

FINAL INTERIM ACTION REPORT

ALLEY AREA OF BLOCK 38 WEST SITE BETWEEN REPUBLICAN STEET AND MERCER STREET 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Agreed Order No. DE 17963 Facility Site Identification No. 62773 Cleanup Site Identification No. 15008

> Submitted by: Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, Washington 98027

> > Farallon PN: 397-019

TABLE OF CONTENTS

EXECUTIVE SUMMARY iv				
1.0	INTRODUCTION			
	1.1	PURPOSE AND OBJECTIVE		
	1.2	DOCUMENT ORGANIZATION1-3		
2.0	ALLEY AREA DESCRIPTION AND BACKGROUND			
	2.1	ALLEY		
	2.2	ADJACENT AND SURROUNDING LAND USE		
	2.3	REGULATORY HISTORY		
	2.4	GEOLOGY AND HYDROGEOLOGY		
3.0	SUM	MARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL		
ACTI	IONS			
	3.1	ALLEY		
		3.1.1 Subsurface Investigations – GeoEngineers, 1998 and 2008 3-1		
		3.1.2 Utility Pothole Investigation – Farallon, 2019		
		3.1.3 Supplemental Subsurface Investigation – Farallon, 2020		
		3.1.4 2022 Subsurface Investigation and Monitoring Well		
		Installation		
	3.2	BLOCK 38 WEST SITE		
		3.2.1 Phase II Soil Investigation – Dames & Moore, 1994		
		3.2.2 Geotechnical Investigation – GeoEngineers, 2018		
		3.2.3 Subsurface Investigations – Farallon Consulting, 2014–2020 3-8		
		3.2.4 Independent Interim Action		
	3.3	BLOCK 38 EAST PROPERTY		
		3.3.1 Block 38 East Property – Lots 1 through 5		
		3.3.2 Block 38 East Property – Lots 6 and 7 3-15		
4.0	INTERIM ACTION TECHNICAL ELEMENTS 4-1			
	4.1	PERMITS AND OTHER REGULATORY REQUIREMENTS4-1		
		4.1.1 Applicable or Relevant and Appropriate Requirements		
		4.1.2 Permitting and Substantive Requirements		
	4.2	MEDIA OF CONCERN		
		POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS		
		4.3.1 Soil to Groundwater		
		4.3.2 Soil Direct Contact		
		4.3.3 Groundwater Ingestion/Drinking Water Beneficial Use		
		4.3.4 Terrestrial Ecological Evaluation		
	4.4 SCREENING LEVELS AND HAZARDOUS SUBSTANCES OF			
		CONCERN		
	4.5	CONFIRMED AND SUSPECTED SOURCES OF		
		CONTAMINATION		

		4.5.1 Alley	
		4.5.2 Block 38 West Property	
		4.5.3 Rosen Property Site	
5.0	INTE	RIM ACTION	
	5.1	INTERIM ACTION OBJECTIVE	
	5.2	EXCAVATION OBSERVATION AND SOIL SAMPLING	
5.3 PERFORMANCE MONITORING			
		5.3.1 Soil Performance Monitoring	
	5.4	CONFIRMATIONAL MONITORING	
	5.5	SOIL TRANSPORT AND DISPOSAL	
	5.6	ALLEY RESTORATION	
6.0	INTERIM ACTION RESULTS		
	6.1	CONFIRMATION SOIL SAMPLING	
	6.2	SOIL TRANSPORT AND DISPOSAL	
7.0	CON	CLUSIONS	
8.0	BIBL	IOGRAPHY 8-1	
9.0	LIMI	TATIONS	
	9.1	GENERAL LIMITATIONS	
	9.2	LIMITATION ON RELIANCE BY THIRD PARTIES9-2	

FIGURES

Figure 1	Vicinity Map

- Figure 2 Site Plan with Historical Features
- Figure 3 Site Plan with Sample Locations and Cross Section Lines
- Figure 4 Soil Analytical Results for GRO
- Figure 5 Soil Analytical Results for Benzene
- Figure 6 Soil Analytical Results for DRO
- Figure 7 Soil Analytical Results for ORO
- Figure 8 Soil Analytical Results for DRO+ORO
- Figure 9 Soil Analytical Results for Naphthalenes
- Figure 10 Soil Analytical Results for cPAH TEC
- Figure 11 Groundwater Elevation Contours Shallow Water-Bearing Zone for March 26, 2019
- Figure 12 Cross Section A-A'
- Figure 13 Cross Section B-B'
- Figure 14 Cross Section C-C'
- Figure 15 Confirmation Soil Sample Results for GRO

- Figure 16 Confirmation Soil Sample Results for Benzene
- Figure 17 Confirmation Soil Sample Results for DRO
- Figure 18 Confirmation Soil Sample Results for ORO
- Figure 19 Confirmation Soil Sample Results for DRO+ORO
- Figure 20 Confirmation Soil Sample Results for Naphthalenes
- Figure 21 Confirmation Soil Sample Results for cPAH TEC
- Figure 22 Post-Excavation Cross Section A-A'
- Figure 23 Post-Excavation Cross Section B-B'
- Figure 24 Post-Excavation Cross Section C-C'

TABLES

- Table 1Soil Analytical Results for TPH and BTEX
- Table 2Soil Analytical Results for PAHs
- Table 3Soil Analytical Results for Metals
- Table 4Groundwater Elevations
- Table 5Monitoring Well Construction Details

APPENDICES

- Appendix A Boring Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Terrestrial Ecological Evaluation
- Appendix D Data Validation Report
- Appendix E Soil Disposal Tonnage Summary

EXECUTIVE SUMMARY

Farallon Consulting, L.L.C. has prepared this Interim Action Report (IA Report) on behalf of City Investors IX LLC (City Investors IX) to describe the interim action conducted at the Alley (defined below), a portion of which is part of the Block 38 West Site in the South Lake Union Area of Seattle, Washington. This IA Report was prepared in accordance with Section VII.E of Agreed Order No. DE 17963 dated April 20, 2020 (AO) between the Washington State Department of Ecology (Ecology) and City Investors IX. The interim action was implemented in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) and the Ecology-approved *Interim Action Work Plan, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, Seattle, Washington* dated February 3, 2021, prepared by Farallon (2021) (IAWP).

The Block 38 West Site as defined under the AO is where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, or placed, or otherwise come to be located. The Block 38 West Site, which is listed in Ecology's contaminated sites database as Facility Site Identification (ID) No. 62773 and Cleanup Site ID 15008, is generally located at 500 through 536 Westlake Avenue North in Seattle, Washington (Block 38 West Property) and extends to the east into an adjacent alley that is owned by the City of Seattle (Alley).

The Alley is approximately 415 feet long by 15 feet wide and is used for vehicle access to parking garages on the Block 38 West Property and Block 38 East Property. Improvements to the Alley included placement of structural backfill to support the new concrete road surface and creation of a through-alley that provides access to buildings on the Block 38 West Property and Block 38 East Property from Mercer Street and Republican Street.

Subsurface investigations have been conducted at the Alley since 1998. Based on the results of these subsurface investigations, the following hazardous substances have been detected at concentrations exceeding regulatory screening levels in soil at the Alley: petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), cadmium, and lead.

The Alley interim action reduced the threat to human health and the environment by removing soil containing concentrations of petroleum hydrocarbons and PAHs, including naphthalenes and carcinogenic PAHs (cPAHs), at concentrations exceeding screening levels within the Alley to

the extent practicable in conjunction with the redevelopment of the Block 38 West Property. Components of the interim action included excavation of shallow soil contamination encountered during utility improvements, roadway resurfacing, and subsurface structural improvements at the southern end of the Alley. The interim action removed soil with hazardous substances detected at concentrations exceeding screening levels to eliminate source material. The base of the excavation was generally at an elevation ranging from 25 to 18 feet North American Vertical Datum of 1988 (NAVD88).

Approximately 2,380 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the Alley from March 1 through July 23, 2021. Results of performance soil sampling at the excavation extents indicate that hydrocarbons as oilrange organics (ORO) and combined hydrocarbons of diesel-range and oil-range organics (DRO + ORO), naphthalenes, and/or cPAHs remain in soil along the eastern portion of the Alley at elevations ranging from 28 to 17.5 feet NAVD88. cPAHs remain in soil north of the Alley at elevations ranging from 28 to 26 feet NAVD88 within the soil fill layer identified at the Alley and surrounding area. The Alley interim action was completed with surface restoration activities in March 2022.

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Interim Action Report (IA Report) on behalf of City Investors IX L.L.C. (City Investors IX) to describe an interim action conducted at the Alley (defined below), a portion of which is part of the Block 38 West Site in the South Lake Union Area of Seattle, Washington (Figure 1). This IA Report was prepared following implementation of the Interim Action Work Plan and in accordance with Section VII.E of Agreed Order No. DE 17963 dated April 20, 2020, between the Washington State Department of Ecology (Ecology) and City Investors IX (AO).

The Block 38 West Site as defined under the AO is where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, or placed, or otherwise come to be located. The Block 38 West Site, which is listed in Ecology's contaminated sites database as Facility Site Identification (ID) No. 62773 and Cleanup Site ID No. 15008, is generally located at 500 through 536 Westlake Avenue North in Seattle, Washington (Block 38 West Property) and extends to the east into a portion of an adjacent Alley that is owned by the City of Seattle (Alley).

The entire city block in which the Alley is located will be referred to in this IA Report as Block 38. This is a name used by City Investors IX to refer to this particular block in Seattle. It is not a denomination by the City of Seattle. Block 38 is comprised of the Block 38 West Property, the north-south-trending Alley that bisects the block, and the parcels at 535 Terry Avenue North and 960 Republican Street (collectively, Block 38 East Property). Block 38 is bordered by Mercer Street to the north, Terry Avenue North to the east, Republican Street to the south, and Westlake Avenue North to the west (Figure 2). For the purposes of this interim action, the Alley is treated as part of the Block 38 West Site remedial action; the extent of the Block 38 West Site will be determined as part of the remedial investigation.

Subsurface investigations have been conducted at the Alley since 1998. Based on the results of these subsurface investigations, the following hazardous substances have been detected at concentrations exceeding regulatory screening levels in soil at the Alley: petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), cadmium, and lead.

The interim action consisted primarily of removing soil with concentrations of hazardous substances exceeding screening levels during construction activities completed in conjunction with the Block 38 West Property redevelopment. Alley improvements included creating a

www.farallonconsulting.com

through-alley that provides access to buildings on the Block 38 West Property and Block 38 East Property from Mercer Street (elevation 31 feet North American Vertical Datum of 1988 [NAVD88]) and Republican Street (elevation 41 feet NAVD88), utility improvements, roadway resurfacing, and subsurface structural improvements at the southern end of the Alley. The excavation activities within the Alley extended to a depth of approximately 5 feet below ground surface (bgs) or an elevation of 25 to 18 feet NAVD88 (north to south). The interim action was performed consistent with the cleanup requirements of the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340).

1.1 PURPOSE AND OBJECTIVE

The purpose of this IA Report is to document the interim action conducted to remove soil containing hazardous substances detected at concentrations exceeding applicable screening levels encountered in the Alley in order to reduce the threat to human health and environment within the limits of the construction excavation.

The interim action permanently removed fill material containing concentrations of hazardous substances that exceeded screening levels from the Alley while it was accessible during construction activities and Alley improvements. The interim action was a partial cleanup, as it only addressed part of the Block 38 West Site (and other areas where construction-related activities resulted in the removal of soil containing hazardous substances). This partial cleanup corrected a problem that may have cost substantially more to address if delayed until after the Block 38 West Property was redeveloped (WAC 173-340-430).

The interim action was implemented in accordance with MTCA and the Ecology-approved *Interim Action Work Plan, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, Seattle, Washington* dated February 3, 2021, prepared by Farallon (2021) (IAWP). The interim action is part of the final cleanup action, which will be evaluated as part of the remedial investigation and feasibility study for the Block 38 West Site under the AO.

1.2 DOCUMENT ORGANIZATION

This IA Report has been organized into the following sections:

- Section 2, Alley Area Description and Background, provides the Alley description and history, a summary of current and historical uses of adjacent and surrounding lands, regulatory history, and the geology and hydrogeology of the South Lake Union region.
- Section 3, Summary of Previous Investigations and Independent Remedial Actions, provides a summary of previous environmental investigations and independent interim actions conducted at the Alley and Block 38 West and East Properties.
- Section 4, Interim Action Technical Elements, identifies the applicable or relevant and appropriate requirements (ARARs), media of concern, terrestrial ecological evaluation (TEE), and screening levels and hazardous substances of concern for the Alley.
- Section 5, Interim Action, describes the technical approach for the interim action, interim action objectives, performance and confirmation sampling, and soil transport and disposal.
- Section 6, Interim Action Results, provides a summary of performance and confirmation soil sampling results, and a summary of soil disposal associated with the Alley.
- Section 7, Conclusions, provides a summary of the interim action completed at the Alley.
- Section 8, Bibliography, provides a list of the source materials used in preparing this IA Report.
- Section 9, Limitations, provides Farallon's standard limitations applicable to this IA Report.

2.0 ALLEY AREA DESCRIPTION AND BACKGROUND

This section provides the Alley description and history, a summary of current and historical uses and regulatory status of adjacent Block 38 West and East Properties, and the geology and hydrogeology of the South Lake Union region.

2.1 ALLEY

Block 38 is in a commercial and light industrial area zoned as mixed residential and commercial in the South Lake Union area (SM-SLU 175/85-280) approximately 1 mile north of downtown Seattle. The Alley at Block 38 is owned by the City of Seattle. It bisects Block 38 and is accessed from Mercer Street descending from street level to an approximate elevation of 25 feet NAVD88 and is used for vehicle access to a parking garage on the Block 38 West and Block 38 East Properties. The Alley is approximately 415 feet long by 15 feet wide. A historical timber-framed trestle formerly extended north from Republican Street into the alley approximately 120 feet; its constructed height was approximately 18 feet higher than the current elevation of the southern portion of the alley (Figure 2). The trestle was constructed for support of the rail spur that extended out to the former shoreline of South Lake Union (Farallon 2018). As discussed below, the northern portion of Block 38 historically was marshland along the southern shore of Lake Union.

Block 38 is approximately 600 feet south of the present shoreline of Lake Union. According to a U.S. Geological Survey (1909) Seattle Special quadrangle map, the original shoreline of Lake Union extended farther south than its current location, as far as the current location of Mercer Street. In the late 1800s and the early 1900s, the southern end of Lake Union was filled with sawdust and wood waste generated by lumber mill operations and other fill materials. The historical use of Block 38 as a lumber mill and for lumber storage resulted in deposition of wood waste across Block 38.

Review of historical aerial photographs identified the following previous uses of the Alley:

• The Alley did not appear to be paved in 1953. At that time, it had provided access from Mercer Street to a dirt lot centrally located at the Block 38 West Property and access to a former fueling station and coal storage facility on the northern and central portions and a building on the southern portion of the Block 38 East Property. The railroad trestle was present on the southern portion of the Alley.

- In 1968, the Alley did not appear to be paved; however, the central portion of the Block 38 West Property had been developed from a dirt lot to a commercial building with a rooftop parking lot, and an asphalt parking lot replaced commercial businesses on the northern and central portions of the East property.
- In 2002, the Alley appeared to be paved and the railroad trestle was still present on the southern portion of the Alley.

In late 2019, the railroad trestle was demolished and removed as part of the Block 38 West Property redevelopment activities. The Alley is currently a concrete-paved surface and is accessible from Republican and Mercer Street and is used to access the commercial buildings on Block 38 West and Block East Properties.

A catch basin centrally located at the Alley captures stormwater, which is conveyed to the King County Metro sewer system.

The redevelopment activities on the Block 38 West Property included creating a through-alley that provides access to Block 38 from Mercer Street at an elevation of 31 feet NAVD88 and to Republican Street at an elevation of 41 feet NAVD88. As part of the redevelopment on the Block 38 West Property, City Investors IX has recorded a 2-foot alley dedication to the City of Seattle in coordination with the Seattle Department of Transportation Real Property Group. The Alley construction excavation was completed in July 2021 and improvements were completed in March 2022.

2.2 ADJACENT AND SURROUNDING LAND USE

The Alley is located between the Block 38 West and Block 38 East Properties, each of which has contamination in soil and/or groundwater that abut the Alley. This section summarizes the historical uses and the regulatory status of the Block 38 West and Block 38 East Properties.

2.2.1 Block 38 West Property

The Block 38 West Property at 500 to 536 Westlake Avenue North is west-adjacent to the Alley. The Block 38 West Property historically was undeveloped marshland that extended along the southern shore of Lake Union and onto the north-adjacent property in the late 1880s, as detailed in the draft Phase I Environmental Site Assessment Report (Farallon 2019b) (2019 Phase I Report) and the Preliminary Environmental Assessment Update letter (Hart Crowser, Inc. 1999) (1999 EA Update).

The Block 38 West Property totals approximately 1.06 acres of land that was previously developed with structures formerly used for retail, temporary office space, storage, and parking, and comprises King County Parcel Nos. 1983200196, 1983200180, and 1983200170. Historical operations included a lumber storage yard across the majority of the property from the 1890s until approximately 1920 when the first commercial and retail structures were built. Historical businesses at the property included blacksmith shops, wagon shops, horse stables, warehouse storage, an auto repair facility, a veterinary hospital, a commercial printer, and various retail businesses from the early 1900s through 2019.

Historical operations resulted in the release of hazardous substances that caused contamination of soil and groundwater at the Block 38 West Property. Ecology listed the Block 38 West Site (which includes the Block 38 West Property) as a contaminated site in 2019 with Facility Site ID No. 62773 and Cleanup Site ID 15008.

The former Block 38 West Property structures were demolished as part of the redevelopment. Street elevations adjacent to the Block 38 West Property vary from an approximate elevation of 41 feet NAVD88 on Republican Street adjoining the southern portion of the Block 38 West Property to an approximate elevation of 31 feet NAVD88 on Mercer Street adjoining the northern portion of the Block 38 West Property.

The redevelopment of the Block 38 West Property included construction of a multi-story mixeduse building with 12 stories above street level and four levels of underground parking. The finished floor elevation of the lowest level of parking is -3.25 feet NAVD88, with the bottom of footing elevation for the majority of the foundation at approximately -6.5 feet NAVD88. The excavation extended deeper in areas for footings or elevator pits. The mass excavation, including removal of contaminated soil, was completed in June 2020 and additional structural foundation features were installed through August 2020.

The scope of work described in the *Interim Action Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington* dated November 8, 2019, prepared by Farallon (2019) (2019 IAWP) was implemented as an independent interim action (independent interim action) conducted in conjunction with the redevelopment of the Block 38 West Property. Upon entry into the AO for the Block 38 West Site, the independent interim action was conducted under the auspices of the AO. The independent interim action described in the 2019 IAWP has been completed and is documented in the *Interim Action Report, Block 38 West Site,*

500 through 536 Westlake Avenue North, Seattle, Washington dated December 28, 2023, prepared by Farallon.

2.2.2 Block 38 East Property

The Block 38 East Property at 535 Terry Avenue North and 960 Republican Street is eastadjacent to the Alley (Figure 2). The Block 38 East Property totals approximately 1.08 acres of land that has primarily been used for commercial and light industrial purposes since the late 1800s and comprises King County Parcel Nos. 1983200150 and 1983200160. Figure 2 shows the location of historical features and lot configuration on the Block 38 East Property.

Historical operations on the northern portion of the Block 38 East Property (535 Terry Avenue North) included a lumber mill and yard, gasoline service station, and fuel yard associated with coal storage on the Block 38 East Property through the 1950s. By the late 1960s, this portion of the property was a parking lot until redeveloped in 2009 with a five-story commercial office building and below-grade parking garage known as the Interurban Exchange 2 Building.

Historical operations on the southern portion of the Block 38 East Property (960 Republican Street) included lumber storage until the late 1920s when a three-story commercial office building was constructed. The building, known as the Rosen Building, was used as a warehouse for electrical appliances and general storage through the 1960s and currently is a medical and dental office.

Historical operations resulted in releases of hazardous substances that caused contamination of soil and groundwater, and the Block 38 East Property is currently associated with the Rosen Property Site, also known as the Interurban Exchange 2 Site, listed in Ecology's contaminated sites database as Facility Site ID No. 2500 and Cleanup Site ID 5123.

2.3 **REGULATORY HISTORY**

The scope of work described in this IA Report for the Alley was performed in accordance with WAC 173-340-430 and the Ecology-approved IAWP (Farallon 2021) and in conjunction with the redevelopment of the Block 38 West Property. For the purposes of this interim action, the Alley was treated as part of the Block 38 West Site remedial action; the extent of the Block 38 West Site will be determined as part of the remedial investigation being conducted under the AO.

Ecology and City Investors IX executed the AO for the Block 38 West Site on April 20, 2020. The AO requires City Investors IX to, among other things, prepare a work plan to conduct a remedial investigation and feasibility study, and prepare a draft cleanup action plan for the Block 38 West Site. In addition, and as noted above, an independent interim action on the Block 38 West Property as described in the 2019 IAWP (Farallon 2019) was commenced prior to the time the AO was executed and was subsequently performed under the auspices of the AO.

On October 14, 2020, City Investors IX submitted the Agency Review Draft Interim Action Work Plan for the Alley Area of the Block 38 West Site to Ecology for review in accordance with the AO. On December 14, 2020, City Investors IX submitted the Public Review Draft Interim Action Work Plan for the Alley Area of the Block 38 West Site to Ecology. On February 3, 2021, City Investors submitted the final IAWP to Ecology for approval and the final Sampling and Analysis Plan was submitted on February 10, 2021. City Investors IX received approval from Ecology on the IAWP on February 4, 2021, and for the final Sampling and Analysis Plan.

2.4 GEOLOGY AND HYDROGEOLOGY

The Puget Sound region is underlain by Quaternary sediments deposited by a number of glacial episodes. Deposition occurred prior to, during, and following glacial advances and retreats, creating the existing subsurface conditions. The naturally occurring sediments in the South Lake Union area consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till that consist of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during glacial advances and recessions. Advance outwash sediments have been largely over-consolidated by the overriding ice sheets. These advance outwash sediments are overlain by a till-like layer and/or recessional outwash sediments that are less consolidated (Galster and Laprade 1991).

Block 38 is approximately 600 feet south of Lake Union and in the late 1800s and the early 1900s, the southern end of Lake Union was filled with sawdust and wood waste generated by lumber mill operations and other fill materials. Field observations made during subsurface investigations conducted by Farallon and others confirmed a wood debris layer is present beneath Block 38.

Cross sections depicting the general lithology and hydrogeology of the Alley and Block 38 West Property are presented on Figures 12 through 14, which are based on field observations made during the subsurface investigations conducted by Farallon and others and documented in boring logs. The locations of the cross sections are shown on Figure 3. According to Farallon observations made during subsurface investigations conducted on adjacent properties and at the Block 38 West Site, and a review of boring logs from geotechnical drilling (GeoEngineers, Inc. [GeoEngineers] 2018), three general stratigraphic units are present at Block 38:

- The shallowest unit consists of fill material with recent deposits, including lacustrine sediments, and comprises silt, sandy silt, and sand with variable gravel content. In some areas, this shallowest unit includes wood waste, peat, and organic silt. The shallowest unit is present across Block 38 beneath the Alley and Block 38 East Property. The shallowest unit was removed from the Block 38 West Property as part of the remedial and mass excavations conducted as part of redevelopment activities.
- The fill and recent deposits are underlain by a dense stratum of heterogeneous glacially consolidated deposits comprising dense sand and variable silt and gravel content and very stiff to hard silt with variable sand and gravel content. According to GeoEngineers (2018), the recent glacially consolidated soil contact typically slopes down to the north toward Lake Union. The borings in the Alley were too shallow to encounter glacially consolidated deposits. At the Block 38 West Property, the contact occurs between approximate elevations of 11 to -6 feet NAVD88.
- A poorly graded dense advance glacial outwash sand with minor silt is encountered below the intermediate unit of glacially consolidated soil at elevations ranging from -30 to -40 feet NAVD88. The sand and gravel layer that was observed in the boring for monitoring well FMW-130 at an elevation of -22 feet NAVD88 is likely the transition zone between the intermediate unit of glacially consolidated soil and the poorly graded dense advance glacial outwash sand. In some areas where the intermediate glacially consolidated unit is thin or absent, the top of the outwash sand is encountered at shallower depths.

Based on the subsurface and geotechnical investigations completed at the adjacent Block 38 West and Block 38 East Properties, three general water-bearing zones are present at Block 38 and are referred to as the Shallow Water-Bearing Zone, Intermediate Water-Bearing Zone, and Deep Outwash Aquifer. The interpretation and associated designations established by others are generally consistent with Farallon's observations at Block 38 and are described as follows:

- The uppermost water-bearing zone encountered in the fill and underlying recent deposits is referred to as the Shallow Water-Bearing Zone. The Shallow Water-Bearing Zone varies in thickness from approximately 5 to 15 feet and was encountered at depths ranging from approximately 5 to 8 feet bgs. Monitoring wells formerly located at the Block 38 West Property that were screened within the Shallow Water-Bearing Zone include FMW-132 through FMW-135; those at the Block 38 East Property included former monitoring wells MW-1 and MW-1A through MW-4. Monitoring wells FMW-154 through FMW-156 were installed in the Alley as part of the remedial investigation for the Block 38 West Site and were screened within the Shallow Water-Bearing Zone (Figure 3).
- The Intermediate Water-Bearing Zone is present below the Shallow Water-Bearing Zone in the glacially consolidated soil at approximate elevations of 5 to 10 feet NAVD88 (approximately 15 to 20 feet bgs). The Intermediate Water-Bearing Zone is continuous across Block 38. Based on previous subsurface investigations conducted at the Block 38 West Property, the Shallow Water-Bearing Zone is in direct communication with the Intermediate Water-Bearing Zone (i.e., there is no aquitard, which is a low permeability geologic formation or layer separating groundwater-bearing zones). Monitoring well FMW-157 was installed in the Alley as part of the remedial investigation for the Block 38 West Site and was screened within the Intermediate Water-Bearing Zone (Figure 3).
- The Deep Outwash Aquifer, the top of which is present at approximate elevations of -30 to -40 feet NAVD88 (approximately 55 to 65 feet bgs) at the Block 38 West Property, is in dense advance outwash sand deposits consisting of sand with minor silt. The Deep Outwash Aquifer is continuous across Block 38. The thickness of the Deep Outwash Aquifer is not known. Monitoring wells FMW-137 and FMW-138, on the northern and southern ends of the Alley, respectively, are screened in the outwash sand deposits comprising the Deep Outwash Aquifer.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Results of the subsurface investigations conducted at the Alley and adjacent properties are summarized below. The objectives of the subsurface investigations were to obtain lithologic, hydrogeologic, and analytical data to characterize environmental conditions. Independent remedial actions that were previously conducted at the Block 38 West and Block 38 East Properties are also summarized below.

3.1 ALLEY

Subsurface investigations have been conducted at the Alley since 1998. This section summarizes the activities and results from previous subsurface investigations at the Alley. Boring locations associated with these investigations are shown on Figure 3. Analytical data are summarized in Tables 1 through 3 and are shown on Figures 4 through 10 and 12 through 14. The variations in feet bgs and elevation for samples collected in the Alley is attributed to the variable surface elevations in the Alley, descending from elevation 31 feet NAVD88 at Mercer Street and elevation 41 feet NAVD88 at Republican Street to elevation 25 feet NAVD88 in the Alley. Copies of boring logs are provided in Appendix A and laboratory analytical reports are provided in Appendix B.

3.1.1 Subsurface Investigations – GeoEngineers, 1998 and 2008

GeoEngineers of Seattle, Washington conducted subsurface investigations at the Alley in 1998 and 2008 to evaluate potential impacts associated with former operations at the Block 38 East Property (GeoEngineers 2008). GeoEngineers advanced one boring (B-6) and a test pit (TP-10¹) in the Alley to evaluate soil conditions and provide recommendations for potential cleanup actions (Figure 3).

Boring B-6 was advanced within the southern half of the alley in December 1998, to an approximate depth of 39 feet bgs. Soil samples were collected from the boring at depths of approximately 3 and 13 feet bgs (elevations of 23.6 and 13.6 feet NAVD88) and analyzed for petroleum hydrocarbons as gasoline-range organics (GRO), diesel-range organics (DRO), and

www.farallonconsulting.com

¹ Identified as "TP-10-4" on the attached figures and tables.

oil-range organics (ORO), and for benzene, toluene, ethylbenzene, and xylenes (BTEX). The results indicated the presence of ORO at a concentration of 850 milligrams per kilogram (mg/kg) in the 3-foot sample. No other analytes were detected in the samples. The analytical data are summarized in Table 1 and shown on Figures 4 through 8.

Test pit TP-10-4 was advanced within the northern half of the Alley in May 2008, to an approximate depth of 4 feet bgs (elevation of 20.5 feet NAVD88). One soil sample was collected from the bottom of the test pit (sample TP-10-4) and analyzed for PAHs and metals. The results indicated the presence of cPAHs with a total cPAHs toxicity equivalent concentration $(TEC)^2$ of 0.245 mg/kg, and detected concentrations of cadmium and lead at 2.4 and 1,900 mg/kg, respectively. Other PAHs were also detected at low concentrations in the sample, including fluorene, fluoranthene, pyrene, and benzo(g,h,i)perylene ranging from 0.04 mg/kg to 0.33 mg/kg. The analytical data are summarized in Tables 2 and 3 and shown on Figures 9 and 10.

3.1.2 Utility Pothole Investigation – Farallon, 2019

Utility pothole observations were conducted between January 7 and 26, 2019 to support waste profiling for utility locating work coordinated by Gary Merlino Construction Co. of Seattle, Washington and conducted by Applied Professional Services, Inc. of North Bend, Washington.

The utility pothole work was conducted using an air knife and vacuum truck to remove shallow soil to expose the existing utilities. A total of 10 potholes were advanced within the Alley (PH-1, PH-2, PH-4, PH-11, PH-11A, PH-12, PH-13, PH-13A, NGas-1, and NGas-2). A Farallon geologist observed and logged subsurface conditions and retained soil samples from selected intervals for laboratory analysis based on field indications of potential contamination. The information recorded for each pothole log included soil types encountered, visual and olfactory observations (e.g., staining, odor), and volatile organic vapor concentrations as measured using a photoionization detector.

Soil samples were retained from 4 of the 10 utility potholes within the southern half of the alley (PH-4, PH-11A, PH-12, and PH-13) for laboratory analysis based on field observations. Soil samples were collected from non-utility fill material directly beneath the utility backfill at shallow depths ranging from 3 to 4.5 feet bgs (elevations of 22 to 20 feet NAVD88). Soil

² Total cPAH concentration calculated using the toxicity equivalency method in accordance with WAC 173-340-708(8).

samples were collected using a hand auger and transferred directly into laboratory-prepared glass sample containers fitted with Teflon-lined lids in accordance with Farallon's standard sampling procedures.

Soil samples were submitted to OnSite Environmental, Inc. of Redmond, Washington (Onsite) for analysis of one or more of the following analytes using the following laboratory analytical methods:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx; and
- cPAHs by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM.

The analytical results indicated detectable concentrations of GRO, DRO, ORO, and/or cPAHs in three of the four samples. GRO was only detected in the sample from PH-12 at a concentration of 2,100 mg/kg; DRO was detected in the samples from PH-11A and PH-12 at concentrations of 520 and 9,400 mg/kg, respectively; ORO was detected in the samples from PH-11A and PH-12 at concentrations of 1,100 and 21,000 mg/kg, respectively; and cPAHs were detected in the samples from PH-4, PH-11A, and PH-12 at total TECs ranging from 0.14 to 152 mg/kg. No compounds were detected in the sample collected from PH-13. The analytical results are summarized in Tables 1 and 2 and shown on Figures 4 through 10.

3.1.3 Supplemental Subsurface Investigation – Farallon, 2020

Subsurface investigation activities were conducted on September 12 and 13, 2020 at the Alley to address the following data gaps identified from previous investigations (Farallon 2020a):

- Vertical limits of cPAHs- and petroleum-impacted soil;
- Lateral limits of cPAHs-impacted soil north of test pit TP-10-4 and south of utility pothole PH-4; and
- Lateral limits of petroleum-impacted soil east of the Block 38 West Property sidewall and in the vicinity of utility pothole PH-12.

The methodology for the September 2020 subsurface investigation activities in the Alley is summarized below.

Farallon subcontracted Anderson Drilling LLC of Lake Stevens, Washington (Anderson) to advance borings FB-10 through FB-16 in the Alley (Figure 3). Anderson mobilized a limited-

www.farallonconsulting.com

access direct-push drill rig on September 12 and 13, 2020 to advance the borings. All of the borings were advanced to an approximate depth of 15 feet bgs, except for FB-16, which was advanced to an approximate depth of 20 feet bgs, corresponding to elevations ranging from 9.9 to 7.8 feet NAVD88. A Farallon geologist observed subsurface conditions and prepared boring logs (Appendix A).

Soil samples were collected from various depths corresponding to elevations ranging between 15 and 22.5 feet NAVD88 for laboratory analysis. A total of 23 samples were submitted to Onsite and analyzed for one or more of the following constituents using the previously identified analytical methods, unless indicated otherwise: GRO; DRO and ORO; BTEX by EPA Method 8021B; naphthalenes by EPA Method 8270D/SIM; cPAHs; and metals (i.e., arsenic, cadmium, chromium, mercury, and lead) by EPA Series Methods 6010D and 7471B.

Groundwater was not encountered and therefore groundwater samples were not collected.

The majority of detected constituents were encountered from approximate elevations 22.5 to 17.5 feet NAVD88 within the fill soil and/or organic debris material beneath the Alley. The analytical results are summarized below and data are provided in Tables 1 through 3.

DRO + ORO was detected at concentrations ranging from 110 to 2,860 mg/kg in 13 of 15 samples (Figures 6 through 8; Table 1). The laboratory indicated that all six soil samples that detected DRO concentrations were impacted by and attributed to ORO in the samples. The highest concentrations were detected in the soil sample collected from boring FB-13 at a depth of 5.5 feet bgs (elevation of 17.5 feet NAVD88).

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected in 7 of 8 samples, with total naphthalenes concentrations (the combined concentrations of the three compounds) ranging from 0.173 to 11.6 mg/kg (Figure 9; Table 2). The highest concentration of total naphthalenes was detected in the soil sample collected from boring FB-13 at an elevation of 22.5 feet NAVD88.

cPAHs were detected in 14 of 22 samples, at total TECs ranging from 0.26 to 32 mg/kg (Figure 10; Table 2). The highest concentration of cPAHs was detected in the soil sample collected from boring FB-13 at an elevation of 22.5 feet NAVD88. The results of the subsurface investigation bounded cPAHs vertically, and the lateral limits to the north of boring FB-16 and south of boring FB-10 in shallow soil were further evaluated during the Alley interim action.

GRO and BTEX constituents were reported non-detect at the laboratory practical quantitation limits (PQLs) in the four samples that were analyzed (two from FB-12 and two from FB-13; see Figures 4 and 5; Table 1). The lateral and vertical limits of petroleum-impacted soil east of the Block 38 West Property sidewall and in the vicinity of utility pothole PH-12 were confirmed.

Metals were generally reported non-detect at the laboratory PQL or were detected at concentrations below applicable screening levels in the eight samples that were analyzed from borings FB-12 through FB-15. The results are included in Table 3.

3.1.4 2022 Subsurface Investigation and Monitoring Well Installation

On February 5 and 6, 2022, Shallow Water-Bearing Zone monitoring wells FMW-154 through FMW-156 and Intermediate Water-Bearing Zone monitoring well FMW-157 were installed and developed in the Alley east of and adjacent to the Block 38 West Property. In addition to the monitoring well installation, boring FB-21 was advanced north of the Alley (Figure 3). Monitoring wells FMW-154 through FMW-157 were screened at the following depths:

- FMW-154: 10 to 15 feet bgs (elevation 12.8 to 7.8 feet NAVD88);
- FMW-155: 10 to 15 feet bgs (elevation 13.9 to 8.9 feet NAVD88);
- FMW-156: 15 to 20 feet bgs (elevation 10.7 to 5.7 feet NAVD88); and
- FMW-157: 30 to 40 feet bgs (elevation -4.1 to -14.1 feet NAVD88).

Boring FB-21 was advanced to a depth of 5 feet bgs (elevation 26 feet NAVD88). Soil samples were collected at elevations 28 and 26 feet NAVD88 for laboratory analysis. Two samples were submitted to Onsite and analyzed for cPAHs using the previously identified analytical methods. cPAHs were detected in one of two samples analyzed, at total TECs ranging from the laboratory PQL to 0.24 mg/kg (Figure 10; Table 2). The highest concentration of cPAHs was detected in the soil sample collected at an elevation of 28 feet NAVD88.

Groundwater samples were not collected from monitoring wells FMW-154 through FMW-157 and OW-1 and OW-2. Groundwater monitoring events were conducted in May, August, and November 2023 in accordance with the Ecology-approved Remedial Investigation Work Plan dated April 26, 2023, prepared by Farallon (2023) (RI Work Plan).

3.2 BLOCK 38 WEST SITE

Subsurface investigations have been conducted on the Block 38 West Site (which includes the Block 38 West Property) since 1999. This section summarizes the activities and results from previous subsurface investigations and independent interim actions conducted at the Block 38 West Site. Boring locations associated with these investigations are shown on Figure 3. Soil data is summarized on Figures 4 through 10, presented in Tables 1 through 3, and discussed below. Copies of boring logs and validated laboratory analytical reports will be provided in the RI Report for the Block 38 West Site.

3.2.1 Phase II Soil Investigation – Dames & Moore, 1994

The 1999 Environmental Assessment Update (Hart Crowser, Inc. 1999) summarized previous work performed, including a Phase II soil investigation performed by Dames & Moore on the Block 38 West Site in 1994. The 1994 soil investigation was performed in the area where a 1,500-gallon heating oil underground storage tank (UST) was removed in 1989 from the sidewalk north-adjacent to Republican Street, along the southern portion of the Block 38 West Property (Figure 2). The results from the 1994 soil investigation indicated that no petroleum-affected soil was present beneath the former heating oil UST; groundwater reportedly was not encountered. Information regarding the sample locations during that investigation was not provided in the documents available for review.

3.2.2 Geotechnical Investigation – GeoEngineers, 2018

GeoEngineers performed geotechnical engineering services at the Site in August 2018. The results of the geotechnical investigation were summarized in the draft *Geotechnical Engineering Services, Block 38, Seattle, Washington* dated September 17, 2018, prepared by GeoEngineers (2018) (2018 Geotechnical Report).

The 2018 Geotechnical Report summarized the subsurface conditions that were observed during the advancement of borings FB-01 through FB-06 and borings for monitoring wells FMW-132 through FMW-136 (Figure 3). The borings were completed to depths ranging from 10 to 51.5 feet bgs. Soil samples collected during the advancement of the borings were evaluated for moisture content, fines content, organic content, and Atterberg limits. Based on the evaluation of the geotechnical data collected for the Block 38 West Site, the following soil conditions were identified by GeoEngineers:

- **Fill:** Fill generally consists of very loose to medium dense silty sand with variable gravel, rubble (brick) and wood fragments, and soft to medium stiff silt and sandy silt. Wood waste was present in the lower portion of the fill soil from approximate elevation 24 to 1 feet NAVD88. The thickness of fill at the Block 38 West Property was observed to be up to approximately 17 feet.
- **Peat/Organic Silt Layer:** A layer of organic material was encountered below the fill and generally consists of very soft to stiff peat, organic silt, and organic clay. The peat/organic silt layer is up to approximately 9-feet thick and generally does not extend below an approximate elevation of 5 to 10 feet NAVD88.
- **Recent Deposits:** Recent deposits were encountered below the peat/organic silt layer and generally consist of medium dense sand with variable silt and gravel content and medium stiff to very stiff silt with variable sand content. The thickness of the recent deposits was observed to be up to approximately 18 feet.
- **Glacially Consolidated Soil:** Glacially consolidated soil was encountered below the recent deposits and generally consists of dense to very dense sand with variable silt and gravel content and very stiff to hard silt with variable sand and gravel content. Glacially consolidated soil represents competent foundation-bearing soil. The contact to glacially consolidated soil typically slopes down to the north toward Lake Union. The contact elevation to glacially consolidated soil ranges from approximate elevations of -6 to -11 feet NAVD88.

According to the 2018 Geotechnical Report, GeoEngineers estimated the regional water table at an elevation of 20 feet NAVD88 based on observed groundwater conditions in monitoring wells installed on adjacent properties and GeoEngineers' experience in the South Lake Union area. GeoEngineers further stated that the regional water table in the vicinity of the Block 38 West Property is influenced by recharge from Queen Anne Hill and Capitol Hill, infiltration of surface

water, temporary dewatering activities, and changes in the water level in Lake Union. The 2018 Geotechnical Report also states that the 72-inch-diameter King County sewer main line in the Republican Street right-of-way and its backfill (Republican Street Drain), south of the Block 38 West Property, influence groundwater levels locally through leakage into the drain (Figure 12).

3.2.3 Subsurface Investigations – Farallon Consulting, 2014–2020

Farallon conducted various subsurface investigations at the Block 38 West Site between 2014 and 2020. The objectives of the subsurface investigations were to obtain lithologic, hydrogeologic, and analytical data to characterize environmental conditions at the Block 38 West Site, and, in part, to facilitate implementation of the independent interim remedial action conducted during the planned redevelopment project under the auspices of the AO. These activities are summarized below.

• 2014 Subsurface Investigation

The 2014 subsurface investigation included the installation of monitoring well FMW-130 in the Intermediate Water-Bearing Zone (Figure 3). Monitoring well FMW-130 was installed in July 2014 using a sonic drill rig operated by Cascade Drilling, L.P. of Woodinville, Washington. Monitoring well FMW-130 was installed to a depth of 60 feet bgs. A reconnaissance groundwater sample was collected from the Shallow Water-Bearing Zone during the advancement of the boring for monitoring well FMW-130. A temporary well screen was set at a depth of 15 to 20 feet bgs (elevation 6.9 to -3.1 feet NAVD88) prior to collection of the reconnaissance groundwater sample. The permanent well screen for monitoring well FMW-130 was set at a depth of 45 to 55 feet bgs (elevation -22.8 to -32.8 feet NAVD88). Select soil, reconnaissance groundwater, and groundwater samples were submitted for laboratory analysis for one or more of the following: GRO, DRO, ORO, BTEX, PAHs and other semivolatile organic compounds (SVOCs), and volatile organic compounds (VOCs), including chlorinated VOCs (CVOCs).

• 2017 Groundwater Monitoring

Monitoring well FMW-130 was sampled on July 3, 2017 using EPA low-flow groundwater sampling procedures. The groundwater sample was placed on ice in a cooler under standard chain-of-custody procedures and delivered to Onsite for laboratory

analysis. The groundwater sample was analyzed for the following constituents using the previously identified analytical methods: GRO; BTEX; and CVOCs.

• 2018 Subsurface Investigations and Groundwater Monitoring

Subsurface investigation activities conducted in 2018 included advancement of six borings (FB-01 through FB-06); collection of reconnaissance groundwater samples from borings FB-01, FB-03, and FB-05; and installation and development of five monitoring wells (FMW-132 through FMW-136) in August 2018; installation of monitoring wells FMW-137 and FMW-138 in November 2018; and groundwater monitoring activities in August and December 2018.

In August, FB-01 through FB-06 and monitoring wells FMW-132 through FMW-135 were installed to assess soil and groundwater conditions in the Shallow Water-Bearing Zone and FMW-136 was installed to assess soil and groundwater conditions in the Intermediate Water-Bearing Zone (Figure 3). The 11 borings were drilled to depths ranging from 10 to 51.5 feet bgs. Monitoring wells FMW-132 through FMW-135 were screened in the Shallow Water-Bearing Zone at depths ranging from approximately 5 feet bgs to 17 feet bgs (elevations between 20.7 and 8.4 feet NAVD88), and monitoring well FMW-136 was screened in the Intermediate Water-Bearing Zone at a depth of 30 to 40 feet bgs (elevation of -5 to -15 feet NAVD88).

Select soil and groundwater samples were collected from the 11 locations and were submitted for analysis for one or more of the following constituents using the previously identified analytical methods, unless indicated otherwise: GRO; DRO and ORO; BTEX; CVOCs; PAHs and other SVOCs, and arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver by EPA Series Methods 200/6000/7000.

In November, Deep Outwash Aquifer monitoring wells FMW-137 and FMW-138 were installed proximate to the northeastern and southeastern corners of the Block 38 West Property to evaluate groundwater quality in the Deep Outwash Aquifer (Figure 3). Monitoring well FMW-137 was screened at a depth of 72 to 85 feet bgs (elevation of -42 to -55 feet NAVD88) and monitoring well FMW-138 was screened at a depth of 90 to 100 feet bgs (elevation of -50 to -60 feet NAVD88). The methodology for the 2018 subsurface investigation and groundwater monitoring of the Deep Outwash Aquifer is summarized in the 2019 IAWP.

Monitoring wells FMW-130 and FMW-132 through FMW-136 were sampled on August 30 and December 28, 2018; and monitoring wells FMW-137 and FMW-138 were sampled on November 20 and December 28, 2018. All of the wells were sampled using EPA low-flow groundwater sampling procedures. Groundwater samples were placed on ice in a cooler under standard chain-of-custody procedures and delivered to Onsite for laboratory analysis. Reconnaissance groundwater samples and the groundwater samples collected from FMW-130 and FMW-132 through FMW-136 were analyzed for GRO, DRO, ORO, BTEX, PAHs and other SVOCs, and CVOCs; the samples from FMW-137 and FMW-138 were only analyzed for CVOCs.

• 2019 Subsurface Investigation and Groundwater Monitoring

Supplemental subsurface investigation activities conducted in 2019 included advancement of three borings (FB-07 through FB-09) and installation of five monitoring wells (FMW-144 through FMW-147 and FMW-149) in December 2019; and groundwater monitoring activities (Figure 3). Select soil and groundwater samples from the December 2019 subsurface investigation were submitted for analysis for one or more of the following constituents: GRO; DRO and ORO; BTEX; CVOCs; and PAHs and other SVOCs.

Groundwater monitoring events were conducted at monitoring wells FMW-130 and FMW-132 through FMW-136 in March 2019, at monitoring wells FMW-137 and FMW-138 in March (groundwater level measurements only, no groundwater samples were collected), May, and July 2019, and at monitoring wells FMW-144 through FMW-147 and FMW-149 in December 2019. Groundwater monitoring events were conducted at monitoring wells FMW-137 and FMW-138 in October and November 2019. Groundwater sampling was conducted using EPA low-flow groundwater sampling procedures. Samples were analyzed for one or more of the following constituents using the previously identified analytical methods: GRO; DRO and ORO; BTEX; CVOCs; and PAHs and other SVOCs.

• 2019 to 2020 Test Pit Investigation

Between December 2019 and February 2020, test pits TP-1 through TP-18 were advanced at the Block 38 West Site to support and update the existing conceptual site model, support soil profiles for disposal, and collect performance or confirmation soil samples during the course of the independent interim action (Figure 3). The test pits were

advanced by Hos Bros. of Woodinville, Washington using the bucket of an excavator. Soil samples were collected from 12 of the 18 test pits and submitted for laboratory analysis for one or more of the following constituents: GRO; DRO and ORO; VOCs, including CVOCs and/or BTEX; PAHs, including cPAHs and total naphthalenes; total lead; 1,2-dibromoethane and 1,2-dichloroethane; polychlorinated biphenyls; and methyl tertiary-butyl ether.

The results of these investigations confirmed the presence of detectable GRO, DRO, ORO, BTEX, and PAHs (including cPAHs) in soil at the Block 38 West Site, primarily within the upper 15 feet of fill material. Detected concentrations of ORO, total naphthalenes, and cPAHs appeared to be the most prominent throughout the Block 38 West Property, with ORO as high as 9,000 mg/kg, total naphthalenes as high as 14.3 mg/kg, and total equivalent cPAHs as high as 21 mg/kg. Other compounds were detected in soil, but at a lower frequency and at relatively low concentrations. The lateral distribution of concentrations is illustrated on Figures 4 through 10 and vertical distribution is illustrated on Figures 12 through 14. Additional details and soil analytical data from these activities were provided in the Ecology-approved RI Work Plan.

These investigations also confirmed detectable petroleum hydrocarbons in groundwater within the Shallow and Intermediate Water Bearing Zones beneath the Block 38 West Site. Additional details and data regarding groundwater quality can be found in the RI Work Plan. Groundwater level measurements and corresponding elevations from the monitoring events are presented in Table 4, and interpreted groundwater elevation contours and flow direction in the Shallow Water-Bearing Zone are shown on Figure 11.

• 2020 to 2021 Subsurface Investigation and Monitoring Well Installation

Between June and July 2020, four new monitoring wells, FMW-150 through FMW-153, were installed at the Block 38 West Property (Figure 3). The monitoring wells were installed concurrent with the redevelopment of the Block 38 West Property through the basement slab of the P4 parking garage level. Monitoring wells FMW-150 through FMW-153 were screened in the Intermediate Water-Bearing Zone at depths of approximately 2 to 7 feet below the P4 parking garage slab (approximate elevations between -8.5 and -14.3 feet NAVD88). The monitoring well casings for FMW-150 through FMW-153 were extended up to the P1 parking garage level, above the pre-redevelopment static water elevation of the Intermediate Water-Bearing Zone. Soil

samples were not retained during the well installation and no groundwater was present at the time of installation to allow for well development. The monitoring wells were developed on February 21 and 24, 2022, prior to initiating compliance groundwater monitoring.

On November 24, 2021, borings FB-18 and FB-19 were advanced west of former soil sample location TP-12 along the western sidewalk at the Block 38 West Property (Figure 3). Borings FB-18 and FB-19 were advanced to a depth of 25 feet bgs (elevation 10.0 feet NAVD88). Select soil samples from borings FB-18 and FB-19 were submitted for analysis for cPAHs.

3.2.4 Independent Interim Action

Investigations conducted at the Block 38 West Site have identified hazardous substances in soil and groundwater at concentrations exceeding screening levels based on MTCA Method A cleanup levels. Those screening levels were selected in general accordance with WAC 173-340-704 due to the limited number of compounds detected at the Block 38 West Site and in consideration of potential exposure pathways identified in the preliminary conceptual site model that was presented in the 2019 IAWP (Farallon 2019b). Hazardous substances that were detected at concentrations exceeding the screening levels were identified as constituents of potential concern (COPCs) for the Block 38 West Site and the independent interim action conducted on the Block 38 West Site were provided in the Ecology-approved RI Work Plan.

The independent interim action has reduced the threat to human health and the environment by removal of impacted soil in the Shallow Water-Bearing Zone, and the upper portion of the Intermediate Water-Bearing Zone from within the property boundary during the Block 38 West Property redevelopment project. Components of the independent interim action included excavation of soil with COPCs detected at concentrations exceeding screening levels to eliminate source material, construction dewatering and treatment of contaminated groundwater, installation of a vapor barrier below and around the entire perimeter of the building foundation, and construction of the exterior walls and floor slab for the underground portion of the building using waterproof concrete.

Installation of shoring piles started in November 2019 and was completed in January 2020. Mass excavation activities started in January 2020 and were completed in June 2020. Approximately

64,200 tons of soil containing detectable concentrations of hazardous substances and wood/organic debris was removed from the Block 38 West Property through June 26, 2020. Of this total, approximately 44,000 tons of soil contained hazardous substances at concentrations exceeding the screening levels. Approximately 50 percent of the 44,000 tons (23,000 tons) of soil with hazardous substances at concentrations exceeding the screening levels was associated with wood and organic debris encountered across the Block 38 West Property.

The construction dewatering and treatment system was shut down on March 24, 2021. During the system operation between January 2020 and March 2021, a total of approximately 189,045,000 gallons of water from the Block 38 West Property construction dewatering system and captured stormwater were collected, treated, and discharged via a private stormwater lateral to the City of Seattle stormwater system or the municipal sanitary sewer.

The independent interim action conducted in conjunction with the redevelopment of the Block 38 West Property has removed the fill soil, wood debris, and soil with hazardous substances detected at concentrations exceeding screening levels from within the limits of the Block 38 West Property. Results of performance soil sampling at the excavation extents indicate that DRO + ORO and cPAHs remain in soil along the eastern property boundary at concentrations exceeding their respective screening levels. The remaining exceedances are primarily at elevation 20 feet NAVD88 in sidewall samples H4-ESW through K4-ESW (Figures 8 and 10; Tables 1 and 2).

3.3 BLOCK 38 EAST PROPERTY

Historical operations on the Block 38 East Property resulted in the release of hazardous substances to soil and groundwater beneath the Block 38 East Property, adjacent rights-of-way, and adjacent properties (Figure 2). Documented releases are associated with the former Jenks Service Station facility (Lot 1) and a former fuel yard that consisted of coal storage and distribution (Lots 2 through 5), where the Interurban Exchange 2 Building currently resides. A reported release from a former heating oil UST (Lot 6) also occurred at the Rosen Building (Lots 6 and 7). Ecology currently associates these releases with the Rosen Property Site in the contaminated sites database (Facility Site ID No. 2500, Cleanup Site ID 5123, as noted previously). Figure 2 shows the location of historical features on the East property and lot configuration. A summary of environmental investigations and remedial actions completed (GeoEngineers 1999, 2008) follows.

Due to the significant amount of data associated with the Rosen Property Site, only select analytical results for soil samples collected from the western sidewall of the remedial excavation that occurred on Lots 1 through 5 - i.e., adjacent to the Alley – are summarized on Figures 4 through 10, presented in Tables 1 through 3, and discussed below.

3.3.1 Block 38 East Property – Lots 1 through 5

Releases of petroleum hydrocarbons, metals (lead and cadmium), and PAHs, including naphthalenes and cPAHs, were confirmed prior to development and construction of the Interurban Exchange 2 Building. Farallon understands that an interim action was conducted in conjunction with redevelopment of the northern and central portions of the Block 38 East Property in 2008, which resulted in the removal of impacted soil and groundwater at Lots 1 through 5. Based on the results of the interim action confirmation soil sampling, GRO, DRO, and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected from the northern sidewall of the excavation on Lot 1, and cPAHs were detected at concentrations exceeding MTCA Method A cleanup levels in southern sidewalls of the excavation on Lots 3 through 5 (GeoEngineers 2008). GRO and BTEX were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from dewatering wells on the northern shoring wall during the remedial excavation. No information regarding additional groundwater monitoring on or off the Block 38 East Property after the interim action was available.

The interim action was limited to the area of redevelopment and construction on Lots 1 through 5 of the Block 38 East Property, and impacted soil remained in the adjacent rights-of-way to the north and west, and potentially at Lot 6 on the southern portion of the Block 38 East Property. Based on confirmation samples from the excavation, GRO remained in the west sidewall near the northern end of the alley at a concentration of 11 mg/kg (sidewall sample EX-11-W21; Figure 4; Table 1) and cPAHs remained in the west sidewall along the central portion of the alley at total TECs ranging from 0.07 to 6 mg/kg (EX-19-W5, EX-20-W1.5, EX-40-EL22, and EX-41-EL22; Figure 10; Table 2). Lead also remained in the west sidewall along the central portion of the alley at concentrations ranging from 64 to 1,800 mg/kg (EX-19-W5, EX-20-W1.5, EX-20-W1.5, EX-39-EL23, EX-40-EL22, and EX-41-EL22; Table 3).

Ecology (2009) issued a property-specific No Further Action (NFA) determination based upon the results of the 2008 remedial action conducted by GeoEngineers (2008) at Lots 1 through 5 on the Block 38 East Property. The NFA determination was property-specific to Lots 1 through 5

(the portion of the Block 38 East Property containing the Interurban Exchange 2 Building) and Ecology had indicated that "further remedial action is still necessary elsewhere at the Site."

GeoEngineers (2008) observed that three distinct stratigraphic layers existed under Lots 3 through 5, and that soil samples with PAHs or metals detected at concentrations exceeding MTCA Method A cleanup levels were within the upper soil fill layer. The three layers were described as follows:

- An upper fill layer consisting of sand, silt, wood chips, and coal fragments from the ground surface to a depth of 4 to 6 feet bgs (approximate elevation of 25 to 21 feet NAVD88);
- Underlying wood debris consisting of wood chips and logs that ranged from 7 to 10 feet thick (approximate elevation of 21 to 14 feet NAVD88); and
- Native silt and sand encountered beneath the wood debris layer (elevations deeper than an approximate elevation of 14 feet NAVD88).

3.3.2 Block 38 East Property – Lots 6 and 7

A release from a heating oil UST on Lot 6 associated with the Rosen Building was confirmed during the permanent decommissioning and removal of the UST in 1994 (GeoEngineers 1999). Residual DRO and ORO were detected in soil samples collected north of the former heating oil UST excavation area at concentrations exceeding MTCA cleanup levels established in 1994 but less than current MTCA Method A cleanup levels. The volume of soil associated with the former heating oil UST release that was excavated and disposed of off the Rosen Property Site was not documented. Petroleum hydrocarbons were reported as non-detect in a groundwater sample collected from a monitoring well north of the former heating oil UST excavation area. Based on the information available, it is not clear whether the monitoring well was down-gradient from the UST excavation area. No other information pertaining to this UST release was available for review.

4.0 INTERIM ACTION TECHNICAL ELEMENTS

This section provides a summary of the technical elements applicable to the interim action completed at the Alley. Technical elements included identification of the ARARs, interim action objectives, media of concern, TEE, and appropriate screening levels for hazardous substances of concern for the Alley interim action.

4.1 PERMITS AND OTHER REGULATORY REQUIREMENTS

This section summarizes applicable local, state, and federal laws pertaining to the interim action, and the permitting and substantive requirements applicable to the interim action.

4.1.1 Applicable or Relevant and Appropriate Requirements

Pursuant to WAC 173-340-710, the interim action was conducted in compliance with applicable local, state, and federal laws, and include applicable regulatory guidelines. The cleanup standards, waste disposal criteria, and documentation standards are:

- MTCA (Chapter 70A.305 of the Revised Code of Washington [RCW]) and WAC 173-340);
- The Hazardous Waste Management Act (RCW 70.105);
- Washington State Solid Waste Management Laws and Regulations (RCW 70.95 and WAC 173-351 and 173-304);
- Dangerous Waste Regulations (WAC 173-303);
- Accreditation of Environmental Laboratories (WAC 173-50);
- The Occupational Safety and Health Act (Part 1910 of Title 29 of the Code of Federal Regulations [29 CFR 1910] and WAC 296-62);
- The State Environmental Policy Act (RCW 43.21C and WAC 197-11 and 173-802);
- Safety Standards for Construction Work (WAC 296-155); and
- Applicable local permits and ordinances indicated by the City of Seattle Municipal Code.

4.1.2 Permitting and Substantive Requirements

The following bullets describe the permitting and substantive requirements applicable to the interim action:

• State Environmental Policy Act — The State Environmental Policy Act (SEPA) (WAC 197-11) and the SEPA procedures (WAC 173-802) provide the framework for state agencies to evaluate the environmental consequences of a project and ensure appropriate measures are taken to mitigate environmental impacts. SEPA was applicable to the redevelopment project on the Block 38 West Property, which included the Alley improvements.

Block 38 is in the South Lake Union neighborhood of downtown Seattle for which an Environmental Impact Statement (EIS) was previously prepared. The EIS, which was prepared by the City of Seattle and finalized in 2012, evaluated general environmental impacts and mitigation strategies for development projects within the South Lake Union neighborhood (City of Seattle 2012). City Investors IX prepared and submitted an addendum to the South Lake Union EIS in April 2019 that provided a site-specific analysis of environmental impacts and associated mitigation measures for the Block 38 West Property redevelopment project, including the Alley improvements. The City of Seattle determined that the project will not have a significant adverse impact on the environment³.

- **City of Seattle Master Use Permit** City Investors IX obtained a Master Use Permit from the City of Seattle for the Block 38 West Property redevelopment project, which included the Alley improvements.
- **City of Seattle Grading and Shoring Permits** City Investors IX obtained a grading permit from the City of Seattle. Substantive requirements of a grading permit included erosion control, which was addressed by implementation of best management practices in accordance with a project-specific temporary erosion and sediment control plan.
- **Historical and Cultural Resource Protections** As required by state law, appropriate measures were taken to evaluate the potential presence of historical, archaeological, or

³ Record No. 3017466-LU, City of Seattle Analysis and Decision of the Director of the Seattle Department of Construction and Inspections; Notice of Decision issued July 2, 2019.

cultural resources. City Investors IX prepared a Cultural Resources Assessment, which was submitted to the Washington State Department of Archaeology and Historic Preservation. The Washington State Department of Archaeology and Historic Preservation concurred with the findings of the Cultural Resources Assessment requiring archeological monitoring during excavations with potential to intersect native soil. In addition, City Investors IX prepared a Monitoring and Inadvertent Discovery Plan for the Block 38 West Property redevelopment project. Monitoring conducted by the archeologist over the course of the redevelopment did not yield any cultural resources of significance.

4.2 MEDIA OF CONCERN

The confirmed medium of concern at the Alley targeted for the interim action is soil. Evaluation of groundwater, indoor air, and surface water (via stormwater discharge) as media of concern was not included as part of the interim action. Potential impacts to groundwater that has migrated from or to the Alley will be assessed during the remedial investigation for the Block 38 West Site. To the extent the potential impacts are associated with releases at the Block 38 West Site, they will be addressed during the feasibility study and final cleanup action. The vapor intrusion to indoor air pathway is not currently a complete pathway for the Alley due to the absence of a building. The independent interim action at the Block 38 West Property included a chemical-resistant vapor barrier to mitigate against the potential indoor air exposure pathway for the building; therefore, it is expected that the vapor intrusion pathway will be mitigated with engineering controls as part of the final remedy (subject to review and approval by Ecology). The conceptual site model, exposure pathways, and media of concern for the Block 38 West Site will be discussed in the RI Report.

Based on the property-specific NFA determination for the Rosen Property Site, the vapor intrusion to indoor air pathway was not considered complete for the residual volatile hazardous substances that remained in the west sidewall post interim action conducted on Lots 1 through 5 of the Block 38 East Property (Ecology 2009).

Stormwater at the Alley is collected at a catch basin and discharges to the King County Metro Sewer system.

Based upon the above considerations, and as more fully discussed below, the medium of concern identified for the interim action conducted at the Alley is soil.

4.3 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

The potential exposure risks to human health and the environment associated with the presence of hazardous substances in soil and/or groundwater at the Alley were evaluated. This subsection presents the evaluation and conclusions pertaining to the potential exposure pathways associated with the Alley interim action.

4.3.1 Soil to Groundwater

Based on subsurface results, the soil to groundwater pathway is potentially complete. The Alley interim action conducted at the Block 38 West Site removed soil with hazardous substances detected at concentrations exceeding screening levels to the maximum extent practicable within the limits of the construction excavation. The soil to groundwater pathway is potentially complete in the Alley and will be evaluated as part of the remedial investigation activities for the Block 38 West Site.

4.3.2 Soil Direct Contact

Soil containing hazardous substances detected at concentrations exceeding screening levels was removed from the Alley to the maximum extent practicable within the limits of the construction excavation, and limited areas of soil impacted with DRO + ORO and PAHs are present in the Alley at an elevation of 17.5 feet NAVD88 and in a wedge of soil that remains along the eastern sidewall of the Alley excavation and the Block 38 East Property at elevations ranging from 28 to 17.5 feet NAVD88. The standard point of compliance for the direct contact exposure pathway for soil is a depth of 15 feet bgs for human health and 6 feet bgs for terrestrial receptors (WAC 173-340-740[6][d] and WAC 173-340-7490[4][b]). Hazardous substances at concentrations exceeding screening levels were detected in shallow soil, less than 15 feet bgs, ranging in elevation from 28 to 22.5 feet NAVD88 (3 feet bgs and 0.5 foot bgs) at the central and eastern portions of the Alley interim action. This contamination presents a risk of direct contact with soil, which comprises both the dermal contact and ingestion pathways, if the improvements covering the contamination such as concrete roads are removed.

Hazardous substances remaining in soil at the Alley and Block 38 West Site after completion of the independent (Property) interim action and Alley interim action are covered by the current buildings, pavement, and sidewalks, effectively eliminating the direct contact exposure pathway. Institutional controls such as an Ecology-approved Environmental Covenant will be required for maintaining these barriers to eliminate potential exposure.

4.3.3 Groundwater Ingestion/Drinking Water Beneficial Use

Groundwater conditions after the independent interim action at the Block 38 West Property and Alley interim action will be evaluated as part of the remedial investigation activities for the Block 38 West Site. Contact with shallow groundwater during ground intrusive construction work is considered a potential exposure pathway, which can include both incidental ingestion of water and inhalation of volatile vapors. Groundwater in the vicinity of the Block 38 West Site is not a current source of drinking water and its use as such in the future is very unlikely. There are no drinking water production wells proximate to the Block 38 West Site. Service water is collected in the Tolt and Cedar River watersheds and provided by the City of Seattle. Regardless, future use of groundwater as a drinking water source must be presumed, consistent with WAC 173-340-720(1)(a). Therefore, ingestion of contaminated groundwater (drinking water) is a potential future exposure pathway. If remedial investigation activities confirm impacts to groundwater at concentrations exceeding final cleanup levels, an institutional control may need to be implemented to restrict future groundwater use.

4.3.4 Terrestrial Ecological Evaluation

A TEE is required by WAC 173-340-7490 at any site where there has been a release of a hazardous substance to soil. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c)(i), the Block 38 West Site is excluded from a TEE because there is less than 1.5 acres of contiguous undeveloped land on the Site or within 500 feet of any area of the Site; the Site is not contaminated with the hazardous substances listed in WAC 173-340-7491(1)(c)(ii); and based on the criteria in WAC 173-340-7491(1)(b), all soil contaminated with hazardous substances is, or will be, covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed to the soil contamination. No further consideration of ecological impacts is required under MTCA. The Ecology Terrestrial Ecological Evaluation Form is provided in Appendix C.

4.4 SCREENING LEVELS AND HAZARDOUS SUBSTANCES OF CONCERN

Screening levels are established as a conservative basis for defining the extent of contamination for each hazardous substance exceeding concentrations of potentially applicable cleanup levels and affected media at a site. The screening levels may or may not be selected as the cleanup levels in a cleanup action plan, once the remedial investigation is complete and the conceptual site model is developed. MTCA Method A soil cleanup levels for unrestricted land use are appropriate screening levels for the Alley interim action because there is a limited number of hazardous substances in soil and the current and proposed future land use as a paved throughalley servicing commercial buildings on the West and East properties limits the potential for exposures.

Hazardous substances targeted for this interim action were selected based on the compounds that remain at concentrations exceeding the screening levels within or immediately adjacent to the Alley. The hazardous substances identified for soil and their respective screening levels are:

- GRO: 30 mg/kg;
- DRO: 2,000 mg/kg;
- ORO: 2,000 mg/kg;
- DRO + ORO: 2,000 mg/kg;
- Benzene: 0.03 mg/kg;
- cPAHs: 0.1 mg/kg;
- Total naphthalenes: 5 mg/kg;
- Lead: 250 mg/kg; and
- Cadmium: 2 mg/kg.

4.5 CONFIRMED AND SUSPECTED SOURCES OF CONTAMINATION

The inferred sources of contamination at the Alley are presented below. Adjacent properties with documented and confirmed releases of hazardous substances associated with historical operations described in Section 3 that potentially have migrated near or to the Alley via soil, surface water runoff, and/or groundwater transport are also summarized below. Although the final determination of sources will be defined in later reports, this section presents preliminary conclusions regarding contaminant sources based upon data gathered during the interim action.

4.5.1 Alley

Based on the results of subsurface investigations, the independent interim action at the Block 38 West Property, and Alley interim action the following historical features were confirmed as sources of soil contamination at the Alley: historical placement of impacted fill soil; wood debris associated with the former lumber mill operations on Block 38; a coal fill layer encountered in the southern and central portions of the Alley; localized impacts associated with former stormwater drain catch basins; and localized impacts associated with the former railroad trestle and supporting structures.

The Alley interim action was conducted in conjunction with the Block 38 West Property redevelopment and removed an impacted fill layer consisting of sand, silt, coal fragments, and wood chips and organic material from approximate elevations of 25 to 18 feet NAVD88 and is attributed to historical fill operations at Block 38 along the original southern shoreline of Lake Union. The Alley interim action removed soil with detectable concentrations of hazardous substances to the north up to the Mercer Street right-of-way, to the east within 1 to 2 feet of the Block 38 East Property boundary, to the south up to the Republican Street right-of-way, and to the west up to the eastern shoring wall on the Block 38 West Property (Figures 16 through 24).

Based on previous subsurface investigations conducted in the Alley the vertical limits of hazardous substances were defined (Figures 4 through 10 and 12 through 14). Soil performance samples collected at the limits of the construction excavation in the alley confirmed the lateral limits of hazardous substances in soil to the south, and soil excavation performance and confirmation samples from the east excavation sidewall at the Block 38 West Property confirmed the lateral limits of hazardous substances to the west. A soil sample, N/A5-NSW, collected from the north sidewall of the construction excavation detected cPAHs at a concentration exceeding screening levels at an elevation of 28 feet NAVD88 and less than screening levels at an elevation of 26 feet NAVD88. Boring FB-21 was advanced in February 2022 approximately 8 feet to the north of soil sample N/A5-NSW to evaluate soil conditions in the Mercer Street right-of-way. cPAHs were detected at a concentration exceeding screening levels at an elevation of 28 feet NAVD88 and less than screening levels at an elevation of 26 feet NAVD88. Soil samples collected from the east sidewall confirmed that ORO, DRO + ORO, naphthalenes, and/or cPAHs remain at concentrations exceeding applicable screening levels in the wedge of soil that remains between the Alley and the Block 38 East Property.

Potential impacts from the Alley to groundwater will be further evaluated under the RI for the Block 38 West Site.

4.5.2 Block 38 West Property

Based on the results of subsurface investigations and the independent interim action completed to date by Farallon, the following historical operations and/or features were confirmed as sources of soil and/or groundwater contamination at the Block 38 West Property: historical placement of impacted fill soil; impacted fill soil located within wood debris associated with the former lumber mill operations on Block 38; former timber pilings associated with historical buildings; oil encountered in a sanitary sewer line at the southeastern portion of the Block 38 West Property (efforts to evaluate the sanitary sewer line indicated no specific point of release or former feature to which the sanitary sewer line was connected); a coal fill layer ranging in thickness from 4 to 6 inches encountered across the east-central and northern portions of the Block 38 West Property at approximate elevation 20 feet NAVD88; and localized impacts associated with former bunker fuel oil USTs encountered in the northwestern portion of the Block 38 West Property. The cPAH impacts in soil detected between elevations 25 and 15 feet NAVD88 adjacent to UST01 and UST02 were similarly observed over the majority of the northern portion of the Block 38 West Property and are associated with fill material. Accordingly, Farallon does not attribute cPAH concentrations detected in soil adjacent to UST01 to be solely related to the release of bunker fuel oil.

Farallon observed that the fill soil layer varied in thickness from 5 to 10 feet, with a coal fill layer observed at shallow depths during the mass excavation and in the east-central mass excavation sidewall. Beneath the fill soil layer, the wood debris layer varied in thickness from 10 to 20 feet, thickest along the north and northeastern Block 38 West Property boundaries, and is attributed to former lumber mill operations and lumber storage on Block 38 and former timber pilings associated with historical buildings. Accordingly, silt and underlying silty sand could potentially contain hazardous substances associated with fill and wood debris (Farallon 2018).

4.5.3 Rosen Property Site

Based on the results of subsurface investigations completed to date and the independent interim action, the following historical operations and/or features were confirmed as sources of soil and/or groundwater contamination at Lots 1 through 5 of the Block 38 East Property: historical placement of impacted fill soil; wood debris associated with the former lumber mill operations

on Block 38; USTs associated with the former gasoline service station; and the fuel yard associated with coal storage.

Releases of petroleum hydrocarbons, metals (lead and cadmium), and PAHs, including naphthalenes and cPAHs, were confirmed on Lots 1 through 5 at the Block 38 East Property. An impacted fill layer consisting of sand, silt, wood chips, and coal fragments was observed from approximate elevation of 25 to 21 feet NAVD88 and a wood debris layer was encountered at elevations ranging from 21 to 14 feet NAVD88 across Lots 1 through 5 and may be attributed to historical fill operations at this city block along the original southern shoreline of Lake Union. ORO, ORO + DRO, naphthalenes, cPAHs, and/or metals (lead and cadmium) were detected at concentrations exceeding screening levels in the west sidewall of the excavation on Lots 1 through 5 from elevations 23 to 19 feet NAVD88. The alley interim action left a wedge of soil (approximately 1 to 2 feet wide), due to existing utility infrastructure, with ORO, DRO + ORO, naphthalenes, and/or cPAHs detected at concentrations exceeding applicable screening levels from elevation 25 to 17.5 feet NAVD 88 between the alley and the Block 38 East Property.

A release from a heating oil UST associated with the Rosen Building on Lot 6 of the Block 38 East Property was confirmed during the permanent decommissioning and removal of the UST in 1994 (GeoEngineers 1999). Available information indicates that residual DRO and ORO were detected in soil samples collected north of the former heating oil UST excavation area, which exceeded MTCA cleanup levels at that time but do not exceed current MTCA Method A cleanup levels and reportedly were not detected in groundwater (GeoEngineers 1999). Based on the information available, it is not clear whether the monitoring well was down-gradient of the UST excavation area.

DRO and ORO were detected at relatively low concentrations (72 and 470 mg/kg, respectively) in a soil sample collected at an elevation of 20 feet NAVD88 from boring FB-11 advanced west of the former heating oil UST in the alley; the soil with those detections was removed as part of the alley interim action excavation.

Potential impacts from the Block 38 East Property to groundwater will be further evaluated under the RI for the Block 38 West Site.

5.0 INTERIM ACTION

Investigations conducted at the Alley have identified hazardous substances in soil at concentrations exceeding applicable screening levels. The interim action reduced the threat to human health and the environment by removal of impacted soil from within the Alley in conjunction with the redevelopment of the Block 38 West Property. Components of the interim action included excavation of impacted soil to eliminate source material within the Alley in order to place structural backfill to support the new concrete road surface and access utilities.

The interim action has been conducted to meet the requirements of MTCA as defined in WAC 173-340-430. The scope of work for the interim action was developed in accordance with Ecology requirements and guidance, including MTCA, and is set forth in the Ecology-approved IAWP. The interim action did not foreclose reasonable alternatives for the final cleanup action at the Block 38 West Site based upon known conditions at the Block 38 West Site.

Alley improvements were constructed in conjunction with the redevelopment of the Block 38 West Property. Work on the improvements began in February 2021, and the construction excavation was completed in July 2021 with the remaining improvements completed by March 2022. The purpose of the improvements was to create a through-alley that can be accessed by Mercer Street from the north and Republican Street from the south to service commercial buildings on Block 38. Construction at the Alley required excavation across the Alley to approximate elevations of 25 to 18 feet NAVD88 from north to south. All soil removed as part of this element of the construction process was documented and properly disposed of as described below and in accordance with applicable laws and regulations.

5.1 INTERIM ACTION OBJECTIVE

The objective of the interim action was to reduce the threat to human health and the environment via removal of fill material containing hazardous substances from the Alley while it was accessible during construction activities and Alley improvements. Impacted soil was transported off the Alley for disposal at permitted treatment, storage, and disposal facilities.

5.2 EXCAVATION OBSERVATION AND SOIL SAMPLING

Prior to initiating construction excavation activities, the Alley was divided into a 30-foot (north to south) by 20-foot (east to west) grid system to characterize and estimate volumes of

contaminated soil and to guide the collection of soil performance samples throughout the excavation activities. Each excavation cell was assigned alphanumeric identifier row A5 and columns lettered A to N, which correspond to soil samples collected during the excavation. The western boundary of the Alley was supported by the shoring system for the Block 38 West Property. The eastern boundary of the northern half of the Alley abuts the shoring system for the Interurban Exchange 2 Building and associated gas and fiber optic lines. The eastern boundary on the southern half of the Alley abuts the shoring system for the Rosen Building.

Based on previous investigations, soil containing detectable concentrations of hazardous substances extended to an approximate elevation of 17.5 feet NAVD88 at the Alley (Figure 12). The excavation activities within the Alley extended to an elevation ranging from approximately 25 to 16 feet NAVD88 (north to south). The gas and fiber optic lines required a minimum 5-foot offset from the existing Interurban Exchange 2 Building to the west, and required that the base of the fiber optic line not be undermined. The top of the fiber optic line was at an elevation of approximately 28 feet NAVD88 at the north end of the alley and at an elevation of approximately 19 feet NAVD88 in the central portion of the Alley. The footing for the Rosen Building and adjacent gas, fiber optic, and sewer lines in the Alley were exposed as part of the excavation. The excavation in this area required exposing utilities to protect, connect to, and/or modify structural improvements to subgrade soil for construction of a ramp from the Alley to Republican Street.

Soil encountered with detectable concentrations of hazardous substances (i.e., whether exceeding or less than screening levels) were managed and disposed of off-property as a nonhazardous waste at a permitted landfill.

Performance soil samples were collected by Farallon at the Alley during previous investigations and during the interim action. Performance soil sampling points were used as confirmation soil sampling points where analytical results for performance soil samples confirmed that screening levels were attained prior to or at the final limits of the excavation.

Construction excavation activities started in March 2021 and were completed in July 2021. Excavation of soil with detectable concentrations of hazardous substances removed during construction excavation associated with utility connections and resurfacing of the Alley required special handling and disposal measures beyond those used for handling and disposing of clean soil. Soil with detectable concentrations of hazardous substances was excavated, segregated, stored temporarily, and disposed of at a licensed facility in accordance with Washington State

Solid Waste Management Laws and Regulations (RCW 70.95 and WAC 173-351 and 173-304) and the *Guidance for Remediation of Petroleum Contaminated Sites* revised June 2016 (Ecology 2011) (Ecology Guidance).

A summary of the performance soil sample analytical results and the approximate areas of soil containing concentrations of hazardous substances above detection limits are provided on Figures 4 through 10. A summary of confirmation soil sample locations, results, and elevations are provided on Figures 15 through 24. A summary of soil sample analytical results for applicable hazardous substances are provided in Tables 1 through 3. Farallon conducted a Level I Compliance Screening on all the analytical data and a data validation report was prepared in accordance with the QA/QC criteria as recommended in the methods identified in the National Functional Guidelines for Organic and/or Inorganic Methods Data Review (EPA 2017a, 2017b) (Appendix D).

5.3 PERFORMANCE MONITORING

Performance monitoring consisted of collecting soil samples to assist with establishing the lateral and vertical extent of contaminated soil and to classify the soil for segregation and disposal.

5.3.1 Soil Performance Monitoring

Performance monitoring consisted of collecting soil samples to assist with establishing the lateral and vertical extent of soil with hazardous substances detected at concentrations exceeding screening levels and to classify the soil for segregation and disposal. Performance soil sampling points were used as confirmation soil sampling points where analytical results for performance soil samples confirmed that screening levels were attained vertically and/or laterally prior to or at the final limits of the excavation associated with utility and roadway improvements. A total of 74 performance soil samples were collected by Farallon and others at the Alley during the previous investigations and interim action.

Laboratory analytical results for the performance soil samples are summarized on Figures 4 through 10 and in Tables 1 through 3. Performance samples collected during the Alley excavation are coded with the excavation grid cell in which they were collected. Laboratory analytical reports are provided in Appendix B and a data validation report is provided in Appendix D.

5.4 CONFIRMATIONAL MONITORING

A total of 47 confirmation soil samples were collected from borings and the final limits of the excavation for contaminated soil encountered during the Alley excavation associated with utility and roadway improvements. Performance soil samples were used as confirmation soil samples when analytical results confirmed that screening levels had been attained at the limits of the excavation areas. Additional confirmation soil sampling consisted of collecting soil samples in-situ from the base and sides of the final limits of the completed excavation areas.

Laboratory analytical results for the confirmation soil samples are summarized in Tables 1 through 3. Figures 15 through 24 depict the location and elevation, and results for confirmation soil samples of hazardous substances identified for the interim action. Laboratory analytical reports are provided in Appendix B.

5.5 SOIL TRANSPORT AND DISPOSAL

The transport and disposal of soil encountered with detectable concentrations of hazardous substances (i.e., whether exceeding or less than screening levels) to various permitted landfills were documented by using soil transport and disposal tracking forms.

The analytical results from performance soil sampling were used to establish soil waste profiles with regional permitted landfills. Waste profiles were established with the Waste Management Columbia Ridge Landfill in Arlington, Oregon and Republic Services in Roosevelt, Washington.

Approximately 2,382 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the Alley through June 23, 2021 (Appendix E) and disposed of at the following facilities:

- Approximately 14 tons of soil with detectable concentrations of hazardous substances was transported off the Alley for permanent disposal at the Waste Management Columbia Ridge Landfill facility.
- Approximately 2,368 tons of soil with hazardous substances detected at concentrations exceeding screening levels and/or wood or organic debris was transported off the Alley for permanent disposal at the Republic Services Roosevelt Landfill.

A summary of the weekly tonnages and receiving disposal facilities for soil generated during the interim action and mass excavation, including both Impacted Soil and Contaminated Soil, is provided in Appendix E.

5.6 ALLEY RESTORATION

The final Alley improvements were completed in March 2022 with the placement of a concrete surface across the roadway.

6.0 INTERIM ACTION RESULTS

Results from the interim action are presented below, including results from the performance and confirmation sampling and the soil transport and disposal activities.

6.1 CONFIRMATION SOIL SAMPLING

The construction excavation extended across the entire area of the Alley (Figure 22). Soil encountered during excavation activities with concentrations of hazardous substances exceeding the screening levels was removed to the maximum extent practicable and appropriately managed during utility and structural improvements at the Alley. Some soil containing hazardous substances remained in-place following completion of the interim action, as the construction excavation extents were limited due to structural considerations associated with adjacent buildings and existing utilities. The final limits of soil with hazardous substances detected at concentrations exceeding screening levels and confirmation soil sample locations are shown on Figures 15 through 24. The final excavation depth of the Alley is shown on post-excavation Cross-Section A-A' oriented north-to-south (Figure 22).

The final excavation limits for soil with hazardous substances detected at concentrations exceeding screening levels at the Alley were generally located laterally within a rectangular-shaped area with maximum dimensions of approximately 425 feet north-to-south by 15 feet east-to-west. The majority of hazardous substances detected at concentrations exceeding screening levels were encountered from approximate elevations 28 to 17.5 feet NAVD88 within the fill soil and/or organic debris material in the Alley (Figures 12 to 14). Soil with detectable concentrations of hazardous substances extended to an approximate elevation of 17.5 feet NAVD88 for the northern, southern, and central portions of the Alley. The construction excavation at the Alley was generally advanced to a final elevation of approximately 25 to 17.5 feet NAVD88 (approximately 5 feet bgs) from north to south (Figures 22 through 24).

Confirmation soil samples collected at the construction excavation limits at the Alley demonstrate compliance with the soil screening levels established for the interim action (Figures 15 through 24) in most areas. Hazardous substances were detected at concentrations exceeding screening levels in soil at the final limits of the construction excavation north sidewall (proximate to Mercer Street right-of-way), base of excavation soil sampling grids E/A5 and I/A5, and central portion of the east sidewall of sampling grids E/A5, G/A5, I/A5, J/A5, and L/A5 at

elevations ranging from 25 to 17.5 feet NAVD88 within the fill soil layer identified at the Alley (Figure 22).

GRO was detected at a concentration of 2,100 mg/kg, which exceeds the screening level, in a soil performance sample collected from utility pothole PH-12 at an elevation of 21 feet NAVD88 in the Alley (Figure 4; Table 1). The lateral and vertical extent of GRO detected at concentrations exceeding screening levels in soil adjacent to PH-12 have been defined by soil samples collected from borings B-6, FB-12, and PH-13 and Alley excavation soil samples E/A5-ESW, E/A5-B, and F/A5-B; soil in this area was excavated and removed as part of the interim action. GRO was reported non-detect at the laboratory PQL in the remaining soil performance and confirmation soil samples collected in the Alley during the interim action (Figure 15; Table 1).

Benzene was reported non-detect at the laboratory PQL in the remaining soil performance and confirmation soil samples collected in the Alley during the interim action (Figure 16; Table 1).

DRO + ORO were detected at concentrations exceeding the screening level in soil samples collected from utility pothole PH-12, boring FB-13, and Alley interim action confirmation samples E/A5-B, G/A5-ESW, H/A5-ESW, and I/A5-ESW at elevations ranging from 22.5 to 17.5 feet NAVD88 in the central portion of the Alley (Figures 6 through 8 and 23; Table 1). The lateral extent of DRO + ORO impacts in soil adjacent to PH-12 and in the central portion of the Alley has been defined (Figures 6 through 8 and 12). DRO + ORO impacts in the eastern sidewall of the central portion of the Alley extend laterally to the east of the construction excavation within a 1- to 2-foot wedge of soil that remains abutting the east-adjacent building due to utility obstructions (Figure 19; Table 1). The vertical limits of DRO + ORO impacts in the central portion of the Alley are defined by FB-12, FB-13, and FB-14 and Alley interim action confirmation samples H/A5-B and I/A5-B, at an elevation ranging from 17.5 to 15 feet NAVD88 (Figures 19 and 22). The impacts observed in the central portion of the Alley at elevations ranging from 22.5 to 17.5 feet NAVD88 are likely associated with the former coal fill layer and impacted fill soil within wood debris documented in the Alley at elevations ranging from 22 to 15 feet NAVD88 (Figures 17 through 19 and 22). The vertical limits at PH-12, E/A5B, and G/A5-B are estimated to be approximately 15 feet NAVD88 based on the subsurface investigations and Alley interim action completed (Figures 19 and 22). Potential impacts from residual DRO + ORO concentrations in shallow soil to groundwater quality in the Shallow

Water-Bearing Zone will be further assessed in the remedial investigation for the Block 38 West Site.

Total naphthalenes were detected at concentrations exceeding screening levels in soil samples collected from boring FB-13 and excavation performance samples G/A5-ESW, H/A5-ESW, and I/A5-B at elevations ranging from 22.5 to 17.5 feet NAVD88 in the central portion of the Alley (Figure 9; Table 2). Total naphthalenes detected at concentrations exceeding the screening levels in soil were excavated and removed from within the limits of the Alley construction excavation. The vertical limits at I/A5-B are estimated to be approximately 17.5 to 15 feet NAVD88 based on the subsurface investigations and completed Alley interim action (Figures 20 and 22). Total naphthalenes impacts in the eastern sidewall of the central portion of the Alley extend laterally to the east of the construction excavation within a 1- to 2-foot wedge of soil that remains abutting the east-adjacent building due to utility obstructions (Figure 20; Table 1). Total naphthalenes were either detected at concentrations less than the screening level or reported non-detect at the laboratory PQL in the remaining soil performance and confirmation soil samples collected in the Alley and the western sidewall of the Block 38 East Property (Figure 20; Table 2). Potential impacts from residual total naphthalenes concentrations in shallow soil to groundwater quality in the Shallow Water-Bearing Zone will be further assessed in the remedial investigation for the Block 38 West Site.

cPAHs were detected at concentrations exceeding the screening level in performance soil samples collected throughout the Alley from elevations ranging from 28 to 17.5 feet NAVD88 (Figure 10; Table 2). cPAHs detected at concentrations exceeding the screening levels in soil were excavated and removed from within the northern portion of the Alley at elevations ranging from 28 to 22 feet NAVD88 and from the southern portion of the Alley at elevations ranging from 22.5 to 17.5 feet NAVD88 (Figure 22). The vertical extent of cPAHs was defined in the Alley by borings FB-10 through FB-16 and FB-21. The lateral extent of cPAHs east of the Block 38 West Property were defined to the south by Alley interim action soil confirmation sample A/A5-SSW and to the north by boring FB-21. cPAHs impacts in the eastern sidewall of the central portion of the Alley extend laterally to the east of the construction excavation within a 1-to 2-foot wedge of soil that remains abutting the east-adjacent building due to utility obstructions (Figure 21). The eastern extent of cPAHs was defined by western sidewall samples of the Block 38 East Property mass excavation, EX-19, EX-20, and EX-38 through EX-41 (Figure 21; Table 2).

Cadmium and lead were detected at concentrations of 2.4 and 1,900 mg/kg, respectively, which exceed the screening levels, in the performance soil samples collected at test pit TP-10-4 at an elevation of 20 feet NAVD88 (Figure 3; Table 3). Lead was detected at concentrations ranging from 260 to 21,000 mg/kg, which exceed the screening level, in eastern excavation sidewall performance soil samples in mass excavation soil sampling grids G/A5, H/A5, I/A5, and J/A5 at elevations ranging from 22.5 to 20 feet NAVD88 (Table 3). The vertical and lateral limits of cadmium and lead impacts in soil have been defined by borings FB-12 through FB-15 (Table 3). The eastern extent of cadmium and lead impacts in soil was defined by western sidewall samples of the Block 38 East Property mass excavation EX-19, EX-20, EX-39 through EX-41, and P-4, W-3, and W-4 (Figure 3; Table 2). Cadmium and/or lead were either detected at concentrations less than the screening level or reported non-detect at the laboratory PQL in the remaining soil performance and confirmation soil samples collected in the Alley during the interim action (Table 1).

The interim action conducted in the Alley in conjunction with the redevelopment of the Block 38 West Property has removed fill soil and organic and wood debris with hazardous substances detected at concentrations exceeding screening levels to the extent practicable from within the limits of the Alley (Figures 15 through 24). DRO + ORO, naphthalenes, cPAHs, cadmium, and/or lead were detected in soil at concentrations exceeding screening levels at the final limits of the mass excavation on the eastern and northern portions of the Alley at elevations ranging from 28 to 17.5 feet NAVD88 within the soil fill layer identified at Block 38.

6.2 SOIL TRANSPORT AND DISPOSAL

A total of approximately 2,382 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the Alley between March 2021 and July 2021 and transported to various permitted facilities described in Section 5.5 (Appendix E).

7.0 CONCLUSIONS

Based on the results of subsurface investigations and interim actions completed to date, the following historical features were confirmed as sources of soil contamination at the Alley: historical placement of impacted fill soil; wood debris associated with the former lumber mill operations on Block 38; a coal fill layer encountered at elevations ranging from 25 to 15 feet NAVD88; localized impacts associated with former stormwater drain catch basins; and localized impacts associated with former railroad trestle and supporting structures.

This IA Report documents the interim action conducted at the Alley to remove soil containing hazardous substances detected at concentrations exceeding screening levels to the extent practicable during Alley improvements. The interim action was conducted in accordance with the cleanup requirements of MTCA as established in WAC 173-340 and the IAWP approved by Ecology.

The laboratory analytical results for confirmation soil samples collected during the interim action confirmed that all soil with concentrations of hazardous substances encountered within the limits of the construction excavation was removed from the Alley for off-property disposal at a permitted disposal facility. Results of confirmation soil sampling at the excavation extents indicate that DRO + ORO, naphthalenes, cPAHs, cadmium, and/or lead remain in a 1-to 2-foot wedge of soil in the east-central portion of the Alley abutting the Interurban Exchange 2 Building at elevations ranging from 22.5 to 17.5 feet NAVD88; cPAHs remain at an elevation of 28 to 27 feet NAVD88 to the north of the Alley in the Mercer Street right-of-way; and isolated areas at the base of the construction excavation with DRO + ORO and total naphthalenes remain in soil from elevations 17.5 to 16 feet NAVD88, within the soil fill layer identified at the Alley. Approximately 2,382 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the Alley.

Potential impacts to groundwater quality in the Shallow Water-Bearing Zone from residual concentrations of COPCs in shallow soil will be further assessed during the remedial investigation for the Block 38 West Site. Quarterly groundwater monitoring began in May 2023 in accordance with the Ecology-approved RI Work Plan.

8.0 **BIBLIOGRAPHY**

- City of Seattle. 2012. *Final Environmental Impact Statement, South Lake Union Height and Density Alternatives.* Prepared by City of Seattle Department of Planning and Development. April.
- Farallon Consulting, L.L.C. (Farallon). 2018. Subsurface Investigation Report and Environmental Media Management Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. December 28.
- ———. 2019a. Interim Action Work Plan (IAWP), Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IW LLC. November 8.
- ———. 2019b. Phase I Environmental Site Assessment, South Lake Union Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IW LLC. December 13.
- ———. 2020a. Technical Memorandum Regarding Supplemental Subsurface Investigation and Foundation Elements, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. June 15.
- ———. 2020b. Agency Review Draft Remedial Investigation Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. July 20.
- ———. 2021. Interim Action Work Plan, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, Seattle, Washington. Prepared for City Investors IX LLC. February 3.
- ———. 2023. Remedial Investigation Work Plan, Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. April 26.

- Galster, Richard W., and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists* 28 (No. 3): 235-302.
- GeoEngineers, Inc. (GeoEngineers). 1999. Phase I Environmental Site Assessment and Soil and Groundwater Sampling and Testing, UW-IFAMS Rosen Property, 960-964 Republican, Seattle, Washington, Volume I of II. Prepared for Schnitzer NW. April 22.
- ———. 2008. Cleanup Action Report, Interurban Exchange 2, 535 Terry Avenue North, Seattle, Washington. Prepared for Lake Union IV, LLC. October 28.
- ———. 2018. *Geotechnical Engineering Services, Block 38, Seattle, Washington*. Prepared for City Investors IX, LLC. October 17.
- Hart Crowser, Inc. 1999. Letter Regarding Preliminary Environmental Assessment Update, Westlake Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington. From Rob Roberts and Julie K.W. Wukelic. To City Investors VI LLC c/o Joe Delaney, Foster Pepper & Shefelman. April 5.
- U.S. Environmental Protection Agency (EPA). 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. OLEM 9355.0-135, EPA-540-R-2017-001. January.
- ———. 2017a. National Functional Guidelines for Organic Superfund Methods Data Review. OLEM 9355.0-136, EPA-540-R-2017-002. January.
- U.S. Geological Survey. 1909. Washington Seattle Special Quadrangle Map. May.
- Washington State Department of Ecology (Ecology). 2009. Letter Regarding No Further Action at the 960 Republican St. Property Associated with a Site. From Joseph M. Hickey. To Janet Donelson, Schnitzer West, LLC. May 28.
- ———. 2011. *Guidance for Remediation of Petroleum Contaminated Sites*. Publication No. 10-09-057. Revised June 2016. September.

9.0 LIMITATIONS

9.1 GENERAL LIMITATIONS

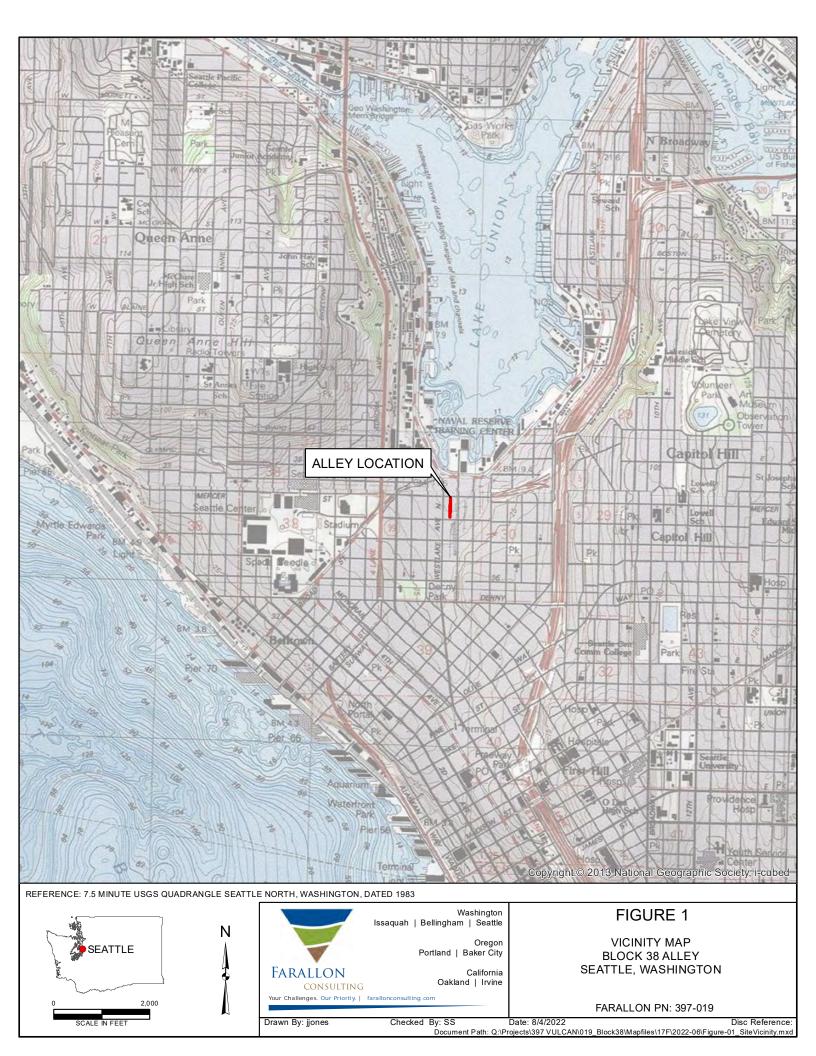
The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

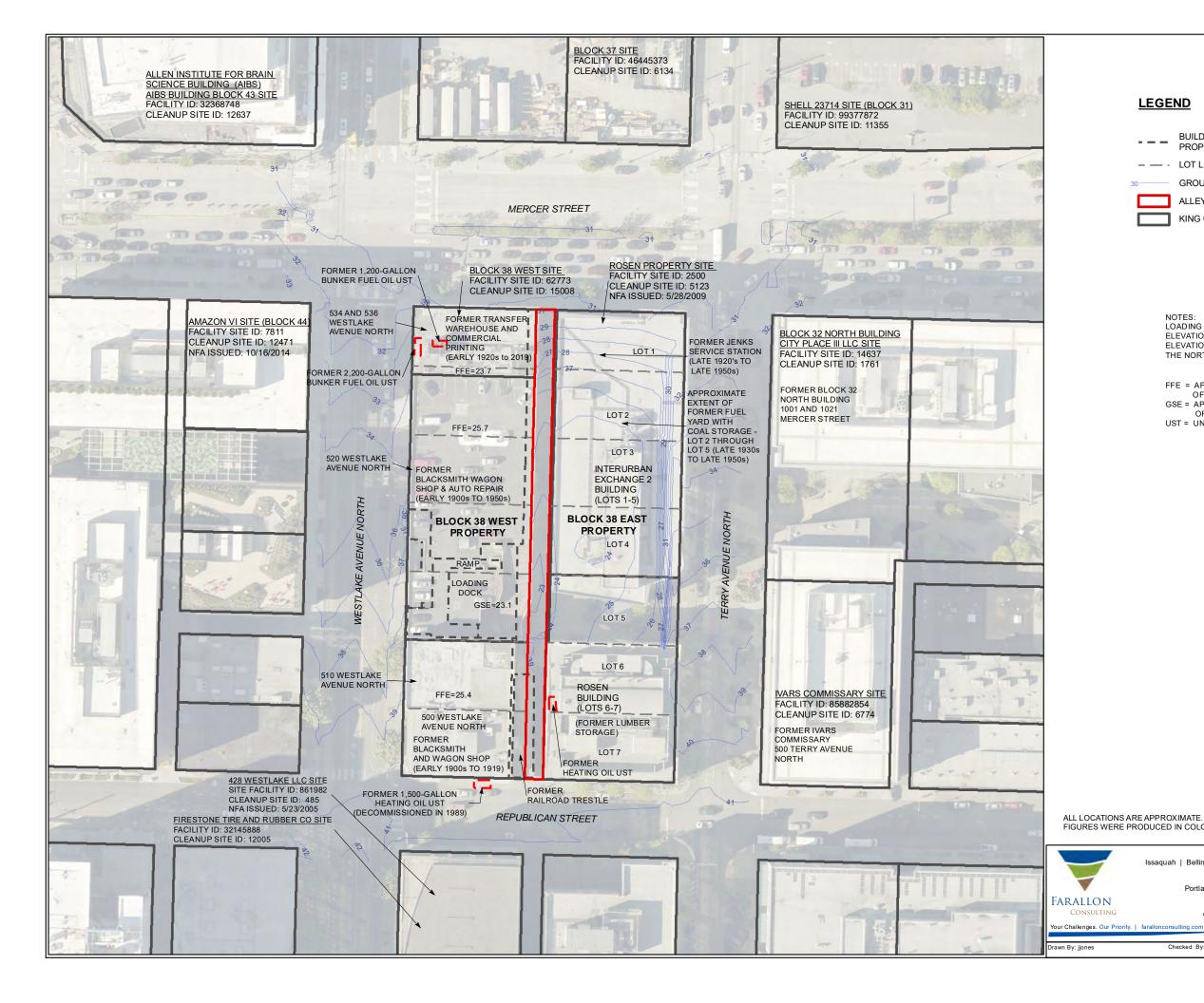
- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- **Reconnaissance and/or Characterization**. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and City Investors IX LLC, and currently accepted industry standards. No other warranties, representations, or certifications are made.

9.2 LIMITATION ON RELIANCE BY THIRD PARTIES

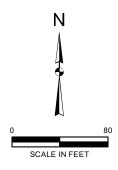

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of City Investors IX LLC to address the unique needs of City Investors IX LLC at the Block 38 West Site at a specific point in time.


This is not a general grant of reliance. No one other than City Investors IX LLC may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

FIGURES

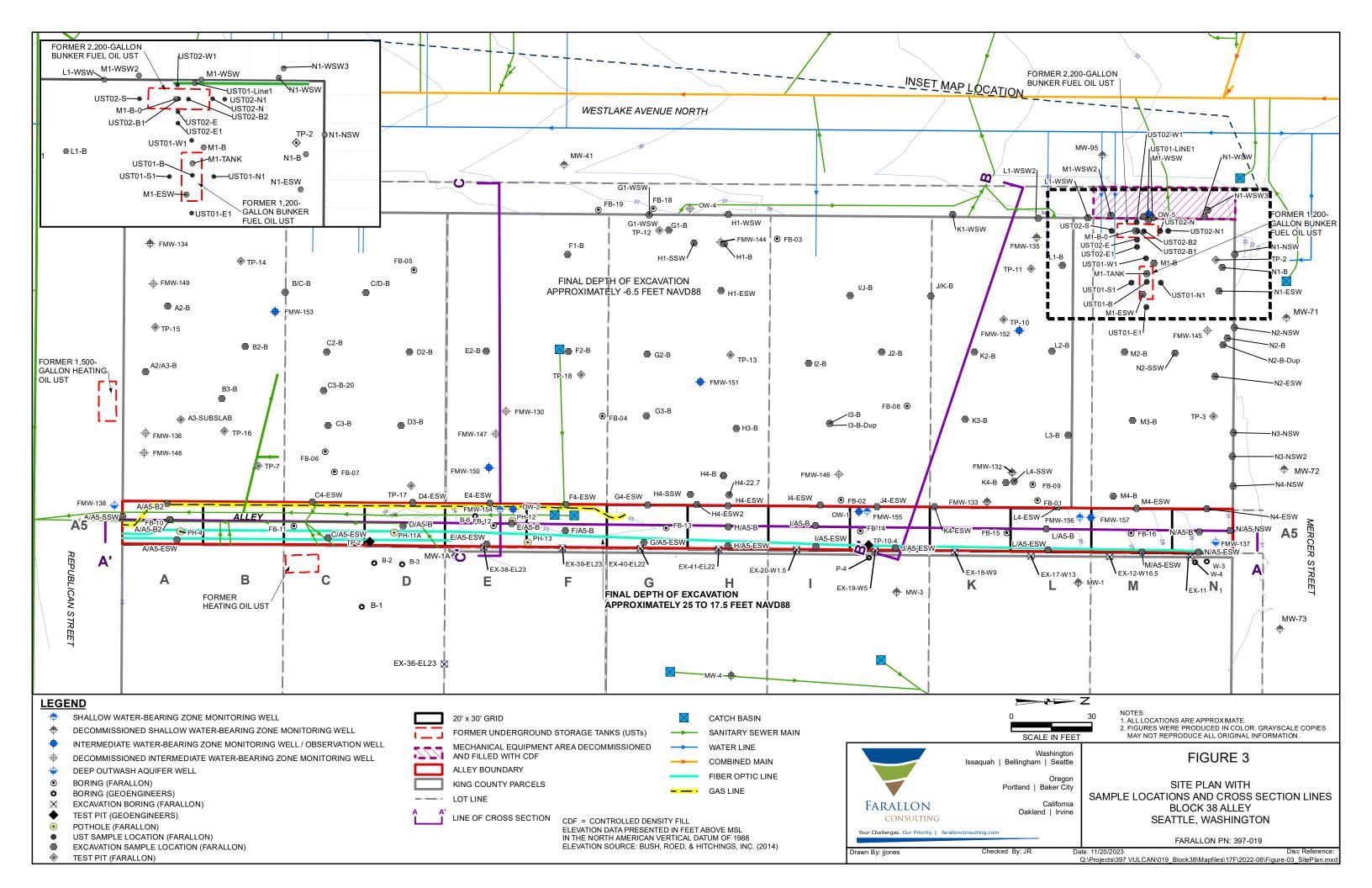
INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

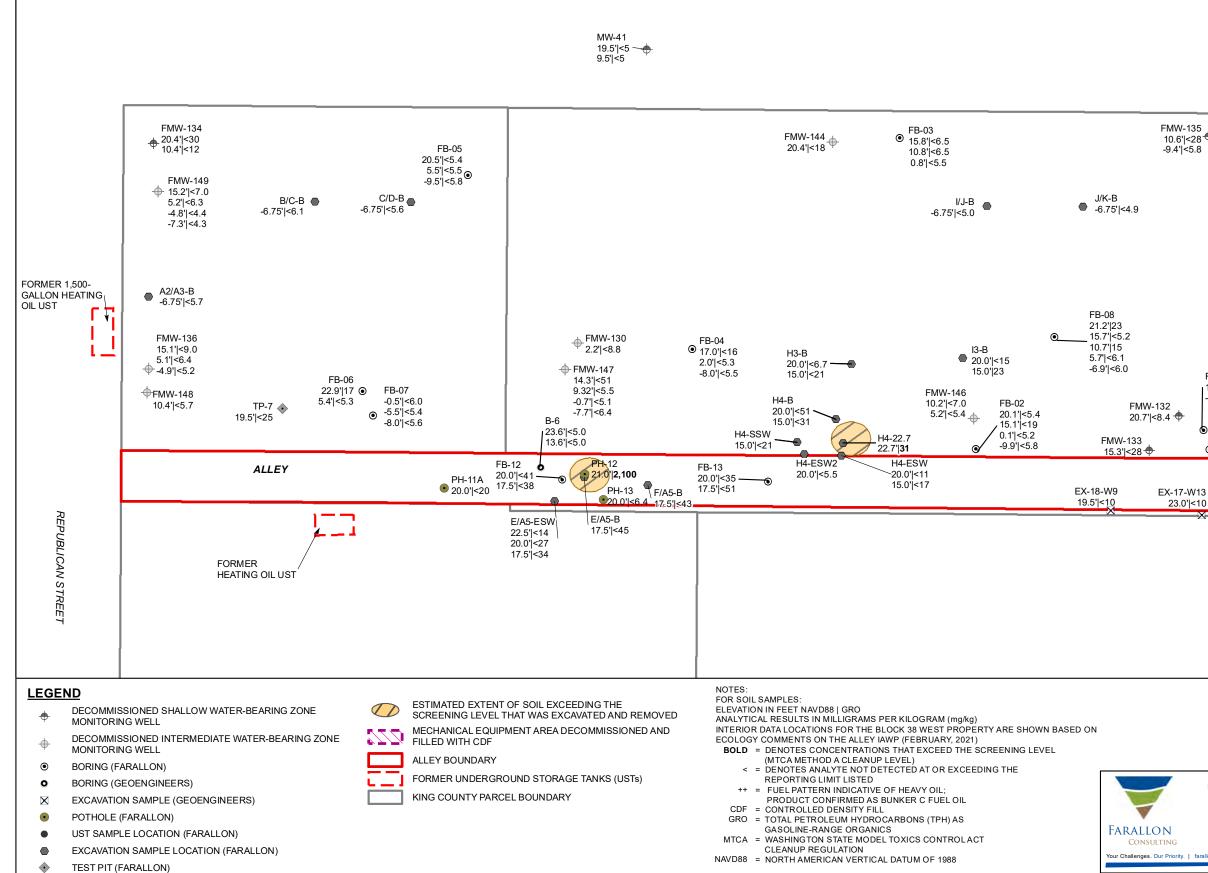


LEGEND

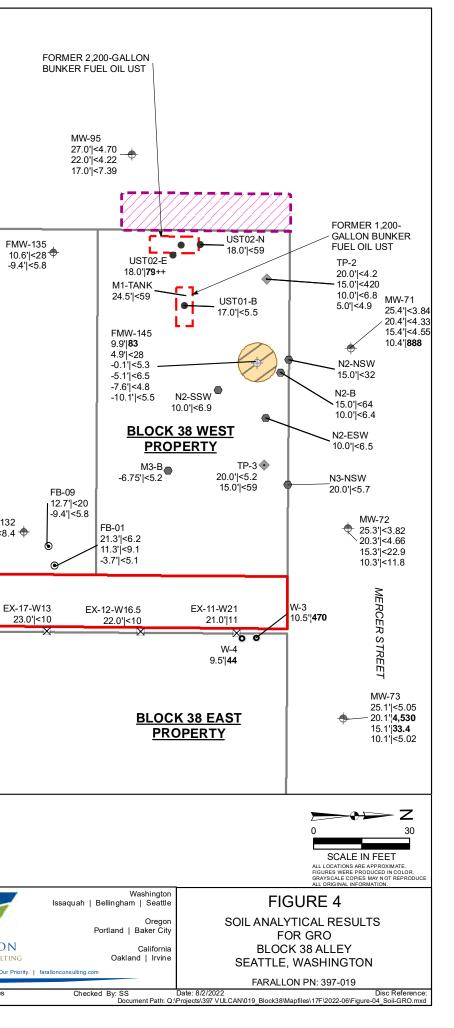
- BUILDING FEATURES (BUILDINGS ON BLOCK 38 WEST - - -PROPERTY DEMOLISHED IN 2019)
- - LOT LINE
 - GROUND SURFACE ELEVATION CONTOUR
 - ALLEY BOUNDARY
 - KING COUNTY PARCEL BOUNDARY

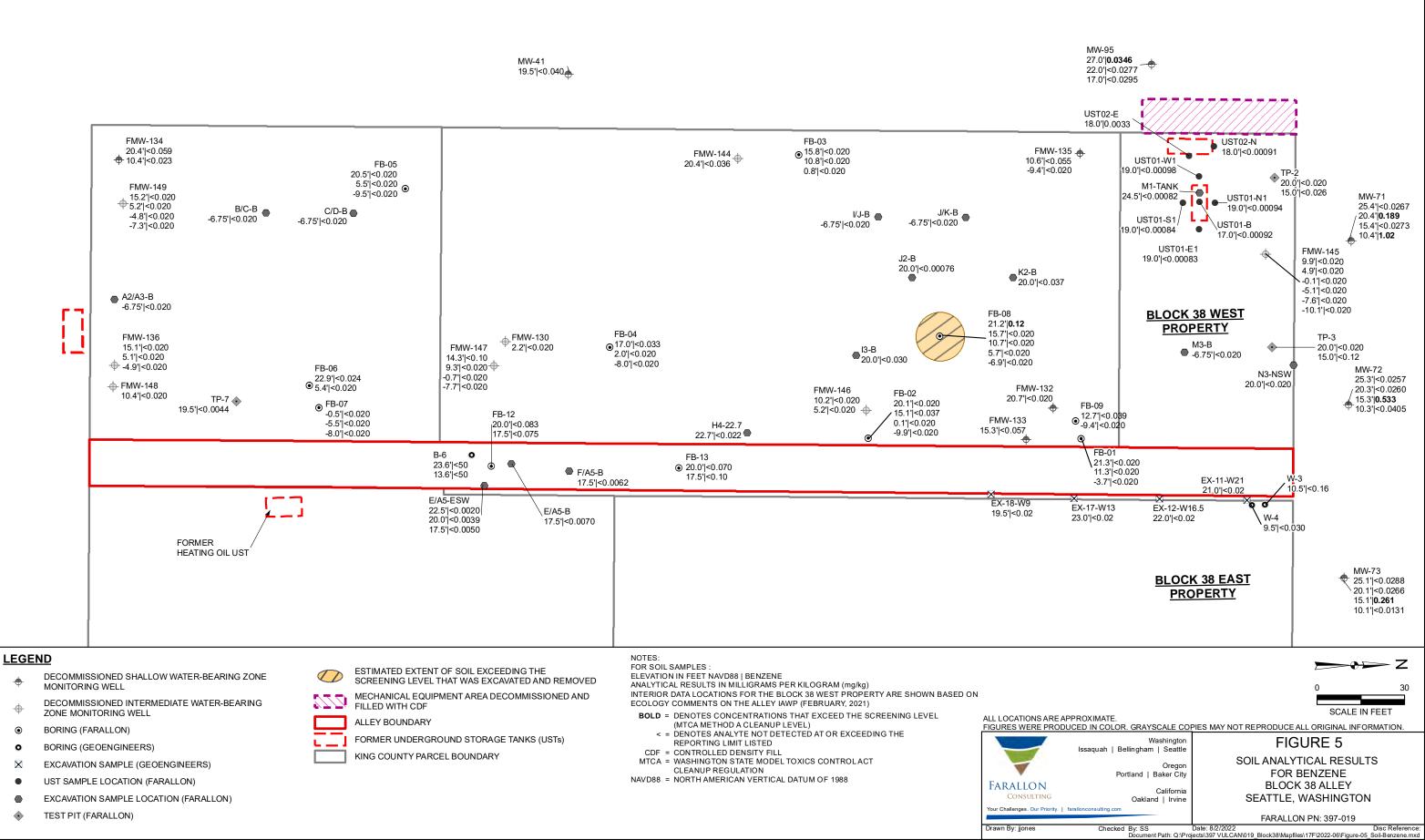

NOTES: LOADING DOCK HIGHER THAN GSE ELEVATION SOURCE: BUSH, ROED, & HITCHINGS, INC. (2014) ELEVATION DATA PRESENTED IN FEET ABOVE MEAN SEA LEVEL IN THE NORTH AMERICAN VERTICAL DATUM OF 1988

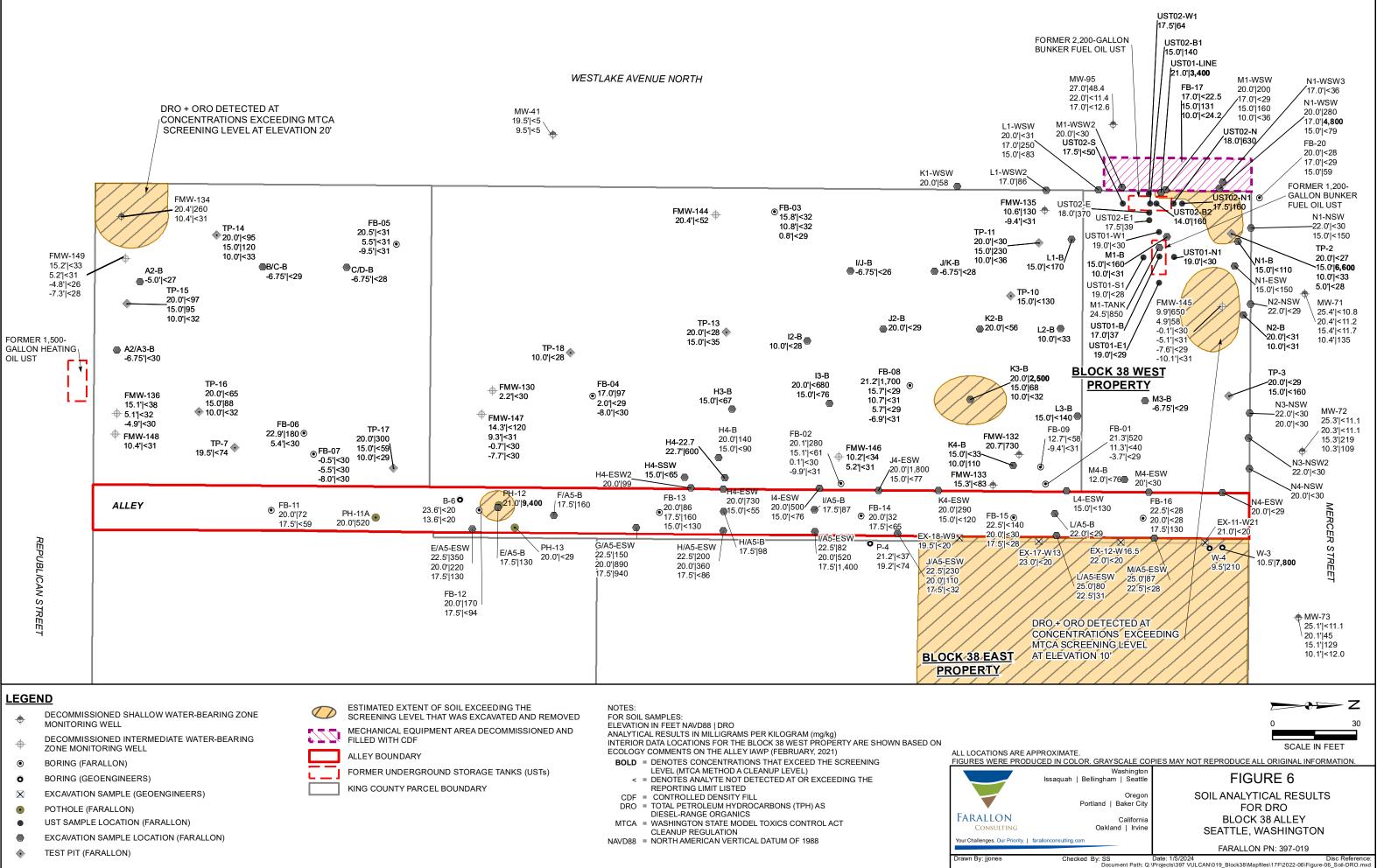
FFE = APPROXIMATE FINISH FLOOR ELEVATIONS OF GROUND FLOOR OF FORMER BUILDING GSE = APPROXIMATE GROUND SURFACE ELEVATION OF FORMER LOADING DOCK AREA UST = UNDERGROUND STORAGE TANK

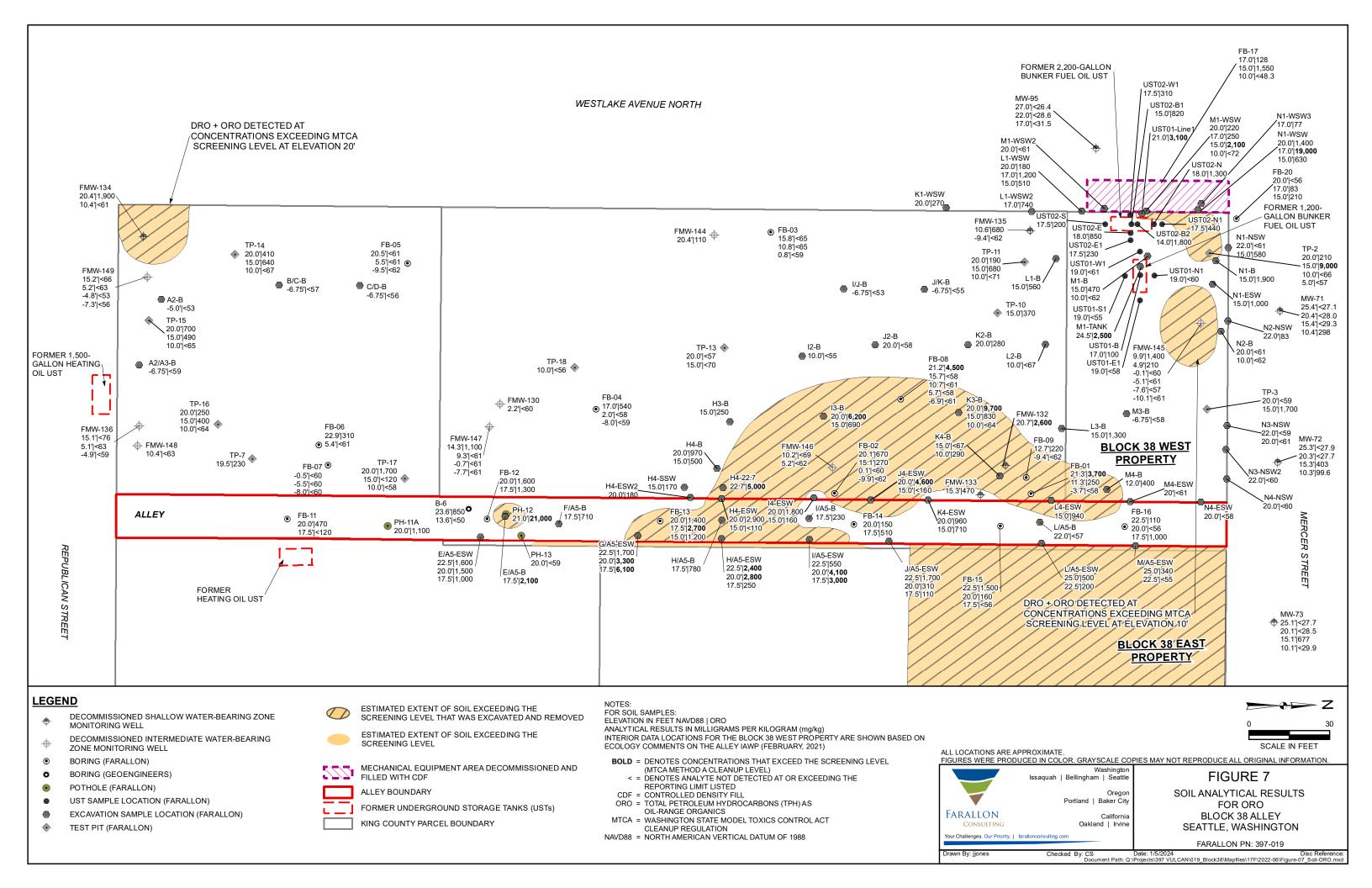


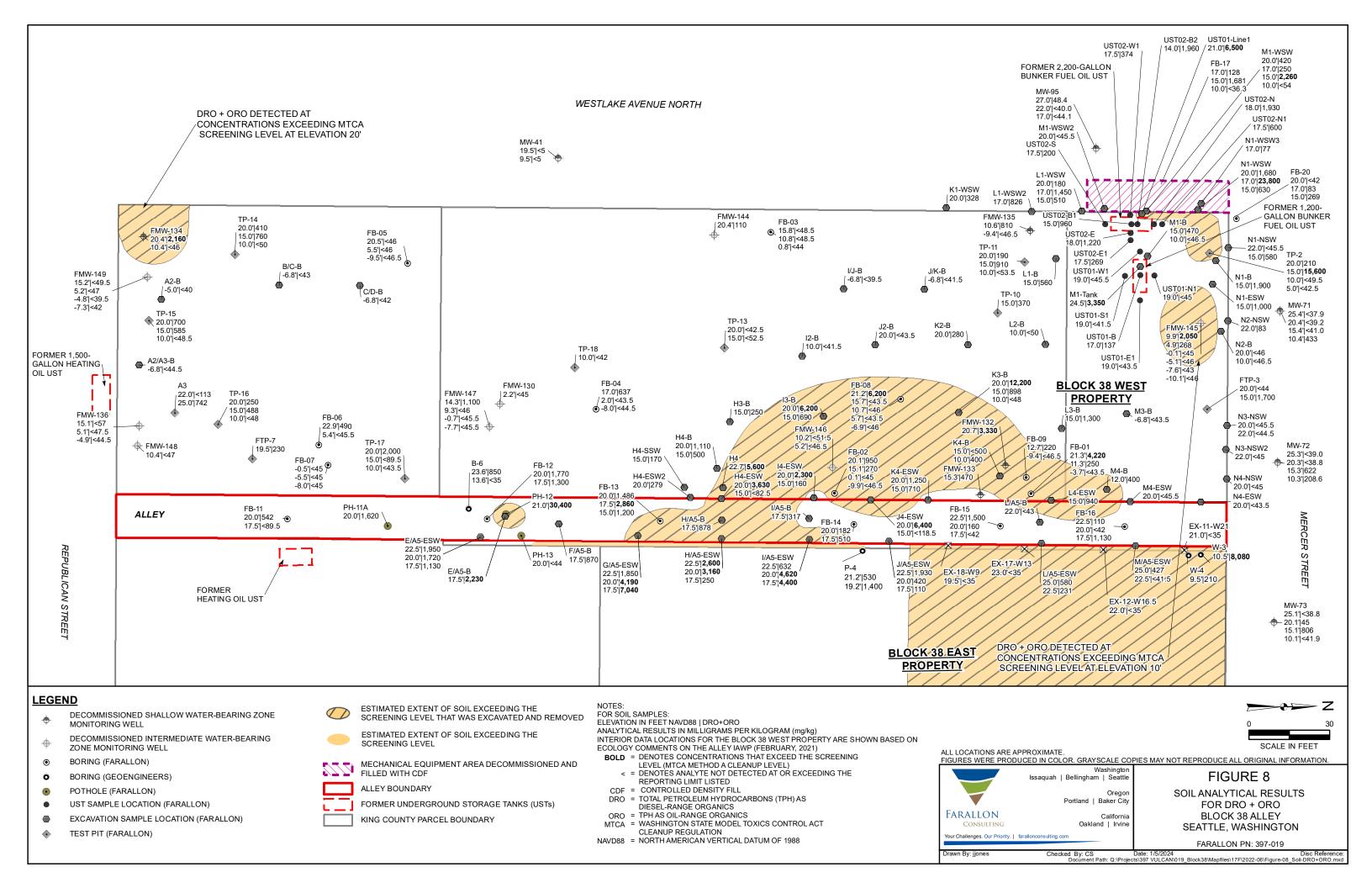
FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

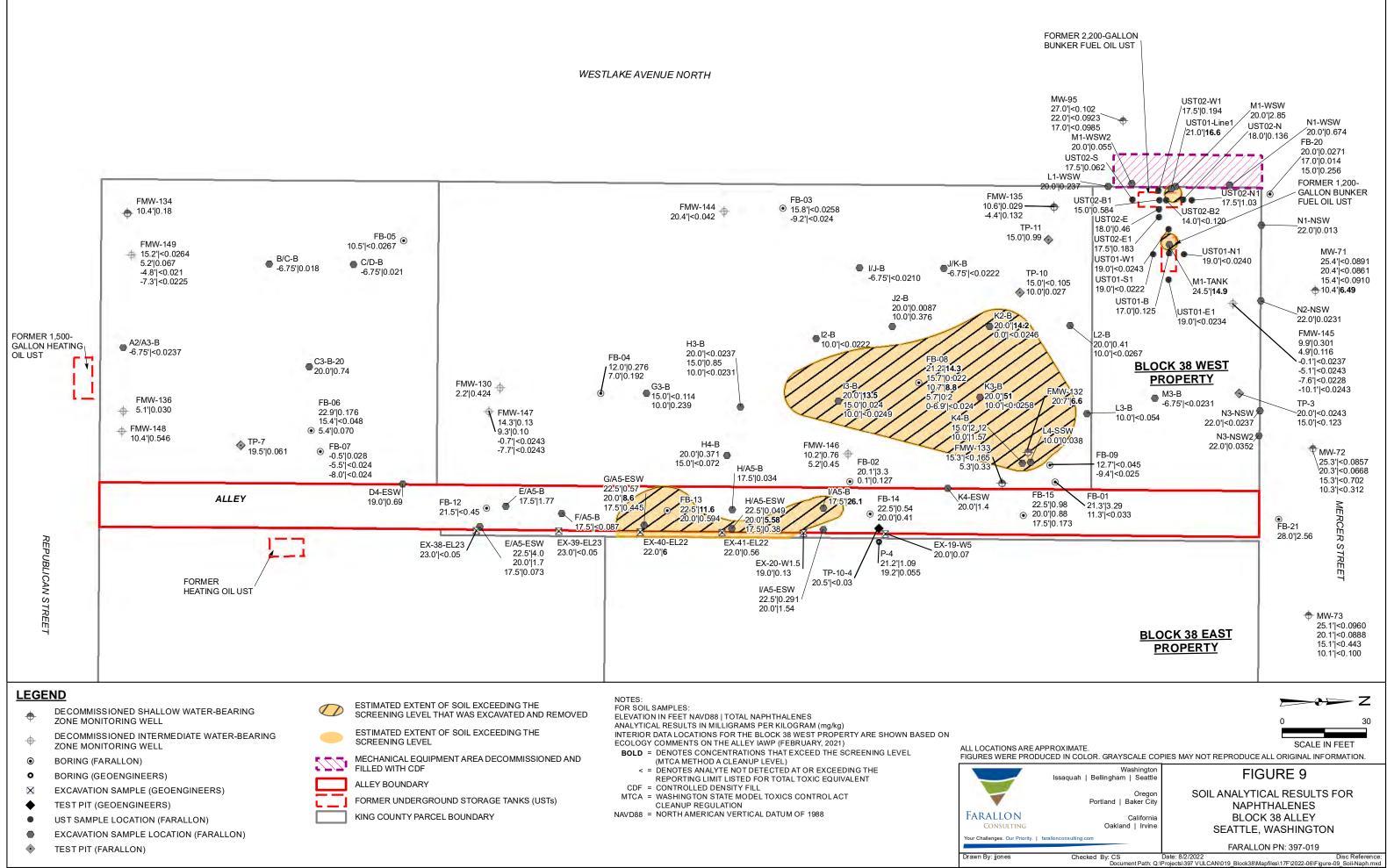

Washington Issaquah Bellingham Seattle	FIGURE 2
Oregon Portland Baker City California Oakland Irvine	SITE PLAN WITH NEARBY HISTORICAL FEATURES BLOCK 38 ALLEY SEATTLE, WASHINGTON
farallonconsulting.com	FARALLON PN: 397-019
Checked By: SS	Date: 8/2/2022 Disc Reference: Document Path: Q:IProjects\397 VULCANI019_Block38Wapfiles\17F2022-66Figure-02_HisFeats.mxd

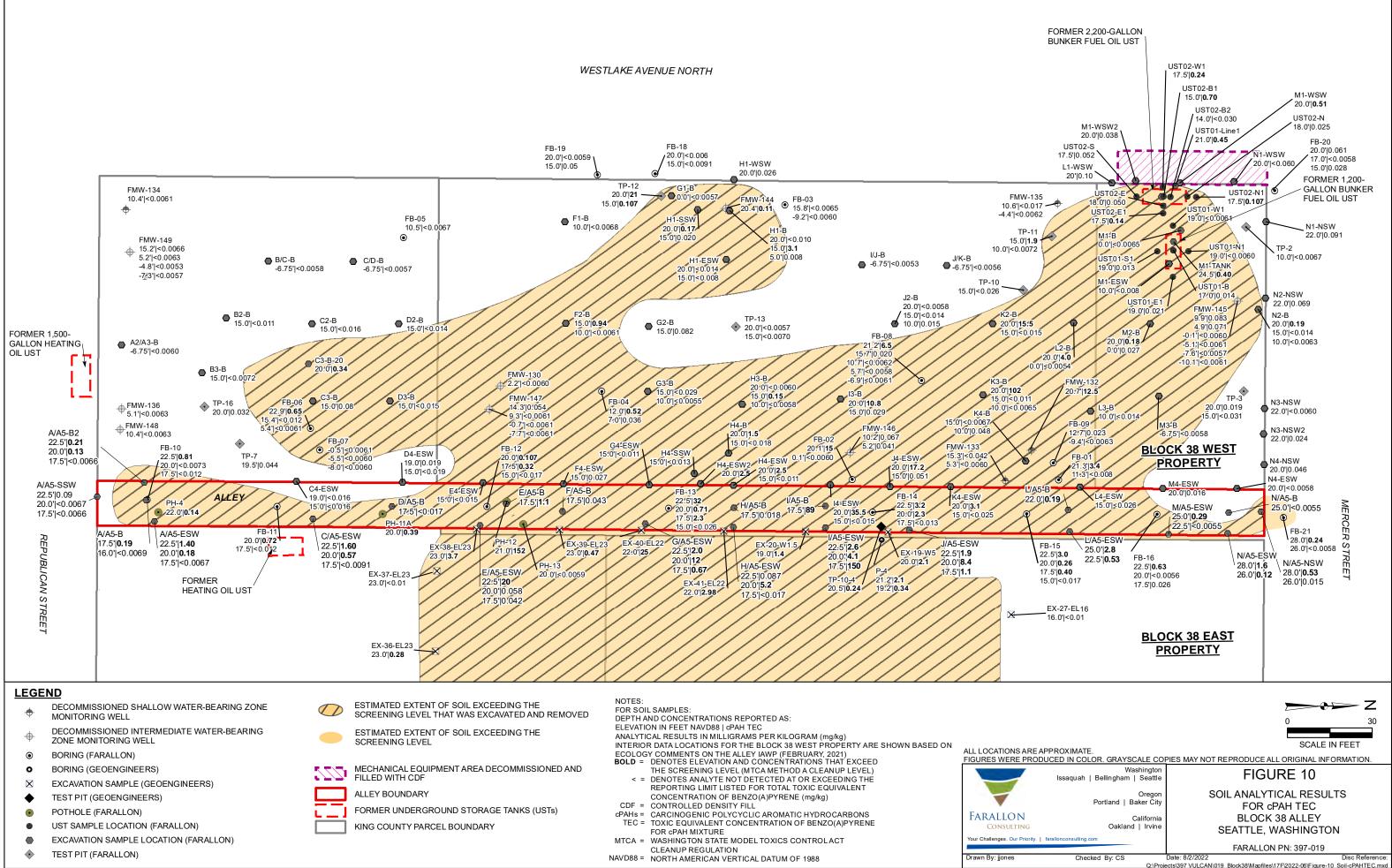


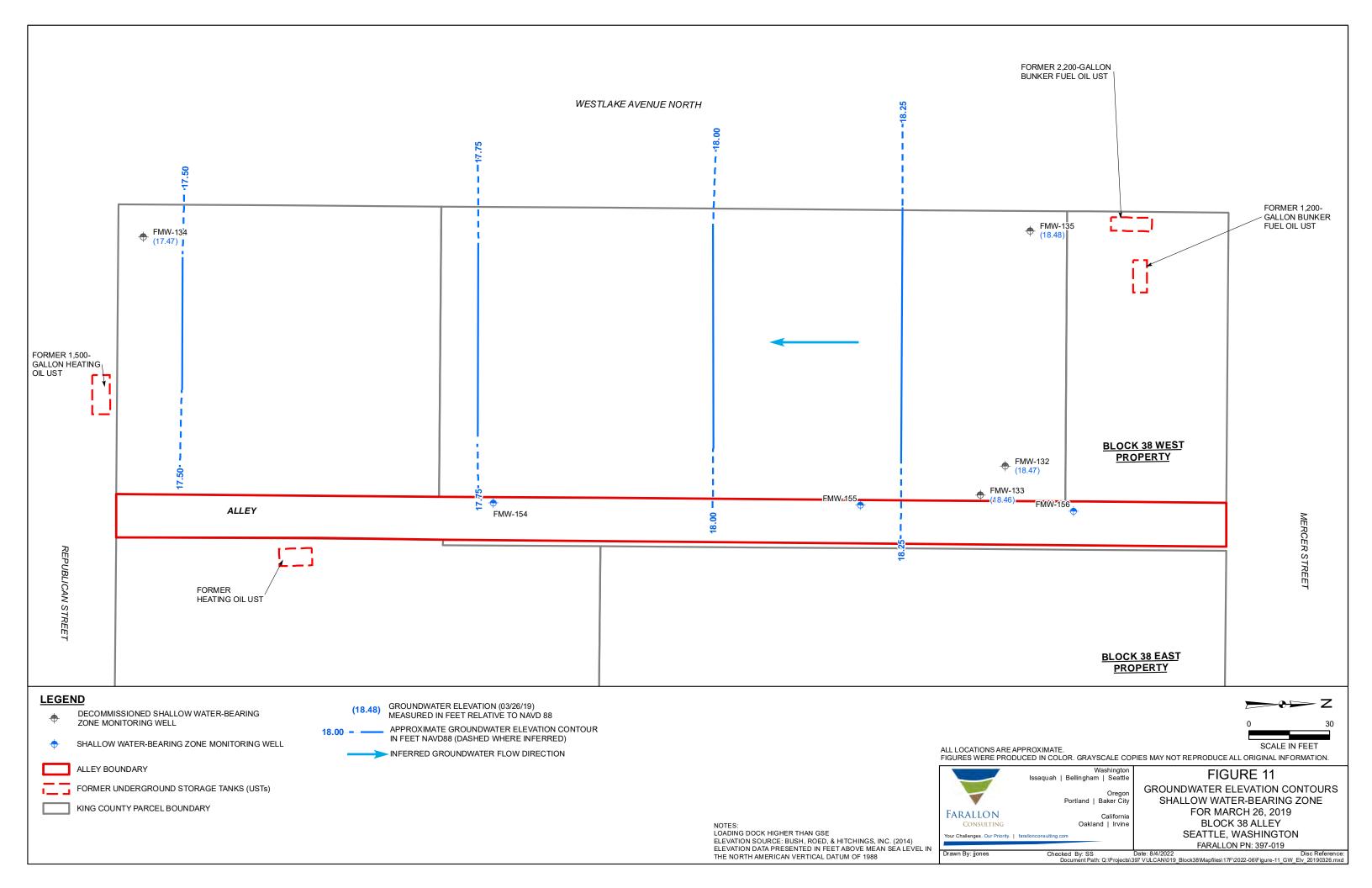

WESTLAKE AVENUE NORTH

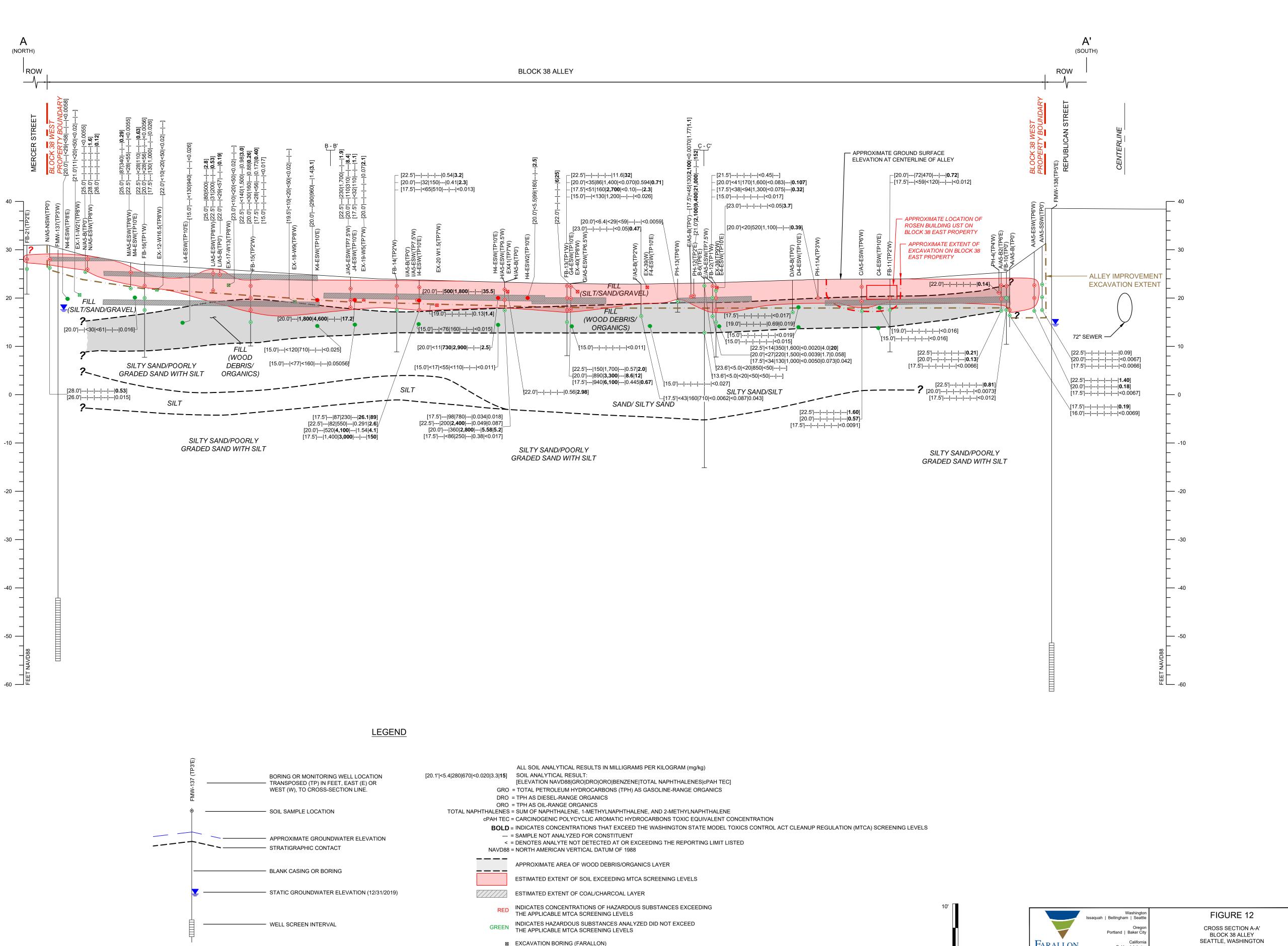


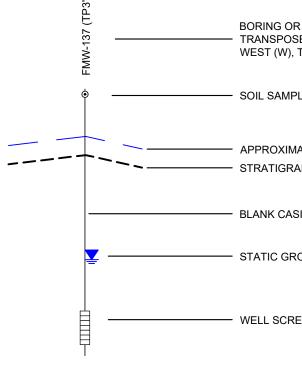

Drawn By: jjones





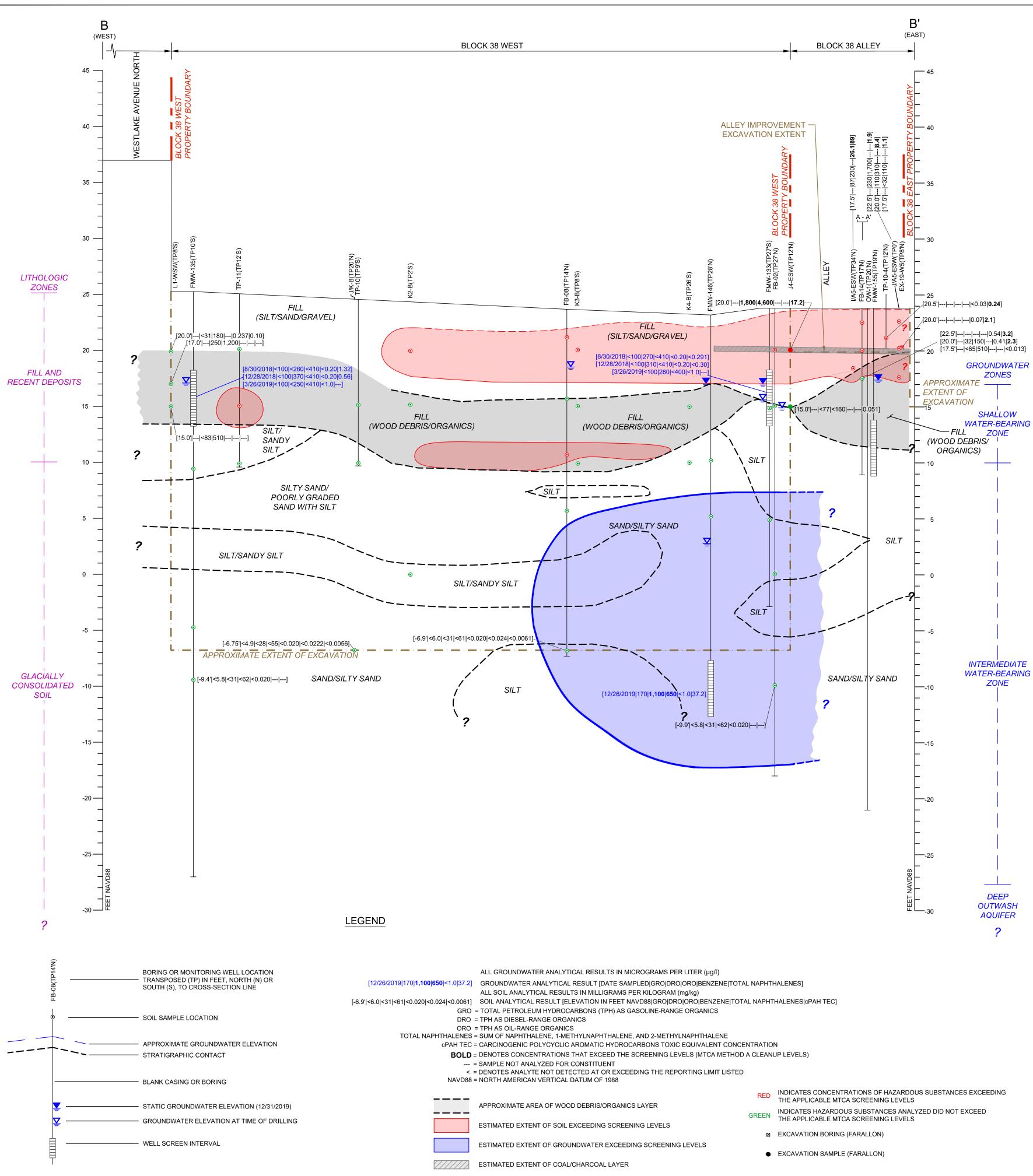






MONITORING WELL LOCATION D (TP) IN FEET, EAST (E) OR D CROSS-SECTION LINE.		ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg) SOIL ANALYTICAL RESULT: [ELEVATION NAVD88 GRO DRO ORO BENZENE TOTAL NAPHTHALENES cPAH TEC] = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS = TPH AS DIESEL-RANGE ORGANICS
ELOCATION	TOTAL NAPHTHALENES = cPAH TEC =	= TPH AS OIL-RANGE ORGANICS = SUM OF NAPHTHALENE, 1-METHYLNAPHTHALENE, AND 2-METHYLNAPHTHALENE = CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS TOXIC EQUIVALENT CONCENTRATION
TE GROUNDWATER ELEVATION PHIC CONTACT	= < =	: INDICATES CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION (MTCA) SCREENING : SAMPLE NOT ANALYZED FOR CONSTITUENT : DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED : NORTH AMERICAN VERTICAL DATUM OF 1988
NG OR BORING		APPROXIMATE AREA OF WOOD DEBRIS/ORGANICS LAYER ESTIMATED EXTENT OF SOIL EXCEEDING MTCA SCREENING LEVELS
UNDWATER ELEVATION (12/31/2019)		ESTIMATED EXTENT OF COAL/CHARCOAL LAYER
	RED	INDICATES CONCENTRATIONS OF HAZARDOUS SUBSTANCES EXCEEDING THE APPLICABLE MTCA SCREENING LEVELS
EN INTERVAL	GREEN	INDICATES HAZARDOUS SUBSTANCES ANALYZED DID NOT EXCEED THE APPLICABLE MTCA SCREENING LEVELS
		EXCAVATION BORING (FARALLON)
	•	EXCAVATION SAMPLE (FARALLON)

ur Challenges. Our Priority. | farallon Drawn By: NM Checked By: SS


CONSULTING

Farallon

California

Oakland | Irvine

FARALLON PN:397-019 Date: 08/02/2022

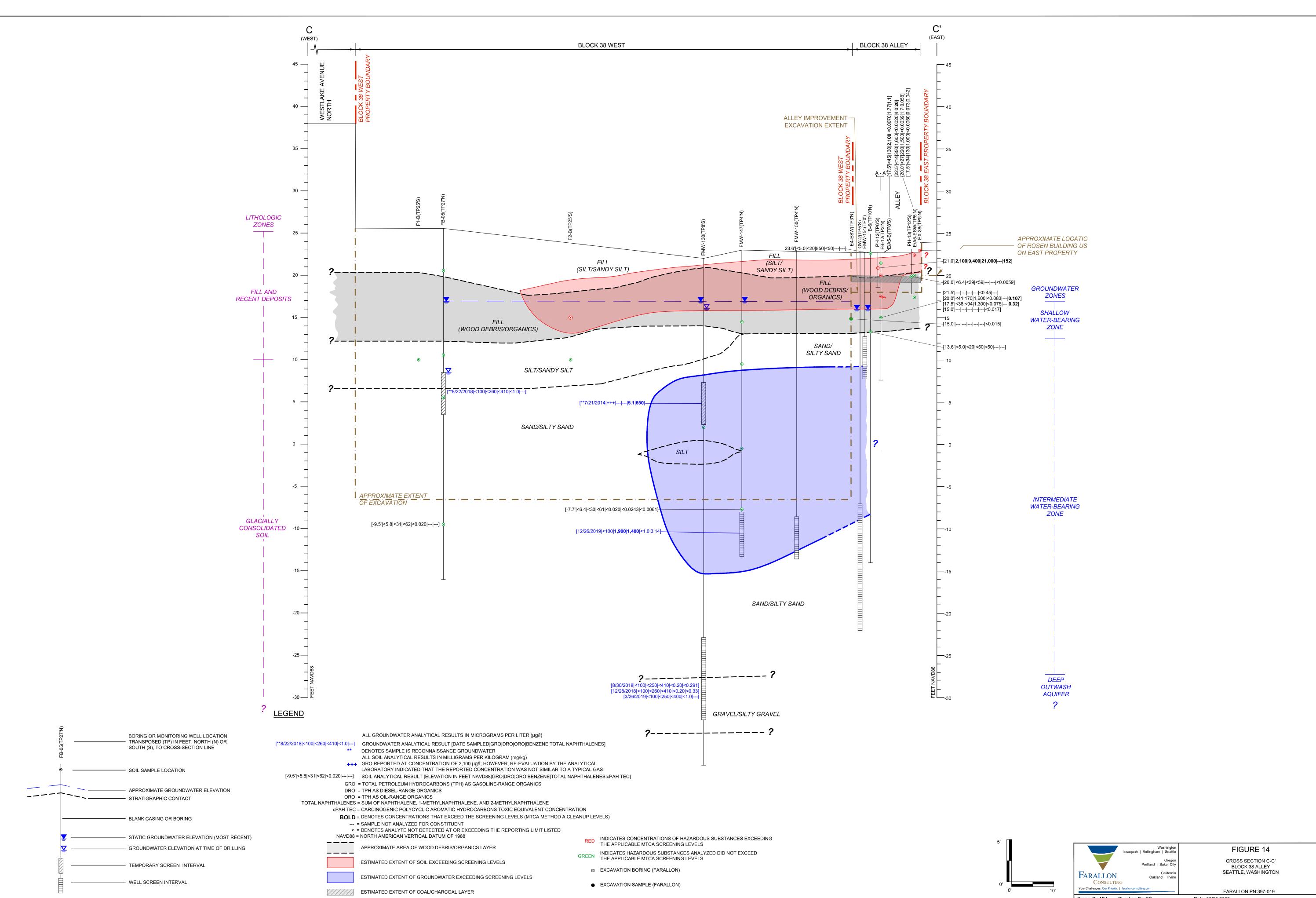
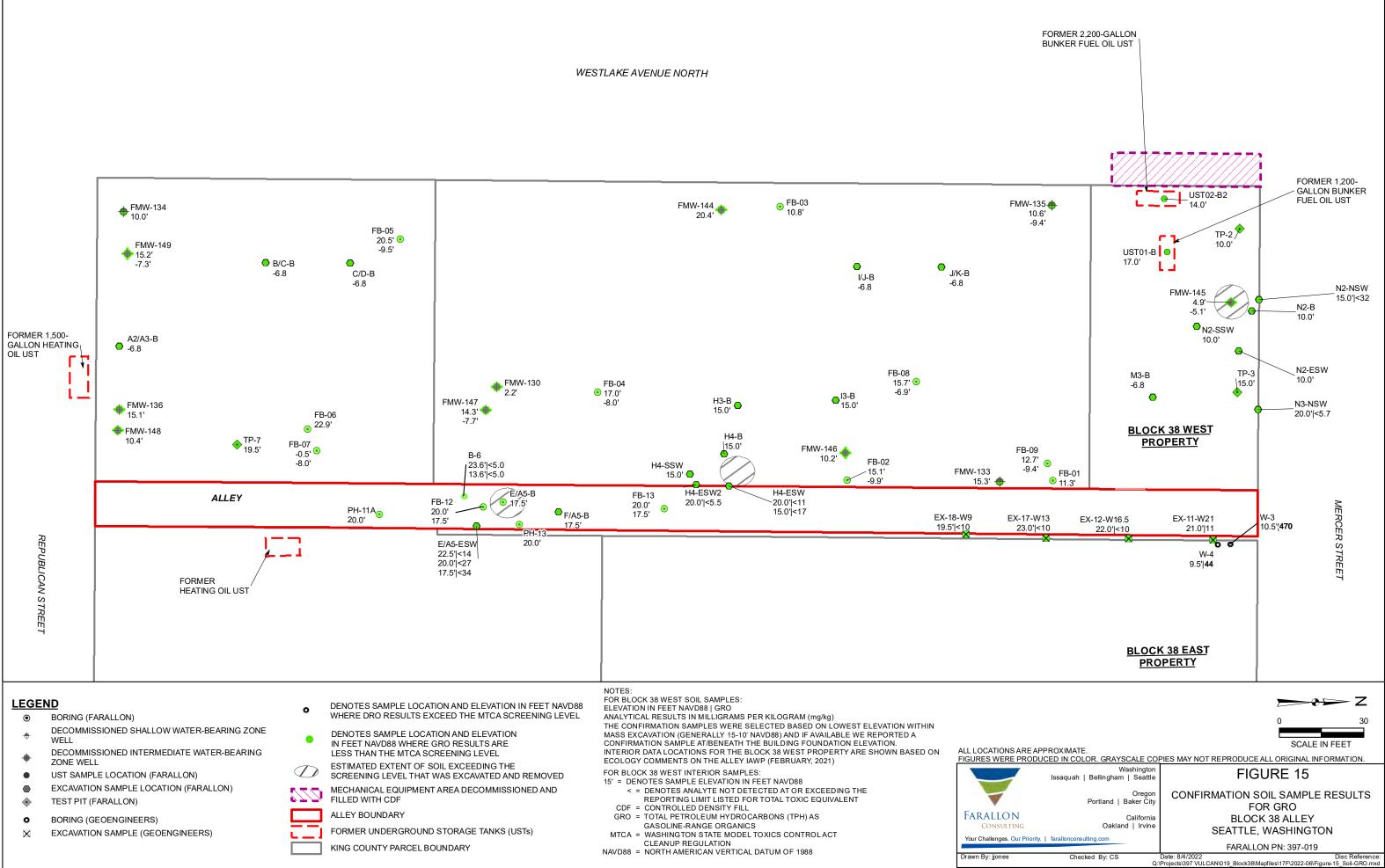
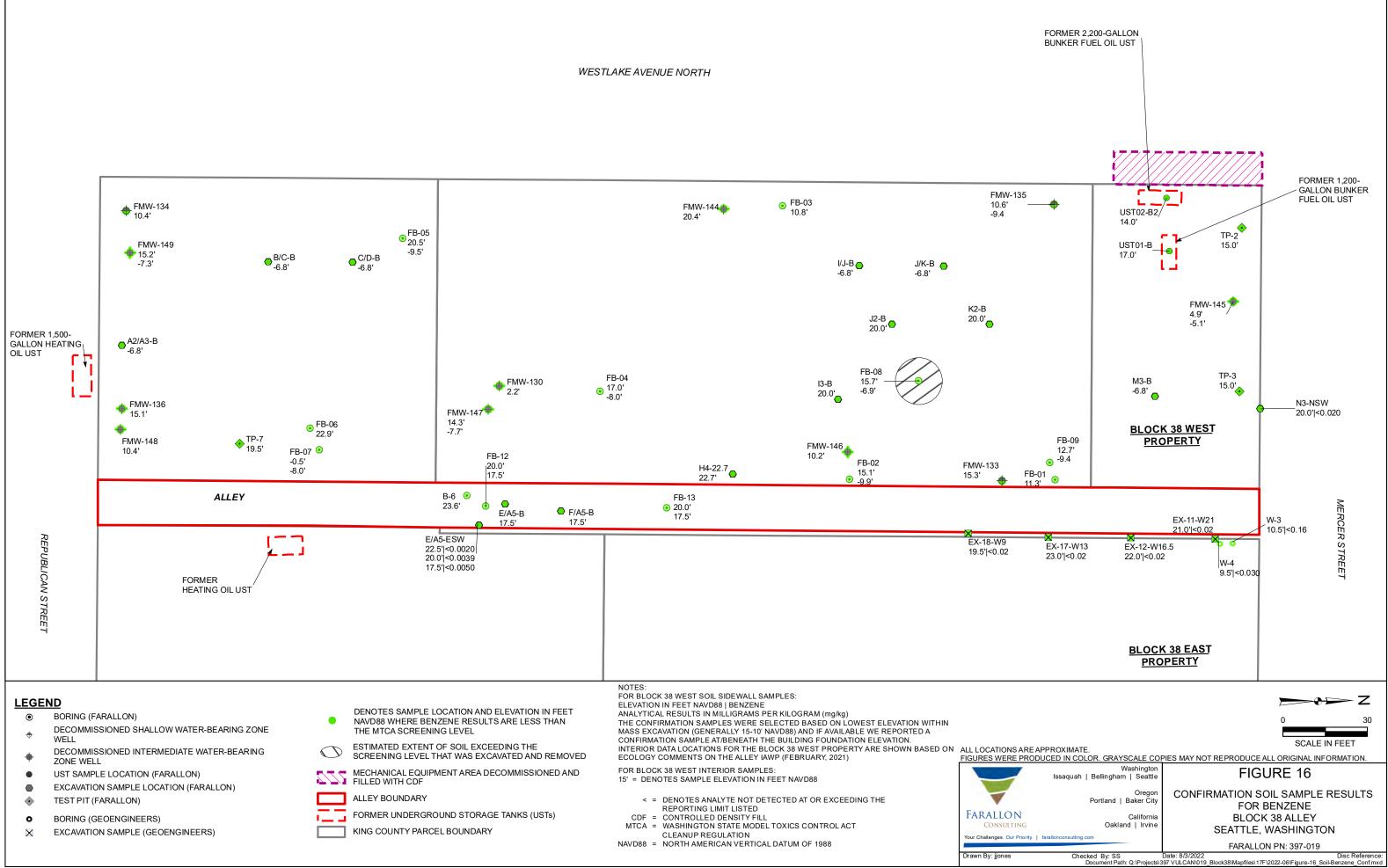

Washington saquah | Bellingham | Seattle Portland | Baker Cit Californ FARALLON Oakland | Irvine CONSULTING Challenges. Our Priority. | farallo

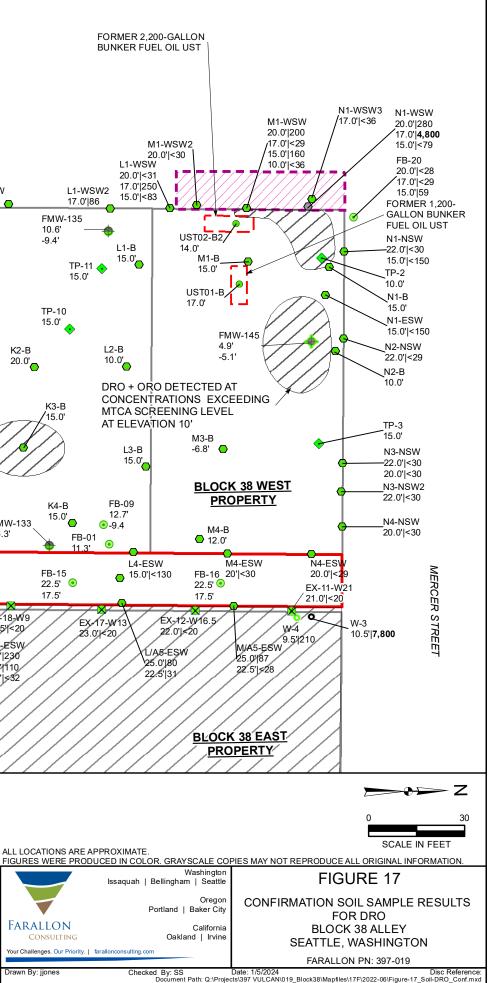
FIGURE 13


CROSS SECTION B-B' BLOCK 38 ALLEY SEATTLE, WASHINGTON

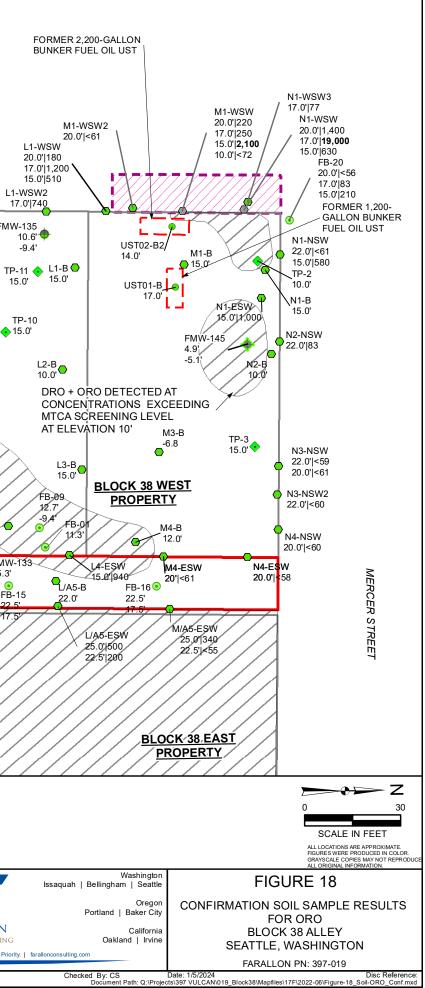

Drawn By: NM Checked By: CS

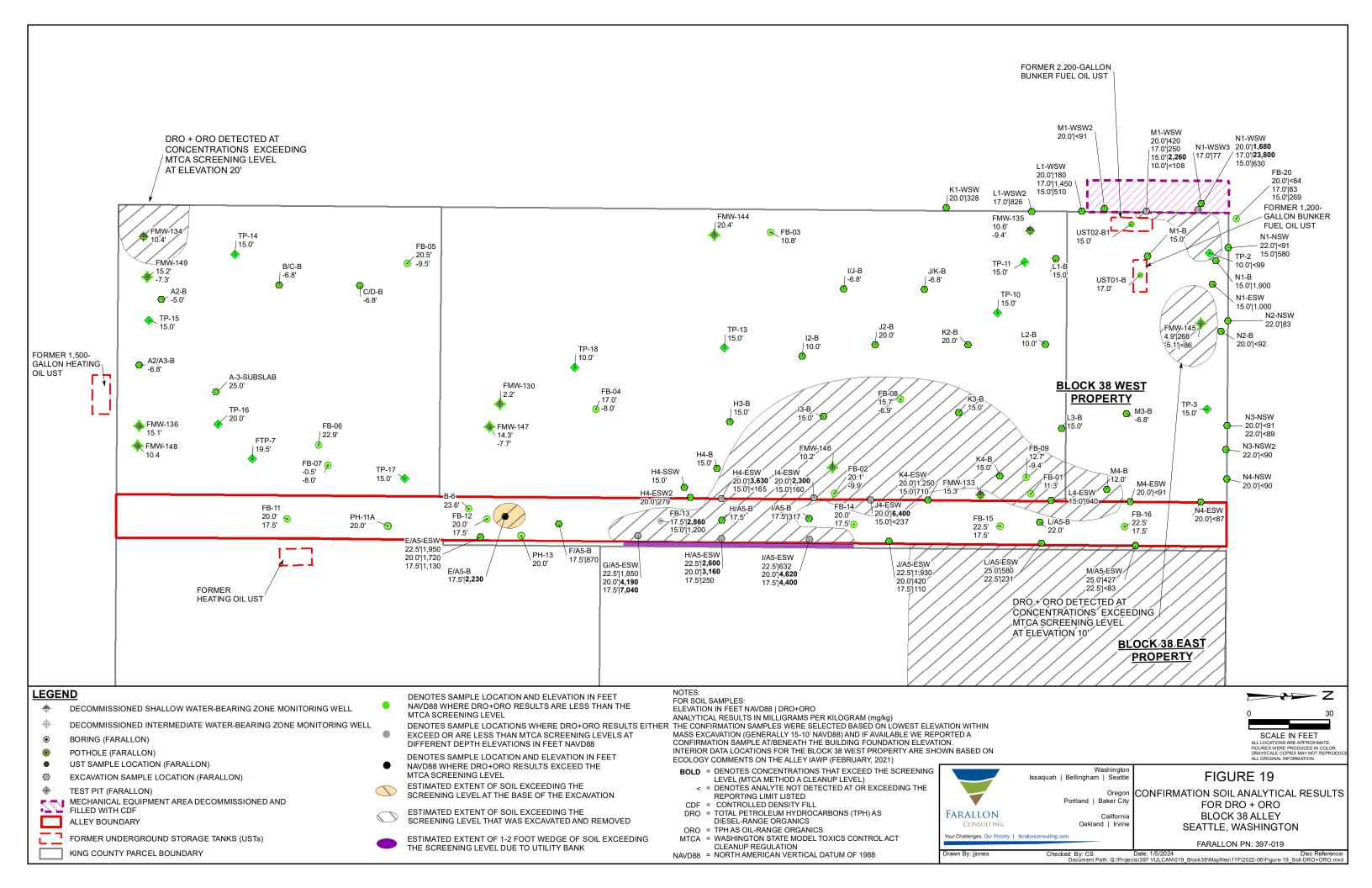
FARALLON PN:397-019 Date: 08/03/2022

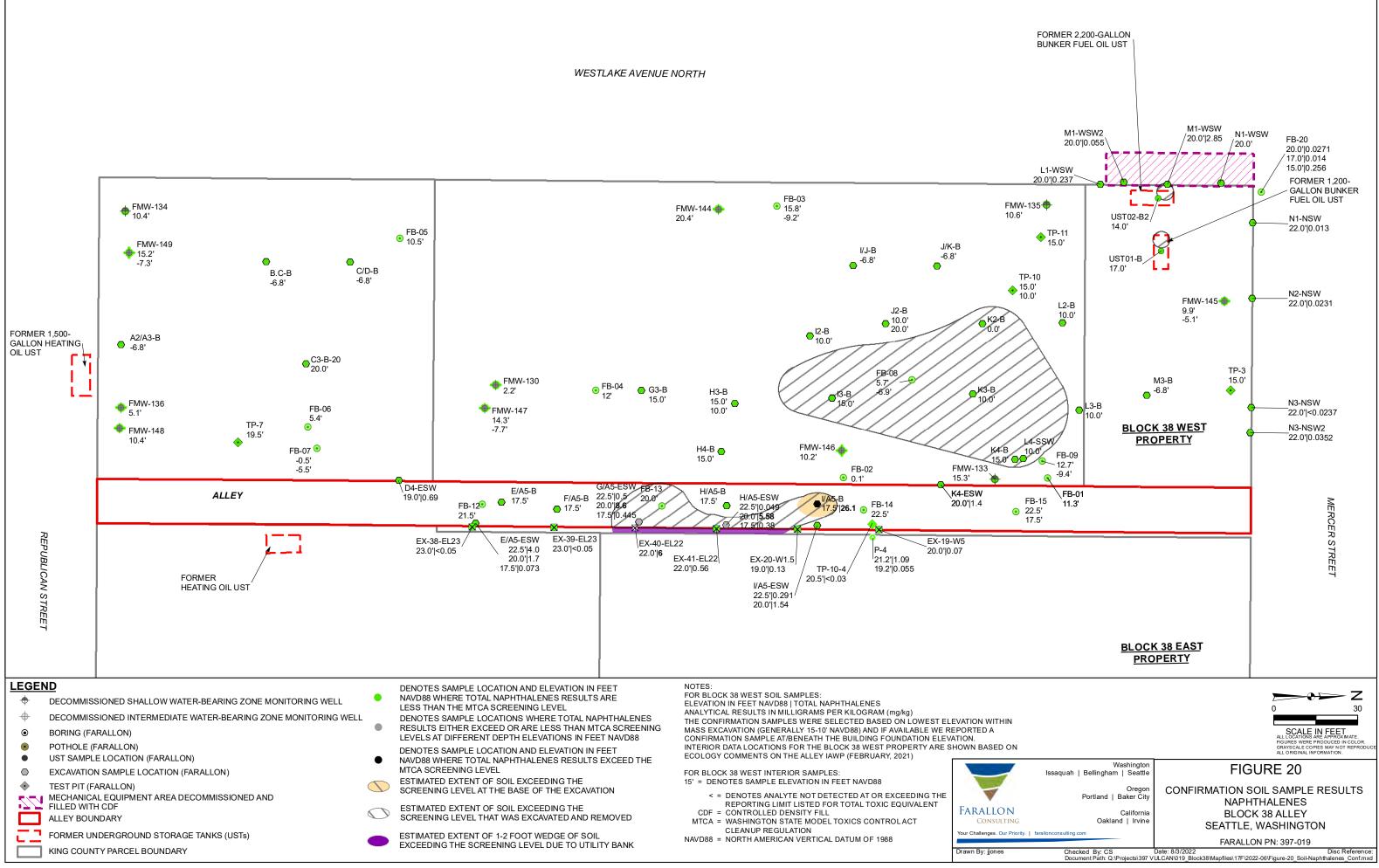
Drawn By: NM Checked By: CS Date: 08/03/2022

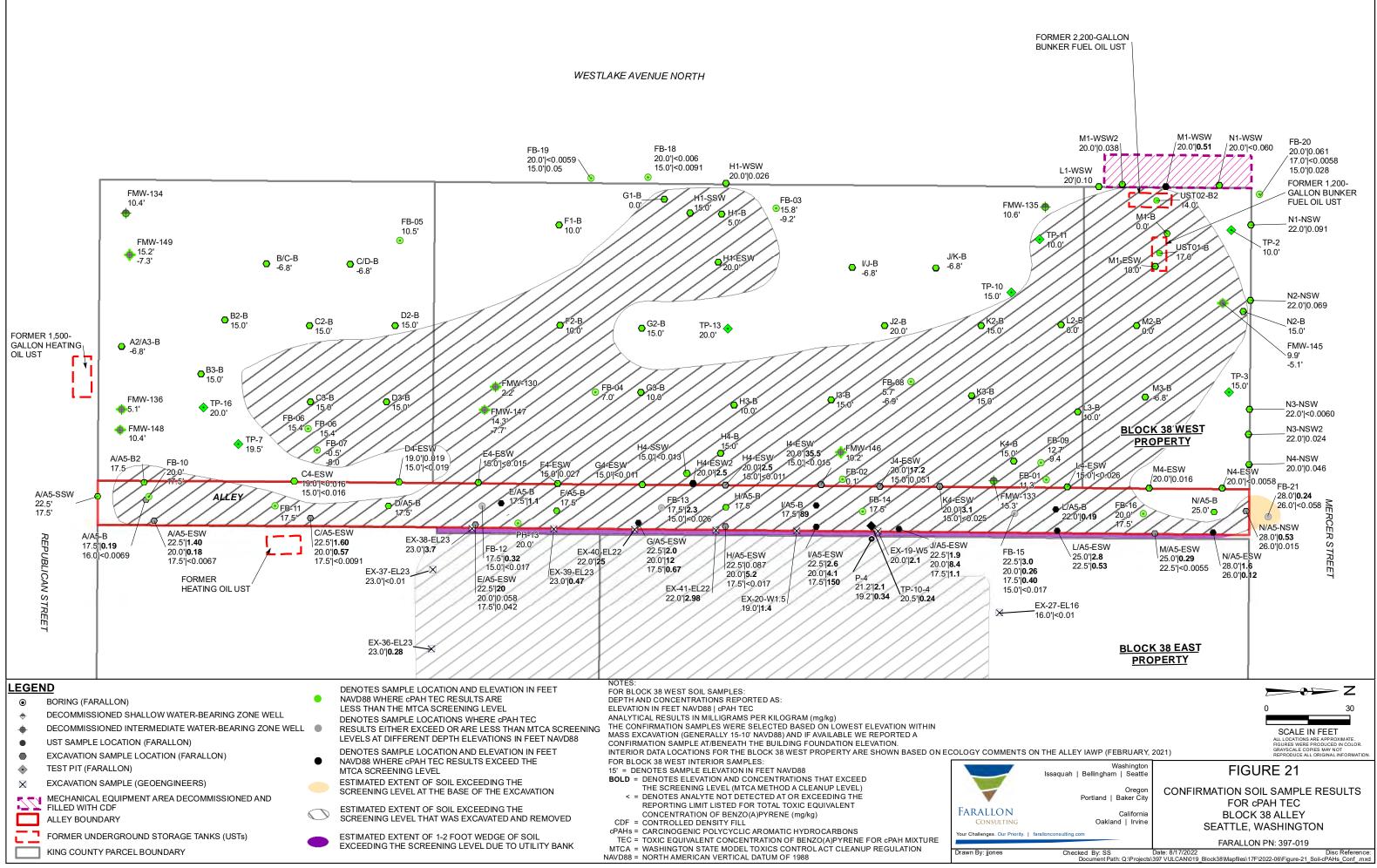

WESTLAKE AVENUE NORTH DRO + ORO DETECTED AT CONCENTRATIONS EXCEEDING / MTCA SCREENING LEVEL AT ELEVATION 20' K1-WSW 20.0'|58 FMW-135 FMW-144 FB-03 10.6' 10.8' 20.4' -9.4 ◆ TP-14 15.0' FB-05 20.5' 📀 FMW-149 15.0' -9.5' +15.2 I/J-B ●^{B/C-B} -6.8' J/K-B \bigcirc -6.8' -7.3' -6.8' 🔾 C/D-B ●_{A2-B} **TP-10** -6.8' 15.0' -5.0 TP-15 15.0' 🔶 J2-B K2-B TP-13 15.0' 20.0 20.0 I2-B 10.0 FORMER 1,500-● ^{A2/A3-B} -6.8' TP-18 10.0' GALLON HEATING OIL UST FB-08 K3-B 15.7' **′**15.0 -6.9' FMW-130 2.2' FB-04 13-B 17.0' H3-B 15.0' -8.0 15.0' **FMW-136** 15.1' TP-16 FMW-147 FB-06 22.9' 15.0' 14.3' TP-7 🔶 19.5' 🔶 FMW-148 -7.7' H4-B ^{15.0} FMW-146 TP-17 K4-B 10.4 FB-02 🔶 10.2' 15.0' 15.0' FB-12 J4-ESW FB-07 H4-ESW 15.1 FMW-133 H4-SSW 20.0 20.0'|1,800 -0.5' 20.0'|730 -9.9' 15.3' 15.0' 17.5' 15.0'|<77 15.0'|<5 11 3' FB-13 EXA5-B I4-ESW K4-ESV В-6 💿 H4-ESW2 I/A5-B 17.5' 20.0'|500 FB-14 15.0'|<76⊙ 20.0' PH-13 PH-13 F/A5-B 20.0' ALLEY FB-11 H/A5-B 20.0'|290 20.0'|99 20.0' ♦ 17.5' FB-15 23.6' 17.5' 💿 PH-11A 20.0' 15.0'|<120 22.5' 💿 17.5' 20.0' 17.5' 17.5' I/A5-ESW P-4 H/A5-ESW EX-18-W9 E/A5-ESW G/A5-ESW 22.5'|82 21.2'|<37 19.54<20 22.5'|150 22.5'|200 22.5'|350 BL 20.0 520 19.2'|<74 20.0 360 20.0'|890 17.5'|940 JA5-ESW 20.0'|220 17.5 1,400 17.5'|<86 ົດ 17.5 130 FORMER 20.01110 HEATING OIL UST STREET 17.5' \$32 LEGEND DENOTES SAMPLE LOCATION AND ELEVATION IN FEET NAVD88 WHERE DRO RESULTS ARE LESS THAN THE FOR BLOCK 38 WEST SOIL SAMPLES: ۲ BORING (FARALLON) ELEVATION IN FEET NAVD88 | DRO MTCA SCREENING LEVEL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg) DECOMMISSIONED SHALLOW WATER-BEARING ZONE THE CONFIRMATION SAMPLES WERE SELECTED BASED ON LOWEST ELEVATION WITHIN MASS EXCAVATION (GENERALLY 15-10' NAVD88) AND IF AVAILABLE WE REPORTED A ۰ WELL DENOTES SAMPLE LOCATIONS WHERE DRO RESULTS EITHER EXCEED OR ARE LESS THAN MTCA SCREENING LEVELS AT DECOMMISSIONED INTERMEDIATE WATER-BEARING CONFIRMATION SAMPLE AT/BENEATH THE BUILDING FOUNDATION ELEVATION. -DIFFERENT DEPTH ELEVATIONS IN FEET NAVD88 INTERIOR DATA LOCATIONS FOR THE BLOCK 38 WEST PROPERTY ARE SHOWN BASED ON ALL LOCATIONS ARE APPROXIMATE. ZONE WELL DENOTES SAMPLE LOCATION AND ELEVATION IN FEET ECOLOGY COMMENTS ON THE ALLEY IAWP (FEBRUARY, 2021) UST SAMPLE LOCATION (FARALLON) NAVD88 WHERE DRO RESULTS EXCEED THE FOR BLOCK 38 WEST INTERIOR SAMPLES: 15' = DENOTES SAMPLE ELEVATION IN FEET NAVD88 BOLD = DENOTES CONCENTRATIONS THAT EXCEED THE SCREENING EXCAVATION SAMPLE LOCATION (FARALLON) MTCA SCREENING LEVEL \diamond TEST PIT (FARALLON) ESTIMATED EXTENT OF SOIL EXCEEDING THE LEVEL (MTCA METHOD A CLEANUP LEVEL) < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE \bigcirc SCREENING LEVEL THAT WAS EXCAVATED AND REMOVED 0 BORING (GEOENGINEERS) REPORTING LIMIT LISTED FARALLON EXCAVATION SAMPLE (GEOENGINEERS) X R - MECHANICAL EQUIPMENT AREA DECOMMISSIONED AND CDF = CONTROLLED DENSITY FILL DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS CONSULTING FILLED WITH CDF ALLEY BOUNDARY DIESEL-RANGE ORGANICS

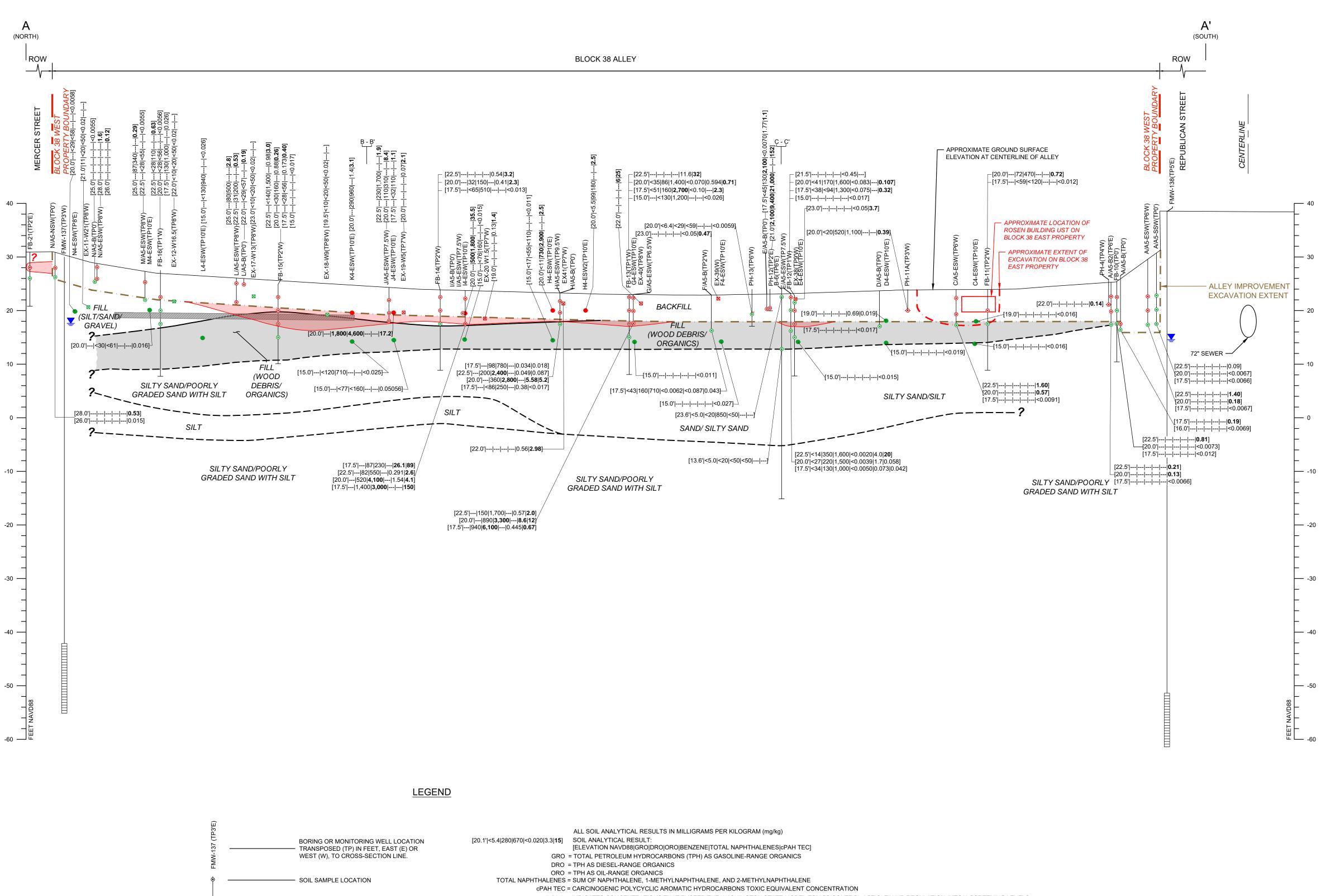
- KING COUNTY PARCEL BOUNDARY
- FORMER UNDERGROUND STORAGE TANKS (USTs)

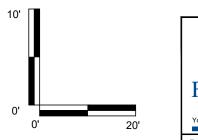

CLEANUP REGULATION NAVD88 = NORTH AMERICAN VERTICAL DATUM OF 1988


Drawn By: jjones


MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT




WESTLAKE AVENUE NORTH DRO + ORO DETECTED AT CONCENTRATIONS EXCEEDING / MTCA SCREENING LEVEL AT ELEVATION 20' K1-WSW 20.0'|270 FMW-135 ● FB-03 10.8' FMW-134 FMW-144 20.4' TP-14 ♦ 15.0' FB-05 20.5' 📀 FMW-149 -9.5' **4**15.2' J/K-B -7.3' I/J-B \odot -6.8 🗢 B/C-B C/D-B -6.8 \varTheta А2-В -6.8' -6.8' -5.0' 15.0' ◆ TP-15 15.0' ●^{J2-B}20.0 ●^{K2-B}20.0' TP-13 15.0' 🔶 ●^{I2-B}10.0' FORMER 1,500-TP-18 10.0' 🔶 GALLON HEATING 🔵 A2/A3-B OIL UST -6.8' FB-04 _кз-в⊃ FMW-136 17.0' ₽^{13-B} H3-B 15.0' 15.1' 15 Ø TP-16 15.0' 🔶 -8.0' FMW-147 FB-06 22.9' 14.3' TP-7 FMW-148 -7.7' FB-07 TP-17 H4-B FMW-146 H4-ESW 14-ESW 10.2 29.012,**900** 20,011,800 15,01<110 15.01460 10.4 • 15.0' 🔶 -0.5' K4-B 15.0' /FB-02 H4-SSW 15.0' 🔿 -8.0' B-6 H4-ESW2 23.6' 15 1 15 0' 20.0'|180 0_-9,9 J4-ESW K4-ESW FMW-133 F/A5-B FB-12 I/A5-B H/A5-B H/A5 17.5'|**2,700** 15.9'|1,200 ALLEY FB-11 20.014,600 20.0' 17.5' 20.0'1960 15.3' 017.5 PH-11A 20.0' ●FB-14 15.0'|<160 🚩 РН-13 🛛 20.0' 15.0'|710 **0** FB-15 20.0' 17.5' 17.5' 20.0' 17.5 E/A5-ESW I/A5-ESW G/A5-ESW H/A5-ESW J/A5-ESW 22.5'|1,600 E/A5-B 22.5'|1,700 22.5'|550 22.5 1,700 22.5'|**2,400** BL 20.0 1,500 17.5'|**2,100** 20.0 4,100 20.0'|3,300 20.0'|2,800 20.0 310 17.5 1,000 17.5'**3,000** 17.5 6,100 17.5 250 17.5 110 6 FORMER Å HEATING OIL UST STREET LEGEND NOTES: DENOTES SAMPLE LOCATION AND ELEVATION IN FEET NAVD88 WHERE ORO RESULTS ARE LESS THAN THE FOR BLOCK 38 WEST SOIL SAMPLES: ۲ BORING (FARALLON) ELEVATION IN FEET NAVD88 | ORO MTCA SCREENING LEVEL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg) DECOMMISSIONED SHALLOW WATER-BEARING ZONE WELL \bullet THE CONFIRMATION SAMPLES WERE SELECTED BASED ON LOWEST ELEVATION WITHIN DENOTES SAMPLE LOCATIONS WHERE ORO RESULTS EITHER • DECOMMISSIONED INTERMEDIATE WATER-BEARING ZONE WELL MASS EXCAVATION (GENERALLY 15-10' NAVD88) AND IF AVAILABLE WE REPORTED A CONFIRMATION SAMPLE AT/BENEATH THE BUILDING FOUNDATION ELEVATION. EXCEED OR ARE LESS THAN MTCA SCREENING LEVELS AT DIFFERENT DEPTH ELEVATIONS IN FEET NAVD88 UST SAMPLE LOCATION (FARALLON) INTERIOR DATA LOCATIONS FOR THE BLOCK 38 WEST PROPERTY ARE SHOWN BASED ON DENOTES SAMPLE LOCATION AND ELEVATION IN FEET ECOLOGY COMMENTS ON THE ALLEY IAWP (FEBRUARY, 2021) EXCAVATION SAMPLE LOCATION (FARALLON) \bigcirc NAVD88 WHERE ORO RESULTS EXCEED THE FOR BLOCK 38 WEST INTERIOR SAMPLES \diamond 15" = DENOTES SAMPLE ELEVATION IN FEET NAVD88 BOLD = DENOTES CONCENTRATIONS THAT EXCEED THE SCREENING LEVEL TEST PIT (FARALLON) MTCA SCREENING LEVEL ESTIMATED EXTENT OF SOIL EXCEEDING THE R - MECHANICAL EQUIPMENT AREA DECOMMISSIONED AND (MTCA METHOD A CLEANUP LEVEL) \bigcirc SCREENING LEVEL AT THE BASE OF THE EXCAVATION FILLED WITH CDF < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED ESTIMATED EXTENT OF SOIL EXCEEDING THE ALLEY BOUNDARY FARALLON \mathcal{T} CDF = CONTROLLED DENSITY FILL SCREENING LEVEL THAT WAS EXCAVATED AND REMOVED ORO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS OIL-RANGE ORGANICS CONSULTING FORMER UNDERGROUND STORAGE TANKS (USTs) ESTIMATED EXTENT OF 1-2 FOOT WEDGE OF SOIL our Challenges. Our Priority. | farallonconsulting.cor MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT EXCEEDING THE SCREENING LEVEL DUE TO UTILITY BANK KING COUNTY PARCEL BOUNDARY CLEANUP REGULATION rawn By: jjones NAVD88 = NORTH AMERICAN VERTICAL DATUM OF 1988



		ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)
IONITORING WELL LOCATION	[20.1' <5.4 280 670 <0.020 3.3 15]	SOIL ANALYTICAL RESULT:
D (TP) IN FEET, EAST (E) OR		[ELEVATION NAVD88 GRO DRO ORO BENZENE TOTAL NAPHTHALENES cPAH TEC]
CROSS-SECTION LINE.	GRO :	= TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
	DRO =	= TPH AS DIESEL-RANGE ORGANICS
		= TPH AS OIL-RANGE ORGANICS
LOCATION		= SUM OF NAPHTHALENE, 1-METHYLNAPHTHALENE, AND 2-METHYLNAPHTHALENE
	cPAH TEC =	= CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS TOXIC EQUIVALENT CONCENTRATION
	BOLD =	INDICATES CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION (MTCA) SCREENING
E GROUNDWATER ELEVATION		SAMPLE NOT ANALYZED FOR CONSTITUENT
HIC CONTACT		EDENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED
THE CONTACT	NAVD88 =	= NORTH AMERICAN VERTICAL DATUM OF 1988
		APPROXIMATE AREA OF WOOD DEBRIS/ORGANICS LAYER
IG OR BORING		AFFROAIWATE AREA OF WOOD DEDITIO/ORGANICS EATER
		ESTIMATED EXTENT OF SOIL EXCEEDING MTCA SCREENING LEVELS
JNDWATER ELEVATION (12/31/2019)		ESTIMATED EXTENT OF COAL/CHARCOAL LAYER
	RED	INDICATES CONCENTRATIONS OF HAZARDOUS SUBSTANCES EXCEEDING
		THE APPLICABLE MTCA SCREENING LEVELS
N INTERVAL	GREEN	INDICATES HAZARDOUS SUBSTANCES ANALYZED DID NOT EXCEED
	GILLEN	THE APPLICABLE MTCA SCREENING LEVELS
	M	EXCAVATION BORING (FARALLON)
	×	
	-	
	•	EXCAVATION SAMPLE (FARALLON)

G LEVELS

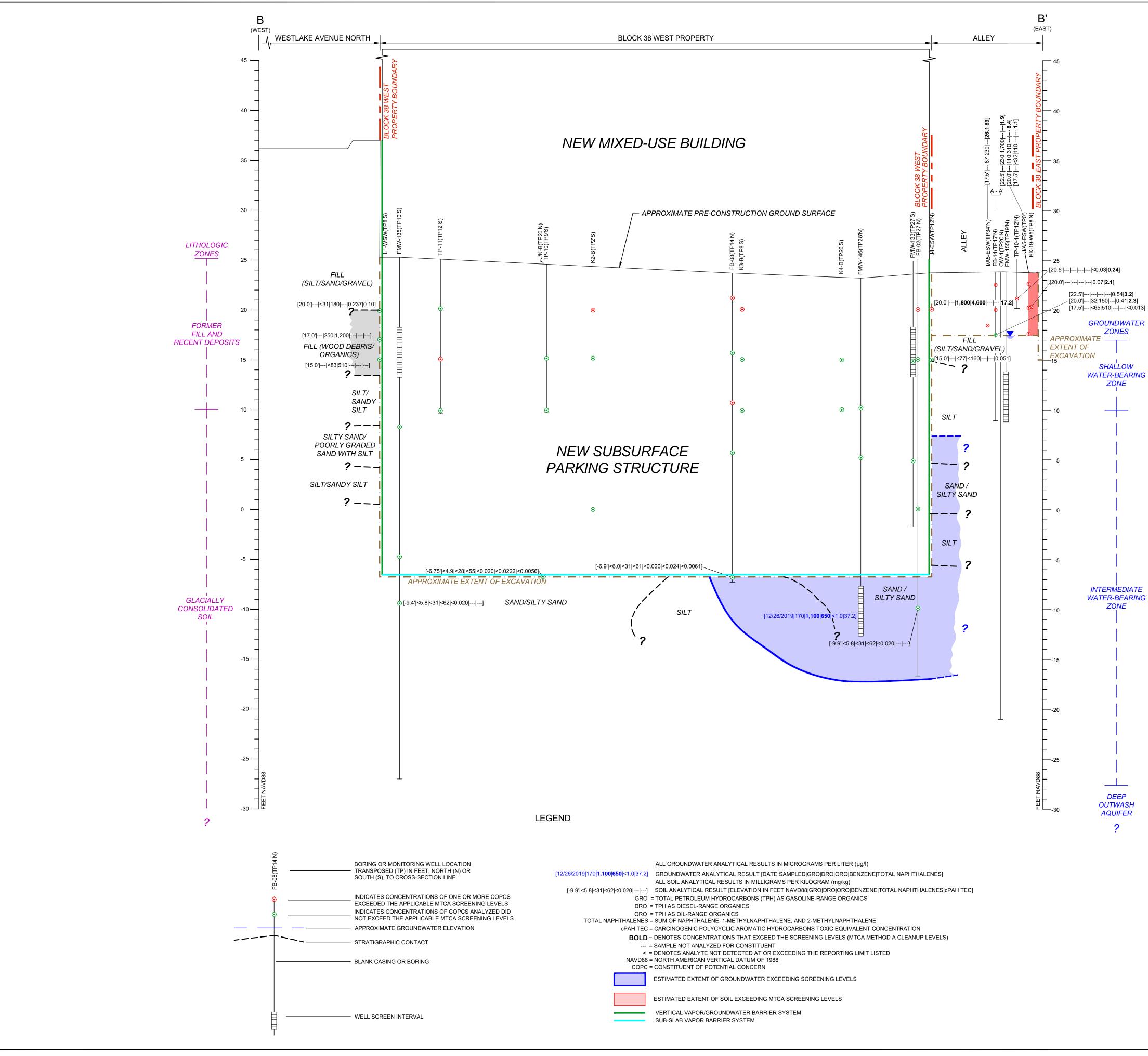
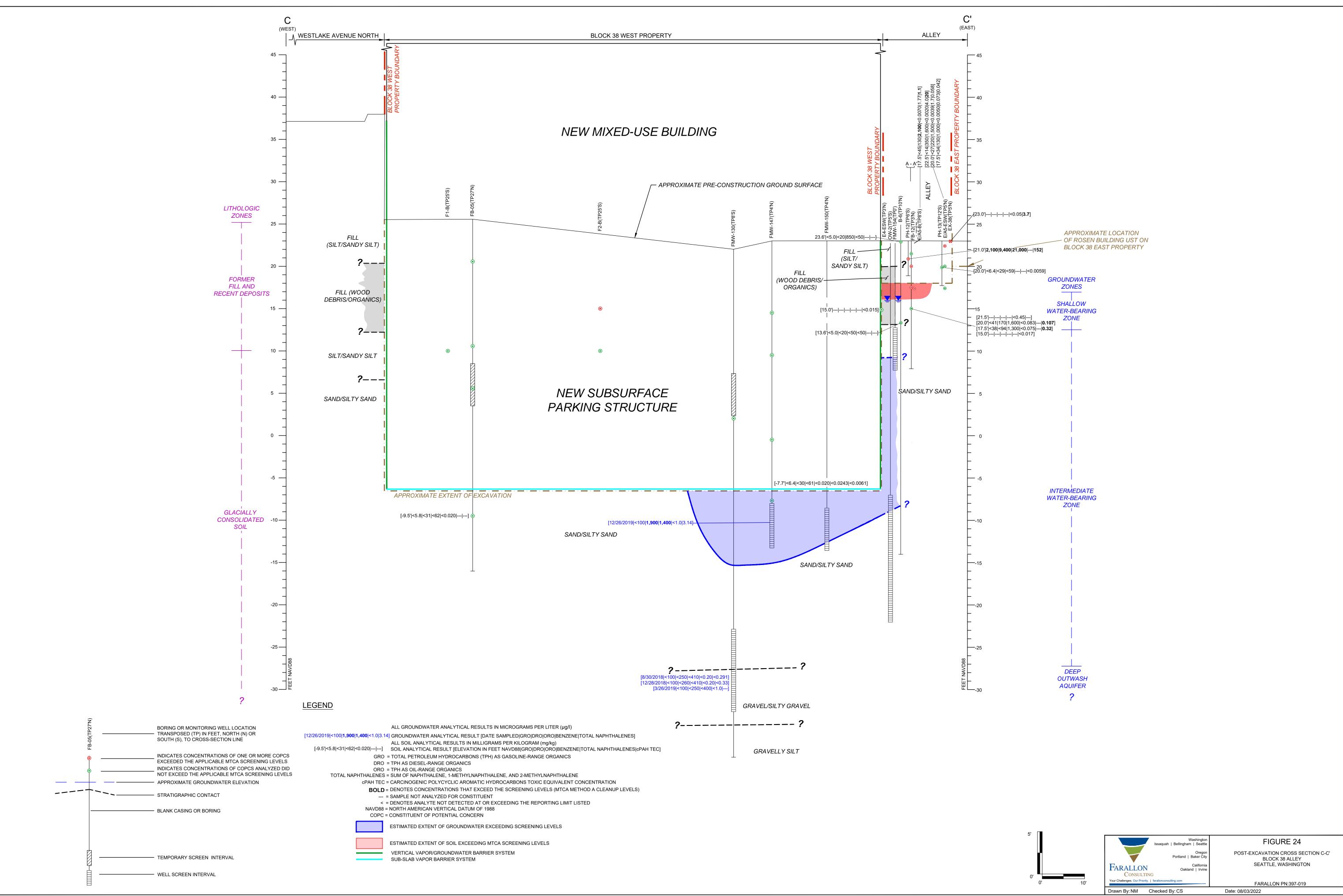

Washington ssaquah | Bellingham | Seattle Portland | Baker Cit California Farallon Oakland | Irvine CONSULTING our Challenges. Our Priority. | farallond

FIGURE 22

POST-EXCAVATION CROSS SECTION A-A' BLOCK 38 ALLEY SEATTLE, WASHINGTON

Drawn By: NM Checked By: LS

FARALLON PN:397-019 Date: 07/25/2022



Washington ssaquah | Bellingham | Seattle Portland | Baker Cit Californi FARALLON Oakland | Irvine CONSULTING Challenges. Our Priority. | farallo

FIGURE 23 POST-EXCAVATION CROSS SECTION B-B' BLOCK 38 ALLEY SEATTLE, WASHINGTON

Drawn By: NM Checked By: CS

FARALLON PN:397-019 Date: 08/03/2022

TABLES

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

											Anal	ytical Results (m	illigrams per kilo	gram)			
				Sample				NWTI	PH-Dx ²		NWTPH-Dx y	with Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	od 8021B/8260 ⁵	
		General		Location	Sample Depth	Sample Elevation				Total							
Sample Location	Sample Identification	Location	Sample Type	Disposition	(feet) ¹	(feet NAVD88) ¹	Sample Date	DRO	ORO	NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
								Alley									
B-6	B-6-3	Alley	Performance	Removed	3.0	23.6	12/29/1998	< 20	850	850			< 5.0	< 50	< 50	< 50	< 50
D -0	B-6-13	Alley	Confirmation	Removed	13.0	13.6	12/29/1998	< 20	< 50	< 70			< 5.0	< 50	< 50	< 50	< 50
FB-11	FB-11-20.0	Alley	Performance	Removed		20.0	9/12/2020	72 N	470	542							
10-11	FB-11-17.5	Alley	Confirmation	Removed		17.5	9/12/2020	< 59	< 120	< 179							
FB-12	FB-12-20.0	Alley	Performance	Removed		20.0	9/13/2020	170 N	1,600	1,770			< 41	< 0.083	< 0.41	< 0.41	< 0.8
10.12	FB-12-17.5	Alley	Confirmation	Removed		17.5	9/13/2020	< 94	1,300	1,300			< 38	< 0.075	< 0.38	< 0.38	< 0.7
	FB-13-20.0	Alley	Performance	Removed		20.0	9/12/2020	86 N	1,400	1,486			< 35	< 0.070	< 0.35	< 0.35	< 0.70
FB-13	FB-13-17.5	Alley	Performance	Removed		17.5	9/12/2020	160 N	2,700	2,860			< 51	< 0.10	< 0.51	< 0.51	< 1.02
	FB-13-15.0	Alley	Confirmation	In Place		15.0	9/12/2020	< 130	1,200	1,200							
FB-14	FB-14-20.0	Alley	Performance	Removed		20.0	9/12/2020	32 N	150	182							
1211	FB-14-17.5	Alley	Confirmation	Removed		17.5	9/13/2020	< 65	510	510							
	FB-15-22.5	Alley	Performance	Removed		22.5	9/13/2020	< 140	1,500	1,500							
FB-15	FB-15-20.0	Alley	Confirmation	Removed		20.0	9/13/2020	< 30	160	160							
	FB-15-17.5	Alley	Confirmation	In Place		17.5	9/13/2020	< 28	< 56	< 84							
	FB-16-22.5	Alley	Performance	Removed		22.5	9/13/2020	< 28	110	110							
FB-16	FB-16-20.0	Alley	Confirmation	Removed		20.0	9/13/2020	< 28	< 56	< 84							
	FB-16-17.5	Alley	Confirmation	In Place		17.5	9/13/2020	130 N	1,000	1,130							
PH-11A	PH-11A-4.0-011919	Alley	Performance	Removed	4.0	20.0	1/19/2019	520 N	1,100	1,620			< 20				
PH-12	PH-12-4.0-011919	Alley	Performance	Removed	4.0	21.0	1/19/2019	9,400 N,M	21,000	30,400			2,100				
PH-13	PH-13-3.0-011219	Alley	Performance	Removed	3.0	20.0	1/12/2019	< 29	< 59	< 88			< 6.4				
E/A5-B	E/A5-B-17.5	Alley	Confirmation	In Place		17.5	6/28/2021	130 N	2,100	2,230			< 45	< 0.0070	< 0.035	< 0.0070	< 0.02
	E/A5-ESW-22.5-050421	Alley	Confirmation	In Place		22.5	5/4/2021	350 N	1,600	1,950			< 14	< 0.0020	< 0.010	< 0.0020	< 0.00
E/A5-ESW	E/A5-ESW-20.0-050421	Alley	Confirmation	In Place		20.0	5/4/2021	220 N	1,500	1,720			< 27	< 0.0039	< 0.019	< 0.0039	< 0.01
	E/A5-ESW-17.5-050421	Alley	Confirmation	In Place		17.5	5/4/2021	130 N	1,000	1,130			< 34	< 0.0050	< 0.025	< 0.0050	< 0.01
F/A5-B	F/A5-B-17.5	Alley	Confirmation	In Place		17.5	6/28/2021	160 N	710	870			< 43	< 0.0062	< 0.031	< 0.0062	< 0.01
	G/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	7/6/2021	150 N	1,700	1,850							
G/A5-ESW	G/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	7/6/2021	890 N	3,300	4,190							
	G/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021	940 N	6,100	7,040							
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021	98 N	780	878							
	H/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	7/6/2021	200 N	2,400	2,600							
H/A5-ESW	H/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	7/6/2021	360 N	2,800	3,160							
	H/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021	< 86	250	250							
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place		17.5	7/9/2021	87 N	230	317							
	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	7/9/2021	82 N	550	632							
I/A5-ESW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	7/9/2021	520 N	4,100	4,620							
	I/A5-ESW-17.5-070921	Alley	Confirmation	In Place		17.5	7/9/2021	1,400 N	3,000	4,400							
	J/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	7/9/2021	230 N	1,700	1,930							
J/A5-ESW	J/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	7/9/2021	110 N	310	420							
	J/A5-ESW-17.5-070921	Alley	Confirmation	In Place		17.5	7/9/2021	< 32	110	110							
L/A5-B	L/A5-B-22.0-071221	Alley	Confirmation	Removed		22.0	7/12/2021	< 29	< 57	< 86							
L /AS DOW	L/A5-ESW-25.0-071221	Alley	Confirmation	In Place		25.0	7/12/2021	80 N	500	580							
L/A5-ESW	L/A5-ESW-22.5-071221	Alley	Confirmation	In Place		22.5	7/12/2021	31 N	200	231							
MAS ESW	M/A5-ESW-25.0-071521	Alley	Confirmation	In Place		25.0	7/15/2021	87 N	340	427							
M/A5-ESW	M/A5-ESW-22.5-071521	Alley	Confirmation	In Place		22.5	7/15/2021	< 28	< 55	< 83							
eening Levels ⁶	•				•	•		2,000	2,000	2,000	2	000	30/100 ⁷	0.03	7	6	9

											Anal	ytical Results (m	illigrams per kilog	gram)			
				Sample			Γ Γ	NWTE	PH-Dx ²		NWTPH-Dx v	with Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	od 8021B/8260 ⁵	
Sample Location	Sample Identification	General Location	Sample Type	Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
Sample Location	Sample Identification	Location	Sample Type	Disposition	(leet)	(leet NAVD88)	· · ·	38 West Proper	1	NWIPH-DX	DRO	OKO	GKO	Delizene	Toluelle	Ethylbenzene	Aylenes
	FB-01-5.0-082118	Interior	Performance	Removed	5.0	21.3	8/21/2018	520	3,700	4,220	510 N	1,100	< 6.2	< 0.020	< 0.062	< 0.062	< 0.124
FB-01	FB-01-15.0-082118	Interior	Confirmation	Removed	15.0	11.3	8/21/2018	< 40	250	250	< 40	< 81	< 0.2	< 0.020	< 0.062	< 0.082	< 0.124
1 ⁻ D-01	FB-01-30.0-082118		Confirmation	Removed	30.0	-3.7	8/21/2018	< 40	< 58	< 87			< 5.1	< 0.020	< 0.091	< 0.091	< 0.182
	FB-02-5.0-082018	Interior	1					< 29 280 N	670	950			< 5.4	< 0.020			< 0.102
		Interior	Performance	Removed	5.0	20.1	8/20/2018 8/20/2018								< 0.054	< 0.054	
FB-02	FB-02-10.0-082018	Interior	Confirmation	Removed	10.0	15.1		< 61	270	270			< 19	< 0.037	< 0.19	< 0.19	< 0.38
	FB-02-25.0-082018	Interior	Confirmation	Removed	25.0	0.1	8/20/2018	< 30	< 60	< 90			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
	FB-02-35.0-082018	Interior	Confirmation	In Place	35.0	-9.9	8/20/2018	< 31	< 62	< 93			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
FB-03	FB-03-10.0-082318	Interior	Confirmation	Removed	10.0	15.8	8/23/2018	< 32	< 65	< 97			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130
FB-03	FB-03-15.0-082318	Interior	Confirmation	Removed	15.0	10.8	8/23/2018	< 32	< 65	< 97			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130
	FB-03-25.0-082318	Interior	Confirmation	Removed	25.0	0.8	8/23/2018	< 29	< 59	< 88			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
FD 04	FB-04-5.0-082118	Interior	Confirmation	Removed	5.0	17.0	8/21/2018	97 N	540	637			< 16	< 0.033	< 0.16	< 0.16	< 0.32
FB-04	FB-04-20.0-082118	Interior	Confirmation	Removed	20.0	2.0	8/21/2018	< 29	< 58	< 87			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106
	FB-04-30.0-082118	Interior	Confirmation	In Place	30.0	-8.0	8/21/2018	< 30	< 59	< 89			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
	FB-05-5.0-082218	Interior	Confirmation	Removed	5.0	20.5	8/22/2018	< 31	< 61	< 92			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108
FB-05	FB-05-20.0-082218	Interior	Confirmation	Removed	20.0	5.5	8/22/2018	< 31	< 61	< 92			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
	FB-05-35.0-082218	Interior	Confirmation	In Place	35.0	-9.5	8/22/2018	< 31	< 62	< 93			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
FB-06	FB-06-2.5-082218	Interior	Confirmation	Removed	2.5	22.9	8/22/2018	180	310	490			17 T	< 0.024	< 0.12	< 0.12	< 0.24
	FB-06-20.0-082218	Interior	Confirmation	Removed	20.0	5.4	8/22/2018	< 30	< 61	< 91			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106
	FB-07-24	Interior	Confirmation	Removed	24.0	-0.5	12/21/2019	< 30	< 60	< 90			< 6.0	< 0.020	< 0.060	< 0.060	< 0.12
FB-07	FB-07-29	Interior	Confirmation	Removed	29.0	-5.5	12/21/2019	< 30	< 60	< 90			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108
	FB-07-31.5	Interior	Confirmation	In Place	31.5	-8.0	12/21/2019	< 30	< 60	< 90			< 5.6	< 0.020	< 0.056	< 0.056	< 0.112
	FB-08-2.5	Interior	Performance	Removed	2.5	21.2	12/21/2019	1,700 N	4,500	6,200			23 O	0.12	0.49	0.13	0.94
	FB-08-8	Interior	Confirmation	Removed	8.0	15.7	12/21/2019	< 29	< 58	< 87			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
FB-08	FB-08-13	Interior	Confirmation	Removed	13.0	10.7	12/21/2019	< 31	< 61	< 92			15 T	< 0.020	< 0.064	< 0.064	< 0.128
	FB-08-18	Interior	Confirmation	Removed	18.0	5.7	12/21/2019	< 29	< 58	< 87			< 6.1	< 0.020	< 0.061	< 0.061	< 0.122
	FB-08-30.5	Interior	Confirmation	In Place	30.5	-6.9	12/21/2019	< 31	< 61	< 92			< 6.0	< 0.020	< 0.060	< 0.060	< 0.12
FB-09	FB-09-11	Interior	Confirmation	Removed	11.0	12.7	12/21/2019	< 58	220	220			< 20	< 0.039	< 0.20	< 0.20	< 0.4
10.07	FB-09-33	Interior	Confirmation	In Place	33.0	-9.4	12/21/2019	< 31	< 62	< 93			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
	FB-20-12-0	Adjacent		In Place	12.0	20.0	2/5/2022	< 28	< 56	< 84							
FB-20	FB-20-15.0	Adjacent		In Place	15.0	17.0	2/5/2022	< 29	83	83							
	FB-20-17.0	Adjacent		In Place	17.0	15.0	2/5/2022	59 N	210	269							
FMW-130	F-MW-130-20.0-072114	Interior	Confirmation	Removed	20.0	2.2	7/21/2014	< 30	< 60	< 90			< 8.8	< 0.020	< 0.088	< 0.088	< 0.176
FMW-132	FMW-132-5.0-082418	Interior	Performance	Removed	5.0	20.7	8/24/2018	730	2,600	3,330			< 8.4	< 0.020	< 0.084	< 0.084	< 0.168
FMW-133	FMW-133-10.0-082418	Interior	Confirmation	Removed	10.0	15.3	8/24/2018	< 83	470	470			< 28	< 0.057	< 0.28	< 0.28	< 0.56
FMW-134	FMW-134-5.0-082318	Interior	Performance	Removed	5.0	20.4	8/23/2018	260	1,900	2,160			< 30	< 0.059	< 0.30	< 0.30	< 0.60
1111100-134	FMW-134-15.0-082318	Interior	Confirmation	Removed	15.0	10.4	8/23/2018	< 31	< 61	< 92			< 12	< 0.023	< 0.12	< 0.12	< 0.24
FMW-135	FMW-135-15.0-082418	Interior	Confirmation	Removed	15.0	10.6	8/24/2018	130	680	810			< 28	< 0.055	< 0.28	< 0.28	< 0.56
FIVI W-155	FMW-135-35.0-082418	Interior	Confirmation	In Place	35.0	-9.4	8/24/2018	< 31	< 62	< 93			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
	FMW-136-10.0-082218	Interior	Confirmation	Removed	10.0	15.1	8/22/2018	< 38	< 76	< 114			< 9.0	< 0.020	< 0.090	< 0.090	< 0.18
FMW-136	FMW-136-20.0-082218	Interior	Confirmation	Removed	20.0	5.1	8/22/2018	< 32	< 63	< 95			< 6.4	< 0.020	< 0.064	< 0.064	< 0.128
	FMW-136-30.0-082218	Interior	Confirmation	Removed	30.0	-4.9	8/22/2018	< 30	< 59	< 89			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
FMW-144	FWM-144-9.0	Interior	Confirmation	Removed	9.0	20.4	12/20/2019	< 52	110	110			< 18	< 0.036	< 0.18	< 0.18	< 0.36
	FMW-145-13.0	Interior	Performance	Removed	13.0	9.9	12/20/2019	650	1,400	2,050			83 O	< 0.020	< 0.075	< 0.075	< 0.15
	FMW-145-18.0	Interior	Confirmation	Removed	18.0	4.9	12/20/2019	58 N	210	268			< 28 U1	< 0.020	< 0.080	< 0.080	< 0.16
TR. 011 4 4 -	FMW-145-23.0	Interior	Confirmation	Removed	23.0	-0.1	12/20/2019	< 30	< 60	< 90			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106
FMW-145	FMW-145-28.0	Interior	Confirmation	Removed	28.0	-5.1	12/20/2019	< 31	< 61	< 92			< 6.5	< 0.020	< 0.065	< 0.065	< 0.13
	FMW-145-30.5	Interior	Confirmation	In Place	30.5	-7.6	12/20/2019	< 29	< 57	< 86			< 4.8	< 0.020	< 0.048	< 0.048	< 0.096
	FMW-145-33.0	Interior	Confirmation	In Place	33.0	-10.1	12/20/2019	< 31	< 61	< 92			< 5.5	< 0.020	< 0.055	< 0.055	< 0.11
creening Levels ⁶				1	1			2,000	2,000	2,000		000	30/100 ⁷	0.03	7	6	9

											Anal	ytical Results (m	illigrams per kilog	gram)			
				Sample			[NWTI	PH-Dx ²		NWTPH-Dx	with Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	d 8021B/8260 ⁵	
Sample Location	Sample Identification	General Location	Sample Type	Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
•	FMW-146-13.0	Interior	Confirmation	Removed	13.0	10.2	12/21/2019	< 34	< 69	< 103			< 7.0	< 0.020	< 0.070	< 0.070	< 0.14
FMW-146	FMW-146-18.0	Interior	Confirmation	Removed	18.0	5.2	12/21/2019	< 31	< 62	< 93			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108
	FMW-147-8.5	Interior	Confirmation	Removed	8.5	14.3	12/21/2019	< 120	1,100	1,100			< 51	< 0.10	< 0.51	< 0.51	< 1.02
	FMW-147-13.5	Interior	Confirmation	Removed	13.5	9.3	12/21/2019	< 31	< 61	< 92			< 5.5	< 0.020	< 0.055	< 0.055	< 0.11
FMW-147	FMW-147-23.5	Interior	Confirmation	Removed	23.5	-0.7	12/21/2019	< 30	< 61	< 91			< 5.1	< 0.020	< 0.051	< 0.051	< 0.102
	FMW-147-30.5	Interior	Confirmation	In Place	30.5	-7.7	12/21/2019	< 30	< 61	< 91			< 6.4	< 0.020	< 0.064	< 0.064	< 0.12
FMW-148	FMW-148-27.0	Interior	Confirmation	Removed	27.0	10.4	12/22/2019	< 31	< 63	< 94			< 5.7	< 0.020	< 0.057	< 0.057	< 0.114
	FMW-149-21.0	Interior	Confirmation	Removed	21.0	15.2	12/22/2019	< 33	< 66	< 99			< 7.0	< 0.020	< 0.070	< 0.070	< 0.14
	FMW-149-31.0	Interior	Confirmation	Removed	31.0	5.2	12/22/2019	< 31	< 63	< 94			< 6.3	< 0.020	< 0.063	< 0.063	< 0.120
FMW-149	FMW-149-41.0	Interior	Confirmation	Removed	41.0	-4.8	12/22/2019	< 26	< 53	< 79			< 4.4	< 0.020	< 0.044	< 0.044	< 0.088
	FMW-149-43.5	Interior	Confirmation	In Place	43.5	-7.3	12/22/2019	< 28	< 56	< 84			< 4.3	< 0.020	< 0.043	< 0.043	< 0.080
A2-B	A2-B-(-5.0)	Interior	Confirmation	Removed		-5.0	4/29/2020	< 27	< 53	< 80							
A2/A3-B	A2/A3-B-(-6.75)	Interior	Confirmation	In Place		-6.75	6/3/2020	< 30	< 59	< 89			< 5.7	< 0.020	< 0.057	< 0.057	< 0.114
	A3-SUBSLAB-22-010920	Interior	Performance	Removed		22.0	1/9/2020	< 76	< 150	< 226						< 0.057	< 0.11-
A3-Subslab	A3-SUBSLAB-25-010920	Interior	Performance	Removed		25.0	1/9/2020	82	660	742							
B/C-B	B/C-B-(-6.75)	Interior	Confirmation	In Place		-6.75	6/3/2020	< 29	< 57	< 86			< 6.1	< 0.020	< 0.061	< 0.061	< 0.12
C/D-B	C/D-B-(-6.75)	Interior	Confirmation	In Place		-6.75	6/3/2020	< 28	< 56	< 84			< 5.6	< 0.020	< 0.056	< 0.056	< 0.112
C/D-D	H3-B-20	Interior	Confirmation	Removed		20.0	2/20/2020	~ 20					< 6.7	< 0.020	< 0.050	< 0.050	
H3-B	H3-B-15.0	Interior	Confirmation	Removed		15.0	2/24/2020	< 67	250	250			< 21				
H4-22.7	H4-1.0-121319	Interior	Performance	Removed	1.0	22.7	12/13/2019	600 N	5,000	5,600			31	< 0.022	< 0.11	< 0.11	< 0.22
114-22.7	H4-B-20.0	Interior	Confirmation	Removed		20.0	2/19/2020	140 N	970	1,110			< 51	< 0.022	< 0.11	< 0.11	< 0.22
H4-B	H4-B-20.0 H4-B-15.0	Interior	Confirmation	Removed		15.0	2/19/2020	<90	500	500			< 31				
	H4-B-15.0 H4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/19/2020	< 90 730 N	2.900	3,630			< 11 H				
H4-ESW	H4-ESW-20.0 H4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	2/4/2020	< 55	<110	< 165			<11 H				
H4-ESW2	H4-ESW2-20.0	Sidewall	Confirmation	In Place		20.0	2/4/2020	99 N	180	279			< 5.5 H				
H4-SSW	H4-ESW-2-20.0 H4-SSW-15.0	Interior	Confirmation	Removed		15.0	2/27/2020	< 65	130	170			< 21				
I2-B	I2-B-10.0	Interior	Confirmation	Removed		10.0	2/28/2020	< 03	< 55	< 83			< 21				
12 - D	I3-B-20.0	Interior	Performance	Removed		20.0	2/23/2020	< 680	6,200	6,200			< 15 H	< 0.030 H	< 0.15 H	< 0.15 H	< 0.30]
I3-B	I3-B-20.0	Interior	Confirmation	Removed		15.0	2/23/2020	< 76	690	690			< 15 H < 26 H		< 0.15 H	< 0.15 H	< 0.301
1 5 -D	I3-B-13.0 I3-B-DUP-15.0	Interior	Confirmation	Removed		15.0	2/23/2020	< 70					20 H 23 T				
	I3-B-DOF-13.0 I4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/24/2020	500 N	1,800	2,300							
I4-ESW			1			15.0			,	,							
I/I D	I4-ESW-15.0	Sidewall	Confirmation	In Place			2/22/2020	< 76	160	160							
I/J-B J2-B	I/J-B-(-6.75) J2-B-20.0	Interior	Confirmation Confirmation	In Place Removed		-6.75 20.0	6/3/2020 2/14/2020	< 26 < 29	< 53 < 58	< 79 < 87			< 5.0	< 0.020 < 0.00076	< 0.050 < 0.0038	< 0.050 < 0.00076	< 0.100
J2-D		Interior				1			< 58 4,600								
J4-ESW	J4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/4/2020	1,800 N	,	6,400							
I/V D	J4-ESW-15.0	Sidewall	Confirmation	In Place In Place		15.0 -6.75	2/22/2020 6/2/2020	< 77 < 28	< 160	< 237			< 4.9				
J/K-B K1-WSW	J/K-B-(-6.75)	Interior	Confirmation		+	-6.75	6/2/2020	< 28 58 N	< 55 270	< 83				< 0.020	< 0.049	< 0.049	< 0.098
	K1-WSW-20.0	Sidewall	Confirmation	In Place		20.0			270	280							
К2-В	K2-B-20.0	Interior	Confirmation	Removed			2/6/2020	< 56						< 0.037	< 0.19	< 0.19	< 0.38
K2 D	K3-B-20.0	Interior	Performance	Removed		20.0	2/13/2020	2,500 N	9,700	12,200							
К3-В	K3-B-15.0	Interior	Confirmation	Removed		15.0	2/24/2020	68 N	830	898							
	K3-B-10.0	Interior	Confirmation	Removed		10.0	2/28/2020	< 32	< 64	< 96							
K4-B	K4-B-15.0	Interior	Confirmation	Removed		15.0	2/26/2020	< 33	< 67	< 100							
	K4-B-10.0	Interior	Confirmation	Removed		10.0	2/26/2020	110	290	400							
K4-ESW	K4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/4/2020	290 N	960	1,250							
,	K4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	2/22/2020	< 120	710	710							
eening Levels ⁶								2,000	2,000	2,000	2,	000	30/100 ⁷	0.03	7	6	

											Anal	ytical Results (mi	illigrams per kilo	gram)			
				Sample				NWT	PH-Dx ²		NWTPH-Dx y	with Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	d 8021B/8260 ⁵	
		General		Location	Sample Depth	Sample Elevation				Total							
Sample Location	Sample Identification	Location	Sample Type	Disposition	(feet) ¹	(feet NAVD88) ¹	Sample Date	DRO	ORO	NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
L1-B	L1-B-15.0	Interior	Confirmation	Removed		15.0	2/24/2020	< 170	560	560							
	L1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	2/3/2020	< 31	180	180							
L1-WSW	L1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	2/10/2020	250 N	1,200	1,450							
	L1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	2/24/2020	< 83	510	510							
L1-WSW2	L1-WSW2-17.0	Sidewall	Confirmation	In Place		17.0	2/10/2020	86 N	740	826							
L2-B	L2-B-10.0	Interior	Confirmation	Removed		10.0	2/28/2020	< 33	< 67	< 100							
L3-B	L3-B-15.0	Interior	Confirmation	Removed		15.0	2/24/2020	< 140	1,300	1,300							
L4-ESW	L4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	2/22/2020	< 130	940	940							
M1-B	M1-B-15.0	Interior	Confirmation	Removed		15.0	2/24/2020	< 160	470	470							
	M1-B-10	Interior	Confirmation	Removed		10.0	2/25/2020	< 31	< 62	< 93							
	M1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	2/3/2020	200	220	420							
M1-WSW	M1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	2/10/2020	< 29	250	250							
	M1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	2/24/2020	160 N	2,100	2,260							
	M1-WSW-10	Sidewall	Confirmation	In Place		10.0	2/25/2020	< 36	< 72	< 108							
M1-WSW2	M1-WSW2-20.0	Sidewall	Confirmation	In Place		20.0	2/3/2020	< 30	< 61	< 91							
M3-B	M3-B-(-6.75)	Interior	Confirmation	In Place		-6.75	5/28/2020	< 29	< 58	< 87			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
M4-B	M4-B-12.0	Interior	Confirmation	Removed		12.0	2/22/2020	< 76	400	400							
M4-ESW	M4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/6/2020	< 30	< 61	< 91							
N1-B	N1-B-15.0	Interior	Confirmation	Removed		15.0	2/22/2020	< 110	1,900	1,900							
N1-NSW	N1-NSW-22.0	Sidewall	Confirmation	In Place		22.0	1/31/2020	< 30	< 61	< 91							
111-115 W	N1-NSW-15.0	Sidewall	Confirmation	In Place		15.0	2/24/2020	< 150	580	580							
N1-ESW	N1-ESW-15.0	Sidewall	Confirmation	In Place		15.0	2/22/2020	< 150	1,000	1,000							
	N1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	2/3/2020	280 N	1,400	1,680							
N1-WSW	N1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	2/10/2020	4,800 N	19,000	23,800							
	N1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	2/24/2020	< 79	630	630							
N1-WSW3	N1-WSW3-170	Sidewall	Confirmation	In Place		17.0	2/21/2020	< 36	77	77							
	N2-B-20.0	Interior	Confirmation	Removed		20.0	2/6/2020	< 31	< 61	< 92							
	N2-B-15.0	Interior	Confirmation	Removed		15.0	2/23/2020						< 22 H				
N2-B	N2-B-DUP-15.0	Interior	Confirmation	Removed		15.0	2/24/2020						< 64				
	N2-B-10.0	Interior	Confirmation	Removed		10.0	2/23/2020	< 31	< 62	< 93			< 12 H				
	N2-B-DUP-10.0	Interior	Confirmation	Removed		10.0	2/24/2020						< 6.4				
N2-NSW	N2-NSW-22.0	Sidewall	Confirmation	In Place		22.0	1/31/2020	< 29	83	83							
112-113 W	N2-NSW-15.0	Sidewall	Confirmation	In Place		15.0	2/24/2020						< 32				
N2-ESW	N2-ESW-10	Interior	Confirmation	Removed		10.0	2/25/2020						< 6.5				
N2-SSW	N2-SSW-10	Interior	Confirmation	Removed		10.0	2/25/2020						< 6.9				
N3-NSW	N3-NSW-20.0-121019	Sidewall	Confirmation	In Place		20.0	12/10/2019	< 30 H	< 61 H	< 91			< 5.7 H	< 0.020 H	< 0.057 H	< 0.057 H	< 0.114 H
IN 3-IN 3 W	N3-NSW-22.0	Sidewall	Confirmation	In Place		22.0	1/31/2020	< 30	< 59	< 89							
N3-NSW2	N3-NSW2-22.0	Sidewall	Confirmation	In Place		22.0	1/31/2020	< 30	< 60	< 90							
N4-NSW	N4-NSW-20.0	Sidewall	Confirmation	In Place		20.0	2/6/2020	< 30	< 60	< 90							
N4-ESW	N4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	2/6/2020	< 29	< 58	< 87							
	TP-2-20.0-121919	Interior	Confirmation	Removed	5.0	20.0	12/19/2019	< 27	210	210			< 4.2	< 0.020	< 0.042	< 0.042	< 0.084
TP-2	TP-2-15.0-121919	Interior	Confirmation	Removed	10.0	15.0	12/19/2019	6,600	9,000	15,600			< 420 U1	< 0.026	< 0.13	< 0.13	< 0.26
11-2	TP-2-10.0	Interior	Confirmation	Removed		10.0	2/13/2020	< 33	< 66	< 99			< 6.8				
	TP-2-5.0	Interior	Confirmation	Removed		5.0	2/13/2020	< 28	< 57	< 85			< 4.9				
TD 2	TP-3-20.0-121919	Interior	Confirmation	Removed	5.0	20.0	12/19/2019	< 29	< 59	< 88			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
TP-3	TP-3-15.0-121919	Interior	Confirmation	Removed	10.0	15.0	12/19/2019	< 160	1,700	1,700			< 59	< 0.12	< 0.59	< 0.59	< 1.18
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	12/23/2019	< 74	230	230			< 25	< 0.0044	< 0.022	< 0.0044	< 0.0132
Screening Levels ⁶								2,000	2,000	2,000	2.	000	30/100 ⁷	0.03	7	6	9

Sample Location TP-10 TP-11	Sample Identification TP-10-15.0 TP-11-20.0	General Location		Sample					\sim 2		NWTPH-Dx v	th Cilling Cal ²	NWTPH-Gx ⁴		EDA M. d.	d 8021B/8260 ⁵	
TP-10	TP-10-15.0							NWIP	PH-Dx ²		NWIPH-DXV	vith Silica Gel	INWITH-GX		EPA Metho	u 8021B/8200	
TP-10	TP-10-15.0		Sample Type	Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xyleı
TP-11	TP-11-20.0	Interior	Confirmation	Removed		15.0	2/4/2020	< 130	370	370							
TP-11		Interior	Confirmation	Removed		20.0	2/4/2020	< 30	190	190							
	TP-11-15.0	Interior	Confirmation	Removed		15.0	2/4/2020	230	680	910							
	TP-11-10.0	Interior	Confirmation	Removed		10.0	2/4/2020	< 36	< 71	< 107							
TP-13	TP-13-20.0	Interior	Confirmation	Removed		20.0	2/7/2020	< 28	< 57	< 85							
11-15	TP-13-15.0	Interior	Confirmation	Removed		15.0	2/7/2020	< 35	< 70	< 105							
	TP-14-20.0	Interior	Confirmation	Removed		20.0	2/14/2020	< 95	410	410							
TP-14	TP-14-15.0	Interior	Confirmation	Removed		15.0	2/14/2020	120 N	640	760							
	TP-14-10.0	Interior	Confirmation	Removed		10.0	2/14/2020	< 33	< 67	< 100							
	TP-15-20.0	Interior	Confirmation	Removed		20.0	2/14/2020	< 97	700	700							
TP-15	TP-15-15.0	Interior	Confirmation	Removed		15.0	2/14/2020	95 N	490	585							
	TP-15-10.0	Interior	Confirmation	Removed		10.0	2/14/2020	< 32	< 65	< 97							
	TP-16-20.0	Interior	Confirmation	Removed		20.0	2/14/2020	< 65	250	250							
TP-16	TP-16-15.0	Interior	Confirmation	Removed		15.0	2/14/2020	88 N	400	488							
	TP-16-10.0	Interior	Confirmation	Removed		10.0	2/14/2020	< 32	< 64	< 96							
	TP-17-20.0	Interior	Confirmation	Removed		20.0	2/18/2020	300 N	1,700	2,000							
TP-17	TP-17-15	Interior	Confirmation	Removed		15.0	2/25/2020	< 59	< 120	< 179							
	TP-17-10	Interior	Confirmation	Removed		10.0	2/25/2020	< 29	< 58	< 87							
TP-18	TP-18-10.0	Interior	Confirmation	Removed		10.0	2/19/2020	< 28	< 56	< 84							
		•	1	1		Undergro	und Storage Ta	nk Investigation	1	oning	1		, ,		-		
M1-Product	M1-24.5-PRODUCT	Interior	Performance	Removed		24.5	1/17/2020	DETECTED ⁸	DETECTED ⁸				< 9,200 ⁸				
M1-Prod-Soil	M1-24.5	Interior	Performance	Removed		24.5	1/17/2020	8,600	15,000	23,600							
M1-Tank	M1-TANK-24.5	Interior	Performance	Removed		24.5	1/21/2020	850 N	2,500	3,350			< 59	< 0.00082	< 0.0041	0.00099	0.01
UST01-B	UST01-B-17	Interior	Confirmation	Removed		17.0	1/27/2020	37	100	137			< 5.5	< 0.00092	< 0.0046	< 0.00092	< 0.00
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed		19.0	1/27/2020	< 30	< 60	< 90				< 0.00094	< 0.0047	< 0.00094	< 0.00
UST01-E1	UST01-E1-19	Interior	Confirmation	Removed		19.0	1/27/2020	< 29	< 58	< 87				< 0.00083	< 0.0042	< 0.00083	< 0.00
UST01-S1	UST01-S1-19	Interior	Confirmation	Removed		19.0	1/27/2020	< 28	< 55	< 83				< 0.00084	< 0.0042	< 0.00084	< 0.00
UST01-W1	UST01-W1-19	Interior	Confirmation	Removed		19.0	1/27/2020	< 30	< 61	< 91				< 0.00098	< 0.0049	< 0.00098	< 0.00
UST-01-line	UST-01-LINE-21.0	Sidewall	Performance	Removed		21.0	1/31/2020	3,400	3,100 N1	6,500							
UST-02-Product	UST-02-PRODUCT	Interior	Performance	Removed		18.0	2/5/2020	DETECTED ⁸	DETECTED ⁸				< 41,000 ⁸				
UST02-N	UST-02-N	Interior	Performance	Removed		18.0	2/5/2020	630	1,300	1,930			< 59	< 0.00091	< 0.0045	< 0.00091	< 0.00
UST02-E	UST-02-E	Interior	Performance	Removed		18.0	2/5/2020	370	850	1,220			79 O	0.0033	0.018	0.0075	0.04
UST02-B1	UST02-B1	Interior	Performance	Removed		15.0	2/7/2020	140 N	820	960							
UST02-B2	UST02-B2	Interior	Confirmation	Removed		14.0	2/7/2020	160 N	1,800	1,960							
UST02-N1	UST02-N1	Interior	Confirmation	Removed		17.5	2/7/2020	160 N	440	600							
UST02-E1	UST02-E1	Interior	Confirmation	Removed		17.5	2/7/2020	39 N	230	269							
UST02-S	UST02-S	Interior	Confirmation	Removed		17.5	2/7/2020	< 50	200	200							
UST02-W1	UST02-W1	Interior	Confirmation	Removed		17.5	2/7/2020	64 N	310	374							

											Anal	ytical Results (mi	illigrams per kilog	gram)			
				Sample				NWTE	PH-Dx ²		NWTPH-Dx v	vith Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	d 8021B/8260 ⁵	
Sample Location	Sample Identification	General Location	Sample Type	Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylene
							Block	38 East Propert	у								
EX-11-W21 (EL21)	EX-11-W21 (EL21)	B38E	Confirmation	In Place	9.5	21.0	7/2/2008	< 20	< 50	< 70			11	< 0.02	< 0.05	< 0.05	< 0.1
EX-12-W16.5 (EL22)	EX-12-W16.5 (EL22)	B38E	Confirmation	In Place	7.0	22.0	7/2/2008	< 20	< 50	< 70			< 10	< 0.02	< 0.05	< 0.05	< 0.1
EX-17-W13 (EL23)	EX-17-W13 (EL23)	B38E	Confirmation	In Place	6.5	23.0	7/3/2008	< 20	< 50	< 70			< 10	< 0.02	< 0.05	< 0.05	< 0.1
EX-18-W9 (EL19.5)	EX-18-W9 (EL19.5)	B38E	Confirmation	In Place	6.0	19.5	7/3/2008	< 20	< 50	< 70			< 10	< 0.02	< 0.05	< 0.05	< 0.1
D 4	P-4-3.5	B38E	Performance	Removed	3.5	21.2	6/12/2002	< 37	530	530							
P-4	P-4-5.5	B38E	Performance	Removed	5.5	19.2	6/12/2002	< 74	1,400	1,400							
W-3	W-3	B38E	Performance	Removed	10.0	10.5	10/11/1993	7,800	280	8,080			470	< 0.16	< 0.16	0.19	0.8
W-4	W-4	B38E	Performance	Removed	11.0	9.5	10/11/1993	210	< 49	210			44	< 0.030	< 0.030	< 0.030	0.06
reening Levels ⁶		1	1 1		1	I		2,000	2,000	2,000	2,	000	30/100⁷	0.03	7	6	9
							Blo	ock 37 Property		•			••			• • • •	
	MW-41-3	B37			7.5	19.5	10/28/1991	< 5		< 5			< 5	< 0.040	< 0.040	< 0.040	< 0.0
MW-41	MW-41-7	B37			17.5	9.5	10/28/1991	< 5		< 5			< 5				
	MW-71-5	B37			5.0	25.4	10/12/2005	< 10.8	< 27.1	< 37.9			< 3.84	< 0.0267	< 0.0891	< 0.0891	< 0.2
NW 71	MW-71-10	B37			10.0	20.4	10/12/2005	< 11.2	< 28.0	< 39.2			< 4.33	0.189	< 0.0861	0.341	0.26
MW-71	MW-71-15	B37			15.0	15.4	10/12/2005	< 11.7	< 29.3	< 41.0			< 4.55	< 0.0273	< 0.0910	< 0.0910	< 0.2
	MW-71-20	B37			20.0	10.4	10/12/2005	135	298	433			888	1.02	0.724	9.97	29.
	MW-72-5	B37			5.0	25.3	10/12/2005	< 11.1	< 27.9	< 39.0			< 3.82	< 0.0257	< 0.0857	< 0.0857	< 0.2
MW-72	MW-72-10	B37			10.0	20.3	10/12/2005	< 11.1	< 27.7	< 38.8			< 4.66	< 0.0260	< 0.0868	< 0.0868	< 0.2
IVI W - 72	MW-72-15	B37			15.0	15.3	10/12/2005	219	403	622			< 22.9	0.533	< 0.702	< 0.702	< 2.
	MW-72-20	B37			20.0	10.3	10/12/2005	109	99.6	208.6			< 11.8	< 0.0405	< 0.312	< 0.312	< 0.9
	MW-73-5	B37			5.0	25.1	10/12/2005	< 11.1	< 27.7	< 38.8			< 5.05	< 0.0288	< 0.0960	< 0.0960	< 0.2
MW-73	MW-73-10	B37			10.0	20.1	10/12/2005	45	< 28.5	45			4,530	< 0.0266	< 0.0888	< 0.0888	< 0.2
101 00 - 7 3	MW-73-16	B37			15.0	15.1	10/12/2005	129	677	806			33.4	0.261	< 0.443	< 0.443	< 1.
	MW-73-20	B37			20.0	10.1	10/12/2005	< 12.0	< 29.9	< 41.9			< 5.02	< 0.0131	< 0.100	< 0.100	< 0.3
	MW-95-5	B37			5.0	27.0	10/19/2005	48.4	< 26.4	48.4			< 4.70	0.0346	< 0.0508	< 0.0508	< 0.1
MW-95	MW-95-10	B37			10.0	22.0	10/19/2005	< 11.4	< 28.6	< 40.0			< 4.22	< 0.0277	< 0.0462	< 0.0462	< 0.09
	MW-95-15	B37			15.0	17.0	10/19/2005	< 12.6	< 31.5	< 44.1			< 7.39	< 0.0295	< 0.0492	< 0.0492	< 0.09
reening Levels ⁶								2,000	2,000	2,000	2.)00	30/100 ⁷	0.03	7	6	9

Results in bold denote concentrations exceeding appreciate cleanup levels.	BTEX = be
< denotes analyte not detected at or exceeding the laboratory reporting limit listed.	DRO = tota
— denotes sample not analyzed.	GRO = TPI
¹ Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).	H = sample
² Analyzed by Northwest Method NWTPH-Dx, unless otherwise noted. Results denoted as analyzed by NWTPH-Dx with silica gel were analyzed using a sample extract treated with sulfuric acid/silica gel	M = hydroc
cleanup procedure.	N = hydroc
³ Total is the sum of the DRO and ORO results.	N1 = hydro
⁴ Analyzed by Northwest Method NWTPH-Gx, unless otherwise noted.	ORO = TPI
⁵ Analyzed by U.S. Environmental Protection Agency Method 8021B, 8260C, or 8260D.	O = Hydroc
⁶ Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.	T = the sam
⁷ Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.	

⁸Analyzed by Northwest Method NWTPH-HCID (hydrocarbon identification).

total petroleum hydrocarbons (TPH) as diesel-range organics

= TPH as gasoline-range organics

umple analyzed outside of holding time

ydrocarbons in the gasoline range are impacting the diesel-range result

ydrocarbons in the oil-range are impacting the diesel-range result

hydrocarbons in the diesel-range are impacting the oil-range result

= TPH as oil-range organics

ydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

e sample chromatogram is not similar to a typical gasoline standard

																	Analytical	l Results (mil	ligrams per l	kilogram) ²								
														Non-Carcin	ogenic PAHs				<u> </u>					Carcinog	enic PAHs			
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ^{3,5}	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracen e	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
												Alley																
	FB-10-22.5	Alley	Performance	Removed	Soil		22.5	9/12/2020													0.61	0.58	0.71	0.17	0.68	0.065	0.37	0.81
FB-10	FB-10-20.0 FB-10-17.5	Alley Alley	Confirmation Confirmation	Removed In Place	Soil Soil		20.0	9/12/2020 9/12/2020														< 0.0097 < 0.016	< 0.0097 < 0.016	< 0.0097 < 0.016	< 0.0097 < 0.016	< 0.0097 < 0.016	< 0.0097 < 0.016	< 0.0073 < 0.012
	FB-11-20.0	Alley	Performance	Removed	Soil		20.0	9/12/2020													0.54	0.50	0.62	0.17	0.52	0.058	0.37	0.72
FB-11	FB-11-17.5	Alley	Confirmation	In Place	Soil		17.5	9/12/2020													< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.012
-	FB-12-21.5	Alley	Confirmation	In Place	Soil		21.5	9/13/2020	< 0.15	< 0.15	< 0.15	< 0.45																
FB-12	FB-12-20.0 FB-12-17.5	Alley	Performance Performance	Removed In Place	Soil Soil		20.0	9/13/2020 9/13/2020													0.081 0.25	0.084	0.089	< 0.025 0.083	0.085	< 0.025 < 0.025	0.058	0.107 0.32
	FB-12-17.5	Alley	Confirmation	In Place	Soil		15.0	9/13/2020														< 0.022	< 0.022	< 0.022	< 0.022	< 0.025	< 0.022	< 0.017
-	FB-13-22.5	Alley	Performance	Removed	Soil		22.5	9/12/2020	4.1	3.4	4.1	11.6									25	24	24	7.7	24	2.1	12	32
FB-13	FB-13-20.0	Alley	Performance	Removed	Soil		20.0	9/12/2020	0.40	0.084	0.11	0.594									0.55	0.55	0.53	0.16	0.50	0.046	0.30	0.71
	FB-13-17.5 FB-13-15.0	Alley Alley	Performance Confirmation	In Place In Place	Soil Soil		17.5	9/12/2020 9/12/2020													1.8	1.9 < 0.035	1.8 < 0.035	0.46	1.6 < 0.035	0.15	1.0	2.3 < 0.026
	FB-14-22.5	Alley	Performance	Removed	Soil		22.5	9/12/2020	0.18	0.15	0.21	0.540									2.4	2.8	2.4	0.78	2.6	0.24	1.4	3.2
FB-14	FB-14-20.0	Alley	Performance	Removed	Soil		20.0	9/12/2020	0.14	0.13	0.14	0.410									1.8	1.7	1.6	0.47	1.6	0.16	0.97	2.3
	FB-14-17.5	Alley	Confirmation	Removed	Soil		17.5	9/13/2020														< 0.017	< 0.017	< 0.017	< 0.017	< 0.017	< 0.017	< 0.013
-	FB-15-22.5 FB-15-20.0	Alley	Performance Performance	In Place In Place	Soil Soil		22.5 20.0	9/13/2020 9/13/2020	0.40	0.26	0.32	0.980									2.3	2.4 0.21	2.2 0.20	0.78 0.064	2.0 0.20	0.24 0.020	1.3 0.11	3.0 0.26
FB-15	FB-15-17.5	Alley	Performance	In Place	Soil		17.5	9/13/2020	0.10	0.033	0.040	0.173									0.20	0.26	0.20	0.098	0.25	0.025	0.11	0.40
	FB-15-15.0	Alley	Confirmation	In Place	Soil		15.0	9/13/2020													< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.017
	FB-16-22.5	Alley	Performance	Removed	Soil		22.5	9/13/2020													0.49	0.45	0.47	0.13	0.45	0.051	0.29	0.63
FB-16	FB-16-20.0 FB-16-17.5	Alley	Confirmation Confirmation	Removed In Place	Soil Soil		20.0	9/13/2020 9/13/2020													< 0.0074	< 0.0074 0.032	< 0.0074 0.029	< 0.0074 < 0.029	< 0.0074 0.055	< 0.0074 < 0.029	< 0.0074 < 0.029	< 0.0056 0.026
	FB-21-3.0	Alley	Performance	In Place	Soil/Charcoal	3.0	28.0	2/5/2022	0.82	0.82	0.92	2.56									0.17	0.032	0.23	0.057	0.033	< 0.023	0.023	0.020
FB-21	FB-21-5.0	Alley	Confirmation	In Place	Soil	5.0	26.0	2/5/2022													< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0058
PH-4	PH-4-4.5-012619	Alley	Performance	Removed	Soil	4.5	22.0	1/26/2019													0.11	0.079	0.10	0.035	0.086	0.013	0.078	0.14
PH-11A PH-12	PH-11A-4.0-011919 PH-12-4.0-011919	Alley Alley	Performance Performance	Removed Removed	Soil Soil	4.0	20.0 21.0	1/19/2019 1/19/2019													0.30	0.25	0.31	0.081	0.26	0.031 9.9	0.20 63	0.39
PH-13	PH-13-3.0-011219	Alley	Performance	Removed	Soil	3.0	20.0	1/12/2019														< 0.0078	< 0.0078	< 0.0078	< 0.0078	< 0.0078	< 0.0078	< 0.0059
TP-10-4	TP-10-4	Alley	Performance	Removed	Soil	4.0	20.5	5/5/2008	< 0.03			< 0.03	< 0.03	< 0.03	< 0.03	0.1	0.21	0.04	< 0.03	0.33	0.16	0.17	0.25	0.36	0.29	< 0.03	< 0.03	0.24
A/A5-B	A/A5-B-17.5-031021	Alley	Performance	In Place	Soil		17.5	3/10/2021													0.14	0.11	0.26	0.050	0.11	0.010	0.059	0.19
	A/A5-B-16.0-032421	Alley	Confirmation	In Place	Soil Inside of Wood		16.0 22.5	3/24/2021														< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092 0.018	< 0.0092	< 0.0069 0.21
A/A5-B2	A/A5-B2-22.5-031021 A/A5-B2-20.0-031021	Alley Alley	Performance Performance	Removed	Peat		22.5	3/10/2021 3/10/2021													0.16	0.13	0.20 0.10	0.049	0.17	< 0.018	0.10 0.056	0.21
-	A/A5-B2-17.5-031021	Alley	Confirmation	In Place	Soil		17.5	3/10/2021														< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0066
	A/A5-ESW-22.5-031821	Alley	Performance	In Place	Soil		22.5	3/18/2021													1.1	1.0	1.0	0.30	0.92	0.11	0.60	1.40
A/A5-ESW	A/A5-ESW-20.0-031821	Alley	Performance	In Place	Soil		20.0	3/18/2021													0.14	0.12	0.14	0.041	0.13	0.012	0.082	0.18
	A/A5-ESW-17.5-031821 A/A5-SSW-22.5-031021	Alley	Confirmation Performance	In Place In Place	Soil Inside of Wood		17.5 22.5	3/18/2021 3/10/2021														< 0.0089 0.068	< 0.0089 0.081	< 0.0089 0.023	< 0.0089 0.078	< 0.0089 < 0.018	< 0.0089 0.048	< 0.0067
A/A5-SSW	A/A5-SSW-20.0-031821	Alley	Confirmation	In Place	Soil		22.3	3/10/2021 3/18/2021														< 0.0089	< 0.0081	< 0.0023	< 0.0089	< 0.018	< 0.0048	< 0.0067
	A/A5-SSW-17.5-032221	Alley	Confirmation	In Place	Soil		17.5	3/22/2021														< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0066
	C/A5-ESW-22-5-032221	Alley	Performance	In Place	Soil		22.5	3/22/2021													1.2	1.0	1.3	0.37	1.1	0.15	0.77	1.60
C/A5-ESW	C/A5-ESW-20.0-032221	Alley	Performance	In Place	Soil		20.0	3/22/2021													0.43	0.41	0.51	0.13	0.44	0.055	0.28	0.57
D/AC D	C/A5-ESW-17.5-032221	Alley	Confirmation	In Place	Peat		17.5	3/22/2021														< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.0091
D/A5-B E/A5-B	D/A5-B-17.5-032221 E/A5-B-17.5	Alley	Confirmation Confirmation	In Place In Place	Peat Peat		17.5	3/22/2021 6/28/2021	1.2	0.19	0.38	1.77									< 0.023 0.87	< 0.023 0.82	< 0.023 0.78	< 0.023	< 0.023 0.71	< 0.023 0.095	< 0.023 0.52	< 0.017 1.1
L/AJ-D	E/A5-ESW-22.5-050421	Alley	Confirmation	In Place	Peat		22.5	5/4/2021	1.2	1.4	1.2	4.0									16	13	14	4.6	13	1.4	8.8	20
E/A5-ESW	E/A5-ESW-20.0-050421	Alley	Confirmation	In Place	Peat		20.0	5/4/2021	1.3	0.16	0.24	1.7										0.049	0.080	< 0.021	0.069	< 0.021	0.047	0.058
	E/A5-ESW-17.5-050421	Alley	Confirmation	In Place	Peat		17.5	5/4/2021	0.073	< 0.025	< 0.025	0.073										< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.042
F/A5-B	F/A5-B-17.5	Alley	Confirmation	Removed	Peat		17.5	6/28/2021	< 0.029	< 0.029	< 0.029	< 0.087										< 0.029	0.032	< 0.029	< 0.029	< 0.029	< 0.029	0.043
G/A5-ESW	G/A5-ESW-22.5-070621 G/A5-ESW-20.0-070621	Alley	Confirmation	In Place	Soil Soil, Charcoal-Like		22.5 20.0	7/6/2021 7/6/2021	0.21 2.8	0.18	0.18	0.57									1.5 9.4	1.4 8.3	1.4 10	0.53 2.5	1.4 9.0	0.22 0.85	0.90 5.7	2.0 12
G/AJ-EAW	G/A5-ESW-17.5-070621	Alley	Confirmation Confirmation	In Place In Place	Peat		17.5	7/6/2021	0.30	0.053	0.092	8.6 0.445									0.51	0.42	0.58	0.15	0.48	0.85	0.33	0.67
Screening Levels ⁶		,			·····		ļ	+				5	4,800 ⁷	NE	24,000 ⁷	NE	3,200 ⁷	3,200 ⁷	NE	2,400 ⁷			1					0.1
															!													

																	Analytical	Results (mill	ligrams per l	kilogram) ²							
]	Non-Carcin	ogenic PAHs				<u> </u>					Carcinoge	nic PAHs		
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	Vaphthalene	l-Methylnaphthalene	2-Methylnaphthalene	Fotal Naphthalenes ^{3,5}	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	fluoranthene	fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene) Dibenzo(a,h)Anthracen	indeno(1,2,3-cd)Pyrene cbyPyrene Lec _{4'2}
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place	Peat		17.5	7/6/2021	0.034	< 0.022	< 0.022	0.034									< 0.022	< 0.022	0.024	< 0.022	0.058	< 0.022	< 0.022 0.018
	H/A5-ESW-22.5-070621	Alley	Confirmation	In Place	Soil		22.5	7/6/2021	0.011	0.018	0.020	0.049									0.062	0.070	0.081	0.024	0.15	0.023	0.040 0.087
H/A5-ESW	H/A5-ESW-20.0-070621	Alley	Confirmation	In Place	Soil, Charcoal-Like		20.0	7/6/2021	2.9	0.98	1.7	5.58									4.0	3.5	4.7	1.0	3.6	0.41	2.5 5.2
	H/A5-ESW-17.5-070621	Alley	Confirmation	In Place	Peat		17.5	7/6/2021	0.19	0.060	0.13	0.38									< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023 < 0.017
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place	Peat		17.5	7/9/2021	9.8	7.5	8.8	26.1									70	62	58	19	56	4.8	37 89
	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place	Soil		22.5	7/9/2021	0.11	0.084	0.097	0.291									2.0	1.6	2.0	0.51	1.6	0.19	1.2 2.6
I/A5-ESW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place	Peat		20.0	7/9/2021	0.67	0.37	0.50	1.54									3.2	2.5	3.2	1.1	3.0	0.32	1.9 4.1
	I/A5-ESW-17.5-070921	Alley	Confirmation	In Place	Peat		17.5	7/9/2021													120	91	120	24	110	9.1	69 150
J/A5-ESW	J/A5-ESW-22.5-070921 J/A5-ESW-20.0-070921	Alley	Confirmation Confirmation	In Place In Place	Soil Soil, Charcoal-Like		22.5	7/9/2021 7/9/2021													1.5 6.5	1.2 6.0	1.5 5.8	0.47	1.3 5.6	0.18	0.93 1.9 3.5 8.4
J/AJ-LOW	J/A5-ESW-20.0-070921 J/A5-ESW-17.5-070921	Alley Alley	Confirmation	In Place	Soil, Charcoal-Like Soil		17.5	7/9/2021													0.87	0.66	0.74	0.24	0.68	0.37	0.47 1.1
L/A5-B	L/A5-B-22.0-071221	Alley	Confirmation	Removed	Soil		22.0	7/12/2021													0.15	0.00	0.14	0.24	0.03	0.012	0.090 0.19
	L/A5-ESW-25.0-071221	Alley	Confirmation	In Place	Soil		25.0	7/12/2021													2.2	1.9	2.1	0.68	1.9	0.18	1.3 2.8
L/A5-ESW	L/A5-ESW-22.5-071221	Alley	Confirmation	In Place	Soil		22.5	7/12/2021													0.41	0.37	0.41	0.14	0.41	< 0.038	0.22 0.53
M/A5-ESW	M/A5-ESW-25.0-071521	Alley	Confirmation	In Place	Soil, Charcoal-Like		25.0	7/15/2021													0.23	0.19	0.22	0.063	0.20	0.015	0.13 0.29
M/A5-ESW	M/A5-ESW-22.5-071521	Alley	Confirmation	In Place	Soil		22.5	7/15/2021													< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073 < 0.0055
N/A5-B	N/A5-B-25.0-072021	Alley	Confirmation	Removed	Soil		25.0	7/20/2021													< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073 < 0.0055
N/A5-NSW	N/A5-NSW-28.0-072021	Alley	Confirmation	In Place	Soil		28.0	7/20/2021													0.41	0.33	0.38	0.15	0.36	0.048	0.25 0.53
10/15/10/0	N/A5-NSW-26.0-072021	Alley	Confirmation	In Place	Soil		26.0	7/20/2021													0.011	0.010	0.014	< 0.0074	0.013	< 0.0074	0.0075 0.015
N/A5-ESW	N/A5-ESW-28.0-072021	Alley	Confirmation	In Place	Soil		28.0	7/20/2021													1.2	1.2	1.5	0.36	1.4	0.15	0.88 1.6
	N/A5-ESW-26.0-072021	Alley	Confirmation	In Place	Soil		26.0	7/20/2021													0.087	0.068	0.098	0.034	0.087	0.016	0.065 0.12
Screening Levels [®]												5	4,8007	NE	24,0007	NE	3,2007	3,200⁷	NE	2,4007							0.1
	ED 01 5 0 002110	.			0.1	5.0		0/01/0010	0.00		-	38 West Proj	 1 1	0.22	10	1.0	4.0	0.46	6.4	60	0.5	2.6	2.0	0.76	2.1	0.45	16
FB-01	FB-01-5.0-082118 FB-01-15.0-082118	Interior Interior	Performance Confirmation	Removed Removed	Soil Soil	5.0 15.0	21.3	8/21/2018 8/21/2018	0.99 < 0.011	1.1 < 0.011	1.2	3.29 < 0.033	0.46	0.32	1.0 < 0.011	1.9 < 0.011	4.8	0.46	5.4 < 0.011	6.8 < 0.011	2.5 < 0.011	2.6 < 0.011	2.9 < 0.011	0.76	3.1 < 0.011	0.45 < 0.011	1.6 3.4 < 0.011 < 0.008
	FB-02-5.0-082018	Interior	Performance	Removed	Soil	5.0	20.1	8/20/2018	1.1	0.86	1.3	3.3	1.4	0.45	3.3	8.5	18	1.3	12	25	11	9.8	12	3.5	9.7	1.6	8.0 15
FB-02	FB-02-25.0-082018	Interior	Confirmation	Removed	Soil	25.0	0.1	8/20/2018	0.083	0.020	0.024	0.127	0.027	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080 < 0.0060
FB-03	FB-03-10.0-082318	Interior	Confirmation	Removed	Soil	10.0	15.8	8/23/2018	< 0.0086	< 0.0086	< 0.0086	< 0.0258	< 0.0086	< 0.0086	< 0.0086	< 0.0086	0.011	< 0.0086	0.015	0.012	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086 < 0.0065
гв-03	FB-03-35.0-082318	Interior	Confirmation	In Place	Soil	35.0	-9.2	8/23/2018	< 0.0080	< 0.0080	< 0.0080	< 0.024	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.015	< 0.0080	0.017	0.017	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080 < 0.0060
FB-04	FB-04-10.0-082118	Interior	Performance	Removed	Soil	10.0	12.0	8/21/2018	0.12	0.057	0.099	0.276	0.21	0.045	0.29	0.21	0.97	0.22	1.0	1.1	0.36	0.67	0.47	0.18	0.95	0.041	0.19 0.52
	FB-04-15.0-082118	Interior	Confirmation	Removed	Soil	15.0	7.0	8/21/2018	0.052	0.048	0.092	0.192	0.049	< 0.0082	0.029	0.018	0.078	0.043	0.16	0.1	0.027	0.027	0.025	0.0099	0.028	< 0.0082	0.017 0.036
FB-05	FB-05-15.0-082218	Interior	Confirmation	Removed	Soil	15.0 2.5	10.5	8/22/2018	< 0.0089	< 0.0089	< 0.0089 0.045	< 0.0267	< 0.0089	< 0.0089 0.042	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089 0.47	< 0.0089	< 0.0089	< 0.0089 0.50	< 0.0089	<0.0089 < 0.0067 0.34 0.65
FB-06	FB-06-2.5-082218 FB-06-10.0-082218	Interior Interior	Performance Confirmation	Removed Removed	Soil Soil	2.5	15.4	8/22/2018 8/22/2018	0.087 < 0.016 H	0.044 < 0.016 H	< 0.045	0.176 < 0.048	0.13 < 0.016 H	< 0.042	0.20 < 0.016 H	0.35 < 0.016 H	0.81 < 0.016 H	0.094 < 0.016 H	0.89 < 0.016 H	0.020 H	0.49 < 0.016 H	0.47 < 0.016 H	0.52 < 0.016 H	0.17 < 0.016 H	0.50 < 0.016 H	0.054 < 0.016 H	0.34 0.65 < 0.016 H < 0.012
10-00	FB-06-20.0-082218	Interior	Confirmation	Removed	Soil	20.0	5.4	8/22/2018	0.070	< 0.010 H < 0.0081	< 0.0081	0.048	< 0.010 H < 0.0081	< 0.0081	< 0.010 H	< 0.010 H < 0.0081	< 0.010 H < 0.0081	< 0.010 H < 0.0081	< 0.010 H	< 0.020 H	< 0.010 H	< 0.010 H	< 0.010 H	< 0.010 H	< 0.0081	< 0.010 H	<0.0081 <0.0061
	FB-07-24	Interior	Confirmation	Removed			-0.5		0.028	< 0.0081	< 0.0081										< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081 < 0.0061
FB-07		interior		rtemoved	Soil	24.0	-0.5	12/21/2019	0.020	< 0.0001	< 0.0081	0.028												< 0.0080	< 0.0080	< 0.0080	< 0.0080 < 0.0060
10 07	FB-07-29	Interior	Confirmation	Removed	Soil	24.0	-0.5	12/21/2019	< 0.0080	< 0.0081	< 0.0081	< 0.028									< 0.0080	< 0.0080	< 0.0080			< 0.0080	< 0.0080 < 0.0060
10.07	FB-07-29 FB-07-31.5		Confirmation Confirmation		Soil Soil	29.0 31.5	-5.5 -8.0	12/21/2019 12/21/2019	< 0.0080 < 0.0080	< 0.0080 < 0.0080	< 0.0080 < 0.0080	< 0.024 < 0.024									< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080		
	FB-07-29 FB-07-31.5 FB-08-2.5	Interior Interior Interior	Confirmation Performance	Removed In Place Removed	Soil Soil Soil	29.0 31.5 2.5	-5.5 -8.0 21.2	12/21/2019 12/21/2019 12/21/2019	< 0.0080 < 0.0080 3.8	< 0.0080 < 0.0080 5.0	< 0.0080 < 0.0080 5.5	<0.024 <0.024 14.3	 								< 0.0080 4.8	< 0.0080 4.6	< 0.0080 6.4	< 0.0080 2.0	4.7	0.70	3.1 6.5
	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8	Interior Interior Interior Interior	Confirmation Performance Performance	Removed In Place Removed Removed	Soil Soil Soil Soil	29.0 31.5 2.5 8.0	-5.5 -8.0 21.2 15.7	12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013	<0.0080 <0.0080 5.0 <0.0078	< 0.0080 < 0.0080 5.5 0.0089	<0.024 <0.024 14.3 0.022									< 0.0080 4.8 0.015	< 0.0080 4.6 0.013	< 0.0080 6.4 0.017	< 0.0080 2.0 < 0.0078	4.7 0.015	0.70 < 0.0078	0.011 0.020
FB-08	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-8 FB-08-13	Interior Interior Interior Interior Interior	Confirmation Performance Performance Performance	Removed In Place Removed Removed Removed	Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0	-5.5 -8.0 21.2 15.7 10.7	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6	<0.0080 <0.0080 5.0 <0.0078 1.9	<0.0080 <0.0080 5.5 0.0089 2.3	<0.024 <0.024 14.3 0.022 8.8			 			 			< 0.0080 4.8 0.015 < 0.0082	<0.0080 4.6 0.013 <0.0082	< 0.0080 6.4 0.017 < 0.0082	<0.0080 2.0 <0.0078 <0.0082	4.7 0.015 < 0.0082	0.70 < 0.0078 < 0.0082	0.011 0.020 < 0.0082 < 0.0062
	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-8 FB-08-13 FB-08-18	Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Performance Confirmation	Removed In Place Removed Removed Removed Removed	Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0	-5.5 -8.0 21.2 15.7 10.7 5.7	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6 0.12	$\begin{array}{r} < 0.0080 \\ < 0.0080 \\ \hline 5.0 \\ < 0.0078 \\ \hline 1.9 \\ \hline 0.040 \end{array}$	<0.0080 <0.0080 5.5 0.0089 2.3 0.040	<0.024 <0.024 14.3 0.022 8.8 0.20						 			<0.0080 4.8 0.015 <0.0082 <0.0077	< 0.0080 4.6 0.013 < 0.0082 < 0.0077	<0.0080 6.4 0.017 <0.0082 <0.0077	<0.0080 2.0 <0.0078 <0.0082 <0.0077	4.7 0.015 < 0.0082 < 0.0077	0.70 < 0.0078 < 0.0082 < 0.0077	0.011 0.020 < 0.0082
FB-08	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-8 FB-08-13	Interior Interior Interior Interior Interior	Confirmation Performance Performance Performance	Removed In Place Removed Removed Removed	Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0	-5.5 -8.0 21.2 15.7 10.7	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6	<0.0080 <0.0080 5.0 <0.0078 1.9	<0.0080 <0.0080 5.5 0.0089 2.3	<0.024 <0.024 14.3 0.022 8.8	 		 	 	 	 			< 0.0080 4.8 0.015 < 0.0082	<0.0080 4.6 0.013 <0.0082	< 0.0080 6.4 0.017 < 0.0082	<0.0080 2.0 <0.0078 <0.0082	4.7 0.015 < 0.0082	0.70 < 0.0078 < 0.0082	0.011 0.020 < 0.0082 < 0.0062
	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-8 FB-08-13 FB-08-18 FB-08-30.5	Interior Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Performance Confirmation Confirmation	Removed In Place Removed Removed Removed In Place	Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081	$\begin{array}{c} < 0.0080 \\ < 0.0080 \\ \hline 5.0 \\ < 0.0078 \\ \hline 1.9 \\ 0.040 \\ < 0.0081 \end{array}$	< 0.0080 < 0.0080 5.5 0.0089 2.3 0.040 < 0.0081	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024	 	 		 	 	 		 	< 0.0080 4.8 0.015 < 0.0082 < 0.0077 < 0.0081	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081	4.7 0.015 < 0.0082 < 0.0077 < 0.0081	0.70 < 0.0078 < 0.0082 < 0.0077 < 0.0081	0.011 0.020 < 0.0082
FB-08	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-18 FB-08-18 FB-08-30.5 FB-09-11	Interior Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Performance Confirmation Confirmation	Removed In Place Removed Removed Removed In Place Removed	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.015	$\begin{array}{r} < 0.0080 \\ < 0.0080 \\ \hline 5.0 \\ < 0.0078 \\ \hline 1.9 \\ 0.040 \\ < 0.0081 \\ < 0.015 \end{array}$	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.024 <0.045	 			 	 	 		 	< 0.0080 4.8 0.015 < 0.0082 < 0.0077 < 0.0081 0.018	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.015	< 0.0080 6.4 0.017 < 0.0082 < 0.0077 < 0.0081 0.021	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081 <0.015	4.7 0.015 < 0.0082 < 0.0077 < 0.0081 < 0.015	0.70 <0.0078 <0.0082 <0.0077 <0.0081 <0.015	0.011 0.020 < 0.0082
FB-08	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-2.5 FB-08-13 FB-08-13 FB-08-18 FB-08-30.5 FB-09-11 FB-09-33	Interior Interior Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place Removed In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.015 <0.0083	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.015 <0.0083	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.024 <0.045 <0.025	 			 		 			<0.0080 4.8 0.015 <0.0082 <0.0077 <0.0081 0.018 <0.0083	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.015 <0.0083	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081 0.021 <0.0083	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081 <0.015 <0.0083	4.7 0.015 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083	$\begin{array}{r} 0.70 \\ < 0.0078 \\ < 0.0082 \\ < 0.0077 \\ < 0.0081 \\ < 0.015 \\ < 0.0083 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
FB-08	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-18 FB-08-30.5 FB-09-11 FB-09-33 FB-18-20.0 FB-18-15.0 FB-19-20.0	Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place In Place In Place In Place In Place In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0 	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4 20.0 15.0 20.0	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 11/24/2021 11/24/2021	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.015 <0.0083 	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.015 <0.0083 	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083 	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.024 <0.045 <0.025 	 								<0.0080 4.8 0.015 <0.0082 <0.0077 <0.0081 0.018 <0.0083 <0.0079 <0.012 <0.0078	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081 0.021 <0.0083 <0.0079 <0.012 <0.0078	 < 0.0080 2.0 < 0.0078 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 	$\begin{array}{c} 4.7\\ 0.015\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ \end{array}$	$\begin{array}{c} 0.70\\ < 0.0078\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
FB-08 FB-09 FB-18	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-16 FB-08-17 FB-08-18 FB-09-33 FB-18-20.0 FB-18-15.0 FB-19-20.0 FB-19-15.0	Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior	Confirmation Performance Performance Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place Removed In Place In Place In Place In Place In Place In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0 	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4 20.0 15.0 20.0 15.0	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 11/24/2021 11/24/2021	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.0081 <0.015 <0.0083 	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.015 <0.0083 	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083 	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.024 <0.045 <0.025 									<0.0080 4.8 0.015 0.0082 0.0077 0.0081 0.018 0.018 0.0083 0.0079 0.012 0.012 0.0078 0.039 0.039	 < 0.0080 4.6 0.013 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 < 0.013 	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081 0.021 <0.0083 <0.0079 <0.012 <0.0078 0.041	 < 0.0080 2.0 < 0.0078 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 0.013 	$\begin{array}{c} 4.7\\ 0.015\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ < 0.013\end{array}$	0.70 < 0.0078 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 < 0.013	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
FB-08 FB-09 FB-18 FB-19	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-13 FB-08-13 FB-09-33 FB-18-20.0 FB-18-15.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0	Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Adjacent	Confirmation Performance Performance Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place In Place In Place In Place In Place In Place In Place In Place In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0 12.0	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4 20.0 15.0 20.0 15.0 20.0	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 11/24/2021 11/24/2021 11/24/2021 11/24/2021	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.0015 <0.0083 0.019	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.0083 <0.0075	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083 0.0081	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.045 <0.025 0.0271									<0.0080 4.8 0.015 0.0082 0.0077 0.0081 0.018 0.0083 0.0079 0.012 0.0079 0.012 0.0079 0.039 0.048	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078 <0.0078 <0.013 0.046	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081 0.021 <0.0083 <0.0079 <0.012 <0.0078 0.041 0.038	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078 0.013 0.015	$\begin{array}{c} 4.7\\ 0.015\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ < 0.013\\ 0.039\\ \end{array}$	0.70 < 0.0078 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 < 0.013 < 0.0075	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
FB-08 FB-09 FB-18	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-18 FB-08-10.5 FB-09-11 FB-09-33 FB-18-20.0 FB-18-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-15.0 FB-20-12-0 FB-20-12-0 FB-20-15.0	Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Adjacent Adjacent	Confirmation Performance Performance Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place In Place In Place In Place In Place In Place In Place In Place In Place In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0 12.0 15.0	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4 20.0 15.0 20.0 15.0 20.0 17.0	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 11/24/2021 11/24/2021 11/24/2021 11/24/2021 2/5/2022 2/5/2022	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.015 <0.0083 0.019 0.014	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.015 <0.0083 <0.0075 <0.0077	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083 0.0081 <0.0077	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.024 <0.045 <0.025 0.0271 0.014									<0.0080 4.8 0.015 0.0082 0.0077 0.0081 0.018 0.0083 0.0079 0.0012 0.0079 0.012 0.0078 0.039 0.048 0.0077	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.0083 <0.0079 <0.012 <0.0078 <0.012 <0.0078 <0.013 0.046 <0.0077	 < 0.0080 6.4 0.017 < 0.0082 < 0.0077 < 0.0081 0.021 < 0.0083 < 0.0079 < 0.012 < 0.0078 < 0.041 < 0.0083 < 0.0077 	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078 0.013 0.015 <0.0077	$\begin{array}{c} 4.7\\ 0.015\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ < 0.013\\ 0.039\\ < 0.0077\\ \end{array}$	$\begin{array}{c} 0.70 \\ < 0.0078 \\ < 0.0082 \\ < 0.0077 \\ < 0.0081 \\ < 0.015 \\ < 0.0083 \\ < 0.0079 \\ < 0.012 \\ < 0.0078 \\ < 0.013 \\ < 0.0075 \\ < 0.0077 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
FB-08 FB-09 FB-18 FB-19	FB-07-29 FB-07-31.5 FB-08-2.5 FB-08-8 FB-08-13 FB-08-13 FB-08-13 FB-09-33 FB-18-20.0 FB-18-15.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0 FB-19-20.0	Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Interior Adjacent	Confirmation Performance Performance Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation Confirmation	Removed In Place Removed Removed Removed In Place In Place In Place In Place In Place In Place In Place In Place In Place	Soil Soil Soil Soil Soil Soil Soil Soil	29.0 31.5 2.5 8.0 13.0 18.0 30.5 11.0 33.0 12.0	-5.5 -8.0 21.2 15.7 10.7 5.7 -6.9 12.7 -9.4 20.0 15.0 20.0 15.0 20.0	12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 12/21/2019 11/24/2021 11/24/2021 11/24/2021 11/24/2021	<0.0080 <0.0080 3.8 0.013 4.6 0.12 <0.0081 <0.0015 <0.0083 0.019	<0.0080 <0.0080 5.0 <0.0078 1.9 0.040 <0.0081 <0.0083 <0.0075	<0.0080 <0.0080 5.5 0.0089 2.3 0.040 <0.0081 <0.015 <0.0083 0.0081	<0.024 <0.024 14.3 0.022 8.8 0.20 <0.024 <0.045 <0.025 0.0271									<0.0080 4.8 0.015 0.0082 0.0077 0.0081 0.018 0.0083 0.0079 0.012 0.0079 0.012 0.0079 0.039 0.048	<0.0080 4.6 0.013 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078 <0.0078 <0.013 0.046	<0.0080 6.4 0.017 <0.0082 <0.0077 <0.0081 0.021 <0.0083 <0.0079 <0.012 <0.0078 0.041 0.038	<0.0080 2.0 <0.0078 <0.0082 <0.0077 <0.0081 <0.015 <0.0083 <0.0079 <0.012 <0.0078 0.013 0.015	$\begin{array}{c} 4.7\\ 0.015\\ < 0.0082\\ < 0.0077\\ < 0.0081\\ < 0.015\\ < 0.0083\\ < 0.0079\\ < 0.012\\ < 0.0078\\ < 0.013\\ 0.039\\ \end{array}$	0.70 < 0.0078 < 0.0082 < 0.0077 < 0.0081 < 0.015 < 0.0083 < 0.0079 < 0.012 < 0.0078 < 0.013 < 0.0075	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

							1										Analytica	l Posulte (mi	lligrams per l	(ilogram) ²								
														Non-Carcin	ogenic PAHs	5	Analytica	li Kesuits (iiii	ingrans per i	kilogi alli)				Carcinog	enic PAHs			
														Tion Curcin		,							0	earching		E	e	
										ene	ene	s.s.				e						e	Jene	the		ace	'ren	1
										ha l	ha l	ene		ి		yle						ace	nt	ran		th	A (1
										bh	bht	[Pa]	i i	len		Рег	2		e		Gen (thr	1012	on		IV.	ç	1
									le	[na]	L a	hd	ţ	th	ene	, i, h	hei		hre		Py	U V	Elu	k)F	0	a,h	5	
				Sample		Sample	Sample		tha	thy	thy	Ž	ਿਨੂ	de de	La C	, aj	ant	ene	ant	e	(a)	(a)	କୁ	Ğ	sen)ozi	E o	Total
		General		Location		Depth	Elevation		l da	Me	Me	otal	i i i	cen	l di	Zua	Ion	ION	Jen	Lei	žuz	zuz	žuz	zue	hry	lbei	der	cPAHs TEC ^{4,5}
Sample Location	Sample Identification	Location	Sample Type	Disposition	Sample Composition	(feet) ¹	(feet NAVD88) ¹	Sample Date	Ž	-	4	Ĕ	Ă.	×.	- A	<u> </u>	E	E	E	E.	Ř	Ř	ě.	Ř	Ū	e ۾	<u> </u>	
FMW-130	F-MW-130-20.0-072114	Interior	Confirmation	Removed	Soil	20.0	2.2	7/21/2014	0.38	0.016	0.028	0.424	0.014	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0060
FMW-132	FMW-132-5.0-082418	Interior	Performance	Removed	Soil	5.0	20.7	8/24/2018	2.0	2.0	2.6	6.6	1.5	0.10	3.3	4.4	15	0.84	18	27	9.4	11	10	2.9	13	1.4	4.1	12.5
FMW-133	FMW-133-10.0-082418	Interior	Confirmation	Removed	Soil	10.0	15.3	8/24/2018	< 0.055	< 0.055	< 0.055	< 0.165	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.042
TR OWN 101	FMW-133-20.0-082418	Interior	Confirmation	Removed	Soil	20.0	5.3	8/24/2018	0.25	0.035	0.042	0.33	0.021	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0060
FMW-134	FMW-134-15.0-082318	Interior	Confirmation	Removed	Soil	15.0	10.4	8/23/2018	0.14	0.012	0.028	0.18	0.014	< 0.0081	< 0.0081	< 0.0081	< 0.0081	0.016	0.021	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
FMW-135	FMW-135-15.0-082418	Interior	Confirmation	Removed	Soil	15.0	10.6	8/24/2018	0.029	< 0.022	< 0.022	0.029	0.039	< 0.022	< 0.022	< 0.022	0.042	< 0.022	0.068	0.073	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.017
	FMW-135-30.0-082418	Interior	Confirmation	Removed	Soil	30.0	-4.4	8/24/2018	0.12	0.012	< 0.0082	0.132	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0062
FMW-136	FMW-136-20.0-082218	Interior	Confirmation	Removed	Soil	20.0	5.1	8/22/2018	0.030	< 0.0084	< 0.0084	0.030	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0063
FMW-144	FWM-144-9.0	Interior	Performance	Removed	Soil	9.0	20.4	12/20/2019	< 0.014	< 0.014	< 0.014	< 0.042									0.085	0.033	0.088	0.025	0.032	< 0.014	0.081	0.11
	FMW-145-13.0	Interior	Confirmation	Removed	Soil	13.0	9.9	12/20/2019	0.075	0.17	0.056	0.301									0.063	0.062	0.060	0.018	0.11	0.011	0.037	0.083
	FMW-145-18.0	Interior	Confirmation	Removed	Soil	18.0	4.9	12/20/2019	0.018	0.054	0.044	0.116									0.055	0.051	0.051	0.016	0.066	< 0.0096	0.035	0.071
FMW-145	FMW-145-23.0	Interior	Confirmation	Removed	Soil	23.0	-0.1	12/20/2019	< 0.0079	< 0.0079	< 0.0079	< 0.0237									< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0060
	FMW-145-28.0	Interior	Confirmation	Removed	Soil	28.0	-5.1	12/20/2019	< 0.0081	< 0.0081	< 0.0081	< 0.0243									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FMW-145-30.5	Interior	Confirmation	In Place	Soil	30.5	-7.6	12/20/2019	< 0.0076	< 0.0076	< 0.0076	< 0.0228									< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0057
	FMW-145-33.0	Interior	Confirmation	In Place	Soil	33.0	-10.1	12/20/2019	< 0.0081	< 0.0081	< 0.0081	< 0.0243									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
FMW-146	FMW-146-13.0	Interior	Confirmation	Removed	Soil	13.0	10.2	12/21/2019	0.25	0.33	0.18	0.76									0.050	0.060	0.054	0.015	0.059	< 0.0091	0.031	0.067
	FMW-146-18.0	Interior	Confirmation	Removed	Soil	18.0	5.2	12/21/2019	0.20	0.13	0.12	0.45									0.031	0.034	0.031	0.0084	0.035	< 0.0082	0.018	0.041
	FMW-147-8.5	Interior	Confirmation	Removed	Soil	8.5	14.3	12/21/2019	0.095	< 0.031	0.035	0.13									< 0.079 U1	0.054	0.042	< 0.031	0.048	< 0.031	< 0.031	0.054
FMW-147	FMW-147-13.5	Interior	Confirmation	Removed	Soil	13.5	9.3	12/21/2019	0.10	< 0.0081	< 0.0081	0.10									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FMW-147-23.5	Interior	Confirmation	Removed	Soil	23.5	-0.7	12/21/2019	< 0.0081	< 0.0081	< 0.0081	< 0.0243									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
T	FMW-147-30.5	Interior	Confirmation	In Place	Soil	30.5	-7.7	12/21/2019	< 0.0081	< 0.0081	< 0.0081	< 0.0243									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
FMW-148	FMW-148-27.0	Interior	Confirmation	Removed	Soil	27.0	10.4	12/22/2019	0.38	0.056	0.11	0.546									< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0063
	FMW-149-21.0	Interior	Confirmation	Removed	Soil	21.0	15.2	12/22/2019	< 0.0088	< 0.0088	< 0.0088	< 0.0264									< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0066
FMW-149	FMW-149-31.0	Interior	Confirmation	Removed	Soil	31.0	5.2	12/22/2019	0.044	0.010	0.013	0.067									< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0063
	FMW-149-41.0	Interior	Confirmation	Removed	Soil	41.0	-4.8	12/22/2019	< 0.0070	< 0.0070	< 0.0070	< 0.021									< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0053
42/42 D	FMW-149-43.5	Interior	Confirmation	In Place	Soil	43.5	-7.3	12/22/2019	< 0.0075	< 0.0075	< 0.0075	< 0.0225									< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0057
A2/A3-B B2-B	A2/A3-B-(-6.75) B2-B-15.0	Interior	Confirmation	In Place	Soil		-6.75 15.0	6/3/2020 2/26/2020	< 0.0079	< 0.0079	< 0.0079	< 0.0237									< 0.0079 < 0.015	< 0.0079	< 0.0079 < 0.015	< 0.0060 < 0.011				
B2-B B3-B	B2-B-15.0 B3-B-15	Interior	Confirmation	Removed	Soil		15.0	2/26/2020													< 0.015	< 0.015 < 0.0096	< 0.015	< 0.015				< 0.0011
		Interior	Confirmation	Removed	Soil						< 0.0077														< 0.0096	< 0.0096	< 0.0096	< 0.0072
B/C-B	B/C-B-(-6.75) C2-B-15.0	Interior	Confirmation Confirmation	In Place	Soil Soil		-6.75 15.0	6/3/2020 2/26/2020	0.018	< 0.0077	< 0.0077	0.018									< 0.0077	< 0.0077 < 0.021	< 0.0058					
C2-B C3-B-20	С2-В-15.0 С3-В-20	Interior	-	Removed	Soil		20.0						┣────┤								0.25			< 0.021				< 0.016 0.34
C3-B-20	C3-B-20 C3-B-15	Interior	Performance	Removed	Soil		15.0	2/20/2020 2/27/2020	0.46	0.12	0.16	0.74									0.23	0.32	0.29 0.075	0.090	0.27 0.087	0.029	0.14 0.028	0.08
Сэ-в	C4-ESW-19.0	Interior Sidewall	Confirmation Confirmation	Removed In Place	Soil		19.0	2/27/2020													< 0.039	0.11 < 0.021	< 0.075	< 0.021	< 0.087	< 0.014	< 0.028	< 0.016
C4-ESW	C4-ESW-19.0	Sidewall	Confirmation	In Place	Soil		19.0	2/28/2020													< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.016
C/D-B	C/D-B-(-6.75)	Interior	Confirmation	In Place	Soil		-6.75	6/3/2020	0.021	< 0.0075	< 0.0075	0.021									< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.010
D2-B	D2-B-15.0	Interior	Confirmation	Removed	Soil		-0.73	2/26/2020	0.021	< 0.0073	< 0.0073	0.021									< 0.0073	< 0.0073	< 0.019	< 0.019	< 0.0073	< 0.019	< 0.0073	< 0.0037
D2-B D3-B	D2-B-15.0 D3-B-15	Interior	Confirmation	Removed	Soil		15.0	2/20/2020													< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.014
	D3-B-13 D4-ESW-19.0	Sidewall	Confirmation	In Place	Soil		19.0	2/28/2020	0.30	0.17	0.22	0.69									< 0.020	0.032	< 0.020	0.000	0.020		< 0.020	
D4-ESW	D4-ESW-19.0 D4-ESW-15	Sidewall	Confirmation	In Place	Soil		19.0	2/28/2020	0.30		0.22	0.09									< 0.022	< 0.032	< 0.022	< 0.022	< 0.028	< 0.022	< 0.022	< 0.019
E4-ESW	E4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	2/26/2020													< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.015
F1-B	F1-B-10.0	Interior	Confirmation	Removed	Soil		10.0	2/20/2020													< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	
	F2-B-15.0	Interior	Performance	Removed	Soil		15.0	2/26/2020													0.73	0.54	0.63	0.25	0.48	0.081	0.51	< 0.0008 0.94
F2-B	F2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	2/29/2020													< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.001	< 0.0081	< 0.0061
F4-ESW	F4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	2/26/2020													0.021	0.020	0.020	< 0.015	0.020	< 0.015	< 0.015	
G1-B	G1-B-0.0	Interior	Confirmation	Removed	Soil		0.0	5/4/2020													< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.020	< 0.0076	< 0.0076	< 0.0057
G2-B	G2-B-15.0	Interior	Confirmation	Removed	Soil		15.0	2/26/2020													0.060	0.092	0.061	0.023	0.074	< 0.016	0.030	0.082
	G3-B-15.0	Interior	Confirmation	Removed	Soil		15.0	2/26/2020	< 0.038	< 0.038	< 0.038	< 0.114									< 0.038	< 0.032	< 0.001	< 0.023	< 0.074	< 0.010	< 0.030	< 0.032
G3-B	G3-B-10.0	Interior	Confirmation	Removed	Soil		10.0	2/28/2020	0.058	0.051	0.13	0.239									< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0073	< 0.0055
G4-ESW	G4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	2/26/2020	0.050			0.237									< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.0033
Screening Levels ⁶		Sidewall	Contribution	i nucc	5011		15.0	2,20,2020		1	1	5	4,8007	NE	24,000 ⁷	NE	3,2007	3,2007	NE	2,400 ⁷	. 0.015	10.010	. 0.015	. 0.015	10.010	. 0.015	. 0.015	0.1
Screening Levels									1			1 3	4,000	14E	24,000	THE	3,200	3,200	THE	2,400	I							V.1

																		Analytical	l Results (mi	ligrams per l	kilogram) ²								
															Non-Carcin	ogenic PAHs	;	·		Ŭ Å					Carcinog	enic PAHs		-	
mm mm mm mm mm <th></th> <th></th> <th>General</th> <th></th> <th></th> <th></th> <th></th> <th>· ·</th> <th></th> <th>phthalene</th> <th>Aethylnaphthalene</th> <th>Aethylnaphthalene</th> <th>tal Naphthalenes^{3,5}</th> <th>enaphthene</th> <th>enaphthylene</th> <th>thracene</th> <th>nzo(g,h,i)Perylene</th> <th>ioranthene</th> <th>orene</th> <th>enanthrene</th> <th>rene</th> <th>nzo(a)Pyrene</th> <th>nzo(a)Anthracene</th> <th>nzo(b)Fluoranthene</th> <th>nzo(j,k)Fluoranthene</th> <th>rysene</th> <th>∋enzo(a,h)Anthracen</th> <th>leno(1,2,3-cd)Pyrene</th> <th>cPAHs</th>			General					· ·		phthalene	Aethylnaphthalene	Aethylnaphthalene	tal Naphthalenes ^{3,5}	enaphthene	enaphthylene	thracene	nzo(g,h,i)Perylene	ioranthene	orene	enanthrene	rene	nzo(a)Pyrene	nzo(a)Anthracene	nzo(b)Fluoranthene	nzo(j,k)Fluoranthene	rysene	∋enzo(a,h)Anthracen	leno(1,2,3-cd)Pyrene	cPAHs
Her Inter Inter<	Sample Location	A			<u>,</u>	· · ·	. /		<u>^</u>	z	1-1	'n	To	Ac	Ac	An A	Be	EI	Еľ	ЧЧ	Py	Be	Be	Be	Be	ch	e Dil		
Image Image <th< td=""><td>UI D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	UI D																												
H BW 25 Hole Control None No	ні-в																												
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																													
Indical Indical <t< td=""><td>H1-ESW</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	H1-ESW																												
Biblio Matrix Biblio M	H1-SSW	H1-SSW-20.0	Interior	Performance	Removed	Soil		20.0	2/22/2020													0.13	0.080	0.13	0.052	0.074	0.015	0.11	0.17
Intes Intes <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																													
Inser Inser <th< td=""><td>H1-WSW</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	H1-WSW																												
Bit Bit <td>H3-B</td> <td></td> <td>-</td> <td></td>	H3-B													-															
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																													
Initial ware Initial ware<	U4 P	H4-B-20.0	Interior	Performance	Removed	Soil		20.0	2/19/2020	0.26	0.041	0.070	0.371									1.1	1.3	1.1	0.46	1.1	0.11	0.60	1.5
Image Image <t< td=""><td>II4-D</td><td>H4-B-15.0</td><td>Interior</td><td>Confirmation</td><td>Removed</td><td>Soil</td><td></td><td>15.0</td><td>2/19/2020</td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.072</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.024</td><td>< 0.018</td></t<>	II4-D	H4-B-15.0	Interior	Confirmation	Removed	Soil		15.0	2/19/2020	< 0.024	< 0.024	< 0.024	< 0.072									< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.018
HENS2 HENS2 HENS HENS HENS HENS	H4-ESW																												
HAW 50 Ham Gamon Range Sam C C C C <	H4 ESW2																												
D4.500 D4.000 Contract Rest Solution Sol																													
B4.8 Basis																													
Home Home Home Home Ho		I3-B-20.0	Interior	Performance	Removed	Soil		20.0	2/23/2020	7.8	1.9	3.8	13.5									8.3	8.9	8.1	2.4	8.3	0.84	4.4	10.8
HASN HASN Solvan Confusion Brind Solvan	I3-B																					0.021	0.022	0.023	< 0.020	0.027	< 0.020	< 0.020	0.029
International International Subsect Contained Final A Contained Contained Final Contained Conta Co																													
14 μ + 19 + 19 + 10 · 30 · 10 mine Contained File 5 - 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10	I4-ESW																												
12 12 10 10 10 10 <td>I/J-B</td> <td></td>	I/J-B																												
DB Bino Contrainto Renoved Soluti Soluti Soluti Soluti </td <td></td> <td>· /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0.0087</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.0077</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		· /								1		0.0087										< 0.0077							
Here Solvento Influe Solvento Solvento <td>J2-B</td> <td></td> <td>Interior</td> <td>Confirmation</td> <td>Removed</td> <td></td> <td></td> <td>15.0</td> <td></td> <td>< 0.018</td> <td>< 0.018</td> <td>< 0.018</td> <td></td> <td>< 0.018</td> <td>< 0.018</td> <td></td>	J2-B		Interior	Confirmation	Removed			15.0															< 0.018	< 0.018	< 0.018		< 0.018	< 0.018	
H180 H180 Solution b Place Solution c Place c Place b Place Solution c Place Solution c Place																													
IND IND Outline in Outline in Final	J4-ESW																												
K2.8 K3.8-15.0 Interior Confirmation Removed Soil 0	J/K-B													-															
Network Network Searce Solution Solution <td></td> <td>K2-B-20.0</td> <td>Interior</td> <td>Performance</td> <td>Removed</td> <td>Soil</td> <td></td> <td>20.0</td> <td>2/6/2020</td> <td>4.0</td> <td>4.6</td> <td>5.6</td> <td>14.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td>11</td> <td>12</td> <td>3.4</td> <td>10</td> <td>0.96</td> <td>6.7</td> <td>15.5</td>		K2-B-20.0	Interior	Performance	Removed	Soil		20.0	2/6/2020	4.0	4.6	5.6	14.2									12	11	12	3.4	10	0.96	6.7	15.5
K3-B Unstain Performance Removed Suit 1 1 1 1	K2-B		Interior																			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
heads best interior Remove Said best Common Remove Said best <										1																			
Here Confrancian Renord Scal - 100 228202 - Config	K3-B													-															
NH NH-100 Indiration Confirmation Removed Soil 100 2222020 0.05 0.05 0.05 0.005 0.005 0.005 <																													
K4-B-10.0 Interior Confirmation Removed Solid - 100 226/200 0.27 0.30 0.57 1.0 - - - - 0.035 0.037 0.038 <td>K4-B</td> <td>K4-B-15.0</td> <td>Interior</td> <td>Confirmation</td> <td>Removed</td> <td>Soil</td> <td></td> <td>15.0</td> <td>2/26/2020</td> <td>1.2</td> <td>0.33</td> <td>0.59</td> <td>2.12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.0089</td> <td>< 0.0067</td>	K4-B	K4-B-15.0	Interior	Confirmation	Removed	Soil		15.0	2/26/2020	1.2	0.33	0.59	2.12									< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0067
Heise Side will Confirmation IPace Solid 1.10 2.222020 1 .	N+ D			Confirmation	Removed																	0.035							
L1-WSW L1-WSW-20.0 Sidewall Confirmation In-Pace Soil 20.0 2/2/200 0.087 0.071 0.070 0.075 0.071 0.070 0.071 0.070 0.011 0.030 0.077 0.011 0.030 0.077 0.011 0.030 0.077 0.011 0.030 0.077 0.011 0.030 0.077 0.011 0.054 0.017 0.011 0.057 0.011 0.011 0.017 0.011 0.030 0.077 0.011 0.031 0.017 0.011 0.031 0.017 0.011 0.031 0.017 0.011 0.031 0.017 0.011 0.017 0.011 0.017 0.011 0.001	K4-ESW							-																					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L1-WSW																												
L2B L12B-10.0 Interior Confirmation Removed Solid 10.0 228202 <0.008 <0.008 <0.007 <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	21									1																			
L3-B L3-B-10.0 Interior Confirmation Removed Soil - 10.0 226200 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.016 <0.018 <0.018 <0.016 <0.018 <0.018 <0.016 <0.016 <0.018 <0.018 <0.016 <0.016<	L2-B																												
L4-ESW Sidewall Confirmation In Place Soil 15.0 222/200																													
L4-SSW Interior Confirmation Removed Soil 10.0 228/200 0.028 <0.010 0.038 <																													
M1-B M1-B-0.0 Interior Confirmation Removed Soil Soll .																													
M1-ESW M1-ESW-10.0 Interior Confirmation Removed Soil 10.0 2/2/2/20																													
M1-WSW M1-WSW-20.0 Sidewal Confirmation In Place Soil 20.0 23/2020 0.25 1.2 1.4 2.85 0.40 0.30 0.38 0.11 0.34 0.041 0.27 0.51 M1-WSW M1-WSW2-20.0 Sidewal Confirmation In Place Soil 20.0 23/2020 0.015 0.022 0.016 0.055																													
M2-B 20.0 Interior Performance Removed Soil 2/6/200 -		M1-WSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	2/3/2020	0.25	1.2	1.4	2.85									0.40	0.30	0.38	0.11	0.34	0.041	0.27	0.51
M2-B M2-B-0.0 Interior Confirmation Removed Soil 0.0 4/30/200	M1-WSW2																												
M3-B M3-B-(-6.75) Interior Confirmation In Place Soil 5/28/202 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	M2-B																												
M4-ESW-20.0 Sidewall Confirmation In Place Soil 20.0 2/6/2020	M3-B													-															
Screening Levels ⁶ NE 24,000 ⁷ NE 3,200 ⁷ 3,200 ⁷ NE 2,400 ⁷ 0.1																													
	Screening Levels ⁶		-						-		-		5	4,8007	NE	24,000 ⁷	NE	3,2007	3,2007	NE	2,4007			•					0.1

Г							1										Analytical	Results (mil	ligrams per	kilogram) ²								
														Non-Carcin	ogenic PAHs		Anaryticar	Results (IIII	ingranis per	kilogi alli)				Carcinoge	enic PAHs			
										thalene	thalene	lenes ^{3,5}		e		rylene					9	acene	anthene	ranthene		nthracen	d)Pyrene	
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	aphthalene	-Methylnaph	-Methylnaph	otal Naphtha	cenaphthene	cenaphthyler	nthracene	enzo(g,h,i)Peryle	luoranthene	luorene	henanthrene	yrene	enzo(a)Pyrer	enzo(a)Anthı	enzo(b)Fluor	enzo(j,k)Fluc	hrysene	ibenzo(a,h)A	ndeno(1,2,3-c	Total cPAHs TEC ^{4,5}
N1-NSW	N1-NSW-22.0	Sidewall	Confirmation	In Place	Soil	(1eet)	22.0	1/31/2020	0.013	< 0.0081	< 0.0081	0.013	<	<u>د</u>	< 	<u>m</u>	≦ 	F			0.070	0.062	0.075	0.022	0.066	<u>د م</u> < 0.0081	0.043	0.091
N1-WSW	N1-WSW-20.0	Interior	Confirmation	Removed	Soil		20.0	2/3/2020	0.094	0.20	0.38	0.674									< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.079	< 0.060
111 11511	N2-B-20.0	Interior	Performance	Removed	Soil		20.0	2/6/2020													0.15 H	0.13 H	0.13 H	0.052 H	0.13 H	0.013 H	0.084 H	0.19
N2-B	N2-B-15.0	Interior	Confirmation	Removed	Soil		15.0	2/23/2020													< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.014
	N2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	2/23/2020													< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0063
N2-NSW	N2-NSW-22.0	Sidewall	Confirmation	In Place	Soil		22.0	1/31/2020	0.014	< 0.0078	0.0091	0.0231									0.053	0.025	0.040	0.012	0.025	0.0090	0.074	0.069
N3-NSW	N3-NSW-22.0	Sidewall	Confirmation	In Place	Soil		22.0	1/31/2020	< 0.0079	< 0.0079	< 0.0079	< 0.0237									< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0060
N3-NSW2	N3-NSW2-22.0	Sidewall	Confirmation	In Place	Soil		22.0	1/31/2020	0.0088	0.0094	0.017	0.0352									0.019	0.011	0.018	< 0.0080	0.012	< 0.0080	0.015	0.024
N4-NSW	N4-NSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	2/6/2020													0.034	0.024	0.039	0.011	0.027	< 0.0080	0.038	0.046
N4-ESW	N4-ESW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	2/6/2020													< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0058
TP-2	TP-2-10.0	Interior	Confirmation	Removed	Soil		10.0	2/13/2020													< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0067
TP-3	TP-3-20.0-121919	Interior	Confirmation	Removed	Soil	5.0	20.0	12/19/2019	< 0.0078	< 0.0078	< 0.0078	< 0.0234	< 0.0078	< 0.0078	< 0.0078	0.0087	0.026	< 0.0078	0.016	0.028	0.015	0.012	0.014	< 0.0078	0.012	< 0.0078	0.0089	0.019
11-5	TP-3-15.0-121919	Interior	Confirmation	Removed	Soil	10.0	15.0	12/19/2019	< 0.041	< 0.041	< 0.041	< 0.123	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.031
TP-7	TP-7-4.0	Interior	Confirmation	Removed	Soil	4.0	19.5	12/23/2019	0.061	< 0.020	< 0.020	0.061									0.031	0.033	0.044	< 0.020	0.067	< 0.020	0.025	0.044
TP-10	TP-10-15.0	Interior	Confirmation	Removed	Soil		15.0	2/4/2020	< 0.035	< 0.035	< 0.035	< 0.105									< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.026
	TP-10-10.0	Interior	Confirmation	Removed	Soil		10.0	2/4/2020	0.027	< 0.0081	< 0.0081	0.027																
TP-11	TP-11-15.0	Interior	Performance	Removed	Soil		15.0	2/4/2020	0.35	0.32	0.32	0.99									1.5	1.5	1.3	0.51	1.4	0.15	0.79	1.9
	TP-11-10.0	Interior	Confirmation	Removed	Soil		10.0	2/4/2020													< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0072
TP-12	TP-12-20.0	Interior	Performance	Removed	Soil		20.0	2/7/2020													16	19	14	5.7	17	1.6	8.4	21
	TP-12-15.0	Interior	Performance	Removed	Soil		15.0	2/7/2020													0.083	0.084	0.075	0.023	0.078	< 0.014	0.043	0.107
TP-13	TP-13-20.0	Interior	Confirmation	Removed	Soil		20.0	2/7/2020													< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0076	< 0.0057
TD 16	TP-13-15.0	Interior	Confirmation	Removed	Soil		15.0	2/7/2020													< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0070
TP-16	TP-16-20.0	Interior	Confirmation	Removed	Soil		20.0	2/14/2020	 I		 Storago Ton	 le Invoctigati	on and Decor								0.023	0.029	0.029	< 0.017	0.029	< 0.017	< 0.017	0.032
M1-Tank	M1-TANK-24.5	Interior	Performance	Removed	Soil		24.5	1/21/2020	1.8	5.1	8.0	14.9									0.29	0.39	0.30	< 0.082	0.54	0.11	0.17	0.40
UST01-B	UST01-B-17	Interior	Confirmation	Removed	Soil		17.0	1/27/2020	0.029	0.041	0.055	0.125									0.23	0.011	0.010	< 0.0073	0.014	< 0.0073	< 0.0073	0.014
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed	Soil		19.0	1/27/2020	< 0.0080	< 0.0080	< 0.0080	< 0.0240									< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0060
UST01-E1	UST01-E1-19	Interior	Confirmation	Removed	Soil		19.0	1/27/2020	< 0.0078	< 0.0078	< 0.0078	< 0.0240									0.016	0.014	0.016	< 0.0078	0.015	< 0.0078	0.010	0.021
UST01-S1	UST01-S1-19	Interior	Confirmation	Removed	Soil		19.0	1/27/2020	< 0.0074	< 0.0074	< 0.0074	< 0.0222									0.010	0.0090	0.0096	< 0.0074	0.0097	< 0.0074	< 0.0074	0.013
UST01-W1	UST01-W1-19	Interior	Confirmation	Removed	Soil		19.0	1/27/2020	< 0.0081	< 0.0081	< 0.0081	< 0.0243									< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
UST-01-line	UST-01-LINE-21.0	Sidewall	Performance	Removed	Soil		21.0	1/31/2020	0.90	8.5	7.2	16.6									0.33	0.53	0.32	< 0.080	1.2	< 0.080	0.16	0.45
UST02-N	UST-02-N	Interior	Confirmation	Removed	Soil		18.0	2/5/2020	0.031	0.062	0.043	0.136									0.019	0.029	0.015	< 0.0084	0.081	< 0.0084	< 0.0084	0.025
UST02-E	UST-02-E	Interior	Confirmation	Removed	Soil		18.0	2/5/2020	0.12	0.13	0.21	0.46									0.039	0.034	0.034	< 0.012	0.034	< 0.012	0.023	0.050
UST02-B1	UST02-B1	Interior	Performance	Removed	Soil		15.0	2/7/2020	0.18	0.31	0.094	0.584									0.55	0.54	0.45	0.17	0.48	< 0.065	0.29	0.70
UST02-B2	UST02-B2	Interior	Confirmation	Removed	Soil		14.0	2/7/2020	< 0.040	< 0.040	< 0.040	< 0.120									< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.030
UST02-N1	UST02-N1	Interior	Performance	Removed	Soil		17.5	2/7/2020	0.35	0.29	0.39	1.03									0.083	0.071	0.075	0.024	0.077	< 0.011	0.058	0.107
UST02-E1	UST02-E1	Interior	Performance	Removed	Soil		17.5	2/7/2020	0.096	0.037	0.050	0.183									0.11	0.11	0.10	0.034	0.11	0.011	0.069	0.14
UST02-S	UST02-S	Interior	Performance	Removed	Soil		17.5	2/7/2020	0.047	< 0.013	0.015	0.062									0.039	0.022	0.040	0.016	0.022	< 0.013	0.039	0.052
UST02-W1	UST02-W1	Interior	Performance	Removed	Soil		17.5	2/7/2020	0.12	0.031	0.043	0.194									0.19	0.17	0.16	0.062	0.14	0.019	0.11	0.24
Screening Levels ⁶												5	4,800 ⁷	NE	24,000 ⁷	NE	3,2007	3,2007	NE	2,4007								0.1

																	Analytica	l Results (mi	ligrams per	kilogram) ²								
														Non-Carcir	ogenic PAHs									Carcinog	enic PAHs			
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ^{1,5}	Acenaphthene	A cenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracen e	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
			1	1	1						Block	38 East Pro						-										
EX-19-W5	EX-19-W5 (EL20)	Block 38E	Confirmation	In Place	Soil	5.0	20.0	7/3/2008	0.07			0.07	0.42	0.11	0.98	2.0	2.9	0.30	2.3	3.6	1.7	0.97	1.3	0.55	0.88	0.50	0.78	2.1
EX-20-W1.5	EX-20-W1.5 (EL19.5)	Block 38E	Confirmation	In Place	Soil	5.5	19.0	7/3/2008	0.13			0.13	0.63	0.12	1.5	3.0	4.4	0.42	4.2	5.5	0.75	1.2	2.1	0.75	1.2	0.76	1.2	1.4
EX-27-EL16	EX-27-EL16	Block 38E	Confirmation	In Place	Soil	17.5	16.0	7/14/2008	< 0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
EX-36-EL23	EX-36-EL23	Block 38E	Confirmation	In Place	Soil	1.5	23.0	7/18/2008	< 0.05			< 0.05	< 0.05	< 0.05	0.28	0.34	0.56	< 0.05	0.28	0.56	0.16	0.47	0.33	0.24	0.16	< 0.01	0.17	0.28
EX-37-EL23	EX-37-EL23	Block 38E	Confirmation	In Place	Soil Soil	1.5	23.0	7/18/2008	< 0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
EX-38-EL23 EX-39-EL23	EX-38-EL23 EX-39-EL23	Block 38E Block 38E	Confirmation Confirmation	In Place In Place	Soil	1.0	23.0 23.0	7/18/2008 7/18/2008	< 0.05 < 0.05			< 0.05 < 0.05	< 0.05 0.13	0.14 < 0.05	1.7 0.27	2.9 0.39	6.3 0.51	0.43	1.7 0.27	7.8 0.0	2.9 0.32	2.7 0.73	1.6 0.23	1.7 0.31	1.4 0.21	1.0	1.1 0.18	3.7 0.47
EX-39-EL23 EX-40-EL22	EX-39-EL23 EX-40-EL22	Block 38E	Confirmation	In Place	Soil	2.0	23.0	7/18/2008	< 0.05			< 0.05	0.13	< 0.05	40	12	43	4.9	53	53	19	17	0.23	20	9.4	< 0.01	5.7	25
EX-40-EL22 EX-41-EL22	EX-40-EL22 EX-41-EL22	Block 38E	Confirmation	In Place	Soil	3.0	22.0	7/18/2008	0.56			0.56	0.01	0.49	1.4	1.7	4.1	0.31	3.3	4.7	2.3	2.9	1.3	1.1	2.1	0.62	0.69	2.98
	P-4-3.5	Block 38E	Performance	Removed	Soil/Wood	3.5	21.2	6/12/2002	0.50	0.21	0.36	1.09	0.39	0.39	0.60	1.1	2.4	0.39	3.4	3.5	1.6	1.1	1.1	1.0	1.4	0.34	0.95	2.50
P-4	P-4-5.5	Block 38E	Performance	Removed	Soil/Wood	5.5	19.2	6/12/2002	0.055	< 0.025	< 0.025	0.055	0.047	< 0.025	0.067	0.17	0.36	0.042	0.33	0.24	0.21	0.090	0.56	0.48	0.18	0.026	0.12	0.34
Screening Levels ⁶												5	4.800 ⁷	NE	24.000 ⁷	NE	3,2007	3,2007	NE	2,4007								0.1
Ŭ											Blo	ck 37 Proper	tv		,		-,			,								-
	MW-71-5	Block 37	Confirmation	In Place	Soil	5.0	25.4	10/12/2005	< 0.0891			< 0.0891																
-	MW-71-10	Block 37	Confirmation	In Place	Soil	10.0	20.4	10/12/2005	< 0.0861			< 0.0861																
MW-71	MW-71-15	Block 37	Confirmation	In Place	Soil	15.0	15.4	10/12/2005	< 0.0910			< 0.0910																
-	MW-71-20	Block 37	Confirmation	In Place	Soil	20.0	10.4	10/12/2005	6.49			6.49																
	MW-72-5	Block 37	Confirmation	In Place	Soil	5.0	25.3	10/12/2005	< 0.0857			< 0.0857																
MW-72	MW-72-10	Block 37	Confirmation	In Place	Soil	10.0	20.3	10/12/2005	< 0.0668			< 0.0668																
101 00 -72	MW-72-15	Block 37	Confirmation	In Place	Soil	15.0	15.3	10/12/2005	< 0.702			< 0.702																
	MW-72-20	Block 37	Confirmation	In Place	Soil	20.0	10.3	10/12/2005	< 0.312			< 0.312																
_	MW-73-5	Block 37	Confirmation	In Place	Soil	5.0	25.1	10/12/2005	< 0.0960			< 0.0960																
MW-73	MW-73-10	Block 37	Confirmation	In Place	Soil	10.0	20.1	10/12/2005	< 0.0888			< 0.0888																
	MW-73-16	Block 37	Confirmation	In Place	Soil	15.0	15.1	10/12/2005	< 0.443			< 0.443																
	MW-73-20	Block 37	Confirmation	In Place	Soil	20.0	10.1	10/12/2005	< 0.100			< 0.100																
MW-95	MW-95-5 MW-95-10	Block 37	Confirmation	In Place	Soil	5.0 10.0	27.0 22.0	10/19/2005	< 0.102			< 0.102																
IVI W -95	MW-95-10 MW-95-15	Block 37 Block 37	Confirmation Confirmation	In Place In Place	Soil	10.0	17.0	10/19/2005 10/19/2005	< 0.0923 < 0.0985			< 0.0923 < 0.0985																
Screening Levels ⁶	WIW-95-15	BIOCK 37	Commination	III Flace	3011	13.0	17.0	10/19/2003	< 0.0985			< 0.0985	4.8007		24.0007	 NE	 3.200 ⁷	 3,200 ⁷	 NE	 2,400 ⁷								0.1
Screening Levels											1	5	4,800	NE	24,000	NE	3,200	3,200	NE	2,400								0.1
MTCA Method B	Levels for Soil Protective of	Groundwater	Vadose @ 25 Degi	rees Celsius ⁸					4.46	NE	NE	NE	97.9	NE	2,270	NE	631	101	NE	655								
MTCA Method B	Levels for Soil Protective of	Groundwater	Vadose @ 13 Degi	rees Celsius ⁸					4.45	NE	NE	NE	97.9	NE	NE	NE	NE	101	NE	655								
MTCA Method B	Levels for Soil Protective of	Groundwater	Saturated ⁸						0.236	NE	NE	NE	4.98	NE	114	NE	31.6	5.12	NE	32.8								
	Sevens for Son Froncuve of	S. ounumater (, and and a																									

Results in **bold** denote concentrations exceeding applicable cleanup levels.

denotes sample not analyzed.
 < denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM or 8270E/SIM. ³Sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

⁴Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁶For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate total. If all constituent concentrations are non-detect, calculated total is indicated non-detect. ⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Adapt Engineering = Adapt Engineering, Inc.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons Enviros = Enviros Group, Ltd.

Farallon = Farallon Consulting, L.L.C. GeoEngineers = GeoEngineers, Inc.

H = sample analyzed outside of holding time

J = result is an estimate

ND = not detected and reporting limit is not available.

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

				Sample						Analytica	l Results (mil	ligrams per l	kilogram) ²		
Sample Location	Sample Identification	General Location	Sample Type	Location	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
						Alley									
FB-12	FB-12-21.5	Alley	Performance	Removed		21.5	9/13/2020					25			
FB-13	FB-13-22.5	Alley	Performance	Removed		22.5	9/12/2020	< 11	490	0.73	23	130	< 0.29	< 11	< 1.1
1.0-13	FB-13-20.0	Alley	Confirmation	Removed		20.0	9/12/2020			< 1.4		96			
FB-14	FB-14-22.5	Alley	Performance	Removed		22.5	9/12/2020	13	68	< 0.55	17	31	< 0.27	< 11	< 1.1
ГД-14	FB-14-20.0	Alley	Confirmation	Removed		20.0	9/12/2020			< 0.58		50			
	FB-15-22.5	Alley	Performance	Removed		22.5	9/13/2020	< 11	81	< 0.54	15	120	< 0.27	< 11	< 1.1
FB-15	FB-15-20.0	Alley	Confirmation	Removed		20.0	9/13/2020			< 0.59		56			
	FB-15-17.5	Alley	Confirmation	In Place		17.5	9/13/2020			< 0.56		< 5.6			
TP-10-4	TP-10-4	Alley	Performance	Removed	4.0	20.5	5/5/2008			2.4		1,900			
	G/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	7/6/2021					47			
G/A5-ESW	G/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	7/6/2021					21,000			
	G/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021					240			
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021					210			
	H/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	7/6/2021					22			
H/A5-ESW	H/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	7/6/2021					1,300			
	H/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	7/6/2021					96			
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place		17.5	7/9/2021					130			
I/A5-ESW	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	7/9/2021					260			
I/AJ-ESW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	7/9/2021					2,600			
J/A5-ESW	J/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	7/9/2021			0.64		260			
J/AJ-EOW	J/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	7/9/2021			< 0.91		420			
Screening Levels ³								20	16,000 ⁴	2	2,000	250	2	400 ⁴	400 ⁴

				Sample						Analytica	l Results (mill	ligrams per	kilogram) ²		
		General		Location	Sample Depth	Sample Elevation									
Sample Location	Sample Identification		Sample Type		(feet) ¹	(feet NAVD88) ¹	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
		•	•	L		Block 38 West I	Property								
FB-01	FB-01-15.0-082118	Interior	Confirmation	Removed	15.0	11.3	8/21/2018	< 16	110	< 0.81	60	< 8.1	< 0.40	< 16	< 1.6
FB-02	FB-02-10.0-082018	Interior	Confirmation	Removed	10.0	15.1	8/20/2018	< 12	190	< 1.2	36	24	1.2	< 12	< 2.5
FB-03	FB-03-10.0-082318	Interior	Confirmation	Removed	10.0	15.8	8/23/2018	< 13	230	< 0.65	100	8.9	< 0.32	< 13	< 1.3
гд-05	FB-03-35.0-082318	Interior	Confirmation	In Place	35.0	-9.2	8/23/2018	< 12	44	< 0.60	42	< 6.0	< 0.30	< 12	< 1.2
FB-04	FB-04-5.0-082118	Interior	Confirmation	Removed	5.0	17.0	8/21/2018	< 11	290	< 1.1	53	56	< 0.55	< 11	< 2.2
FB-05	FB-05-35.0-082218	Interior	Confirmation	In Place	35.0	-9.5	8/22/2018	< 12	58	< 0.62	38	< 6.2	< 0.31	< 12	< 1.2
FMW-133	FMW-133-10.0-082418	Interior	Confirmation	Removed	10.0	15.3	8/24/2018	< 17	200	< 1.7	29	18	< 0.83	< 17	< 3.3
FIVI VV-155	FMW-133-20.0-082418	Interior	Confirmation	Removed	20.0	5.3	8/24/2018	< 12	50	< 0.60	27	< 6.0	< 0.30	< 12	< 1.2
FMW-134	FMW-134-5.0-082318	Interior	Confirmation	Removed	5.0	20.4	8/23/2018	< 17	110	< 1.7	19	< 17	< 0.83	< 17	< 3.3
FIVLW-154	FMW-134-15.0-082318	Interior	Confirmation	Removed	15.0	10.4	8/23/2018	< 12	48	< 0.61	42	< 6.1	< 0.30	< 12	< 1.2
	FMW-135-5.0-082418	Interior	Confirmation	Removed	5.0	20.6	8/24/2018	< 12	120	< 0.61	48	16	< 0.31	< 12	< 1.2
FMW-135	FMW-135-25.0-082418	Interior	Confirmation	Removed	25.0	0.6	8/24/2018	< 14	120	< 0.69	60	< 6.9	< 0.35	< 14	< 1.4
	FMW-135-30.0-082418	Interior	Confirmation	Removed	30.0	-4.4	8/24/2018	< 12	66	< 0.62	44	< 6.2	< 0.31	< 12	< 1.2
FMW-136	FMW-136-20.0-082218	Interior	Confirmation	Removed	20.0	5.1	8/22/2018	< 13	46	< 0.63	42	< 6.3	< 0.32	< 13	< 1.3
FINIW-150	FMW-136-30.0-082218	Interior	Confirmation	Removed	30.0	-4.9	8/22/2018	< 12	45	< 0.59	41	< 5.9	< 0.30	< 12	< 1.2
M1-WSW	M1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	2/10/2020					18			
N1-WSW	N1-WSW-17.0	Interior	Confirmation	Removed		17.0	2/10/2020					80			
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	12/23/2019					33			
				τ	Underground St	orage Tank Investig	gation and Deco	mmissioning							
M1-Tank	M1-TANK-24.5	Interior	Confirmation	Removed		24.5	1/21/2020					46			
UST01-B	UST01-B-17	Interior	Confirmation	Removed		17.0	1/27/2020					13			
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed		19.0	1/27/2020					8.1			
UST01-E1	UST01-E1-19	Interior	Confirmation	Removed		19.0	1/27/2020					25			
UST01-S1	UST01-S1-19	Interior	Confirmation	Removed		19.0	1/27/2020					13			
UST01-W1	UST01-W1-19	Interior	Confirmation	Removed		19.0	1/27/2020					14			
UST-01-line	UST-01-LINE-21.0	Sidewall	Confirmation	In Place		21.0	1/31/2020					100			
Screening Levels ³								20	16,000 ⁴	2	2,000	250	2	400 ⁴	400 ⁴

				Sample						Analytica	l Results (mill	ligrams per l	kilogram) ²		
Sample Location	Sample Identification	General Location	Sample Type	Location	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
						Block 38 East P			1	1	, , , , , , , , , , , , , , , , , , , 				
EX-19-W5 (EL20)	EX-19-W5 (EL20)	B38E	Confirmation	In Place	5.0	20.0	7/3/2008			< 2.0		64			
EX-20-W1.5 (EL19.5)	EX-20-W1.5 (EL19.5)	B38E	Confirmation	In Place	5.5	19.5	7/3/2008			< 2.0		120			
EX-39-EL23	EX-39-EL23	B38E	Confirmation	In Place	1.0	23.0	7/18/2008			< 2.0		86			
EX-40-EL22	EX-40-EL22	B38E	Confirmation	In Place	2.0	22.0	7/18/2008			< 2.0		1,800			
EX-41-EL22	EX-41-EL22	B38E	Confirmation	In Place	3.0	22.0	7/18/2008			< 2.0		1,200			
P-4	P-4-3.5	B38E	Performance	Removed	3.5	21.2	6/12/2002			2.1		1,500			
1-4	P-4-5.5	B38E	Performance	Removed	5.5	19.2	6/12/2002			< 1.5		200			
W-3	W-3	B38E	Performance	Removed	10.0	10.5	10/11/1993					18			
W-4	W-4	B38E	Performance	Removed	11.0	9.5	10/11/1993					2.4			
						Block 37 Pro	perty								
	MW-41-3				7.5	19.5	10/28/1991								
MW-41	MW-41-7				17.5	9.5	10/28/1991								
	MW-71-5				5.0	25.4	10/12/2005					2.73			
	MW-71-10				10.0	20.4	10/12/2005					5.39			
MW-71	MW-71-15				15.0	15.4	10/12/2005					4.43			
-	MW-71-20				20.0	10.4	10/12/2005					7.1			
	MW-72-5				5.0	25.3	10/12/2005					3.58			
) (IV 70	MW-72-10				10.0	20.3	10/12/2005					5.42			
MW-72	MW-72-15				15.0	15.3	10/12/2005					124			
-	MW-72-20				20.0	10.3	10/12/2005					20.9			
	MW-73-5				5.0	25.1	10/12/2005					5.62			
	MW-73-10				10.0	20.1	10/12/2005					3.54			
MW-73	MW-73-16	1			15.0	15.1	10/12/2005					71.9			
-	MW-73-20				20.0	10.1	10/12/2005					20.9			
	MW-95-5	1			5.0	27.0	10/19/2005					4.02			
MW-95	MW-95-10				10.0	22.0	10/19/2005					5.4			
	MW-95-15				15.0	17.0	10/19/2005					16.8			
creening Levels ³	>0 10	1	1	L				20	16,000 ⁴	2	2,000	250	2	400 ⁴	400 ⁴

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Methods 6010D/6020B/7471B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

⁴Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
			Al	ley	· · · · · · · · · · · · · · · · · · ·		
FMW-154	Shallow	10.0 to 15.0	12.8 to 7.8	22.80	2/14/2022	6.05	16.75
F1VI W -134	Shahow	10.0 to 15.0	12.8 10 7.8	22.80	5/16/2022	5.49	17.31
FN0V 155	C1 11	10.0 (15.0	12.0 (. 9.0	22.00	2/14/2022	6.94	16.96
FMW-155	Shallow	10.0 to 15.0	13.9 to 8.9	23.90	5/16/2022	6.30	17.60
EN 011 156	C1 11	15.0 - 20.0	10.7 . 5.7	25.70	2/14/2022	8.63	17.07
FMW-156	Shallow	15.0 to 20.0	10.7 to 5.7	25.70	5/16/2022	8.03	17.67
TD 011 1 55	x , x ,	20.0. 10.0		25.05	2/14/2022	5.87	20.08
FMW-157	Intermediate	30.0 to 40.0	-4.1 to -14.1	25.95	5/16/2022	8.28	17.67
		I	Block 38 W	est Property			
				1 0	8/30/2018	5.14	16.72
FMW-130	Intermediate	45.0 to 55.0	-22.8 to -32.8	21.86	12/28/2018	4.98	16.88
					3/26/2019	4.42	17.44
					8/30/2018	7.44	18.04
FMW-132	Shallow	5.0 to 10.0	20.7 to 15.7	25.48	12/28/2018	6.80	18.68
					3/26/2019	7.01	18.47
					8/30/2018	6.86	18.01
FMW-133	Shallow	6.5 to 11.5	18.8 to 13.8	24.87	12/28/2018	6.21	18.66
					3/26/2019	6.41	18.46
FMW-134	Shallow	12.0 to 17.0	13.4 to 8.4	24.98	8/30/2018 12/28/2018	8.66 7.80	16.32 17.18
110100-154	Shanow	12.0 10 17.0	13.4 10 0.4	24.96	3/26/2019	7.51	17.18
					8/30/2018	7.14	18.15
FMW-135	Shallow	7.0 to 12.0	18.6 to 13.6	25.29	12/28/2018	6.78	18.51
					3/26/2019	6.81	18.48
					8/30/2018	8.10	16.69
FMW-136	Intermediate	30.0 to 40.0	-4.9 to -14.9	24.79	12/28/2018	7.74	17.05
					3/26/2019	7.41	17.38
					12/23/2019	12.42	16.99
					12/26/2019	12.26	17.15
FMW-144	Intermediate	38.0 to 43.0	-8.0 to -13.0	29.41	12/30/2019	12.33	17.08
F1VI VV -144	intermediate	30.0 10 43.0	-0.0 10 -15.0	29.41	12/30/2019	12.34	17.07
					12/31/2019	12.44	16.97
					12/31/2019	12.27	17.14
	1				12/23/2019	5.58	17.32
					12/26/2019	5.65	17.25
					12/30/2019	5.80	17.10
FMW-145	Intermediate	31.0 to 36.0	-8.0 to -13.0	22.90	12/30/2019	5.83	17.07
					12/31/2019	5.42	17.48
					12/31/2019	5.63	17.27

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
					12/23/2019	6.38	16.81
					12/26/2019	6.14	17.05
FMW-146	Intermediate	31.0 to 36.0	-8.0 to -13.0	23.19	12/30/2019	6.18	17.01
F1VI W-140	Intermediate	51.0 to 50.0	-8.0 10 -15.0	25.19	12/30/2019	6.24	16.95
					12/31/2019	6.00	17.19
					12/31/2019	5.89	17.30
					12/23/2019	5.78	17.04
					12/26/2019	5.75	17.07
FMW-147	Intermediate	31.0 to 36.0	-8.0 to -13.0	22.82	12/30/2019	5.88	16.94
F1VI W -14/	Intermediate	51.0 to 50.0	-8.0 10 -15.0	22.02	12/30/2019	5.82	17.00
					12/31/2019	5.98	16.84
					12/31/2019	5.70	17.12
					12/23/2019	19.01	17.20
					12/26/2019	19.14	17.07
FMW-149	Intermediate	44.0 to 49.0	-8.0 to -13.0	36.21	12/30/2019	19.18	17.03
FIVI W-149	intermediate	44.0 10 49.0	-8.0 10 -15.0	50.21	12/30/2019	19.13	17.08
					12/31/2019	18.94	17.27
					12/31/2019	18.92	17.29
FMW-150	Intermediate	31.7 to 36.7	-8.5 to -13.5	23.23	2/14/2022	6.50	16.73
FIVI W-150	Intermediate	51.7 to 50.7	-8.3 10 -13.3	23.23	5/16/2022	5.95	17.28
FMW-151	Intermediate	33.1 to 38.1	-9.4 to -14.4	23.74	2/15/2022	7.21	16.53
F1VI VV - 1.3 I	intermediate	33.1 10 30.1	-9.4 10 -14.4	23.14	5/16/2022	6.34	17.40
FMW-152	Intermediate	31.3 to 36.3	-8.5 to -13.5	22.83	2/14/2022	5.76	17.07
F1V1 W-132	interinediate	31.3 10 30.5	-0.3 10 -13.3	22.83	5/16/2022	5.15	17.68
FMW-153	Intermediate	33.2 to 38.2	-8.5 to -13.5	24.72	2/15/2022	8.50	16.22
F1VI VV -1.3.3	intermediate	55.2 10 56.2	-0.3 10 -13.3	24.12	5/16/2022	7.55	17.17

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
-		Block	38 West Construction I	Dewatering Observation	n Wells		· · · ·
					1/15/2021	18.48	5.69
					1/19/2021	18.30	5.87
					3/24/2021	18.22	5.95
					3/30/2021	14.89	9.28
					4/2/2021	14.25	9.92
					4/10/2021	13.22	10.95
					4/13/2021	12.99	11.18
					4/19/2021	12.58	11.59
					4/21/2021	12.41	11.76
					4/23/2021	12.29	11.88
					4/27/2021	12.17	12.00
					4/30/2021	11.97	12.20
					5/4/2021	11.84	12.33
					5/17/2021	11.35	12.82
OW-1	Intermediate	30.0 to 45.0	-5.8 to -20.8	24.17	6/14/2021	10.74	13.43
0.00-1	Internetiate	50.0 10 45.0	-5.8 to -20.8	24.17	6/28/2021	10.33	13.84
					7/12/2021	10.33	13.84
					7/26/2021	10.30	13.87
					8/9/2021	10.27	13.90
					9/22/2021	10.07	14.10
					10/13/2021	9.24	14.93
					10/26/2021	9.02	15.15
					12/1/2021	8.01	16.16
					12/13/2021	7.67	16.50
					12/30/2021		
					1/7/2022	7.02	17.15
					1/13/2022	7.03	17.14
					1/27/2022	7.23	16.94
					2/8/2022	7.50	16.67
					2/14/2022	7.42	16.75

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
				(1/15/2021	20.32	2.59
					1/19/2021	20.07	2.84
					3/24/2021	20.81	2.10
					3/30/2021	14.99	7.92
					4/2/2021	14.24	8.67
					4/10/2021	13.16	9.75
					4/13/2021	12.86	10.05
					4/19/2021	12.42	10.49
					4/21/2021	12.22	10.69
					4/23/2021	12.12	10.79
					4/27/2021	11.99	10.92
					4/30/2021	11.75	11.16
					5/4/2021	11.71	11.20
					5/17/2021		
OW-2	Intermediate	30.0 to 45.0	-7.1 to -22.1	22.91	6/14/2021		
0.0-2	Interineutate	50.0 10 45.0	-7.1 to -22.1	22.91	6/28/2021	9.97	12.94
					7/12/2021	9.88	13.03
					7/26/2021	9.79	13.12
					8/9/2021	9.73	13.18
					9/22/2021	9.05	13.86
					10/13/2021	8.40	14.51
					10/26/2021	8.10	14.81
					12/1/2021	7.03	15.88
					12/13/2021	6.68	16.23
					12/30/2021		
					1/7/2022	5.97	16.94
					1/13/2022	6.04	16.87
					1/27/2022	6.20	16.71
					2/8/2022	6.37	16.54
					2/14/2022	6.07	16.84

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
			, , ,	, , ,	1/15/2021	36.11	2.66
					1/19/2021	38.44	0.33
					3/24/2021	35.83	2.94
				38.77	3/30/2021	31.35	7.42
					4/2/2021	27.31	11.46
					4/10/2021	29.92	8.85
					4/13/2021	29.66	9.11
					4/19/2021	29.35	9.56
					4/21/2021	29.18	9.73
					4/23/2021	29.04	9.87
					4/27/2021	28.95	9.96
					4/30/2021	28.61	10.30
					5/4/2021	28.66	10.25
					5/17/2021	27.99	10.92
OW-3	Intermediate	48.0 to 63.0	-9.2 to -24.2		6/14/2021	27.23	11.68
011-5	interineutate	48.0 10 05.0	-9.2 10 -24.2		6/28/2021	26.87	12.04
					7/12/2021		
					7/28/2021	26.61	12.30
				38.91	8/9/2021	26.29	12.62
					9/22/2021	25.42	13.49
					10/13/2021	24.41	14.50
					10/26/2021	24.05	14.86
					12/1/2021	22.78	16.13
					12/13/2021	22.30	16.61
					12/30/2021		
					1/7/2022	21.50	17.41
					1/13/2022	21.58	17.33
					1/27/2022	21.75	17.16
					2/8/2022	21.93	16.98
					2/15/2022	21.88	17.03

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
				22.05	1/15/2021	32.05	0.00
				32.05	1/19/2021	31.45	-31.45
					3/24/2021	31.60	4.68
					3/30/2021	31.60	4.68
					4/2/2021	31.11	5.17
					4/10/2021	26.28	10.00
					4/13/2021	25.98	10.30
					4/19/2021	25.57	10.71
					4/21/2021	25.34	10.94
				36.28	4/23/2021	25.28	11.00
					4/27/2021		
					4/30/2021		
					5/4/2021		
					5/17/2021		
OW-4	Intermediate	48.0 to 58.0	-11.7 to -21.7		6/14/2021		
011-4	Intermediate	48.0 10 58.0	-11.7 10 -21.7		6/28/2021		
					7/12/2021		
					7/26/2021	26.28	12.95
					8/9/2021		
					9/22/2021		
					10/13/2021		
					10/26/2021		
					12/1/2021		
				39.23	12/13/2021		
					12/30/2021		
					1/7/2022		
					1/13/2022		
					1/27/2022		
					2/8/2022		
					2/14/2022		

Location	Water Bearing Zone	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
					1/15/2021	29.10	4.70
					1/19/2021	28.97	4.83
					3/24/2021	25.32	8.48
					3/30/2021	23.05	10.75
					4/2/2021	22.53	11.27
					4/10/2021	21.72	12.08
					4/13/2021	21.52	12.28
					4/19/2021	21.16	12.64
					4/21/2021	21.00	12.80
				33.80	4/23/2021	20.90	12.90
				55.60	4/27/2021	20.98	12.82
					4/30/2021	20.80	13.00
					5/4/2021	20.73	13.07
					5/17/2021	20.18	13.62
OW-5	Intermediate	44.8 to 54.8	-11.0 to -21.0		6/14/2021	19.52	14.28
0-5	Intermediate	44.8 10 34.8	-11.0 t0 -21.0		6/28/2021	19.13	14.67
					7/12/2021	18.93	14.87
					7/26/2021	19.01	14.79
					8/9/2021	19.03	14.77
					9/22/2021	18.53	15.27
				30.25	10/13/2021	14.57	15.68
					10/26/2021	18.77	15.80
					12/1/2021	17.57	17.00
					12/13/2021	17.31	17.26
					12/30/2021		
				34.57	1/7/2022	16.56	18.01
					1/13/2022	16.47	18.10
					1/27/2022	17.01	17.56
					2/8/2022	17.37	17.20
					2/14/2022	17.14	17.43

NOTES:

¹Depth in feet below ground surface.

²In feet referenced to North American Vertical Datum of 1988 (NAVD88).

³In feet below top of well casing.

bgs = below ground surface

Table 5Monitoring Wells Construction DetailsAlley Area of Block 38 West SiteSeattle, WashingtonFarallon PN: 397-019

Location	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Well Decommissioned	Date Decommissioned
FMW-130	45.0 to 55.0	-22.8 to -32.8	21.86	Yes	11/4/2019
FMW-132	5.0 to 10.0	20.7 to 15.7	25.48	Yes	11/4/2019
FMW-133	6.5 to 11.5	18.8 to 13.8	24.87	Yes	11/4/2019
FMW-134	12.0 to 17.0	13.4 to 8.4	24.98	No	2/13/2020
FMW-135	7.0 to 12.0	18.6 to 13.6	25.29	Yes	1/8/2020
FMW-136	30.0 to 40.0	-4.9 to -14.9	24.79	No	2/13/2020
FMW-137	72.0 to 85.0	-41.9 to -54.9	30.09	No	N/A
FMW-138	90.0 to 100.0	-49.96 to 59.96	40.44	No	N/A
FMW-144	38.0 to 43.0	-8.0 to -13.0	29.41	Yes	1/8/2020
FMW-145	31.0 to 36.0	-8.0 to -13.0	22.90	Yes	1/8/2020
FMW-146	31.0 to 36.0	-8.0 to -13.0	23.19	Yes	1/8/2020
FMW-147	31.0 to 36.0	-8.0 to -13.0	22.82	Yes	1/8/2020
FMW-148	45.0 to 50.0	-8.0 to -13.0	Not surveyed	Yes	12/23/2019
FMW-149	44.0 to 49.0	-8.0 to -13.0	36.21	Yes	1/8/2020

Table 5Monitoring Wells Construction DetailsAlley Area of Block 38 West SiteSeattle, WashingtonFarallon PN: 397-019

Location	Screened Interval (feet bgs) ¹	Screened Interval (feet NAVD88) ²	Top of Casing Elevation (feet NAVD88) ²	Monitoring Well Decommissioned	Date Decommissioned
FMW-150	31.7 to 36.7	-8.5 to -13.5	23.23	No	N/A
FMW-151	33.1 to 38.1	-9.4 to -14.4	23.74	No	N/A
FMW-152	31.3 to 36.3	-8.5 to -13.5	22.83	No	N/A
FMW-153	33.2 to 38.2	-8.5 to -13.5	24.72	No	N/A
FMW-154	10.0 to 15.0	12.8 to 7.8	22.80	No	N/A
FMW-155	10.0 to 15.0	13.9 to 8.9	23.90	No	N/A
FMW-156	15.0 to 20.0	10.7 to 5.7	25.70	No	N/A
FMW-157	30.0 to 40.0	-4.1 to -14.1	25.95	No	N/A
	B	ock 38 West Construct	ion Dewatering Observa	tion Wells	•
OW-1	30.0 to 45.0	-6.0 to -21.0	24.17	No	NA
OW-2	30.0 to 45.0	-7.0 to -22.0	22.90	No	NA
OW-3	48.0 to 63.0	-8.0 to -23.0	38.91	No	NA
OW-4	48.0 to 58.0	-11.0 to -21.0	39.23	No	NA
OW-5	44.8 to 54.8	-11.0 to -21.0	34.57	No	NA

NOTES:

¹Depth in feet below ground surface.

²In feet referenced to North American Vertical Datum of 1988 (NAVD88).

³In feet below top of well casing.

bgs = below ground surface

N/A = not applicable

APPENDIX A BORING LOGS

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

		FARALLON CONSULTING		L	bg	of I	Borir	ng:	FB-10		Page 1 of 1		
Pro Loc	cati	eng	Date/Time Completed: 9			probe			Sampler Type: 5' MacrocoreDrive Hammer (Ibs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):15.0Total Well Depth (ft bgs):NA				
Lo	gge	ed By: G.Peters	Drilling Method	l:	Dire	ct Pus	h						
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details		
0		0.0-2.5': Poorly-graded SAND (90% sand, 5% grave sand, dark brown, moist, no odor. Concrete, wood a (Fill)		SP									
-		2.5-5.0': SILT (80% silt, 10% sand, 10% organics), fi brown, moist, no odor. Concrete, wood and metal de		ML				0.0	FB-10-22.5	x			
5-		 5.0-6.0': Silty SAND (70% sand, 30% silt), fine sand, odor. (FIII) 6.0-8.3': SILT (90% silt, 10% sand), fine sand, light brown, moist, no odor. Charcoal debris at 8.0' bgs. (prown to dark	SM ML		66		0.0	FB-10-20.0	×	Bentonite		
-		8.3-10.0': No recovery.						0.0	FB-10-17.5	×			
10 -		10.0-116': SILT (90% silt, 10% sand), fine sand, gra	y, moist, no odor.	ML		80		0.0	FB-10-15.0				
		11.6-14.0': Silty SAND (85% sand, 15% silt), fine sat brown, moist, no odor.		SM									
15 -		14.0-15.0': No recovery.						0.0	FB-10-10.0				

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	24.86							
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON CONSULTING		L	bg	of I	Boriı	ng:	FB-11		Page 1 of 1
Client: City Investors IX Project: Block 38 West Property Location: Seattle, Washington			Date/Time Started: 9/12/20 @ 1240 Date/Time Completed: 9/12/20 @ 1430 Equipment: Geoprobe Drilling Company: AEC				Sampler Type: 5' Macrocore Drive Hammer (Ibs.): Auto Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0				
Fa	rall	on PN: 397-019	Drilling Forema		Levi	ct Pus	h		Total Well Dept	h (ft k	ogs): NA
Lo	gge	d By: G.Peters	Drilling Methoo	ı.							
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		0.0-1.5': Well-graded SAND with silt (80% sand, 10% gravel), fine to coarse sand, dark brown, moist, no or concrete, metal debris. (FIII)		SW- SM							
-		1.5-5.0': ORGANIC SOIL (70% organics, 30% silt), d moist, hydrocarbon-like odor. (Fill)	ark brown, soft,	OL				0.0	FB-11-22.5		
5-	-	5.0-10.0': SILT (100% silt), light brown, soft, moist, o Charcoal debris at 8.5' bgs. (Fill)	rganic odor.	ML		100		64.2	FB-11-20.0	x	Bentonite
- - 10 —		10.0-12.0': SILT (90% silt, 10% sand), fine sand, gra odor.	y, moist, no	ML		100		0.0	FB-11-17.5 FB-11-15.0	X	
- - - 15 –		12.0-15.0': Silty SAND (80% sand, 20% silt), fine sar no odor.	ıd, gray, moist,	SM				0.3	FB-11-10.0		

	Well Construction Information										
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	23.88						
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA						
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA						
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA							

FARALLON CONSULTING		Lo	bg	of I	Borir	ıg:	FB-12		Page 1 of 1
Client:City Investors IXProject:Block 38 West PropertyLocation:Seattle, WashingtonFarallon PN: 397-019	Date/Time Star Date/Time Com Equipment: Drilling Compa Drilling Forema	ny: ny:	9/13 Geo AEC Levi	probe ;	1030		Sampler Type: 5 Drive Hammer (I Depth of Water A Total Boring Dep Total Well Depth	bs.): ATD oth (: Auto (ft bgs): NE ft bgs): 15.0
Logged By: G.Peters (feet p33:) Lithologic Description	Drilling Method	:: NSCS	USCS Graphic	ct Pus % Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

0	V	0.0-1.0': Concrete. Air knife to clear for utilities.	СО					Concrete
	\wedge	1.0-1.5': Poorly-graded SAND (90% sand, 10% gravel), fine sand, brown, moist, no odor. (Fill)	SP OL		0.0	FB-12-21.5	x	
		1.5-5.0': ORGANIC SOIL (100% organic soil), dark brown, soft, organic odor. Wood chips, root debris, trace charcoal. (Fill)			0.0			
-		5.0-7.0': SILT (60% silt, 40% organics), dark brown, soft, moist, organic odor. Wood debris. (Fill)	ML	100	0.6	FB-12-20.0	x	Bentonite
		7.0-10.0': SILT (80% silt, 20% organics), light to dark brown, soft, moist, organic odor. Trace charcoal at 8.5' bgs. (Fill)	ML		1.0	FB-12-17.5	x	
-		10.0-12.0': SILT (100% silt), gray, moist, no odor.	ML	100	0.0	FB-12-15.0	x	
- 15 —		12.0-15.0': Poorly-graded SAND with silt (90% sand, 10% silt), fine sand, gray, moist, no odor.	SP- SM		0.0	FB-12-10.0		

	Well Construction Information										
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	22.79						
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA						
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA						
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA							

		FARALLON		L	bg	of I	Borir	ng:	FB-13		Page 1 of 1
	ect atic	City Investors IX Block 38 West Property on: Seattle, Washington	Date/Time Completed: Equipment: Drilling Company:			9/12/20 @ 1220 : 9/12/20 @ 1600 Geoprobe AEC Levi			Sampler Type: 5 ⁴ Drive Hammer (II Depth of Water A Total Boring Dep Total Well Depth	: Auto (ft bgs): NE (ft bgs): 15.0	
Log	geo	d By: G.Peters	Drilling Method	1:	Dire	ct Pus	h				
	Sample Interval	Lithologic Descriptio	n	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

0	\bigvee	0.0-1.0': Concrete. Air knife to clear for utilities.	со						Concrete
-	Д	1.0-1.5': Well-graded SAND with gravel (70% sand, 25% gravel, 5% silt), fine to coarse sand, fine gravel, dark gray, moist, no odor. (Fill)	SW OL	••••					
-		1.5-5.0': ORGANIC SOIL (80% organics, 20% silt), dark brown, moist, organic odor. Wood debris. (Fill)				0.1	FB-13-22.5	×	
5		5.0-10': SILT (60% silt, 40% organics), dark brown, soft, moist, organic odor. Wood debris. (Fill)	ML		100	2.7	FB-13-20.0	x	Bentonite
						1.1	FB-13-17.5	x	
- 10		10.0-15.0': Silty SAND (80% sand, 20% silt), fine sand, gray, moist, no odor.	SM		100	0.3	FB-13-15.0	x	
						0.0	FB-13-10.0		

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	23.00							
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

FARALLON CONSULTING	Log of Bo	ring: FB-14
Client: City Investors IX	Date/Time Started: 9/12/20 @ 1500) Sampler Type
Project: Block 38 West Property	Date/Time Completed: 9/13/20 @ 1045	Drive Hamme
Location: Seattle, Washington	Equipment: Geoprobe	Depth of Wate
Location. Seattle, Washington	Drilling Company: AEC	Total Boring

Farallon PN: 397-019

pler Type: 5' Macrocore Auto e Hammer (lbs.): th of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0 Total Well Depth (ft bgs): NA

Page 1 of 1

Details

Drilling Method: Direct Push Logged By: G.Peters Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval USCS Graphic Boring/Well % Recovery Lithologic Description PID (ppm) Construction Sample ID uscs

Drilling Foreman:

Levi

0		0.0.0.454 Concrete Air knife to clear for utilities	00	_					
	\setminus	0.0-0.45': Concrete. Air knife to clear for utilities.	CO						Concrete
-	Å	0.45-1.5': Poorly-graded SAND with silt (80% sand, 10% silt, 10% gravel), fine sand, gray, moist, no odor. (Fill)	SP- SM						
-		1.5-5.0': SIlty SAND (70% sand, 30% silt), fine sand, gray, moist, no odor. (Fill)	SM			1.1	FB-14-22.5	x	
5		5.0-6.2': SILT (70% silt, 30% organics), brown, soft, moist, organic odor. Wood debris. (Fill)	ML		100	0.5	FB-14-20.0	x	Bentonite
_		6.2-10.0': No recovery.				1.5	FB-14-17.5	x	
10		10.0-11.0': SILT (80% silt, 20% organics), dark brown, soft, moist, organic odor. Wood debris.	ML		100		FB-14-15.0		
-		11.0-12.4': SILT (100% silt), gray, stiff, moist, no odor.	ML						
-		12.4-14.0': Poorly-graded SAND with silt (90% sand, 10% silt), fine sand, gray, moist, no odor.	SP- SM			0.0	FB-14-10.0		
15 -		14.0-15.0': No recovery.							

	Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	23.81							
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA							
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA								

		FARALLON		L	og	of I	Boriı	ng:	FB-15		Page 1 of 1	
Client: City Investors IX Project: Block 38 West Property Location: Seattle, Washington Farallon PN: 397-019			Date/Time Started:9/13/20 @ 1045Sampler Type: 5' MDate/Time Completed:9/13/20 @ 1105Drive Hammer (lbsEquipment:GeoprobeDepth of Water ATDrilling Company:AECTotal Boring Depth						lbs.): ATD (s.): Auto		
			Drilling Forema	an:	Levi				Total Well Depti	n (ft b	gs): NA	
.og	ge	d By: G.Peters	Drilling Method	1:	Dire	ct Pus	h					
nepui (ieer ngo.)	Sample Interval	Lithologic Descriptior	1	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Wel Constructio Details	
0	\times	0.0-0.25': Concrete. Air knife to clear for utilities.		со								
_		0.25-2.0': Poorly-graded SAND with gravel (80% san fine to medium sand, fine gravel, dark gray, no odor.	d, 20% gravel), (Fill)	SP							Concrete	
-		2.0-5.0': Poorly-graded SAND (90% sand, 10% grave grayish brown, moist, no odor. (Fill)	el), fine sand,	SP				1.5	FB-15-22.5	x		
5		5.0-7.0': Silty SAND (80% sand, 20% silt), fine sand, moist, no odor. (Fill)	grayish brown,	SM		60		0.1	FB-15-20.0	x	Bentonit	
		7.0-8.0': ORGANIC SOIL (90% organics, 20% silt), d moist, organic odor, strong petroleum-like odor. Woo	ark brown, d debris. (Fill)	OL				1.0	FB-15-17.5	x		
- - -		8.0-10.0': No recovery. 10.0-14.0': SILT (60% silt, 40% organics), dark brow organic odor.	n, soft, moist,	ML		80		43.6	FB-15-15.0	x		

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	24.91
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA	

- ----

14.0-15.0': No recovery.

1/

15 —

0.1

FB-15-10.0

_

		FARALLON		Lo	bg	of I	Boriı	ng:	FB-16		Page 1 of 1
Pro Loc		ong	Date/Time Started:9/13/20 @ 112Date/Time Completed:9/13/20 @ 115Equipment:GeoprobeDrilling Company:AECDrilling Foreman:Levi					Auto (ft bgs): NE (t bgs): 20.0 (gs): NA			
Lo	gge	d By: G.Peters	Drilling Metho	d:	Dire	ct Pus	h				
Depth (feet bgs.)	Sample Interval	Lithologic Descriptior	1	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0	\sim	0.0-0.25': Concrete. Air knife to clear for utilities.		со							
		0.5-5.0': Poorly-graded SAND (90% sand, 10% grave brown, moist, no odor. (Fill)	el), fine sand,	SP							Concrete
								0.2	FB-16-22.5	x	
5-		5.0-8.0': Poorly-graded SAND with silt (90% sand, 10 sand, brown, moist, no odor. (Fill)	0% silt), fine	SP- SM		60		0.0	FB-16-20.0	×	Bentonite
		8.0-10.0': No recovery.						2.7	FB-16-17.5	x	
10 -		10.0-13.0': OGRANIC SOIL (90% organics, 10% silt) moist, organic odor,.Wood debris. (Fill)	, dark brown,	OL		100		2.0	FB-16-15.0		
		13.0-15.0': No recovery.									
15 -	-	15.0-18.5': ORGANIC SOIL (70% organics, 30% silt) soft, moist, organic odor. Trace charcoal. (Fill)	, dark brown,	OL				0.0	FB-16-10.0		
20 -	-	18.5-20.0': Silty SAND (80% sand, 20% silt), fine sar no odor.	nd, gray, moist,	SM							

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): 27.50 NA Casing Diameter (inches): NA Surface Seal: Concrete Top of Casing Elevation (ft): NA Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: NA Y: NA Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA

FARALLON CONSULTING	Log of Boring: FB-21 Page 1 o	of 1
Client: City Investors IX LLC Project: Block 38 West Property Location: Seattle, Washington	Date/Time Completed: 2/5/2022 @ 1115 Boring Diameter (in): 8 Drilling Company: Cascade Drilling Total Boring Depth (ft bgs): 1 Drilling Method: Sonic Drilling Constructed Well Depth (ft bgs): N	NE 3.0 10.0 NA
Farallon PN:397-019Logged By:G.PetersReviewed By:Suzy Stumpf	Drilling Equipment:TerrasonicDrilling Operator:Rico RodriguezSampler Type:5' PE BagsDrive Hammer (Ibs):NA	
Depth (ft bgs) Sample Interval Lithologic Description	USCS USCS Blow Counts PID (ppmv) Sample Analyzed Sample Analyzed Sample Analyzed	tion

0	0.0-0.4': Asphalt. Airknife to 5.0' bgs for utility clearance.	AC				Aaphalt
	0.4-5.0': Silty SAND (80% sand, 20% silt), fine sand, dark brown, moist, no odor, no staining. Wood and charcoal debris (Fill).	SM		0.0	FB-21-3.0	Asphalt
	5.0-10.0': Poorly-graded SAND (100% sand), fine sand, brown, moist, no odor, no staining.	SP- SM	100	0.0	FB-21-5.0	Bentonite
				0.0	FB-21-10.0	

	Well Construction Information										
Monument Type:	NA	Filter Pack:	NA	Ground Surface Elevation (ft):	NA						
Casing Diameter (in):	NA	Surface Seal:	Asphalt	Top of Casing Elevation (ft):	NA						
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA						
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID: NA							

Pro .oc	cati allo	: City Investors IX LLC ct: Block 38 West Property ion: Seattle, WA on PN: 397-061 ed By: Greg Peters	Date/Time Started Date/Time Compl Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: :	11/17 Sonic	7/201 c Rig/ cene Baile	/Geopr Drillino ey	400 [obe [g 1	Sampler Type: 4 > Drive Hammer (Ibs. Depth of Water ATE Total Boring Depth Total Well Depth (ft):) (ft bgs (ft bgs)	NA): NE
Deptn (reet bgs.)	Sample Interval	Lithologic Descript	ion	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well constructior Details
0_	\times	0.0-0.5': Concrete cored. Air knife to 5.0' bgs to clea	ar for utilition	со							Monumen
-		0.4-5.0': Silty SAND with gravel (60% sand, 30% gr medium to coarse sand, fine gravel, brown, moist, r wood and metal debris.	/ avel, 10% silt),	FILL	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$						Wohumen
5 - -		5.0-9.0': Silty SAND (75% sand, 20% silt, 5% grave sand, fine gravel, moist, no odor. Some debris.	I), fine to medium	FILL				0.1	Soil Screened @ 5.0' bgs		Bentonite
-	/	9.0-10.0': No Recovery.			\mathbb{N}						
0 -		10.0-10.6': Wood debris		FILL		80					
-		10.6-15.0': No Recovery.									₩ Water lev
5 — - -		15.0-18.0': Silty SAND (60% sand, 40% silt), fine to brown, moist to wet, no odor. Wood debris at 16.0 f		FILL							
-		18.0-20.0': No Recovery.									
0		20.0-22.0': Sandy SILT (70% silt, 30% sand), fine s moist to wet, organic odor. Wood debris throughout		FILL		60		6.5	Soil Screened @ 20.0' bgs		Casing
-	$\left \right\rangle$	22.0-25.0': Silty SAND (80% sand, 20% silt), mediu moist to wet, no odor. Wood debris throughout.	m sand, gray,	SM							

Ionument Type: Flush Mount Filter Pack: 12/20 Sand (IL) Top of Casing Elevation (ft): NA Casing Diameter (inches): 2.0 Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): 0.010 Annular Seal: X:NA Bentonite Screened Interval (ft bgs): 72.0-85.0 Boring Abandonment: NA Y:NA

		FARALLON		Lo	g o	of E	Bori	ng	J: FMW-1	37	Page 2 of 4	
Lo Far	ojeo cat rallo	ct: Block 38 West Property ion: Seattle, WA on PN: 397-061					00 0 0be 0 T	5Sampler Type:4 x 6 sample bag00Drive Hammer (Ibs.):NAbeDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):90.0Total Well Depth (ft bgs):85.0				
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
25 _	V	25.0-27.0': Silty SAND (60% sand, 40% silt), fine san wet, no odor.		SM		100						
- - 30 —		27.0-29.0': Silty SAND (80% sand, 20% silt), fine to n gray, moist to wet, no odor. 29.0-30.0': No Recovery.	nedium sand,	SM		100		0.0			Denterrite	
-		30.0-35.0': Silty SAND (70% sand, 30% silt), fine san odor.	d, gray, wet, no	SM		100		0.3	Soil Screened @ 30.0' bgs		Bentonite	
35 - - - -		35.0-40.0': Silty SAND (60% sand, 40% silt), fine san odor.	d, gray, moist, no	SM		100						
40 – -		40.0-42.0': Poorly graded SAND with silt (90% sand, medium sand, gray, moist, no odor.	10% silt), fine to	SP-SN		100		0.3	Soil Screened @ 40.0' bgs		Casing	
-		42.0-45.0': Silty SAND (70% sand, 30% silt), fine san odor.	d, gray, moist, no	SM								
45 - - - -		45.0-50.0': Silty SAND (85% sand, 15% silt), fine san moist, no odor.	d, grayish brown,	SM								
50			Construction I									

Manual Transa Eluch Mar	unt	Well Construct	tion Information	Ground Surface Eleva	ation (ft)	NA
Monument Type: Flush Mou		Filter Pack:	12/20 Sand		• •	
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	72.0-85.0	Boring Abandonment:	NA		Y: NA	

Pro Loc Far	cati allo	CONSULTING City Investors IX LLC Et: Block 38 West Property on: Seattle, WA on PN: 397-061 ed By: Greg Peters	Date/Time Started: Date/Time Completed Equipment: Drilling Company: Drilling Foreman: Drilling Method:		11/3/ 11/17 Sonia	/2018 7/201 c Rig/ cene : Baile	@ 114 8 @ 14 /Geopro Drilling \$y	5 S 00 C obe C T	J: FMW-1 Sampler Type: 4 > Drive Hammer (Ibs. Depth of Water ATE Total Boring Depth Total Well Depth (ft	< 6 sa):) (ft t (ft b)	ample b ogs): gs):	age 3 of 4 ag NA NE 90.0 85.0
Depth (feet bgs.)	Sample Interval	Lithologic Descripti		uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
 - - - 555 - - - - -		50.0-55.0': Silty SAND (80% sand, 20% silt), fine to grayish brown, moist to wet, no odor. 55.0-60.0': Silty SAND (80% sand, 20% silt), fine to grayish brown, moist to wet, no odor.		GM		100		3.2	Soil Screened @ 50.0' bgs			Casing
60 - - - - - - - - - - - -		60.0-70.0': Poorly graded SAND with silt (90% sand medium sand, grauish brown, moist, no odor.	, 10% silt), SP	-SM		100		1.3	Soil Screened @ 60.0' bgs			
- 07 - - -		70.0-72.0': Poorly graded SAND with silt (90% sand medium sand, grayish brown, moist. 72.0-75.0': Poorly graded SAND with silt (80% sand gravel), medium sand, fine gravel, grayish brown, m	, 10% silt, 10% SP	-SN		100		0.3	Soil Screened @ 70.0' bgs			Bentonite Screen (Pre-packe

Ground Surface Elevation (ft): NA Monument Type: Flush Mount Filter Pack: 12/20 Sand Top of Casing Elevation (ft): NA Casing Diameter (inches): 2.0 Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): 0.010 Annular Seal: X:NA Bentonite Screened Interval (ft bgs): 72.0-85.0 Boring Abandonment: NA Y:NA

		FARALLON CONSULTING		Lo	g c	of E	Bori	ing	j: FMW-1 :	37		ige 4 of 4
Lo	ojec cati	ct: Block 38 West Property ion: Seattle, WA	Date/Time Started: Date/Time Comple Equipment: Drilling Company:		11/17 Sonio Holoo	7/201 c Rig cene	/Geopr Drilling	100 [obe [1]	Sampler Type: 4 > Drive Hammer (Ibs. Depth of Water ATE Total Boring Depth):) (ft l (ft b	bgs): gs):	NA NE 90.0
		on PN: 397-061 ed By: Greg Peters	Drilling Foreman: Drilling Method:	Zack Sonie			I	otal Well Depth (ft	bys).	85.0	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction letails
75_	-	75.0-80.0': Poorly graded SAND (95% sand, 5% silt gray, moist to wet, no odor.	t), medium sand,	SP								Screen (Pre-Packed)
80	-	80.0-85.0': Poorly graded SAND (95% sand, 5% silt sand, gray, moist to wet, no odor.	t), fine to medium	SP		100		0.5	Soil Screened @ 80.0' bgs			
85 -	-	85.0-90.0': Poorly graded SAND (95% sand, 5% sil sand, gray, moist to wet, no odor.	lt), fine to medium	SP								Sand Pack
90 -	-					100		0.2	Soil Screened @ 90.0' bgs			
100	-											

Casing Diameter (inches):2.0Surface Seal:ConcreteTop of Casing Elevation (ft):NAScreen Slot Size (inches):0.010Annular Seal:BentoniteSurveyed Location:X:NA	Menument Tunes Eluch Mount	Well Construction Informatio	On Ground Surface Elevation (ft): NA
Screen Slot Size (inches): 0.010 Annular Seal: Bentonite Surveyed Location: X:NA	•.		
	U ()		
	Screened Interval (ft bgs): 72.0-85.0	Boring Abandonment: NA	Y: NA

		FARALLON CONSULTING		Lo	g o	of E	Bor	ing]: FMW-1:	38	Page 1 of 5
	ojec	: City Investors IX LLC ct: Block 38 West Property ion: Seattle, WA	Date/Time Started Date/Time Comple Equipment: Drilling Company:	ted:	11/4/ Sonio	2018 c Rig	3 @ 090 3 @ 090 /Geopr Drilling	00 [obe [Sampler Type: 4 x Drive Hammer (Ibs.) Depth of Water ATD Fotal Boring Depth	: (ft bgs	NA): NE
		on PN: 397-061	Drilling Foreman: Drilling Method:		Zack Sonio			٦	Fotal Well Depth (ft	bgs):	100.0
Lo	gge	ed By: Greg Peters	Drining Method.				iiig	1	1		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well construction Details
0_	\times		e								I
-	$\left \right $	0.0-0.4': Concrete cored. Air knife to 5.0' bgs to clear 0.4-5.0': Silty SAND with gravel (60% sand, 30% gra to coarse sand, fine gravel, brown, moist, no odor, co	avel, 10% silt), fine	CO FILL							Monument
	\wedge	at 2.5' bgs. Brick, wood and metal debris.									
-	V	5.0-8.0': Silty SAND with gravel (60% sand, 20% gra to coarse sand, fine gravel, brown moist, no odor. W throught core.	avel, 20% silt), fine /ood debris	FILL				0.0	Soil Screened @ 5.0' bgs		Bentonite
-	$\left \right $	8.0-10.0': No Recovery.									
- 10		10.0-12.0': Silty SAND (60% sand, 30% silt, 10% gr fine gravel, gray, moist, no odor. Wood debris at 12.	avel), fine sand, 0' bgs.	FILL		60		0.0	Soil Screened @ 10.0' bgs		
-	\wedge	12.0-15.0.': Silty SAND with gravel (70% sand, 15% fine sand, fine gravel, gray, moist, no odor. Wood de	silt, 15% gravel), ebris.	FILL							
- 15 - - -		15.0-20.0.': Silty SAND (70% sand, 30% silt), fine sa grayish brown, moist, organic like odor. Wood debris	and, fine gravel, s.	FILL	1 <u>0000</u>			0.0	Soil Screened @ 15.0' bgs		Casing
20 -		20.0-25.0': Sandy SILT (80% silt, 20% sand), fine sa moist to wet, organic like odor. organic matter and s present.	and, dark brown, ome wood debris	FILL		100		17.3	Soil Screened @ 20.0' bgs		

Manual Transa Eluch Mar		Well Construc	tion Information	Ground Surface Eleva	tion (ft).	NA
Monument Type: Flush Mou Casing Diameter (inches):	2.0	Filter Pack:	12/20 Sand	Top of Casing Elevati	. ,	NA
Screen Slot Size (inches):	0.010	Surface Seal: Annular Seal:	Concrete Bentonite	Surveyed Location:	X :NA	
Screened Interval (ft bgs):	90.0 - 100.0	Boring Abandonment:	NA		Y: NA	

		FARALLON	Lo	og (of I	Bori	ing	J: FMW-13		Page 2 of 5
Lo Fai	ojec cati rallo	: City Investors IX LLC ct: Block 38 West Property ion: Seattle, WA on PN: 397-061 ed By: Greg Peters	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	11/4 Son Hole Zac	l/2018 ic Rig	e Drilling ey	00 D Dbe D T	Sampler Type: 4 x Drive Hammer (Ibs.) Depth of Water ATD Total Boring Depth (Total Well Depth (ft)	: (ft bgs): (ft bgs):	bag NA NE 100.0 100.0
Depth (feet bgs.)	Sample Interval	Lithologic Description	on Sos	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	کم 🖌	oring/Well nstruction Details
-										
25 -		25.0-25.6': Sandy SILT (80% silt, 20% sand), mediur moist, no odor. 25.6-27.6': Sandy SILT (90% silt, 10% sand), fine sa no odor.	nd, gray, moist,		100		19.3	Soil Screened @ 25.0' bgs		≭ Water level
- 30 -		27.6-30.0': Silty SAND (70% sand, 30% silt), fine sar odor. 30.0-31.0': Silty SAND (70% sand, 30% silt), fine sar odor.			70		3.6	Soil Screened @ 30.0' bgs		Bentonite
-		31.0-33.5': Poorly graded SAND (90% sand, 5% silt, medium sand, grayish brown, moist, no odor. 33.5-35.0': No Recovery.	5% gravel), SF							
35 - - -		35.0-39.0': Poorly graded SAND (90% sand, 10% sill grayish brown, moist, no odor.	i), medium sand, SF		80					
- 40 - - -	-	39.0-40.0': No Recovery. 40.0-45.0': Poorly graded SAND (90% sand, 5% silt, medium sand, grayish brown, moist, no odor.	5% gravel), SF		100		1.0	Soil Screened @ 39.0' bgs		Casing

Manual Trans. Eluch Mar	unt	Well Construc	tion Information	Ground Surface Eleva	ation (ft):	NA
Monument Type: Flush Mou		Filter Pack:	12/20 Sand		• •	
		Surface Seal:	Concrete	Top of Casing Elevati	• •	NA
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	90.0 - 100.0	Boring Abandonment:	NA		Y: NA	

		FARALLON CONSULTING		Lo	g c	of E	Bori	ing	j: FMW-1:	38	Page 3 of 5
	oje	t: City Investors IX LLC ct: Block 38 West Property tion: Seattle, WA	Date/Time Started: Date/Time Complet Equipment: Drilling Company:		11/4 Soni	/2018 c Rig	8 @ 090 8 @ 090 /Geopre Drilling	00 E obe E	Sampler Type: 4 x Drive Hammer (Ibs.) Depth of Water ATD Fotal Boring Depth):) (ft bg	NA s): NE
		on PN: 397-061	Drilling Foreman: Drilling Method:			c Baile c Dril	-	Т	fotal Well Depth (ft	bgs):	100.0
Lo	gg	ed By: Greg Peters	-				~				
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well Construction Details
-	1					•					
45	-	45.0-50.0': Poorly graded SAND (85% sand, 10% gr medium sand, grayish brown, moist, no odor.	ravel, 5% silt),	SP							Casing
50		50.0-52.0': Silty SAND with gravel (60% sand, 20% medium to coarse sand, fine to coarse gravel, cobbl wet, no odor.		SM		100		0.4	Soil Screened @ 50.0' bgs		
-		52.0-55.0': Sandy SILT with gravel (60% silt, 25% sa fine to coarse sand, fine gravel, cobbles present, bro no odor.		ML							
55 - - -	-	55.0-60.0': Sandy SILT (70% silt, 25% sand, 5% gra brown, wet, no odor.	ivel), fine sand,	ML				0.5	Soil Screened @ 55.0' bgs		Bentonite
60 - -	-	60.0-64.0': Sandy SILT (70% silt, 25% sand, 5% gra brown, wet, no odor.	ivel), fine sand,	ML		100		1.0	Soil Screened @ 60.0' bgs		Casing
65 -		64.0-65.0': Gravely SILT with sand (50% silt, 30% g fine to coarse sand, fine to coarse gravel, cobbles p odor.		ML ML				0.2	Soil Screened @ 65.0' bgs		
			Construction Ir								

Manual Trans. Eluch Mar		Well Construc	tion Information	Ground Surface Eleva	NA	
Monument Type: Flush Mou		Filter Pack:	12/20 Sand			
Casing Diameter (inches):	2.0	Surface Seal:	Concrete	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	Bentonite	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	90.0 - 100.0	Boring Abandonment:	NA		Y:NA	

		FARALLON CONSULTING		Lo	g o	f E	Bor	ing	j: FMW-1		Page 4 of 5
Loc Far	ojec cati rallo	: City Investors IX LLC ct: Block 38 West Property ion: Seattle, WA on PN: 397-061 ed By: Greg Peters	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:		11/4/2 Sonic	2018 : Rig/ :ene Baile	Drilling y)0 [obe [₁]	Sampler Type: 4 : Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth Total Well Depth (fi	.): D (ft bgs): (ft bgs):	bag NA NE 100.0 100.0
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Co	oring/Well Instruction Details
		65.0-65.0': Sandy SILT (70% silt, 25% sand, 5% gra brown, moist, no odor. 68.0-70.0': Sandy SILT (70% silt, 20% sand, 10% g gray, moist, no odor. 70.0-80.0': Poorly graded SAND with silt (90% sand medium sand, gray, moist to wet, no odor. 80.0-90.0': Poorly graded SAND (98% sand, 2% silt gray, moist to wet, no odor.	ravel), fine sand, I, 10% silt), fine to	ML SP-SN		100		0.1	Soil Screened @ 70.0' bgs		Casing Bentonite Casing
Casir Scree	ng Di en Sl	Int Type: Flush Mount Filter Pack iameter (inches): 2.0 Surface Se Iot Size (inches): 0.010 Annular Se	eal: Concr) Sano ete		n	Тор с	of Cas	Irface Elevation (ff sing Elevation (ft): Location: X:NA Y:NA	, NA	

	FARALLON		Lo	g o	of E	Bori	ing	g: FMW-138		age 5 of 5
	nt: City Investors IX LLC ect: Block 38 West Property ation: Seattle, WA	Date/Time Started: Date/Time Comple Equipment: Drilling Company:	ted:	11/4/ Sonio	2018 c Rig/	@ 090 @ 090 Geopro Drilling	0 E obe E	Sampler Type: 4 × 6 Drive Hammer (Ibs.): Depth of Water ATD (f Fotal Boring Depth (ft	t bgs):	oag NA NE 100.0
	llon PN: 397-061	Drilling Foreman: Drilling Method:		Zack Sonio			1	ິເວtal Well Depth (ft bູ	js):	100.0
Log	ged By: Greg Peters	Drining Method.				ing			1	
Depth (feet bgs.)	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID games	Bo Cor	ring/Well istruction Details
90	90.0-100.0': Poorly graded SAND (98% sand, 2% s gray, wet, no odor.	ilt), medium sand,	SP		100		0.4	Soil Screened @ 90.0' bgs		Sand Pack
95										Screen (Pre-Packed)
100					100		0.4	Soil Screened @ 100.0' bgs		
- 105										
110										

Monument Type: Flush Mo	unt	Well Construc Filter Pack:	tion Information	Ground Surface Eleva	tion (ft):	NA
Casing Diameter (inches): Screen Slot Size (inches): Screened Interval (ft bgs):	2.0 0.010 90.0 - 100.0	Surface Seal: Annular Seal: Boring Abandonment:	Concrete Bentonite NA	Top of Casing Elevation Surveyed Location:	on (ft): X:NA Y:NA	NA

FARALLON	Log of Boring: FMW-154 Page 1 o	of 1
Client: City Investors IX LLC	Date/Time Started: 2/5/2022 @ 1130 Depth to Water ATD (ft bgs): 1	10.0
Project: Block 38 West Property	Date/Time Completed: 2/5/2022 @ 1245 Boring Diameter (in): 8	3.0
	Drilling Company: Cascade Drilling Total Boring Depth (ft bgs): 1	15.0
Location: Seattle, Washington	Drilling Method: Sonic Drilling Constructed Well Depth (ft bgs): 1	15.0
Farallon PN: 397-019	Drilling Equipment: Terrasonic	
Logged By: G.Peters	Drilling Operator: Rico Rodriguez Sampler Type: 5' PE Bags	
Reviewed By: S. Stumpf	Drive Hammer (Ibs): NA	
Depth (ft bgs) Sample Interval Lithologic Description	USCS Graphic USCS Graphic Blow Counts PID (ppmv) Sample Analyzed Sample Analyzed	tion

0	0.0-0.4': Asphalt. Airknife to 5.0' bgs for utility clearance.	AC			Concrete
-	0.4-5.0': Poorly graded SAND (90% sand, 10% gravel), fine sand, dark brown, moist, no odor, no staining. Wood, brick, and plastic debris (Fill).	SP			Concrete
5-	5.0-10.0': PEAT (90% peat, 10% sand), fine sand, brown, moist, organic odor, no staining. Wood debris.	PT 3	00 0.0	FMW-154-5.0	Bentonite Sand Pack
10 -	10.0-14.0': Well graded SAND with silt (60% sand, 20% peat, 10% silt, 10% gravel), fine to coarse sand, gray, wet, organic odor, no staining.	SW- SM	00 0.0	FMW-154-10.0	Water Level
15 —	14.0-15.0': Poorly graded SAND (100% sand), fine to medium sand, gray, wet, no odor, no staining.	SP	0.0	FMW-154-15.0	Well Screen

		Well Constructi	on Information	
Monument Type:	Flush Mount	Filter Pack:	Sand pack	Ground Surface Elevation (ft): 23.22
Casing Diameter (in):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft): 22.80
Screen Slot Size (in):	0.010	Annular Seal:	Concrete	Surveyed Location: X: 1269430.17 Y: 231126.54
Screened Interval (ft bgs):	10.0-15.0	Boring Abandonment:	NA	Unique Well ID: BNW-075

FARALLON	Lo	og o	f B	ori	ng:	FMW-1	55	Page	1 of 1
Client: City Investors IX LLC	Date/Time Started:	2/5/202	2@1	255		Depth to Water A	TD (ft b	gs):	8.5
Project: Block 38 West Property	Date/Time Completed:	2/5/202	2@1	320		Boring Diameter	(in):		8.0
	Drilling Company:	Cascad	le Dril	ling		Total Boring Dep	th (ft bg	s):	15.0
Location: Seattle, Washington	Drilling Method:	Sonic E	Drilling			Constructed Well	Depth ((ft bgs):	15.0
Farallon PN: 397-019	Drilling Equipment:	Terraso	onic						
Logged By: G.Peters		Rico Ro 5' PE B	0	ez					
Reviewed By: S. Stumpf	Drive Hammer (Ibs):	NA							
Depth (ft bgs) Sample Interval Sample Secription	nscs	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	<u> </u>	Boring Constru Deta	iction

5- 5.0-10.0': PEAT (100% peat), brown, wet, organic of Wood debris.		SW	<u>s</u> 100	0.0	FMW-155-5.0	Bentonite
5.0-10.0': PEAT (100% peat), brown, wet, organic of Wood debris.	odor, no staining.	PT	100	0.0	FMW-155-5.0	Bentonite
			2년 2년 2년 2년 2년 2년 2년			▼ Water Level
10 - 10.0-12.0': PEAT (80% peat, 10% sand, 10% silt), I organic odor, no staining.	brown, wet,	PT	 ✓ 100 ✓ 	0.0	FMW-155-10.0	Sand Pack
12.0-15.0': Silty SAND (60% sand, 40% silt), fine sa odor, no staining.	and, gray, wet, no	SM		0.0	FMW-155-15.0	Well Screen

		Well Constructi	on Information	
Monument Type:	Flush Mount	Filter Pack:	Sand pack	Ground Surface Elevation (ft): 24.28
Casing Diameter (in):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft): 23.90
Screen Slot Size (in):	0.010	Annular Seal:	Concrete	Surveyed Location: X: 1269433.30 Y: 231262.97
Screened Interval (ft bgs):	10.0-15.0	Boring Abandonment:	NA	Unique Well ID: BNW-074

		FARALLON	I	Log	j 0'	f B	ori	ng:	FMW-1	56	Page	1 of 1
Clie	ent:	City Investors IX LLC	Date/Time Started:	2/	5/202	2@^	1340		Depth to Water A	TD (f	t bgs):	10.0
Pro	ject:	Block 38 West Property	Date/Time Complete	ed: 2/	5/202	2@^	1415		Boring Diameter	(in):		8.0
	•		Drilling Company:	Ca	ascad	le Dril	ling		Total Boring Dep	th (ft	bgs):	20.0
LUC	Jano	n: Seattle, Washington	Drilling Method:	So	onic E	rilling	I		Constructed Well	Dep	th (ft bgs):	20.0
Far	allor	ו PN : 397-019	Drilling Equipment:	Te	errasc	nic						
Log	gged	By: G.Peters	Drilling Operator: Sampler Type:		co Ro PE B	odrigu ags	ez					
Re۱	view	ed By: S. Stumpf	Drive Hammer (Ibs):	N	٩							
Depth (ft bgs)	Sample Interval	Lithologic Description		uscs	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring Constru Deta	uction

0	0.0-0.75': Concrete. Airknife to 5.0' bgs for utility clearance.	CO						Concrete
- - - 5-	0.75-6.0': Well graded SAND (90% sand, 10% gravel), fine to coarse sand, brown, moist, no odor, no staining (Fill).	SW		1	00	0.0		Bentonite
	6.0-10.0': SILT with sand (60% silt, 20% sand, 20% wood), fine sand, gray, moist, organic odor, no staining. Wood debris.	ML						×
-	10.0-12.5': Silty SAND (60% wood, 20% sand, 20% silt), fine sand, brown, moist to wet, no odor. Wood debris.	SM		1	00	0.0	FMW-156-10.0	Water Level
15 -	12.5-15.0': PEAT (100% peat), brown, organic odor, wet, no staining.	PT						Sand Pack
-	15.0-17.0': Poorly graded SAND (80% wood, 20% sand), fine sand, grayish brown, wet, organic odor, no staining. Wood debris.	SP	7.7.7	1	00	0.0	FMW-156-15.0	Well Oseran
- - 20 -	17.0-20.0': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, gray, wet, no odor, no staining.	SP- SM					EMW 156 20 0	Well Screen
							FMW-156-20.0	

Monument Type:	Flush Mount	Filter Pack:	Sand pack	Ground
Casing Diameter (in):	2.0	Surface Seal:	Concrete	Top of C
Screen Slot Size (in):	0.010	Annular Seal:	Concrete	Surveyee
Screened Interval (ft bgs):	15.0-20.0	Boring Abandonment:	NA	Unique V

Surface Elevation (ft): 26.01 Casing Elevation (ft): 25.70 ed Location: X: 1269436.89 Y: 231342.09 Well ID: BNW-073

		FARALLON		Lo	g oʻ	f B	ori	ng	: FMW-1	57	P	age 1 of 1
Loc Far	oject catic allo	City Investors IX LLC Block 38 West Property Seattle, Washington NPN: 397-019 By: G.Peters	Date/Time Started Date/Time Compl Drilling Company Drilling Method: Drilling Equipmen Drilling Operator: Sampler Type:	eted: 2/ : C S nt: T	/5/202 /5/202 ascad onic D errasc ico Ro PE B	2 @ le Dril Drilling onic odrigu	1530 Iling		Depth to Water A Boring Diameter Total Boring Dep Constructed Well	(in): th (ft	bgs):	9.0 8.0 40.0 gs): 40.0
Rev		red By: S. Stumpf	Drive Hammer (Ib	os): N	A					ed		
Depth (ft bgs)	Sample Interval	Lithologic Description		nscs	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0 		0.0-0.75': Concrete. Airknife to 5.0' bgs for utility cle 0.75-5.0': Well graded SAND (90% sand, 10% grav sand, brown, moist, no odor, no staining (Fill).	el), fine to coarse	CO SW								Concrete
-	-	5.0-10.0': Sandy SILT (60% silt, 40% sand), fine sa nodor, no staining.	nd, brown, moist,	ML			100	0.0				Bentonite

			• • •				
5 - -	5.0-10.0': Sandy SILT (60% silt, 40% sand), fine sand, brown, moist, nodor, no staining.	ML		100	0.0		Bentonite
-							▼ Water Level
10 — - -	10.0-15.0': PEAT (100% peat), brown, moist, organic odor, no staining.	PT	マペン マペ ^{ク、}	100	0.0		
- 15 —			<u> </u>				
-	15.0-20.0': Silty SAND (80% sand, 20% silt), fine sand, grayish brown, moist, no odor, no staining.	SM	• • •	100	0.0		
20	20.0-25.0': No recovery.	+		0			Bentonite
- 25 - - -	25.0-30.0': Poorly graded SAND (100% sand), fine sand, gray, wet, no odor, no staining.	SP		100	0.0		
-							Sand Pack
30 - - - -	30.0-35.0': Poorly graded SAND (100% sand), fine sand, grayish brown, wet, no odor, no staining.	SP		100	0.0	FMW-157-30.0	Sand Fack
-							
35 - - - -	35.0-40.0': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, gray, wet, no odor, no staining.	SP- SM		100	0.0	FMW-157-35.0	Well Screen
40 —			<u> </u>		0.0	FMW-157-40.0	
Г		1			0.0	FIVIVY-137-40.0	

Monument Type: Flush Mount Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 30.0-40.0 Screened Interval (ft bgs):

Well Construction Information Filter Pack:

Surface Seal:

Annular Seal:

Boring Abandonment:

Concrete

Concrete

NA

Sand pack Ground Surface Elevation (ft): 26.20 Top of Casing Elevation (ft): 25.95 Surveyed Location: X: 1269437.13 Y: 231346.24 Unique Well ID: BNW-072

	LON	Log of Test Pit: NGas-1 Page 1 of 1								
Client: Vulcan Project: Block 38W Location: Seattle, Washingt Farallon PN: 397-019 Logged By: Yusuf Pehliva		Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/26/19 @ 1100 1/26/19 @ 1140 Airknife APS NA Airknife	D	epth o	of Wate	: Hand Auger r (ft bgs): ion Depth (ft bgs):	3.0 3.0		
Logged By: Yusuf Pehliva Bebth (feet pgs) Sample Uterval Sample S	Lithologic De	scription		nscs	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed	

0		0.0-0.7': Concrete.	СО			
		0.7-1.8': Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine gravel, brown, moist, no odor. Geotextile fabric at 1.5' bgs.	SW-	· · · · ·		
		sand, fine gravel, brown, moist, no odor. Geotextile fabric at 1.5' bgs.	SM			
	V					
		1.9.2.0's Silty SAND with grovel (600/ cond. 250/ cilt. 150/ grovel) fine to course cond. Fine	SM			
-		1.8-3.0': Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to coarse sand, fine gravel, dark brown, moist, wet at 3.0' bgs, no odor. Gas line encountered at 3.0' bgs. Water fills test pit.	Sivi			
-				: : :		
5						

	FARALLON	Log of Test Pit: NGas-2 Page 1 of 1							
	Varean	Date/Time Started: 1/26/19 @ 0900 Sampler Type Date/Time Completed: 1/26/19 @ 1100 Depth of Wat Equipment: Airknife Total Excava Excavation Company: APS Excavation Foreman: NA Excavating Method: Airknife					0	4.5 5.1	
Depth (feet bgs) 660 Sample Interval 660	d By: Yusuf Pehlivan Lithologic De			USCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0	0.0-4.5': Well-graded SAND with silt and gravel (50% sand, 40% gravel, 10% sand), fine to coarse sand, fine and coarse gravel, dark brown, moist, no odor, trace brick fragments.	SW- SM		
5	4.5-5.0': Poorly graded gravel (100% gravel), fine fravel, gray, wet, utilities backfill. 5.0-5.1': Rotting wood. Water fills testpit.	GP WD		

	7	FARALLON	Log of Test Pit: PH-1 Page 1 of 1							
Fara	ect: ation	Vulcan Block 38W Seattle, Washington PN: 397-019 By: Yusuf Pehlivan	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/26/19 @ 0925 1/26/19 @ 1000 Airknife APS NA Airknife	D	epth o	of Wate	: Hand Auger r (ft bgs): on Depth (ft bgs):	3.5 4.0	
Depth (feet bgs)	Sample Interval	Lithologic De	scription		NSCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0	0.0-0.6': Concrete.	СО		
-	0.6-4.0': Poorly graded SAND (95% sand, 5% gravel), fine and medium sand, fine gravel, grayish brown, moist, wet at 3.5' bgs, no odor. Water fills test pit, unable to log below water.	SP		
			0.0	PH-1-4.0-012619
5_				

		FARALLON CONSULTING Log of Test Pit: PH-2 Page 1 of 1										
Pro Loc Fa	rall	t: Block 38Won: Seattle, Washingtonon PN: 397-019	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/26/19 @ 0900 1/26/19 @ 1100 Airknife APS NA Airknife	v							
Depth (feet bgs)	Logged By: Yusuf Pehlivan				nscs	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed		
0		0.0-4.5': Well-graded SAND with silt and gravel (50 coarse sand, fine and coarse gravel, dark brown, m fragments. Gas line found at 4.5' bgs.			SW- SM							

-	4.5-5.0°: Poorly graded GRAVEL (100% gravel), fine gravel, gray, wet, utilitiy backfill.	GP		
5-				
•	5.0-5.1': Rotting wood.	WD		

	7	FARALLON	Log of Test Pit: PH-4 Page 1 of 1							
Fara	ect: tion: Illon	Vulcan Block 38W Seattle, Washington PN: 397-019	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/26/19 @ 1115 1/26/19 @ 1200 Airknife APS NA Airknife						
Depth (feet bgs)		y: Yusuf Pehlivan Lithologic De	scription		NSCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0	0.0-3.0': Well-graded SAND with silt and gravel (50% sand, 40% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, drk brown, moist, trace concrete blocks, brick, wood, plastic and	SW- SM				
	metal debris.					
			· · · · · · · · · · · · · · · · · · ·			
			·····			
-						
-						
	3.0-4.0': Fill (100% gravel), fine gravel, gray, moist. Gas line at 3.5' bgs,	FILL	$\langle \bigcirc$			
			KO			
			$\left\{ \bigcirc\right\}$			
			$\left\{ \mathcal{O}\right\}$			
-	4.0 E.0': CILT with cond and group (70% eith 15% cond, 15% group) find and modium cond	ML	$\left(\right)$			
	4.0-5.0': SILT with sand and gravel (70% silt, 15% sand, 15% gravel) fine and medium sand, fine gravel, dark brown, moist, no odor.	IVIL				
				12.3	PH-4-4.5-012619	X
5-						

FA	ARALLON CONSULTING	Lo	g of Test	Pit:	P	H-1′		1 of 1	
Location: Seatt	38W le, Washington 97-019	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/26/19 @ 1230 1/26/19 @ 1320 Airknife APS NA Airknife	D	epth o	of Wate	: Hand Auger r (ft bgs): on Depth (ft bgs):	4.2 4.2	
Depth (feet bgs) Sample Interval	′usuf Pehlivan Lithologic De	scription		NSCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0	0.0-0.9': Concrete.	CO		
-	0.9-3.8': Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, dark brown, moist, trace rocks, brick, wood, and metal debris.	SW- SM		
-				
_	3.7-4.2': Utility Conduits.			
	4.2-4.4': Wood, wet. Unable to advance further.	WD		
5_				

	V	FARALLON	Lo	g of Test	Pit:	Ρ	H-1 ⁻		1 of 1	
Pro Loo Fa	rall	T di oditi	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/19/19 @ 1240 1/19/19 @ 1310 Airknife APS NA Airknife	D	epth o	of Wate	: Hand Auger r (ft bgs): on Depth (ft bgs):	4.5 4.5	
Depth (feet bgs)	Sample Interval	Lithologic De	scription		NSCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0 0.0.4.0°: Silty SAND with gravel (50% sand, 35% silt, 15% gravel), fine and medium sand, fine gravel, dark brown, moist, no odor.	
4.0-4.5': Sandy SILT (60% silt, 40% sand), fill, wood fragements, dark brown, wet, no odor. ML 4.1 PH-11A-4.0-0919	19 X
5_	

	FARALLON	Lo	g of Test	Pit:	P	H-12		1 of 1	
Project: BI		Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/19/19 @ 0930 1/19/19 @ 1015 Airknife APS NA Airknife	D	epth o		: Hand Auger er (ft bgs): ion Depth (ft bgs):	4.0 4.0	
Depth (feet bgs)	Lithologic De	scription		nscs	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0	0.0-0.9': Concrete.	CO			
-	0.9-1.5': Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse sand, fine and coarse gravel, brown, dry, no odor. Geotextile fabric at 1.5' bgs.	GW- GM			
-	1.5-3.0': Concrete/rock blocks.	СО			
-	3.0-4.0': Sandy SILT (60% silt, 40% sand), fine and medium sand, dark brown, moist, wet at 4.0 bgs, petroleum-like odor, trace organic plant matter. Water fills pothole at 4.0' bgs.	ML			
			127.5	PH-12-4.0-011919	x

	FARALLON	Lo	g of Test	Pit:	Ρ	H-13		1 of 1	
Faral	Valoan	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/12/19 @ 0840 1/12/19 @ 1015 Airknife APS NA Airknife	D	epth o	of Wate	: Pothole Digger r (ft bgs): ion Depth (ft bgs):	3.0 5.0	
Depth (feet bgs) Sample Interval	Lithologic De	scription		nscs	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

			_			
0	0.0-0.7': Concrete.	CO				
_	0.7-1.5': Fill (70% sand, 30% gravel), fine and medium sand, fine and coarse gravel, grayish brown, dry to moist, no odor.	FILL	00000			
_	1.5-4.0': Poorly graded SAND (90% sand, 10% gravel), fine and medium sand, fine gravel, dry, wet at 3.0' bgs, no odor, well cemented. Well-graded gravel in hole to 3.0'bgs. 4.0-5.0' bgs not logged due to water.	SP				
_				0.0	PH-13-3.0-011218	x
5_						

	V	FARALLON	Lo	g of Test	Pit:	Ρ	H-13		1 of 1	
Fa	ojec cati rall	Valoan	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	1/19/19 @ 0845 1/19/19 @ 0910 Airknife APS NA Airknife	D	epth o		: Hand Auger or (ft bgs): ion Depth (ft bgs):	3.5 3.5	
Depth (feet bgs)	Sample Interval	Lithologic De	scription		USCS	USGS Graphic	PID (ppm)	Sample ID		Sample Analyzed

0		00		1		
U	0.0-0.9': Concrete.	СО				
-	0.9-1.3': Well-graded GRAVEL with silt and sand (75% gravel, 15% sand, 10% silt), fine to coarse sand, fine and coarse gravel, brown, dry, no odor, road base. Geotextile fabric at 1.3' bgs.	GW- GM				
-	1.3-3.5': Poorly graded SAND with gravel (85% sand, 15% gravel), medium and coarse sand, fine gravel. (Airknife operator says CDF). 3.0-5.0' bgs water fills test pit.	SP				
-						
5_						

APPENDIX B LABORATORY ANALYTICAL RESULTS

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

January 29, 2019

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019 Laboratory Reference No. 1901-097

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on January 14, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: January 29, 2019 Samples Submitted: January 14, 2019 Laboratory Reference: 1901-097 Project: 397-019

Case Narrative

Samples were collected on January 12, 2019 and received by the laboratory on January 14, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx Analysis

Method 5035A VOA vials were not provided for sample PH-13-3.0-011219. The sample was therefore extracted from a 4-ounce jar for analysis. Some loss of volatiles may have occurred.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-13-3.0-011219					
Laboratory ID:	01-097-01					
Gasoline	ND	6.4	NWTPH-Gx	1-22-19	1-22-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	72	57-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date	•	
Analyte	Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0122S1							
Gasoline	ND	5.0	NWT	「PH-Gx	1-22-19	1-22-1	19	
Surrogate:	Percent Recovery	Control Limits	S					
Fluorobenzene	68	57-129						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								

DUPLICATE										
Laboratory ID:	01-102-01									
	ORIG	DUP								
Gasoline	51.5	51.4	NA	NA	N	A	NA	0	30	
Surrogate: Fluorobenzene					61	60	57-129			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	PH-13-3.0-011219					
Laboratory ID:	01-097-01					
Diesel Range Organics	ND	29	NWTPH-Dx	1-23-19	1-23-19	
Lube Oil Range Organics	ND	59	NWTPH-Dx	1-23-19	1-23-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

Date of Report: January 29, 2019 Samples Submitted: January 14, 2019 Laboratory Reference: 1901-097 Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0123S2					
Diesel Range Organics	ND	25	NWTPH-Dx	1-23-19	1-23-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	1-23-19	1-23-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-14	44-11								
	ORIG	DUP								
Diesel Range Organics	130	38.3	NA	NA		NA	NA	109	NA	Ν
Lube Oil Range Organics	792	280	NA	NA		NA	NA	96	NA	
Surrogate:										
o-Terphenyl						108 107	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-13-3.0-011219					
Laboratory ID:	01-097-01					
Benzo[a]anthracene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Chrysene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[a]pyrene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270D/SIM	1-24-19	1-24-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	55	40 - 117				
Pyrene-d10	70	38 - 119				
Terphenyl-d14	61	47 - 135				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0124S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 117				
Pyrene-d10	81	38 - 119				
Terphenyl-d14	73	47 - 135				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

ernte: mg/rtg					Por	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	24S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0769	0.0752	0.0833	0.0833	92	90	64 - 132	2	15	
Chrysene	0.0629	0.0616	0.0833	0.0833	76	74	64 - 127	2	15	
Benzo[b]fluoranthene	0.0695	0.0720	0.0833	0.0833	83	86	57 - 128	4	15	
Benzo(j,k)fluoranthene	0.0669	0.0619	0.0833	0.0833	80	74	62 - 130	8	15	
Benzo[a]pyrene	0.0750	0.0746	0.0833	0.0833	90	90	62 - 125	1	15	
Indeno(1,2,3-c,d)pyrene	0.0734	0.0718	0.0833	0.0833	88	86	55 - 130	2	15	
Dibenz[a,h]anthracene	0.0684	0.0665	0.0833	0.0833	82	80	58 - 129	3	15	
Surrogate:										
2-Fluorobiphenyl					57	67	40 - 117			
Pyrene-d10					76	74	38 - 119			
Terphenyl-d14					68	65	47 - 135			

9

Date of Report: January 29, 2019 Samples Submitted: January 14, 2019 Laboratory Reference: 1901-097 Project: 397-019

% MOISTURE

Date Analyzed: 1-23-19

Client ID Lab ID % Moisture

PH-13-3.0-011219

01-097-01

15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	Phone: (425) 883-3881 • www.onsite-env.com Project Number: 397-019 Project Name: 397-019 Project Manager: Taven Kverk Sampled by: 9. Repliven 1. P14-13-3.0-01124 1. P14-13-3.0-01124	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite
Reviewed/Date					OSE	Favallen	Company	Check One)	Turnaround Request (in working days)	Chain of
					1/14/19 0830	1/14/18 2830	Date Time	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (Laboratory Number:	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV		50.	-	Coatast for analyses.	Hold all sampless PM will	Comments/Special Instructions	EDB EPA 8011 (Waters Only) EDB EPA 8011 (Waters Only) Semivolatiles 270D/SIM (ov-level PAHs) PAHs 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total MTCA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A HEM (oil and grease) 1664A Y6 Moisture	01-097	Page of

January 30, 2019

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019 Laboratory Reference No. 1901-158

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on January 21, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 30, 2019 Samples Submitted: January 21, 2019 Laboratory Reference: 1901-158 Project: 397-019

Case Narrative

Samples were collected on January 19, 2019 and received by the laboratory on January 21, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx Analysis

Method 5035A VOA vials were not provided for sample PH-11A-4.0-011919. The sample was therefore extracted from a 4-ounce jar for analysis. Some loss of volatiles may have occurred.

PAHs EPA 8270D/SIM Analysis

Sample PH-11A-4.0-011919 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-12-4.0-011919					
Laboratory ID:	01-158-01					
Gasoline	2100	160	NWTPH-Gx	1-28-19	1-28-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	57-129				
Client ID:	PH-11A-4.0-011919					
Laboratory ID:	01-158-02					
Gasoline	ND	20	NWTPH-Gx	1-22-19	1-22-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	74	57-129				

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Analyte		Result	PQL	Μ	ethod	Date Prepared	Date Analyz		Flags
METHOD BLANK									
Laboratory ID:		MB0122S1							
Gasoline		ND	5.0	NWT	「PH-Gx	1-22-19	1-22-1	19	
Surrogate:	Pe	rcent Recovery	Control Limit	S					
Fluorobenzene		68	57-129						
Laboratory ID:		MB0128S1							
Gasoline		ND	5.0	NWT	「PH-Gx	1-28-19	1-28-1	19	
Surrogate:	Pe	rcent Recovery	Control Limit	S					
Fluorobenzene		98	57-129						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recover	Limits	RPD	Limit	Flags
DUPLICATE			-						
Laboratory ID:	01-10	02-01							
	ORIG	DUP							
Gasoline	51.5	51.4	NA NA		NA	NA	0	30	
Surrogate:									
Fluorobenzene					61 6	0 57-129			
Laboratory ID:	01-15	58-01							
	ORIG	DUP							

	ORIG	DUP							
Gasoline	1500	1450	NA	NA	NA	NA	3	30	
Surrogate: Fluorobenzene					105 9	2 57-129			

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	PH-12-4.0-011919	. 36	method	. roparca	7.11.0192.00	. 1095
Laboratory ID:	01-158-01					
Diesel Range Organics	9400	1800	NWTPH-Dx	1-23-19	1-28-19	N,M
Lube Oil Range Organics	21000	3600	NWTPH-Dx	1-23-19	1-28-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

Client ID:	PH-11A-4.0-011919					
Laboratory ID:	01-158-02					
Diesel Range Organics	520	62	NWTPH-Dx	1-23-19	1-24-19	N
Lube Oil Range Organics	1100	120	NWTPH-Dx	1-23-19	1-24-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	50	50-150				

5

Date of Report: January 30, 2019 Samples Submitted: January 21, 2019 Laboratory Reference: 1901-158 Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0123S2					
Diesel Range Organics	ND	25	NWTPH-Dx	1-23-19	1-23-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	1-23-19	1-23-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-14	44-11								
	ORIG	DUP								
Diesel Range Organics	130	38.3	NA	NA		NA	NA	109	NA	Ν
Lube Oil	792	280	NA	NA		NA	NA	96	NA	
Surrogate:										
o-Terphenyl						108 107	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-12-4.0-011919					
Laboratory ID:	01-158-01					
Benzo[a]anthracene	110	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Chrysene	110	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Benzo[b]fluoranthene	100	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Benzo(j,k)fluoranthene	31	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Benzo[a]pyrene	120	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Indeno(1,2,3-c,d)pyrene	63	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Dibenz[a,h]anthracene	9.9	3.8	EPA 8270D/SIM	1-24-19	1-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	40 - 117				
Pyrene-d10	91	38 - 119				
Terphenyl-d14	92	47 - 135				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-11A-4.0-011919					
Laboratory ID:	01-158-02					
Benzo[a]anthracene	0.25	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Chrysene	0.26	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[b]fluoranthene	0.31	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo(j,k)fluoranthene	0.081	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[a]pyrene	0.30	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Indeno(1,2,3-c,d)pyrene	0.20	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Dibenz[a,h]anthracene	0.031	0.016	EPA 8270D/SIM	1-24-19	1-24-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	49	40 - 117				
Pyrene-d10	52	38 - 119				
Terphenyl-d14	45	47 - 135				Q

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0124S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	1-24-19	1-24-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 117				
Pyrene-d10	81	38 - 119				
Terphenyl-d14	73	47 - 135				

cPAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	24S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0769	0.0752	0.0833	0.0833	92	90	64 - 132	2	15	
Chrysene	0.0629	0.0616	0.0833	0.0833	76	74	64 - 127	2	15	
Benzo[b]fluoranthene	0.0695	0.0720	0.0833	0.0833	83	86	57 - 128	4	15	
Benzo(j,k)fluoranthene	0.0669	0.0619	0.0833	0.0833	80	74	62 - 130	8	15	
Benzo[a]pyrene	0.0750	0.0746	0.0833	0.0833	90	90	62 - 125	1	15	
Indeno(1,2,3-c,d)pyrene	0.0734	0.0718	0.0833	0.0833	88	86	55 - 130	2	15	
Dibenz[a,h]anthracene	0.0684	0.0665	0.0833	0.0833	82	80	58 - 129	3	15	
Surrogate:										
2-Fluorobiphenyl					57	67	40 - 117			
Pyrene-d10					76	74	38 - 119			
Terphenyl-d14					68	65	47 - 135			

Date of Report: January 30, 2019 Samples Submitted: January 21, 2019 Laboratory Reference: 1901-158 Project: 397-019

% MOISTURE

Date Analyzed: 1-22-19

Client ID	Lab ID	% Moisture
PH-12-4.0-011919	01-158-01	30
PH-11A-4.0-011919	01-158-02	59

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		2 174-114-4.0-01919	1 94-12-4.0-0191919	Lab ID Sample Identification	Company Fave Jon Project Number: 397-019 Project Name: 397-019 Project Manager: Javen Ruark Sampled by: Rhivan		Environmental Inc.
Reviewed/Date					3SO	Farallon	Company		1/19/19 1304 S		Date Time Sampled Sampled Matrix :	1 Day 3 Days ays)	Turnaround Request (in working days) (Check One)	Chain of
					1/21,9 0830		Date 752 Time				NWTF NWTF NWTF NWTF Volati Halog	ber of Containers PH-HCID PH-Gx/BTEX PH-Gx PH-Dx ([] Acid / SG Clean-up) iles 8260C genated Volatiles 8260C EPA 8011 (Waters Only)	Laboratory Number:	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🗌 Level III 🗌 Level IV 🗌			G Home	A 1 1 2 2 1 9 2 0 1 0 2 2 1 9 . D3	Hold southers. Prot will contact	Comments/Special Instructions				Semii (with PAHs PCBs Organ Organ Chlor Total Total TCLF	ivolatiles 8270D/SIM low-level PAHs) s 8270D/SIM (low-level) S 8270D/SIM (low-level) CPAHs or s 8082A nochlorine Pesticides 8081B nophosphorus Pesticides 8270D/SIM rinated Acid Herbicides 8151A RCRA Metals MTCA Metals P Metals (oil and grease) 1664A	-	Page / of /

February 8, 2019

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019 Laboratory Reference No. 1901-216

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on January 28, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: February 8, 2019 Samples Submitted: January 28, 2019 Laboratory Reference: 1901-216 Project: 397-019

Case Narrative

Samples were collected on January 26, 2019 and received by the laboratory on January 28, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PH-4-4.5-012619					
Laboratory ID:	01-216-02					
Benzo[a]anthracene	0.079	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Chrysene	0.086	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo[b]fluoranthene	0.10	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo(j,k)fluoranthene	0.035	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo[a]pyrene	0.11	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Indeno(1,2,3-c,d)pyrene	0.078	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Dibenz[a,h]anthracene	0.013	0.011	EPA 8270D/SIM	2-7-19	2-7-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 117				
Pyrene-d10	72	38 - 119				
Terphenyl-d14	67	47 - 135				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

onnoi mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0207S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	2-7-19	2-7-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	40 - 117				
Pyrene-d10	98	38 - 119				
Terphenyl-d14	93	47 - 135				

cPAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

enne. mg/ng					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	207S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0793	0.0790	0.0833	0.0833	95	95	64 - 132	0	15	
Chrysene	0.0721	0.0742	0.0833	0.0833	87	89	64 - 127	3	15	
Benzo[b]fluoranthene	0.0749	0.0768	0.0833	0.0833	90	92	57 - 128	3	15	
Benzo(j,k)fluoranthene	0.0722	0.0723	0.0833	0.0833	87	87	62 - 130	0	15	
Benzo[a]pyrene	0.0711	0.0734	0.0833	0.0833	85	88	62 - 125	3	15	
Indeno(1,2,3-c,d)pyrene	0.0733	0.0741	0.0833	0.0833	88	89	55 - 130	1	15	
Dibenz[a,h]anthracene	0.0759	0.0765	0.0833	0.0833	91	92	58 - 129	1	15	
Surrogate:										
2-Fluorobiphenyl					89	79	40 - 117			
Pyrene-d10					83	85	38 - 119			
Terphenyl-d14					79	80	47 - 135			

Date of Report: February 8, 2019 Samples Submitted: January 28, 2019 Laboratory Reference: 1901-216 Project: 397-019

% MOISTURE

Date Analyzed: 2-7-19

Client ID Lab ID % Moisture

PH-4-4.5-012619

01-216-02

38

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature						2 PA-4-4.5-0	PH-1-4.0-0/2619	Lab ID Sample Identification	V. Pehliven	Sampled hur Taven Roak	Project Manager:	597-019 Project Name:	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					350	2 - Farillan	Company		(- And			012619 1/26/19 1/55 5	19 1/2 (17 0940 5	ation Sampled Sampled Matrix	(other)		TPH analysis 5 Days)	2 Days 3 Days	red/len □ 1 Day		mond, WA 98052 (in working days)	
Chr	Dat				1/28/19 0830 4	30	Date Time Co						2		NWTF NWTF NWTF NWTF NWTF Volati Halog EDB I	PH-HC PH-Gx PH-Gx PH-Dx les 820 enated EPA 80 volatile	/BTEX (Aci 50C	d / SG C les 8260 iters Onl D/SIM	C			Laboratory Number:	Chain of Custody
s with final report Electronic Data De	Data Package: Standard Level III Level IV			& Added 2/5/19. DB (STA)	Gr anolyses	Hold samples. Pro vill contac	Comments/Special Instructions								PAHs PCBs Orgar Orgar Chlor Total Total Total	8270E 8082/ nochlo nophos inated RCRA MTCA	D/SIM (A rine Pe sphorus Acid H Metals Metals s	ow-leve sticides Pesticide erbicide	2111 8081B des 827 s 8151	70D/SIN	1	01-216	Page of

September 16, 2020

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2009-116

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on September 14, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116 Project: 397-019

Case Narrative

Samples were collected on September 12 and 13, 2020 and received by the laboratory on September 14, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx/BTEX Analysis

The MTCA Method A cleanup level of 0.030 ppm for Benzene and the MTCA Method A cleanup level of 30.0 ppm for fresh gasoline are not achievable for samples FB-13-20.0, FB-13-17.5, FB-12-20.0 and FB-12-17.5 due to the low dry weight of the samples in addition to the low sample weight in the provided VOA vials

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
FB-13-20.0					
09-116-07					
ND	0.070	EPA 8021B	9-15-20	9-15-20	
ND	0.35	EPA 8021B	9-15-20	9-15-20	
ND	0.35	EPA 8021B	9-15-20	9-15-20	
ND	0.35	EPA 8021B	9-15-20	9-15-20	
ND	0.35	EPA 8021B	9-15-20	9-15-20	
ND	35	NWTPH-Gx	9-15-20	9-15-20	
Percent Recovery	Control Limits				
97	58-129				
FB-13-17.5					
09-116-08					
ND	0.10	EPA 8021B	9-15-20	9-15-20	
ND	0.51	EPA 8021B	9-15-20	9-15-20	
ND	0.51	EPA 8021B	9-15-20	9-15-20	
ND	0.51	EPA 8021B	9-15-20	9-15-20	
ND	0.51	EPA 8021B	9-15-20	9-15-20	
ND	51	NWTPH-Gx	9-15-20	9-15-20	
Percent Recovery	Control Limits				
97	58-129				
FB-12-20.0					
09-116-19					
ND	0.083	EPA 8021B	9-15-20	9-15-20	
ND	0.41	EPA 8021B	9-15-20	9-15-20	
ND	0.41	EPA 8021B	9-15-20	9-15-20	
ND	0.41	EPA 8021B	9-15-20	9-15-20	
ND	0.41	EPA 8021B	9-15-20	9-15-20	
ND	41	NWTPH-Gx	9-15-20	9-15-20	
Percent Recovery	Control Limits				
99	58-129				
	FB-13-20.0 09-116-07 ND ND ND ND ND Percent Recovery 97 FB-13-17.5 09-116-08 ND ND	FB-13-20.0 09-116-07 ND 0.070 ND 0.35 ND 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.51 ND 51 Percent Recovery Control Limits 97 58-129 FB-12-20.0 09-116-19 09-116-19 0.083 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 <tr td=""></tr>	FB-13-20.0 09-116-07 ND 0.070 EPA 8021B ND 0.35 EPA 8021B ND 35 NWTPH-Gx Percent Recovery Control Limits 97 58-129 FB-13-17.5 09-116-08 ND 0.51 EPA 8021B ND 0.51 EPA 8021B ND 0.51 EPA 8021B ND 0.51 EPA 8021B ND 0.51 NWTPH-Gx Percent Recovery Control Limits 97 58-129 FB-12-20.0 09-116-19 ND 0.41 EPA 8021B ND 0.41 EPA 8021B ND	Result PQL Method Prepared 09-116-07 09-116-07 9-15-20 9-15-20 ND 0.070 EPA 8021B 9-15-20 ND 0.35 NWTPH-Gx 9-15-20 ND 35 NWTPH-Gx 9-15-20 Percent Recovery Control Limits 97 58-129 FB-13-17.5 09-116-08 9-15-20 9-15-20 ND 0.51 EPA 8021B 9-15-20 ND 51 NWTPH-Gx 9-15-20 ND 51 NWTPH-Gx 9-15	Result PQL Method Prepared Analyzed 09-116-07 09-116-07 9-15-20 9-15-20 9-15-20 ND 0.35 EPA 8021B 9-15-20 9-15-20 ND 0.51 EPA 8021B 9-15-20

3

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-12-17.5					
Laboratory ID:	09-116-20					
Benzene	ND	0.075	EPA 8021B	9-15-20	9-15-20	
Toluene	ND	0.38	EPA 8021B	9-15-20	9-15-20	
Ethyl Benzene	ND	0.38	EPA 8021B	9-15-20	9-15-20	
m,p-Xylene	ND	0.38	EPA 8021B	9-15-20	9-15-20	
o-Xylene	ND	0.38	EPA 8021B	9-15-20	9-15-20	
Gasoline	ND	38	NWTPH-Gx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	58-129				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

5 5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0915S1					
Benzene	ND	0.020	EPA 8021B	9-15-20	9-15-20	
Toluene	ND	0.050	EPA 8021B	9-15-20	9-15-20	
Ethyl Benzene	ND	0.050	EPA 8021B	9-15-20	9-15-20	
m,p-Xylene	ND	0.050	EPA 8021B	9-15-20	9-15-20	
o-Xylene	ND	0.050	EPA 8021B	9-15-20	9-15-20	
Gasoline	ND	5.0	NWTPH-Gx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	58-129				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-11	6-07								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						97 95	58-129			
SPIKE BLANKS										

Laboratory ID:	SB09	915S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	0.823	0.830	1.00	1.00	82	83	68-112	1	10	
Toluene	0.863	0.873	1.00	1.00	86	87	70-114	1	10	
Ethyl Benzene	0.866	0.881	1.00	1.00	87	88	70-115	2	10	
m,p-Xylene	0.866	0.877	1.00	1.00	87	88	69-117	1	11	
o-Xylene	0.884	0.893	1.00	1.00	88	89	71-115	1	11	
Surrogate:										
Fluorobenzene					100	100	58-129			

5

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-13-20.0					
Laboratory ID:	09-116-07					
Diesel Range Organics	86	70	NWTPH-Dx	9-15-20	9-15-20	Ν
Lube Oil Range Organics	1400	140	NWTPH-Dx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	55	50-150				
Client ID:	FB-13-17.5					
Laboratory ID:	09-116-08					
Diesel Range Organics	160	100	NWTPH-Dx	9-15-20	9-15-20	Ν
ube Oil Range Organics	2700	200	NWTPH-Dx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	52	50-150				
Client ID:	FB-11-20.0					
Laboratory ID:	09-116-10	45		0.45.00	0.45.00	
Diesel Range Organics	72 470	45 91	NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20	9-15-20 9-15-20	Ν
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	FB-11-17.5					
	-					
	09-116-11	50		0 15 20	0.45.00	
Diesel Range Organics	ND	59	NWTPH-Dx	9-15-20	9-15-20	
Diesel Range Organics	ND ND	120	NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20	9-15-20 9-15-20	
Diesel Range Organics Lube Oil Range Organics Surrogate:	ND ND Percent Recovery	120 Control Limits				
Diesel Range Organics Lube Oil Range Organics Surrogate:	ND ND	120				
Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl	ND ND Percent Recovery	120 Control Limits				
Diesel Range Organics Lube Oil Range Organics Surrogate: b-Terphenyl Client ID:	ND ND Percent Recovery 72	120 Control Limits				
Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID:	ND ND Percent Recovery 72 FB-14-20.0	120 Control Limits				N
Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	ND ND Percent Recovery 72 FB-14-20.0 09-116-17	120 Control Limits 50-150	NWTPH-Dx	9-15-20	9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32	120 Control Limits 50-150 29	NWTPH-Dx	<u>9-15-20</u> 9-15-20	9-15-20 9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150	120 Control Limits 50-150 29 58	NWTPH-Dx	<u>9-15-20</u> 9-15-20	9-15-20 9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75	120 Control Limits 50-150 29 58 Control Limits	NWTPH-Dx	<u>9-15-20</u> 9-15-20	9-15-20 9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID:	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75 FB-12-20.0	120 Control Limits 50-150 29 58 Control Limits	NWTPH-Dx	<u>9-15-20</u> 9-15-20	9-15-20 9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID:	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75 FB-12-20.0 09-116-19	120 Control Limits 50-150 29 58 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20 9-15-20	9-15-20 9-15-20 9-15-20	
Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75 FB-12-20.0 09-116-19 170	120 Control Limits 50-150 29 58 Control Limits 50-150 93	NWTPH-Dx NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20 9-15-20 9-15-20	9-15-20 9-15-20 9-15-20 9-15-20	N
Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Lube Oil Range Organics Lube Oil Range Organics Lube Oil Range Organics	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75 FB-12-20.0 09-116-19 170 1600	120 Control Limits 50-150 29 58 Control Limits 50-150 93 190	NWTPH-Dx NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20 9-15-20	9-15-20 9-15-20 9-15-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Lube Oil Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	ND ND Percent Recovery 72 FB-14-20.0 09-116-17 32 150 Percent Recovery 75 FB-12-20.0 09-116-19 170	120 Control Limits 50-150 29 58 Control Limits 50-150 93	NWTPH-Dx NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20 9-15-20 9-15-20	9-15-20 9-15-20 9-15-20 9-15-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6

Matrix: Soil Units: mg/Kg (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
FB-12-17.5				•	
09-116-20					
ND	94	NWTPH-Dx	9-15-20	9-15-20	
1300					
•					
00	00 100				
FB-14-17.5					
09-116-23					
ND	65	NWTPH-Dx	9-15-20	9-15-20	
•					
70	00 100				
FB-15-22.5					
09-116-25					
ND	140	NWTPH-Dx	9-15-20	9-15-20	
1500	270	NWTPH-Dx	9-15-20	9-15-20	
Percent Recovery	Control Limits				
78	50-150				
FB-15-20.0 09-116-26					
	30	NWTPH-Dx	9-15-20	9-15-20	
			0 10 20	0.010	
•					
	00-100				
FB-15-17.5					
10-13-17.3					
09-116-27					
	28	NWTPH-Dx	9-15-20	9-15-20	
09-116-27	28 56	NWTPH-Dx NWTPH-Dx	9-15-20 9-15-20	9-15-20 9-15-20	
09-116-27 ND	-				
09-116-27 ND ND	56 Control Limits				
09-116-27 ND ND Percent Recovery	56				
09-116-27 ND ND Percent Recovery	56 Control Limits				
09-116-27 ND ND Percent Recovery 74	56 Control Limits				
09-116-27 ND ND Percent Recovery 74 FB-16-22.5	56 Control Limits				
09-116-27 ND ND Percent Recovery 74 FB-16-22.5 09-116-30	56 Control Limits 50-150	NWTPH-Dx	9-15-20	9-15-20	
09-116-27 ND ND Percent Recovery 74 FB-16-22.5 09-116-30 ND	56 Control Limits 50-150 28	NWTPH-Dx	<u>9-15-20</u> 9-15-20	9-15-20	
	09-116-20 ND 1300 Percent Recovery 68 FB-14-17.5 09-116-23 ND 510 Percent Recovery 70 FB-15-22.5 09-116-25 ND 1500 Percent Recovery 78 FB-15-20.0 09-116-26 ND 160 Percent Recovery 77	FB-12-17.5 09-116-20 ND 94 1300 190 Percent Recovery Control Limits 68 50-150 FB-14-17.5 Solution 09-116-23 130 Percent Recovery Control Limits 09-116-23 130 Percent Recovery Control Limits 70 50-150 FB-15-22.5 Control Limits 09-116-25 140 ND 140 1500 270 Percent Recovery Control Limits 78 50-150 FB-15-20.0 09-116-26 ND 30 160 59 Percent Recovery Control Limits 77 50-150	FB-12-17.5 ND 94 NWTPH-Dx 1300 190 NWTPH-Dx 1300 190 NWTPH-Dx Percent Recovery Control Limits 50-150 68 50-150 Kerner State FB-14-17.5 09-116-23 NU 09-116-23 65 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx Percent Recovery Control Limits 70 70 50-150 State FB-15-22.5 09-116-25 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx Percent Recovery Control Limits State 78 50-150 NWTPH-Dx Percent Recovery Control Limits State 78 50-150 State FB-15-20.0 NWTPH-Dx NWTPH-Dx 09-116-26 ND NWTPH-Dx FB0 30 NWTPH-Dx Percent Recovery Control Limits NWTPH-Dx 77 50-150 State	Result PQL Method Prepared FB-12-17.5 09-116-20 94 NWTPH-DX 9-15-20 ND 94 NWTPH-DX 9-15-20 1300 190 NWTPH-DX 9-15-20 Percent Recovery Control Limits 68 50-150 FB-14-17.5 50-150 V 9-15-20 09-116-23 09-116-23 9-15-20 ND 65 NWTPH-DX 9-15-20 Percent Recovery Control Limits 70 50-150 FB-15-22.5 09-116-25 NWTPH-DX 9-15-20 09-116-25 V NWTPH-DX 9-15-20 Percent Recovery Control Limits 78 50-150 FB-15-20.0 270 NWTPH-DX 9-15-20 09-116-25 V S0-150 9-15-20 Percent Recovery Control Limits 9-15-20 09-116-26 ND 30 NWTPH-DX 9-15-20 09-116-26 59 NWTPH-DX 9-15-20	Result PQL Method Prepared Analyzed FB-12-17.5 09-116-20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-16-20.0					
Laboratory ID:	09-116-31					
Diesel Range Organics	ND	28	NWTPH-Dx	9-15-20	9-15-20	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-16-17.5					
Laboratory ID:	09-116-32					
Diesel Range Organics	130	110	NWTPH-Dx	9-15-20	9-15-20	Ν
Lube Oil Range Organics	1000	210	NWTPH-Dx	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	52	50-150				

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116 Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx** QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0915S1					
ND	25	NWTPH-Dx	9-15-20	9-15-20	
ND	50	NWTPH-Dx	9-15-20	9-15-20	
Percent Recovery	Control Limits				
90	50-150				
	MB0915S1 ND ND Percent Recovery	MB0915S1 ND 25 ND 50 Percent Recovery Control Limits	MB0915S1ND25ND50Percent RecoveryControl Limits	Result PQL Method Prepared MB0915S1 -<	Result PQL Method Prepared Analyzed MB0915S1 -

					Source	Perc	cent	Recovery		RPD	
Analyte	Result Spike Level		Result	Result Recovery		Limits	RPD	Limit	Flags		
DUPLICATE											
Laboratory ID:	09-11	6-31									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						74	73	50-150			
Laboratory ID:	SB09	15S1									
	ORIG	DUP									
Diesel Fuel #2	94.2	92.6	NA	NA		Ν	A	NA	2	NA	
Lube Oil Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Surrogate: o-Terphenyl						88	87	50-150			

9

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-10-22.5					
Laboratory ID:	09-116-01					
Benzo[a]anthracene	0.58	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	0.68	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	0.71	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.17	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	0.61	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	0.37	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.065	0.045	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	86	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-10-20.0					
Laboratory ID:	09-116-02					
Benzo[a]anthracene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	46 - 113				
Pyrene-d10	67	45 - 114				
Terphenyl-d14	67	49 - 121				

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-10-17.5					
Laboratory ID:	09-116-03					
Benzo[a]anthracene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	46 - 113				
Pyrene-d10	46	45 - 114				
Terphenyl-d14	49	49 - 121				

SEMIVOLATILE ORGANICS EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-22.5					
Laboratory ID:	09-116-06					
Naphthalene	4.1	0.077	EPA 8270E/SIM	9-15-20	9-16-20	
2-Methylnaphthalene	4.1	0.077	EPA 8270E/SIM	9-15-20	9-16-20	
1-Methylnaphthalene	3.4	0.077	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	76	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-20.0					
Laboratory ID:	09-116-07					
Naphthalene	0.40	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
2-Methylnaphthalene	0.11	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
1-Methylnaphthalene	0.084	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]anthracene	0.55	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.50	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.53	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	0.16	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.55	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.30	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	0.046	0.019	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	46 - 113				
Pyrene-d10	59	45 - 114				
Terphenyl-d14	55	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-17.5					
Laboratory ID:	09-116-08					
Benzo[a]anthracene	1.9	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	1.6	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	1.8	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.46	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	1.8	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	1.0	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.15	0.027	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	46 - 113				
Pyrene-d10	65	45 - 114				
Terphenyl-d14	62	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-11-20.0					
Laboratory ID:	09-116-10					
Benzo[a]anthracene	0.50	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.52	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.62	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	0.17	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.54	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.37	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	0.058	0.012	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	46 - 113				
Pyrene-d10	58	45 - 114				
Terphenyl-d14	53	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-11-17.5					
Laboratory ID:	09-116-11					
Benzo[a]anthracene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Chrysene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[b]fluoranthene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo(j,k)fluoranthene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[a]pyrene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270E/SIM	9-16-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	46 - 113				
Pyrene-d10	67	45 - 114				
Terphenyl-d14	72	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-14-22.5					
Laboratory ID:	09-116-16					
Naphthalene	0.18	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
2-Methylnaphthalene	0.21	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
1-Methylnaphthalene	0.15	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]anthracene	2.8	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	2.6	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	2.4	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.78	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	2.4	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	1.4	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.24	0.073	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	46 - 113				
Pyrene-d10	93	45 - 114				
Terphenyl-d14	100	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-14-20.0					
Laboratory ID:	09-116-17					
Naphthalene	0.14	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
2-Methylnaphthalene	0.14	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
1-Methylnaphthalene	0.13	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]anthracene	1.7	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	1.6	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	1.6	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.47	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	1.8	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	0.97	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.16	0.039	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	80	49 - 121				

SEMIVOLATILE ORGANICS EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-12-21.5					
Laboratory ID:	09-116-18					
Naphthalene	ND	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
2-Methylnaphthalene	ND	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
1-Methylnaphthalene	ND	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	46 - 113				
Pyrene-d10	80	45 - 114				
Terphenyl-d14	76	49 - 121				

20

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-12-20.0					
Laboratory ID:	09-116-19					
Benzo[a]anthracene	0.084	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.085	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.089	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.081	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.058	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	46 - 113				
Pyrene-d10	70	45 - 114				
Terphenyl-d14	60	49 - 121				

and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-12-17.5					
Laboratory ID:	09-116-20					
Benzo[a]anthracene	0.21	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.19	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.22	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	0.083	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.25	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.16	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.025	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	46 - 113				
Pyrene-d10	80	45 - 114				
Terphenyl-d14	75	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-14-17.5					
Laboratory ID:	09-116-23					
Benzo[a]anthracene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.017	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	54	46 - 113				
Pyrene-d10	56	45 - 114				
Terphenyl-d14	50	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-15-22.5					
Laboratory ID:	09-116-25					
Naphthalene	0.40	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
2-Methylnaphthalene	0.32	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
1-Methylnaphthalene	0.26	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]anthracene	2.4	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	2.0	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	2.2	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.78	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	2.3	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	1.3	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.24	0.15	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	46 - 113				
Pyrene-d10	73	45 - 114				
Terphenyl-d14	72	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-15-20.0					
Laboratory ID:	09-116-26					
Naphthalene	0.25	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
2-Methylnaphthalene	0.34	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
1-Methylnaphthalene	0.29	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]anthracene	0.21	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.20	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.20	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	0.064	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.20	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.11	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	0.020	0.0079	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	64	45 - 114				
Terphenyl-d14	65	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-15-17.5					
Laboratory ID:	09-116-27					
Naphthalene	0.10	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
2-Methylnaphthalene	0.040	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
1-Methylnaphthalene	0.033	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]anthracene	0.26	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	0.25	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	0.27	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	0.098	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	0.31	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	0.18	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	0.025	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	46 - 113				
Pyrene-d10	86	45 - 114				
Terphenyl-d14	83	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-16-22.5					
Laboratory ID:	09-116-30					
Benzo[a]anthracene	0.45	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Chrysene	0.45	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[b]fluoranthene	0.47	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo(j,k)fluoranthene	0.13	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Benzo[a]pyrene	0.49	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	0.29	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Dibenz[a,h]anthracene	0.051	0.0075	EPA 8270E/SIM	9-15-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	46 - 113				
Pyrene-d10	84	45 - 114				
Terphenyl-d14	81	49 - 121				

27

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-16-20.0					
Laboratory ID:	09-116-31					
Benzo[a]anthracene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	46 - 113				
Pyrene-d10	78	45 - 114				
Terphenyl-d14	80	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-16-17.5					
Laboratory ID:	09-116-32					
Benzo[a]anthracene	0.032	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Chrysene	0.055	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[b]fluoranthene	0.029	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo(j,k)fluoranthene	ND	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[a]pyrene	ND	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	ND	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Dibenz[a,h]anthracene	ND	0.029	EPA 8270E/SIM	9-16-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	46 - 113				
Pyrene-d10	81	45 - 114				
Terphenyl-d14	75	49 - 121				

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116 Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0915S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	46 - 113				
Pyrene-d10	88	45 - 114				
Terphenyl-d14	92	49 - 121				

30

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116 Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-16-20	9-16-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	46 - 113				
Pyrene-d10	87	45 - 114				
Terphenyl-d14	91	49 - 121				

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

						Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	F	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB09	15S1									
	SB	SBD	SB	SBD	5	SB	SBD				
Naphthalene	0.0675	0.0646	0.0833	0.0833	8	81	78	60 - 116	4	16	
Acenaphthylene	0.0674	0.0694	0.0833	0.0833	8	81	83	60 - 125	3	15	
Acenaphthene	0.0703	0.0724	0.0833	0.0833	8	84	87	60 - 121	3	15	
Fluorene	0.0684	0.0724	0.0833	0.0833	8	82	87	65 - 126	6	15	
Phenanthrene	0.0700	0.0736	0.0833	0.0833	8	84	88	65 - 120	5	15	
Anthracene	0.0711	0.0748	0.0833	0.0833	8	85	90	67 - 125	5	15	
Fluoranthene	0.0714	0.0784	0.0833	0.0833	8	86	94	66 - 125	9	15	
Pyrene	0.0755	0.0799	0.0833	0.0833	ę	91	96	62 - 125	6	15	
Benzo[a]anthracene	0.0790	0.0847	0.0833	0.0833	ç	95	102	72 - 129	7	15	
Chrysene	0.0764	0.0786	0.0833	0.0833	ç	92	94	66 - 123	3	15	
Benzo[b]fluoranthene	0.0744	0.0816	0.0833	0.0833	8	89	98	68 - 128	9	15	
Benzo(j,k)fluoranthene	0.0718	0.0763	0.0833	0.0833	8	86	92	63 - 128	6	16	
Benzo[a]pyrene	0.0772	0.0809	0.0833	0.0833	ç	93	97	66 - 130	5	15	
Indeno(1,2,3-c,d)pyrene	0.0685	0.0751	0.0833	0.0833	8	82	90	63 - 135	9	15	
Dibenz[a,h]anthracene	0.0710	0.0803	0.0833	0.0833	8	85	96	65 - 130	12	15	
Benzo[g,h,i]perylene	0.0708	0.0798	0.0833	0.0833	8	85	96	66 - 127	12	15	
Surrogate:											
2-Fluorobiphenyl					7	78	82	46 - 113			
Pyrene-d10					8	85	89	45 - 114			
Terphenyl-d14					8	86	90	49 - 121			

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					I	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	R	leco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB09	16S1									
	SB	SBD	SB	SBD	S	SВ	SBD				
Naphthalene	0.0720	0.0689	0.0833	0.0833	8	86	83	60 - 116	4	16	
Acenaphthylene	0.0751	0.0731	0.0833	0.0833	9	90	88	60 - 125	3	15	
Acenaphthene	0.0771	0.0752	0.0833	0.0833	9	93	90	60 - 121	2	15	
Fluorene	0.0725	0.0706	0.0833	0.0833	8	37	85	65 - 126	3	15	
Phenanthrene	0.0735	0.0691	0.0833	0.0833	8	88	83	65 - 120	6	15	
Anthracene	0.0741	0.0718	0.0833	0.0833	8	39	86	67 - 125	3	15	
Fluoranthene	0.0704	0.0767	0.0833	0.0833	8	35	92	66 - 125	9	15	
Pyrene	0.0751	0.0781	0.0833	0.0833	9	90	94	62 - 125	4	15	
Benzo[a]anthracene	0.0789	0.0738	0.0833	0.0833	9	95	89	72 - 129	7	15	
Chrysene	0.0740	0.0717	0.0833	0.0833	8	39	86	66 - 123	3	15	
Benzo[b]fluoranthene	0.0767	0.0690	0.0833	0.0833	9	92	83	68 - 128	11	15	
Benzo(j,k)fluoranthene	0.0722	0.0702	0.0833	0.0833	8	37	84	63 - 128	3	16	
Benzo[a]pyrene	0.0768	0.0731	0.0833	0.0833	9	92	88	66 - 130	5	15	
Indeno(1,2,3-c,d)pyrene	0.0749	0.0716	0.0833	0.0833	9	90	86	63 - 135	5	15	
Dibenz[a,h]anthracene	0.0765	0.0726	0.0833	0.0833	9	92	87	65 - 130	5	15	
Benzo[g,h,i]perylene	0.0759	0.0723	0.0833	0.0833	9	91	87	66 - 127	5	15	
Surrogate:											
2-Fluorobiphenyl					8	35	84	46 - 113			
Pyrene-d10					8	35	84	45 - 114			
Terphenyl-d14					8	38	83	49 - 121			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-22.5					
Laboratory ID:	09-116-06					
Arsenic	ND	11	EPA 6010D	9-16-20	9-16-20	
Barium	490	2.9	EPA 6010D	9-16-20	9-16-20	
Cadmium	0.73	0.57	EPA 6010D	9-16-20	9-16-20	
Chromium	23	0.57	EPA 6010D	9-16-20	9-16-20	
Lead	130	5.7	EPA 6010D	9-16-20	9-16-20	
Mercury	ND	0.29	EPA 7471B	9-16-20	9-16-20	
Selenium	ND	11	EPA 6010D	9-16-20	9-16-20	
Silver	ND	1.1	EPA 6010D	9-16-20	9-16-20	
Client ID:	FB-13-20.0					
Laboratory ID:	09-116-07					
Cadmium	<u>09-116-07</u>	1.4	EPA 6010D	9-16-20	9-16-20	
	96	1.4	EPA 6010D EPA 6010D	9-16-20 9-16-20	9-16-20 9-16-20	
Lead		14	EFA 6010D	9-10-20	9-10-20	
Client ID:	FB-14-22.5					
Laboratory ID:	09-116-16					
Arsenic	13	11	EPA 6010D	9-16-20	9-16-20	
Barium	68	2.7	EPA 6010D	9-16-20	9-16-20	
Cadmium	ND	0.55	EPA 6010D	9-16-20	9-16-20	
Chromium	17	0.55	EPA 6010D	9-16-20	9-16-20	
Lead	31	5.5	EPA 6010D	9-16-20	9-16-20	
Mercury	ND	0.27	EPA 7471B	9-16-20	9-16-20	
Selenium	ND	11	EPA 6010D	9-16-20	9-16-20	
Silver	ND	1.1	EPA 6010D	9-16-20	9-16-20	
Client ID:	FB-14-20.0					
Laboratory ID:	09-116-17					
Cadmium	ND	0.58	EPA 6010D	9-16-20	9-16-20	
Lead	50	5.8	EPA 6010D	9-16-20 9-16-20	9-16-20	
		0.0		0 10 20	0 10 20	
Client ID:	FB-12-21.5					
Laboratory ID:	09-116-18					
Lead	25	5.6	EPA 6010D	9-16-20	9-16-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

34

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-15-22.5					
Laboratory ID:	09-116-25					
Arsenic	ND	11	EPA 6010D	9-16-20	9-16-20	
Barium	81	2.7	EPA 6010D	9-16-20	9-16-20	
Cadmium	ND	0.54	EPA 6010D	9-16-20	9-16-20	
Chromium	15	0.54	EPA 6010D	9-16-20	9-16-20	
Lead	120	5.4	EPA 6010D	9-16-20	9-16-20	
Mercury	ND	0.27	EPA 7471B	9-16-20	9-16-20	
Selenium	ND	11	EPA 6010D	9-16-20	9-16-20	
Silver	ND	1.1	EPA 6010D	9-16-20	9-16-20	
Client ID:	FB-15-20.0					
Laboratory ID:	09-116-26					
Cadmium	ND	0.59	EPA 6010D	9-16-20	9-16-20	
Lead	56	5.9	EPA 6010D	9-16-20	9-16-20	
Client ID:	FB-15-17.5					
Laboratory ID:	09-116-27					
Cadmium	ND	0.56	EPA 6010D	9-16-20	9-16-20	
Lead	ND	5.6	EPA 6010D	9-16-20	9-16-20	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

5. 5. (11. /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916SM1					
Arsenic	ND	10	EPA 6010D	9-16-20	9-16-20	
Cadmium	ND	0.50	EPA 6010D	9-16-20	9-16-20	
Lead	ND	5.0	EPA 6010D	9-16-20	9-16-20	
Selenium	ND	10	EPA 6010D	9-16-20	9-16-20	
Silver	ND	1.0	EPA 6010D	9-16-20	9-16-20	
Laboratory ID:	MB0916S1					
Mercury	ND	0.25	EPA 7471B	9-16-20	9-16-20	
Laboratory ID:	MB0916SM2					
Barium	ND	2.5	EPA 6010D	9-16-20	9-16-20	
Chromium	ND	0.50	EPA 6010D	9-16-20	9-16-20	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onits. hig/kg (pph	,				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-11	16-18									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Cadmium	ND	ND	NA	NA		Ν	١A	NA	NA	20	
Lead	21.9	22.5	NA	NA		Ν	A	NA	3	20	
Selenium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Silver	ND	ND	NA	NA		١	IA	NA	NA	20	
Laboratory ID:	09-11	16-16									
Mercury	ND	ND	NA	NA		١	١A	NA	NA	20	
Laboratory ID:	09-11	16-18									
	ORIG	DUP									
Barium	69.2	62.4	NA	NA		Ν	JA	NA	10	20	
Chromium	20.5	24.2	NA	NA			JA	NA	17	20	
MATRIX SPIKES											
Laboratory ID:	09-11	16-18									
<u>,</u>	MS	MSD	MS	MSD		MS	MSD				
Arsenic	94.7	94.6	100	100	ND	95	95	75-125	0	20	
Cadmium	40.0	40.7	50.0	50.0	ND	80	81	75-125	2	20	
Lead	234	233	250	250	21.9	85	84	75-125	1	20	
Selenium	85.9	85.7	100	100	ND	86	86	75-125	0	20	
Silver	20.0	20.2	25.0	25.0	ND	80	81	75-125	1	20	
Laboratory ID:	09-11	16-16									
Mercury	0.596	0.612	0.500	0.500	0.0673	106	109	80-120	3	20	
Laboratory ID:	09-11	16-18									
	MS	MSD	MS	MSD		MS	MSD				
Barium	146	144	100	100	69.2	77	75	75-125	1	20	
Chromium	104	103	100	100	20.5	84	83	75-125	1	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

37

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
FB-10-22.5	09-116-01	25	9-15-20
FB-10-20.0	09-116-02	31	9-15-20
FB-10-17.5	09-116-03	58	9-15-20
FB-13-22.5	09-116-06	13	9-15-20
FB-13-20.0	09-116-07	64	9-15-20
FB-13-17.5	09-116-08	75	9-15-20
FB-11-20.0	09-116-10	45	9-15-20
FB-11-17.5	09-116-11	58	9-15-20
FB-14-22.5	09-116-16	9	9-15-20
FB-14-20.0	09-116-17	14	9-15-20
FB-12-21.5	09-116-18	11	9-15-20
FB-12-20.0	09-116-19	73	9-15-20
FB-12-17.5	09-116-20	73	9-15-20
FB-14-17.5	09-116-23	61	9-15-20
FB-15-22.5	09-116-25	8	9-15-20
FB-15-20.0	09-116-26	16	9-15-20
FB-15-17.5	09-116-27	10	9-15-20
FB-16-22.5	09-116-30	12	9-15-20
FB-16-20.0	09-116-31	10	9-15-20
FB-16-17.5	09-116-32	77	9-15-20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished 628 Book	Received Deb Gord	Relinquished	Signature	10 FB-11-20.0	9 B-11-22-5	8 FB-13-17:5	7 FB-13-200	6 FB-13-22-5	5 FB-10 - 18-0	4 FB-10-150	3 FA-10-17.5	2 FB-10-20.0	1 FB-10-22.5	Lab ID Sample Identification	sampined by: Geel Hetes	Project Manager:	Project Name: Block 38 West	397-019	Company: Tavellar	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	in OnSite
Reviewed/Date		(ISC I	speely	S Speedy	Forelli	Company	A 1405 A	0461	021	1240	1230	1215	1210	1154	1 1127 1	9/14/20 1020 Soci 5	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (7 Days)	2 Days 3 Days	Same Day X 1 Day	(Check One)	Turnaround Request	Chain of Custody
			3011 02/24/16	8011 02-11-5	9-14-20 1030	9/13/20 1430	Date Time	X		XX	XX							NWTP NWTP NWTP NWTP Volatil	PH-HCI PH-Gx/ PH-Gx PH-Dx (es 826 enated	D DTEX TEX DC Volatile	/ SG CI))		Laboratory Number:	Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍	Fr	time. Time.	Souther around and and		brief Manager will Confirm	Comments/Special Instructions				XX	X						Semiv (with la PAHs i PCBs Organ Organ Chlorin Total F Total F	olatiles ow-lev 8270D 8082A ochlori ophosj nated / ACRA I ATCA Metals oil and	8270D al PAHs (SIM (Io ne Pest bhorus I Acid He Acid He Metals	/SIM //() w-level) icides 8 Pesticides rbicides	2Ph CP 081B es 8270 8151A		nes	er: 09 - 1 16	Page 1 of 4

Reviewed/Date	Relinquished	Received	Relinquished CA Both	Received	Relinquished	Signature	20 FB-12-17.5	19 FB-12-20-0	18 FB-12-21-5	17 FB-14-20.0	16 73-14-22-5	15 FB-12-10.0	14 FB-13-15.0	13 FB-11- 10:0	12 FB-11-150	11 FB-11-17.5	Lab ID Sample Identification	sampled by: Sing feters	Fruject Mariager. Suzy Shungt	Friderinanie. Black 38 West	Project Number 397-619	Company: Fourthur		Analytical Laboratory Testing Services	MA OnSite
Reviewed/Date	(V WE	* Speedy	Speedy	Forelly	Company	L 1011 1	6937	9/13/20 0930	1600	1555	1600	USS	1430	1420	glietzo 1415 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day	(in working days) (Check One)	Turnaround Request	Chain of
		9/14/20/10	9-14-20, 1108	0501 02-11-6	9/13/20 1430	Date Time	XX	XX		X						×	NWTP NWTP NWTP NWTP Volatil	PH-HCI PH-Gx/I PH-Gx PH-Dx (es 826 enated	Acid))	Laboratory Number:		Chain of Custody
Data Package: Standard Level III Level IV II Chromatograms with final report Electronic Data Deliverables (EDDs)		8		See 13:1		Comments/Special Instructions	X	×			XX						Semiv (with I PAHs PCBs Organ Organ Chlorin Total Total Total Total Total	olatiles ow-leve 8270D/ 8082A ochlori ophosp nated A	Acid Heals	/SIM N(w-level) icides 8 Pesticid bicides cides 1664A	2.2014 0818 es 8270 8151A	DD/SIM		rage	2

Received Reviewed/Date	Relinquished	Received	Relinquished	Received 45 Core	Relinquished	Signature A	30 FB-16-22-5	29 FB-15- 10:0	JE 15-15-15.0	27 FB-15-17.5	26 FB-15-20.0	25 13-13-22-5	24 FB-14-10-0	23 FB-14-17.5	22 FB-12-10=0	21 1-3-12-15:0	Lab 10 Sample Identification	sampres sy. (see fetes	Suzy Stringt	Project Name: Block 38 West	397-019	Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date		A A	V SPARA	Spandy S	terally	Company	1 1/25 1	1106	1105	103	1100	1050	loys	1038	1030	9/13/20/020 \$ 5	Date Time Sampled Sampled Matrix	(other)	ontain	Standard (7 Days)	2 Days 3 Days	Same Day X1 Day	(Check One)	Turnaround Request (in working days)	Chain of
		9/14/20 1108	g. 14-20 108	9-14-20 1030	9/13/20 1450	Date Time	X			×	×	×		×			NWTP NWTP NWTP NWTP Volatile Haloge	H-HCI H-Gx/I H-Gx H-Dx (es 826 enated	D BTEX Acid DC Volatile	/ SG CI)			Laboratory Number:	of Custody
Data Package: Standard Level III Level IV Chromatograms with final report Electronic Data Deliverables (EDDs)		8	X	l'or Dig .1		Comments/Special Instructions	X				XX			X			Semiv (with le PAHs I PCBs Organ Organ Chlorin Total F Total † ICLP	olatiles ow-leve 3270D/ 8082A ochlori ophosp hated A RCRA M ATCA M Metals	8270D PAHs SIM (Io he Pest horus I horus I hetals Hetals H	/SIM A	2 P1 2 P1 081B es 827(8151A	AHJ DD/SIM		er: 09 - 1 18	Page 3 of 4
edds)							\times			X	×	X		X			% Mois	sture					_		1

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		34 FB-16-10.0	33 FB-16-15:0	32 FB-16-17.5	31 FB-16-2000	Lab 10 Sample Identification	sampied by: Juck Koles	Fright Manager: Strad Strungt	Project Name: Rock 38 West	910-19	Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date			I CXE	6 Speedy	2 Speedy	Fonelly	Company		I 1150 I I	1140	1 1135	gliston lizo Soil S	Sampled Sampled Matrix NUTP	-	ontain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day X 1 Day	1	Turnaround Request	Chain of Custody
			9/14/26 1100	0711 Q2-H1-P	0501 02-H-b	9/13/20 1430	Date Time				×	X	NWTP NWTP NWTP Volatil Haloge	PH-Gx/I PH-Gx PH-Dx (es 826 enated PA 80	Acid C Volatile	/ SG CI s 8260C	ean-up			ahoratory Number	ustody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard Level III Level IV			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Lee part		Comments/Special Instructions						PAHs : PCBs Organ Organ Chlorii Total F Total t IC TCLP	8270D/ 8082A ochlori ophosp anated A A CLA Metals Metals	SIM (lo ne Pest ohorus I Acid Her Actals Actals	/SIM Average Single Sin	CP. 081B es 8270 8151A		rec	00-44	Page 4 of 4

September 22, 2020

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2009-116B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on September 14, 2020.

Please note that the data for the standard turn around analyses will follow in the final report.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 22, 2020 Samples Submitted: September 14, 2020 Laboratory Reference: 2009-116B Project: 397-019

Case Narrative

Samples were collected on September 12 and 13, 2020 and received by the laboratory on September 14, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-13-15.0					
Laboratory ID:	09-116-14					
Diesel Range Organics	ND	130	NWTPH-Dx	9-21-20	9-21-20	
Lube Oil Range Organics	1200	260	NWTPH-Dx	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0921S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-21-20	9-21-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB09	21S1									
	ORIG	DUP									
Diesel Fuel #2	90.3	88.6	NA	NA		N	A	NA	2	NA	
Surrogate:											
o-Terphenyl						86	85	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-15.0					
Laboratory ID:	09-116-14					
Benzo[a]anthracene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Chrysene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[b]fluoranthene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo(j,k)fluoranthene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[a]pyrene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Indeno(1,2,3-c,d)pyrene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Dibenz[a,h]anthracene	ND	0.035	EPA 8270E/SIM	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	46 - 113				
Pyrene-d10	63	45 - 114				
Terphenyl-d14	71	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-12-15.0					
Laboratory ID:	09-116-21					
Benzo[a]anthracene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Chrysene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[b]fluoranthene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo(j,k)fluoranthene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[a]pyrene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Indeno(1,2,3-c,d)pyrene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Dibenz[a,h]anthracene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	46 - 113				
Pyrene-d10	67	45 - 114				
Terphenyl-d14	65	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-15-15.0					
Laboratory ID:	09-116-28					
Benzo[a]anthracene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Chrysene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[b]fluoranthene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo(j,k)fluoranthene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[a]pyrene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Indeno(1,2,3-c,d)pyrene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Dibenz[a,h]anthracene	ND	0.022	EPA 8270E/SIM	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	46 - 113				
Pyrene-d10	69	45 - 114				
Terphenyl-d14	65	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0921S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-21-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	91	49 - 121				

Matrix: Soil Units: mg/Kg

onito. mg/rtg										
					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	21S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0670	0.0707	0.0833	0.0833	80	85	72 - 129	5	15	
Chrysene	0.0663	0.0714	0.0833	0.0833	80	86	66 - 123	7	15	
Benzo[b]fluoranthene	0.0674	0.0692	0.0833	0.0833	81	83	68 - 128	3	15	
Benzo(j,k)fluoranthene	0.0662	0.0701	0.0833	0.0833	79	84	63 - 128	6	16	
Benzo[a]pyrene	0.0644	0.0691	0.0833	0.0833	77	83	66 - 130	7	15	
Indeno(1,2,3-c,d)pyrene	0.0620	0.0661	0.0833	0.0833	74	79	63 - 135	6	15	
Dibenz[a,h]anthracene	0.0589	0.0622	0.0833	0.0833	71	75	65 - 130	5	15	
Surrogate:										
2-Fluorobiphenyl					73	71	46 - 113			
Pyrene-d10					82	85	45 - 114			
Terphenyl-d14					81	85	49 - 121			

9

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-13-22.5					
Laboratory ID:	09-116-06					
Benzo[a]anthracene	24	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Chrysene	24	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Benzo[b]fluoranthene	24	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Benzo(j,k)fluoranthene	7.7	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Benzo[a]pyrene	25	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Indeno(1,2,3-c,d)pyrene	12	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Dibenz[a,h]anthracene	2.1	0.77	EPA 8270E/SIM	9-15-20	9-21-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	46 - 113				
Pyrene-d10	72	45 - 114				
Terphenyl-d14	76	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0915S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-15-20	9-15-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	46 - 113				
Pyrene-d10	88	45 - 114				
Terphenyl-d14	92	49 - 121				

Matrix: Soil Units: mg/Kg

						cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	15S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0675	0.0646	0.0833	0.0833	81	78	60 - 116	4	16	
Acenaphthylene	0.0674	0.0694	0.0833	0.0833	81	83	60 - 125	3	15	
Acenaphthene	0.0703	0.0724	0.0833	0.0833	84	87	60 - 121	3	15	
Fluorene	0.0684	0.0724	0.0833	0.0833	82	87	65 - 126	6	15	
Phenanthrene	0.0700	0.0736	0.0833	0.0833	84	88	65 - 120	5	15	
Anthracene	0.0711	0.0748	0.0833	0.0833	85	90	67 - 125	5	15	
Fluoranthene	0.0714	0.0784	0.0833	0.0833	86	94	66 - 125	9	15	
Pyrene	0.0755	0.0799	0.0833	0.0833	91	96	62 - 125	6	15	
Benzo[a]anthracene	0.0790	0.0847	0.0833	0.0833	95	102	72 - 129	7	15	
Chrysene	0.0764	0.0786	0.0833	0.0833	92	94	66 - 123	3	15	
Benzo[b]fluoranthene	0.0744	0.0816	0.0833	0.0833	89	98	68 - 128	9	15	
Benzo(j,k)fluoranthene	0.0718	0.0763	0.0833	0.0833	86	92	63 - 128	6	16	
Benzo[a]pyrene	0.0772	0.0809	0.0833	0.0833	93	97	66 - 130	5	15	
Indeno(1,2,3-c,d)pyrene	0.0685	0.0751	0.0833	0.0833	82	90	63 - 135	9	15	
Dibenz[a,h]anthracene	0.0710	0.0803	0.0833	0.0833	85	96	65 - 130	12	15	
Benzo[g,h,i]perylene	0.0708	0.0798	0.0833	0.0833	85	96	66 - 127	12	15	
Surrogate:										
2-Fluorobiphenyl					78	82	46 - 113			
Pyrene-d10					85	89	45 - 114			
Terphenyl-d14					86	90	49 - 121			

12

TCLP LEAD EPA 1311/6010D

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TCLP LEAD EPA 1311/6010D QUALITY CONTROL

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
FB-13-15.0	09-116-14	81	9-18-20
FB-12-15.0	09-116-21	70	9-18-20
FB-15-15.0	09-116-28	70	9-18-20

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.		Ch	ain o	f	Cı	isto	ody										Pa	age _	1	_ of _	4	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Re n working da	quest ays)		L	abora	tory	Nun	nber: 09-116													
Phone: (425) 883-3881 • www.onsite-env.com Company: Formultur Project Number: 397-019 Project Name: Bluck 38 West	Same	(Check One e Day) X 1 Day	LIS SI		1 6060	/ SG Clean-up)	00000	s azouc	SIM NOPHHICION	PAHS 8270D/SIM (low-level) CDAHC	9	cides 8081B	Organophosphorus Pesticides 8270D/SIM	bicides 8151A		cadmium	p	1664A			
Project Manager: Sampled by: Grege Refes		(other) Time	-	Number of Containers	NWTPH-HCID	NWTPH-Gx/BHEX DY	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	EDB FPA 8011 (Waters Only)	mivolatiles 8270D/	Hs 8270D/SIM (Iov	PCBs 8082A	Organochlorine Pesticides 8081B	janophosphorus F	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	ATCA Metals	LP-Meters Lead	HEM (oil and grease) 1664A			% Moisture
Lab ID Sample Identification	Sampled	Sampled	Matrix		MN	NZ NZ	NN	Vol	ED Hai	Ser	PAI	PC	Olo	Orc	ß	Tot	Total	TCL	<u><u><u></u></u></u>	+		8
FB-10-2215	9/12/20	hard and	Soil	5	-			\vdash	+		X	_	_							+		X
2 FB-10-20-0 3 FB-10-17.5	+	1127			-		-		-	_	1					_			\vdash	-		X
7 FB-10-17.5 4 FB-10-150		1154			-				-		X	-			_	_			\vdash			X
-		1210		+					_	-	-		-		-		-		\vdash	_		
8		1215						$\left \right $	+		,	-				V		0	\vdash	+		V
		1230		\parallel	-	V	V		+	X		,				X	V	9	\vdash	-		
7 FB-13-20.0 8 FB-13-17.5		1240					X		+		X	,	-	_	_	-	X		\vdash			K
		1250			-	1	X		-	-	h	-			_						+	_X
9 FB-11-22-5 10 FB-11-20.0	X	1350	6	V	-		V		-	+		-							\square	-	+	
Signature		ompany		A		Date	X	Time		Co	X	nts/Sp	ecial	Instru	uction	IS						N
Relinquished		Fara	edy.	-		9/13		6	30								10	vil	10	ont	Srm	mid
Relinquished			cely			9-14			08				9	in	ely.	ses		on	d	Ta	Made	rong
Received		D	8E			9/1	ille	110		1	tim	e -	.)	a.I	5.7	10	1/1	1	d.		T	
Relinquished											X-0	266,	A	ede	d'	91	-1	¥ .	dan R	TA	2447	4
Received										Da	ta Pa	chage	Ast	Inda	9-6	De	63	(2e		IV 🗆	STA	
Reviewed/Date	Reviewed/Date Chromatograms with					th fina	al rep	ort [Ele	ctroni	c Data	Delive	rables (EE	DDs) 🗌								

OnSite Environmental Inc.		Cha	ain o	f	Cu	IS	too	dy											P	age _	2	_ of	L	L	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Rea in working da			L	abo	orate	ory	Num	nbe	er:	09) -	1	11	6									
Phone: (425) 883-3881 • www.onsite-env.com Company: Forallon Project Number: Project Name: Block 38 West	Sam		1 Day			2968		SG Clean-up)	12600	2000	: Only)	Semivolatiles 8270D/SIM NG DM have no	HAY (Inver)	droot in	des ava i b	Organophosphorus Pesticides 8270D/SIM	cides 8151A	CC CA	dmium		664A				
Project Manager: Suzy Stumpt Sampled by: Gues feters		(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C Halorensted Volatiles 8260C	אפו ומופח עטומוופא נ	EDB EPA 8011 (Waters Only)	iivolatiles 8270D/S 1 low-level PAHs)	s 8270D/SIM (low-	PCBs 8082A	Urgariocritorire resticides aud la	anophosphorus Pe	Chlorinated Acid Herbicides 8151A	Total TOTA Metals	Total MTSA Metals	P Metals	HEM (oil and grease) 1664A	MUO PO			% Moisture
Lab ID Sample Identification	Date Sampled		Matrix			LMN	IMN		Vola	- 1010	EDB	Sem (with	V PAH	PCE	Shio	Orge	Chic	Tota	Tota	TCL	HEN	0		+	W %
11 FB-11- 17.5	9/12/20		Soil	5	-	-	-	~		-	-	-		-	-	_	_	-	-	-	-				K
12 FB-11-15:0 13 FB-11-10:0		1420			-	-	-	-		-	-	-	-	-	-	_				-	-		_		┝
		555		Ħ		+		Q				0	X			_				-			-	+	G
14 FB-13-15.0 15 FB-13-10.0		1600		T																					
16 FB-14-22-5		1555		T								X	X					X							X
17 FB-14-20-0	1	1600		T				X				X	X						X	1					X
18 FB-12-21.5	9/13/20											X										X			X
19 FB-12-20-0		6937				X		X					X												X
20 FB-12-17.5		1011	1	V		X		X					χ												X
Signature Relinquished Received Relinquished Received Received Received Relinquished			eedy peody 80	-		9-	13/2	20		36	3	Com	ment	s/Spe				ns 3 < /							
Received												Data	Pack	kage:	Sta	ndar	rd 🗆	Lev	vel III		Leve	el IV [ו		
Reviewed/Date		Reviewed/D	ate									Chro	mato	gram	s wit	h fina	al rep	oort 🗌	Ele	ectror	nic Da	ta Deliv	/erables	s (EDDs)	

OnSite Environmental Inc.		Cha	ain o	f	Cu	IS	too	ły										Page	3	of	4	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turr (in	naround Req working da	uest ys)		L	abo	rate	ory	Num	ber		9 -	-1	16	5							
Phone: (425) 883-3881 • www.onsite-env.com Company: Formultun Project Number: Broject Name: Bhock 38 West Project Manager: Sury Stumpf Sampled by: Greg Hotes	Same		X 1 Day	r of Containers	HCID	NWTPH-GX/BTEX by 6360	-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	2 Phtholene	PAHL	ne Pasticidae 8081B	MIS/00/		Total RCRA Metals	HCM Metals	TCLP Metats L 20 Mi UM	1 (oil and grease) 1664A			ture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of	NWTPH-HCID	NWTPH	NWTPH-GX	NWTPH	Volatile Haloge	EDB EF	Semivo (with lo	PAHs 8	PCBs 8082A	Organo	Chlorin	Total R	Total ₩	TCLPA	HEM (o			% Moisture
21 1-3-12-13.0	9/13/20	1020	5	5								X										X
22 FB-12-10-0	1	1030		1																		
23 FB-14-17.5		1038						X				X										X
24 FB-14-10.0		1045																				
25 FB-13-22-5 26 FB-15-20-0		1050						X			X	X				X	1	C				X
26 FB-15-20.0		1100						X			X	X					X	1				X
27 FB-15-17.5		1103						X			X	X					X	1				X
28 FB-15-15.0 28 FB-15-10.0 30 FB-16-22-5		1205										Ø										X
29 FB-15- 10:0		1106																				
30 FB-16-22-5	1	1125	ľ	2				X				X										X
Signature		mpany				Date		-	Time		Cor	nment	s/Spec	ial In	struci	lions						
Relinquished	7	penal	1	-					142		-					,						
Received		Spee	dy			1	14-2		103		-	Ge	e	pie	9.1							
Received C.D. C.Soch		Sper	SE		_	9.4	42	20	110	08		1										
Relinquished					_											_						
Received											-							_		el IV [
Reviewed/Date		Reviewed/Da	ite		~~~~						Chr	omato	grams	with	final I	report	E	Electro	nic Da	ta Deliv	verables (B	EDDs) 🗌

OnSite Environmental Inc.		Ch	ain o	f	Cı	IS	to	dy										Pa	ige _	4	_ of	4	+	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Re n working d			L	abo	rat	ory	Nun	nbe	er:	09	-1	1	6									
Phone: (425) 883-3881 • www.onsite-env.com Company: Project Number: Project Name: Bloch 38 West Project Manager: Surry Stumpf Sampled by: Sweg Rcfees	- (TPH	ys dard (7 Days I analysis 5 D (other	1 Day 3 Days ays)	Number of Containers	NWTPH-HCID	NWTPH-GX/BTEX 8360	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	With Iow-level PAHS) Nathing Compares 22 (10) Shire A Compares 22 (20)		Organochlorine Pesticides 8081B	WIS/D	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTERA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled		-		LMN	LMN	LMNN -	Vola		EUB	With (with	PCB	Orge	Orga	Chlo	Tota	Tota	TCL	HEN	_	+	+	W %
31 FB-16-2000 32 FB-16-17.5	9/03/20		Soil	5		-	-	X		-	+	X									_	+	+	X
33 FB-16-15:0		1135 1140		$\left \right $	-	-		~		+	+	~			-	_	-					+	+	X
31 FB-16-2000 32 FB-16-17.5 33 FB-16-15.0 34 FB-16-10.0	1	1150	1	1																				
										+	-	-		-					-		-	+	+	
Signature Relinquished Received Relinquished Received Received Received Relinquished		Spe	evely			9-	14-14-14-14-14-14	20	11	30 30 10	>	Comme	its/Sp											
Received											-	Data Pa							-					
Reviewed/Date		Reviewed/D	ate							_	(Chromat	ogran	ns wi	ith fin	al rep	oort [Elec	otroni	c Data	a Deliv	erable	s (EDD:	3) 🗌

March 16, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2103-120

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on March 10, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 16, 2021 Samples Submitted: March 10, 2021 Laboratory Reference: 2103-120 Project: 397-019

Case Narrative

Samples were collected on March 10, 2021 and received by the laboratory on March 10, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

•••				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-SSW-22.5-031021	1				
Laboratory ID:	03-120-01					
Benzo[a]anthracene	0.068	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	0.078	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	0.081	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	0.023	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	0.066	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	0.048	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	ND	0.018	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	46 - 113				
Pyrene-d10	91	45 - 114				
Terphenyl-d14	100	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-B2-22.5-031021					
Laboratory ID:	03-120-02					
Benzo[a]anthracene	0.13	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	0.17	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	0.20	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	0.049	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	0.16	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	0.10	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	0.018	0.017	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	46 - 113				
Pyrene-d10	90	45 - 114				
Terphenyl-d14	102	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-B2-20.0-031021					
Laboratory ID:	03-120-03					
Benzo[a]anthracene	0.097	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	0.11	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	0.10	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	0.043	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	0.096	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	0.056	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	ND	0.028	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	46 - 113				
Pyrene-d10	87	45 - 114				
Terphenyl-d14	97	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-B2-17.5-031021					
Laboratory ID:	03-120-04					
Benzo[a]anthracene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	98	46 - 113				
Pyrene-d10	101	45 - 114				
Terphenyl-d14	107	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-B-17.5-031021					
Laboratory ID:	03-120-05					
Benzo[a]anthracene	0.11	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	0.11	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	0.26	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	0.050	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	0.14	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	0.059	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	0.010	0.0093	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	46 - 113				
Pyrene-d10	89	45 - 114				
Terphenyl-d14	92	49 - 121				

7

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0315S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	3-15-21	3-15-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	46 - 113				
Pyrene-d10	99	45 - 114				
Terphenyl-d14	104	49 - 121				

8

Matrix: Soil Units: mg/Kg

					Р	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	815S1								
	SB	SBD	SB	SBD	SE	SBD				
Benzo[a]anthracene	0.0816	0.0791	0.0833	0.0833	98	95	72 - 129	3	15	
Chrysene	0.0832	0.0829	0.0833	0.0833	10) 100	66 - 123	0	15	
Benzo[b]fluoranthene	0.0857	0.0881	0.0833	0.0833	103	3 106	68 - 128	3	15	
Benzo(j,k)fluoranthene	0.0764	0.0727	0.0833	0.0833	92	87	63 - 128	5	16	
Benzo[a]pyrene	0.0795	0.0784	0.0833	0.0833	95	94	66 - 130	1	15	
Indeno(1,2,3-c,d)pyrene	0.0749	0.0734	0.0833	0.0833	90	88	63 - 135	2	15	
Dibenz[a,h]anthracene	0.0796	0.0787	0.0833	0.0833	96	94	65 - 130	1	15	
Surrogate:										
2-Fluorobiphenyl					90	95	46 - 113			
Pyrene-d10					10	97	45 - 114			
Terphenyl-d14					10-	4 103	49 - 121			

9

Date of Report: March 16, 2021 Samples Submitted: March 10, 2021 Laboratory Reference: 2103-120 Project: 397-019

% MOISTURE

		0/ 14-1-4	Date
Client ID	Lab ID	% Moisture	Analyzed
A/A5-SSW-22.5-031021	03-120-01	63	3-15-21
A/A5-B2-22.5-031021	03-120-02	60	3-15-21
A/A5-B2-20.0-031021	03-120-03	76	3-15-21
A/A5-B2-17.5-031021	03-120-04	23	3-15-21
A/A5-B-17.5-031021	03-120-05	28	3-15-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Micuil Salar	Relinquished	Signature			5 A/AS- B-175-031021	4 A/AS- 4945-175-031021	3 ATAS-10-00-0310 21	2 A/AS-WSW-22:5-031021	1-	Lab ID Sample Identification	sampier us. Grage Hakers	Suzy 8	Project Name: Black 36 Regulating Closur	Project Number: 39(7-019	121	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
							C			3/10/21	3/10/21	3/10/21	3/10/21	3/10/21	Date Sampled	[X Stan	2 Days	Same Day	Tur (i	
Reviewed/Date					OSE	terallur	Company			1305	1300	1255	1249	1130	Time Sampled	(other)		X Standard (7 Days)	ys [CK Une	(in working days)	Gha
te						3				Seil	5	1:05	1.2	1:8	Matrix				3 Days	1 Day	uest /s)	Chain of Custody
										4	4	A	4	H	lie		Contair	iers			11	C
	-				N	in	D		-	-			-		NWTP			_			Lab	U.S.
				1	50	3/10/21	Date				-		-		NWTP						Laboratory N	to
					2	10			+			-		-			□ Acio	/ SG CI	ean-up)		ator	ă
	-				-	-	Time	-	-						Volatil	es 826	0C					×
					5	lysy	ne								Haloge	enated	Volatile	es 82600	;		umber:	
				1	t	G.			-						EDB E	PA 80	11 (Wat	ers Only)		oer:	
CF CF	Da						Co		1				-		1.1.2.2.2.2.2.2		82700	1 m 1 m 1 m				
roma	Data Package:						Comments/Special Instructions								-		el PAH: /SIM (lo	s) ow-level)				
toora	ckag						nts/S		1						PCBs	8082A					0	
ms w							pecia								Organ	ochlori	ne Pes	ticides 8	081B		S	
ith fir	Standard						Inst								Organ	ophos	ohorus	Pesticide	es 8270	D/SIM	1	
Chromatograms with final report	Ird 🗌						ructio								Chlori	nated /	Acid He	rbicides	8151A		N	
port							Su								Total F	RCRA	Aetals				0	
	Level III														Total N	ATCA I	Vietals				1	P
ectron															TCLP	Metals					1	Page_
lic Dat	Level IV														HEM (oil and	grease) 1664A				2
Electronic Data Deliverables (EDDs)	el IV									×	×	X	×	×	cp	Atts						of /
																				- 1	1	
les (ED								1														

March 24, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2103-234

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on March 19, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 24, 2021 Samples Submitted: March 19, 2021 Laboratory Reference: 2103-234 Project: 397-019

Case Narrative

Samples were collected on March 18, 2021 and received by the laboratory on March 19, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-ESW-22.5-031821	l				
Laboratory ID:	03-234-01					
Benzo[a]anthracene	1.0	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Chrysene	0.92	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[b]fluoranthene	1.0	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo(j,k)fluoranthene	0.30	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[a]pyrene	1.1	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Indeno(1,2,3-c,d)pyrene	0.60	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Dibenz[a,h]anthracene	0.11	0.0092	EPA 8270E/SIM	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	46 - 113				
Pyrene-d10	75	45 - 114				
Terphenyl-d14	77	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-ESW-20.0-031821	l				
Laboratory ID:	03-234-02					
Benzo[a]anthracene	0.12	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Chrysene	0.13	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[b]fluoranthene	0.14	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo(j,k)fluoranthene	0.041	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[a]pyrene	0.14	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Indeno(1,2,3-c,d)pyrene	0.082	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Dibenz[a,h]anthracene	0.012	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	71	45 - 114				
Terphenyl-d14	74	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-ESW-17.5-031821	l				
Laboratory ID:	03-234-03					
Benzo[a]anthracene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Chrysene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[a]pyrene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	46 - 113				
Pyrene-d10	80	45 - 114				
Terphenyl-d14	84	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-SSW-20.0-031821	l				
Laboratory ID:	03-234-04					
Benzo[a]anthracene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Chrysene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[a]pyrene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270E/SIM	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	46 - 113				
Pyrene-d10	55	45 - 114				
Terphenyl-d14	59	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0323S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	46 - 113				
Pyrene-d10	86	45 - 114				
Terphenyl-d14	100	49 - 121				

7

PAHs EPA 8270E/SIM QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-19	93-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0703	0.0684	0.0833	0.0833	ND	84	82	56 - 136	3	25	
Chrysene	0.0699	0.0686	0.0833	0.0833	ND	84	82	49 - 130	2	22	
Benzo[b]fluoranthene	0.0731	0.0694	0.0833	0.0833	ND	88	83	51 - 135	5	26	
Benzo(j,k)fluoranthene	0.0683	0.0696	0.0833	0.0833	ND	82	84	56 - 124	2	23	
Benzo[a]pyrene	0.0733	0.0726	0.0833	0.0833	ND	88	87	54 - 133	1	26	
Indeno(1,2,3-c,d)pyrene	0.0701	0.0677	0.0833	0.0833	ND	84	81	52 - 134	3	20	
Dibenz[a,h]anthracene	0.0711	0.0696	0.0833	0.0833	ND	85	84	58 - 127	2	17	
Surrogate:											
2-Fluorobiphenyl						82	82	46 - 113			
Pyrene-d10						83	81	45 - 114			
Terphenyl-d14						85	86	49 - 121			

Date of Report: March 24, 2021 Samples Submitted: March 19, 2021 Laboratory Reference: 2103-234 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
A/A5-ESW-22.5-031821	03-234-01	28	3-23-21
A/A5-ESW-20.0-031821	03-234-02	25	3-23-21
A/A5-ESW-17.5-031821	03-234-03	26	3-23-21
A/A5-SSW-20.0-031821	03-234-04	25	3-23-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received New Or NC	Relinquished	Received	Relinquished	Signature				13 A/45-55W-20.0 -03/821	3 MA5-5W-175-031821	2 A/A5-5W-20:0-031821	1 A/A5-55W-72-5-031821	Lab ID Sample Identification	Campion up. Carego fates	Project Manager: Shizy Stumpt	Project Name: Ridel 38 what lagilating down	Frager Window 397-019	Company: rowallow Consulting	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc.
Reviewed/Date			350	belle	Sign	Foundan	Company	~1			ToorT	17.5	20-0	3/18/21 225 50%	Date Time Sampled Sampled Matrix	(other)		X Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain c
			3/19/1 1245	3/19/2/ 1245	319/21 210	3/18/21 1430	Date Time							*	NWTF NWTF NWTF NWTF Volati Halog	PH-HC PH-Gx PH-Gx PH-Dx les 820 enated	/BTEX (Acic 50C d Volatile	ers	0))		Laboratory Number:	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV						Comments/Special Instructions					×	×	×	(with PAHs PCBs Orgar Orgar Chlor Total Total Total TCLP	low-lev 8270E 8082/ nochlo nophos inated RCRA MTCA	A rine Pes sphorus Acid He Metals Metals s d grease		8081B es 827 88151A			n3-234	Page 1 of 1
iles (EDDs)											×	×	X	X	% Mc	oisture							

Ŕ

March 26, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2103-267

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on March 23, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 26, 2021 Samples Submitted: March 23, 2021 Laboratory Reference: 2103-267 Project: 397-019

Case Narrative

Samples were collected on March 22, 2021 and received by the laboratory on March 23, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C/A5-ESW-22-5-032221	l				
Laboratory ID:	03-267-01					
Benzo[a]anthracene	1.0	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	1.1	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	1.3	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	0.37	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	1.2	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	0.77	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	0.15	0.042	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	46 - 113				
Pyrene-d10	93	45 - 114				
Terphenyl-d14	89	49 - 121				

Matrix: Soil Units: mg/Kg

•••				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C/A5-ESW-20.0-032221	1				
Laboratory ID:	03-267-02					
Benzo[a]anthracene	0.41	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	0.44	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	0.51	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	0.13	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	0.43	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	0.28	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	0.055	0.016	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	46 - 113				
Pyrene-d10	75	45 - 114				
Terphenyl-d14	74	49 - 121				

4

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C/A5-ESW-17.5-032221	1				
Laboratory ID:	03-267-03					
Benzo[a]anthracene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	46 - 113				
Pyrene-d10	87	45 - 114				
Terphenyl-d14	91	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D/A5-B-17.5-032221					
Laboratory ID:	03-267-04					
Benzo[a]anthracene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	ND	0.023	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	46 - 113				
Pyrene-d10	96	45 - 114				
Terphenyl-d14	94	49 - 121				

6

•••				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-SSW-17.5-032221	l				
Laboratory ID:	03-267-05					
Benzo[a]anthracene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	46 - 113				
Pyrene-d10	87	45 - 114				
Terphenyl-d14	95	49 - 121				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0324S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	3-24-21	3-25-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	98	46 - 113				
Pyrene-d10	106	45 - 114				
Terphenyl-d14	111	49 - 121				

8

PAHs EPA 8270E/SIM QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-20	02-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0786	0.0843	0.0833	0.0833	ND	94	101	56 - 136	7	25	
Chrysene	0.0736	0.0815	0.0833	0.0833	ND	88	98	49 - 130	10	22	
Benzo[b]fluoranthene	0.0772	0.0861	0.0833	0.0833	ND	93	103	51 - 135	11	26	
Benzo(j,k)fluoranthene	0.0767	0.0840	0.0833	0.0833	ND	92	101	56 - 124	9	23	
Benzo[a]pyrene	0.0793	0.0872	0.0833	0.0833	ND	95	105	54 - 133	9	26	
Indeno(1,2,3-c,d)pyrene	0.0810	0.0839	0.0833	0.0833	ND	97	101	52 - 134	4	20	
Dibenz[a,h]anthracene	0.0766	0.0843	0.0833	0.0833	ND	92	101	58 - 127	10	17	
Surrogate:											
2-Fluorobiphenyl						82	92	46 - 113			
Pyrene-d10						92	95	45 - 114			
Terphenyl-d14						98	105	49 - 121			

Date of Report: March 26, 2021 Samples Submitted: March 23, 2021 Laboratory Reference: 2103-267 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
C/A5-ESW-22-5-032221	03-267-01	20	3-24-21
C/A5-ESW-20.0-032221	03-267-02	19	3-24-21
C/A5-ESW-17.5-032221	03-267-03	43	3-24-21
D/A5-B-17.5-032221	03-267-04	71	3-24-21
A/A5-SSW-17.5-032221	03-267-05	23	3-24-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			5 A/AS-55W-17.5-63222	4 0/25- 3-17-5-0322	3 445-55W-17.5-03222	2 CAS-ESW-20.0-03222	1 C/AS-55W-22-5-032221	Lab ID Sample Identification	Simples up	Sury Stumpt	Project Name: Black 38 West	Project Number: 397 -019	Company: Ferrellow Consulting	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
	20						20			1 3/2/21	2) 3/22/21	12/ 3/2/21	21 3/22/4	1221 3/20/21	Date Sampled	199 ^{(**}		1 Stan	2 Days	Same Day]
Reviewed/Date					BRE	Frank	Company			1415 50:1	1330 5	S ohb	930 50:1	922 Se	Time Sampled N	(other)		Standard (7 Days)			(in working days)	Chai
						{				11 1	50:1 2	50:1 1	1 12	Seil 2	1	per of (Contain	ers	3 Days	1 Day	11	n of C
					3/23/21	3/22/21	Date								NWTF	PH-Gx/l PH-Gx	BTEX	/ SG Cle	ean-up)		Laboratory Number:	Chain of Custody
					8:00	00/1	Time								Halog		Volatile	s 8260C ers Only)			y Number	V
Chromatograms with final report	Data Package: Sta						Comments/Special Instructions								(with I PAHs PCBs	ow-lev 8270D/ 8082A		-	081B		03-2	
	Standard Level III						Instructions			/					Chlori Total F Total M	nated A RCRA M MTCA M	Acid Her Netals Metals	Pesticide		D/SIM	67	Pa
Electronic Data Deliverables (EDDs)										×	×	×	X	X		Metals oil and	grease) As	1664A				Pagel of
les (EDDs) 🗌										X	×,	Х,	X	×	% Moi	sture			_			F

March 30, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2103-287

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on March 24, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 30, 2021 Samples Submitted: March 24, 2021 Laboratory Reference: 2103-287 Project: 397-019

Case Narrative

Samples were collected on March 24, 2021 and received by the laboratory on March 24, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	A/A5-B-16.0-032421					
Laboratory ID:	03-287-01					
Benzo[a]anthracene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Chrysene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Benzo[a]pyrene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270E/SIM	3-25-21	3-29-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	46 - 113				
Pyrene-d10	104	45 - 114				
Terphenyl-d14	100	49 - 121				

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0325S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	3-25-21	3-26-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	46 - 113				
Pyrene-d10	102	45 - 114				
Terphenyl-d14	107	49 - 121				

PAHs EPA 8270E/SIM QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-29	96-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0951	0.0836	0.0833	0.0833	ND	114	100	56 - 136	13	25	
Chrysene	0.0869	0.0795	0.0833	0.0833	ND	104	95	49 - 130	9	22	
Benzo[b]fluoranthene	0.0993	0.0897	0.0833	0.0833	ND	119	108	51 - 135	10	26	
Benzo(j,k)fluoranthene	0.0824	0.0758	0.0833	0.0833	ND	99	91	56 - 124	8	23	
Benzo[a]pyrene	0.0965	0.0858	0.0833	0.0833	ND	116	103	54 - 133	12	26	
Indeno(1,2,3-c,d)pyrene	0.0978	0.0898	0.0833	0.0833	ND	117	108	52 - 134	9	20	
Dibenz[a,h]anthracene	0.0894	0.0830	0.0833	0.0833	ND	107	100	58 - 127	7	17	
Surrogate:											
2-Fluorobiphenyl						92	89	46 - 113			
Pyrene-d10						101	100	45 - 114			
Terphenyl-d14						102	101	49 - 121			

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
A/A5-B-16.0-032421	03-287-01	27	3-25-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received P	Relinquished Line Shawar	Signature	Lab ID A A S- 8- 10.0-032421		Environmental Inc.
Reviewed/Date					CARE	Farallon	Company	Matrix SOLL	(in working days) (Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Chain of
					>1241211	3 24 21 12	Date Time	Image: Constraint of the second se	Gx/BTEX Gx Dx (Acid / SG Clean-up) 8260C	Chain of Custody
Chromatograms with final report \Box	Data Package: Standard 🛛 Level				230	230	Comments/Special Instructions	Image: Second	A 8011 (Waters Only) atiles 8270D/SIM /-level PAHs) 70D/SIM (low-level) 082A hlorine Pesticides 8081B hosphorus Pesticides 8270D/SIM ted Acid Herbicides 8151A RA Metals	
Electronic Data Deliverables (EDDs)	el III 🗌 Level IV 🗌							TCLP Met	and grease) 1664A	Page of

May 13, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2105-037

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on May 5, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 13, 2021 Samples Submitted: May 5, 2021 Laboratory Reference: 2105-037 Project: 397-019

Case Narrative

Samples were collected on May 4, 2021 and received by the laboratory on May 5, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-22.5-05042	1				
Laboratory ID:	05-037-01					
Benzene	ND	0.0020	EPA 8260D	5-6-21	5-6-21	
Toluene	ND	0.010	EPA 8260D	5-6-21	5-6-21	
Ethylbenzene	ND	0.0020	EPA 8260D	5-6-21	5-6-21	
m,p-Xylene	ND	0.0041	EPA 8260D	5-6-21	5-6-21	
o-Xylene	ND	0.0020	EPA 8260D	5-6-21	5-6-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	74-131				
Toluene-d8	93	78-128				
4-Bromofluorobenzene	79	71-130				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-20.0-05042	1				
Laboratory ID:	05-037-02					
Benzene	ND	0.0039	EPA 8260D	5-6-21	5-6-21	
Toluene	ND	0.019	EPA 8260D	5-6-21	5-6-21	
Ethylbenzene	ND	0.0039	EPA 8260D	5-6-21	5-6-21	
m,p-Xylene	ND	0.0078	EPA 8260D	5-6-21	5-6-21	
o-Xylene	ND	0.0039	EPA 8260D	5-6-21	5-6-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	74-131				
Toluene-d8	91	78-128				
4-Bromofluorobenzene	78	71-130				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-17.5-05042	1				
Laboratory ID:	05-037-03					
Benzene	ND	0.0050	EPA 8260D	5-6-21	5-6-21	
Toluene	ND	0.025	EPA 8260D	5-6-21	5-6-21	
Ethylbenzene	ND	0.0050	EPA 8260D	5-6-21	5-6-21	
m,p-Xylene	ND	0.010	EPA 8260D	5-6-21	5-6-21	
o-Xylene	ND	0.0050	EPA 8260D	5-6-21	5-6-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	74-131				
Toluene-d8	90	78-128				
4-Bromofluorobenzene	75	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0506S1					
Benzene	ND	0.0010	EPA 8260D	5-6-21	5-6-21	
Toluene	ND	0.0050	EPA 8260D	5-6-21	5-6-21	
Ethylbenzene	ND	0.0010	EPA 8260D	5-6-21	5-6-21	
m,p-Xylene	ND	0.0020	EPA 8260D	5-6-21	5-6-21	
o-Xylene	ND	0.0010	EPA 8260D	5-6-21	5-6-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	74-131				
Toluene-d8	95	78-128				
4-Bromofluorobenzene	101	71-130				

6

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	06S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0495	0.0484	0.0500	0.0500	99	97	71-131	2	19	
Benzene	0.0582	0.0565	0.0500	0.0500	116	113	73-124	3	18	
Trichloroethene	0.0595	0.0601	0.0500	0.0500	119	120	79-130	1	18	
Toluene	0.0519	0.0516	0.0500	0.0500	104	103	76-123	1	18	
Chlorobenzene	0.0518	0.0510	0.0500	0.0500	104	102	78-122	2	18	
Surrogate:										
Dibromofluoromethane					103	105	74-131			
Toluene-d8					95	94	78-128			
4-Bromofluorobenzene					105	105	71-130			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-22.5-050421	1				
Laboratory ID:	05-037-01					
Gasoline	ND	14	NWTPH-Gx	5-7-21	5-7-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	66-129				
Client ID:	E/A5-ESW-20.0-050421	I				
Laboratory ID:	05-037-02					
Gasoline	ND	27	NWTPH-Gx	5-7-21	5-7-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	66-129				
Client ID:	E/A5-ESW-17.5-050421	I				
Laboratory ID:	05-037-03					
Gasoline	ND	34	NWTPH-Gx	5-7-21	5-7-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	66-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

		D	501		4	Date	Date		-
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0507S1							
Gasoline		ND	5.0	NW	ГРН-Gx	5-7-21	5-7-2	1	
Surrogate:	Pei	rcent Recover	y Control Lim	its					
Fluorobenzene		99	66-129						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	05-06	63-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					99 104	66-129			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	E/A5-ESW-22.5-050421					
Laboratory ID:	05-037-01					
Diesel Range Organics	350	90	NWTPH-Dx	5-6-21	5-13-21	Ν
Lube Oil Range Organics	1600	180	NWTPH-Dx	5-6-21	5-13-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	E/A5-ESW-20.0-050421					
Laboratory ID:	05-037-02					
Diesel Range Organics	220	79	NWTPH-Dx	5-6-21	5-13-21	Ν
Lube Oil Range Organics	1500	160	NWTPH-Dx	5-6-21	5-13-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	E/A5-ESW-17.5-050421					
Laboratory ID:	05-037-03					
Diesel Range Organics	130	94	NWTPH-Dx	5-6-21	5-13-21	Ν
Lube Oil Range Organics	1000	190	NWTPH-Dx	5-6-21	5-13-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0506S3					
Diesel Range Organics	ND	25	NWTPH-Dx	5-6-21	5-7-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-6-21	5-7-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
o-Terphenyl	101	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB05	06S3									
	ORIG	DUP									
Diesel Fuel #2	112	108	NA	NA		NA		NA	4	NA	
Surrogate:											
o-Terphenyl						101	98	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-22.5-050421					
Laboratory ID:	05-037-01					
Naphthalene	1.4	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
2-Methylnaphthalene	1.2	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
1-Methylnaphthalene	1.4	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Benzo[a]anthracene	13	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Chrysene	13	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Benzo[b]fluoranthene	14	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Benzo(j,k)fluoranthene	4.6	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Benzo[a]pyrene	16	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Indeno(1,2,3-c,d)pyrene	8.8	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Dibenz[a,h]anthracene	1.4	0.60	EPA 8270E/SIM	5-6-21	5-11-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	41 - 114				
Pyrene-d10	76	39 - 115				
Terphenyl-d14	83	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-20.0-050421					
Laboratory ID:	05-037-02					
Naphthalene	1.3	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
2-Methylnaphthalene	0.24	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
1-Methylnaphthalene	0.16	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Benzo[a]anthracene	0.049	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Chrysene	0.069	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Benzo[b]fluoranthene	0.080	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Benzo(j,k)fluoranthene	ND	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Benzo[a]pyrene	0.038	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Indeno(1,2,3-c,d)pyrene	0.047	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270E/SIM	5-6-21	5-7-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	41 - 114				
Pyrene-d10	68	39 - 115				
Terphenyl-d14	86	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-ESW-17.5-050421					
Laboratory ID:	05-037-03					
Naphthalene	0.073	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
2-Methylnaphthalene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
1-Methylnaphthalene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Benzo[a]anthracene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Chrysene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Benzo[b]fluoranthene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Benzo(j,k)fluoranthene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Benzo[a]pyrene	0.036	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Indeno(1,2,3-c,d)pyrene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Dibenz[a,h]anthracene	ND	0.025	EPA 8270E/SIM	5-6-21	5-10-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	41 - 114				
Pyrene-d10	75	39 - 115				
Terphenyl-d14	75	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0506S2					
Naphthalene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	5-6-21	5-6-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	110	41 - 114				
Pyrene-d10	98	39 - 115				
Terphenyl-d14	118	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-04	42-05									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.155	0.137	0.167	0.167	ND	93	82	41 - 123	12	23	
Acenaphthylene	0.158	0.153	0.167	0.167	ND	95	92	45 - 124	3	20	
Acenaphthene	0.155	0.147	0.167	0.167	ND	93	88	46 - 122	5	23	
Fluorene	0.164	0.162	0.167	0.167	ND	98	97	45 - 128	1	27	
Phenanthrene	0.164	0.158	0.167	0.167	ND	98	95	38 - 133	4	33	
Anthracene	0.158	0.153	0.167	0.167	ND	95	92	49 - 127	3	21	
Fluoranthene	0.176	0.160	0.167	0.167	ND	105	96	45 - 130	10	29	
Pyrene	0.181	0.170	0.167	0.167	ND	108	102	43 - 132	6	32	
Benzo[a]anthracene	0.166	0.160	0.167	0.167	ND	99	96	49 - 139	4	27	
Chrysene	0.164	0.166	0.167	0.167	ND	98	99	47 - 127	1	28	
Benzo[b]fluoranthene	0.182	0.169	0.167	0.167	ND	109	101	46 - 129	7	31	
Benzo(j,k)fluoranthene	0.159	0.167	0.167	0.167	ND	95	100	46 - 128	5	25	
Benzo[a]pyrene	0.175	0.172	0.167	0.167	ND	105	103	47 - 134	2	27	
Indeno(1,2,3-c,d)pyrene	0.178	0.172	0.167	0.167	ND	107	103	42 - 133	3	25	
Dibenz[a,h]anthracene	0.171	0.169	0.167	0.167	ND	102	101	46 - 129	1	24	
Benzo[g,h,i]perylene	0.166	0.166	0.167	0.167	ND	99	99	44 - 129	0	27	
Surrogate:											
2-Fluorobiphenyl						88	84	41 - 114			
Pyrene-d10						93	90	39 - 115			
Terphenyl-d14						105	97	44 - 125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

Date of Report: May 13, 2021 Samples Submitted: May 5, 2021 Laboratory Reference: 2105-037 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
E/A5-ESW-22.5-050421	05-037-01	44	5-6-21
E/A5-ESW-20.0-050421	05-037-02	68	5-6-21
E/A5-ESW-17.5-050421	05-037-03	73	5-6-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Kelinguished	Received	Relinquished	Si					3 E/A5-65W-	2 E/AS-ESW-		Lab ID Samp	Compression Ores	Froject Manager:	black	397-219	Company: Fevallon	Analytical Labora 14648 NE 95th Phone: (425) 8	Envirol
		X	Van	Van	SPO	Signature	P				17.5-050421	20.0-050421	E/A5-ESW-22-5-050421	Sample Identification	teres	Stumpt	38 West	919	2	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	DnSite Environmental Inc.
		4				Co					5/4/21	5/4/24	5/4/21	Date Sampled	[]	X Stanc	2 Days	(Che	Tur (h	
Reviewed/Date		-	805	808	Forall	Company					1130	1120	1115	Time Sampled	(other)		Standard (7 Days)	20	(Check One) Day [(in working days)	Ch
ate		286	e c	2	lon						Soil	Soil	Soil	Matrix	3		5)	3 Days	e)	equest lays)	Chain of Custody
		1									6	6	6	Numb	er of C	ontaine	ers				9
			NA NA	100		-								-	H-HCI	_				La	Cu
		5/5	Ki	121	1/2	Date		-	1	+	X	X	X	NWTP	_	BTEX 8	260	03		Laboratory N	sto
		12	2	2	7			-	+	-	×	X	X			Acid	/ SG Cle	ean-up)		ator	bd
		6	11	60	6	Time			1					Volatil	es 8260	C					
		14	7	26	600											Volatiles				umber:	
0	_	9	1						11	_						1 (Wate				er:	
Chron	Data Package:					Comn		-		-	_			(with le	ow-leve	8270D/ I PAHs) SIM (lov				0	
atogr	acka					nents/		-	++	-			-	PCBs			v-level)			S	
ams v						Specia		-		-			-	_		ne Pesti	cides 80	081B	_	0	i.
vith fir	Standard					Comments/Special Instructions								Organ	ophosp	horus P	esticide	s 8270	D/SIM	37	
Chromatograms with final report	Ind 🗌					ruction								Chlorin	nated A	cid Herl	bicides	8151A			
)ort	Level					SU								Total F	CRA N	letals					
	=													Total N		letals					Ра
tronic											-			TCLP			10011				Page
Data D	Level IV							-		-	~	×	~		_	grease)		-			/
Electronic Data Deliverables (EDDs)	<										×	XX	XX	c p Nap	the	lenez	5				of /
(EDDs)								-	+	-	-	_					_				
											-		5	% Mois	sture						

July 7, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2106-270

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on June 28, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 7, 2021 Samples Submitted: June 28, 2021 Laboratory Reference: 2106-270 Project: 397-019

Case Narrative

Samples were collected on June 28, 2021 and received by the laboratory on June 28, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Gasoline Range Organics by NWTPH-Gx Analysis

The MTCA Method A cleanup level of 30.0 ppm for fresh gasoline is not achievable for samples E/A5-B-17.5 and F/A5-B-17.5 due to the low dry weight of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-B-17.5					
Laboratory ID:	06-270-01					
Gasoline	ND	45	NWTPH-Gx	6-30-21	6-30-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	66-129				
Client ID:	F/A5-B-17.5					
Laboratory ID:	06-270-02					
Gasoline	ND	43	NWTPH-Gx	6-30-21	6-30-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	66-129				

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

		D	DOL		4		Date	Date		-	
Analyte	Result		PQL	Me	ethod		Prepared	Analyzed		Flags	
METHOD BLANK											
Laboratory ID:		MB0630S1									
Gasoline		ND	5.0	NW	PH-Gx		6-30-21	6-30-2	21		
Surrogate:	Pei	rcent Recovery	Control Lim	its							
Fluorobenzene		93	66-129								
				Source	Perce	nt	Recovery		RPD		
Analyte	Res	sult	Spike Level	Result	Recove	ery	Limits	RPD	Limit	Flags	
DUPLICATE											
Laboratory ID:	06-25	52-02									
	ORIG	DUP									
Gasoline	ND	ND	NA NA		NA		NA	NA	30		
Surrogate:											
Fluorobenzene					93	95	66-129				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-B-17.5					
Laboratory ID:	06-270-01					
Benzene	ND	0.0070	EPA 8260D	6-29-21	6-29-21	
Toluene	ND	0.035	EPA 8260D	6-29-21	6-29-21	
Ethylbenzene	ND	0.0070	EPA 8260D	6-29-21	6-29-21	
m,p-Xylene	ND	0.014	EPA 8260D	6-29-21	6-29-21	
o-Xylene	ND	0.0070	EPA 8260D	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	74-131				
Toluene-d8	110	78-128				
4-Bromofluorobenzene	76	71-130				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F/A5-B-17.5					
Laboratory ID:	06-270-02					
Benzene	ND	0.0062	EPA 8260D	6-29-21	6-29-21	
Toluene	ND	0.031	EPA 8260D	6-29-21	6-29-21	
Ethylbenzene	ND	0.0062	EPA 8260D	6-29-21	6-29-21	
m,p-Xylene	ND	0.012	EPA 8260D	6-29-21	6-29-21	
o-Xylene	ND	0.0062	EPA 8260D	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	74-131				
Toluene-d8	109	78-128				
4-Bromofluorobenzene	75	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0629S1					
Benzene	ND	0.0010	EPA 8260D	6-29-21	6-29-21	
Toluene	ND	0.0050	EPA 8260D	6-29-21	6-29-21	
Ethylbenzene	ND	0.0010	EPA 8260D	6-29-21	6-29-21	
m,p-Xylene	ND	0.0020	EPA 8260D	6-29-21	6-29-21	
o-Xylene	ND	0.0010	EPA 8260D	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	74-131				
Toluene-d8	115	78-128				
4-Bromofluorobenzene	98	71-130				

7

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD		
Analyte	Res	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB06	29S1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	0.0575	0.0632	0.0500	0.0500	115	126	71-131	9	19		
Benzene	0.0456	0.0490	0.0500	0.0500	91	98	73-124	7	18		
Trichloroethene	0.0473	0.0508	0.0500	0.0500	95	102	79-130	7	18		
Toluene	0.0452	0.0484	0.0500	0.0500	90	97	76-123	7	18		
Chlorobenzene	0.0444	0.0468	0.0500	0.0500	89	94	78-122	5	18		
Surrogate:											
Dibromofluoromethane					120	116	74-131				
Toluene-d8					112	113	78-128				
4-Bromofluorobenzene					106	104	71-130				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-B-17.5					
Laboratory ID:	06-270-01					
Diesel Range Organics	130	120	NWTPH-Dx	6-29-21	6-29-21	Ν
Lube Oil Range Organics	2100	230	NWTPH-Dx	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	F/A5-B-17.5					
Laboratory ID:	06-270-02					
Diesel Range Organics	160	110	NWTPH-Dx	6-29-21	6-29-21	Ν
Lube Oil Range Organics	710	220	NWTPH-Dx	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limits
o-Terphenyl	87	50-150

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx** QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0629S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-29-21	6-29-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-27	70-02								
	ORIG	DUP								
Diesel Range Organics	36.9	ND	NA	NA		NA	NA	NA	NA	Ν
Lube Oil Range Organics	164	139	NA	NA		NA	NA	17	NA	
Surrogate:										
o-Terphenyl						87 77	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E/A5-B-17.5					
Laboratory ID:	06-270-01					
Naphthalene	1.2	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
2-Methylnaphthalene	0.38	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
1-Methylnaphthalene	0.19	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]anthracene	0.82	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Chrysene	0.71	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[b]fluoranthene	0.78	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo(j,k)fluoranthene	0.30	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]pyrene	0.87	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Indeno(1,2,3-c,d)pyrene	0.52	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Dibenz[a,h]anthracene	0.095	0.031	EPA 8270E/SIM	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	41 - 114				
Pyrene-d10	96	39 - 115				
Terphenyl-d14	90	44 - 125				

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F/A5-B-17.5					
Laboratory ID:	06-270-02					
Naphthalene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
2-Methylnaphthalene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
1-Methylnaphthalene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]anthracene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Chrysene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[b]fluoranthene	0.032	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo(j,k)fluoranthene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]pyrene	0.034	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Indeno(1,2,3-c,d)pyrene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Dibenz[a,h]anthracene	ND	0.029	EPA 8270E/SIM	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	41 - 114				
Pyrene-d10	96	39 - 115				
Terphenyl-d14	93	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

ernte: mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0629S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	6-29-21	6-29-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	41 - 114				
Pyrene-d10	95	39 - 115				
Terphenyl-d14	99	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	-	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-20	67-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0791	0.0802	0.0833	0.0833	ND	95	96	41 - 123	1	23	
Acenaphthylene	0.0784	0.0807	0.0833	0.0833	ND	94	97	45 - 124	3	20	
Acenaphthene	0.0761	0.0783	0.0833	0.0833	ND	91	94	46 - 122	3	23	
Fluorene	0.0789	0.0815	0.0833	0.0833	ND	95	98	45 - 128	3	27	
Phenanthrene	0.0749	0.0786	0.0833	0.0833	ND	90	94	38 - 133	5	33	
Anthracene	0.0797	0.0807	0.0833	0.0833	ND	96	97	49 - 127	1	21	
Fluoranthene	0.0852	0.0843	0.0833	0.0833	ND	102	101	45 - 130	1	29	
Pyrene	0.0841	0.0872	0.0833	0.0833	ND	101	105	43 - 132	4	32	
Benzo[a]anthracene	0.0768	0.0760	0.0833	0.0833	ND	92	91	49 - 139	1	27	
Chrysene	0.0797	0.0876	0.0833	0.0833	ND	96	105	47 - 127	9	28	
Benzo[b]fluoranthene	0.0741	0.0774	0.0833	0.0833	ND	89	93	46 - 129	4	31	
Benzo(j,k)fluoranthene	0.0905	0.0925	0.0833	0.0833	ND	109	111	46 - 128	2	25	
Benzo[a]pyrene	0.0814	0.0833	0.0833	0.0833	ND	98	100	47 - 134	2	27	
Indeno(1,2,3-c,d)pyrene	0.0723	0.0760	0.0833	0.0833	ND	87	91	42 - 133	5	25	
Dibenz[a,h]anthracene	0.0765	0.0801	0.0833	0.0833	ND	92	96	46 - 129	5	24	
Benzo[g,h,i]perylene	0.0787	0.0825	0.0833	0.0833	ND	94	99	44 - 129	5	27	
Surrogate:											
2-Fluorobiphenyl						81	88	41 - 114			
Pyrene-d10						86	89	39 - 115			
Terphenyl-d14						85	87	44 - 125			

14

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
E/A5-B-17.5	06-270-01	78	6-29-21
F/A5-B-17.5	06-270-02	77	6-29-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Received Relinquished Received Reviewed/Date	Relinquished	Received	Relinquished	Signature	Project Name: Block 38 West Suzy Stumpf Suzy Stumpf Lisa Thompson Lisa Thompson FriA5-B-I7.5 FriA5-B-I7.5	7.4.7.8	Environmental Inc.
Reviewed/Date	Strendy Ch	optil Speedy	- / Farallon	Company	□ Same Day □ 1 Day □ 2 Days □ 3 Days ス Standard (7 Days) □	Turnaround Request 98052 (in working days) (Check One)	
6/28/11 1400		6:28-21 12/15	6(28/21/215	Date Time	Image: Normal System Image: Normal System Image: Normal System Number of Containers Number of Containers NWTPH-HCID NWTPH-Gx/BTEX 8260C Number of Containers NWTPH-Gx/BTEX 8260C Number of Containers NWTPH-Gx/BTEX 8260C Number of Containers NWTPH-Dx ([] Acid / SG Clean-up) Number of Containers NUmber of Containers <	Laboratory Number:	Chain of Custody
Data Package: Standard Level III Level IV Chromatograms with final report Electronic Data Deliverables (EDDs)	9			Comments/Special Instructions	Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Sec	er: 06 - 270	Page 1

July 15, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-039

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 6, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 15, 2021 Samples Submitted: July 6, 2021 Laboratory Reference: 2107-039 Project: 397-019

Case Narrative

Samples were collected on July 6, 2021 and received by the laboratory on July 6, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	G/A5-ESW-22.5-070621					
_aboratory ID:	07-039-01					
Diesel Range Organics	150	140	NWTPH-Dx	7-12-21	7-12-21	Ν
Lube Oil	1700	280	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	G/A5-ESW-20.0-070621					
Laboratory ID:	07-039-02					
Diesel Range Organics	890	180	NWTPH-Dx	7-12-21	7-12-21	Ν
Lube Oil Range Organics		370	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
Client ID:	G/A5-ESW-17.5-070621					
Laboratory ID:	07-039-03					
Diesel Range Organics	940	400	NWTPH-Dx	7-12-21	7-12-21	N
Lube Oil	940 6100	400 800	NWTPH-Dx NWTPH-Dx	7-12-21	7-12-21	IN
Surrogate:	Percent Recovery	Control Limits		7-12-21	1-12-21	
o-Terphenyl	89	50-150				
Client ID:	H/A5-ESW-22.5-070621					
Laboratory ID:	07-039-04					
Diesel Range Organics	200	140	NWTPH-Dx	7-12-21	7-12-21	N
Lube Oil	2400	280	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	H/A5-ESW-20.0-070621					
Laboratory ID:	07-039-05					
Diesel Range Organics	360	190	NWTPH-Dx	7-12-21	7-12-21	Ν
_ube Oil	2800	380	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID: Laboratory ID:	H/A5-ESW-17.5-070621 07-039-06					
Diesel Range Organics	ND	86	NWTPH-Dx	7-12-21	7-12-21	
Lube Oil	250	170	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H/A5-B-17.5-070621					
Laboratory ID:	07-039-07					
Diesel Range Organics	98	81	NWTPH-Dx	7-12-21	7-12-21	Ν
Lube Oil	780	160	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

4

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712S2					
Diesel Range Organics	ND	25	NWTPH-Dx	7-12-21	7-12-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB07	12S2									
	ORIG	DUP									
Diesel Fuel #2	83.2	77.8	NA	NA		Ν	A	NA	7	NA	
Surrogate:											
o-Terphenyl						85	82	50-150			

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	G/A5-ESW-22.5-070621	l				
Laboratory ID:	07-039-01					
Naphthalene	0.21	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
2-Methylnaphthalene	0.18	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
1-Methylnaphthalene	0.18	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]anthracene	1.4	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Chrysene	1.4	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[b]fluoranthene	1.4	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo(j,k)fluoranthene	0.53	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]pyrene	1.5	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Indeno(1,2,3-c,d)pyrene	0.90	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Dibenz[a,h]anthracene	0.22	0.037	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	41 - 114				
Pyrene-d10	92	39 - 115				
Terphenyl-d14	88	44 - 125				

Client ID:	G/A5-ESW-20.0-07062	1				
Laboratory ID:	07-039-02					
Naphthalene	2.8	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
2-Methylnaphthalene	3.2	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
1-Methylnaphthalene	2.6	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]anthracene	8.3	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Chrysene	9.0	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[b]fluoranthene	10	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo(j,k)fluoranthene	2.5	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]pyrene	9.4	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Indeno(1,2,3-c,d)pyrene	5.7	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Dibenz[a,h]anthracene	0.85	0.49	EPA 8270E/SIM	7-7-21	7-9-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	41 - 114				
Pyrene-d10	72	39 - 115				
Terphenyl-d14	78	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	G/A5-ESW-17.5-07062	1				
Laboratory ID:	07-039-03					
Benzo[a]anthracene	0.42	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Chrysene	0.48	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[b]fluoranthene	0.58	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo(j,k)fluoranthene	0.15	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]pyrene	0.51	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Indeno(1,2,3-c,d)pyrene	0.33	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Dibenz[a,h]anthracene	0.059	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	41 - 114				
Pyrene-d10	102	39 - 115				
Terphenyl-d14	94	44 - 125				

Client ID:	H/A5-ESW-22.5-070621	l				
Laboratory ID:	07-039-04					
Naphthalene	0.011	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
2-Methylnaphthalene	0.020	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
1-Methylnaphthalene	0.018	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]anthracene	0.070	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Chrysene	0.15	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[b]fluoranthene	0.081	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo(j,k)fluoranthene	0.024	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]pyrene	0.062	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Indeno(1,2,3-c,d)pyrene	0.040	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Dibenz[a,h]anthracene	0.023	0.0076	EPA 8270E/SIM	7-7-21	7-9-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	41 - 114				
Pyrene-d10	89	39 - 115				
Terphenyl-d14	80	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H/A5-ESW-20.0-070621	l				
Laboratory ID:	07-039-05					
Naphthalene	2.9	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
2-Methylnaphthalene	1.7	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
1-Methylnaphthalene	0.98	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]anthracene	3.5	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Chrysene	3.6	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[b]fluoranthene	4.7	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo(j,k)fluoranthene	1.0	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Benzo[a]pyrene	4.0	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Indeno(1,2,3-c,d)pyrene	2.5	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Dibenz[a,h]anthracene	0.41	0.20	EPA 8270E/SIM	7-7-21	7-9-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	41 - 114				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	76	44 - 125				

Client ID:	H/A5-ESW-17.5-070621	l				
Laboratory ID:	07-039-06					
Benzo[a]anthracene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Chrysene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[b]fluoranthene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo(j,k)fluoranthene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]pyrene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Indeno(1,2,3-c,d)pyrene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Dibenz[a,h]anthracene	ND	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	41 - 114				
Pyrene-d10	83	39 - 115				
Terphenyl-d14	83	44 - 125				

8

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H/A5-B-17.5-070621					
Laboratory ID:	07-039-07					
Naphthalene	0.034	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
2-Methylnaphthalene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
1-Methylnaphthalene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]anthracene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Chrysene	0.058	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[b]fluoranthene	0.024	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo(j,k)fluoranthene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Benzo[a]pyrene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Indeno(1,2,3-c,d)pyrene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Dibenz[a,h]anthracene	ND	0.022	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	41 - 114				
Pyrene-d10	82	39 - 115				
Terphenyl-d14	83	44 - 125				

9

cPAHs EPA 8270D/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0707S2					
Naphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	104	41 - 114				
Pyrene-d10	101	39 - 115				
Terphenyl-d14	96	44 - 125				

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	07S2								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0768	0.0821	0.0833	0.0833	92	99	57 - 117	7	16	
Acenaphthylene	0.0815	0.0854	0.0833	0.0833	98	103	58 - 126	5	15	
Acenaphthene	0.0821	0.0862	0.0833	0.0833	99	103	61 - 122	5	15	
Fluorene	0.0883	0.0909	0.0833	0.0833	106	109	59 - 127	3	15	
Phenanthrene	0.0877	0.0892	0.0833	0.0833	105	107	58 - 124	2	15	
Anthracene	0.0909	0.0920	0.0833	0.0833	109	110	64 - 128	1	15	
Fluoranthene	0.0922	0.0959	0.0833	0.0833	111	115	63 - 128	4	15	
Pyrene	0.0919	0.0910	0.0833	0.0833	110	109	62 - 129	1	15	
Benzo[a]anthracene	0.0890	0.0919	0.0833	0.0833	107	110	64 - 138	3	15	
Chrysene	0.0929	0.0946	0.0833	0.0833	112	114	63 - 128	2	15	
Benzo[b]fluoranthene	0.0850	0.0906	0.0833	0.0833	102	109	62 - 129	6	15	
Benzo(j,k)fluoranthene	0.103	0.104	0.0833	0.0833	124	125	59 - 134	1	16	
Benzo[a]pyrene	0.101	0.103	0.0833	0.0833	121	124	63 - 132	2	15	
Indeno(1,2,3-c,d)pyrene	0.0869	0.0872	0.0833	0.0833	104	105	58 - 132	0	15	
Dibenz[a,h]anthracene	0.0940	0.0964	0.0833	0.0833	113	116	60 - 130	3	15	
Benzo[g,h,i]perylene	0.0957	0.0974	0.0833	0.0833	115	117	61 - 129	2	15	
Surrogate:										
2-Fluorobiphenyl					89	92	41 - 114			
Pyrene-d10					97	100	39 - 115			
Terphenyl-d14					99	103	44 - 125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

TOTAL LEAD EPA 6010D

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	G/A5-ESW-22.5-070621					
Laboratory ID:	07-039-01					
Lead	47	5.5	EPA 6010D	7-14-21	7-14-21	
Client ID:	G/A5-ESW-20.0-070621					
Laboratory ID:	07-039-02					
Lead	21000	7.3	EPA 6010D	7-14-21	7-14-21	
Client ID:	H/A5-ESW-22.5-070621					
Laboratory ID:	07-039-04					
Lead	22	5.7	EPA 6010D	7-14-21	7-14-21	
Client ID:	H/A5-ESW-20.0-070621					
Laboratory ID:	07-039-05					
Lead	1300	7.6	EPA 6010D	7-14-21	7-14-21	
Client ID:	H/A5-B-17.5-070621					
Laboratory ID:	07-039-07					
Lead	210	16	EPA 6010D	7-14-21	7-14-21	

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

							Date	Date	e		
Analyte	Result			PQL	Method		Prepared	Analyzed		Flags	
METHOD BLANK											
Laboratory ID:		MB0714SM	3								
Lead	ND		5.0		EPA 6010D			7-14-21	7-14-21		
					Source	Per	cent	Recovery		RPD	
Analyte	Result		Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-099-01										
	ORIG	DUP									
Lead	ND	ND	NA	NA		NA		NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-099-01										
	MS	MSD	MS	MSD		MS	MSD				
Lead	284	262	250	250	ND	113	105	75-125	8	20	

Date of Report: July 15, 2021 Samples Submitted: July 6, 2021 Laboratory Reference: 2107-039 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
G/A5-ESW-22.5-070621	07-039-01	9	7-9-21
G/A5-ESW-20.0-070621	07-039-02	32	7-9-21
G/A5-ESW-17.5-070621	07-039-03	69	7-9-21
H/A5-ESW-22.5-070621	07-039-04	12	7-9-21
H/A5-ESW-20.0-070621	07-039-05	34	7-9-21
H/A5-ESW-17.5-070621	07-039-06	71	7-9-21
H/A5-B-17.5-070621	07-039-07	69	7-9-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Wirk all Al	Relinquished	Signature	64 010	27020	=	6" HAG- 67N-17-5-078621	5 H/45-15W- 20.0 -070621	4 H/A5-5W-22-5-070621	3 GIAS - ESW- 17.5 -070621	2 6/25-53W-200-070621	1 G/AG- 5W-22-5-070621	Lab ID Sample Identification	sampled by: Greg Potes	Project Manager: Skzy Stringt	Project Name: Black 38 West	Project Number: 397-019	1/10	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
					0		Col		12			_	/			7/6/21	Date Sampled]]	X Stand	2 Days	(Che	iurn (in	4
Reviewed/Date					OSE	Javallon	Company		CILI	idit	1410	1400	1050	1050	Lhol	930	Time Sampled	(other)		Standard (7 Days)	s	ck One)	(in working days)	Cha
œ						an			1-	-	_				-	Soil	Matrix				3 Days	1 Day	(s)	Chain of Custody
)-			_			-	N	T	er of C	ontaine	Irs			11	C
						Li	Date	-	-	+		-			-		NWTP						Laboratory N	Sn
				1	6	76/21	te	+	-	+							NWTP	H-Gx	-		_		ora	ð
					2	1			>	5	X	X	×	×	7	×	NWTP	H-Dx (Acid	/ SG Cle	ean-up)		ton	9
Ì					F	161	Time			1	-						Volatil	es 8260	D	_		-		
					0	1	6										Haloge	enated	Volatiles	8260D			umber:	
																	EDB E	PA 801	1 (Wate	rs Only)			er:	
Chro	Data						Con									-			8270E/ PAHs)	SIM			0	
mato	Data Package:						Comments/Special Instructions										1		SIM (Iov	v-level)			-	
man	kage:						s/Spe										PCBs	_					0	
- with	Star						cial li	-	-	-								_	ne Pesti		200	- 1011 4	ω	
final	Standard						Istruc	 +	-	-				-	-	_		1.1.1	horus F			=/SIM	9	
Chromatograms with final raport							tions	 -	-	+						_	Total F			Dicides	AIGIO			
+	Level III							 +	+	-	_	_				-	Total N			_				
								 1		+							TCLP		-oraio					Page
								 $\left \right $		+		_	_						grease)	1664A				CD L
	Level IV							+	×		×	×	X	X	×	×								
Electronic Data Deliverables (EDDe)								-	r	-		×	×	-	X	X	Na	hta	lenes					of
									>	2		×	×		x	x	Tor	al.	lenes lead	1				
3									7	5	X	×	×	×	×	×	% Moi	sture						

July 30, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-039B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 6, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 30, 2021 Samples Submitted: July 6, 2021 Laboratory Reference: 2107-039B Project: 397-019

Case Narrative

Samples were collected on July 6, 2021 and received by the laboratory on July 6, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010D

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	G/A5-ESW-17.5-070621					
Laboratory ID:	07-039-03					
Lead	240	16	EPA 6010D	7-27-21	7-27-21	

Client ID:	H/A5-ESW-17.5-070621					
Laboratory ID:	07-039-06					
Lead	96	17	EPA 6010D	7-27-21	7-27-21	

3

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

								Date	Dat	e	
Analyte		Result		PQL	Μ	ethod		Prepared	Analy	zed	Flags
METHOD BLANK											
Laboratory ID:	ļ	MB0727SM ²	1								
Lead		ND		5.0	EP	A 6010	D	7-27-21	7-27-	21	
					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-2	53-01									
	ORIG	DUP									
Lead	16.2	12.9	NA	NA		Ν	١A	NA	23	20	С
MATRIX SPIKES											
Laboratory ID:	07-2	53-01									
	MS	MSD	MS	MSD		MS	MSD				
Lead	253	254	250	250	16.2	95	95	75-125	0	20	

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	G/A5-ESW-17.5-070621	l				
Laboratory ID:	07-039-03					
Naphthalene	0.30	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
2-Methylnaphthalene	0.092	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
1-Methylnaphthalene	0.053	0.021	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	41 - 114				
Pyrene-d10	102	39 - 115				
Terphenyl-d14	94	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H/A5-ESW-17.5-070621					
Laboratory ID:	07-039-06					
Naphthalene	0.19	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
2-Methylnaphthalene	0.13	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
1-Methylnaphthalene	0.060	0.023	EPA 8270E/SIM	7-7-21	7-8-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	41 - 114				
Pyrene-d10	83	39 - 115				
Terphenyl-d14	83	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0707S2					
Naphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-7-21	7-7-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	104	41 - 114				
Pyrene-d10	101	39 - 115				
Terphenyl-d14	96	44 - 125				

....

D . 4

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	′07S2								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0768	0.0821	0.0833	0.0833	92	99	57 - 117	7	16	
Acenaphthylene	0.0815	0.0854	0.0833	0.0833	98	103	58 - 126	5	15	
Acenaphthene	0.0821	0.0862	0.0833	0.0833	99	103	61 - 122	5	15	
Fluorene	0.0883	0.0909	0.0833	0.0833	106	109	59 - 127	3	15	
Phenanthrene	0.0877	0.0892	0.0833	0.0833	105	107	58 - 124	2	15	
Anthracene	0.0909	0.0920	0.0833	0.0833	109	110	64 - 128	1	15	
Fluoranthene	0.0922	0.0959	0.0833	0.0833	111	115	63 - 128	4	15	
Pyrene	0.0919	0.0910	0.0833	0.0833	110	109	62 - 129	1	15	
Benzo[a]anthracene	0.0890	0.0919	0.0833	0.0833	107	110	64 - 138	3	15	
Chrysene	0.0929	0.0946	0.0833	0.0833	112	114	63 - 128	2	15	
Benzo[b]fluoranthene	0.0850	0.0906	0.0833	0.0833	102	109	62 - 129	6	15	
Benzo(j,k)fluoranthene	0.103	0.104	0.0833	0.0833	124	125	59 - 134	1	16	
Benzo[a]pyrene	0.101	0.103	0.0833	0.0833	121	124	63 - 132	2	15	
Indeno(1,2,3-c,d)pyrene	0.0869	0.0872	0.0833	0.0833	104	105	58 - 132	0	15	
Dibenz[a,h]anthracene	0.0940	0.0964	0.0833	0.0833	113	116	60 - 130	3	15	
Benzo[g,h,i]perylene	0.0957	0.0974	0.0833	0.0833	115	117	61 - 129	2	15	
Surrogate:										
2-Fluorobiphenyl					89	92	41 - 114			
Pyrene-d10					97	100	39 - 115			
Terphenyl-d14					99	103	44 - 125			

8

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
G/A5-ESW-17.5-070621	07-039-03	69	7-9-21
H/A5-ESW-17.5-070621	07-039-06	71	7-9-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Received	Relinquished	Received	Relinquished	Received Wichele A	Relinquished	Signature		84		HAG-B-070621 H/A5-B-17.5-	HAG-GN-17-5-070621	M/45-55W-2000-070621	H/A5-5W-22-5-070621	6/15- 5W-17.5-070621	G125-E3W-20-0-070621	G/AG-5W-22-5-070621	Lab ID Sample Identification	sampled by: Gres Poters	Skzy Strayt	Project Name: Black 38 West	Project Number: 397-019	110	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
				0 05	Facult	Company			129	(14/0	1400	1 1050	1050	hol]	7/6/21 430	Date Tim Sampled Samp	(ot		X Standard (7 D	2 Days	(Check	Turnaround (in workin	C
				Ē	allon					77					7 1 1	Soil 5	Matrix		Contain		3 Days	One)	l Request lg days)	hain of
			1 -1 -1 -	716121 10	7/6/21 16	Date Tim				X	X	X	×	×	7	X	NWTP NWTP NWTP	H-Gx/I H-Gx H-Dx (BTEX	/ SG Cle	ean-up)		Laboratory Nu	Chain of Custody
Data Packa			• (X												EDB E Semiv (with to PAHs to	PA 801 olatiles ow-leve 8270E/	8270E) 8270E) PAHs) SIM (Iov	ers Only) /SIM			ımber: 07 -	
Standard []		1000	12/22/21.	122/	dded 7/20/21	Special Instructions											Organo Chlorir Total F	ophosp nated A RCRA N	horus F Acid Her Metals	esticide	s 8270E	E/SIM	039	-
		(P3/6	NG NG	. 28 (STA)					XXX	×	XXX	XXX	x o Ø	XXX	XXX	HEM (oil and AHS	grease)					Page of
	Data Package: Standard Level III Level IV	Data Package: Standard Level III Level IV	Data Package: Standard Level III Level IV	Data Package: Standard Level III Level	hed Michael Auguna OSC 7/16/21 16/7 O Added 7/23/21. 23 (S. Andred 7/28/21. 23 (S. Andred 7/28/21. 24) (S. Andred 7/28/21. 25 (S. Andred 7/28/21. 25)	hed Michael Andre Grandlin 76/51 1617 (Added 7/20/21. 28 (hed Michael Andre 7/20/21. 28 (hed Data Package: Standard Level III Level	Signature Company Date Time Comments/Special Instructions ned Image: Standard Falualiban Th/si 16/17 SAdded 7/20/21.98 (S hed Image: Standard OSE The/si 16/17 SAdded 7/20/21.98 (S hed Image: Standard Image: Standard Image: Standard Level III	Signature Company Date Time Comments/Special Instructions hed $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}}$ hed $\widehat{\mathcal{M}}_{\mathcal{M}}$ $\widehat{\mathcal{M}}_{\mathcal{M}$	Signature Company Date Time Comments/Special Instructions hed Induction Induction I/($1/2$) I/($1/2$)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Burnel in the second of property of the second of t	$ \begin{array}{ $	$ \begin{array}{ c c c c c c c c c c c c c $	Addiest laterery Finde Server Prove Highlight Laterery Finde Server Prove Highlight Laterery Finde Server Prove Highlight Laterery Finde Prove Highlight Laterery F

July 20, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-084

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 9, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 20, 2021 Samples Submitted: July 9, 2021 Laboratory Reference: 2107-084 Project: 397-019

Case Narrative

Samples were collected on July 9, 2021 and received by the laboratory on July 9, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270E/SIM Analysis

Sample I/A5-ESW-17.5-070921 had one surrogate recovery outside of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
I/A5-ESW-22.5-070921			-		
07-084-01					
82	30	NWTPH-Dx	7-12-21	7-12-21	Ν
550	60	NWTPH-Dx	7-12-21	7-12-21	
Percent Recoverv	Control Limits				
96	50-150				
I/45-ESW-20 0-070921					
	450		7 10 01	7 16 21	N
					IN
			1-12-21	7-10-21	
•					S
	50-150				3
I/A5-ESW-17.5-070921					
07-084-03					
1400	50	NWTPH-Dx	7-12-21	7-12-21	Ν
3000	100	NWTPH-Dx	7-12-21	7-12-21	
Percent Recovery	Control Limits				
75	50-150				
I/A5-B-17.5-070921					
	59		7-12-21	7-12-21	N
-					
		NWITTEDX	1-12-21	1-12-21	
86	50-150				
					Ν
		NWTPH-Dx	7-12-21	7-12-21	
	Control Limits				
114	50-150				
J/A5-ESW-20.0-070921					
	46	NWTPH-Dx	7-12-21	7-12-21	N
			= = .		
70	50-150				
	I/A5-ESW-22.5-070921 07-084-01 82 550 Percent Recovery 96 I/A5-ESW-20.0-070921 07-084-02 520 4100 Percent Recovery I/A5-ESW-17.5-070921 07-084-03 1400 3000 Percent Recovery 75 I/A5-B-17.5-070921 07-084-04 87 230 Percent Recovery 86 J/A5-ESW-22.5-070921 07-084-05 230 1700 Percent Recovery 114	I/A5-ESW-22.5-070921 07-084-01 30 82 30 550 60 Percent Recovery Control Limits 96 50-150 I/A5-ESW-20.0-070921 50-150 07-084-02 450 96 900 Percent Recovery Control Limits 50-150 50-150 I/A5-ESW-17.5-070921 07-084-03 07-084-03 50 1/A5-ESW-17.5-070921 07-084-03 07-084-03 100 Percent Recovery Control Limits 75 50-150 I/A5-ESW-17.5-070921 07-084-05 07-084-04 50 100 120 Percent Recovery Control Limits 86 50-150 J/A5-ESW-22.5-070921 07-084-05 07-084-05 30 114 50-150 J/A5-ESW-20.0-070921 07-084-05 07-084-05 30 114 50-150 114 50-150	I/A5-ESW-22.5-070921 07-084-01 30 NWTPH-Dx 82 30 NWTPH-Dx 550 60 NWTPH-Dx Percent Recovery 96 Control Limits 96 NWTPH-Dx VA5-ESW-20.0-070921 07-084-02 NWTPH-Dx 07-084-02 450 NWTPH-Dx Percent Recovery Percent Recovery Control Limits 50-150 NWTPH-Dx VA5-ESW-17.5-070921 07-084-03 NWTPH-Dx NWTPH-Dx Percent Recovery 75 50-150 NWTPH-Dx Percent Recovery 75 Control Limits 50-150 NWTPH-Dx Percent Recovery 75 Control Limits 50-150 NWTPH-Dx Percent Recovery 75 Control Limits 75 NWTPH-Dx Percent Recovery 70-084-04 S0 NWTPH-Dx Percent Recovery 70-084-05 Control Limits 86 NWTPH-Dx Percent Recovery 714 30 NWTPH-Dx Percent Recovery 714 S0-150 NWTPH-Dx NWTPH-Dx 50-150 NWTPH-Dx Percent Recovery 714 S0-150 NWTPH-Dx Percent Recovery 714 S0-150 NWTPH-Dx <td>Result PQL Method Prepared I/A5-ESW-22.5-070921 07-084-01 30 NWTPH-Dx 7-12-21 82 30 NWTPH-Dx 7-12-21 82 30 NWTPH-Dx 7-12-21 96 50-150 7-12-21 7-12-21 Percent Recovery Control Limits 7-12-21 07-084-02 450 NWTPH-Dx 7-12-21 1/A5-ESW-20.0-070921 07-084-02 7-12-21 07-084-03 Control Limits 7-12-21 07-084-03 100 NWTPH-Dx 7-12-21 1/A5-ESW-17.5-070921 0100 NWTPH-Dx 7-12-21 07-084-04 50 NWTPH-Dx 7-12-21 Percent Recovery Control Limits 7 7-12-21 07-084-04 120 NWTPH-Dx 7-12-21 Percent Recovery Control Limits 86 50-150 J/A5-ESW-22.5-070921 07-084-05 7-12-21 7-12-21 07-084-05 07-084-05 7-12-21 114 50-1</td> <td>Result PQL Method Prepared Analyzed U/A5-ESW-22.5-070921 07-084-01 07-084-01 7.12-21 7.12-21 550 60 NWTPH-Dx 7.12-21 7.12-21 96 50-150 7.12-21 7.12-21 7.12-21 Percent Recovery Control Limits 96 7.12-21 7.16-21 1/A5-ESW-20.0-070921 07-084-02 NWTPH-Dx 7.12-21 7.16-21 1/A5-ESW-20.0-070921 07-084-02 S00 NWTPH-Dx 7.12-21 7.16-21 1/A5-ESW-17.5-070921 07-084-03 S0 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-17.5-070921 07-084-03 S0 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-20.5-070921 07-084-04 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-05 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-05 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-06 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-06</td>	Result PQL Method Prepared I/A5-ESW-22.5-070921 07-084-01 30 NWTPH-Dx 7-12-21 82 30 NWTPH-Dx 7-12-21 82 30 NWTPH-Dx 7-12-21 96 50-150 7-12-21 7-12-21 Percent Recovery Control Limits 7-12-21 07-084-02 450 NWTPH-Dx 7-12-21 1/A5-ESW-20.0-070921 07-084-02 7-12-21 07-084-03 Control Limits 7-12-21 07-084-03 100 NWTPH-Dx 7-12-21 1/A5-ESW-17.5-070921 0100 NWTPH-Dx 7-12-21 07-084-04 50 NWTPH-Dx 7-12-21 Percent Recovery Control Limits 7 7-12-21 07-084-04 120 NWTPH-Dx 7-12-21 Percent Recovery Control Limits 86 50-150 J/A5-ESW-22.5-070921 07-084-05 7-12-21 7-12-21 07-084-05 07-084-05 7-12-21 114 50-1	Result PQL Method Prepared Analyzed U/A5-ESW-22.5-070921 07-084-01 07-084-01 7.12-21 7.12-21 550 60 NWTPH-Dx 7.12-21 7.12-21 96 50-150 7.12-21 7.12-21 7.12-21 Percent Recovery Control Limits 96 7.12-21 7.16-21 1/A5-ESW-20.0-070921 07-084-02 NWTPH-Dx 7.12-21 7.16-21 1/A5-ESW-20.0-070921 07-084-02 S00 NWTPH-Dx 7.12-21 7.16-21 1/A5-ESW-17.5-070921 07-084-03 S0 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-17.5-070921 07-084-03 S0 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-20.5-070921 07-084-04 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-05 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-05 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-06 I20 NWTPH-Dx 7.12-21 7.12-21 1/A5-ESW-22.5-070921 07-084-06

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	J/A5-ESW-17.5-070921					
Laboratory ID:	07-084-07					
Diesel Range Organics	ND	32	NWTPH-Dx	7-12-21	7-16-21	
Lube Oil Range Organics	110	63	NWTPH-Dx	7-12-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712S3					
Diesel Range Organics	ND	25	NWTPH-Dx	7-12-21	7-12-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-08	33-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil	3450	1450	NA	NA		NA	NA	82	NA	
Surrogate:										
o-Terphenyl						104	50-150			S

5

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	I/A5-ESW-22.5-070921					
Laboratory ID:	07-084-01					
Naphthalene	0.11	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
2-Methylnaphthalene	0.097	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
1-Methylnaphthalene	0.084	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]anthracene	1.6	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	1.6	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	2.0	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	0.51	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	2.0	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	1.2	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	0.19	0.079	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	41 - 114				
Pyrene-d10	64	39 - 115				
Terphenyl-d14	60	44 - 125				

Client ID:	I/A5-ESW-20.0-070921					
Laboratory ID:	07-084-02					
Naphthalene	0.67	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
2-Methylnaphthalene	0.50	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
1-Methylnaphthalene	0.37	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]anthracene	2.5	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	3.0	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	3.2	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	1.1	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	3.2	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	1.9	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	0.32	0.060	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	41 - 114				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	71	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	I/A5-ESW-17.5-070921					
Laboratory ID:	07-084-03					
Benzo[a]anthracene	91	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Chrysene	110	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo[b]fluoranthene	120	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo(j,k)fluoranthene	24	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo[a]pyrene	120	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Indeno(1,2,3-c,d)pyrene	69	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Dibenz[a,h]anthracene	9.1	2.7	EPA 8270E/SIM	7-12-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	105	41 - 114				
Pyrene-d10	101	39 - 115				
Terphenyl-d14	130	44 - 125				Q

Client ID:	I/A5-B-17.5-070921					
Laboratory ID:	07-084-04					
Naphthalene	9.8	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
2-Methylnaphthalene	8.8	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
1-Methylnaphthalene	7.5	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo[a]anthracene	62	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Chrysene	56	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo[b]fluoranthene	58	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo(j,k)fluoranthene	19	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Benzo[a]pyrene	70	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Indeno(1,2,3-c,d)pyrene	37	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Dibenz[a,h]anthracene	4.8	0.79	EPA 8270E/SIM	7-12-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	41 - 114				
Pyrene-d10	106	39 - 115				
Terphenyl-d14	104	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	J/A5-ESW-22.5-070921	l				
Laboratory ID:	07-084-05					
Benzo[a]anthracene	1.2	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	1.3	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	1.5	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	0.47	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	1.5	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	0.93	0.16	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	0.18	0.0080	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	41 - 114				
Pyrene-d10	76	39 - 115				
Terphenyl-d14	74	44 - 125				

Client ID:	J/A5-ESW-20.0-070921					
Laboratory ID:	07-084-06					
Benzo[a]anthracene	6.0	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	5.6	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	5.8	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	2.1	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	6.5	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	3.5	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	0.57	0.24	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	41 - 114				
Pyrene-d10	65	39 - 115				
Terphenyl-d14	70	44 - 125				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	J/A5-ESW-17.5-070921					
Laboratory ID:	07-084-07					
Benzo[a]anthracene	0.66	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	0.68	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	0.74	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	0.24	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	0.87	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	0.47	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	0.067	0.0084	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	41 - 114				
Pyrene-d10	90	39 - 115				
Terphenyl-d14	84	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-12-21	7-12-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	41 - 114				
Pyrene-d10	89	39 - 115				
Terphenyl-d14	88	44 - 125				

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	′12S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0765	0.0736	0.0833	0.0833	92	88	57 - 117	4	16	
Acenaphthylene	0.0823	0.0785	0.0833	0.0833	99	94	58 - 126	5	15	
Acenaphthene	0.0804	0.0757	0.0833	0.0833	97	91	61 - 122	6	15	
Fluorene	0.0805	0.0752	0.0833	0.0833	97	90	59 - 127	7	15	
Phenanthrene	0.0779	0.0727	0.0833	0.0833	94	87	58 - 124	7	15	
Anthracene	0.0804	0.0762	0.0833	0.0833	97	91	64 - 128	5	15	
Fluoranthene	0.0777	0.0719	0.0833	0.0833	93	86	63 - 128	8	15	
Pyrene	0.0753	0.0695	0.0833	0.0833	90	83	62 - 129	8	15	
Benzo[a]anthracene	0.0788	0.0711	0.0833	0.0833	95	85	64 - 138	10	15	
Chrysene	0.0785	0.0749	0.0833	0.0833	94	90	63 - 128	5	15	
Benzo[b]fluoranthene	0.0800	0.0817	0.0833	0.0833	96	98	62 - 129	2	15	
Benzo(j,k)fluoranthene	0.0799	0.0685	0.0833	0.0833	96	82	59 - 134	15	16	
Benzo[a]pyrene	0.0784	0.0740	0.0833	0.0833	94	89	63 - 132	6	15	
Indeno(1,2,3-c,d)pyrene	0.0812	0.0733	0.0833	0.0833	97	88	58 - 132	10	15	
Dibenz[a,h]anthracene	0.0756	0.0708	0.0833	0.0833	91	85	60 - 130	7	15	
Benzo[g,h,i]perylene	0.0796	0.0747	0.0833	0.0833	96	90	61 - 129	6	15	
Surrogate:										
2-Fluorobiphenyl					89	85	41 - 114			
Pyrene-d10					84	81	39 - 115			
Terphenyl-d14					82	81	44 - 125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

D . 4

....

10

TOTAL METALS EPA 6010D

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags		
Client ID:	I/A5-ESW-22.5-070921							
Laboratory ID:	07-084-01							
Lead	260	6.0	EPA 6010D	7-16-21	7-16-21			
Client ID:	I/A5-ESW-20.0-070921							
Laboratory ID:	07-084-02							
Lead	2600	9.0	EPA 6010D	7-16-21	7-16-21			
Client ID:	l/A5-B-17.5-070921							
Laboratory ID:	07-084-04							
Lead	130	12	EPA 6010D	7-16-21	7-16-21			
Client ID:	J/A5-ESW-22.5-070921							
Laboratory ID:	07-084-05							
Cadmium	0.64	0.60	EPA 6010D	7-16-21	7-16-21			
Lead	260	6.0	EPA 6010D	7-16-21	7-16-21			
Client ID:	J/A5-ESW-20.0-070921							
Laboratory ID:	07-084-06							
Cadmium	ND	0.91	EPA 6010D	7-16-21	7-16-21			
Lead	420	9.1	EPA 6010D	7-16-21	7-16-21			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB0716SM2						
Cadmium	ND	0.50	EPA 6010D	7-16-21	7-16-21		
Lead	ND	5.0	EPA 6010D	7-16-21	7-16-21		

				Source			rcent	Recovery		RPD	Flags	
Analyte	Res	sult	Spike	Spike Level		Recovery		Limits	RPD	Limit		
DUPLICATE												
Laboratory ID:	07-09	92-02										
	ORIG	DUP										
Cadmium	ND	ND	NA	NA		NA		NA	NA	20		
Lead	25.1	25.0	NA	NA			NA	NA	0	20		
MATRIX SPIKES												
Laboratory ID:	07-09	92-02										
	MS	MSD	MS	MSD		MS	MSD					
Cadmium	48.0	47.4	50.0	50.0	ND	96	95	75-125	1	20		
Lead	263	256	250	250	25.1	95	92	75-125	3	20		

Date of Report: July 20, 2021 Samples Submitted: July 9, 2021 Laboratory Reference: 2107-084 Project: 397-019

% MOISTURE

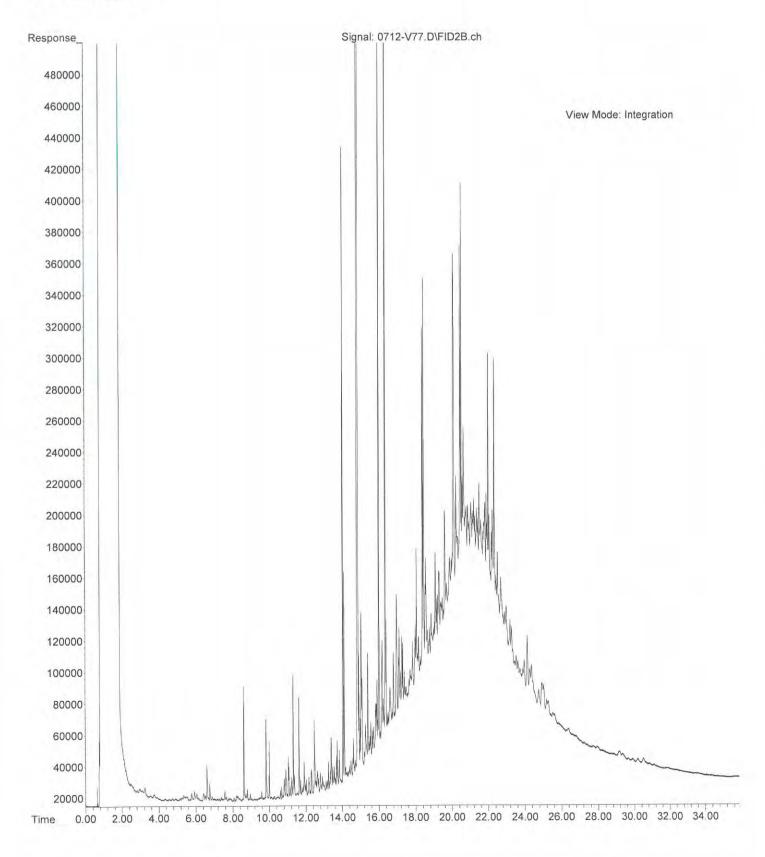
Client ID	Lab ID	% Moisture	Date Analyzed
I/A5-ESW-22.5-070921	07-084-01	16	7-13-21
I/A5-ESW-20.0-070921	07-084-02	44	7-13-21
I/A5-ESW-17.5-070921	07-084-03	50	7-13-21
I/A5-B-17.5-070921	07-084-04	58	7-13-21
J/A5-ESW-22.5-070921	07-084-05	16	7-13-21
J/A5-ESW-20.0-070921	07-084-06	45	7-13-21
J/A5-ESW-17.5-070921	07-084-07	21	7-13-21

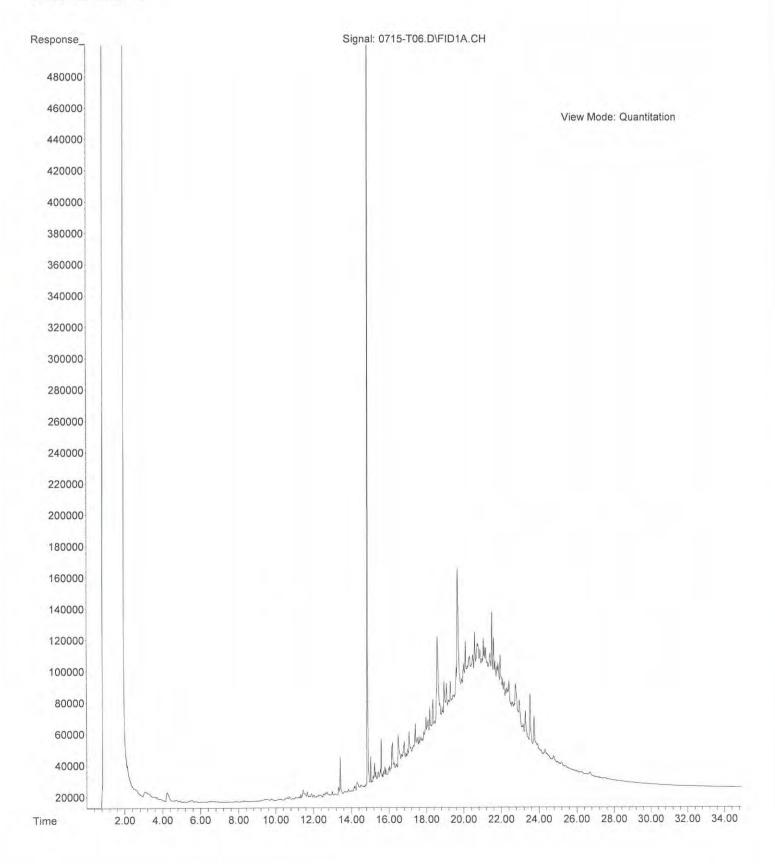
OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

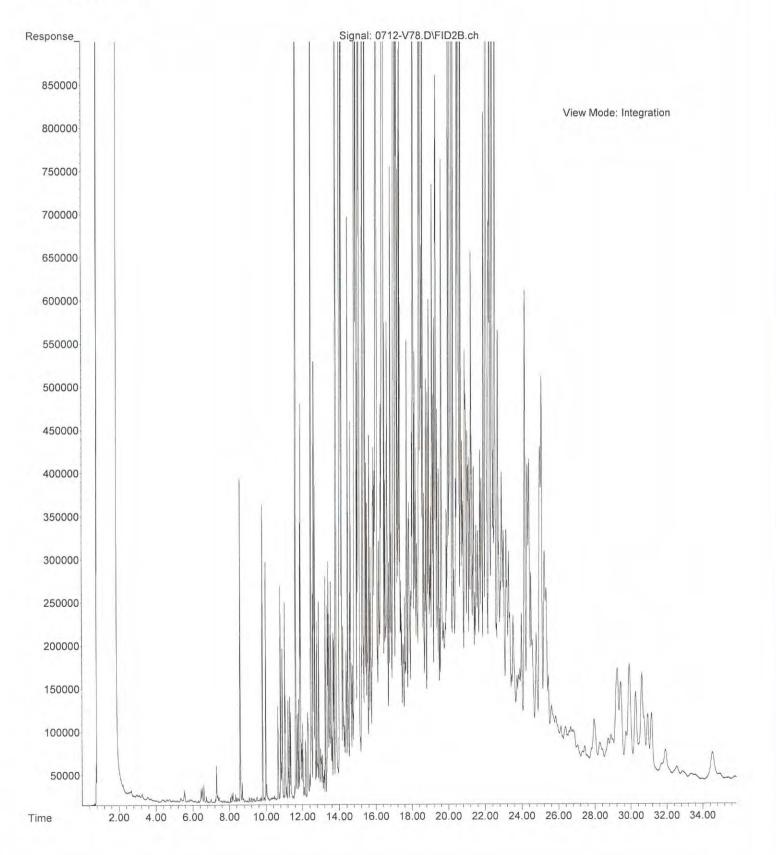
- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

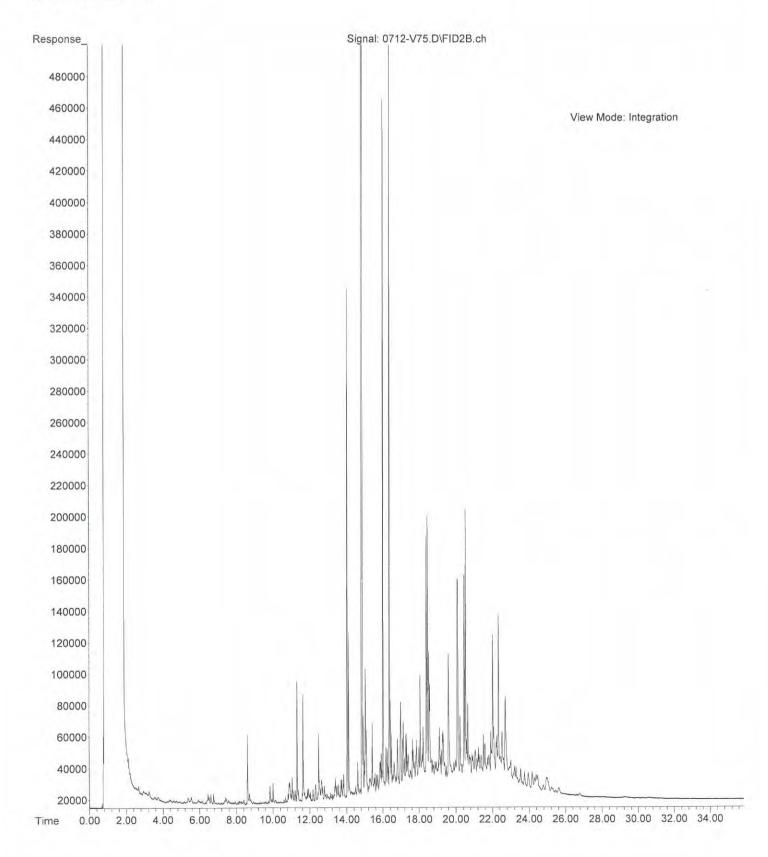
Ζ-

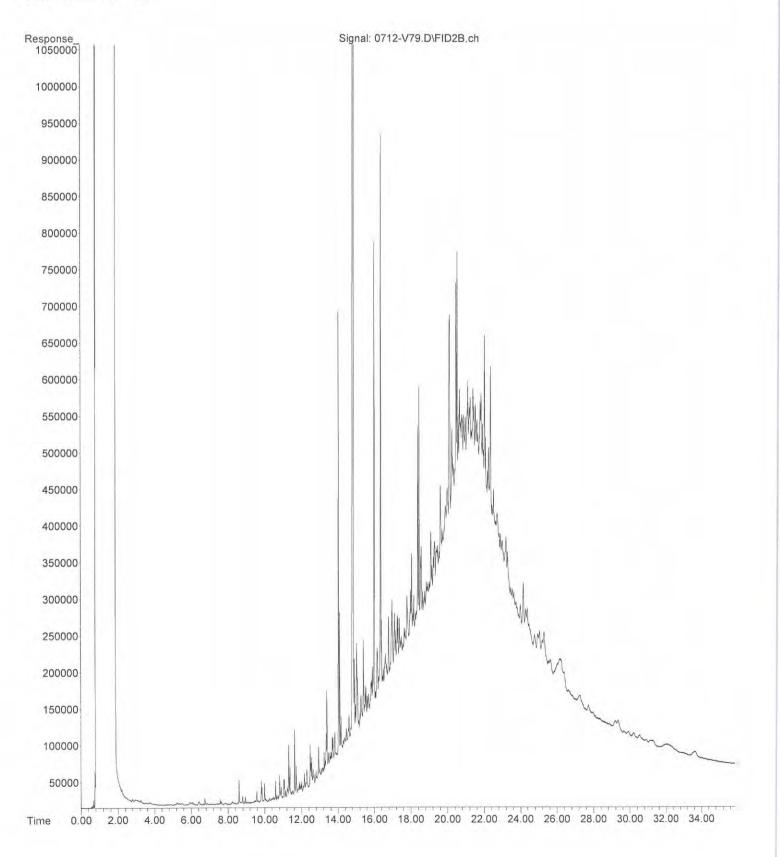

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

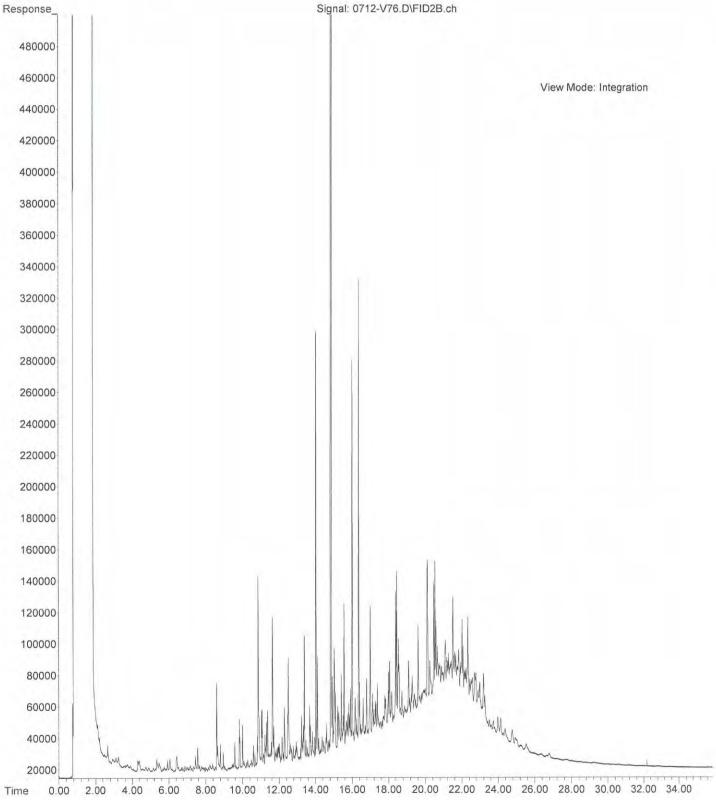

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

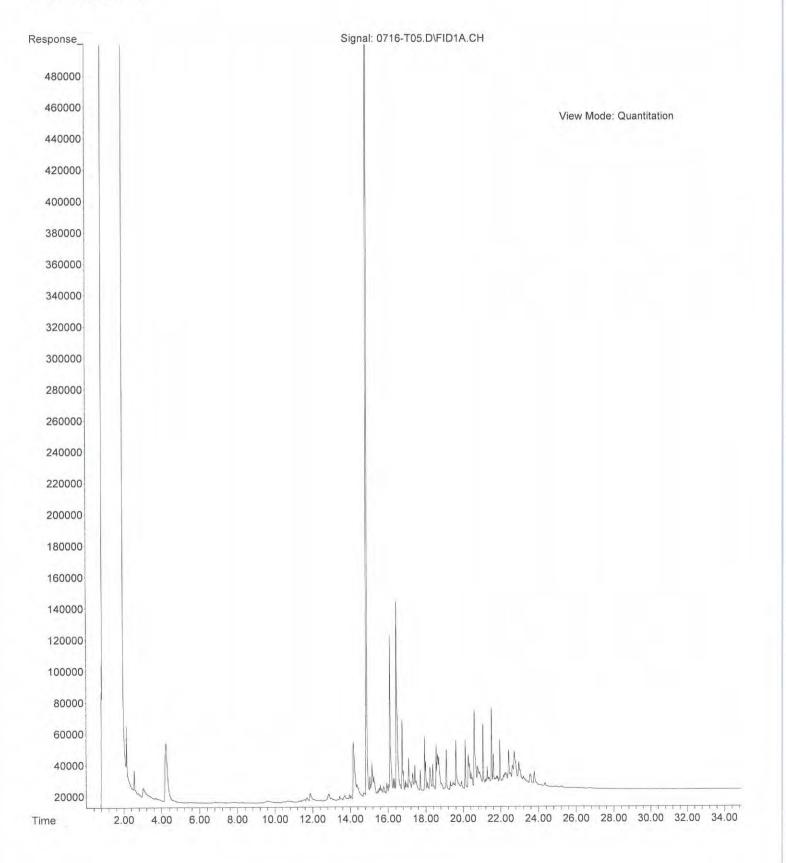
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received O	Relinquished	Signature 0			7 JAS- 5W- 17.5-07921	6 J/A5-ESW-20.0-0921	5 J/A5-5W-22-5-070921	4 I/AS- B-17.5-070921	3 IJA5-ESW-M.5-070921	2 I(AS- EN-20.0 070921	1 I/AS-55W-22.5-070921	Lab ID Sample Identification	sampled by: Greg Zetus	Project Manager: Surzy Strungt	Project Name: Wack 38 West	Project Number: 397-019	17	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date						howallow	Company	(T Moo	1355	1350	1720	1315	1 1210	7/4/21 1700	Date Time Sampled Sampled	(other)]	X Standard (7 Days)	2 Days	Same Day	Turnaround Request (in working days)	Cha
ē					2020	И		14	RA I							5011 3	1	er of C	ontaine D	rs	3 Days	1 Day	8	Chain of Custody
					7/9/21	7/9/21 1	Date Time			×	X	×	×	X	X	×	NWTP		Acid	∕ SG Cl€	ean-up)		Laboratory N	istody
Ch	Da				1614	614											EDB E Semiv	PA 801	Volatiles 1 (Wate 8270E/	rs Only)			umber:	
Chromatograms with	Data Package: Sta						Comments/Special Instructions										PAHs PCBs Organ	8270E/ 8082A ochlorir	el PAHs) SIM (low	cides 80			07-08	
with final report 🗌 E	Standard Level						nstructions					7					Chlorii Total F	1				E/SIM	4	
Electronic Data Deliverables (EDDs)																	TCLP		grease)	16644				Page
Data Deliv	Level IV												×		X	×			lenes	1004A				1_ of
erables (I										\times	XX	XX	XX	X	XX	XX	en La	AHS						-
EDDs)										E	X	×				×	CAA % Mois	Infi sture	un				-	


File :X:\DIESELS\Vigo\Data\V210712.SEC\0712-V77.D Operator : JT Acquired : 13 Jul 2021 00:56 using AcqMethod V210519F.M Instrument : Vigo Sample Name: 07-084-01 Misc Info : Vial Number: 77


File :X:\DIESELS\Teri\Data\T210716\0715-T06.D
Operator : JT
Acquired : 16 Jul 2021 17:00 using AcqMethod T210205F.M
Instrument : Teri
Sample Name: 07-084-02 10X
Misc Info :
Vial Number: 6


File :X:\DIESELS\Vigo\Data\V210712.SEC\0712-V78.D
Operator : JT
Acquired : 13 Jul 2021 1:36 using AcqMethod V210519F.M
Instrument : Vigo
Sample Name: 07-084-03
Misc Info :
Vial Number: 78


File :X:\DIESELS\Vigo\Data\V210712.SEC\0712-V75.D
Operator : JT
Acquired : 12 Jul 2021 23:35 using AcqMethod V210519F.M
Instrument : Vigo
Sample Name: 07-084-04
Misc Info :
Vial Number: 75


File :X:\DIESELS\Vigo\Data\V210712.SEC\0712-V79.D Operator : JT Acquired : 13 Jul 2021 2:16 using AcqMethod V210519F.M Instrument : Vigo Sample Name: 07-084-05 Misc Info : Vial Number: 79

File :X:\DIESELS\Vigo\Data\V210712.SEC\0712-V76.D Operator : JT Acquired : 13 Jul 2021 00:15 using AcqMethod V210519F.M Instrument : Vigo Sample Name: 07-084-06 Misc Info : Vial Number: 76

File :X:\DIESELS\Teri\Data\T210716\0716-T05.D
Operator : JT
Acquired : 16 Jul 2021 16:17 using AcqMethod T210205F.M
Instrument : Teri
Sample Name: 07-084-07
Misc Info :
Vial Number: 5

July 19, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-095

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 12, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 19, 2021 Samples Submitted: July 12, 2021 Laboratory Reference: 2107-095 Project: 397-019

Case Narrative

Samples were collected on July 12, 2021 and received by the laboratory on July 12, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	L/A5-ESW-25.0-071221			-		
Laboratory ID:	07-095-01					
Diesel Range Organics	80	28	NWTPH-Dx	7-13-21	7-16-21	Ν
Lube Oil Range Organics	500	56	NWTPH-Dx	7-13-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	L/A5-ESW-22.5-071221					
Laboratory ID:	07-095-02					
Diesel Range Organics	31	29	NWTPH-Dx	7-13-21	7-16-21	Ν
Lube Oil Range Organics	200	57	NWTPH-Dx	7-13-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	L/A5-B-22.0-071221					
Laboratory ID:	07-095-03					
Diesel Range Organics	ND	29	NWTPH-Dx	7-13-21	7-16-21	
Lube Oil Range Organics	ND	57	NWTPH-Dx	7-13-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0713S2					
Diesel Range Organics	ND	25	NWTPH-Dx	7-13-21	7-13-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-13-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB07	13S2									
	ORIG	DUP									
Diesel Fuel #2	84.0	82.7	NA	NA		NA	٩	NA	2	NA	
Surrogate:											
o-Terphenyl						87	87	50-150			

Matrix: Soil Units: mg/Kg

Analyta	Beault	DOI	Mathad	Date Bronorod	Date	Flores
Analyte Client ID:	Result L/A5-ESW-25.0-071221	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	07-095-01					
Benzo[a]anthracene	<u> </u>	0.075	EPA 8270E/SIM	7-13-21	7-13-21	
Chrysene	1.9	0.075	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[b]fluoranthene	2.1	0.075	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo(j,k)fluoranthene	0.68	0.075	EPA 8270E/SIM	7-13-21	7-13-21	
	2.2	0.075	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[a]pyrene	1.3				7-13-21	
Indeno(1,2,3-c,d)pyrene		0.075 0.075	EPA 8270E/SIM	7-13-21		
Dibenz[a,h]anthracene	0.18		EPA 8270E/SIM	7-13-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	41 - 114				
Pyrene-d10	76	39 - 115				
Terphenyl-d14	78	44 - 125				
Client ID:	L/A5-ESW-22.5-071221					
Laboratory ID:	07-095-02					
Benzo[a]anthracene	0.37	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Chrysene	0.41	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[b]fluoranthene	0.41	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo(j,k)fluoranthene	0.14	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[a]pyrene	0.41	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Indeno(1,2,3-c,d)pyrene	0.22	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Dibenz[a,h]anthracene	ND	0.038	EPA 8270E/SIM	7-13-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	41 - 114				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	74	44 - 125				
Client ID:	L/A5-B-22.0-071221					
Laboratory ID:	07-095-03					
Benzo[a]anthracene	0.13	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Chrysene	0.13	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[b]fluoranthene	0.14	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo(j,k)fluoranthene	0.048	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[a]pyrene	0.15	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Indeno(1,2,3-c,d)pyrene	0.090	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Dibenz[a,h]anthracene	0.012	0.0076	EPA 8270E/SIM	7-13-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits		r - 10-2 1	r - 10-21	
2-Fluorobiphenyl	85	41 - 114				
2-Fluorobiphenyi Pyrene-d10	89	41 - 114 39 - 115				
•						
Terphenyl-d14	86	44 - 125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0713S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-13-21	7-13-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	105	41 - 114				
Pyrene-d10	100	39 - 115				
Terphenyl-d14	110	44 - 125				

. . .

. .

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	'13S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0892	0.0916	0.0833	0.0833	107	110	64 - 138	3	15	
Chrysene	0.0956	0.0890	0.0833	0.0833	115	107	63 - 128	7	15	
Benzo[b]fluoranthene	0.0998	0.0977	0.0833	0.0833	120	117	62 - 129	2	15	
Benzo(j,k)fluoranthene	0.0921	0.0896	0.0833	0.0833	111	108	59 - 134	3	16	
Benzo[a]pyrene	0.0958	0.0984	0.0833	0.0833	115	118	63 - 132	3	15	
Indeno(1,2,3-c,d)pyrene	0.0942	0.0967	0.0833	0.0833	113	116	58 - 132	3	15	
Dibenz[a,h]anthracene	0.0962	0.0935	0.0833	0.0833	115	112	60 - 130	3	15	
Surrogate:										
2-Fluorobiphenyl					105	104	41 - 114			
Pyrene-d10					102	98	39 - 115			
Terphenyl-d14					101	96	44 - 125			

Date of Report: July 19, 2021 Samples Submitted: July 12, 2021 Laboratory Reference: 2107-095 Project: 397-019

% MOISTURE

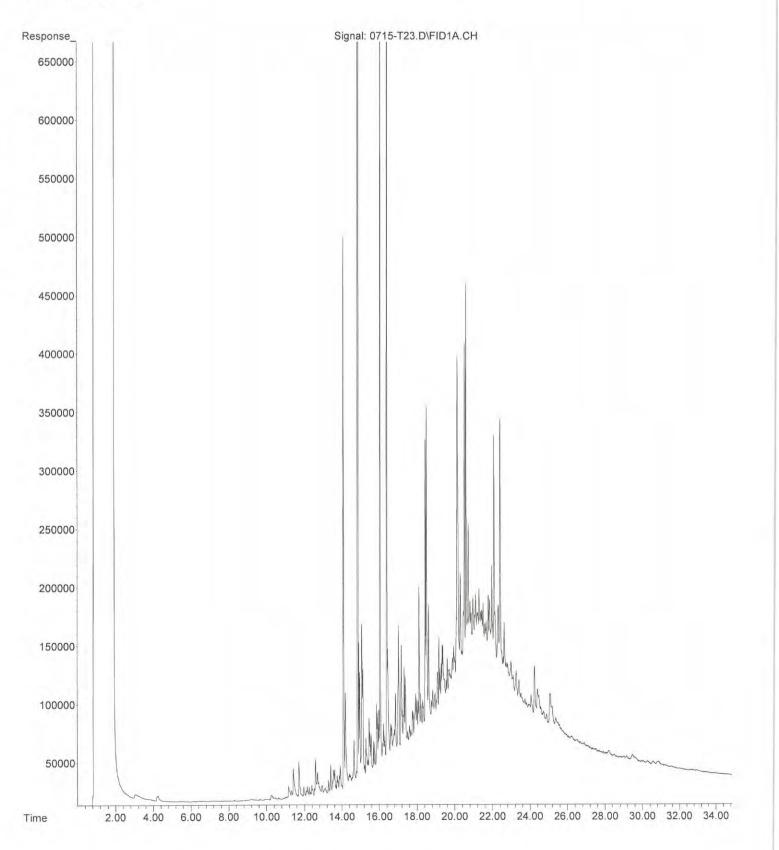
Client ID	Lab ID	% Moisture	Date Analyzed
L/A5-ESW-25.0-071221	07-095-01	11	7-13-21
L/A5-ESW-22.5-071221	07-095-02	13	7-13-21
L/A5-B-22.0-071221	07-095-03	13	7-13-21

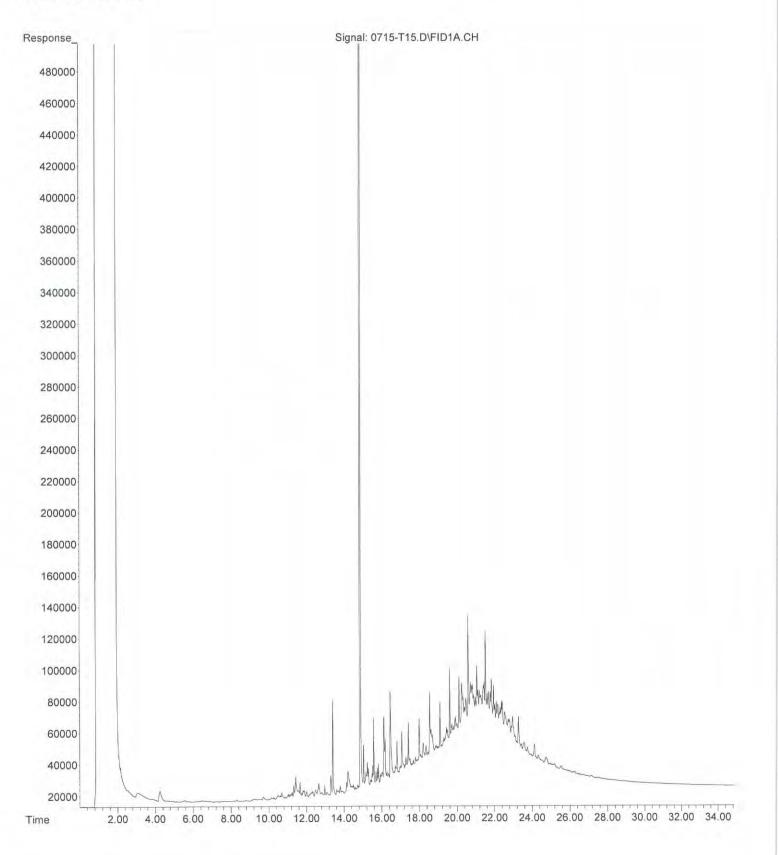
OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-


ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference


OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				3 WAS-B-22.0-071221	2 4145-53W-22-5-071221	1 4/A5-ESW-250-571221	Lab ID Sample Identification	sampied by: Greg Fetces	Project Manager: Sury Animpt	Project Name: Black 38 What t	superinania 397-019	Company: Favaller Consulting	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date						Ferral	Company				7/12/2 1247	7/12/21 1242	7/10/21 1237	Date Time Sampled Sampled	(other)		X Standard (7 Days)	2 Days	Same Day	(in working days)	Cha
ite					SAC.	The second secon	0				5012 2	501/2	50% 2	1	H-HCI		ers	3 Days	1 Day	1	Chain of Custody
					2/14/21 150	1/12/21 1501	Date Time				×	×	×	NWTP NWTP Volatile	H-Gx H-Dx (es 826	Acid	/ SG Cle s 8260D)	Laboratory Number:	stody
Chromatograms with final report	Data Package: Standard						Comments/Special Instructions							Semiv (with la PAHs I PCBs Organ	olatiles ow-leve 3270E/ 8082A ochlori ophosp	8270E/ al PAHs) SIM (lov ne Pesti	v-level) cides 80 Pesticide	081B es 8270		er: 07-095	
l report 🗌 Electronic Data Deliverables (EDDs)	1 Level III Level IV						ctions				X	X	X	Total F Total N TCLP HEM (RCRA M MTCA M Metals pil and	/letals /letals	1664A	8151A			Page
eliverables (EDDs)													8	% Moi							of /

File :X:\DIESELS\Teri\Data\T210716\0715-T23.D
Operator : JT
Acquired : 17 Jul 2021 5:06 using AcqMethod T210205F.M
Instrument : Teri
Sample Name: 07-095-01
Misc Info :
Vial Number: 23

File :X:\DIESELS\Teri\Data\T210716\0715-T15.D
Operator : JT
Acquired : 16 Jul 2021 23:26 using AcqMethod T210205F.M
Instrument : Teri
Sample Name: 07-095-02
Misc Info :
Vial Number: 15

July 23, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-157

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 15, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 23, 2021 Samples Submitted: July 15, 2021 Laboratory Reference: 2107-157 Project: 397-019

Case Narrative

Samples were collected on July 15, 2021 and received by the laboratory on July 15, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	M/A5-ESW-25.0-071521					
Laboratory ID:	07-157-01					
Diesel Range Organics	87	33	NWTPH-Dx	7-19-21	7-20-21	Ν
Lube Oil	340	65	NWTPH-Dx	7-19-21	7-20-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

Client ID:	M/A5-ESW-22.5-071521	1				
Laboratory ID:	07-157-02					
Diesel Range Organics	ND	28	NWTPH-Dx	7-19-21	7-20-21	
Lube Oil Range Organics	s ND	55	NWTPH-Dx	7-19-21	7-20-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0719S4					
Diesel Range Organics	ND	25	NWTPH-Dx	7-19-21	7-20-21	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-19-21	7-20-21	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-1	57-01									
	ORIG	DUP									
Diesel Range Organics	66.7	59.7	NA	NA		NA	٩	NA	11	NA	Ν
Lube Oil	257	246	NA	NA		NA	4	NA	4	NA	
Surrogate:											
o-Terphenyl						86	84	50-150			

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	M/A5-ESW-25.0-07152	1				
Laboratory ID:	07-157-01					
Benzo[a]anthracene	0.19	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Chrysene	0.20	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[b]fluoranthene	0.22	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo(j,k)fluoranthene	0.063	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[a]pyrene	0.23	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Indeno(1,2,3-c,d)pyrene	0.13	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Dibenz[a,h]anthracene	0.015	0.0087	EPA 8270E/SIM	7-16-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits	;			
2-Fluorobiphenyl	86	41 - 114				
Pyrene-d10	82	39 - 115				
Terphenyl-d14	80	44 - 125				

Client ID:	M/A5-ESW-22.5-071521	1				
Laboratory ID:	07-157-02					
Benzo[a]anthracene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Chrysene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[a]pyrene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270E/SIM	7-16-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	41 - 114				
Pyrene-d10	85	39 - 115				
Terphenyl-d14	82	44 - 125				

5

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

- 0 ⁻ 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0716S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-16-21	7-16-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	41 - 114				
Pyrene-d10	89	39 - 115				
Terphenyl-d14	90	44 - 125				

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	′16S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0787	0.0756	0.0833	0.0833	94	91	64 - 138	4	15	
Chrysene	0.0903	0.0848	0.0833	0.0833	108	102	63 - 128	6	15	
Benzo[b]fluoranthene	0.0910	0.0880	0.0833	0.0833	109	106	62 - 129	3	15	
Benzo(j,k)fluoranthene	0.0811	0.0752	0.0833	0.0833	97	90	59 - 134	8	16	
Benzo[a]pyrene	0.0896	0.0865	0.0833	0.0833	108	104	63 - 132	4	15	
Indeno(1,2,3-c,d)pyrene	0.0808	0.0818	0.0833	0.0833	97	98	58 - 132	1	15	
Dibenz[a,h]anthracene	0.0809	0.0806	0.0833	0.0833	97	97	60 - 130	0	15	
Surrogate:										
2-Fluorobiphenyl					97	92	41 - 114			
Pyrene-d10					94	86	39 - 115			
Terphenyl-d14					92	91	44 - 125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: July 23, 2021 Samples Submitted: July 15, 2021 Laboratory Reference: 2107-157 Project: 397-019

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
M/A5-ESW-25.0-071521	07-157-01	24	7-16-21
M/A5-ESW-22.5-071521	07-157-02	9	7-16-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Nichard Ma	Relinquished	Signature	2			2 m/A5-ESW- 22.5-071521	1 m/A5-ESW-25.0-071521	Lab ID Sample Identification	Carea Peters	Suzy Stumpf	Block 38 West	397-019 Project Name:	Farallan	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services	OnSite
Reviewed/Date		5			30056	Ferelly	Company				11 7/15/21 1205 Soil	117/15/21 1206 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain o
					HISTAI HIGH	- Thister 1424	Date Time				X	2	NWTF NWTF NWTF NWTF Volatil Halog	PH-HCI PH-Gx/ PH-Gx H-Dx (es 826 enated	BTEX	/ SG Cl)		Laboratory Number:		Chain of Custody
Chromatograms with final report Electro	Data Package: Standard 🛛 Level III 🗍						Comments/Special Instructions						Semiv (with I PAHs PCBs Organ Organ Chlorin	olatiles ow-lev 8270E, 8082A ochlori ophosp nated / RCRA N	s 8270E el PAHs /SIM (lo ine Pest ohorus l Acid Hen Metals Metals		081B es 8270	E/SIM	- U/ - I :		Page
Electronic Data Deliverables (EDDs)	Level IV										X	×	HEM (bil and Hs		1664A					of

July 26, 2021

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2107-191

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 20, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 26, 2021 Samples Submitted: July 20, 2021 Laboratory Reference: 2107-191 Project: 397-019

Case Narrative

Samples were collected on July 20, 2021 and received by the laboratory on July 20, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N/A5-ESW-28.0-072021	l				
Laboratory ID:	07-191-01					
Benzo[a]anthracene	1.2	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Chrysene	1.4	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[b]fluoranthene	1.5	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo(j,k)fluoranthene	0.36	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[a]pyrene	1.2	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Indeno(1,2,3-c,d)pyrene	0.88	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Dibenz[a,h]anthracene	0.15	0.016	EPA 8270E/SIM	7-21-21	7-24-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	41 - 114				
Pyrene-d10	75	39 - 115				
Terphenyl-d14	82	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N/A5-ESW-26.0-072021	l				
Laboratory ID:	07-191-02					
Benzo[a]anthracene	0.068	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Chrysene	0.087	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[b]fluoranthene	0.098	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo(j,k)fluoranthene	0.034	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[a]pyrene	0.087	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Indeno(1,2,3-c,d)pyrene	0.065	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Dibenz[a,h]anthracene	0.016	0.0083	EPA 8270E/SIM	7-21-21	7-24-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	41 - 114				
Pyrene-d10	91	39 - 115				
Terphenyl-d14	96	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N/A5-NSW-28.0-072021					
Laboratory ID:	07-191-03					
Benzo[a]anthracene	0.33	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Chrysene	0.36	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[b]fluoranthene	0.38	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo(j,k)fluoranthene	0.15	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Benzo[a]pyrene	0.41	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Indeno(1,2,3-c,d)pyrene	0.25	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Dibenz[a,h]anthracene	0.048	0.0085	EPA 8270E/SIM	7-21-21	7-24-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	41 - 114				
Pyrene-d10	93	39 - 115				
Terphenyl-d14	103	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N/A5-NSW-26.0-072021	Į				
Laboratory ID:	07-191-04					
Benzo[a]anthracene	0.010	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Chrysene	0.013	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo[b]fluoranthene	0.014	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo(j,k)fluoranthene	ND	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo[a]pyrene	0.011	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Indeno(1,2,3-c,d)pyrene	0.0075	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270E/SIM	7-21-21	7-22-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	41 - 114				
Pyrene-d10	110	39 - 115				
Terphenyl-d14	117	44 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N/A5-B-25.0-072021					
Laboratory ID:	07-191-05					
Benzo[a]anthracene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Chrysene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Benzo[a]pyrene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270E/SIM	7-21-21	7-22-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	95	41 - 114				
Pyrene-d10	112	39 - 115				
Terphenyl-d14	115	44 - 125				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0721S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	7-21-21	7-23-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	100	41 - 114				
Pyrene-d10	104	39 - 115				
Terphenyl-d14	106	44 - 125				

8

PAHs EPA 8270E/SIM QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	07-17	79-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.191	0.179	0.167	0.167	ND	114	107	49 - 139	6	27	
Chrysene	0.195	0.184	0.167	0.167	ND	117	110	47 - 127	6	28	
Benzo[b]fluoranthene	0.196	0.186	0.167	0.167	ND	117	111	46 - 129	5	31	
Benzo(j,k)fluoranthene	0.209	0.201	0.167	0.167	ND	125	120	46 - 128	4	25	
Benzo[a]pyrene	0.202	0.193	0.167	0.167	ND	121	116	47 - 134	5	27	
Indeno(1,2,3-c,d)pyrene	0.205	0.195	0.167	0.167	ND	123	117	42 - 133	5	25	
Dibenz[a,h]anthracene	0.207	0.199	0.167	0.167	ND	124	119	46 - 129	4	24	
Surrogate:											
2-Fluorobiphenyl						77	80	41 - 114			
Pyrene-d10						100	94	39 - 115			
Terphenyl-d14						112	106	44 - 125			

Date of Report: July 26, 2021 Samples Submitted: July 20, 2021 Laboratory Reference: 2107-191 Project: 397-019

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
N/A5-ESW-28.0-072021	07-191-01	19	7-21-21
N/A5-ESW-26.0-072021	07-191-02	19	7-21-21
N/A5-NSW-28.0-072021	07-191-03	21	7-21-21
N/A5-NSW-26.0-072021	07-191-04	10	7-21-21
N/A5-B-25.0-072021	07-191-05	9	7-21-21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

										8-25-0-072021	NA5-NSW-26.0-572021	1202 LO - 0.86 - MSN 54/N	N/AS-ESW-26.0-572021	NAG-ESW-28.0-072021	Sample Identification	Perkas	Sury Anupt	38 West	37-019	avallow	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	nSite nvironmental Inc.
_			S		Co	Ī	-			reput	Thulou	Thop	1/2/51	7/20/1	Date Sampled]	X Stand	2 Days	Che	Tur (i	
Reviewed/Date			OSE	Tenallon	Company					935	920	910	900	851	Time Sampled	(other)		X Standard (7 Days)	ys	(Check One) e Day [(in working days)	Cha
ite) ve			1			Soil	Soil	Soil	Soil	Soil	Matrix				3 Days	1 Day	juest iys)	Chain of Custody
										×	در	Z	2	2	1	-	ontaine	rs				fC
+			1		D		-		-		1.				NWTP NWTP						Lab	Sn
			2	1/201	Date	-	-				-				NWTP	1.1					Laboratory N	to
		I	rel	X			-								NWTP	H-Dx (Acid /	SG Cle	an-up)	-	ton	b
			K	-	Time			1							Volatile	es 8260)C				N	
		1	CII.	1416	0										Haloge	enated	Volatiles	8260C			umber:	
				01											EDB E	PA 801	1 (Water	s Only)			er:	
Chro	Data				Com	_									(with lo	ow-leve	8270D/3 PAHs)				0	
matrin	Package:				ments	_	_	 1							PAHs 8		SIM (low	-level)			-	
age.					/Spec		_										ne Pestic	ides 80	81B			
Chromatoorams with final report	Standard				Comments/Special Instructions		-										horus P			D/SIM	91	
	ard				tructio		-								Chlorin	nated A	cid Herb	oicides 8	3151A		-	
	Level				suc										Total R	ICRA N	letals					
G	vel III														Total N	ITCA N	letals					P
															TCLP							Page_
- Data	Level																grease)	1664A				-
										X	×	\times	×	X	c P.	AHS	5				-	of 1
										×	\prec						_			-	-	

February 18, 2022

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2202-076B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 7, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 18, 2022 Samples Submitted: February 7, 2022 Laboratory Reference: 2202-076B Project: 397-019

Case Narrative

Samples were collected on February 5, 2022 and received by the laboratory on February 7, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

2

SEMIVOLATILE ORGANICS EPA 8270E/SIM

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-21-5.0					
Laboratory ID:	02-076-07					
Benzo[a]anthracene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Chrysene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Benzo[b]fluoranthene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Benzo[a]pyrene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270E/SIM	2-17-22	2-18-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	41 - 114				
Pyrene-d10	94	39 - 115				
Terphenyl-d14	94	44 - 125				

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0217S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Chrysene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	2-17-22	2-17-22	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	41 - 114				
Pyrene-d10	97	39 - 115				
Terphenyl-d14	95	44 - 125				

					Per	Percent			RPD	
Analyte	Result		Spike Level Recover		overy	Limits	RPD	Limit	Flags	
SPIKE BLANKS										
Laboratory ID:	SB02	17S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0986	0.0954	0.0833	0.0833	118	115	64 - 138	3	15	
Chrysene	0.0962	0.0962	0.0833	0.0833	115	115	63 - 128	0	15	
Benzo[b]fluoranthene	0.0918	0.0881	0.0833	0.0833	110	106	62 - 129	4	15	
Benzo(j,k)fluoranthene	0.0882	0.0882	0.0833	0.0833	106	106	59 - 134	0	16	
Benzo[a]pyrene	0.0918	0.0890	0.0833	0.0833	110	107	63 - 132	3	15	
Indeno(1,2,3-c,d)pyrene	0.0832	0.0802	0.0833	0.0833	100	96	58 - 132	4	15	
Dibenz[a,h]anthracene	0.0888	0.0864	0.0833	0.0833	107	104	60 - 130	3	15	
Surrogate:										
2-Fluorobiphenyl					83	80	41 - 114			
Pyrene-d10					99	96	39 - 115			
Terphenyl-d14					100	98	44 - 125			

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
FB-21-5.0	02-076-07	13	2-17-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received NICLARDER	Relinquished	Received	Relinquished	Signature	10 FMW- 15 cj - 10.0	9 FMW- 154-50	8 FB-21- 100	7 75-21 - 50	6 12 - 31 - 310	5 13-10-25.0	4 BW-22.0	3 70-170	2 FB-20-15-0	1 73-20-12.0	Lab ID Sample Identification	campies by 6. L'hes	Frugerindiagen. Sozy strungt	Project Name: Block 38 West	Fruject Number: 397-019	Company: Forollon	14648 NE 95th Street + Redmond, WA 98052 Phone: (425) 883-3881 + www.onsite-env.com	Environmental Inc.
				an		21	Co	Ø						-			2/472	Date Sampled	[X Stand	2 Days	Same Day	(in	Turn
Reviewed/Date			Off.	spar	Salu	havallor	Company	1230 8	022	1105	100	1045	940	630	226	970	910 50	Time Sampled M	(other)		X Standard (7 Days)			(in working days)	Chair
			9	1	T	2		5	Si	1	1	1	5	2	5	N	5011 5			Contain	ers	3 Days	1 Day		1 of C
		-	2/7/22	2/122	2/7/22	2/6/22	Date								×	×	×	NWTP	PH-Gx/ PH-Gx	BTEX (8	021 🗌 8			Laboratory N	Chain of Custody
			IDIS	21015	0837	0251	Time											Volatil Haloge	es 826 enated	0 Volatile				y Number:	Y
Chromatog	Data Package:				4	Ø	Comments/											Semiv (with le	olatiles ow-lev 8270/S	8270/S el PAHs IM (low	IM			- 02 -	
Chromatograms with final report	ge: Standard					Added 2	Comments/Special Instructions											Organ	ophos	ohorus I	icides 8 Pesticide	es 8270	/SIM	076	
	Level III					2/17/22	lions											Total F Total N	RCRAI	∕letals ∕letals				-	Page
Electronic Data Deliverables	Level IV				,	200		X	×	×J	A A	×	×	×	×	×		1	oil and	grease)	1664			-	je / of
rables (EDDs)						STA-					0	×			×××	×	X X X	Naph % Moi	+Hs Hale	NES				-	N

Reviewed/Date	Received	Relinquished	Received NICulture	Relinquished	Received	Relinquished	Signature	20 mui 157- 400	19 Fred 157 - 35.0	18 MM- 187 - 20-0	17 FMW - 136 - 20.0	16 5001 13-0	15 FMW- 156 - 10.0	14 FAW-135-15-0	0-01 - 551 -MAR G1	12 FMW-155- 50	11 FBNW-K4-150	Lab ID Sample Identification	C-Refers	Sampled her Sway Stumpt	Project Marries Block 38 West	Project Number: 397-019	Company: Former	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date				the set	Show	terrollar		+ 1 00 + 1	1450	ehki	0141	1405	1400	136	0151	1300 1	2/5/22 1240 Soil .	Date Time Sampled Sampled Matrix	(other)		K Standard (7 Days)		(Unleck Unle)	(in working days)	Chain of
		11-	2101 22/172	27/22 1015	2/7/22 083	2/6/2 1220	Date Time	_									2 V	NWTF NWTF NWTF NWTF Volatil	PH-HCI PH-Gx/ PH-Gx PH-Dx es 826	BTEX (8 Acid / S	021 🗌 82 G Clear			Laboratory Number:	Chain of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗍 Level IV 🗌				222	0	Comments/Special Instructions	<u> </u>									×.	Semiv (with & PAHs PCBs Organ Organ Chlorin Total F Total N TCLP	olatiles ow-levi 8270/S 8082 ochlori ophosi ated A 3CRA N 4/TCA N Metals	s 8270/S el PAHs iIM (low ne Pest phorus f Acid Hen Acid Hen Acid Hen) -level) icides 80 Pesticides	081 95 8270/	SIM	er: 02-076	Page D of 2

APPENDIX C TERRESTRIAL ECOLOGICAL EVALUATION

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</u>.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Block 38 West

Facility/Site Address: 520 Westlake Ave N, Seattle, WA 98109

Facility/Site No: 62773

VCP Project No.: N/A

Title: Principal Engineer

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Suzy Stumpf

Organization: Farallon Consulting

Mailing address: 1809 7th Ave Ste 1111

9				
City: Seattle		Sta	te: WA	Zip code: 98101
Phone: (425) 295-0800	Fax: (425) 295-085	0	E-mail: ssturr	npf@farallonconsulting.com

St	tep 3: D	OCUMENT EVALUATION TYPE AND RESULTS
Α.	Exclus	ion from further evaluation.
1.	Does th	ne Site qualify for an exclusion from further evaluation?
	\geq	Yes If you answered " YES ," then answer Question 2 .
] No or If you answered " NO" or "UNKNOWN," then skip to Step 3B of this form.
2.	What is	s the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
	Point of	f Compliance: WAC 173-340-7491(1)(a)
		All soil contamination is, or will be,* at least 15 feet below the surface.
		All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
	Barriers	s to Exposure: WAC 173-340-7491(1)(b)
	\boxtimes	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
	Undeve	eloped Land: WAC 173-340-7491(1)(c)
		There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	\boxtimes	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
	Backgro	ound Concentrations: WAC 173-340-7491(1)(d)
		Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
ac ± ' pre # ' hig	ceptable f "Undevelc event wild "Contiguo	ion based on future land use must have a completion date for future development that is to Ecology. oped land" is land that is not covered by building, roads, paved areas, or other barriers that would llife from feeding on plants, earthworms, insects, or other food in or on the soil. us" undeveloped land is an area of undeveloped land that is not divided into smaller areas of xtensive paving, or similar structures that are likely to reduce the potential use of the overall area

В.	Simplified	evaluation.
1.	Does the S	Site qualify for a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 2 below.
	🗌 N Unkn	o or own If you answered " NO" or " UNKNOWN," then skip to Step 3C of this form.
2.	Did you co	onduct a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 3 below.
	□ N	lo If you answered " NO, " then skip to Step 3C of this form.
3.	Was furthe	er evaluation necessary?
	□ Y	es If you answered "YES," then answer Question 4 below.
	□ N	o If you answered " NO ," then answer Question 5 below.
4.	lf further e	valuation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.
	Exposure /	Analysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway A	nalysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

 C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). 1. Was there a problem? See WAC 173-340-7493(2). Yes If you answered "NO," then identify the reason here and then skip to Question 5 below. No If you answered "NO," then identify the reason here and then skip to Question 5 below. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Widifie exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: No 			
Yes If you answered "YES," then answer Question 2 below. If you answered "NO," then identify the reason here and then skip to Question 5 below: No No While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. Used the concentrations for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. <	C.	the probler	n, and (2) selecting the methods for addressing the identified problem. Both steps
No If you answered "NO," then identify the reason here and then skip to Question 5 below: No No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	1.	Was there	a problem? See WAC 173-340-7493(2).
No below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		🗌 Y	es If you answered "YES," then answer Question 2 below.
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			
cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			No issues were identified during the problem formulation step.
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			
Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).
 address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			
Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	3.		
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Literature surveys.
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Soil bioassays.
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Wildlife exposure model.
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Biomarkers.
 Other methods approved by Ecology. If so, please specify: What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Site-specific field studies.
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Weight of evidence.
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Other methods approved by Ecology. If so, please specify:
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	4.	What was	he result of those evaluations?
 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Confirmed there was no problem.
problem resolution steps?			Confirmed there was a problem and established site-specific cleanup levels.
	5.	-	
□ No		🗌 Y	If so, please identify the Ecology staff who approved those steps:

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.

APPENDIX D DATA VALIDATION REPORT

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

DATA VALIDATION REPORT

ALLEY AREA OF BLOCK 38 WEST SITE BETWEEN REPUBLICAN STREET AND MERCER STREET SEATTLE, WASHINGTON

Agreed Order No. DE 17963 Facility Site Identification No. 62773 Cleanup Site Identification No. 15008

> Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

> > Farallon PN: 397-019

For: City Investors IX LLC 505 5th Avenue South Seattle, Washington 98104

August 23, 2022

Prepared by:

Jeanette Mullin, L.G. Environmental Data Manager

Reviewed by:

67. E

Principal Hydrogeologist

TABLE OF CONTENTS

1.0	INTE	RODUC	TION	1-1
	1.1	OVEF	RALL DATA ASSESSMENT	
	1.2	DATA	A QUALIFIER DEFINITIONS	
	1.3	CHAI	N-OF-CUSTODY	
	1.4	COM	PLETENESS	1-2
2.0	PETI	ROLEU	M HYDROCARBON NWTPH-DX QA REVIEW	
	2.1		LINESS AND PRESERVATION	
	2.2	LABC	DRATORY QUALITY CONTROL SAMPLES	
		2.2.1	Quality Control Analysis Frequency	
		2.2.2	Method Blanks	
		2.2.3	Laboratory Duplicates	
		2.2.4	Surrogate Recoveries	
3.0	PETI	ROLEU	M HYDROCARBON NWTPH-GX QA REVIEW	
	3.1	TIME	LINESS AND PRESERVATION	
	3.2	LABC	DRATORY QUALITY CONTROL SAMPLES	
		3.2.1		
		3.2.2		
		3.2.3	Laboratory Duplicates, Spike Blanks/Spike Blank Du	plicates,
			and/or Matrix Spikes/Matrix Spike Duplicates	
		3.2.4	Surrogate Recoveries	
4.0	VOL	ATILE	ORGANIC COMPOUND 8260D QA REVIEW	
	4.1		LINESS	
	4.2	LABC	DRATORY QUALITY CONTROL SAMPLES	
		4.2.1	Quality Control Analysis Frequency	
		4.2.2	Method Blanks	
		4.2.3	Spike Blanks/Spike Blank Duplicates	
		4.2.4	Surrogate Recoveries	
5.0			TILE ORGANIC COMPOUND QA REVIEW	
	5.1		LINESS	
	5.2		ORATORY QUALITY CONTROL SAMPLES	
		5.2.1	Quality Control Analysis Frequency	
		5.2.2	Method Blanks	
		5.2.3	Spike Blanks/Spike Blank Duplicates and/or Matrix	
			Spikes/Matrix Spike Duplicates	
		5.2.4	Surrogate Recoveries	
6.0	MET 6.1	ALS Q	Surrogate Recoveries A REVIEW LINESS	6-1

	6.2	LABC	DRATORY QUALITY CONTROL SAMPLES	6-1
		6.2.1	Quality Control Analysis Frequency	6-1
			Method Blanks	
		6.2.3	Matrix Spikes/Matrix Spike Duplicates and Laboratory	
			Duplicates	6-1
7.0	REFE	RENC	ES	7-1

TABLES

- Table 1Overview of Soil Sample Analyses
- Table 2Summary of Qualified Data

1.0 INTRODUCTION

This report provides a summary of quality assurance (QA) data validation findings. Data validation was previously performed for most of the data shown in the Block 38 analytical results tables and is reported in two other reports:

- Appendix B of the *Alley Area of Block 38 West Site Interim Action Workplan* (Farallon 2021a); and
- Appendix D of the Agency Review Draft Interim Action Report, Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington (Farallon 2021).

This report documents the data validation performed for additional soil samples collected in 2021 from the Block 38 alley during the interim action cleanup. Data validation was conducted for the following environmental samples:

Project Name:	Alley Area of the Block 38 West Site
Project No.:	397-019
Lab Name:	OnSite Environmental Inc. (OnSite), Redmond, Washington
Lab Reference No.:	11 Sample Delivery Groups identified in Table 1
Matrices:	Soil

Table 1 identifies the 11 Sample Delivery Groups (SDGs) analyzed by OnSite, the samples analyzed within each delivery group, the sample matrix, and the analytical methods used to analyze each sample.

This review of project data was performed using the U.S. Environmental Protection Agency's (EPA) National Functional Guidelines for Organic Superfund Methods Data Review (USEPA-540-R-2017-002) dated January 2017, and National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA-540-R-2017-001) dated January 2017.

This report includes a review of holding times, method blanks, matrix spike and spike blank recoveries, matrix spike duplicate and spike blank duplicate data, duplicates, surrogates, and chain-of-custody records. As shown in Table 1, select samples were analyzed for total petroleum hydrocarbons (TPH) as diesel- and oil-range organics by Northwest Method NWTPH-Dx; TPH as gasoline-range organics by Northwest Method NWTPH-Gx; volatile organic compounds (VOCs)

www.farallonconsulting.com

by EPA Method 8260D; semivolatile organic compounds (SVOCs) by EPA Method 8270E/Selective Ion Monitoring (SIM); and metals by EPA Method 6010D.

1.1 OVERALL DATA ASSESSMENT

All data are of known quality and are acceptable for use. No results were rejected as a result of this data assessment. Data qualified during this validation effort is summarized in Table 2 and discussed in the sections below.

1.2 DATA QUALIFIER DEFINITIONS

Following are definitions of data qualifiers used during data validation:

J+ (Estimated High Bias): The result is an estimated quantity, and the result may be biased high based on non-conformances identified during data validation.

1.3 CHAIN-OF-CUSTODY

Field chain-of-custody forms were complete. All chain-of-custody forms were signed and dated. No issues with sample receipt conditions were indicated in the Case Narrative section of the laboratory reports.

1.4 COMPLETENESS

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples that were submitted to the laboratory for analysis. Valid results are results that are determined to be usable during the data validation review process.

The completeness of this data set is 100 percent.

2.0 PETROLEUM HYDROCARBON NWTPH-DX QA REVIEW

2.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Dx soil is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within holding times.

2.2 LABORATORY QUALITY CONTROL SAMPLES

2.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates were analyzed at a rate of 1 duplicate per 10 samples with a minimum of 1 duplicate per SDG. These criteria were met for all delivery groups.

2.2.2 Method Blanks

No target analytes were detected in the soil method blanks at or exceeding the reporting limits for all delivery groups.

2.2.3 Laboratory Duplicates

Relative Percent Differences (RPDs) of all analytes were within the laboratory's quality control (QC) limits for all delivery groups. In cases where the RPD was elevated, such as for SDG 2107-084, the duplicate was performed on a non-project sample where heterogeneity and matrix impacts may have been present. No qualification of project samples is needed.

2.2.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Dx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below. The o-terphenyl surrogate spike was not recovered in the following sample due to sample dilution to address high concentrations of target analytes:

• **SDG 2107-084:** Sample I/A5-ESW-20.0-070921

No qualifications of sample results are needed based on the lack of surrogate recovery in this sample.

www.farallonconsulting.com

3.0 PETROLEUM HYDROCARBON NWTPH-GX QA REVIEW

3.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Gx soil samples is 14 days. All samples were extracted and analyzed within this period.

3.2 LABORATORY QUALITY CONTROL SAMPLES

3.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

3.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

3.2.3 Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, and/or Matrix Spikes/Matrix Spike Duplicates

RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

3.2.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Gx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.

4.0 VOLATILE ORGANIC COMPOUND 8260D QA REVIEW

4.1 TIMELINESS

The recommended holding time for EPA Method 8260D is 14 days for preserved soil samples. All samples were extracted and analyzed within this period.

4.2 LABORATORY QUALITY CONTROL SAMPLES

4.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Spike blanks/spike blank duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

4.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

4.2.3 Spike Blanks/Spike Blank Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

4.2.4 Surrogate Recoveries

The laboratory used three surrogate spike compounds for EPA Method 8260D. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.

5.0 SEMIVOLATILE ORGANIC COMPOUND QA REVIEW

5.1 TIMELINESS

The recommended holding time for EPA Method 8270E/SIM soil samples is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within this period.

5.2 LABORATORY QUALITY CONTROL SAMPLES

5.2.1 Quality Control Analysis Frequency

Method blanks and spike blanks/spike blank duplicates (or matrix spikes/matrix spike duplicates) were analyzed at a minimum frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

5.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

5.2.3 Spike Blanks/Spike Blank Duplicates and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

5.2.4 Surrogate Recoveries

The laboratory used three surrogate spike compounds for EPA Method 8270E/SIM for soil samples. Surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below:

• **SDG 2107-084:** The percent recovery of the surrogate terphenyl-d14 exceeded the upper control limit in soil sample I/A5-ESW-17.5-070921. The analytes associated with this surrogate compound (benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo(j,k)fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene) were detected in the sample and the results are qualified as estimates with a high bias (J+) as shown in Table 2.

6.0 METALS QA REVIEW

6.1 TIMELINESS

The recommended holding time for EPA Method 6010D is 6 months for soil samples. All samples were extracted and analyzed within holding times.

6.2 LABORATORY QUALITY CONTROL SAMPLES

6.2.1 Quality Control Analysis Frequency

Method blanks, matrix spikes/matrix spike duplicates, and laboratory duplicates were analyzed at a frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

6.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

6.2.3 Matrix Spikes/Matrix Spike Duplicates and Laboratory Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups except as noted below:

• **SDG 2107-039B:** The laboratory duplicate RPD for lead exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the original and duplicate results were within five times the quantitation limit. EPA guidance indicates that when the original sample and duplicate sample results are less than five times the quantitation limit, the absolute difference between the original sample result and duplicate sample result should be calculated and compared to the quantitation limit. If the difference is less than the quantitation limit, no qualification is needed. No qualifications of project sample results are needed for two reasons: 1) the duplicate analysis was performed on a non-project sample and results are not applicable to project samples, and 2) the absolute difference between the original and duplicate sample results was less than the practical quantitation limit.

7.0 REFERENCES

- Farallon Consulting, L.L.C. (Farallon). 2021. Interim Action Work Plan, Alley Area of Block 38 West Site Between Republican Street and Mercer Street, Seattle, Washington. Prepared for City Investors IX LLC. February 3.
 - ——. 2022. Remedial Investigation Work Plan, Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. August 5.
- U.S. Environmental Protection Agency (EPA). 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. OLEM 9355.0-135, EPA-540-R-2017-001. January.
- ———. 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. OLEM 9355.0-136, EPA-540-R-2017-002. January.

TABLES

DATA VALIDATION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

Table 1Overview of Soil Sample AnalysesBlock 38 AlleySeattle, WashingtonFarallon PN: 397-019

Lab Sample								
Delivery Group	Sample Identification	Matrix	Sample Date	NWTPH-Dx	NWTPH-Gx	EPA 8260D	EPA 8270E/SIM	EPA 6010D
2103-120	A/A5-SSW-22.5-031021	Soil	3/10/2021				Х	
2103-120	A/A5-B2-22.5-031021	Soil	3/10/2021				Х	
2103-120	A/A5-B2-20.0-031021	Soil	3/10/2021				Х	
2103-120	A/A5-B2-17.5-031021	Soil	3/10/2021				Х	
2103-120	A/A5-B-17.5-031021	Soil	3/10/2021				Х	
2103-234	A/A5-ESW-22.5-031821	Soil	3/18/2021				Х	
2103-234	A/A5-ESW-20.0-031821	Soil	3/18/2021				Х	
2103-234	A/A5-ESW-17.5-031821	Soil	3/18/2021				Х	
2103-234	A/A5-SSW-20.0-031821	Soil	3/18/2021				Х	
2103-267	C/A5-ESW-22-5-032221	Soil	3/22/2021				Х	
2103-267	C/A5-ESW-20.0-032221	Soil	3/22/2021				Х	
2103-267	C/A5-ESW-17.5-032221	Soil	3/22/2021				Х	
2103-267	D/A5-B-17.5-032221	Soil	3/22/2021				Х	
2103-267	A/A5-SSW-17.5-032221	Soil	3/22/2021				Х	
2103-287	A/A5-B-16.0-032421	Soil	3/24/2021				Х	
2105-037	E/A5-ESW-22.5-050421	Soil	5/4/2021	Х	Х	Х	Х	
2105-037	E/A5-ESW-20.0-050421	Soil	5/4/2021	Х	Х	Х	Х	
2105-037	E/A5-ESW-17.5-050421	Soil	5/4/2021	Х	Х	Х	Х	
2106-270	E/A5-B-17.5	Soil	6/28/2021	Х	Х	Х	Х	
2106-270	F/A5-B-17.5	Soil	6/28/2021	Х	Х	Х	Х	
2107-039	G/A5-ESW-22.5-070621	Soil	7/6/2021	Х			Х	Х
2107-039	G/A5-ESW-20.0-070621	Soil	7/6/2021	Х			Х	Х
2107-039	G/A5-ESW-17.5-070621	Soil	7/6/2021	Х			Х	Х
2107-039	H/A5-ESW-22.5-070621	Soil	7/6/2021	Х			Х	Х
2107-039	H/A5-ESW-20.0-070621	Soil	7/6/2021	Х			Х	Х
2107-039	H/A5-ESW-17.5-070621	Soil	7/6/2021	Х			Х	Х
2107-039	H/A5-B-17.5-070621	Soil	7/6/2021	Х			Х	Х
2107-084	I/A5-ESW-22.5-070921	Soil	7/9/2021	Х			Х	Х
2107-084	I/A5-ESW-20.0-070921	Soil	7/9/2021	Х			Х	Х
2107-084	I/A5-ESW-17.5-070921	Soil	7/9/2021	Х			Х	
2107-084	I/A5-B-17.5-070921	Soil	7/9/2021	Х			Х	Х
2107-084	J/A5-ESW-22.5-070921	Soil	7/9/2021	Х			Х	Х

Table 1Overview of Soil Sample AnalysesBlock 38 AlleySeattle, WashingtonFarallon PN: 397-019

Lab Sample						Analytical Method		
Delivery Group	Sample Identification	Matrix	Sample Date	NWTPH-Dx	NWTPH-Gx	EPA 8260D	EPA 8270E/SIM	EPA 6010D
2107-084	J/A5-ESW-20.0-070921	Soil	7/9/2021	Х			Х	Х
2107-084	J/A5-ESW-17.5-070921	Soil	7/9/2021	Х			Х	
2107-095	L/A5-ESW-25.0-071221	Soil	7/12/2021	Х			Х	
2107-095	L/A5-ESW-22.5-071221	Soil	7/12/2021	Х			Х	
2107-095	L/A5-B-22.0-071221	Soil	7/12/2021	Х			Х	
2107-157	M/A5-ESW-25.0-071521	Soil	7/15/2021	Х			Х	
2107-157	M/A5-ESW-22.5-071521	Soil	7/15/2021	Х			Х	
2107-191	N/A5-ESW-28.0-072021	Soil	7/20/2021				Х	
2107-191	N/A5-ESW-26.0-072021	Soil	7/20/2021				Х	
2107-191	N/A5-NSW-28.0-072021	Soil	7/20/2021				Х	
2107-191	N/A5-NSW-26.0-072021	Soil	7/20/2021				Х	
2107-191	N/A5-B-25.0-072021	Soil	7/20/2021				Х	

NOTES:

An "X" indicates the sample was analyzed by the method specified in that column.

Table 2 Summary of Qualified Data Block 38 Alley Seattle, Washington Farallon PN: 397-019

Sample Identification	SDG	Matrix	Method	Analyte	Qualifier	Reason
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Benzo[a]anthracene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Chrysene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Benzo[b]fluoranthene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Benzo(j,k)fluoranthene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Benzo[a]pyrene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Indeno[1,2,3-cd]pyrene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit
I/A5-ESW-17.5-070921	2107-084	Soil	EPA 8270E/SIM	Dibenz[a,h]anthracene	J+	Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit

NOTES:

EPA = U.S. Environmental Protection Agency

J+= result is an estimate with a high bias

SDG = sample delivery group

APPENDIX E SOIL DISPOSAL TONNAGE SUMMARY

INTERIM ACTION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

Table 1Soil Disposal SummaryBlock 38 AlleySeattle, WashingtonFarallon PN: 397-019

	Disposal Facility							
	Waste Management	Republic Services						
	Class 3	Class 3+						
Date Range:	(tons)	(tons)						
March								
3/1/2021 - 3/2/2021	14.13	0						
3/8/2021 - 3/10/2021	0	157.84						
3/18/2021 - 3/19/2021	0	190.86						
3/22/2021 - 3/25/2021	0	456.63						
3/31/2021 - 4/1/2021	0	39.90						
	April							
4/6/2021 - 4/8/2021	0	370.21						
	May							
5/4/2021	0	34.87						
5/13/2021	0	26.19						
	June							
6/28/2021 - 6/30/2021	0	68.47						
July								
7/6/2021 - 7/9/2021	0	385.87						
7/12/2021 - 7/16/2021	0	439.18						
7/19/2021 - 7/23/2021	0	197.64						
Totals Through:	3/2/2021	7/23/2021						
Truck Count	2	194						
Total (tons)	14.13	2,367.66						