

2753 West 31st Street | Chicago, IL 60608 Tel: 773-722-9200 | Fax: 773-722-9201 | pioneerEES.com

Transmitted via Electronic Mail

January 10, 2024

Ms. Tena Seeds Washington State Department of Ecology Toxics Cleanup Program 15700 Dayton Ave N., Shoreline, WA 98133

RE: Quarterly Progress Report: October 1 through December 31, 2023 Time Oil Bulk Terminal Site, Cleanup Site ID #14604

Prospective Purchaser Consent Decree No. 20-2-15215-3 SEA

Dear Ms. Seeds:

Pioneer Engineering & Environmental Services, LLC on behalf of TOC Seattle Terminal 1, LLC submits the attached Quarterly Progress Report for the Time Oil Bulk Terminal Site per Section XII of the Prospective Purchaser Consent Decree between the Washington State Department of Ecology and TOC Seattle Terminal 1, LLC. The quarterly progress report consists of a brief narrative summary of notable activities that occurred during the reporting period and that are anticipated for the upcoming reporting period.

If you have any questions about this report, please contact me at 773-435-3725.

Sincerely,

Kim Hempel

Project Coordinator

Pioneer Engineering & Environmental Services, LLC

Distribution List:

Doug Ciserella and Mike Ciserella, TOC Seattle Terminal 1, LLC Bill Joyce, Hillis Clark Martin & Peterson P.S. Jamie Stevens, CRETE Consulting Kristin Anderson, Floyd|Snider

TIME OIL BULK TERMINAL SITE PROSPECTIVE PURCHASER CONSENT DECREE NO. 20-2-15215-3 SEA QUARTERLY PROGRESS REPORT: OCTOBER 1 THROUGH DECEMBER 31, 2023

This report has been prepared in accordance with the requirements of the Time Oil Bulk Terminal Site Prospective Purchaser Consent Decree (PPCD) between the Washington State Department of Ecology (Ecology) and TOC Seattle Terminal 1, LLC. This progress report provides details on the following: 1) all on site activities; 2) any deviations from required tasks; 3) anticipated problems in meeting schedule or objectives and associated solutions 4) sampling, testing, or other data received; 5) work planned for the upcoming 3-month period; and, 6) deliverables planned for the upcoming 3-month period.

Summary of On-Site Activities Performed During the Reporting Period (PPCD Section XII.A)

- A visual check of the site was conducted on October 10 and November 7, 2023. Construction was underway on Parcel F in November, and all interim surfaces on remaining portions of the Site remain in good condition and no other concerns were noted during the site visits.
- Floyd|Snider (F|S) personnel collected the fourth round of post-remediation groundwater samples per the approved Groundwater Monitoring Plan (GMP) on October 10, 2023, and continued groundwater collection at contingency well 01MW107 based on elevated indicator hazardous substances (IHSs) at 01MW53 and/or 01MW85 in the first three quarters of 2023.
- A passive flux meter (PFM) sampler was placed in 01MW85 to assess flux of chlorinated volatile organic compounds (CVOCs) through the PlumeStop in situ groundwater treatment barrier. The PFM was installed after compliance monitoring sampling on October 10, 2023 and sampled on November 7, 2023.
- Water samples were collected from the ASKO Property permeable reactive barrier vault and gravity well on October 10 and November 7, 2023 for operation and maintenance (O&M) assessment purposes. The O&M data were collected to coincide with remedial investigation groundwater sampling on the upgradient BNSF Property and O&M assessment will continue in Q1 2024 when the BNSF data become available.
- Construction on Lot F began on October 30, 2023.
- Stained soils were observed during construction of the stormwater vault on Lot F; these soils were segregated, stockpiled, and sampled by CRETE for total petroleum hydrocarbon (TPH) analysis, as discussed in an email to Ecology on November 6, 2023. All TPH results were below the remediation levels (RELs), as discussed in an email with Ecology on November 15, 2023. During construction, all site soils have been managed on site per the June 8, 2023 Notification of Construction Activities (approved on June 21, 2023).

Deliverables

Deliverables during this reporting period included the following:

• The Quarterly Progress Report for the third guarter of 2023 was submitted to Ecology on October 13, 2023.

Deviations from Required Tasks (PPCD Section XII.B)

None.

Anticipated Problems in Meeting Schedule or Objectives and Associated Solutions (PPCD Section XII.C and XII.D)

• There are no anticipated problems in meeting the schedule of deliverables specified in Exhibit D of the PPCD. The schedule of deliverables and activities specified in Table 8.1 of the Cleanup Action Plan (Exhibit C of the PPCD) are currently on track or ahead of schedule.

Raw Data Received (PPCD Section XII.E)

- Groundwater sampling results for the 4th Quarter 2023 were received from Friedman & Bruya, Inc. on October 19, 2023. Results were received in one sample delivery group (F&BI 310168);
- Samples collected for O&M purposes from the ASKO property permeable reactive barrier vault and gravity well were received on October 16 and November 16, 2023. Results were received in two sample delivery groups (F&BI 310169 and 3111159); and
- TPH soil sampling results for the stained soils observed during construction on Lot F were received from Friedman & Bruya, Inc. on November 10, 2023 (F&BI 311100).
- Copies of the laboratory reports discussed herein are provided as an attachment to this Progress Report.

Work Planned During the Upcoming Reporting Period (PPCD Section XII.F)

The following work is planned for the 1st Quarter 2024:

- Fifth round of groundwater sampling is scheduled for February 7 and 8, 2024;
- Construction on Lot F continues; and
- Site checks will be conducted periodically on all interim surfaces outside of Lot F to ensure that conditions remain stable during the interim period prior to site development.

Deliverables Planned During the Upcoming Reporting Period (PPCD Section XII.G)

The following deliverables are anticipated to be completed during the next quarterly reporting period of January through March 2024:

- Transmittal of a summary of 4th Quarter 2023 and 1st Quarter 2024 groundwater sampling results and associated groundwater contour maps to Ecology via email;
- Submittal of the Quarterly Progress Report for the 4th Quarter 2023; and
- Submittal of the first Annual Report on March 1, 2024.

Other Pertinent Information, Including Changes in Key Personnel

None.

Attachments

Attachment 1 – Laboratory Analytical Reports

END QUARTERLY PROGRESS REPORT

ATTACHMENT 1

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 16, 2023

Pamela Osterhout, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Osterhout:

Included are the results from the testing of material submitted on October 10, 2023 from the Cantera-TOC, F&BI 310169 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Floyd Snider Lab Data

FDS1016R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 310169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Floyd-Snider</u>

310169 -01 GRAVITY-101023

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	GRAVITY-101023	Client:	Floyd-Snider
-------------------	----------------	---------	--------------

Project: 10/10/23 Cantera-TOC, F&BI 310169 Date Received: Lab ID: 10/11/23 Date Extracted: 310169-01 1/10 Date Analyzed: 10/11/23 Data File: 101118.D Matrix: Water Instrument: GCMS13 Operator: Units: ug/L (ppb) MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	71	132
Toluene-d8	97	68	139
4-Bromofluorobenzene	97	62	136

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	11
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	130
1,2-Dichloroethane (EDC)	<2
1,1,1-Trichloroethane	<10
Trichloroethene	490
Tetrachloroethene	<5 j

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Method Blank	Client:	Floyd-Snider
-------------------	--------------	---------	--------------

Date Received: Not Applicable Project: Cantera-TOC, F&BI 310169
Date Extracted: 10/11/23 Lab ID: 03-2327 mb

Date Extracted: 10/11/25 Lab ID: 03-2527 inc.

Date Analyzed: 10/11/23 Data File: 101108.D

Matrix: Water Instrument: GCMS11

Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	78	126
Toluene-d8	98	84	115
4-Bromofluorobenzene	106	72	130

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.02
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	< 0.2
1,1,1-Trichloroethane	<1
Trichloroethene	< 0.5
Tetrachloroethene	<0.5 j
	-

ENVIRONMENTAL CHEMISTS

Date of Report: 10/16/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310172-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	92	50-150
Chloroethane	ug/L (ppb)	10	<1	98	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	91	50 - 150
Methylene chloride	ug/L (ppb)	10	<5	83	50 - 150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	97	50 - 150
1,1-Dichloroethane	ug/L (ppb)	10	<1	90	50 - 150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	100	10-211
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	96	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	87	50 - 150
Trichloroethene	ug/L (ppb)	10	1.8	95	35-149
Tetrachloroethene	ug/L (ppb)	10	15	101 b	50-150

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	10	91	93	64-142	2
ug/L (ppb)	10	100	102	70-130	2
ug/L (ppb)	10	90	91	64-140	1
ug/L (ppb)	10	85	88	43-134	3
ug/L (ppb)	10	97	100	70-130	3
ug/L (ppb)	10	90	93	70-130	3
ug/L (ppb)	10	99	104	70-130	5
ug/L (ppb)	10	98	100	70-130	2
ug/L (ppb)	10	91	94	70-130	3
ug/L (ppb)	10	98	100	70-130	2
ug/L (ppb)	10	103	107	70-130	4
	Units ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 10	Reporting Spike Level Recovery LCS ug/L (ppb) 10 91 ug/L (ppb) 10 100 ug/L (ppb) 10 90 ug/L (ppb) 10 85 ug/L (ppb) 10 97 ug/L (ppb) 10 90 ug/L (ppb) 10 99 ug/L (ppb) 10 98 ug/L (ppb) 10 91 ug/L (ppb) 10 98	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 10 91 93 ug/L (ppb) 10 100 102 ug/L (ppb) 10 90 91 ug/L (ppb) 10 85 88 ug/L (ppb) 10 97 100 ug/L (ppb) 10 90 93 ug/L (ppb) 10 99 104 ug/L (ppb) 10 98 100 ug/L (ppb) 10 91 94 ug/L (ppb) 10 98 100	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 10 91 93 64-142 ug/L (ppb) 10 100 102 70-130 ug/L (ppb) 10 90 91 64-140 ug/L (ppb) 10 85 88 43-134 ug/L (ppb) 10 97 100 70-130 ug/L (ppb) 10 90 93 70-130 ug/L (ppb) 10 99 104 70-130 ug/L (ppb) 10 98 100 70-130 ug/L (ppb) 10 91 94 70-130 ug/L (ppb) 10 98 100 70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

310169			SAMPLI	E CHAIN	OF	CUS	STC)D7	7		10	/10	/2	3		V	اس	
Report To PAYN OSTERH	out liabolate Of	Houdenider	SAMPL	ERS (sign	ature)						-	, N/C	237 2			Page #		of
Company FLOYD SNID	-	10 11000	PROJE	OO, ₽ CT NAME	<u> </u>			Γ		- <u>-</u> F	°O#						NAROUND l turnaroun	-
Address 601 UNION	•	·	· Can-	HERE-TOC	_									i	□ RU	SH	es authoriz	
			- REMAR	RKS				<u> </u>		NIVIC	ICE	TIO.		_ _				
City, State, ZIP 5-FATTLE		· · · · · · · · · · · · · · · · · · ·	_						11	IVV	ICE	10			J Ar ci	hive s	PLE DISPO	SAL
Phone 206 792-7078 1	Email -f abdata@f	<u>loydsnider</u>	roject.	specific RL	s? - Ye	es /	No	<u> </u>		_					∃ Oth Defau		ispose afte	r 30 days
		-								ANA:	LYSE	S R	EQU.	ESTI				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082					No	tes
GRAVITY-101023	01 A-C	10/70/23	0815	WATER	3			\neg		X								
							-		寸		+		_		 		,	
			·						\dashv	\dashv	-+	\dashv	-				<u> </u>	
			<u> </u>					•		_	\dashv	\dashv						
								\dashv	_					_				
												-						
								7	_	7		7	_					
-		-		-		+		\dashv	\dashv	1	_						<u></u>	
						\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	_					
			. <u></u>			\dashv		\dashv		\dashv	\dashv	\dashv					·	
					l													
Friedman & Bruya, Inc.	Relinquished by:	NATURE			PRIN		AME	<u>`</u>				С	OMI	PAN	Ϋ́		DATE	TIME
Ph. (206) 285-8282	Received by	m			-012EV			-		-	FLO	<u> </u>	ŻΝ	10ek	<u>. </u>	-	10/10/23	1727
	Relinquished by:		,		TOE 1	1011	Arv	VLD)				f 8 I					10(10 13	1717
	Received by:	.		<u> </u>	·-					\dashv	•		dam	plea	rec	eive	<u>d at _2</u>	_oC

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 19, 2023

Pamela Osterhout, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Osterhout:

Included are the results from the testing of material submitted on October 10, 2023 from the Cantera-TOC, F&BI 310168 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Floyd Snider Lab Data

FDS1019R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 310168 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Floyd-Snider
310168 -01	01MW46-101023
310168 -02	01MW19R-101023
310168 -03	01MW53-101023
310168 -04	01MW85-101023
310168 -05	01MW107-101023
310168 -06	01MW35-101023
310168 -07	01MW84-101023
310168 -08	02MW04R-101023
310168 -09	02MW19-101023
310168 -10	02MW07-101023
310168 -11	01MW19R-D-101023
310168 -12	TB-101023

Sample 01MW85-101023 was sent to Onsite Environmental for RSK dissolved gases analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

Date Extracted: 10/12/23 Date Analyzed: 10/12/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
01MW19R-101023 ₃₁₀₁₆₈₋₀₂	1,200	124
01MW35-101023 310168-06	<100	102
01MW84-101023 310168-07	3,500	105
02MW04R-101023 310168-08	<100	100
02MW19-101023 310168-09	<100	93
02MW07-101023 310168-10	<100	94
01MW19R-D-101023 310168-11	1,200	119
Method Blank 03-2235 MB	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

Date Extracted: 10/12/23 Date Analyzed: 10/17/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 50-150)
01MW19R-101023 ₃₁₀₁₆₈₋₀₂	890 x	<250	118
01MW35-101023 ₃₁₀₁₆₈₋₀₆	56 x	<250	139
01MW84-101023 ₃₁₀₁₆₈₋₀₇	1,500 x	<250	126
02MW04R-101023 310168-08	<50	<250	132
02MW19-101023 310168-09	81 x	<250	136
02MW07-101023 310168-10	73 x	<250	139
01MW19R-D-101023 310168-11	920 x	<250	131
Method Blank 03-2400 MB	<50	<250	121

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: 02MW19-101023 Client: Floyd-Snider

Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

 Date Extracted:
 10/11/23
 Lab ID:
 310168-09

 Date Analyzed:
 10/11/23
 Data File:
 310168-09.151

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 3.13

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: 02MW07-101023 Client: Floyd-Snider

Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

 Date Extracted:
 10/11/23
 Lab ID:
 310168-10

 Date Analyzed:
 10/11/23
 Data File:
 310168-10.152

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 1.24

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Floyd-Snider

Date Received: NA Project: Cantera-TOC, F&BI 310168

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	01MW46-101023	Client:	Floyd-Snider
Date Received:	10/10/23	Project:	Cantera-TOC, F&BI 310168

Date Extracted: 10/12/23 Lab ID: 310168-01 1/10 Date Analyzed: 10/12/23 Data File: 101221.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	71	132
Toluene-d8	109	68	139
4-Bromofluorobenzene	101	62	136

 $\begin{array}{c} Concentration \\ Compounds: & ug/L\ (ppb) \end{array}$

Vinyl chloride 36
cis-1,2-Dichloroethene 400
Trichloroethene 300
Benzene 4.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 01MW19R-101023	Client:	Floyd-Snider
----------------------------------	---------	--------------

 Date Received:
 10/10/23
 Project:
 Cantera-TOC, F&BI 310168

 Date Extracted:
 10/12/23
 Lab ID:
 310168-02

 Date Analyzed:
 10/12/23
 Data File:
 101223.D

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	104	78	126
Toluene-d8	104	84	115
4-Bromofluorobenzene	108	72	130

Concentration

Compounds: ug/L (ppb)

Benzene 1.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	01MW53-101023	Client:	Floyd-Snider
Date Received:	10/10/23	Project:	Cantera-TOC, F&BI 310168

Date Extracted: 10/12/23 Lab ID: 310168-03 Date Analyzed: 10/12/23 Data File: 101213.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) MDOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	71	132
Toluene-d8	110	68	139
4-Bromofluorobenzene	98	62	136

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.59
cis-1,2-Dichloroethene	2.4
Trichloroethene	1.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	01MW85-101023	Client:	Floyd-Snider
D + D + 1	10/10/00	D	α , $m \circ \alpha$

Date Received: Project: Cantera-TOC, F&BI 310168 10/10/23 Date Extracted: Lab ID: 10/12/23 310168-04 1/10 Date Analyzed: 10/12/23 Data File: 101222.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	71	132
Toluene-d8	116	68	139
4-Bromofluorobenzene	99	62	136

Concentration

Compounds: ug/L (ppb)

Vinyl chloride 18 cis-1,2-Dichloroethene 1,100 Trichloroethene 13

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 01MW107-101023	Client:	Floyd-Snider
----------------------------------	---------	--------------

Cantera-TOC, F&BI 310168 Date Received: 10/10/23 Project: Lab ID: 310168-05 Date Extracted: 10/12/23 Date Analyzed: 10/12/23 Data File: 101214.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	71	132
Toluene-d8	99	68	139
4-Bromofluorobenzene	99	62	136

Concentration

Compounds: ug/L (ppb)

Vinyl chloride <0.02
cis-1,2-Dichloroethene <1
Trichloroethene <0.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 01MW35-10	01023 Client:	Floyd-Snider
-----------------------------	---------------	--------------

Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168 Lab ID: Date Extracted: 10/12/23 310168-06 Date Analyzed: 10/12/23 Data File: 101215.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 71 132 Toluene-d8 112 68 139 4-Bromofluorobenzene 62 98 136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	01MW84-101023	Client:	Floyd-Snider

Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	71	132
Toluene-d8	113	68	139
4-Bromofluorobenzene	97	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

 Date Received:
 10/10/23
 Project:
 Cantera-TOC, F&BI 310168

 Date Extracted:
 10/12/23
 Lab ID:
 310168-08

 Date Analyzed:
 10/12/23
 Data File:
 101217.D

 Matrix:
 Water
 Instrument:
 GCMS13

Units: ug/L (ppb) Operator: MD

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	109	71	132
Toluene-d8	110	68	139
4-Bromofluorobenzene	98	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 02MW19-101023	Client:	Floyd-Snider
---------------------------------	---------	--------------

Project: Cantera-TOC, F&BI 310168 Date Received: 10/10/23 Lab ID: Date Extracted: 310168-09 10/12/23 Date Analyzed: 10/12/23 Data File: 101218.DMatrix: Instrument: Water GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	71	132
Toluene-d8	111	68	139
4-Bromofluorobenzene	97	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 02MW07-101023 Client: Floyd-Snider

Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

Lab ID: Date Extracted: 10/12/23 310168-10 Date Analyzed: 10/12/23 Data File: 101219.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 106 71 132 Toluene-d8 113 68 139 4-Bromofluorobenzene 98 62 136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: 01MW19R-D-101023	Client:	Floyd-Snider
------------------------------------	---------	--------------

Date Received: Cantera-TOC, F&BI 310168 Project: 10/10/23 Lab ID: Date Extracted: 310168-11 10/12/23 Date Analyzed: 10/12/23 Data File: 101220.DMatrix: Instrument: GCMS13Water

Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	71	132
Toluene-d8	118	68	139
4-Bromofluorobenzene	102	62	136

Concentration

Compounds: ug/L (ppb)

Benzene 1.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	TB-101023	Client:	Floyd-Snider
Date Received:	10/10/23	Project:	Cantera-TOC, F&BI 310168
Date Extracted:	10/12/23	Lab ID:	310168-12
Date Analyzed:	10/12/23	Data File:	101212.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	71	132
Toluene-d8	113	68	139
4-Bromofluorobenzene	102	62	136

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.02
cis-1,2-Dichloroethene	<1
Trichloroethene	< 0.5
Benzene	< 0.35

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Method Blank	Client:	Floyd-Snider
-------------------	--------------	---------	--------------

Cantera-TOC, F&BI 310168 Date Received: Not Applicable Project: Lab ID: 10/12/23 03-2330 mbDate Extracted: Date Analyzed: 10/12/23 Data File: 101208.DMatrix: Water Instrument: GCMS11

Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	78	126
Toluene-d8	92	84	115
4-Bromofluorobenzene	99	72	130

Concentration

Compounds: ug/L (ppb)

Vinyl chloride <0.02 cis-1,2-Dichloroethene <1 Trichloroethene <0.5 Benzene <0.35

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 310168-06 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	110	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	120	65-151	7

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 310160-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	37.8	102 b	90 b	75 - 125	12 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23

Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310168-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	0.41	95	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	2.8	$105 \mathrm{b}$	10-211
Benzene	ug/L (ppb)	10	1.6	104	50-150
Trichloroethene	ug/L (ppb)	10	< 0.5	102	35-149

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	91	91	64-142	0
cis-1,2-Dichloroethene	ug/L (ppb)	10	99	100	70-130	1
Benzene	ug/L (ppb)	10	103	103	70-130	0
Trichloroethene	ug/L (ppb)	10	98	98	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

2101/9	SAMPLE CHAIN OF CUSTO	DY 10/10/23	UW5/CZ/54
310168 Report To Fam Osternowt (laborata@floyd	SAMPLERS (signature)		TURNAROUND TIME
Company Flora Snider	PROJECT NAME	PO#	≺ Standard turnaround
Address 601 Union St	Cantera-Toc		Rush charges authorized by:
City, State, ZIP Seattle, WA 98101	REMARKS Sub RSK-175 to Onsite	INVOICE TO	SAMPLE DISPOSAL O Archive samples
City, State, ZIP Seattle, WA 98101 Phone 2015-292-2078 Email laboration of lour smiles	er con for melihane, ethane + ethene Project specific RLs? - Yes / No	Proneer	Other
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ANALYSES REQU	JESTED

					<u> </u>	Г				ANA	LYŞI	ES R	EQU.	ESTE	D	 		1
Sample ID Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH.Dx	NWTPH.Gx	BTEX EPA 8021	NWTPH-HCID	CVOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	BENZENE(BZO)	Dissaved GASES PSK 175	ARSENIC LOZOIS	Not		
01mw46-101023	0(A-F	10/10/23	0930	WATER	بيا					Х			×			G(5 1,2	Dee O Willis	
01mw19R-101023	02 A 6	j	0945	1	77	X	*						×		i		WE	
01mw53-101023	03 AC	l i	1022		3					×			級			cVO(s on		
01MW85-101023	04 A-F	1	11:11		Ģ					×				×		SULD to ON PLS	15the for 1diss.gase	3 6
01mW107-101023	05 A-C		1112		3			,		×							,	
01MW35-101023	06 A-6		1243		7	×	X						×			_]
01MW84-101023	07 A6	-	1244		7	×	×						×					
w -oim 02 mw ó412-101023	1		1356		7	Х	×						×					
02mw19-101023	09 A.U		1402		8	×	×						Х		×			1
07MW07-101023	10 A-4		ান্ড13		8	×	×						×		Х			

Friedman & Bruya, Inc. Ph. (206) 285-8282

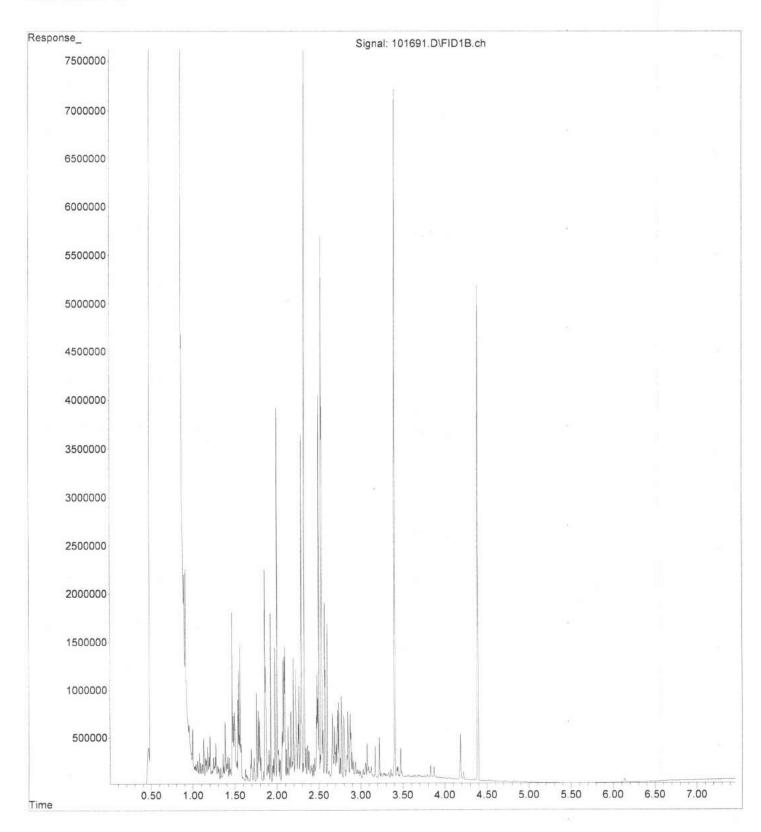
	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Ξ,	Relinquished by:	- F. BREIRO	FLOWDSMOOR	Pierio	1727
	Received by:	JOÉ MOHANTED	£81	10/10/23	1717
	Relinquished by:		Samples received	at 2 0	<u> </u>
	Received by:				

210168			SAMPLI	E CHAIN	OF (CUS	STC	DY	r	- 1	0/1	0/	z3	υ	w5/	/८%	?/ उ।	_
310168	-1	٠, .	SAMPL	ERS (signa						42	7 4 4 4 5 F			S 225				<u> 2</u>
Report To PAM OSTERH	out laboratable	-loydsnider. C	2W 2 7 7 2		<u>00</u>									┨╢	_		AROUND T	IME
Company FLOYD SNID	EKZ.		PROJE	CT NAME						P	O#				Stan RUS		turnaround	
Address 601 UNION	ST			a-Toc													es authorize	d by:
City, State, ZIP_SEATTL			REMAR								ICE				Arch	ive s	PLE DISPOS amples	SAL
Phone 206-797-2078 E	mail <u>labdatae</u>	Goydsnider.	Project	specific RL	s? - Ye	es /	No		Yi	٥ ٠ ٠	een				Othe efau	r_ t: D	ispose after	30 days
									P	NΑ	LYSI	S RI	EQU:	ESTE	D			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	Benzenze (Bzed)				Not	es
01mw19R-D-10107	3 11 A-D	10/10/23	1010	WATER	4	Х	×						×					
TB-101023	12 Aig	10/10/23	1700	WATER	2					X			ጾ				•	
					ļ													
: 																		
							:											
													-					
-																		
					_													
			·															
		GATAMATA			D22-	<u> </u>	47.5	<u></u>			<u> </u>	<u>.</u>		<u> </u>	<u> </u>		<u> </u>	
Friedman & Bruya, Inc.	Relinquished St.	CNATURE			PRIN		AM.	Ľ			_			PAN			DATE	TIME
Ph. (206) 285-8282	Received by:	M	<u> </u>		seeia						FLOYD SUNDER 10/10/23				1727			
	Relinquished by:			-	JOE .	√0 H	\A ₁ \4	~ ⊕				(81	<u> </u>				10 (10 23	1717
	I recurred married by.			1							1					- 1		I

Received by:

Samples received at 2 oc

File :D:\GC14\GC14_Data\10-16-23\101691.D

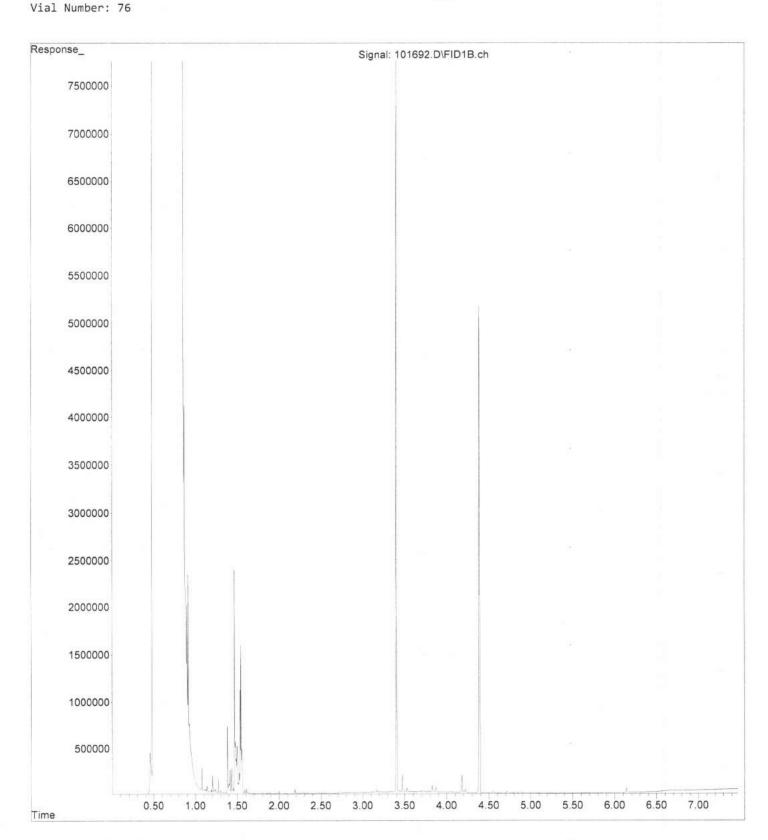

Operator : TL

Acquired : 17 Oct 2023 03:37 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 310168-02 rr

Misc Info :

Vial Number: 75


File :D:\GC14\GC14_Data\10-16-23\101692.D

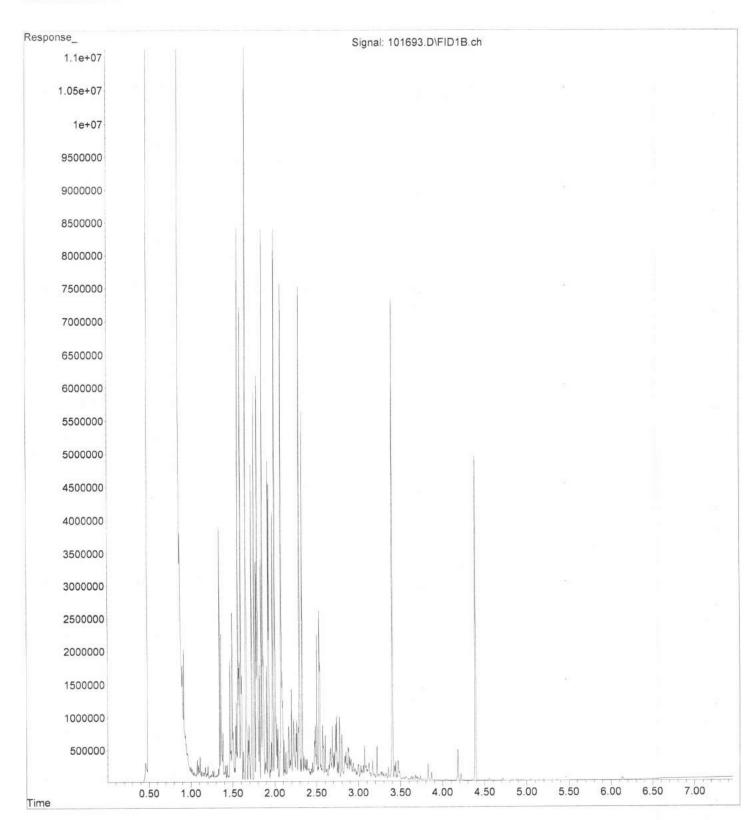
: TL Operator

Acquired : 17 Oct 2023 03:49 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 310168-06 rr

Misc Info :

File :D:\GC14\GC14_Data\10-16-23\101693.D


Operator : TL

Acquired : 17 Oct 2023 04:01 am using AcqMethod DX.M

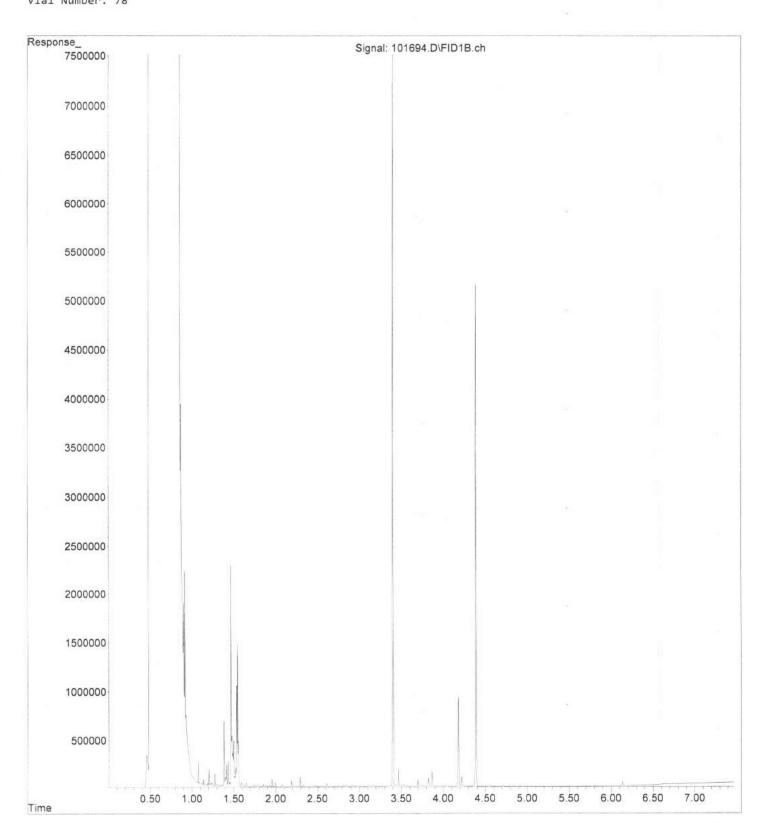
Instrument : GC14 Sample Name: 310168-07 rr

Misc Info :

Vial Number: 77

File

:D:\GC14\GC14_Data\10-16-23\101694.D


Operator : TL

Acquired : 17 Oct 2023 04:12 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 310168-08 rr

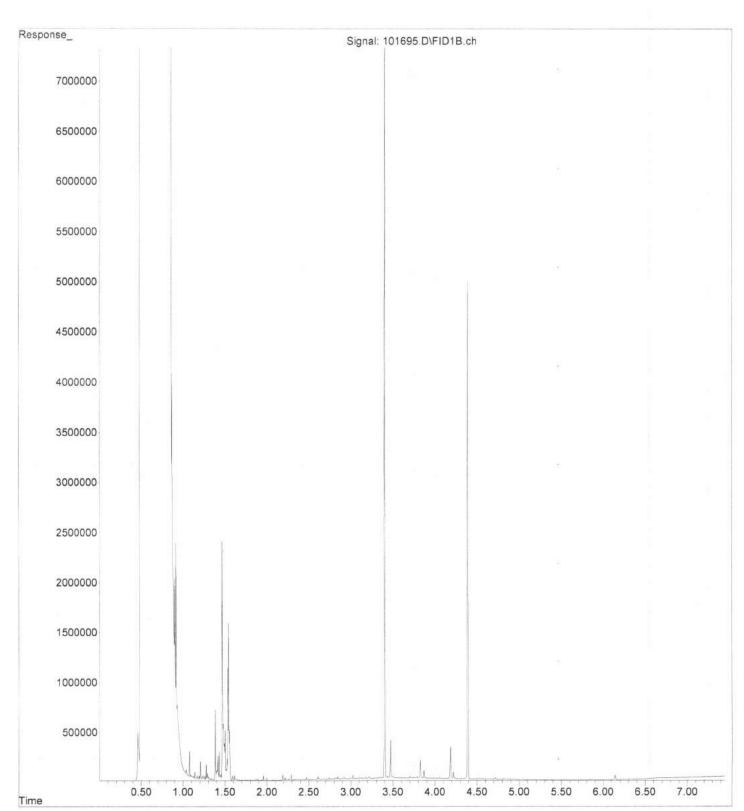
Misc Info :

Vial Number: 78

File

:D:\GC14\GC14_Data\10-16-23\101695.D

Operator : TL


Acquired : 17 Oct 2023 04:24 am using AcqMethod DX.M

Instrument: GC14 Sample Name: 310168-09 rr

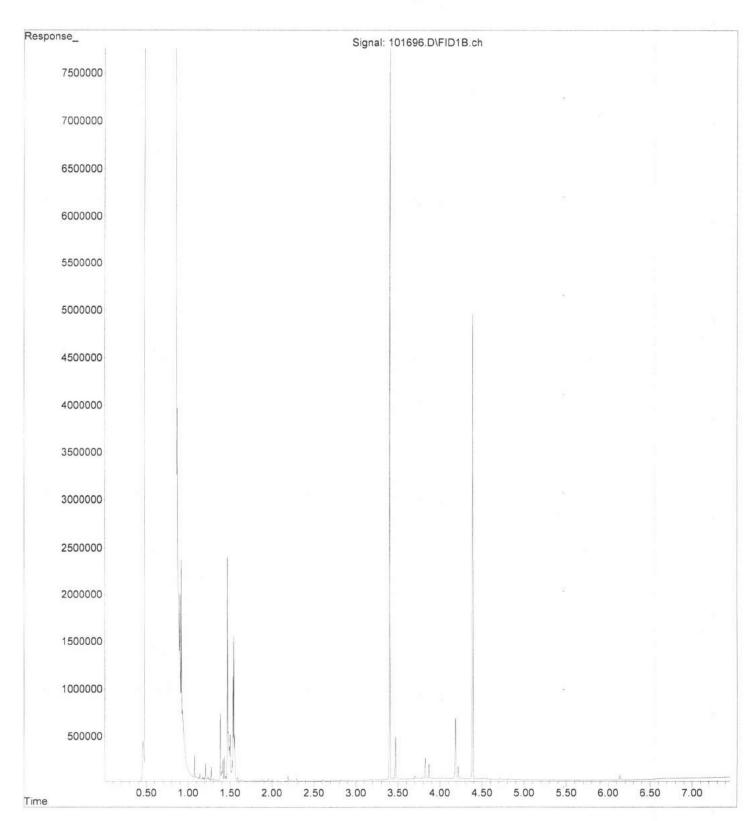
Misc Info :

ERR

Vial Number: 79

:D:\GC14\GC14_Data\10-16-23\101696.D

Operator : TL


Acquired : 17 Oct 2023 04:35 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 310168-10 rr

Misc Info :

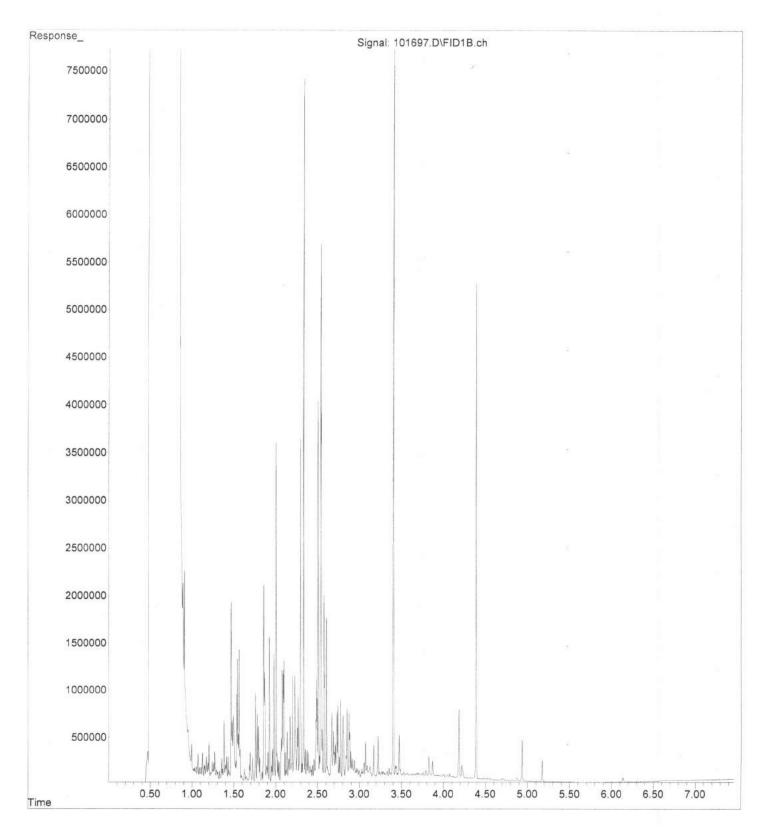
ERR

Vial Number: 80

File

:D:\GC14\GC14_Data\10-16-23\101697.D

Operator : TL


Acquired : 17 Oct 2023 04:47 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 310168-11 rr

Misc Info :

ERR

Vial Number: 81

File :P:\Proc_GC14\10-12-23\101235.D Operator : TL Acquired 0000 12 Oct 2023 04:44 pm using AcqMethod DX.M. Instrument : GC14 Sample Name: 03-2400 mb ERR Misc Info : Vial Number: 29 Response Soulo Signal: 101235.D\FID1B.ch 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 500000 3000000 0 50 2500000 2000000 1500000 1000000 500000 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4 50 5.00 7.00 5.50 6.00 6.50 Time

:P:\Proc GC14\10-12-23\101203.D File Operator : TL Acquired 12 Oct 2023 08:54 am using AcqMethod DX.M Instrumento: GC14 Sample Name: 500 Dx 69-104J ERR Misc Info : Vial Number: 3 Response_ Signal: 101203.D\FID1B.ch 6500000 6000000 3000000 5500000 5000000 4500000 4000000 3500000 3000000 0.50 2500000 2000000 1500000 1000000 500000

3.00

3.50

4.00

2.50

4 50

5.00

5.50

6.00

6.50

7.00

0.50

Time

1.00

1.50

2.00

October 17, 2023

Michael Erdahl Friedman & Bruya, Inc. 5500 4th Avenue South Seattle, WA 98108

Re: Analytical Data for Project 310168 Laboratory Reference No. 2310-150

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on October 11, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 17, 2023 Samples Submitted: October 11, 2023 Laboratory Reference: 2310-150

Project: 310168

Case Narrative

Samples were collected on October 10, 2023 and received by the laboratory on October 11, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Dissolved Gases RSK 175 Analysis

Sample 01MW85-101023 had a surrogate recovery outside control limits believed to be caused by sample matrix interference. Sample was re-run with similar results. All other quality control parameters were in control, no further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: October 17, 2023 Samples Submitted: October 11, 2023 Laboratory Reference: 2310-150

Project: 310168

DISSOLVED GASES RSK 175

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	01MW85-101023					
Laboratory ID:	10-150-01					
Methane	320	2.2	RSK 175	10-16-23	10-16-23	
Ethane	ND	0.22	RSK 175	10-16-23	10-16-23	
Ethene	2.7	0.29	RSK 175	10-16-23	10-16-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	152	50-150				Q

Date of Report: October 17, 2023 Samples Submitted: October 11, 2023 Laboratory Reference: 2310-150

Project: 310168

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1016W1					
Methane	ND	0.55	RSK 175	10-16-23	10-16-23	
Ethane	ND	0.22	RSK 175	10-16-23	10-16-23	
Ethene	ND	0.29	RSK 175	10-16-23	10-16-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	102	50-150				

Analyte	Re	sult	Spike	Level		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB10	16W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	44.2	44.2	44.2	44.2	100	100	75-125	0	25	
Ethane	82.5	83.4	83.2	83.2	99	100	75-125	1	25	
Ethene	76.6	77.1	77.7	77.7	99	99	75-125	1	25	
Surrogate:										
1-Butene					99	99	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To N	Michael	l Erdahl			SUE	CONT	RACT Onsite				10-	150)	7 г			ge #1_ NAROUND	of1 TIME
CompanyF			, Inc.		PRO	JECT	encourse encourse				I	PO#		11	⊠ Staı		TAT	
Address5	500 4th	Ave S					3101	.68			D-L	189					s authorize	ed by:
City, State, ZIP_Se Phone #_ (206) 285			edmanandbruya	a.com		MARKS oyd Snie			leport	to					Disp Retu	ose af rn sa	PLE DISP fter 30 days mples vith instruc	3
							1/			ANA	LYSES	REQU	JEST	red			I	
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	PISTOUNED GASES										1	Totes
01MW85-101023	1	10/10/2023	1111	water		3	x											
																	* Met	one,
																	Eth	anc,
																	EH	enc,
										-	1-1	-+	\dashv				-	
										-	1-1		\dashv					
											1	+	1				1	
													\perp					
							-					+	\dashv					
Friedman & Bruya,			SIGNATURE		/	7		PRIN'	Γ NAI	ME			CO	MPA	NY		DATE	TIME
3012 16th Avenue V	Vest	Relinquished b	y: Z 2	1		Mich	ael Er					Fried					10/11/23	0830
Seattle, WA 98119-2	2029	Received by:	1		_		m	VOU	M			1	98	1=			lolulz	
Ph. (206) 285-8282		Relinquished b	oy:													-		
Fax (206) 283-5044		Received by:																

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 10, 2023

Rusty Jones, Project Manager Crete Consulting 16300 Christensen Road, Suite 214 Tukwila, WA 98188

Dear Mr Jones:

Included are the results from the testing of material submitted on November 6, 2023 from the TOCST1 InSite, F&BI 311100 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 6, 2023 by Friedman & Bruya, Inc. from the Crete Consulting TOCST1 InSite, F&BI 311100 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
311100 -01	NSP-SE
311100 -02	NSP-SW
311100 -03	NSP-NW
311100 -04	NSP-NE
311100 -05	MSP-MS
311100 -06	MSP-SS
311100 -07	MSP-NS
311100 -08	SSP-WS
311100 -09	SSP-ES
311100 -10	SSP-SE

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/10/23 Date Received: 11/06/23

Project: TOCST1 InSite, F&BI 311100

Date Extracted: 11/06/23 Date Analyzed: 11/07/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
NSP-SE 311100-01 1/5	470	120
NSP-SW 311100-02	360	ip
NSP-NW 311100-03	110	124
MSP-MS 311100-05	33	101
MSP-SS 311100-06	38	109
MSP-NS 311100-07	38	100
SSP-WS 311100-08	33	99
SSP-ES 311100-09	8.5	95
SSP-SE 311100-10	11	90
Method Blank 03-2494 MB	<5	80

ENVIRONMENTAL CHEMISTS

ENVIRONMENTAL CHEMISTS

Date of Report: 11/10/23 Date Received: 11/06/23

Project: TOCST1 InSite, F&BI 311100

Date Extracted: 11/07/23 Date Analyzed: 11/07/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
NSP-SE 311100-01	310	<250	88
NSP-SW 311100-02	650	<250	86
NSP-NW 311100-03	180	<250	88
MSP-MS 311100-05	510	<250	88
MSP-SS 311100-06	<50	<250	88
MSP-NS 311100-07	370	<250	87
SSP-WS 311100-08	620	<250	87
SSP-ES 311100-09	580	<250	87
SSP-SE 311100-10	780	<250	90
Method Blank 03-2678 MB2	<50	<250	85

ENVIRONMENTAL CHEMISTS

Date of Report: 11/10/23 Date Received: 11/06/23

Project: TOCST1 InSite, F&BI 311100

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 311080-05 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			I GICGIII	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	40	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/10/23 Date Received: 11/06/23

Project: TOCST1 InSite, F&BI 311100

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 311086-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5 000	< 50	90	96	63-146	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	88	77-123

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

311100			SAMPLI	E CHAIN	OF	CUS	STO	DY	7		n/c)6/.	23		VSC	21	02	*
Report To Jones	Hevens		SAMPL	ERS (signo	ature)			V	·	_'	0.0	and the last of th		٦,			#t	Andrew Control of the
Report To Jones S Company Crete	Consully.	T.,,	PROJE	CT NAME	Jone	>				F	0 #			+			NAROUND d turnaroun	
Address_	Consumry	INC,	Tocs	T1 I	uS-	te					He			-	Rush	SH charg	ges authoriz	ed by:
2544 ACC 10 10 10 10 10 10 10 10 10 10 10 10 10			REMAR	RKS					F-1000000		OICE					SAM	PLE DISPO)SAL
City, State, ZIP	- F-965		-								=TE		7		□ Arcl □ Oth	hive s	samples	
Phone 832330,1359E	mail		Project	specific RL	s? - Ye	es /	No				-((-					ispose afte	er 30 days
									A	ANA	LYSI	ES RI	EQU	EST!	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	725				11/	7/23 ME
NSP-SE NSP-SW NSP-NW	DIAE	11/6/2023	0930	SOIL/COMP.)	X	X						X				Z-Day	TAT
NSP-SW	02		0945		1	χ	*						X				2-Da	TAT
NSP-NW	03		1000		1	X	X						K				2-D9	
NSP-NE	04	92	1015		1												Has	1
MSP-MS MSP- MSP-NS	05		1030		1	χ	Χ						X				5-Day -	TAT
MSP NS MSP	SS 06		1045		i	X	X						X				1	17.1
MSP-NS	07		1100		1	χ	X						X					
SSP-WS	08/		1145		1	X	X						X					
SSP-ES	09		1200		1	X	X						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1				
SSP-WS SSP-ES SSP-WASSPSE	0	\	1215	1	1	X	X						V				1	
		NATURE		1	PRIN	TN	AMI	£		\exists		C	OMI	PAN	V	\exists	DATE	TIME
Friedman & Bruya, Inc. Ph. (206) 285-8282	Relinquished by:	R. Tores		Ĭ.	Zust		T	res				72.50		TE		\forall	11.6.23	
. (200) 200-0202	Received by:	MIL			AN H	1	-						F8				11/06/23	1
	Relinquished by:														eceiv		at _4_0	

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 16, 2023

Pamela Osterhout, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on November 9, 2023 from the Cantera-TOC, F&BI 311159 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures FDS1116R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 9, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 311159 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Floyd-Snider
311159 -01	Vault-110923
311159 -02	Gravity-110923

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Vault-110923	Client:	Floyd-Snider
Date Received:	11/09/23	Project:	Cantera-TOC, F&BI 311159

Lab ID: Date Extracted: 11/13/23311159-01Date Analyzed: 11/13/23 Data File: 111321.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	114	78	126
Toluene-d8	96	84	115
4-Bromofluorobenzene	96	72	130

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Gravity-110923	Client:	Floyd-Snider
Date Received:	11/09/23	Project:	Cantera-TOC, F&BI 311159
Date Extracted:	11/13/23	Lab ID:	311159-02 1/10
Date Analyzed:	11/13/23	Data File:	111327.D
Matrix:	Water	Instrument:	GCMS11

Units: Water Instrument: GCF Units: Ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	78	126
Toluene-d8	99	84	115
4-Bromofluorobenzene	97	72	130

	• •
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	21
cis-1,2-Dichloroethene	98
Trichloroethene	370

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Method Blank	Client:	Floyd-Snider
-------------------	--------------	---------	--------------

Date Received: Not Applicable Project: Cantera-TOC, F&BI 311159
Date Extracted: 11/13/23 Lab ID: 03-2638 mb

Date Extracted: 11/13/23 Lab ID: 03-2638 mb
Date Analyzed: 11/13/23 Data File: 111308.D
Matrix: Water Instrument: GCMS11
Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	78	126
Toluene-d8	94	84	115
4-Bromofluorobenzene	95	72	130

Concentration

Compounds: ug/L (ppb)

Vinyl chloride <0.02 cis-1,2-Dichloroethene <1 Trichloroethene <0.5

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/23 Date Received: 11/09/23

Project: Cantera-TOC, F&BI 311159

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 311154-39 (Matrix Spike)

			Percent						
Analyte	Reporting Units	-	Sample Result	Recovery MS	Acceptance Criteria				
Vinyl chloride	ug/L (ppb)	10	< 0.02	113	50-150				
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	95	10-211				
Trichloroethene	ug/L (ppb)	10	< 0.5	106	35-149				

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	107	103	64-142	4
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	101	70-130	6
Trichloroethene	ug/L (ppb)	10	105	106	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

311159 Chain of Custody Recoi	rd & Labo	ratory A	nalysis F	Request	u]	09/.	23 V	WI				Frie	dman & Bruyaln	
AFIL Assigned Number:	Turn-around	Requested:	indurd	TAT	Page:		of	١				Analytical Resources, Incorporate Analytical Chemists and Cons		
ART Client Company: FIS	Phone:				Date: 11 05 2 3 Ice Present?					•		4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)		
Client Contact: Pamela Osterhout Client Project Name: Cantera-TOC				No. of Cooler Coolers: Temps:								www.arilabs.com		
				Analysis Requested								Notes/Comments		
Client Project #:	1.		n15/P.1	OSterhout	S									
Sample ID	Date	Time	Matrix	No. Containers	cVCCs	75	Lab	×					8	
Tank-110923	11/9/23	0856	GW	3	X		OI A-C						Short list cVOCs	
Gravity-110923	11/9/23	915	GW	3	X		02 1						trefer to project	
				341										
			*	× .										
							San	ples r	eceived	at <u>14</u>	_°C			
											8		=	
				2				*12						
Comments/Special Instructions	Relinquished by (Signature)	160	till	Received by: (Signature)	led			Relinquished by: (Signature)				Received by (Signature)	Received by: (Signature)	
Bill to Pioneer	Printed Name:	torbour	I	Printed Name:	u Anl	Pri			Printed Name:			Printed Nan	Printed Name:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

11/09/23@10:05

F85 Date & Time:

Date & Time: 11/9/23 @ 10:05 Company:

Date & Time:

Company:

Date & Time:

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.