNo: 632	835	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
0		50.0	500.0	2,715	121	65	135	3,019	9.47	30	Е
Gasoline	3,320	50.0	500.0	2,713	121	03	133	3,019	0.47	30	_
Gasoline Surr: Toluene-d8	3,320 26.5	50.0	25.00	2,713	106	65	135	3,019	0	30	_

Original Page 15 of 21

Date: 12/15/2016

Work Order: 1612076


QC SUMMARY REPORT

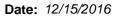
CLIENT: Fulcrum Environmental

Gasoline by NWTPH-Gx

Project: Whitley T	anker Spill								Gasoline	by NW I	PH-Gx
Sample ID 1612076-001CDUP	SampType: DUP			Units: µg/L		Prep Da	te: 12/9/2 0)16	RunNo: 33	356	
Client ID: 120716-MW-01	Batch ID: 15648					Analysis Da	te: 12/10/2	2016	SeqNo: 632	2825	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	·
Surr: Toluene-d8	24.9		25.00		99.6	65	135		0		
Surr: 4-Bromofluorobenzene	24.2		25.00		96.6	65	135		0		

Page 16 of 21 Original

Work Order: 1612076


QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Volatile Organic Compounds by EPA Method 8260C

Project: Whitley Tank	ker Spill					Volatile	Organic Co	IIIpouiii	us by Li A	Wiethou	<u></u>
Sample ID LCS-15648	SampType: LCS			Units: µg/L		Prep Date	e: 12/9/2016		RunNo: 333	335	
Client ID: LCSW	Batch ID: 15648					Analysis Date	e: 12/9/2016		SeqNo: 632	2395	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Benzene	21.5	1.00	20.00	0	108	69.3	132				
Toluene	20.8	1.00	20.00	0	104	61.3	145				
Ethylbenzene	21.4	1.00	20.00	0	107	72	130				
m,p-Xylene	42.6	1.00	40.00	0	107	70.3	134				
o-Xylene	21.1	1.00	20.00	0	106	72.1	131				
Surr: Dibromofluoromethane	25.6		25.00		102	45.4	152				
Surr: Toluene-d8	25.3		25.00		101	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.6		25.00		103	64.2	128				
Sample ID MB-15648	SampType: MBLK			Units: µg/L		Prep Date	e: 12/9/2016		RunNo: 333	335	
Client ID: MBLKW	Batch ID: 15648					Analysis Date	e: 12/9/2016		SeqNo: 632	2396	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	25.2		25.00		101	45.4	152				
Surr: Toluene-d8	24.0		25.00		95.9	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	24.0		25.00		96.1	64.2	128				
Sample ID 1612091-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 12/9/2016		RunNo: 333	335	
Client ID: BATCH	Batch ID: 15648					Analysis Date	e: 12/9/2016		SeqNo: 632	2380	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
Original										Pag	e 17 c

Original Page 17 of 21

Work Order: 1612076

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Project: Fulcrum Env						Volatile (Organic	Compound	ds by EPA	Method	82600
Sample ID 1612091-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 12/9/2 0)16	RunNo: 33	335	
Client ID: BATCH	Batch ID: 15648					Analysis Date	e: 12/9/2 0)16	SeqNo: 63	2380	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	24.9		25.00		99.5	45.4	152		0		
Surr: Toluene-d8	23.5		25.00		94.2	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	24.7		25.00		98.6	64.2	128		0		
Sample ID 1612091-003AMS	SampType: MS			Units: µg/L		Prep Date	e: 12/9/2 0)16	RunNo: 33:	335	
Client ID: BATCH	Batch ID: 15648					Analysis Date	e: 12/10/2	2016	SeqNo: 63	2384	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	22.1	1.00	20.00	0	110	65.4	138				
Toluene	22.4	1.00	20.00	0	112	64	139				
Ethylbenzene	29.7	1.00	20.00	7.198	113	64.5	136				
m,p-Xylene	49.6	1.00	40.00	5.415	110	63.3	135				
o-Xylene	22.9	1.00	20.00	0	114	65.4	134				
Surr: Dibromofluoromethane	25.4		25.00		102	45.4	152				
Surr: Toluene-d8	26.2		25.00		105	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.0		25.00		99.8	64.2	128				
Sample ID 1612091-003AMSD	SampType: MSD			Units: µg/L		Prep Date	e: 12/9/2 0)16	RunNo: 33	335	
Client ID: BATCH	Batch ID: 15648					Analysis Date	e: 12/10/2	2016	SeqNo: 63	2385	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	22.6	1.00	20.00	0	113	65.4	138	22.07	2.52	30	
Toluene	22.8	1.00	20.00	0	114	64	139	22.36	1.74	30	
Ethylbenzene	29.9	1.00	20.00	7.198	113	64.5	136	29.74	0.487	30	
m,p-Xylene	50.6	1.00	40.00	5.415	113	63.3	135	49.61	1.90	30	
o-Xylene	23.3	1.00	20.00	0	117	65.4	134	22.88	1.99	30	
Surr: Dibromofluoromethane	25.2		25.00		101	45.4	152		0		
Surr: Toluene-d8	26.3		25.00		105	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.2		25.00		101	64.2	128		0		

Original Page 18 of 21

Date: 12/15/2016

Work Order: 1612076

Project:

QC SUMMARY REPORT

CLIENT: Fulcrum Environmental

Whitley Tanker Spill

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1612091-003AMSD SampType: MSD Units: µg/L Prep Date: 12/9/2016 RunNo: 33335

Client ID: **BATCH** Batch ID: **15648** Analysis Date: **12/10/2016** SeqNo: **632385**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1612076-001CDUP	SampType: DUP			Units: µg/L		Prep Da	te: 12/9/2 0)16	RunNo: 33	335	
Client ID: 120716-MW-01	Batch ID: 15648					Analysis Da	te: 12/10/ 2	2016	SeqNo: 632	2375	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	4.48	1.00						4.844	7.85	30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	24.8		25.00		99.1	45.4	152		0		
Surr: Toluene-d8	24.1		25.00		96.5	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	23.9		25.00		95.4	64.2	128		0		

Original Page 19 of 21

Sample Log-In Check List

Logged by: Erica Silva	С	lient Name:	FE		٧	Vork Order N	lumber: 16120	76	
1. Is Chain of Custody complete? 2. How was the sample delivered? PS	Lo	ogged by:	Erica Silva	a	D	ate Receive	d: 12/8/2	016 10:17:52 AM	
1. Is Chain of Custody complete? 2. How was the sample delivered? PS	Cha	in of Cust	<u>ody</u>						
A. Shipping container/cooler in good condition? 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? Person Notified: Rvan Mathews, Kyle Ame Date 12/8/2016 By Whom: Erica Siliva Via: eMail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:			-	plete?		Yes 🗹	No \square	Not Present	
4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Person Notified: 10. Regarding: 11. Was received broken, one poly received aiar and submerced 12. Regarding: 13. MW-01: one VOA received broken, one poly received aiar and submerced	2.	How was the	sample deli	vered?		<u>UPS</u>			
4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Person Notified: 10. Regarding: 11. Was received broken, one poly received aiar and submerced 12. Regarding: 13. MW-01: one VOA received broken, one poly received aiar and submerced	Loc	ı İn							
5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Ves No No NA NA NA NA NA NA NA NA			oresent?			Yes 🗸	No 🗌	NA 🗆	
(Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 18. Was client notified of all discrepancies with this order? 19. Ves No No NA NA NA NA NA NA NA NA	4.	Shipping con	tainer/coole	r in good condition?		Yes 🗸	No 🗌		
7. Were all items received at a temperature of >0°C to 10.0°C* Yes No NA	5.					Yes	No 🗹	Not Required	
8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Ves No No No No No No No N	6.	Was an atter	mpt made to	cool the samples?		Yes 🗹	No 🗌	NA 🗌	
9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Person Notified: 10. Rvan Mathews, Kvle Ame 11. Date 12/8/2016 12/8/2016 13. Date 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 18. Was client notified: 19. Rvan Mathews, Kvle Ame 10. Date 11. Was preservative added to bottles? 12. No NA NA NA NA Person Notified: Rvan Mathews, Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: Person Poore Erica Silva Na Na Na Na Na Person Notified: Rvan Mathews, Kvle Ame Date 12/8/2016 Rvan In Person Regarding: MW-01: one VOA received broken, one polv received aiar and submerced Client Instructions:	7.	Were all item	ns received a	at a temperature of >0°C to 10.0°C	*	Yes 🗹	No 🗆	NA 🗆	
10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Was client notified: 10. Rvan Mathews, Kyle Ame 11. Does paperwork match bottle labels? 12. By Whom: 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 18. Was client notified: 19. Rvan Mathews, Kyle Ame 10. Date 10. Date 10. Date 10. Date 11. Was very No No No No No Regarding: No No No No No No No No No N	8.	Sample(s) in	proper cont	ainer(s)?		Yes 🗸	No 🗌		
11. Was preservative added to bottles? Yes No No NA HNO3 to 001A - 004A 12. Is there headspace in the VOA vials? Yes No No NA NA HNO3 to 001A - 004A 13. Did all samples containers arrive in good condition(unbroken)? Yes No No Na	9.	Sufficient sar	mple volume	e for indicated test(s)?		Yes 🗸	No 🗌		
HNO3 to 001A - 004A 12. Is there headspace in the VOA vials? Yes No No NA 13. Did all samples containers arrive in good condition(unbroken)? Yes No No 14. Does paperwork match bottle labels? Yes No 15. Are matrices correctly identified on Chain of Custody? Yes No 16. Is it clear what analyses were requested? Yes No 17. Were all holding times able to be met? Yes No No Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Yes No NA Person Notified: Rvan Mathews, Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: We Mail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:	10.	Are samples	properly pre	eserved?		Yes 🗸	No 🗌		
12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Ves V No	11.	Was preserva	ative added	to bottles?		Yes 🗸	No \square	NA \square	
13. Did all samples containers arrive in good condition(unbroken)? Yes No 14. Does paperwork match bottle labels? Yes No 15. Are matrices correctly identified on Chain of Custody? Yes No 16. Is it clear what analyses were requested? Yes No 17. Were all holding times able to be met? Yes No 17. Were all holding times able to be met? Yes No 18. Was client notified of all discrepancies with this order? Yes No 18. Was client notified: Rvan Mathews, Kyle Ame 18. Date 12/8/2016 By Whom: Erica Silva Via: PeMail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:						\Box			
14. Does paperwork match bottle labels? Yes No 15. Are matrices correctly identified on Chain of Custody? Yes No 16. Is it clear what analyses were requested? Yes No 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Yes No No NA Person Notified: Rvan Mathews, Kyle Ame Date 12/8/2016 By Whom: Erica Silva Via: Pedail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:					١.٥		_	NA L	
15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 18. Was client notified: 19. Rvan Mathews. Kvle Ame 10. Date 10. Date 10. Date 10. Date 10. Date 10. NA Person Notified: 10. Rvan Mathews. Kvle Ame 10. Date 10.	_	_			1)?				
16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Yes V No No NA Person Notified: Ryan Mathews, Kyle Ame Date 12/8/2016 By Whom: Erica Silva Via: Penail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:	14.	Does paperw	ork match t	oottie labeis?		Yes 💌	No 🗀		
17. Were all holding times able to be met? Yes ✓ No □ Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: Rvan Mathews. Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: ✓ eMail □ Phone □ Fax □ In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions: No □ NA □	15.	Are matrices	correctly ide	entified on Chain of Custody?		Yes 🗸	No 🗌		
Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: Rvan Mathews. Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: • eMail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:	16.	Is it clear wha	at analyses	were requested?		Yes 🗸	No 🗌		
18. Was client notified of all discrepancies with this order? Person Notified: Rvan Mathews, Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: PeMail Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received aiar and submerged Client Instructions:	17.	Were all hold	ling times al	ple to be met?		Yes 🗸	No \square		
Person Notified: Rvan Mathews, Kvle Ame Date 12/8/2016 By Whom: Erica Silva Via: Phone Fax In Person Regarding: MW-01: one VOA received broken, one poly received ajar and submerged Client Instructions:	Spe	cial Handl	ing (if ap	<u>plicable)</u>					
By Whom:	18.	Was client no	otified of all	discrepancies with this order?		Yes 🗸	No \square	NA \square	
By Whom:		Person	Notified:	Rvan Mathews, Kyle Ame	Date		12/8/2016	F	
Regarding: MW-01: one VOA received broken, one poly received ajar and submerged Client Instructions:		By Who	om:		Via:	✓ eMail			
Client Instructions:									
19. Additional remarks:									
· · ·	19.	Additional rer	marks:						

Item Information

Item #	Temp ⁰C
Cooler	0.4
Sample	1.3

Original

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's Sample Disposal: ***Anions (Circle): Witrate Nitrite Chloride **Metals Analysis (Circle): MTCA-5 *Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Solid, Relinquished greement to each of the terms on the front and backside of this Agreement. Sample Name 20-MW-940P 50-MW-974081 Client: 50-MW-9140E 10-MM-912021 Telephone: City, State, Zip Address: Seattle, WA 98103 3600 Fremont Ave N. Return to Client Fulcrum Environmental Consulting, Inc. (509)574-0839 406 North 2nd Street Fax: 206-352-7178 Tel: 206-352-3790 Date/Time RCRA-8 12/4/16 14/21 12/9/2018 17/8/2016 12/7/2016 Sample **Priority Pollutants** Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) 1400 1200 1340 Sample Time 1300 M GW 98901 Sulfate Bromide Fax: (509) 459-9219 MGW 1435 Z T (Matrix)* Sample Type TAL × × × Individual: Ag Al Received Received CHBIET O-Phosphate **Chain of Custody Record and Laboratory Services Agreement** As B Ba Be PM Email: Report To (PM): **Project No:** Fluoride Location: Project Name: W = Water, DW = Drinking Water, GW = Ground Water, Ca Cd Co Cr Cu Fe Hg K Mg Mn Wa Na Ni Pb Sb Se Sr Sn Ti Tl U V Nitrate+Nitrite rmathews@efulcrum.net; cc: kames@efulcrum.net Date/Time Date: 12/4/2016 × × × D Whitley Tanker Spill on the following business day. received after 4:00pm will begin Turn-around times for samples × × ×

× ×

× × 141310

Collected by: Kyle Ames

Laboratory Project No (internal):

Ryan Mathews Monitor, WA

SW = Storm Water, WW = Waste Water

TAT → SameDay^ NextDay^ 2 Day 3 Day (STD

Please coordinate with the lab in advance

Special Remarks:

Zn