
NW 2491

Hilton Seattle Hotel Fifth Quarter Groundwater Monitoring Report Seattle, Washington

October 29, 2014

OCT 3 1 2014

DEPT OF ECOLOGY
TOP - NWRO

Excellence. Innovation. Service. Value. *Since* 1954.

Submitted To: Mr. Zahoor Ahmed R.C. Hedreen Company 217 Pine Street, Suite 200 Seattle, Washington 98101

By: Shannon & Wilson, Inc. 400 N. 34th Street, Suite 100 Seattle, Washington 98103

(206) 632-8020 www.shannonwilson.com

21-1-12341-004

TABLE OF CONTENTS

1.0	INTRODUCTION	
• •		
2.0	BACKGROUND	.]
3.0	GEOLOGIC AND HYDROGEOLOGIC SETTING	-
2.0	3.1 Regional and Site Geologic Conditions	
	3.2 Groundwater Conditions	
4.0	GROUNDWATER REMEDIATION ACTIVITIES	•
	4.1 Conceptual Site Model	
	4.2 Status of Product Recovery System	
	4.3 Status of In Situ Groundwater Treatment	
5.0	GROUNDWATER MONITORING 5.1 Monitoring Program 5.2 Groundwater Sampling 5.3 Laboratory Analyses 5.4 Monitoring Results 5.4.1 Contaminants of Concern 5.4.2 Geochemical Indicators 5.5 Water Level Monitoring 5.6 Investigation-Derived Waste	5.6.7.7.8
6.0	DATA ANALYSIS	9
7.0	CONCLUSIONS1	
8.0	LIMITATIONS	2
9.0	REFERENCES1	4

TABLES

1 2 3 4 5	Groundwater Sampling Log Groundwater Monitoring Results Geochemical Indicators Water Level Data Data Analysis Summary
	FIGURES
1	Vicinity Map
2	Site Plan
3	Estimated Extent of Gasoline Contamination
4	Estimated Extent of Benzene Contamination
5	Groundwater Elevation Contours
6	MW-2 Contaminant Concentrations and Groundwater Levels
7	MW-3 Contaminant Concentrations and Groundwater Levels
8	MW-4 Contaminant Concentrations and Groundwater Levels
9	MW-5 Contaminant Concentrations and Groundwater Levels
•	APPENDICES
A	Analytical Laboratory Report
В	Disposal Document
C	Natural Attenuation Analysis Output
D	Important Information About Your Geotechnical/Environmental Report

HILTON SEATTLE HOTEL FIFTH QUARTER GROUNDWATER MONITORING REPORT SEATTLE, WASHINGTON

1.0 INTRODÚCTION

This report summarizes the status of groundwater-monitoring activities at the Hilton Seattle Hotel in Seattle, Washington (the Site), facility No. 56642815. Cleanup of gasoline-contaminated groundwater is being conducted in response to the rescission of No Further Action (NFA) determination by the Washington State Department of Ecology (Ecology). The cleanup action is being conducted on behalf of the former property owner, R.C. Hedreen Company of Seattle, Washington, as part of a real estate transaction agreement with the purchaser, Stonebridge Companies of Englewood, Colorado. Cleanup activities have been performed in general accordance with our Cleanup Action Plan (CAP), dated July 18, 2012. Cleanup activities have included the installation of a single-phase skimmer pump to recover free-floating petroleum product to the extent practicable from one monitoring well located in the sidewalk right-of-way (ROW) adjacent to the east of the Site and in situ groundwater treatment using oxygen release compounds. This report summarizes monitoring activities performed for the period June 2014 to August 2014, considered to be the fifth quarter of monitoring.

2.0 BACKGROUND

The Site is located at 1301 Sixth Avenue in downtown Seattle, Washington (Figure 1, Vicinity Map). The hotel was built over a parking structure in approximately 1970. Two 2,000-gallon gasoline underground storage tanks (USTs) were installed along the eastern property line during construction of the hotel (Figure 2, Site Plan). Approximately two years after installation, it was reported that one of the two USTs developed a leak and was replaced. The two tanks were abandoned in place in 1985 by filling with cement slurry. Although a service station occupied the main level of the parking structure that occupied the site prior to the hotel's construction, no other fuel tanks are known to be present beneath the property.

In the early 1990s, gasoline vapors were encountered in an excavation to extend the hotel's elevator shaft down to the depth of the pedestrian concourse leading toward Rainier Tower (see Figure 2). In 1994, Environmental Associates, Inc., drilled a boring adjacent to the abandoned USTs and confirmed the presence of gasoline-related contamination in soil samples from the boring. In 1997 and 1998, Shannon & Wilson, Inc., conducted site investigations and data evaluations related to closure of the two former USTs beneath the hotel. At the time, no soil contamination was detected in borings advanced at the hotel, but more than a foot of gasoline-

range petroleum product was observed floating in the upgradient monitoring well MW-5. Gasoline-range hydrocarbons; benzene, toluene, ethylbenzene, and xylenes (BTEX); and lead were detected in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4 above the Washington Model Toxics Cleanup Act (MTCA) Method A cleanup criterion established at the time.

Because groundwater flow was interpreted to be to the west-northwest at a relatively steep gradient, and a relatively impermeable layer of clay and silt was observed in borings advanced at the Site, the floating product encountered up-gradient of the abandoned USTs was attributed to an offsite source. In 1998, Shannon & Wilson also assessed risks and found no complete exposure pathways exist at the Site. Based on the available site information, Ecology issued an NFA letter in October 1998.

In a periodic review conducted in February 2010, Ecology rescinded the NFA, citing the presence of floating petroleum product at monitoring well MW-5 as a risk to environmental health. In response to Ecology's concern, an investigation was conducted by Shannon & Wilson in August 2011 to assess current groundwater conditions at the Site. The investigation confirmed the presence of approximately 2.3 feet of relatively unweathered floating petroleum product at monitoring well MW-5 and gasoline-range hydrocarbons, BTEX, and lead in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4. Vacuum extraction using an eductor truck was attempted as an interim cleanup action on January 24 and February 21, 2012; however, the effort had limited success and resulted in the removal of approximately 3 gallons of free product.

In June 2012, the hotel re-entered Ecology's Voluntary Cleanup Program (VCP), and Shannon & Wilson was retained to implement groundwater cleanup action with the goal of re-obtaining NFA determination from Ecology. The preferred cleanup action included the installation of a single-phase product recovery system at monitoring well MW-5 to remove source product and in situ groundwater treatment at monitoring wells MW-2, MW-3, MW-4, and MW-5 using oxygen release compounds to facilitate the degradation of residual contamination in groundwater under the Site. The overall objective is to remove source contamination and achieve cleanup levels through monitored natural attenuation.

3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

3.1 Regional and Site Geologic Conditions

The Site is situated on the Seattle Drift Plain, a gently rolling, elevated plain that formed approximately 13,500 years ago during the last period of continental glaciations. Geologic maps

for the site vicinity suggest that much of the material underlying the subject site has been modified extensively by excavation, filling, and/or construction. The Site is situated on a west-facing slope at approximately 175 above mean sea level. An arbitrary site datum was established with the sidewalk elevation at monitoring well MW-5 at 175.6 feet in elevation. This elevation was estimated using King County iMap.

Based on borings advanced by Shannon & Wilson in 1997, the Site is underlain by fill and then layers of silty sand, clayey silt, and silty fine sand. Below the fill, the soil is generally dense and hard, having been glacially overridden. The fill thickness ranges from approximately 3 to 12 feet beneath the basement and sidewalk at the Site. The fill layer is underlain by a silty sand/sandy silt layer that ranges from 1 to 12 feet thick. A hard, silty clay/clayey silt underlies the silty sand layer, ranging from 3 to 15 feet thick. The clayey silt layer was absent in the boring at monitoring well MW-5 but appears to be continuous beneath the basement and UST area. The clayey silt layer is underlain by a medium- to very dense, silty, fine sand layer.

3.2 Groundwater Conditions

Groundwater is present beneath the Site in the lower silty sand layer, below the clayey silt layer. Water level measurements collected at the four monitoring wells indicate that groundwater is at an elevation of approximately 140 feet and flows to the west-northwest. The groundwater level at monitoring well MW-5 was adjusted to account for the floating product layer, when necessary. Groundwater is approximately 34 feet below ground surface (bgs) at the sidewalk along Sixth Avenue and ranges from approximately 15 to 22 feet bgs in the basement garage levels. Estimated flow gradients from previous groundwater monitoring events are presented below:

- > 0.023 foot/foot in May 2014,
- > 0.017 foot/foot in February 2014,
- > 0.017 foot/foot in November 2013,
- > 0.015 foot/foot in August 2013,
- > 0.018 foot/foot in August 2011,
- > 0.026 foot/foot in January 1998.

4.0 GROUNDWATER REMEDIATION ACTIVITIES

4.1 Conceptual Site Model

Based on measured water levels, monitoring well MW-5 is up-gradient of the location of the closed USTs, monitoring well MW-2 is cross-gradient, and monitoring wells MW-3 and MW-4 are down-gradient. When present, floating petroleum product had been observed at monitoring well MW-5 but not at monitoring wells MW-2, MW-3, or MW-4. Because floating petroleum

product was not observed in what are believed to be hydraulically connected wells, the product observed at monitoring well MW-5 appears to be isolated. While the observed dense clayey silt layer is absent at monitoring well MW-5, an unknown boundary condition exists that prevents the floating product plume from migrating to down-gradient locations. The material underlying the subject site has been extensively modified by excavation, filling, and/or construction and has likely created a local subsurface depression that contains the product plume. This is further supported by the condition of the leaded gasoline petroleum product, which, based on a laboratory chromatogram of a collected sample, was relatively unweathered after being released into the environment more than 40 years ago.

Contaminants of concern (COCs) include gasoline-range hydrocarbons, BTEX, and lead. The contamination plume is approximately 34 feet bgs at monitoring well MW-5, and dissolved groundwater contamination is approximately 15 to 22 feet bgs in the basement garage levels. The depth of the contamination below the built environment prevents exposure to contaminated soil and groundwater by human and environmental receptors. Groundwater under downtown Seattle is not likely to be used for drinking water and is not considered a complete exposure pathway. A vapor survey was conducted during our 1998 site evaluation, and gasoline vapors were not measured in the hotel's parking garage, suggesting that this exposure pathway is also incomplete.

4.2 Status of Product Recovery System

A product recovery system was installed in general accordance with our CAP and features a pneumatic, single-phase skimmer pump installed in monitoring well MW-5, with air supply and product-extraction tubing routed under the sidewalk ROW to an equipment compound inside the hotel's parking garage. The system was started on November 6, 2012, and operated until August 14, 2013, when the results of a second rebound test showed petroleum product was no longer accumulating in monitoring well MW-5. Product was not observed through the third quarter (February 2014) monitoring event, but 0.36 feet was observed in monitoring well MW-5 during fourth quarter (May 2014) sampling. Approximately one-quarter gallon of product was removed during fourth quarter monitoring using a disposable bailer and product did not immediately return to the well. However, on July 11, 2014, during fifth quarter monitoring, 0.44 feet of product was observed in the well. On August 8, 2014, in lieu of restarting the extraction system, Shannon & Wilson returned to the Site to purge the well of using a submersible pump. The purge was intended to remove the product observed in the well, to drawdown groundwater in the vicinity of the well to encourage product movement towards the well, and to encourage the removal of suspended solids in the vicinity of the well that may have associated lead contamination. Approximately one-quarter gallon of product was again removed and product

has not been observed as of August 22, 2014. The extraction system remains turned off. To date, approximately 125.5 total gallons of product have been removed by the system, and 128.5 total gallons have been removed when including interim cleanup actions. Additional system performance details can be found in our *First Quarter Groundwater Monitoring Report* (Shannon & Wilson, 2013).

4.3 Status of In Situ Groundwater Treatment

In situ groundwater treatment using oxygen release compounds (ORC) was initiated on May 28, 2013, at monitoring wells MW-2, MW-3, and MW-4 and on September 12, 2013, at monitoring well MW-5 to enhance biodegradation of contamination. Regenesis ORC Advanced[™] well socks, containing a mixture of calcium oxyhydroxide and calcium hydroxide, were installed in the wells to deliver oxygen as electron acceptors for the biodegradation of the petroleum compounds. An oil-absorbent sock was also deployed at monitoring well MW-5 to remove any minor amounts of free product from the groundwater surface as treatment continued; however, the sock is removed when product was observed in the well.

5.0 GROUNDWATER MONITORING

5.1 Monitoring Program

Quarterly monitoring is being conducted to document groundwater conditions during cleanup actions at the Site. Monitoring events are generally scheduled for the months of February, May, August, and November. While up-gradient of the closed USTs, floating product had been confined to the vicinity of monitoring well MW-5, and the well is considered to be within the contamination source. Monitoring wells MW-2, MW-3, and MW-4 are considered to be downgradient of the source, within the contaminated groundwater plume. Fifth quarter monitoring was performed at monitoring wells MW-2, MW-3, MW-4, and MW-5. Groundwater monitoring parameters include the following:

- > COCs
 - Gasoline-Range Hydrocarbons
 - BTEX
 - Total Lead
- > Primary Geochemical Indicators
 - Dissolved Oxygen (DO)
 - Oxidation-Reduction Potential (ORP)
 - ≖ nH
 - Specific Conductance
 - Temperature

> Secondary Geochemical Indicators

- Ferrous Iron
- Nitrate
- Sulfate

• 5.2 Groundwater Sampling

On July 11, 2014, groundwater samples were collected from monitoring wells MW-2, MW-3, and MW-4 using a peristaltic pump and low-flow sampling techniques, and from monitoring well MW-5 using a high-density polyethylene bailer. The bailer was used at monitoring well MW-5 due to the limitations of the peristaltic pump as well as to better evaluate the presence of potential floating product or sheen. ORC socks in these wells were removed one week prior to sampling to maximize treatment time. The absorbent sock was also removed from monitoring well MW-5 prior to sampling.

Monitoring wells MW-2, MW-3, and MW-4 were purged at a low-flow (less than 500 milliliter per minute) pumping rate prior to sampling. The purge water was monitored using a YSI water quality meter until the measured groundwater quality parameters (pH, conductivity, temperature, etc.) stabilized to ±5 percent for three consecutive readings taken at three- to five-minute intervals. Monitoring well MW-5 was purged by bailing three well volumes, and water quality parameters were collected by emptying the bailer contents into the YSI flow cell. The purge water was collected in a bucket and transferred to the storage tank at the equipment compound for future disposal.

Following purging, groundwater samples were collected in clean, laboratory-supplied containers and placed in a cooler with ice for transport to the laboratory. Purging and sampling data are presented in Table 1.

5.3 Laboratory Analyses

Groundwater samples were submitted under chain-of-custody procedures to Fremont Analytical in Seattle, Washington. The collected samples were analyzed for COCs as well as geochemical indicators to continue evaluation of the potential for natural attenuation. Analyses for COCs included gasoline-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons-Gasoline Method (NWTPH-Gx), BTEX by Environmental Protection Agency (EPA) Method 8021B, and total lead by EPA Method 6020/200.8. Analyses for geochemical indicators included ferrous iron by Standard Method 3500B and nitrate and sulfate by EPA Method 300.0.

5.4 Monitoring Results

The fifth quarter groundwater monitoring results for COCs are shown in Table 2. The data are presented along with previous quarterly results and two historical datasets for comparison. One of the historical datasets is from our initial site assessment in 1997, and the other is from our evaluation of groundwater conditions prior to cleanup activities in 2011. Similarly, fifth quarter results for geochemical indicators are shown in Table 3, with available historical results shown for comparison. The analytical laboratory report for the fifth quarter results is provided in Appendix A.

5.4.1 Contaminants of Concern

In the fifth quarter, the samples collected from the monitoring wells had detectable concentrations of gasoline, BTEX, and/or lead. Source well MW-5 had detections of all COCs above their respective MTCA Method A groundwater cleanup criteria, except for toluene. Down-gradient monitoring well MW-2 had detections of gasoline, benzene, ethylbenzene, and xylenes below their respective MTCA Method A groundwater cleanup criterion. Gasoline and xylenes were detected at monitoring well MW-3 and lead at monitoring well MW-4 below their respective MTCA cleanup criterion.

The concentrations of gasoline, BTEX, and lead in the groundwater at source well MW-5 increased from the fourth quarter to the fifth quarter. Concentrations of all COCs at monitoring well decreased over fourth quarter results, including gasoline which was previously above the cleanup criterion in the fourth quarter. The gasoline detection at monitoring well MW-3 increased over the fourth quarter results but remain below the cleanup criterion as well as historical highs. Xylenes and lead detections at monitoring well MW-3, which were detected in the previous quarter, decreased over fourth quarter results. The lead detection at monitoring well MW-4 decreased over the fourth quarter result.

The estimated extents of gasoline and benzene in groundwater for the four most recent quarters of monitoring at the Site are shown on Figures 3 and 4, respectively. The leading edge of groundwater contaminated with gasoline extended past monitoring well MW-4 prior to cleanup and receded through the third quarter but has expanded slightly since (Figure 3). The estimated extent of gasoline at concentrations above its MTCA cleanup criterion (i.e., 800 micrograms per liter $[\mu g/L]$) is relatively stable in the central portion of the Site. The leading edge of groundwater contaminated with benzene at concentrations above its MTCA cleanup criterion (i.e., 5 $\mu g/L$) has receded significantly from levels observed historically, which was beyond monitoring well MW-4, and remains stable with the fifth quarter result (Figure 4).

5.4.2 Geochemical Indicators

Geochemical indicators are categorized as primary or secondary. Primary indicators were measured in the field during purging using a YSI water quality meter, and the secondary indicators were analyzed by the laboratory. Low DO concentrations (e.g., 0 to 1.0 milligrams per liter [mg/L]), measurable ferrous iron, and depleted nitrate and sulfate concentrations generally suggest that active biodegradation of hydrocarbons is occurring. ORP values are a measure of the reducing conditions present and can be correlated to the presence or absence of secondary geochemical indicators to support the identification of biodegradation processes.

In the fifth quarter, DO ranged from 0.28 to 2.23 mg/L in the sampled wells. Ferrous iron was measured in wells MW-3 and MW-5; wells MW-2 and MW-4 were non-detect. Low concentrations of nitrate were detected at all locations. Sulfate was detected in all wells except at monitoring well MW-3. Sulfate was detected at a concentration of 428 mg/L at monitoring well MW-2, 34,600 mg/L at monitoring well MW-4, and 1,170 mg/L at monitoring well MW-5. The negative ORP values measured correlate well with the observed detections. Additionally, elevated groundwater temperatures were observed in all wells (Table 1). The elevated temperatures, ranging from 20.5 to 21.3 degrees Celsius in monitoring wells MW-2 through MW-4, are likely attributable to the hotel's underground electrical vault in the immediate vicinity of the monitoring wells and may be beneficial to microbial growth. The elevated temperature measured at monitoring well MW-5 is likely due to exposure to ambient temperatures during bailing and parameter measurement.

5.5 Water Level Monitoring

Table 4 presents water level data for the fifth quarter monitoring event and historical sampling events. Figure 5 shows approximate groundwater elevation contours for the fifth quarter data. The measurements show the groundwater flow direction to the west-northwest, with a calculated groundwater flow gradient of approximately 0.022 foot/foot. The calculated flow gradient has historically ranged from approximately 0.015 foot/foot to 0.026 foot/foot.

5.6 Investigation-Derived Waste

Investigation-derived waste during the fifth quarter monitoring event included purge water from groundwater monitoring and disposable sampling equipment (nitrile gloves, bailers, etc.). Prior to purging, approximately 250 gallons of mixed waste (recovered petroleum and purged groundwater) in the storage tank was removed and transported on July 11, 2014, to Marine Vacuum Services, Inc., in Seattle, Washington, for fuel blending. Disposal documentation is presented in Appendix B.

After disposal, approximately 5 gallons of purge water was added to the system storage tank during groundwater sampling, and approximately an additional 60 gallons of purge water was added during the purge/drawdown of MW-5. Shannon & Wilson will coordinate disposal once the tank is full. Disposable sampling equipment was placed in a plastic bag and disposed as solid waste.

6.0 DATA ANALYSIS

Groundwater monitoring data was analyzed using Ecology's natural attenuation guidance for petroleum-contaminated groundwater (Ecology, 2005a,b). The technical guidance package provides six computational tools, or modules, for evaluating the feasibility and performance of natural attenuation as a cleanup action for groundwater. Available data were analyzed using modules that do not incorporate groundwater flow models, including *Module 1: Non-Parametric Analysis for Plume Stability Test, Module 2: Graphical and Regression Analysis for Plume Stability & Restoration Time Calculation*, and *Module 3: Evaluation of Geochemical Indicators*. The computational module output is provided in Appendix C.

The data analysis results for Modules 1 and 2 are summarized in Table 5. Module 1 evaluates plume stability using the Mann-Kendall non-parametric statistical method, while Module 2 evaluates plume stability using linear regression. Both evaluations provide evidence that gasoline and BTEX concentrations at monitoring well MW-2 are stable and/or shrinking at relatively high levels of confidence. The linear regression result for ethylbenzene at monitoring well MW-2 was again undetermined due to the compound's fourth quarter increase in concentration at this location. The Mann-Kendall method shows gasoline concentrations as stable at monitoring well MW-3 and undetermined for BTEX. Xylenes had been considered shrinking at this location in previous quarters, but the detection in the fourth quarter reduced the certainty of the model result. Concentrations of benzene, toluene, and ethylbenzene at monitoring well MW-3 are undetermined by the Mann-Kendall method, but the parameters have been non-detect for the past six sampling events and therefore do not show a strong decreasing trend. However, linear regression for the data at monitoring well MW-3 indicates that gasoline and BTEX concentrations are shrinking at high levels of confidence. Trend analyses are again limited in their application at monitoring well MW-4 because parameter concentrations are predominantly non-detect. At monitoring well MW-4, the Mann-Kendall method shows gasoline as undetermined and BTEX as stable. Linear regression shows gasoline as undetermined; benzene, toluene and ethylbenzene as not applicable; and xylenes as stable.

Point decay rates and half-life results at 50- and 85-percent confidence levels were determined using linear regression (Table 5). While the module calculates values for both stable and

shrinking plumes as shown, the regression analysis is only appropriate for shrinking plumes. Furthermore, because concentrations of gasoline and BTEX at monitoring wells MW-2, MW-3, and MW-4 are below their respective cleanup criterion in the fifth quarter, estimating the time to achieve cleanup is also not appropriate.

Module 3 calculates assimilative capacity and plots geochemical indicators. Assimilative capacity is the potential capacity of groundwater to biodegrade contaminants, and the calculation is based on background concentrations of electron acceptors (e.g., DO, nitrate, sulfate, etc.). Background geochemical values for downtown Seattle groundwater have not been established for this project; therefore, the assimilative capacities calculated by the module are not usable. However, the plots of geochemical indicators provide evidence that biodegradation is occurring. Biodegradation proceeds according to reactions that are energetically preferred by microbes. Electron acceptors evaluated for this project, from most preferred to least preferred, are oxygen, nitrate, ferric iron, and sulfate. DO was depleted at all locations measured, but slightly higher than past monitoring events at monitoring wells MW-2, MW-4 and MW-5. The higher DO measurements in MW-2 and MW-4 are likely due to the fact that the ORC socks were removed a week in advance of sampling instead of a month. The higher DO measurement at MW-5 is likely due to aeration of the sampled groundwater during transfer from the bailer to the monitoring flow cell. Nitrate levels were low but not completely depleted at all locations. This is the first quarter with detections of nitrate at all locations since geochemical indicators were added to the monitoring program. Ferrous iron, a metabolic by-product of reactions involving ferric iron, was detected at relatively elevated levels in source monitoring well MW-5 and in down-gradient monitoring well MW-3. Monitoring well MW-2, the nearest down-gradient well, typically has elevated detections of ferrous iron, but the fifth quarter detection was non-detect. Monitoring well MW-4, the farthest down-gradient well, typically has low detections of ferrous iron, and was non-detect in the fifth quarter after a relatively elevated detection in the previous quarter. With the exception of monitoring well MW-2, concentrations of ferrous iron generally decreased with distance from the source well. Sulfate was depleted in the source well MW-5 and monitoring wells MW-2 and MW-3, but was elevated in monitoring wells MW-4. Additionally, ORP and pH field measurements correlate well with the observed detections.

Groundwater contaminant concentrations for gasoline and benzene were also plotted along with groundwater levels for each monitoring well location to evaluate potential trends in the data (Figures 6 through 9). Data from August 2013 to present were plotted for each location to show seasonal variation since the start of cleanup activities. Monitoring well MW-2 shows groundwater levels and gasoline concentrations decreasing in the latter part of 2013; benzene concentrations are low and do not show much variation (Figure 6). Gasoline concentrations

show a slight increase in spring 2014 in response to rising groundwater levels, and decrease again as groundwater levels lower. The increase in the gasoline concentration is evidence of residual contamination present in the smear zone, or region of water table fluctuation, and the rising water levels allow for contaminants to dissolve into the groundwater. A similar trend is observed at monitoring well MW-3, though in this case the concentration of gasoline lags behind the groundwater fluctuation. This may suggest that the effect is less from residual contamination in the immediate vicinity of monitoring well MW-3 and more from contaminant concentrations migrating from up-gradient locations. No trends are observed in the data from monitoring well MW-4 because gasoline and benzene concentrations are non-detect. Source monitoring well MW-5 also shows a trend similar to monitoring wells MW-2 and MW-3 for gasoline, but also shows an increase in benzene concentrations as groundwater levels increase in spring 2014.

7.0 CONCLUSIONS

Based on our review and analysis of the fifth quarter monitoring results, we offer the following conclusions regarding remediation at the Site.

- ➤ Floating product was observed in source well MW-5 at a thickness of 0.44 feet.

 Approximately one-quarter gallon of product was removed and product has not been observed in the well as of August 22, 2104. The source of the additional product is not known and is considered an anomalous event.
- Approximately 60 gallons of groundwater was purged from source well MW-5 to encourage the removal of suspended solids in the vicinity of the well that may have associated lead contamination. The effectiveness of the purge will be evaluated after the sixth quarter monitoring event.
- Source monitoring well MW-5 had detected concentrations of all COCs and, except for toluene, the concentrations exceeded their respective MTCA Method A cleanup criterion. Concentrations of COCs increased over fourth quarter results. The increasing trend over the past two quarters is likely due to the floating product that has been observed and is considered to be a short term condition. Concentrations at this location are expected to return to a decreasing trend as treatment of the groundwater continues.
- Down-gradient monitoring well MW-2 had detected concentrations of gasoline, benzene, ethylbenzene, and xylenes below their respective MTCA Method A cleanup criterion; toluene and lead were non-detect. The gasoline concentration detected was below its cleanup criterion for the first time. Concentrations of all COCs decreased over fourth quarter results at this location. Lead concentrations at this location have fluctuated between minor detections and non-detects.

- Soline and xylenes were detected below their respective cleanup criterion in downgradient monitoring well MW-3. The gasoline detection represented a slight increase over the fourth quarter result. The xylenes detection represented a slight decrease over the fourth quarter result, which had been non-detect in the three previous quarters. Lead had been detected in the fourth quarter but was again non-detect in the fifth quarter. The increase in gasoline is again likely associated with impacts caused by the floating product observed in the source well MW-5.
- > Only lead was detected at down-gradient monitoring well MW-4. The lead concentration was below its MTCA Method A cleanup criterion and represents a decrease over the fourth quarter result, which had been non-detect in the three previous quarters.
- Dissolved oxygen remained slightly elevated at the time of sampling suggesting that the groundwater may not have fully reached an equilibrium state after removal of the ORC socks. To further evaluate this effect, removal of the ORC socks will be increased from one to two weeks prior to the sixth quarter sampling event.
- > Contamination is not migrating off-site, and an analysis of the data indicates that the contamination plume is stable and/or shrinking in response to remedial efforts.
- > Geochemical indicators continue to suggest that biodegradation is occurring at the Site and monitored natural attenuation appears to be a viable long-term remediation alternative.

The sixth quarter groundwater monitoring event is scheduled to be conducted November 2014. These activities will be the subject of the next quarterly groundwater monitoring report.

8.0 LIMITATIONS

This report was prepared for the exclusive use of the R.C. Hedreen Company and its representatives, and in no way guarantees that any agency or its staff will reach the same conclusions as Shannon & Wilson. The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our agreement. The conclusions presented in this report are professional opinions based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

Shannon & Wilson has prepared Appendix D, "Important Information About Your Geotechnical/Environmental Report." While not written specifically for this project, this enclosure should assist you and other in understanding the use and limitations of our reports.

We appreciate the opportunity to be of continued service on this project. If you have any questions, please contact the undersigned at (206) 632-8020.

Sincerely,

SHANNON & WILSON, INC.

Michael S. Reynolds, P.E. Senior Environmental Engineer

MSR:SWG/msr:axp

Scott W. Gaulke, P.E., L.H.G

Vice President

9.0 REFERENCES

- Environmental Associates, Inc., 1994, Soil and groundwater sampling and testing, Hilton Hotel underground storage tanks, Sixth Avenue and University Street, Seattle, Washington, December 1.
- King County, 2011, King County iMap Property Information, http://www.metrokc.gov/GIS/iMap, August 10.
- Shannon & Wilson, Inc., 1998a, Site assessment report, Seattle Hilton Hotel, Seattle, Washington, February.
- Shannon & Wilson, Inc., 1998b, Closure services related to Hilton USTs, Seattle Hilton Hotel, Seattle, Washington, July.
- Shannon & Wilson, Inc., 2011, Seattle Hilton Hotel groundwater current conditions sampling and analysis plan, Seattle, Washington, August 4.
- Shannon & Wilson, Inc., 2012, Cleanup action plan, Hilton Seattle Hotel, Seattle, Washington, July 18.
- Shannon & Wilson, Inc., 2013, First quarter groundwater monitoring report, Hilton Seattle Hotel, Seattle, Washington, September 30.
- Washington State Department of Ecology (Ecology), 1998, Seattle Hilton Hotel parking garage voluntary cleanup program no further action letter, October.
- Washington State Department of Ecology (Ecology), 2005a, Guidance on remediation of petroleum-contaminated ground water by natural attenuation: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091 (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2005b, User's manual: Natural attenuation analysis tool package for petroleum-contaminated ground water: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091A (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2007, The Model Toxics Control Act cleanup regulation, chapter 173-340 WAC: Olympia, Washington, Washington State Department of Ecology, October 12.
- Washington State Department of Ecology (Ecology), 2010, Periodic review, Hilton Hotel Parking Garage, Facility Site ID#: 56642815, February.

TABLE 1 GROUNDWATER SAMPLING LOG

, , , , , , , , , , , , , , , , , , ,		Monito	ring Well		
	MW-2	MW-3	MW-4	MW-5	
Water Level Measurement Data			<u> </u>		
Date Water Level Measured	7/11/2014	7/11/2014	7/11/2014	7/11/2014	
Time Water Level Measured	11:50	10:35	9:15	13:30	
Measuring Point (MP) Elevation, Feet	162.55	161.24	154.30	174.35	
Depth to Water Below MP, Feet	22.45	22.25	16.16	33.40 ^A	
Water Level Elevation, Feet	140.10	138.99	138.14	140.95	
Purging/Sampling Data				2.00,52	
Date Sampled	7/11/2014	7/11/2014	7/11/2014	7/11/2014	
Time Sampled	12:35	11:20	10:10	14:25	
Depth to Water Below MP, Feet	22.45	22.25	16.16	33.40 ^A	
Total Depth of Well Below MP, Feet	29.40	29.23	20.01	38.50	
Water Column in Well, Feet	6.95	6.98	3.85	5.10	
Gallons per Foot	0.16	0.163	0.16	0.16	
Gallons in Well	0.16	1.14	0.62	0.82	
Total Gallons Pumped/Bailed	0.8	0.6	0.6	5.0	
Purging Method	Peristaltic	Peristaltic	Peristaltic	Bailer	
Sampling Method	Peristaltic	Peristaltic	Peristaltic	Bailer	
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch	
Water Quality Data ^B					
Temperature, °C	20.5	21.1	21.3	24.7	
Dissolved Oxygen, mg/L	2.01	0.28	2.11	2.23	
Specific Conductance, µS/cm	0.831	0.824	0.654	0.801	
pH, standard units	7.06	6.94	7.58	6.68	
Oxidation-Reduction Potential, mV	-70.4	-118.7	-43.1	-121.9	
Remarks	No free product	No free product	No free product	0.44 feet of free	
	observed.	observed.	observed.	product	
	Hydrocarbon	Hydrocarbon		observed.	
	Odors.	Odors.		Strong	
			•	Hydrocarbon	
				Odor.	

Notes:

21-1-12341-004_Q5_10.29.14

 $^{^{\}mathbf{A}}\mathbf{W}\mathrm{ater}$ level was adjusted to account for free product observed.

^BWater quality parameters were measured with YSI instruments.

^{-- =} not applicable or not measured

[°]C = degrees Celsius

mg/L = milligram per liter

 $[\]mu S/cm = microsiemens per centimeter$

mV = millivolt

TABLE 2
GROUNDWATER MONITORING RESULTS

Monitoring Well	Sample Date	Produc@Thickness			SamplingR	හෝහ(ල්ල්ල්)		
ryoutowed (year)	Sample one	(feet)	Gasolline	Benzene	Toluene	Ethylbenzene	Xylenes	ilend.
	9/25/1997	-	4,700	6,700	210	670	590	8.00
	8/25/2011	. –	2,950	76.1	2.19	863	22.0	< 1.0
	8/22/2013	-	5,000	3.07	2,01	408	10.8	8.14
MW-2	11/21/2013	_	1,760	1.40	1.57	83.3	6.89	< 1.0
	2/21/2014	_	1,360	2.90	1.62	20.8	7.44	8.10
	5/30/2014	· -	2,070	1.82	2,00	36.5	8.47	2.71
	7/11/2014	- :	642	1.22	< 1.0	4.80	3.07	< 1.0
-	9/25/1997	-	700	7,200	10,0	74.0	97.0	9.00
•	8/25/2011	-	153	< 1.0	< 1.0	< 1.0	1.35	< 1.0
	8/22/2013	-	209	< 1,0	< 1.0	< 1.0	<2.0	< 1.0
MW-3	11/21/2013	-	235	< 1.0	< 1.0	< 1.0	< 2.0	< 1,0
	2/21/2014	-	114	< 1.0	< 1.0	< 1.0	< 2:0	< 1.0
	5/30/2014		187	< 1.0	< 1.0	< 1.0	3.59	3.42
	7/11/2014	-	397	< 1.0	< 1.0	< 1.0	1.31	< 1.0
	11/14/1997	-	< 50	< 1.0	< 1.0	¯< 1.0	<3.0	<4.0
	8/26/2011	-	135	< 1.0	< 1.0	< 1.0	< 2.0	5.57
	8/22/2013		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
MW-4	11/21/2013	1	< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
	2/21/2014		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
	5/30/2014	-	< 50	< 1.0	< 1,0	< 1.0	< 2.0	11.1
	7/11/2014	1	< 50	< 1.0	< 1.0	< 1.0	< 2.0	2,40
T	12/22/1997	1,69	NS	NS	NS	NS	NS	NS
	8/11/2011	2.33	NS	NS	NS	NS	NS	NS
	8/22/2013		NS	NS	NS	NS	NS	NS
MW-5	11/21/2013	-	98,100	230	179	1,070	6,100	26.1
	2/21/2014		30,300	193	122	796	3,670	47.2
	5/30/2014	0,36	51,400	927	552	1,820	7,610	9.97
•	7/11/2014	0.44	59,300	1,050	837	1,940	9,960	44.9
M	ITCA Method A Groun	dwater Cleanup Levels:	800	5	1,000	700	1,000	15

Bold indicates analyte detected above method reporting limit.

Shaded cell indicates detection is above the groundwater cleanup criterion.

μg/L = micrograms per liter

MTCA = Washington State Model Toxics Control Act

NS = not sampled

^{-- =} no product observed

< = detection below reporting limit shown

TABLE 3
GEOCHEMICAL INDICATORS

Monitoria -	[7		Secondary Indicator	s		
Monitoring Well	Sample Date	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	p H	Specific Conductance (µS/cm)	Temperature (°C)	Nitrate - (µg/L)	Ferrous Iron (µg/L)	Sulfate (µg/L)
	9/25/1997	_			_			_	
	8/25/2011	0.25	-86.0	6.94	0.701	20.5			
	8/22/2013	0.10	40.8	8.33	0.833	22.4	< 100	980	970
MW-2	11/21/2013	0.29	-136.2	6.88	0.759	19.0	< 100	3,150	< 30
	2/21/2014	0.21	-154.1	6.95	0.845	17.8	< 100	5,100	<30
	5/30/2014	0.19	-153.9	6,89	0.840	17.9	< 100	1,150	304
	7/11/2014	2.01	-70.4	7.06	0.831	20.5	393	< 30	428
	- 9/25/1997	-	_		_ ·	_			
	8/25/2011	1.87	-92.8	6.95	0.718	20.5	_	_	· -
	8/22/2013	0.27	-99.8	6.37	0.739	21.5	< 100	2,430	< 30
MW-3	11/21/2013	0.31	-152.1	6.91	0.717	20.0	< 100	4,900	< 30
	2/21/2014	0.23	-142.1	7.07	0.791	18.4	< 100	3,270	< 30
	5/30/2014	0.14	-149.2	7.15	0.728	18.4	< 100	600	< 30
	7/11/2014	0.28	-118.7	6.94	0.824	21.1	528	2,940	< 30
_	11/14/1997	_	_		_	- 1		→	
	8/26/2011	1,26	-85.1	7.56	0.447	21.2			
	8/22/2013	0.10	51.3	9.22	0.599	21.5	< 100	80	39,100
MW-4	11/21/2013	0,51	-150.2	7.69	0.602	20.8	< 100	80	30,900
	2/21/2014	0.39	-105.6	7.80	0.680	19.3	< 100	100	18,300
	5/30/2014	0.41	-81.4	7.77	0.675	19,3	< 100	2,380	31,500
	7/11/2014	2.11	-43.1	7.58	0.654	21.3	249	<30	34,600
	11/21/2013		_			Ī Ī	< 100	5,300	3,860
MW-5	, 2/21/2014	-	. – .	-	_	_	< 100	7,100	16,300
1414-2	5/30/2014				_	-	< 100	3,180	2,360
[7/11/2014	2,23	-121.9	6.68	0.801	24.7	497	3,600	1,170

°C = degrees Celsius

mg/L = milligrams per liter

mV = millivolt

µg/L = micrograms per liter

μS/cm = microsiemens per centimeter

<= analyte not detected below reporting limit shown

-- = not tested

TABLE 4
WATER LEVEL DATA

Monitoring Well	Date	Top of Casing Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
	9/25/1997	162.55	21.36	141.19
	8/25/2011	162.55	22.09	140.46
	8/22/2013	162.55	22.20	140.35
MW-2	11/21/2013	162.55	22.85	139.70
. [2/21/2014	162.55	22.67	139.88
. [5/30/2014	162.55	21.90	140.65
	7/11/2014	162.55	22.45	140.10
	9/25/1997	161.24	20.49	140.75
	8/25/2011	161.24	21.08	140.16
	8/22/2013	161.24	21.10	140.14
MW-3	11/21/2013	161.24	21.72	139.52
	2/21/2014	161.24	21.60	139.64
[5/30/2014	161.24	20.92	140.32
	7/11/2014	161.24	. 22.25	138.99
	11/14/1997	154.30	15.31	138.99
	8/26/2011	154.30	15.43	138.87
	8/22/2013	154.30	15.26	139.04
MW-4	11/21/2013	154.30	16.25	138.05
	2/21/2014	154.30	16.20	138.10
	5/30/2014	154.30	14.98	139.32
	7/11/2014	154.30	16.16	138.14
	11/14/1997	175.38	32.79	142.59
Γ	8/26/2011	175.38	34.21	141.17
Γ	8/14/2013	174.35	33.51	140.84
MW-5	11/21/2013	174.35	34.17	140.18
.	2/21/2014	174.35	34.10	140.25
Γ	5/30/2014	174.35	33.40	140.95
Ţ	7/11/2014	174.35	33.40	140.95

Notes:

Elevations were estimated from King County iMap (Aug 2011).

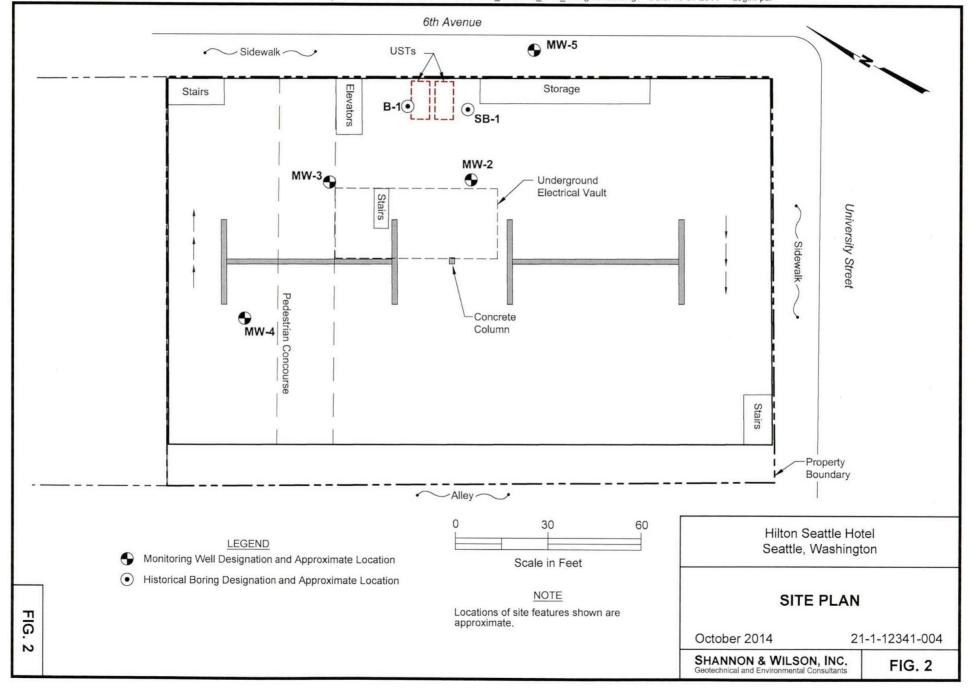
Depth to groundwater for 1997, 2011, May 2014, and July 2014 for MW-5 were adjusted to account for floating product.

Top of casing elevation for MW-5 modified during system installation in 2012.

TABLE 5
DATA ANALYSIS SUMMARY

Monitoring		Analysis	Parameter					
Well		Audiysis	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
	Mann-Kendall	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking	
	Waini-Kendan	CL	96.5%	99.5%	98.5%	99.5%	98.5%	
		Plume Stability	Stable	Shrinking	Shrinking	Undetermined	Shrinking	
MW-2		CL	79.1%	99.9%	99.9%	80.1%	99.9%	
171 77 -2	Linear Regression	Point Decay Rate at 50% CL, yr ⁻¹	0.064	0.495	0.308	NA	0.273	
	Linear Regression	Point Decay Rate at 85% CL, yr ⁻¹	0.014	0.415	0.271	NA	0.241	
		Half Life at 50% CL, yr	10.834	1.401	2.250	NA	2.536	
		Half Life at 85% CL, yr	50.957	1.671	2.553	NA	2.872	
-	Mann-Kendail	Plume Stability	Stable	Undetermined	Undetermined	Undetermined	Undetermined	
	Wiami-Kendan	CL	50.0%	71.9%	71.9%	71.9%	61.4%	
	Linear Regression	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking	
MW-3		CL	93.7%	99.9%	99.9%	99.9%	99.9%	
14144-2		Point Decay Rate at 50% CL, yr ⁻¹	0.073	0.584	0.183	0.305	0.258	
		Point Decay Rate at 85% CL, yr ⁻¹	0.038	0.536 .	0.168	0.280	0.212	
		Half Life at 50% CL, yr	9.536	1.187	3.794	2.274	2.687	
		Half Life at 85% CL, yr	18.238	1.292	4.130	2.476	3.275	
	Mann-Kendall	Plume Stability	Undetermined	Stable	Stable	Stable	Stable	
	Walin-Kendan	CL	61.4%	-600.0%	-600.0%	-600.0%	-600.0%	
	-	Plume Stability	Undetermined	NA	NA	NA	Stable	
MW-4		CL .	2.7%	NA	NA	NA	0.0%	
1AT AA4	Linear Regression	Point Decay Rate at 50% CL, yr ⁻¹	NA	NA	NA	NA	NA	
	Diffical Regression	Point Decay Rate at 85% CL, yr ⁻¹	NA	NA	, NA	NA	NA	
		Half Life at 50% CL, yr	NA	NA	NA	NA	NA	
		Half Life at 85% CL, yr	NA	NA	NA	NA	NA	

Notes:


CL = confidence level

NA = not applicable

yr = year

Date: 10-01-2014 Login: par

Filename: I:\WIP\Projects\21-1 Seattle\21-1-12341-004 Seattle Hilton Hote\\Graphics\Cad\ForSurfer\21-1-12341-004 Fig 1.dwg

Scale in Feet

NOTES: 1. Concentrations are in micrograms per liter. 2. Locations of site features shown are approximate. 3. Figure originally produced in color.

W

October 2014

21-1-12341-004

SHANNON & WILSON, INC.

FIG. 3

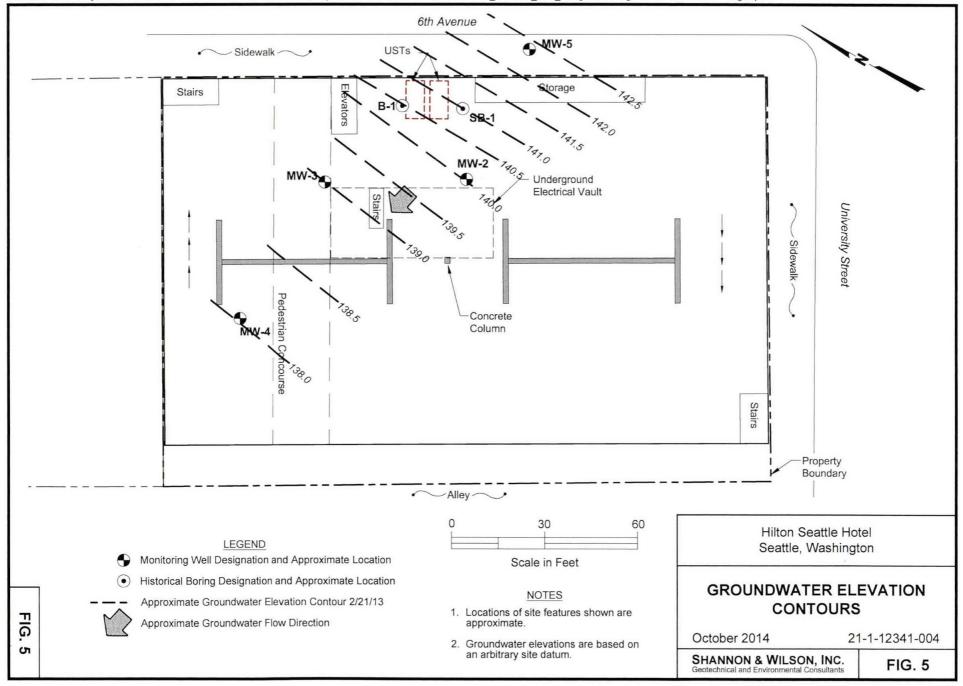
Scale in Feet

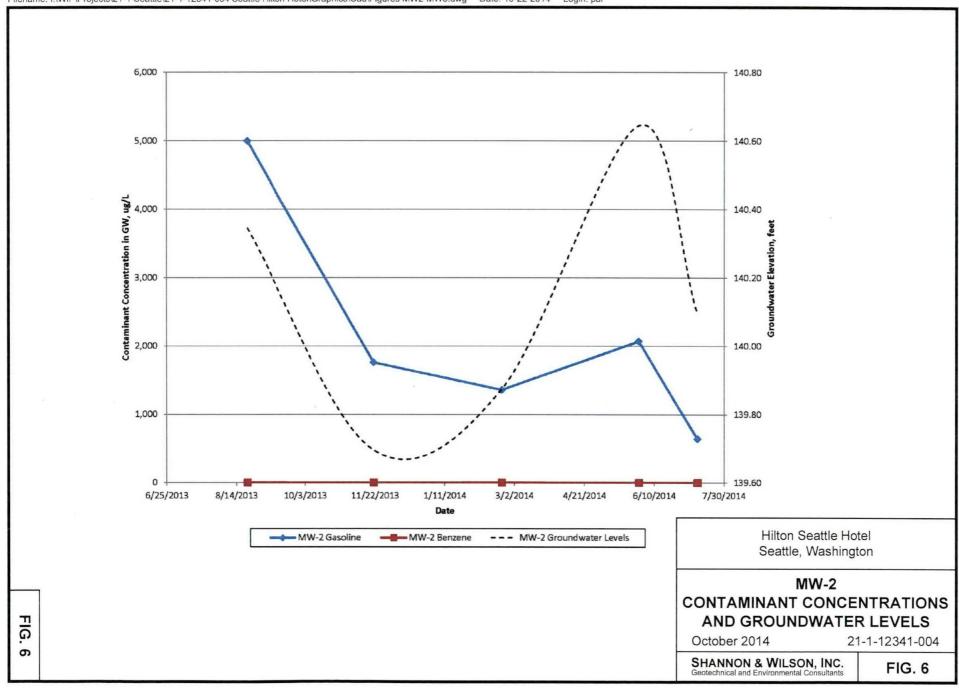
October 2014

SHANNON & WILSON, INC.

Geotechnical and Environmental Consultants

21-1-12341-004


FIG. 4


1. Concentrations are in micrograms per liter.

3. Figure originally produced in color.

4

2. Locations of site features shown are approximate.

Geotechnical and Environmental Consultants

FIG. 8

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 9

APPENDIX A ANALYTICAL LABORATORY REPORT

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178

info@fremontanalytical.com

Shannon & Wilson

Michael Reynolds 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Seattle Hilton Lab ID: 1407113

July 17, 2014

Attention Michael Reynolds:

Fremont Analytical, Inc. received 5 sample(s) on 7/11/2014 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) Ion Chromatography by EPA Method 300.0 Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGA

Michael Dee

Sr. Chemist / Principal

Date: 07/17/2014

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

Lab Order:

1407113

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1407113-001	MW-5	07/11/2014 2:25 PM	07/11/2014 3:21 PM
1407113-002	MW-2	07/11/2014 12:35 PM	07/11/2014 3:21 PM
1407113-003	MW-3	07/11/2014 11:20 AM	07/11/2014 3:21 PM
1407113-004	MVV-4	07/11/2014 10:10 AM	07/11/2014 3:21 PM
1407113-005	Trip Blank	07/09/2014 12:00 AM	07/11/2014 3:21 PM

Case Narrative

WO#: 1407113 Date: 7/17/2014

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#: 1407113

Date Reported: 7/17/2014

Client: Shannon & Wilson Collection Date: 7/11/2014 2:25:00 PM

Project: Seattle Hilton **Lab ID:** 1407113-001

Matrix: Water

Client Sample ID: MW-5

Client Sample ID: MW-5 Analyses	Result	RL	Qual	Units	DF	Date Analyzed
	1100011	112				Duto / iliuly zou
Gasoline (NWTPH-Gx) & BTEX	EPA Method 8	021B)		Bato	h ID: R1	5603 Analyst: BC
Benzene	1,050	50.0	D	μg/L	50	7/16/2014 5:22:00 PM
Toluene	837	50.0	D	µg/L	50	7/16/2014 5:22:00 PM
Ethylbenzene	1,940	50.0	D	µg/L	50	7/16/2014 5:22:00 PM
m,p-Xylene	6,950	50.0	D	µg/L	50	7/16/2014 5:22:00 PM
o-Xylene	3,010	50.0	D	μg/L	50	7/16/2014 5:22:00 PM
Gasoline	59,300	2,500	D	µg/L	50	7/16/2014 5:22:00 PM
Surr: 1,4-Difluorobenzene	113	65-135		%REC	1	7/15/2014 6:36:00 PM
Surr: 4-Bromofluorobenzene	136	65-135	S	%REC	1	7/15/2014 6:36:00 PM
Laboratory Control Sample (LCS). on Chromatography by EPA Me	ethod 300.0			Bato	h ID: R1	5573 Analyst: KT
Nitrate	0.497	0.100		mg/L	1	7/11/2014 8:23:00 PM
Sulfate	1.17	0.300		mg/L	1	7/11/2014 8:23:00 PM
Total Metals by EPA Method 20	0.8			Bato	h ID: 80	98 Analyst: TN
Lead	44.9	1.00		μg/L	1	7/14/2014 2:27:15 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R1	5566 Analyst: KT
Ferrous Iron	3.60	0.300	D	mg/L	10	7/11/2014 5:36:00 PM

Qualifiers:	В	Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analytical Report

WO#:

1407113

Date Reported: 7/17/2014

Collection Date: 7/11/2014 12:35:00 PM

Client: Shannon & Wilson

Project: Seattle Hilton Lab ID: 1407113-002

Matrix: Water

Client Sample ID: MW-2

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline (NWTPH-Gx) & BTE)	((EPA Method 8	021B)		Bato	h ID: R1	15603 Analyst: BC
Benzene	1.22	1.00		μg/L	1	7/16/2014 1:58:00 PM
Toluene	ND	1.00		μg/L	1	7/16/2014 1:58:00 PM
Ethylbenzene	4.80	1.00		μg/L	1	7/16/2014 1:58:00 PM
m,p-Xylene	1.52	1.00		μg/L	1	7/16/2014 1:58:00 PM
o-Xylene	1.55	1.00		μg/L	1	7/16/2014 1:58:00 PM
Gasoline	642	50.0		μg/L	1	7/16/2014 1:58:00 PM
Surr: 1,4-Difluorobenzene	113	65-135		%REC	1	7/16/2014 1:58:00 PM
Surr: 4-Bromofluorobenzene NOTES:	136	65-135	S	%REC	1	7/16/2014 1:58:00 PM

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Ion Chromatography by EPA Meth	nod 300.0		Batch ID:	R15573 Analyst: KT
Nitrate	0.393	0.100	mg/L 1	7/11/2014 8:34:00 PM
Sulfate	0.428	0.300	mg/L 1	7/11/2014 8:34:00 PM
Total Metals by EPA Method 200.	<u>8</u>		Batch ID:	8098 Analyst: TN
Lead	ND	1.00	μg/L 1	7/14/2014 2:40:58 PM
Ferrous Iron by SM3500-Fe B			Batch ID:	R15566 Analyst: KT
Ferrous Iron	ND	0.0300	mg/L 1	7/11/2014 5:48:00 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Analytical Report

WO#:

1407113

Date Reported: 7/17/2014

Client: Shannon & Wilson

Collection Date: 7/11/2014 11:20:00 AM

Project: Seattle Hilton

Matrix: Water

Lab ID: 1407113-003 Client Sample ID: MW-3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline (NWTPH-Gx) & BTEX (EPA	A Method 8	8021B)		Bato	h ID:	R15603 Analyst: BC
Benzene	ND	1.00		μg/L	1	7/16/2014 3:06:00 PM
Toluene	ND	1.00		µg/L	1	7/16/2014 3:06:00 PM
Ethylbenzene	ND	1.00		µg/L	1	7/16/2014 3:06:00 PM
m,p-Xylene	1.31	1.00		µg/L	1	7/16/2014 3:06:00 PM
o-Xylene	ND	1.00		μg/L	1	7/16/2014 3:06:00 PM
Gasoline	397	50.0		μg/L	1	7/16/2014 3:06:00 PM
Surr: 1,4-Difluorobenzene	120	65-135		%REC	1	7/16/2014 3:06:00 PM
Surr: 4-Bromofluorobenzene	134	65-135		%REC	1	7/16/2014 3:06:00 PM
Ion Chromatography by EPA Metho	d 300.0			Bato	h ID:	R15573 Analyst: KT
Nitrate	0.528	0.100		mg/L	1	7/11/2014 8:45:00 PM
Sulfate	ND	0.300		mg/L	1	7/11/2014 8:45:00 PM
Total Metals by EPA Method 200.8				Bato	h ID:	8098 Analyst: TN
Lead	ND	1.00		μg/L	1	7/14/2014 2:44:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R15566 Analyst: KT
Ferrous Iron	2.94	0.0300		mg/L	1	7/11/2014 5:51:00 PM

Qualifiers:	3	
-------------	---	--

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND. Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Analytical Report

WO#: 1407113

Date Reported: 7/17/2014

Date Analyzed

7/11/2014 5:54:00 PM

Collection Date: 7/11/2014 10:10:00 AM Client: Shannon & Wilson

RL

Qual

Units

DF

Project: Seattle Hilton

Lab ID: 1407113-004 Matrix: Water

Result

ND

Client Sample ID: MW-4

Analyses

	Batc	h ID:	R15603	Analyst: BC
	µg/L	1	7/16/	2014 4:14:00 PM
	µg/L	1	7/16/	2014 4:14:00 PM
	μg/L	1	7/16/	2014 4:14:00 PM
	μg/L	1	7/16/	2014 4:14:00 PM
	μg/L	1	7/16/	2014 4:14:00 PM
	μg/L	1	7/16/	2014 4:14:00 PM
	%REC	1	7/16/	2014 4:14:00 PM
S	%REC	1	7/16/	2014 4:14:00 PM
ed by the Met	thod Blank (ME	3) & L	aboratory Cor	ntrol Sample
	Batcl	h ID:	R15573	Analyst: KT
	mg/L	1	7/11/	2014 8:56:00 PM
D	mg/L	2	7/14/	2014 4:26:00 PM
	Batcl	h ID:	8098	Analyst: TN
	μg/L	1	7/14/	2014 2:47:49 PM
	Batcl	h ID:	R15566	Analyst: KT
))		F3	μg/L 1 7/14/ Batch ID: R15566

0.0300

Qualifiers: В

Ferrous Iron

Analyte detected in the associated Method Blank

Value above quantitation range E

J Analyte detected below quantitation limits

RL Reporting Limit

Dilution was required D

mg/L

Holding times for preparation or analysis exceeded H

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Date: 7/17/2014

Work Order: 1407113

CLIENT: Shannon & Wilson **QC SUMMARY REPORT**

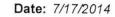
Project: Seattle H	ilton						Ferr	ous Iron b	y SM350	0-Fe E
Sample ID: MB-R15566	SampType: MBLK			Units: mg/L		Prep Date: 7/11/20	114	RunNo: 155	666	
Client ID: MBLKW	Batch ID: R15566					Analysis Date: 7/11/20	114	SeqNo: 315	168	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0300								
Sample ID: LCS-R15566	SampType: LCS			Units: mg/L		Prep Date: 7/11/20	114	RunNo: 155	666	
Client ID: LCSW	Batch ID: R15566					Analysis Date: 7/11/20	14	SeqNo: 315	169	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.920	0.0300	1.000	0	92.0	90 110			ž	
Sample ID: 1407113-001CDUP	SampType: DUP			Units: mg/L		Prep Date: 7/11/20	114	RunNo: 155	666	
Client ID: MW-5	Batch ID: R15566					Analysis Date: 7/11/20	114	SeqNo: 315	5171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	3.40	0.300					3.600	5.71	20	D
Sample ID: 1407113-001CMS	SampType: MS			Units: mg/L		Prep Date: 7/11/20	114	RunNo: 155	666	
Client ID: MW-5	Batch ID: R15566					Analysis Date: 7/11/20	14	SeqNo: 315	5172	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	13.0	0.300	10.00	3.600	94.0	85 115				D
Sample ID: 1407113-001CMSD	SampType: MSD			Units: mg/L		Prep Date: 7/11/20	114	RunNo: 155	666	
Client ID: MW-5	Batch ID: R15566					Analysis Date: 7/11/20	114	SeqNo: 315	173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	13.4	0.300	10.00	3.600	98.0	85 115	13.00	3.03	20	D

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required


Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order:

1407113

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Ion Chromatography by EPA Method 300.0

Project:	Seattle Hilton								ion Cn	romatograp	ony by EP/	4 Wethod	300.0
Sample ID:	MB-R15573	SampType:	MBLK			Units: mg/L		Prep Dat	e: 7/11/20)14	RunNo: 15	573	
Client ID:	MBLKW	Batch ID:	R15573					Analysis Dat	e: 7/11/2 0	14	SeqNo: 31	5281	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			ND	0.100									
Sulfate			ND	0.300									
Sample ID:	LCS-R15573	SampType:	LCS			Units: mg/L		Prep Dat	e: 7/11/2 0)14	RunNo: 158	573	
Client ID:	LCSW	Batch ID:	R15573					Analysis Date	e: 7/11/2 0	14	SeqNo: 318	5282	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			2.91	0.100	3.000	0	96.8	90	110				
Sulfate			14.4	0.300	15.00	0	96.1	90	110				
Sample ID:	1407085-001ADUP	SampType:	DUP			Units: mg/L		Prep Date	e: 7/11/20	14	RunNo: 158	573	
Client ID:	BATCH	Batch ID:	R15573					Analysis Date	e: 7/11/20	14	SeqNo: 318	5284	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			0.494	0.100						0.4683	5.28	20	
Sulfate			19.8	0.300						19.80	0.183	20	
Sample ID:	1407085-001AMS	SampType:	MS			Units: mg/L		Prep Date	e: 7/11/20	14	RunNo: 158	573	
Client ID:	BATCH	Batch ID:	R15573					Analysis Date	e: 7/11/20	14	SeqNo: 315	5285	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			3.11	0.100	3.000	0.4683	88.0	80	120				
Sulfate			37.4	0.300	15.00	19.80	117	80	120				

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 7/17/2014

Work Order:

1407113

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Ion Chromatography by EPA Method 300.0

Sample ID: 1407085-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 7/11/20	14	RunNo: 158	573	
Client ID: BATCH	Batch ID: R15573					Analysis Da	te: 7/11/20	14	SeqNo: 318	5286	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate	3.11	0.100	3.000	0.4683	88.0	80	120	3.108	0.00319	20	
Sulfate	37.5	0.300	15.00	19.80	118	80	120	37.39	0.191	20	

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order:

1407113

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Total Metals by EPA Method 200.8

Project:	Seattle Hilton									als by EF		1 200.
Sample ID: MB-80	998 SampTy	e: MI	BLK		Units: µg/L		Prep Date	: 7/14/20	14	RunNo: 15	567	
Client ID: MBLK	W Batch ID	: 80	98				Analysis Date	7/14/20	14	SeqNo: 31	5182	
Analyte		Resu	ilt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		N	1.00									
Sample ID: LCS-8	098 SampTy	e: LC	S		Units: µg/L		Prep Date	: 7/14/20	14	RunNo: 158	567	
Client ID: LCSW	Batch ID	80	98				Analysis Date	7/14/20	14	SeqNo: 318	5183	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		47.	8 1.00	50.00	0	95.7	85	115				
Sample ID: 14071	13-001BDUP SampTyp	e: DL	IP		Units: µg/L		Prep Date	7/14/20	14	RunNo: 155	567	
Client ID: MW-5	Batch ID	80	98				Analysis Date	7/14/20	14	SeqNo: 315	5185	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		44.	6 1.00						44.89	0.651	30	
Sample ID: 14071	13-001BMS SampTyp	e: M \$	3		Units: µg/L		Prep Date	7/14/20	14	RunNo: 155	567	
Client ID: MW-5	Batch ID	80	98				Analysis Date	7/14/20	14	SeqNo: 315	186	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		27	9 1.00	250.0	44.89	93.6	70	130				
Sample ID: 14071	13-001BMSD SampTyp	e: M S	BD		Units: µg/L		Prep Date	7/14/20	14	RunNo: 155	67	
Client ID: MW-5	Batch ID:	80	98				Analysis Date:	7/14/20	14	SeqNo: 315		
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
_ead	·	27	7 1.00	250.0	44.89	93.0	70	130	278.8			_

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 7/17/2014

Work Order:

1407113

QC SUMMARY REPORT

CLIENT: Project:

Shannon & Wilson

Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)

Project: Seattle Hilte	on	Gasoline (NWTPH-Gx) & BTEX (EPA Method 802									(021B)
Sample ID: 1407090-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/15/2 0	14	RunNo: 156	603	
Client ID: BATCH	Batch ID: R15603					Analysis Da	te: 7/15/20	14	SeqNo: 318	915	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Gasoline	ND	50.0						0		30	
Surr: 1,4-Difluorobenzene	61.9		50.00		124	65	135		0	0	
Surr: 4-Bromofluorobenzene	59.2		50.00		118	65	135		0	0	

Sample ID: 1407090-002AMS	07090-002AMS SampType: MS			Units: µg/L	Units: µg/L			14	RunNo: 156		
Client ID: BATCH	Batch ID: R15603					Analysis Da	te: 7/15/20	14	SeqNo: 318		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	24.4	1.00	20.00	1.970	112	70.7	126				
Toluene	27.1	1.00	20.00	3.357	119	72.4	122				
Ethylbenzene	35.8	1.00	20.00	10.08	129	65	135				
m,p-Xylene	162	1.00	40.00	94.04	171	65	135				S
o-Xylene	27.4	1.00	20.00	1.096	132	65	135				
Gasoline	1,110	50.0	500.0	715.1	78.4	65	135				
Surr: 1,4-Difluorobenzene	59.6		50.00		119	65	135				
Surr: 4-Bromofluorobenzene	59.6		50.00		119	65	135				

NOTES:

S - Outlying QC recoveries were observed. The method is in control as indicated by the LCS.

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Work Order:

1407113

CLIENT:

Shannon & Wilson

Project: Seattle Hilton

QC SUMMARY REPORT

Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)

Sample ID: LCS-BTEX-R15603	SampType: LCS			Units: µg/L		Prep Da	te: 7/15/20	014	RunNo: 15	603	
Client ID: LCSW	Batch ID: R15603					Analysis Da	te: 7/15/20	014	SeqNo: 31	5922	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	22.2	1.00	20.00	0	111	73.9	125				
Toluene	21.5	1.00	20.00	0	107	73	126				
Ethylbenzene	21.0	1.00	20.00	0	105	65	135				
m,p-Xylene	43.6	1.00	40.00	0	109	65	135				
o-Xylene	22.5	1.00	20.00	0	112	65	135				
Surr: 1,4-Difluorobenzene	54.7		50.00		109	65	135				
Surr: 4-Bromofluorobenzene	57.9		50.00		116	65	135				
Sample ID: LCS-GX-R15603	SampType: LCS			Units: µg/L		Prep Da	te: 7/15/20)14	RunNo: 156	603	
Client ID: LCSW	Batch ID: R15603					Analysis Da			SeqNo: 31		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	532	50.0	500.0	0	106	65	135				
Surr: 1,4-Difluorobenzene	56.8		50.00		114	65	135				
Surr: 4-Bromofluorobenzene	57.1		50.00		114	65	135				
Sample ID: MB-R15603	SampType: MBLK			Units: µg/L		Prep Da	te: 7/15/20	114	RunNo: 156	503	
Client ID: MBLKW	Batch ID: R15603					Analysis Dat			SeqNo: 318		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Gasoline	ND	50.0									
Surr: 1,4-Difluorobenzene	53.8		50.00		108	65	135				
Surr: 4-Bromofluorobenzene	51.2		50.00		102	65	135				
Qualifiers: B Analyte detected in t	the associated Method Blank		D Dilution wa	as required			E Value	above quantitation ra	ange		
H Holding times for pre	eparation or analysis exceeded			tected below quantitation I	imits			etected at the Reporti			
R RPD outside accept	ed recovery limits		RL Reporting I					recovery outside acc		s	

Date: 7/17/2014

Work Order:

1407113

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)

Sample ID: MB-R15603

SampType: MBLK

Units: µg/L

Prep Date: 7/15/2014

RunNo: 15603

Client ID: MBLKW Batch ID: R15603

Analysis Date: 7/15/2014

SeqNo: 315924

Analyte

Result

SPK value SPK Ref Val RL

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Qualifiers:

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Sample Log-In Check List

(Client Name:	sw	Work Order Numb	ber: 1407113	
L	ogged by:	Erica Silva	Date Received:	7/11/2014	3:21:00 PM
Ch	ain of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?	Client		
Log	g In				
3.	Coolers are p	resent?	Yes 🗸	No 🗆	NA 🗆
		ainer/cooler in good condition?	Yes 🗹	No 🗀	
5.	Custody seals	intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Required 🗹
6.	Was an attern	upt made to cool the samples?	Yes 🔽	No 🗌	NA 🗆
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗸	No 🗌	NA 🗆
8.	Sample(s) in p	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sam	pple volume for indicated test(s)?	Yes 🗸	No 🗌	
10	Are samples p	properly preserved?	Yes 🗸	No 🗌	
11	Was preserva	tive added to bottles?	Yes	No 🔽	NA \square
12.	Is the headspa	ace in the VOA vials?	Yes	No 🗹	NA 🗌
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗆	
14.	Does paperwo	ork match bottle labels?	Yes 🔽	No 🗌	
15.	Are matrices of	correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
		analyses were requested?	Yes 🗸	No 🗌	
		ng times able to be met?	Yes 🗸	No 🗆	
Spe	cial Handli	ng (if applicable)			
		ified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person N	Notified: Date			
	By Whor			one Fax	In Person
	Regardin	g:			
	Client Ins	structions:			
19.	Additional rem	arks:			

Item Information

Item #	Temp °C	Condition
Cooler	7.0	Good
Sample	5.1	Good

Fre	emo	nt						(of Custoo	dy Record
	Analyt	March College College				La	aboratory Projec	t No (internal):		1407113	
3600 Fremont Ave N. Seattle, WA 98103	Tel: 206-352-379 Fax: 206-352-717			Date: 7/11/	114		ige:	/		œ /	
Client: Staw	u + Wilson	7.0			Project N			la Hille	54		
Address: 400	N 34 th	54 50	10 100	433-500	O Location:		South	- With	24		
City, State, Zip Seath	e, WA 98	103	Tel: 206	195 677	Collected		EVA	e Hilto	4		
Reports To (PM): Micha-	e enul	S		-645-677			muil, com			1-1-12341-00	4
*Matrix Codes: A = Air, AQ = Aque	10us, B = Bdlk, O = O1	ther, P = Pro									
		T			111	1/2/	1//	//	77	7-111	
					////	F CHOW		/ /	1/3	07///	
					///30	STORE SOLE	Service of the servic	281 101/	(3)	///	
				100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ser Regit Regit of	\$ / /	ALON 7		
	Sample	Sample	Sample	18 1 A	Se San San Me		87 5 O	30/30/9	7/	//	
Sample Name	Date	Time	Type Matrix *	AS CHE STO	Septiment of the septim	Ser 18 18	Herap Cold C		//	Comment	s/Depth
MW-F	7/11/14	1425	6W	X		X	(VaX	X			
2 MW-2		1235	1	X			CT/X	X			
, MW-3		1120		X		1	X	X			
4 MW-4		1010		X		1 6	XXX	X	+		
· / w /		COLO	-		+	1	V		+		
5				+++	+	+++	+++	+	\dashv		
ű							\bot				
7											
3											
9											
10								+++			
"Metals Analysis (Circle): MTC	A-5 RCRA-8	Priority Pallu	tants TAL	Individual: As	Al Ar B Ba Ba	St Cd Ca d	Cr. Co. En. Mr.	V 162 162 162			
								r mg r/in Mo	_	Special Remarks:	V (n
***Anions (Circle): Mitrate	Nitrite Chloride	_	_			Nitrate+Ni	trite			April of Pierrants.	
Sample Disposal:	Return to Client	U Disposa	II by Lab (A fee n	may be assessed if samp	las are neterned after 30						
MINIT	Date/Time	520		Received /		Date	1521				
Relinquisted	Date/Time			Received		Date	Time			TAT > SemeDoub House	
x				×					-	TAT -> SameDay ^A NextD	The second secon

SHANNON & WILSON, INC.

APPENDIX B DISPOSAL DOCUMENT

				- au a die von draak at sook ook	* 45 E.W	Carrier No	223	
Pagec	of/_		MARINE VACUI		(SCAC)	Date /	July.	11 Tary
·O:		COD must appear before consignace's name of		FROM: Shipper	mason Id	•		- day-
treet 1516 S	S. GBA	Ham St						0
Hy SEATTI		State WA	zip Code 98108	City Sea 7		State 600-540		7801
loute				24 hr. Emergency C	Contact Tel. No	Vehicl Numb		
No. of Units & Container Type	НМ		BASIC DESCRIPTION Shipping Name, Hazard Class	Packing Group	TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	WEIGHT (Subject to Correction)	RATE	CHARGES (For Carrier Use Only)
174		weste who	Mon Re	u latt of				
		- Color Services		12.12	250	sal Esm		
					,	<i>y</i>		
· · ·			, ,		.2	18 18		
		-			;	,		
						,		
				•				
						-		
			ÿ.	٧,				-
	- ·		-					
* 7		N 12						
			Marie 184					
		IDERED: YES NO		REMIT C.O.D. TO: ADDRESS	- 1°			
c) Where the applicable lar pe not exceeding	igread or decial f the property is pi ill provisions spe	nt on value, shippers are reduced to etato red value of the property, as follows: The hereby specifically stated by the shipper to er er shipper and the shipper does, not release carrier's liability shall be limited to the oxtent	consignment are fully and accurately described above by the proper shipping name and are classified, packaged, marked and labelled/placarded, and are		Amit: \$	C.O.D. F PREPAI COLLEC	EE: D [] T [] \$	
provided by such provisions	. See NMFC ite	m 172.	In all respects in proper condition for transport according to applicable international and national governmental	Subject to Section 7 of the consigner without recourse of	onditions, if this shipment is to be d in the consignor, the consignor s	nivored to the TOTAL their sign the CHARGI		
nust be so marked and par lem 360, Bills of Lading, F he Contract Terms and Co	ckaged as to entrelight Bills and nditions for a list	onal care or attention in handling or stowing sure safe transportation. See Section 2(e) of Statements of Charges and Section 1(a) of it of such articles.	regulations Signature	freight and all other lawful char	a delivery of this shipment withou ges. Signature of Consignor)	t payment of FREGHTP FREIGHTP except when right is chec	IGHT CHARG REPAID Check box et	SES t box if charges are to be collect
the pro tents o (the w posses nation,	operty described of packages unkroord carrier being ssion of the proper , if on its route, or	the classifications and laddls in effect on the data above in apparent good order, except as noted nown), marked, consigned, and destined as fin understood throughout this contract as mean eff yunder the contract) agrees to carry to lis us uthervise to deliver to another carrier on the row carrier of all or any of, sall property over all or	I (contents and condition of con- dicated above which said carrier ing any person or corporation in lai place of delivery at said desti- te to said destination. It is mutu-	be performed hereunder sification on the date of Shipper hereby c	ertifies that he is familiar with all and the said terms and conditions) terms and conditions in the I the lading terms and co	governing clas- nditions in the	
SHIPPEÁ.	2-5		·	CARRIER MAR	RINE VACUUR	A SERVICE	Mo.	
PER	4			PER A	Jacob J	1/4500		_ 2
	`÷	4. <u> </u>		DATE Anh	1116 2)d		
ermanent post-offic	e address of	f shipper.		STYLE F375-4/6/2	012 LABELMASTER® (80	00) 621-5808 www.la	belmaster.co	em

the second secon

SHANNON & WILSON, INC.

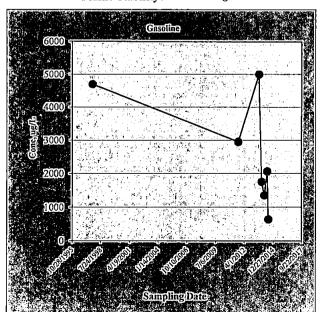
APPENDIX C NATURAL ATTENUATION ANALYSIS OUTPUT

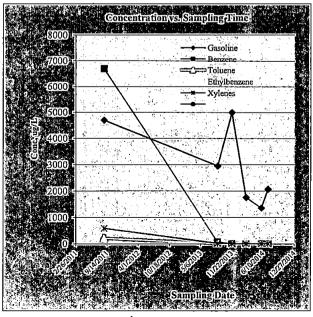
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-2
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Ha	zardous Subst	ances (unit is ug	;/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	4700	6700	210	670	590	
#2	8/25/2011	2950	76.1	2.19	863	22	
#3	8/22/2013	5000	3.07	2.01	408	10.8	
#4	11/21/2013	1760	1.4	1.57	83.3	6.89	
#5	- 2/21/2014	1360	2.9	1.62	20.8	7.44	_
#6	5/30/2014	2070	1.82	2	36.5	8.47	·
#7	7/11/2014	642	1.22	0.5	4.8	3.07	
#8							
#9							
#10							
#11							
#12				-			
#13							
#14		_					
#15							
#16							


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	96.50%	99.50%	98.50%	99.50%	98.50%	NA
Plume Stability?	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking	NA
Coefficient of Variation?						n<4
Mann-Kendall Statistic "S" value?	-13	-17	-15	-17	-15	0
Number of Sampling Rounds?	7	7	7	7	7	0
Average Concentration?	2640.29	969.50	31.41	298.06	92.67	NA
Standard Deviation?	1665.28	2527.06	78.75	352.84	219.38	NA
Coefficient of Variation?	0.63	2.61	2.51	1.18	2.37	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

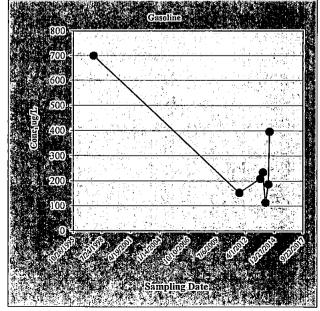
Hazardous substance? Gasoline
Plume Stability? Shrinking

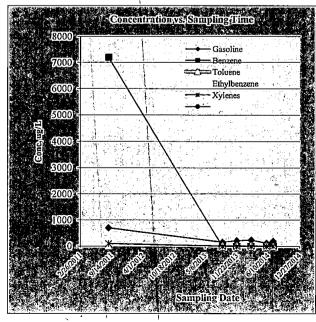
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-3
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Ha	zardous Subst	ances (unit is ug	/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	700	7200	10	74	97	-
#2	8/25/2011	153	0.5	0.5	0.5	1.35	
#3	8/22/2013	209	0.5	0.5	0.5	1	
#4	11/21/2013	235	0.5	0.5	0.5	1	
#5	2/21/2014	114	0.5	0.5	0.5	1	
#6	5/30/2014	187	0.5	0.5	0.5	3.59	
#7	7/11/2014	397	0.5	0.5	0.5	1.31	
#8							•
#9			_				
#10							
#11				1		,	
#12							
#13							
#14			-				
#15							-
#16	_						


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	50.00%	71.90%	71.90%	71.90%	61.40%	NA
Plume Stability?	Stable	Undetermined	Undetermined	Undetermined	Undetermined	NA
Coefficient of Variation?	CV <= 1	CV > 1	CV > 1	CV > 1	CV > 1	n<4
Mann-Kendall Statistic "S" value?	-I	-6	-6	-6	4	0
Number of Sampling Rounds?	7	7	7	7	7	0
Average Concentration?	285.00	1029.00	1.86	11.00	15.18	NA
Standard Deviation?	203.84	2721.16	3.59	27.78	36.09	NA
Coefficient of Variation?	0.72	2.64	1.93	2.53	2.38	NA
Blank if No Errors found				,		n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

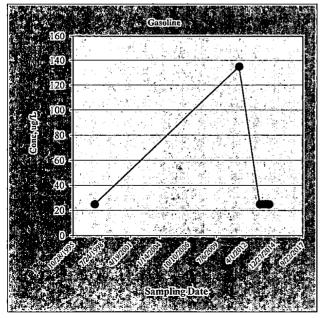
Hazardous substance? Gasoline
Plume Stability? Stable

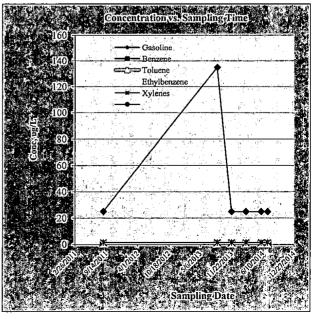
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-4
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Ha	zardous Subst	ances (unit is ug	/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	11/14/1997	25	0.5	0.5	0.5	1.5	
#2	8/26/2011	135	0.5	0.5	0.5	1.5	
#3	8/22/2013	25	0.5	0.5	0.5	1.5	
#4	11/21/2013	25	0.5	0.5	0.5	1.5	
#5	2/21/2014	25	0.5	0.5	0.5	1.5	
#6	5/30/2014	25	0.5	0.5	0.5	1.5	•
#7	7/11/2014	25	0.5	0.5	0.5	1.5	
#8							
#9		-					
#10							
#11							
#12				-			
#13							
#14							
#15							
#16							


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	61.40%	-600.00%	-600.00%	-600.00%	-600.00%	NA
Plume Stability?	Undetermined	Stable	Stable	Stable	· Stable	NA
Coefficient of Variation?	CV > 1	CV <= 1	CV <= 1	CV <= 1	CV <= 1	<u>n</u> <4
Mann-Kendall Statistic "S" value?	-4	0	0	0	0	0
Number of Sampling Rounds?	7	7	7	7	7	0
Average Concentration?	40.71	0.50	0.50	0.50	1.50	NA
Standard Deviation?	41.58	0.00	0.00	0.00	0.00	NA
Coefficient of Variation?	1.02	0.00	0.00	0.00	0.00	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

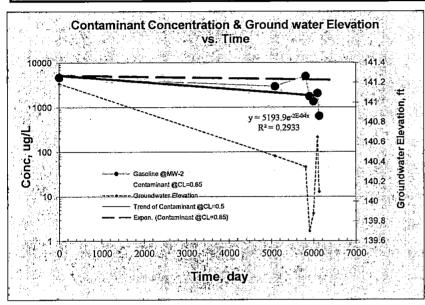
Hazardous substance? Gasoline
Plume Stability? Undetermined

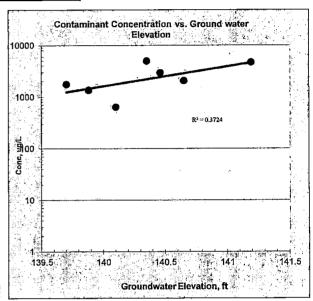
Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline

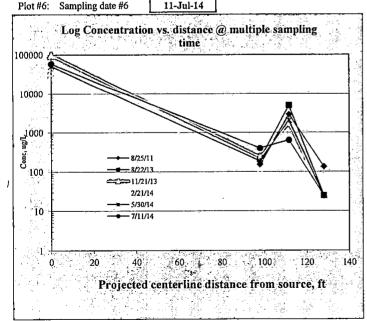
1. Monitoring W	ell information	n: Contami	nant Co	ncentra	tion at	a well:	-		Note	: relatio	nship of	 "y/x ≤	0.33" is	preferre	ed .	-		
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x	-direction	ft	0.001	44	78	128						_						
Off-centerline dist,	y-direction	ft	0,001	18	13	0.001			_				_					
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	e/L					•		•					
#1	9/25/97	0		4700	700	25					1							
#2	8/25/11	5082	1	2950	153	135							-					
#3	8/22/13	5810	1	5000	209	25												
#4	11/21/13	5901	98100	1760	235	25												
#5	2/21/14	5993	30300	1360	114	25				_								
#6	5/30/14	6091	51400	2070	187	25				_								
#7	7/11/14	6133	59300	642	397	25												
#8			1															
#9	1.				_													
#10			1															
#11		ĺ														_		
#12																	_	
#13												_						
#14																		
#15																_		
#16						,												
#17														_				
#18																		
#19																		
#20																		
Average Concent	Average Concentration				285.0	40.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concer	[aximum Concentration			5000	700	135-	NA	NA	NA	NA	NA ⁻	ÑA	NA	NA	NA	NA	NA	NÀ
Minimum Concer	ntration		30300	642	114	25 .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2. Groundwater Elevation:


2. Giounuwater	D.C. 141.041														
Well Location:	•						ĺ								
Sampling Event	Date sampled	Day			•										
#1	9/25/97	0	142.59	141.19	140.75	138.99	L					Ì			
#2	8/25/11	5082	141.17	140.46	140.16	138.87									
#3	8/22/13	5810	140,84	140,35	140,14	139.04	_								
#4	11/21/13	5901	140.18	139.7	139.52	138.05	[
#5 ·	2/21/14	5993	140,25	139,88	139.64	138.1						,			
#6	5/30/14	6091	140.95	140.65	140.32	139.32									
#7	7/11/14	6133	140.95	140,1	138,99	138.14									
#8					•								 	ĺ	
#9														i	
#10												Ì			
#11										-		i			
#12															
#13]							
#14															
#15											_			Ī	
#16			·		<u> </u>										
#17															
#18														1	
#19		-			i			<u> </u>					T -		
#20			Ī	-		_									


Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA

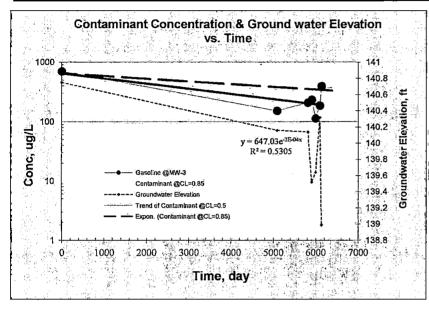
Additional Description: NA Evaluation
Hazardous Substance Gasoline

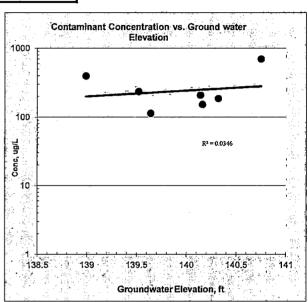

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-2	Confidence Level (Decision	n Criteria)?	85.0%			
Confidence Level calculated with	log-linear regression is?	79.070%					
Plume Stability?	Stable	; Decision Criteria is 85%.					
Slope: Point decay rate constant (k point), yr 1	0.064 @50% C.L.;	0.014	@85% C.L.			
Half Life for k point, yr		10.834 @50% C.L.;	50.957	@85% C.L.			

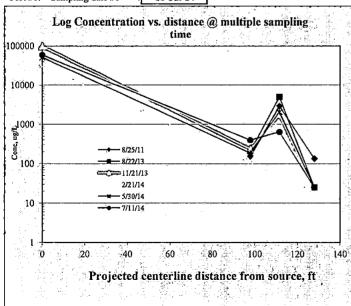
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
		44 7 1 44

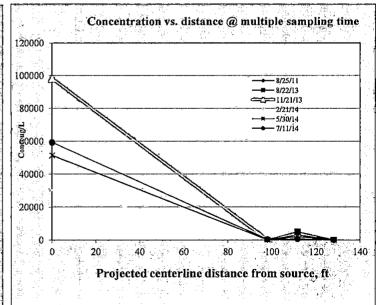
Site Name: Hilton Seattle Hotel


Gasoline


Site Address: Seattle, WA
Additional Description: NA Evaluation

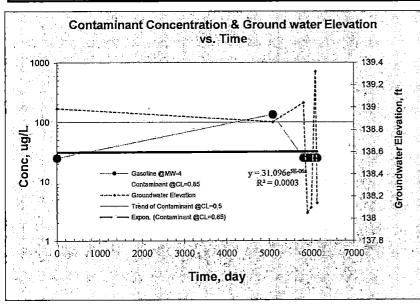
Hazardous Substance

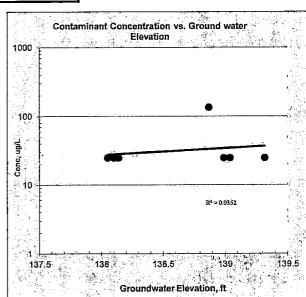

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-3	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	93.660%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.073 @50% C.L.;	0.038	@85% C.L.
Half Life for k point, yr		9.536 @50% C.L.;	18.238	@85% C.L.

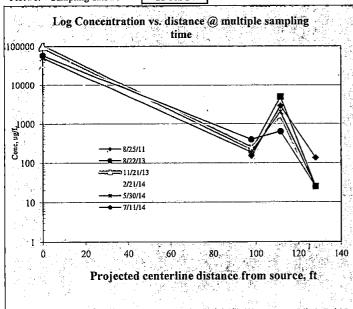
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

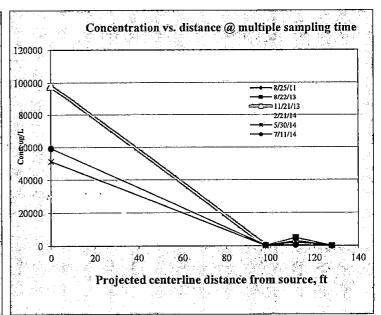
Site Name: Hilton Seattle Hotel


Gasoline


Site Address: Seattle, WA
Additional Description: NA Evaluation

Hazardous Substance


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision Cr	iteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	2.700%		
Plume Stability?	UD	; Decision Criteria is	85%.	,
Slope: Point decay rate constant	(k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.
Half Life for k point, yr		NA @50% C.L.;	NA (@85% C.L.

Plot #1;	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

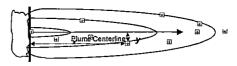
Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA Additional Description: NA Evaluation Hazardous Substance Gasoline

	usiance Gasotine																
1. Level of Confidence (,			5%												-	
2. Prediction: Calculation	of Restoration Time a	nd Predicte	ed Concer	itration a	t Wells												
Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Cleanup Level (Criterion	i) to be achieved? ug	L 800	800	800	800												+
A.1 Average (@50% CL1 be									i -		i -					 	†
Time to reach the criteri		NA NA	NA	-2.92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion	to be achieved da	te NA	NA	10/25/94	NA	NA	'NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)			_								_	i -					
Time to reach the criteri	on ² y	NA NA	NA	-5.58	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion	to be achieved da	e NA	NA	2/25/92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
B Date of Prediction?	ďa	e 9/30/14	9/30/14	9/30/14	9/30/14	-											
B.1 Average conc predicted	(@50% CL) ug.	L NA	NA	187.71	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
B.2 Boundary conc predicte			NA	338.78	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA NA	NA NA	NA NA
3. Log-Linear Regressio									!	L	!					1411	1421
Coefficient of Determination	n r ²	0,106	0.293	0.531	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA
Correlation Coefficient	- r	-0.325	-0.542	-0.728	0.016	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA NA
Number of data points	n	4	7	7	7	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA NA	NA NA	NA NA
4. Statistical Inference on	the Slope of the Log-L	near Regr	ession Lin	e with t-s	tatistics		_	•		_							-
One-tailed Confidence Leve	l calculated, %	32.535%	79.070%	93.660%	2.700%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to suppore regression line is significant		NO!	NO!	YES!	NO!	NA .	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA -	NA NA	NA NA	NA NA
Coefficient of Variation?		0.474	0,631	NA NA	1.021	NA	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA	NA.	NA	NA
Plume Stability?		Stable	Stable	Shrinking	· UD	NA.	NA.	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	
5. Calculation of Point D	Nacov Poto Constant	(1:)	<u>.</u>				1		-	1414	HA	NA.	NA.	NA	NA	NA	NA
		 _				-											
Slope: Point decay rate	@50% CL yr		0.064	0.073	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point)	@85% CL yr	l NA	0.014	0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k point)	@50% CL yı	1,254	10.834	9.536	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA
	@85% CL yr	NA	50.957	18.238	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.

Note: 1. CL: Confidence Level; UD= Undetermined

^{2.} The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)


Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

193

1.22

0.5

NA

NA

NA NA NA NA NA

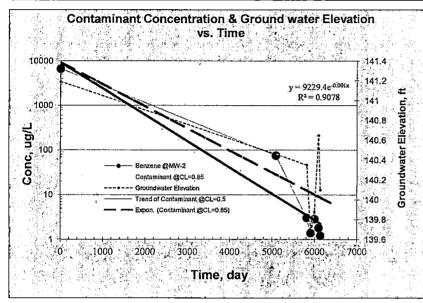
Hazardous Substance	Benzene																	
1. Monitoring Well in	nformation	: Contami	nant Co	ncentra	tion at	a well:		Note: relationship of "y/x ≤ 0.33" is preferred										
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x-direct	ction	ft	0.001	44	78	128												
Off-centerline dist, y-dire	ection	ft	0,001	18	13	0.001												
Sampling Event Da	ate sampled	day	Unit of	concentra	ition is u	g/L												
#1	9/25/97	0		6700	7200	0.5									_			
#2	8/25/11	5082		76.1	0.5	0.5		_										
#3	8/22/13	5810		3.07	0,5	0.5												
#4	11/21/13	5901	230	1.4	0.5	0.5												
#5	2/21/14	5993	193	2.9	0.5	0.5												
#6	5/30/14	6091	927	1,82	0.5	0.5												
#7	7/11/14	6133	1050	1.22	0.5	0.5												
#8																		
#9																		
#10																		
#11																		
#12																_		
#13																	<u> </u>	<u> </u>
#14				_													<u> </u>	
#15			<u> </u>												<u> </u>		<u> </u>	
#16			<u> </u>	<u> </u>													<u> </u>	
#17			<u> </u>						ļ								<u> </u>	
#18			<u> </u>							<u> </u>								
#19																	↓	
#20															ļ		ļ	
Average Concentration	n		600.0	969.5	1029.0	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentrat	ion		1050	6700	7200	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

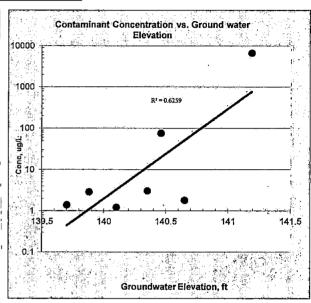
Minimum Concentration 2. Groundwater Elevation:

Well Location:														
Sampling Event	Date sampled	Day										•	-	
#1	9/25/97	0	142.59	141.19	140.75	138.99							•	
#2	8/25/11	5082	141.17	140,46	140.16	138.87								
#3	8/22/13	5810	140.84	140.35	140.14	139.04								
#4	11/21/13	5901	140.18	139.7	139.52	138.05								
#5	2/21/14	5993	140,25	139.88	139.64	138.1								
#6	5/30/14	6091	140.95	140.65	140.32	139.32								
#7	7/11/14	6133	140.95	140.1	138.99	138.14								
#8														
#9														
#10														
#11			Į .											
#12														
#13							i i	_	 					
· #14							Ì				1			
#15		•												
#16	1													
#17														
#18	_													l
#19														
#20													·	

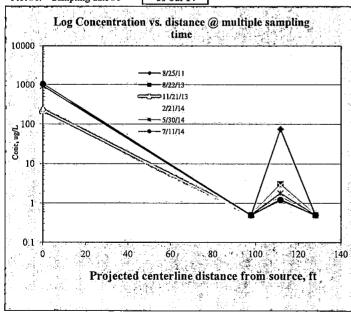
NA NA NA NA NA

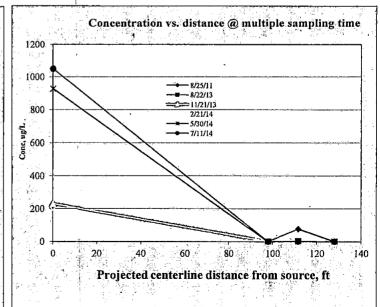
Site Name: Hilton Seattle Hotel


. Site Address: Seattle, WA

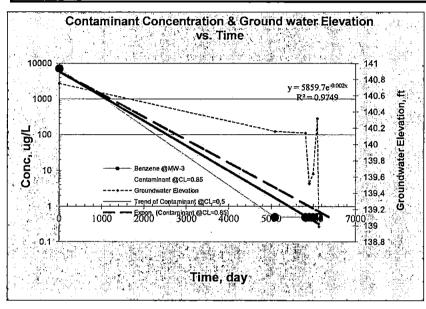

Additional Description: Hazardous Substance

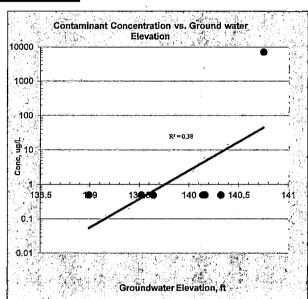
NA Evaluation Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

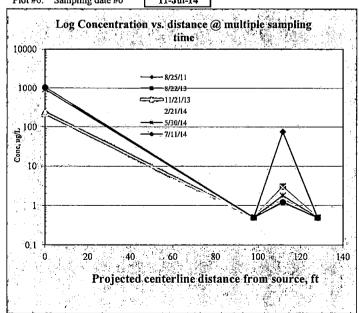

Name of Sampling Well?	MW-2	Confidence Level (Decisio	n Criteria)?	85.0%					
Confidence Level calculated with log-linear regression is? 99.909%									
Plume Stability?	Shrinking	; Decision Criter	ia is 85%.						
Slope: Point decay rate constant	(k point), yr 1	0.495 @50% C.L.;	0.415	@85% C.L.					
Half Life for $k_{\it point}$, yr		1.401 @50% C.L.;	· 1.671	@85% C.L.					

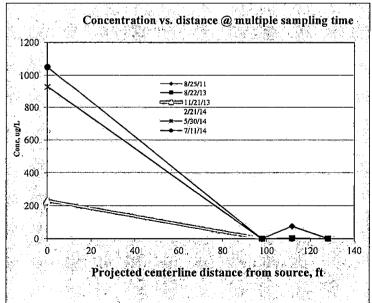
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14




Site Name: Hilton Seattle Hotel Site Address: Seattle, WA

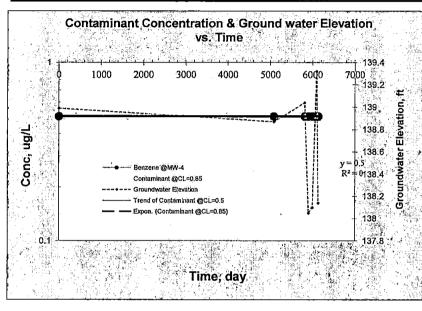
Additional Description: NA Evaluation
Hazardous Substance Benzene

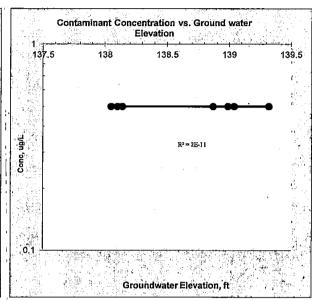

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.997%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr 1	0.584 @50% C.L.;	0.536	@85% C.L.
Half Life for k_{point} , yr		1.187 @50% C.L.;	1,292	@85% C.L.

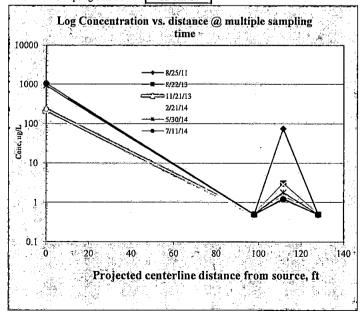
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

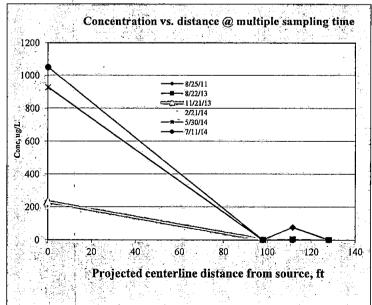
Site Name: Hilton Seattle Hotel


Site Address: Seattle, WA


Additional Description: NA Evaluation

Hazardous Substance Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision (Criteria)?	85.0%			
Confidence Level calculated with	log-linear regression is?	NA					
Plume Stability?	NA	; Decision Criteria is 85%.					
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	ŅΑ	@85% C.L.			
Half Life for k point, yr		NA @50% C.L.;	NA	@85% C.L.			

Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Reprene


stance Benzene									_								
ecision Criteri:	a)?		85	%													
f Restoration Tir	me and	Predicted	Concen	tration at	Wells												
		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
to be achieved?	ug/L	5	5	5	5												
st-fitting values)																	
n	yr	NA	15.20	12.10	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA
o be achieved	date	NA	12/4/12	10/29/09	NA	NA ,	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n ²	yr	NA	18.13	13.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o be achieved	date	NA	11/8/15	11/24/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	date	9/30/14	9/30/14	9/30/14	9/30/14					,					-		
(@50% CL)	ug/L	NA	2,03	0,28	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(@85% CL)	ug/L	NA	7.92	0.63	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Results																'	
		0.798	0.908	0.975	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA
r		0.894	-0.953	-0.987	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA
n		4	7	7	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ie Slope of the L	og-Line	ar Regre	ssion Lin	e with t-st	tatistics												
calculated, %		89.357%	99.909%	99.997%	NA	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
_		YES!	YES!	YES!	NA	NA	NA ~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
_		Expanding	Shrinking	Shrinking	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA
ecay Rate Cons	stant (<i>k</i>	(point)															
@50% CL	yr ⁻¹	NA	0.495	0.584	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
@85% CL	yr ⁻¹	NA	0.415	0.536	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA
@50% CL	yr	NA	1.401	1.187	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
@85% CL	yr	NA	1.671	1.292	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	to be achieved? st-fitting values) n o be achieved above CL a Results calculated, % t that the slope of y different from z above CL as Sow CL	to be achieved? ug/L st-fitting values) n yr o be achieved date a	Restoration Time and Predicted MW-5	Restoration Criteria Restoration Time and Predicted Concenses MW-5 MW-2	Restoration Time and Predicted Concentration at MW-5 MW-2 MW-3 to be achieved? ug/L 5 5 5 5 5 5 5 5 5	Secision Criteria Predicted Concentration at Wells	## Restoration Time and Predicted Concentration at Wells MW-5 MW-2 MW-3 MW-4 NA	### Restoration Criteria)? ### Restoration Time and Predicted Concentration at Wells MW-5	S5%	Recision Criteria ?	Secision Criteria Precision Criteria Precision Criteria Precision Criteria Precision Time and Predicted Concentration at Wells	### Restoration Criteria)? ### Restoration Time and Predicted Concentration at Wells MW-5	## Restoration Criteria)? ## Restoration Time and Predicted Concentration at Wells ## MW-5 MW-2 MW-3 MW-4 NA	## Restoration Time and Predicted Concentration at Wells MW-5	## Restoration Criteria)? ## Restoration Time and Predicted Concentration at Wells MW-5	## Restoration Time and Predicted Concentration at Wells MW-5	## Restoration Time and Predicted Concentration at Wells ### Restoration Time and Predicted Concentration at Wells #### Mw-5 Mw-2 Mw-3 Mw-4 NA NA NA NA NA NA NA N

Note: 1. CL: Confidence Level; UD= Undetermined

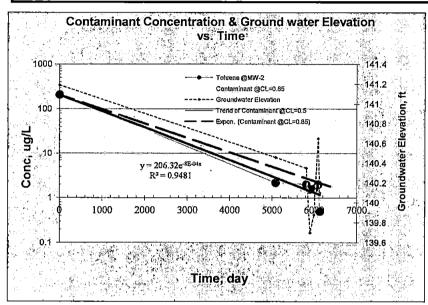
^{2.} The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

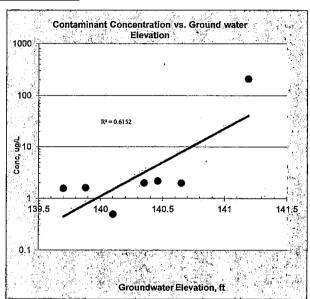
Module 2: Inputs: Enter Historical Ground Water Data

Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation
Hazardous Substance	Toluene

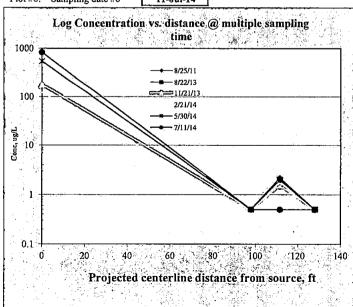
1. Monitoring W	ell information	: Contami	nant Co	ncentra	tion at	a well:			Note	e: relatio	nship of	` "y/x ≤	0.33" is	preferre	d			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4									ı		1	· · · · ·
Dist from source, x-	-direction	ft	0,001	44	78	128							Ì					
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001									I —			
Sampling Event	Date sampled	day	Unit of o	concentra	ition is u	z/L								•		•		
#1	9/25/97	0		210	10	0.5						1	ĺ		Ī	İ	_	
#2	8/25/11	5082		2,19	0.5	0.5					_							
#3	8/22/13	5810		2.01	0.5	0.5					_					į		
#4	11/21/13	5901	179	1.57	0.5	0.5						_						
#5	2/21/14	5993	122	1.62	-0.5	0,5				ĺ	_							
#6	5/30/14	6091	552	2	0.5	0.5												
#7	7/11/14	6133	837	0.5	0.5	0.5							-	1		_		
#8																		
#9				_														
#10									i		i		_				-	
#11									Ì	_	i -							
#12																		
#13														i				
#14															ĺ			
#15																_		
#16				ŀ		_												
#17				· .										1-				
#18																		
#19																_		
#20																1		
Average Concentr	ration		422,5	422,5 31.4 1.9 0.5 N/A					N/A									
Maximum Concer	ntration		837 -	837 - 210 10 0.5				NA	NΑ	¬NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concen	itration		122	0.5	0.5	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

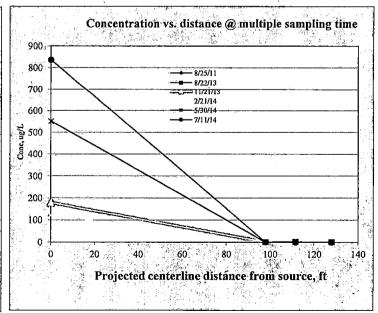
2. Groundwater Elevation:


Well Location:				_			ŀ	 ĺ	l						1	
Sampling Event	Date sampled	Day										•				
#1	9/25/97	0	142.59	141,19	140.75	138.99			1	1						
#2	8/25/11	5082	141,17	140,46	140.16	138.87										
#3	8/22/13	5810	140.84	140.35	140.14	139.04										
#4	11/21/13	5901	140.18	139.7	139.52	138.05							1	_	Ì	
#5	2/21/14	5993	140,25	139.88	139.64	138.1						1	1			
#6	5/30/14	609 I	140.95	140.65	140,32	139.32						i				
#7	7/11/14	6133	140,95	140.1	138.99	138.14			_			<u> </u>				
#8			·]					_						-		
#9										_						
#10	1															
#11					_		ĺ									
#12								-			i			_		
#13	•								_		i					
#14	_					_					İ			-		
#15							-									
#16		_								<u> </u>				_		
#17										_	i		_			
#18		_									_					
#19 .		_						_		_	1					
#20										_	-		_		-	


Site Name: Hilton Seattle Hotel

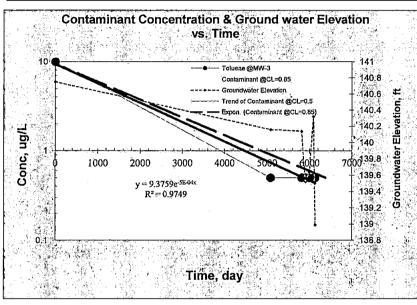
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene

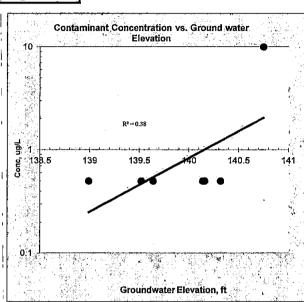

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with le	og-linear regression is?	99.979%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k	point), yr-1	0.308 @50% C.L.;	0.271	@85% C.L.
Half Life for k point, yr		2.250 @50% C.L.;	2.553	@85% C.L.

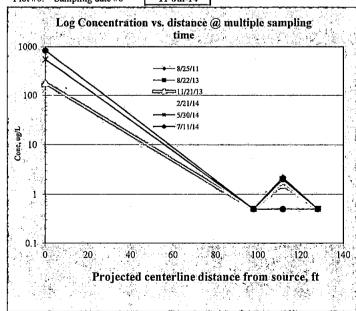
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

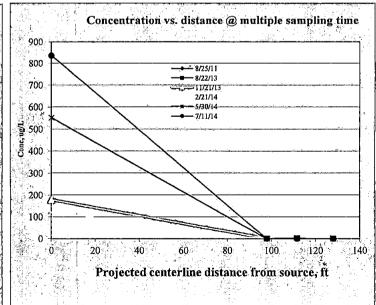
Site Name: Hilton Seattle Hotel


Toluene

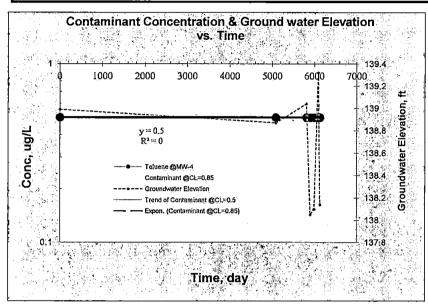

Site Address: Seattle, WA
Additional Description: NA Evaluation

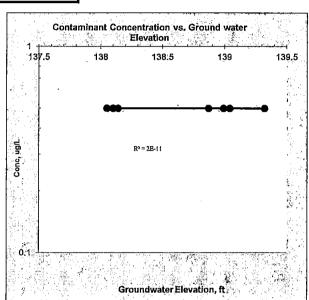
Hazardous Substance


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

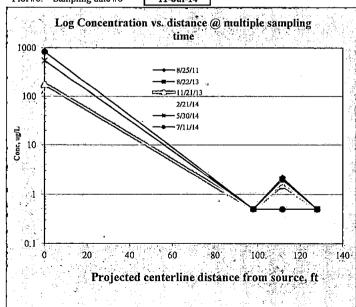

Name of Sampling Well?	MW-3	Confidence Level (Decision	n Criteria)? 85.0%
Confidence Level calculated with	ı log-linear regression is?	99.997%	
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.
Slope: Point decay rate constant	(k point), yr ¹	0.183 @50% C.L.;	0.1 <u>68</u> @85% C.L.
Half Life for k point, yr		3.794 @50% C.L.;	4.130 @85% C.L.

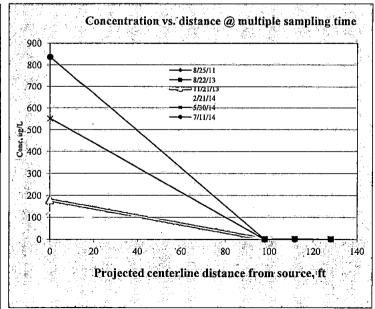
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14




Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision	Criteria)?	85.0%					
Confidence Level calculated with	log-linear regression is?	NA							
Plume Stability?	NA	; Decision Criteria	is 85%.						
Slope: Point decay rate constant	(k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.					
Half Life for k point, yr		NA @50% C.L.;	NA (@85% C.L.					

Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene

Hazardous Su	bstance Toluene													_			
1. Level of Confidence (Decision Criteria)? 85%																	
2. Prediction: Calculation	of Restoration Time and	l Predicte	d Concen	tration at	Wells												
Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA
A. Cleanup Level (Criterion) to be achieved? ug/L	1000	1000	1000	1000												
A.1 Average (@50% CL1 be				_													
Time to reach the criterio		NA	-5.12	-25.56	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion	to be achieved date	NA	8/11/92	3/10/72	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)																	
Time to reach the criterio	on ² yr	NA	-5.81	-27.82	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Date when the Criterion	to be achieved date	NA	12/3/91	12/4/69	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B Date of Prediction?	date	9/30/14	9/30/14	9/30/14	9/30/14							-				_	
B.1 Average conc predicted	(@50% CL) ug/L	NA	1.09	0.42	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B.2 Boundary conc predicte	d (@85% CL) ug/L	NA	2.03	0.54	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Log-Linear Regressio	n Results							•									•
Coefficient of Determination	n r ²	0.733	0.948	0.975	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Correlation Coefficient	r	0.856	-0.974	-0.987	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Number of data points	n	4	7	7	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4. Statistical Inference on t	the Slope of the Log-Lin	ear Regre	ssion Lin	e with t-s	tatistics		_										
One-tailed Confidence Leve	l calculated, %	85.618%	99.979%	99.997%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to supporegression line is significant	-	YES!	YES!	YES!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·
Coefficient of Variation?	•	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?	-	Expanding	Shrinking	Shrinking	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA
5. Calculation of Point I	Decay Rate Constant (k point)			_		_	`					<u> </u>		L	<u> </u>	
Slope: Point decay rate	@50% CL yr ⁻¹	NA	0.308	0.183	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point)	@85% CL yr ⁻¹	NA	0.271	0,168	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k point)	@50% CL yr	NA	2.250	3.794	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA -	NA
rian Line for (a point)	@85% CL yr	NA	2.553	4.130	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. CL: Confidence Level; UD= Undetermined

^{2.} The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

Hazardous Substance

Module 2: Inputs: Enter Historical Ground Water Data

Ethylbenzene

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

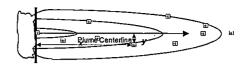
1940

796

863

4.8

74


0.5

0.5

0.5

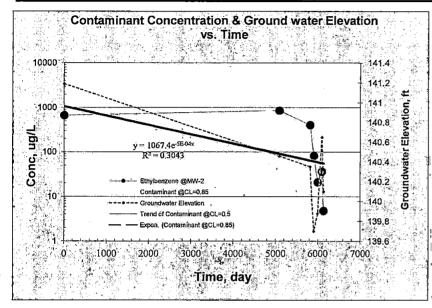
NΑ

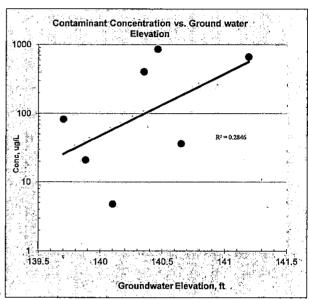
NA

1. Monitoring W	Note: relationship of "y/x ≤ 0.33" is preferred																	
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x	-direction	ft	0.001	44	78	128			ĺ					i				
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001								1				
Sampling Event	Date sampled	day	Unit of a	concentra	ition is u	2/L					· -	<u> </u>	•				•	
#1	9/25/97	0		670	74	0.5						Ì					İ	\Box
#2	8/25/11	5082		863	0.5	0.5										_	i —	
#3	8/22/13	5810		408	0.5	0.5					i					_	i	
#4	11/21/13	5901	1070	83	0.5	0.5						i						
#5	2/21/14	5993	796	21	0.5	0.5					i	i i						
#6	5/30/14	6091	1820	36.5	0.5	0.5					i							
- #7	7/11/14	6133	1940	4.8	0.5	0.5			İ									
#8								i -			i						-	
#9				İ		_			İ					i			_	
#10														i				
#11					i												İ	
#12									Ì									
#13					i				ĺ		1	i						
#14																		
#15																	· ·	
#16				,							1							
#17																		
#18																		
#19																		
#20								_										
Average Concentration 1406.			1406.5	298.0	11.0	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

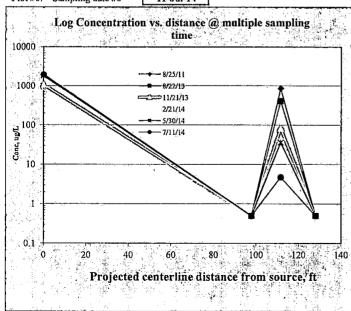
Minimum Concentration 2. Groundwater Elevation:

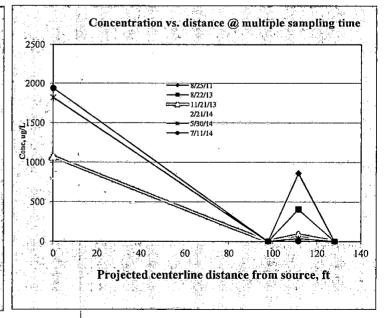
Maximum Concentration


Well Location:											`			1	
Sampling Event	Date sampled	Day													
#1	9/25/97	0	142.59	141.19	140,75	138.99		j							i
#2	8/25/11	5082	141.17	140.46	140.16	138.87									
#3	8/22/13	5810	140.84	140,35	140.14	139.04		ļ						ı	
#4	11/21/13	5901	140,18	139.7	139,52	138.05									
#5	2/21/14	5993	140.25	139.88	139.64	138.1				-					
#6	5/30/14	6091	140.95	140.65	140.32	139.32									
#7	7/11/14	6133	140.95	140.1	138.99	138,14									
#8															
#9								1		ĺ				ĺ	
#10															
#11															
#12														i	
#13							_								
#14									1					1	
#15										-					
#16													_		
#17															
#18															
#19		_								ŀ			_		
#20		-						 	i			<u> </u>		T-	

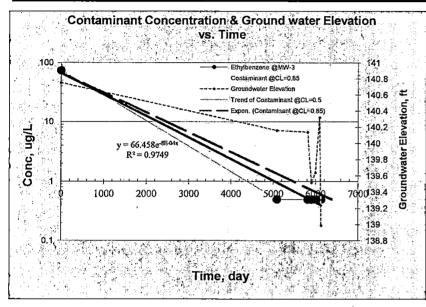

Site Name: Hilton Seattle Hotel

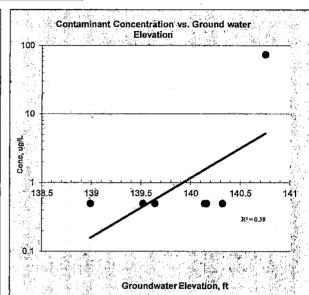
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

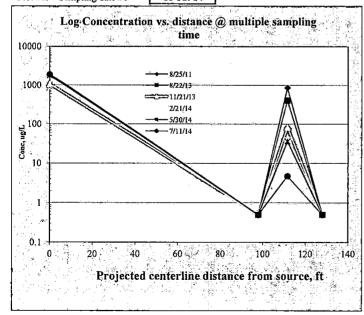

Name of Sampling Well?	M	W-2	Confidence Level (Decision C	riteria)?	85.0%
Confidence Level calculated with	h log-linear reg	gression is?	80.073%		
Plume Stability?	•	UD	; Decision Criteria is	s 85%.	
Slope: Point decay rate constant	(k _{point}), yr ⁻¹		NA @50% C.L.;	.NA	@85% C.L.
Half Life for k point, yr			NA @50% C.L.;	NA	@85% C.L.

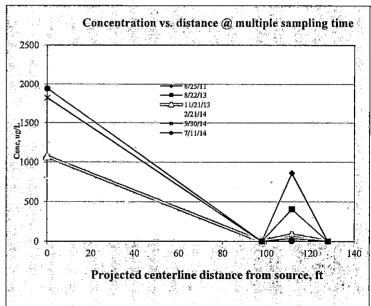
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14





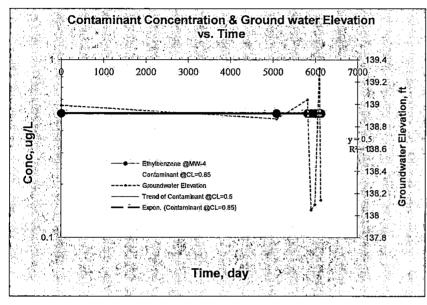
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene

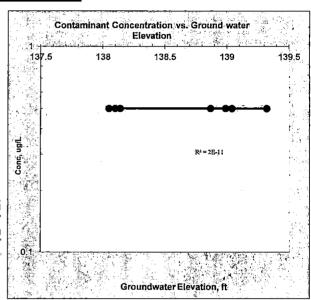

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-3	Confidence Level (Dec	ision Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.997%		
Plume Stability?	Shrinking	; Decision Cr	riteria is 85%.	
Slope: Point decay rate constant (k point), yr 1	0.305 @50% C.L.;	0.280	@85% C.L.
Half Life for k point, yr		2.274 @50% C.L.;	2.476	@85% C.L.

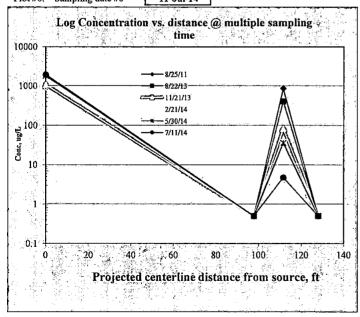
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

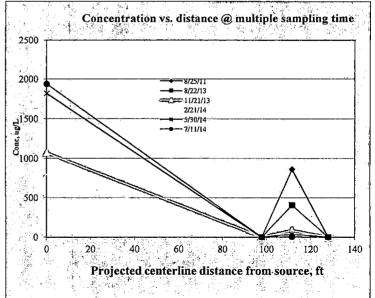
Hilton Seattle Hotel Site Name:


Site Address:


Seattle, WA

Additional Description: Hazardous Substance NA Evaluation Ethylbenzene


1. Temporal Trend at a v	vell (Concentration vs.	lime & Groundwater Elevation:	well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision Criteria)? 8								
Confidence Level calculated with	n log-linear regression is?	NA								
Plume Stability?	NA	; Decision Criteria is	s 85%.							
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.						
Half Life for k_{point} , yr		NA @50% C.L.;	NA (@85% C.L.						

•	*	9
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel Site Address: Seattle, WA Additional Description: NA Evaluation Hazardous Substance Ethylbenzene

1. Level of Confidence (Decision Criteria)?

85%

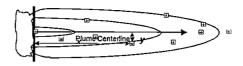
2. Prediction: Calculation of Restoration Time and Predicted Concentration at Wells

Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
A. Cleanup Level (Criterion) to be achieved?	ug/L	700	700	700	700												
A.1 Average (@50% CL ¹ best-fitting values)										İ							
Time to reach the criterion	yr	NA	NA	-7.73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion to be achieved	date	NA	NA	1/4/90	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)															-		
Time to reach the criterion ²	yr	NA	NA	-8.41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA
Date when the Criterion to be achieved	date	NA	NA	4/30/89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B Date of Prediction?	date	9/30/14	9/30/14	9/30/14	9/30/14												
B.1 Average conc predicted (@50% CL)	ug/L	NA	NA	0.37	#DIV/0!	NA	NA	NA	NA	NA ·	NA	NA	ΝA	NA	NA	NA	NA
B.2 Boundary conc predicted (@85% CL)	ug/L	NA	NA	0.57	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Log-Linear Regression Results										•		-					
Coefficient of Determination r ²		0.619	0.304	0.975	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Correlation Coefficient r		0.787	-0.552	-0.987	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA.	NA	NA	NA
Number of data points n		4	7	7	7	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

4. Statistical Inference on the Slope of the Log-Linear Regression Line with t-statistics

TO CHARLES AND CALLED OUR DESCRIPTION OF THE MODE AND CALLED																_
One-tailed Confidence Level calculated, %	78.674%	80.073%	99.997%	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NΑ	NA
Sufficient evidence to support that the slope of the	NO!	NO!	YES!	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	D.I.A		274	NA
regression line is significantly different from zero?	NO:	NO:	1 E-3)	INA -	NA.	NA	I NA	NA	INA	INA	NA	NA	NA	NA	NA	NA.
Coefficient of Variation?	0.398	1.184	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?	Stable	UD	Shrinking	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

5. Calculation of Point Decay Rate Constant (k point)


Slope: Point decay rate	@50% CL	yr ⁻¹	1.186	NA	0.305	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point)	@85% CL	yr ⁻¹	0.364	NA	0.280	NA	NA	NA	NA	、 NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k_{point})	@50% CL	yr	0.585	NA	2.274	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	@85% CL	yr	1.907	NA -	2.476	NA	NA	NΑ	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA

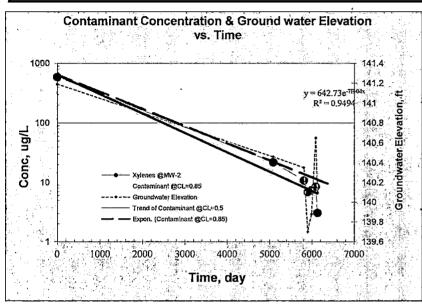
Note: 1. CL: Confidence Level; UD= Undetermined

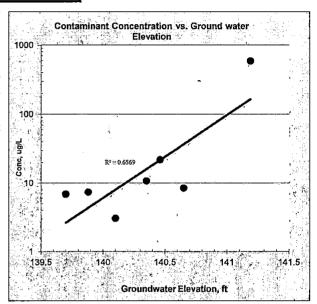
2. The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

Module 2: Inputs: Enter Historical Ground Water Data

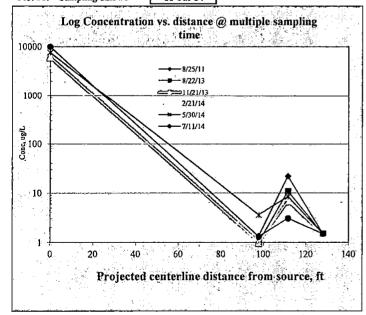
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes

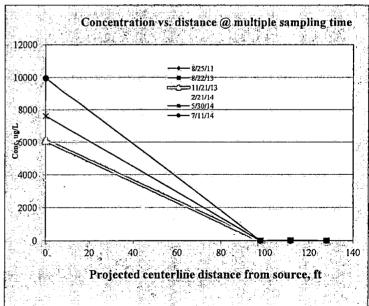
1. Monitoring W	'ell information	: Contam	inant Co	ncentra	tion at	a well:			Note	: relatio	nship of	` "y/x ≤	0.33" is	preferre	d			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4							1				Ī	
Dist from source, x-	-direction	ft	0.001	44	78	128											i	
Off-centerline dist,		ft	0.001	18	13	0.001						ĺ			_			
Sampling Event	Date sampled	day	Unit of	concentra	ition is u	z/L										•		
#1	9/25/97	0		590	97	1.5						i						
#2	8/25/11	5082	Į .	22	1.35	1.5										1		
#3	8/22/13	5810	Ī	10.8	1	1.5						İ					i	
#4	11/21/13	5901	6100	6.9	1	1.5							i			_	Ī	
#5	2/21/14	5993	3670	7.4	1	1.5							i					
#6	5/30/14	6091	7610	8,47	3.59	1.5												
#7	7/11/14	6133	9960	3.07	1.31	1.5					·		i					
#8					İ											i		
#9																i		1
#10															1			1
#11																i		
#12													i -					
#13																	-	
#14					1													
#15																		
#16											_						[
#17	_																ļ	
#18																1		
#19																		
#20																		
Average Concent	ration		6835.0	92.7	15.2	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- N/A
Maximum Concer	infration		9960	590	97	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA
Minimum Concer	ntration		3670	3.07	1	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


2. Groundwater Elevation:

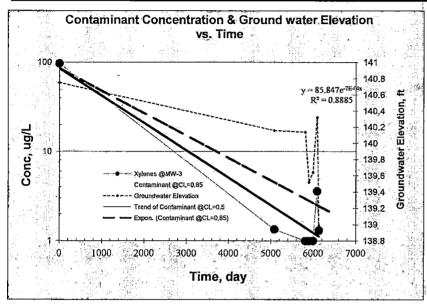

Well Location:																	
Sampling Event	Date sampled	Day									1	!				!	
#1	9/25/97	0	142.59	141.19	140.75	138.99					1	•				Ì	
#2	8/25/11	5082	141,17	140.46	140.16	138.87					 						
#3	8/22/13	5810	140,84	140.35	140,14	139,04	 				İ						
#4	11/21/13	5901	140.18	139.7	139.52	138.05											
#5	2/21/14	5993	140.25	139.88	139.64	138.1											
#6	5/30/14	6091	140.95	140.65	140.32	139.32											
#7	7/11/14	6133	140.95	140.1	138.99	138.14							-			_	
#8																	
#9																	
#10																 	
#11																	
#12			Ì					_			i				_		
#13														i			
#]4														i		_	
#15							 							-			
#16						-											
#17							 <u> </u>			_	F		-				
#18							 1										
· #19									i -								
#20			i								1			i	_		

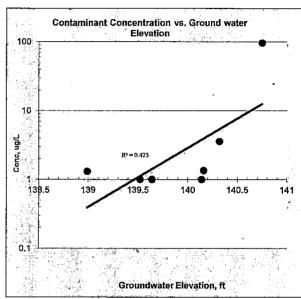
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

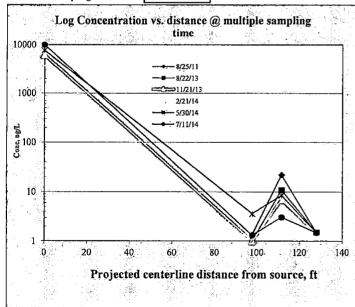

Name of Sampling Well?	MW-2	Confidence Level (I	Decision Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.980%		
Plume Stability?	Shrinking	; Decision	n Criteria is 85%.	
Slope: Point decay rate constant ((k _{point}), yr ⁻¹	<i>0.273</i> ⋅ @50% C.	L.; 0.241	@85% C.L.
Half Life for $oldsymbol{k}_{point}$, yr		2.536 @50% C.	L.; 2.872	@85% C.L.

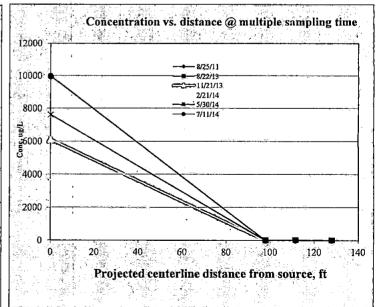
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14



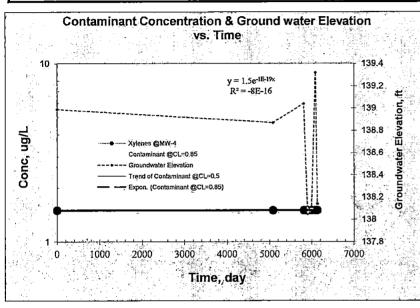


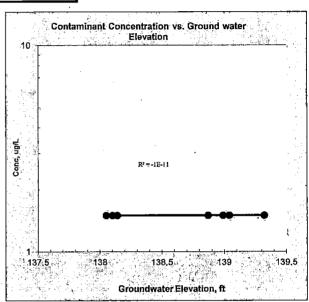
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

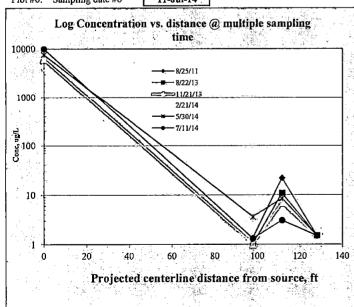

Name of Sampling Well?	MW-3	Confidence Level (Decision	n Criteria)? 85.0%
Confidence Level calculated with	log-linear regression is?	99.853%	
Plume Stability?	Shrinking	; Decision Criteri	ia is 85%.
Slope: Point decay rate constant ((k point), yr ⁻¹	0,258 @50% C.L.;	0.212 @85% C.L.
Half Life for k point, yr		2.687 @50% C.L.;	3.275 @85% C.L.

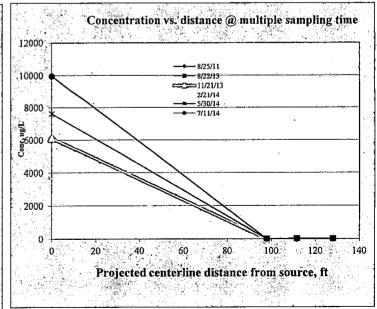
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Plot #6:	Sampling date #6	11-Jul-14





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confiden	ce Level (Decision (Criteria)?	85.0%				
Confidence Level calculated with	log-linear regression is?	0.00	10%						
Plume Stability?	Stable	; Decision Criteria is 85%.							
Slope: Point decay rate constant	(k point), yr ⁻¹	0.000	@50% C.L.;	NA	@85% C.L.				
Half Life for k point, yr		#######	@50% C.L.;	NA	@85% C.L.				

-	-	
Plot #1:	Sampling date #1	25-Aug-11
Plot #2:	Sampling date #2	22-Aug-13
Plot #3:	Sampling date #3	21-Nov-13
Plot #4:	Sampling date #4	21-Feb-14
Plot #5:	Sampling date #5	30-May-14
Dlot #6:	Sampling date #6	11-Inl-14

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA

Additional Description: NA Evaluation Hazardous Substance Xvlenes

1	Level	of Co	nfidence	Decision	Criteria)?

85%

2. Prediction: Calculation of Restoration Time and Predicted Concentration at Wells

Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
A. Cleanup Level (Criterion) to be achieved?	ug/L	1000	1000	1000	1000				_				•				
A.1 Average (@50% CL ¹ best-fitting values) Time to reach the criterion	vr	NA	-1.62	-9.52	NA	NA	NA	NA	NA.	NA.	NA	NA	NA.	NA	NA.	NA	NA
Date when the Criterion to be achieved	date	NA	2/12/96	3/22/88	ΝA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)																	
Time to reach the criterion ²	yr	NA	-1.83	-11.60	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
Date when the Criterion to be achieved	date	NA	1-1/26/95	2/20/86	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B Date of Prediction?	date	9/30/14	9/30/14	9/30/14	9/30/14					1							
B.1 Average conc predicted (@50% CL)	ug/L	NA	6.12	1.06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B.2 Boundary conc predicted (@85% CL)	ug/L	NA	10.56	2.34	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

3. Log-Linear Regression Results

Coefficient of Determination	r ²	0.396	0.949	0.888	0.000	NA	NA	NA	NA	NA .	NA	NA .	NA	NA	NA	NA	NA
Correlation Coefficient	r	0.629	-0.974	-0.943	0.000	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Number of data points	n	4	7	7	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

4. Statistical-Inference on the Slope of the Log-Linear Regression Line with t-statistics

One-tailed Confidence Level calculated, %	62.895%	99.980%	99.853%	0.000%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to support that the slope of the	NO	YES!	3/201	NO	774		374	37.								
regression line is significantly different from zero?	NO!	1 1 23!	YES!	NO!	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Coefficient of Variation?	0.386	NA	NA	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?	Stable	Shrinking	Shrinking	Stable	NA	NA NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA

5. Calculation of Point Decay Rate Constant (k point)

Slope: Point decay rate	@50% CL	yr ⁻¹	0.936	0.273	0.258	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA
constant (k point)	@85% CL	yr ⁻¹	NA	0.241	0.212	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k point)	@50% CL	yr	0.741	2,536	2.687	##########	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	@85% CL	yr	NA	2.872	3.275	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. CL: Confidence Level; UD= Undetermined

2. The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

Site Name: Hilton Seattle Hotel Site Address: Seattle, WA Additional Description: NA Evaluation

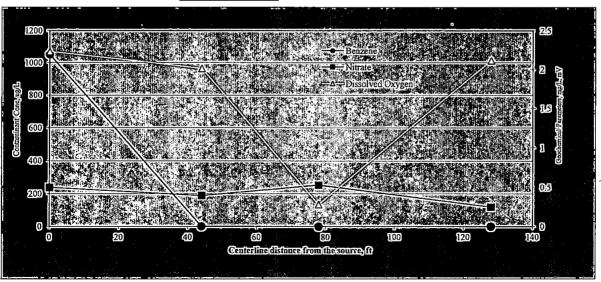
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4	ļ		
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1050	1.22	0.5	0.5			
Toluene	ug/L		837	0.5	0.5	0.5			
Ethylbenzene	ug/L		1940	4.8	0.5	0.5			
Total Xylenes	ug/L		9960	3.07	1.31	1			
Gasoline	_ug/L		59300	642	397	25			
User-specified chemical l	ug/L								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				. 2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L	,												
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015					-
Methane	mg/L													
Redox Potential, E _H	mV	-121.9				-121.9	-70.4	-118.7	-43.1					
Alkalinity	mg/L													
pН	unitless	6.68				6.68	7.06	6.94	7.58					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Benzene Contaminant for UF Selection

		_ :			_										
Equivalent C	Equivalent Contaminant Degradation														
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0,33	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.2	0.3	-7.4	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	0.1	0.9	-7.4	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator?

Benzene Dissolved Oxygen Nitrate

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

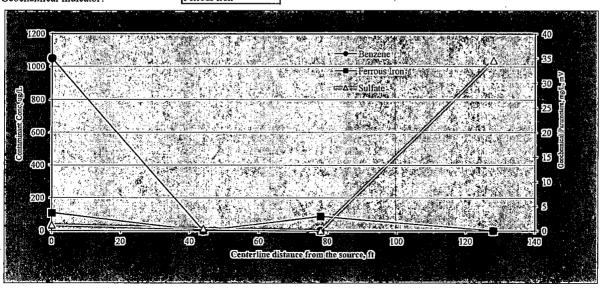
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4	_			
Centerline Distance from source	ft		0 ,	44	78	128			1	'
Benzene	ug/L		1050	1.22	0.5	0.5				
Toluene	ug/L		837	0.5	0.5	0.5				
Ethylbenzene	ug/L		1940	4.8	0.5	0.5				
Total Xylenes	ug/L		9960	3.07	1.31	1	l			
Gasoline .	ug/L		59300	642	397	25				
User-specified chemical1	ug/L		Ì							
User-specified chemical3	ug/L									

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA_	NA	NA	NA
Dissolved Oxygen	mg/L	2,23				2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0,528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015					
Methane	mg/L												1	
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118.7	-43.1				Ì	
Alkalinity	mg/L													
pН	unitless	6.68				6.68	7.06	6.94	7.58					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Benzene

Equivalent C	ontamina	nt Degrad	ation				i							_	
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mig/L	0.33	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.2	0.3	-7.4	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0,0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		, N/A	N/A	N/A	N/A	0.1	0.9	-7.4	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator?

Benzene
Sulfate
Ferrous Iron

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

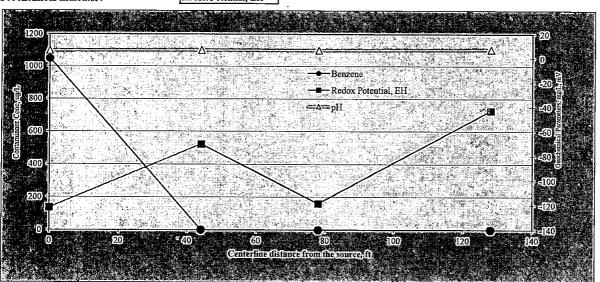
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit			MW-5	MW-2	MW-3	MW-4		1	
Centerline Distance from source	ft			0	44	78	128			
Benzene	ug/L			1050	1.22	0.5	0,5		1	
Toluene	ug/L			837	0.5	0.5	0.5			
Ethylbenzene	ug/L			1940	4.8	0.5	0.5		· -	
Total Xylenes	ug/L			9960	3.07	1.31	1	_		
Gasoline	ug/L			59300	642	397	25	_	i i	
User-specified chemicall	ug/L								,	
User-specified chemical3	ug/L								<u> </u>	

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells,

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6			_		
Manganese	mg/L									_	_			
Ferrous Iron	mg/L	3.6				3,6	0.015	2.94	0.015				_	
Methane	mg/L													
Redox Potential, E_H	mŸ	-121.9				-121.9	-70.4	-118.7	-43.1					
Alkalinity	mg/L								_					
pН	unitless	6.68				6.68	7.06	6.94	7.58					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Benzene

					1										
Equivalent C	Equivalent Contaminant Degradation														
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0,33	N/A	N/A	N/A	0,0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.2	0.3	-7.4	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	0.1	0.9	-7.4	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator?

Benzene		
Н		
Redox Potent	ial. EH	

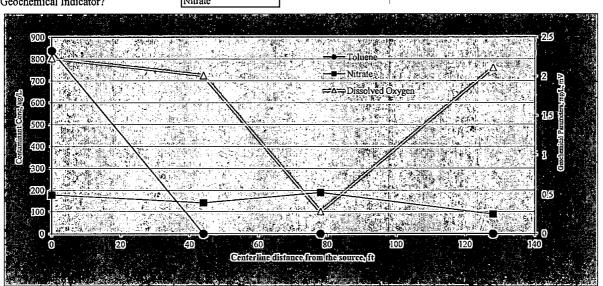
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4		ĺ		
Centerline Distance from source	ft		0	44	78	128				
Benzene	ug/L		1050	1.22	0.5	0.5				
Toluene	ug/L		837	0.5	0.5	0.5				
Ethylbenzene	ug/L		 1940	4.8	0.5	0.5				
Total Xylenes	ug/L		9960	3.07	1.31	1	•	ļ		
Gasoline	ug/L		59300	642	397	25		i		
User-specified chemical1	ug/L									
User-specified chemical3	ug/L			·						

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2.01	0,28	2.11					
Nitrate	mg/L	0.497			_	0.497	0.393	0.528	0,249			i		
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L					1								
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015					
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118,7	-43.1					
Alkalinity	mg/L												_	
рН	unitless	6.68				6.68	7.06	6.94	7.58					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Toluene

Communit for	OI DEICEIRO	•	LOINE	110											
Equivalent C	ontamina	nt Degrac	lation			1									
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1,28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A ,	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Toluene
Dissolved Oxygen
Nitrate

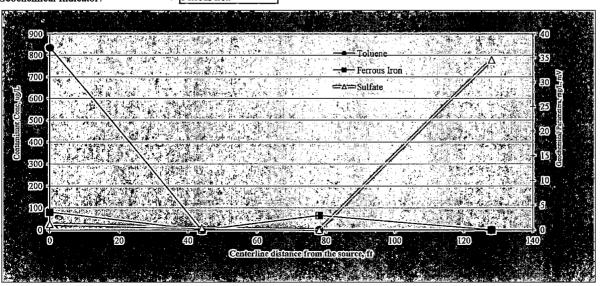
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit			MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft			0	44	78	128			
Benzene	ug/L			1050	1,22	0.5	0.5			
Toluene	ug/L] ;	837	0.5	0.5	0.5	ı		
Ethylbenzenė	ug/L			1940	4.8	0,5	0,5			
Total Xylenes	ug/L			9960	3.07	1.31	I			
Gasoline	ug/L			59300	642	397	25			
User-specified chemical l	ug/L									
User-specified chemical3	ug/L									

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015					
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118.7	-43,1					
Alkalinity	mg/L													
pH	unitless	6.68				6.68	7.06	6.94	7.58					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Toluene

Equivalent C	ontamina	nt Degrad	lation							·					
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.28	N/A	N/A	N/A	N/A	N/A_	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	1.0	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Toluene Sulfate Ferrous Iron

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

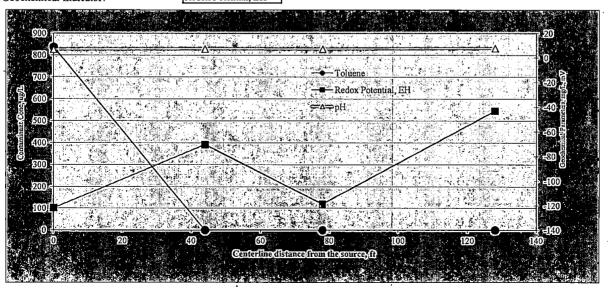
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4				
Centerline Distance from source	ft	L	0	44	78	128				
Benzene	ug/L		1050	1.22	0.5	0.5				
Toluene	ug/L		837	0.5	0.5	0.5			ĺ	
Ethylbenzene	ug/L		1940	4.8	0.5	0.5	_			
Total Xylenes	ug/L		9960	3.07	1.31	1				
Gasoline	ug/L		59300	642	397	25		1		
User-specified chemical1	ug/L									
User-specified chemical3	ug/L		1							

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2,01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0,393	0.528	0.249			ĺ		
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015					
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118.7	-43.1					
Alkalinity	mg/L													
pН	unitless	6.68				6.68	7.06	6.94	7.58					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Toluene

Equivalent C	<u>ontamina</u>	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	. mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0,6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A ı	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator?

Toluene
pΗ
Redox Potential, EH

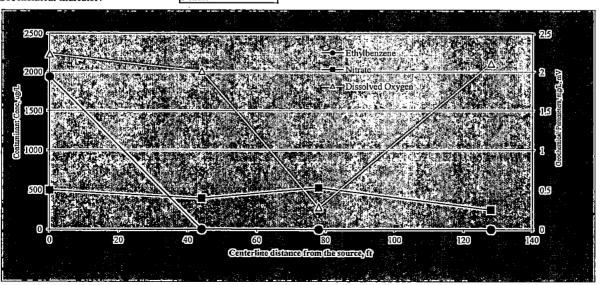
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4	 L	L	
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1050	1.22	0.5	0.5			
Toluene	ug/L		837	0.5	0.5	0.5			
Ethylbenzene	ug/L		1940	4.8	0.5	0.5			
Total Xylenes	ug/L		9960	3.07	1.31	1			
Gasoline	ug/L		59300	642	397	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

· · · · · ·	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23	-			2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0,528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3,6				3.6	0.015	2.94	0.015					
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118.7	-43.1					
Alkalinity	mg/L							-		,				
pH	unitless	6.68				6,68	7.06	6.94	7.58					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Ethylbenzene

Equivalent C	ontaminai	nt Degrad	ation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0,0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0,045	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	-	mg/L		N/A	N/A	N/A	N/A	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Ethylbenzene Dissolved Oxygen Nitrate

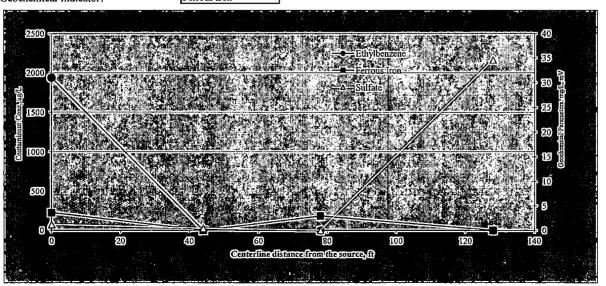
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5 ¹	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L	 	1050	1.22	0.5	0.5			
Toluene	ug/L		837	0.5	0.5	0.5			
Ethylbenzene	ug/L		1940	4.8	0.5	0.5			
Total Xylenes	ug/L		9960	3.07	1.31	1			
Gasoline	ug/L		59300	642	397	25			
User-specified chemical l	ug/L								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5,	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2.01	0.28	2.11					
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249					
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3.6				3,6 '	0.015	2.94	0.015					
Methane	mg/L					4								
Redox Potential, E_{II}	mV	-121.9				-121.9	-70.4	-118.7	-43.1					
Alkalinity	mg/L													
pН	unitless	6.68				6.68	7.06	6,94	7.58					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Ethylbenzene

Equivalent C	ontaminaı	nt Degrad	ation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	· N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L	,	N/A	N/A	N/A	N/A '	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Ethylbenzene Sulfate Ferrous Iron

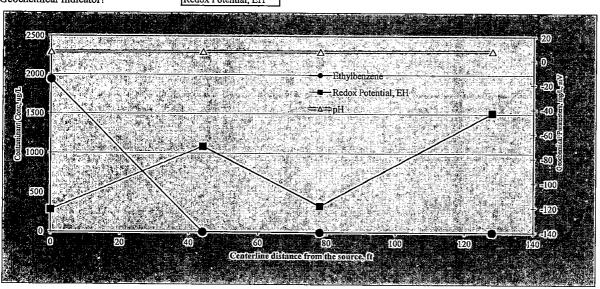
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		l N	MW-5	MW-2	MW-3	MW-4					
Centerline Distance from source	ft			0	44	78	128					
Benzene	ug/L			1050	1.22	0.5	0.5		-			
Toluene	ug/L			837	0.5	0.5	0.5			T	-	
Ethylbenzene	ug/L		-	1940	4.8	0.5	0.5					
Total Xylenes	ug/L		9	9960	3.07	1.31	1					
Gasoline	ug/L		5	9300	642	397	25	-			†	
User-specified chemical1	ug/L								İ			<u> </u>
User-specified chemical3	ug/L									 	<u> </u>	-

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23		_		2.23	2,01	0.28	2.11			i	i	1
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249		_			
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6			_	-	
Manganese	mg/L			-					_			-		
Ferrous Iron	mg/L	3.6		_		3.6	0.015	2.94	0.015	_	_	_		
Methane	mg/L				, i						_			
Redox Potential, E _H	mV	-121.9	J	_		-121.9	-70.4	-118.7	-43.1				_	
Alkalinity	mg/L				_				_		_			
pH	unitless	6.68	-			6,68	7.06	6,94	7.58		-			


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Ethylbenzene

Equivalent C	ontamina	nt Degrad	lation			_					-	_			
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	· NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? thylbenzene
H
tedox Potential, EH

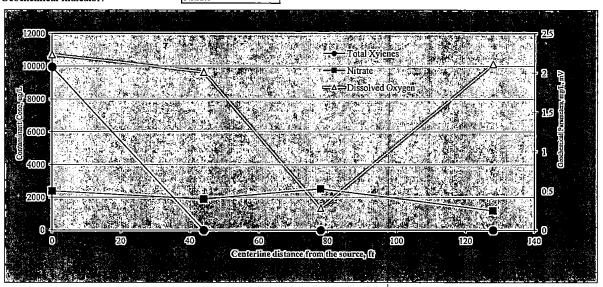
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4				
Centerline Distance from source	ft		0	44	78	128	ı	1		
Benzene	ug/L		1050	1.22	0.5	0.5				
Toluene	ug/L		837	0.5	0.5	0.5				
Ethylbenzene	ug/L		1940	4.8	0.5	0,5			1	
Total Xylenes	ug/L		9960	3.07	1,31	1				
Gasoline	ug/L		59300	642	397	25				
User-specified chemical1	ug/L									
User-specified chemical3	ug/L									

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2.23	2.01	0.28	2,11					
Nitrate	mg/L	0.497				0.497	0.393	0,528	0.249				_	
Sulfate	mg/L	1.17				1.17	0.428	0.015	34.6					
Manganese	mg/L													
Ferrous Iron	mg/L	3.6				3,6	0.015	2.94	0.015					
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9 ¹	-70.4	-118.7	-43,1					
Alkalinity	mg/L													
рĦ	unitless	6,68				6.68	7.06	6,94	7.58					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Total Xylenes

Equivalent C	ontaminar	ıt Degrad	lation				<u> </u>						-		
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	1.0	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0,0	-0,2	0,0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	_N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Total Xylenes
Dissolved Oxygen
Nitrate

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

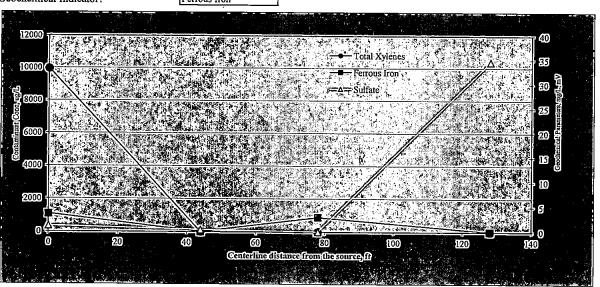
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4		T		<u> </u>	1
Centerline Distance from source	ft		0	44	78	128		+	+	+	
Benzene	ug/L		1050	1.22	0.5	0,5		+-	_		
Toluene	ug/L		837	0,5	0.5	0.5		+ -	-	1	
Ethylbenzene	ug/L		1940	4,8	0.5	0.5		 		 -	<u> </u>
Total Xylenes	ug/L		9960	3,07	1,31	1		 		<u> </u>	l
Gasoline	ug/L		59300	642	397	25	•				-
User-specified chemical l	ug/L								1	† —	
User-specified chemical3	ug/L			_	-		_	1			<u> </u>

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23			ĺ	2.23	2.01	0.28	2.11				1	
Nitrate	mg/L	0.497				0.497	0.393	0,528	0.249					_
Sulfate	mg/L	1.17				.1.17	0.428	0.015	34.6		_			-
Manganese	mg/L							-						
Ferrous Iron	mg/L	3.6		-		3,6	0.015	2.94	0.015		-	_		
Methane	mg/L			-						_				
Redox Potential, E _H	mV	-121.9				-121.9	-70.4	-118.7	-43.1	_				
Alkalinity	mg/L						_	_				_	_	
pН	unitless	6.68				6,68	7.06	6.94	7.58			_		

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection

Total Xylenes

Equivalent C	ontaminan	ıt Degrad	lation				_			_			_		
		Unit	UF	NA	NA	NA'	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0,0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0,0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Total Xylenes
Sulfate
Ferrous Iron

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

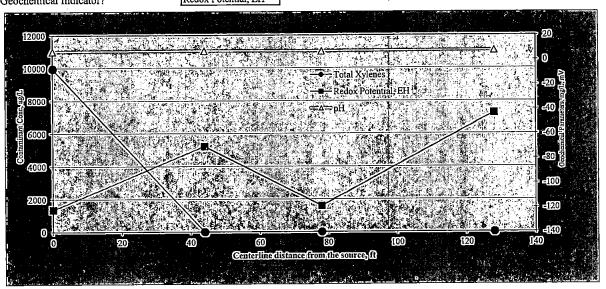
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit	,		M	/W-5	MW-2	MW-3	MW-4			<u> </u>	
Centerline Distance from source	ft				0	44	78	128				
Benzene	ug/L			1	1050	1.22	0.5	0,5		<u> </u>		
Toluene	ug/L				837	0.5	0.5	0.5				
Ethylbenzene	ug/L			1	1940	4.8	0.5	0.5				
Total Xylenes	ug/L			9	9960 ,	3.07	1.31	1				
Gasoline	ug/L		_	5	9300	642	397	25				
User-specified chemical1	ug/L				Ì				 _			
User-specified chemical3	ug/L											

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.23				2,23	2.01	0.28	2.11					<u> </u>
Nitrate	mg/L	0.497				0.497	0.393	0.528	0.249					_
Sulfate	mg/L	1.17				1.17	0,428	0.015	34.6				_	
Manganese	mg/L					!								
Ferrous Iron	mg/L	3.6				3.6	0.015	2.94	0.015		ļ .			
Methane	mg/L													
Redox Potential, E_H	mV	-121.9				-121.9	-70.4	-118.7	-43,1					
Alkalinity	mg/L													
pH	unitless	6.68				6.68	7.06	6.94	7.58					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Total Xylenes

				<u> </u>									_		
Equivalent Contaminant Degradation															
•		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0,32	N/A	N/A	N/A	0.0	0.1	0.6	0.0	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.2	0.2	-7.0	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.0	-0.2	0.0	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	•	mg/L		N/A	N/A	N/A	N/A	0.1	0.8	-7.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator?

	_
Total Xylenes	
рΗ	
Redox Potential, EH	

-

Appendix D

Appendix D

SHANNON & WILSON, INC.

APPENDIX D

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-12341-004

Date: October 2014
To: Mr. Zahoor A

Mr. Zahoor Ahmed
R.C. Hedreen Company

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2014

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2014