
NW 2491

Hilton Seattle Hotel Seventh Quarter Groundwater Monitoring Report Seattle, Washington

March 31, 2015

Excellence. Innovation. Service. Value. *Since* 1954.

Submitted To: Mr. Zahoor Ahmed R.C. Hedreen Company 217 Pine Street, Suite 200 Seattle, Washington 98101

By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

(206) 632-8020 www.shannonwilson.com

21-1-12341-004

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	D A OV CD OLIND	1
2.0	BACKGROUND	
3.0		
	3.1 Regional and Site Geologic Conditions	
	3.2 Groundwater Conditions	
4.0	GROUNDWATER REMEDIATION ACTIVITIES	3
	4.1 Conceptual Site Model	3
	4.2 Status of Product Recovery System	4
	4.3 Status of In Situ Groundwater Treatment	
5.0	GROUNDWATER MONITORING	5
0.0	5.1 Monitoring Program	5
	5.2 Groundwater Sampling	6
	5.3 Laboratory Analyses	
	5.4 Monitoring Results	
	5.4.1 Contaminants of Concern	
	5.4.2 Geochemical Indicators	
	5.5 Water Level Monitoring	
	5.6 Investigation-Derived Waste	
6.0	DATA ANALYSIS	9
7.0	CONCLUSIONS	11
8.0	LIMITATIONS	12
9.0	REFERENCES	14

TABLES

1 2	Groundwater Sampling Log Groundwater Monitoring Results
3	Geochemical Indicators
4	Water Level Data
5	Data Analysis Summary
	FIGURES
1	Vicinity Map
2	Site Plan
3	Estimated Extent of Gasoline Contamination
4	Estimated Extent of Benzene Contamination
5	Groundwater Elevation Contours
6	MW-2 Contaminant Concentrations and Groundwater Levels
7	MW-3 Contaminant Concentrations and Groundwater Levels
8	MW-4 Contaminant Concentrations and Groundwater Levels
9	MW-5 Contaminant Concentrations and Groundwater Levels
10	MW-5 Product Thickness and Groundwater Levels
11	MW-5 Product Thickness and Gasoline Concentrations
12	MW-5 Product Thickness and Benzene Concentrations
	APPENDICES
A	Analytical Laboratory Report
В	Natural Attenuation Analysis Output
\boldsymbol{C}	Important Information About Vour Geotechnical/Environmental Report

HILTON SEATTLE HOTEL SEVENTH QUARTER GROUNDWATER MONITORING REPORT SEATTLE, WASHINGTON

1.0 INTRODUCTION

This report summarizes the status of groundwater-monitoring activities at the Hilton Seattle Hotel in Seattle, Washington (the Site), facility No. 56642815. Cleanup of gasoline-contaminated groundwater is being conducted in response to the rescission of No Further Action (NFA) determination by the Washington State Department of Ecology (Ecology). The cleanup action is being conducted on behalf of the former property owner, R.C. Hedreen Company of Seattle, Washington, as part of a real estate transaction agreement with the purchaser, Stonebridge Companies of Englewood, Colorado. Cleanup activities have been performed in general accordance with our Cleanup Action Plan (CAP), dated July 18, 2012. Cleanup activities have included the installation of a single-phase skimmer pump to recover free-floating petroleum product to the extent practicable from one monitoring well located in the sidewalk right-of-way (ROW) adjacent to the east of the Site and in-situ groundwater treatment using oxygen release compounds. This report summarizes monitoring activities performed for the period December 2014 to February 2015, considered to be the seventh quarter of monitoring.

2.0 BACKGROUND

The Site is located at 1301 Sixth Avenue in downtown Seattle, Washington (Figure 1, Vicinity Map). The hotel was built over a parking structure in approximately 1970. Two 2,000-gallon gasoline underground storage tanks (USTs) were installed along the eastern property line during construction of the hotel (Figure 2, Site Plan). Approximately two years after installation, it was reported that one of the two USTs developed a leak and was replaced. The two tanks were abandoned in place in 1985 by filling with cement slurry. Although a service station occupied the main level of the parking structure that occupied the site prior to the hotel's construction, no other fuel tanks are known to be present beneath the property.

In the early 1990s, gasoline vapors were encountered in an excavation to extend the hotel's elevator shaft down to the depth of the pedestrian concourse leading toward Rainier Tower (see Figure 2). In 1994, Environmental Associates, Inc., drilled a boring adjacent to the abandoned USTs and confirmed the presence of gasoline-related contamination in soil samples from the boring. In 1997 and 1998, Shannon & Wilson, Inc., conducted site investigations and data evaluations related to closure of the two former USTs beneath the hotel. At the time, no soil contamination was detected in borings advanced at the hotel, but more than a foot of gasoline-

range petroleum product was observed floating in the up-gradient monitoring well MW-5. Gasoline-range hydrocarbons; benzene, toluene, ethylbenzene, and xylenes (BTEX); and lead were detected in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4 above the Washington Model Toxics Cleanup Act (MTCA) Method A cleanup criterion established at the time.

Because groundwater flow was interpreted to be to the west-northwest at a relatively steep gradient, and a relatively impermeable layer of clay and silt was observed in borings advanced at the Site, the floating product encountered up-gradient of the abandoned USTs was attributed to an offsite source. In 1998, Shannon & Wilson also assessed risks and found no complete exposure pathways exist at the Site. Based on the available site information, Ecology issued an NFA letter in October 1998.

In a periodic review conducted in February 2010, Ecology rescinded the NFA, citing the presence of floating petroleum product at monitoring well MW-5 as a risk to environmental health. In response to Ecology's concern, an investigation was conducted by Shannon & Wilson in August 2011 to assess current groundwater conditions at the Site. The investigation confirmed the presence of approximately 2.3 feet of relatively unweathered floating petroleum product at monitoring well MW-5 and gasoline-range hydrocarbons, BTEX, and lead in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4. Vacuum extraction using an eductor truck was attempted as an interim cleanup action on January 24 and February 21, 2012; however, the effort had limited success and resulted in the removal of approximately 3 gallons of free product.

In June 2012, the hotel re-entered Ecology's Voluntary Cleanup Program (VCP), and Shannon & Wilson was retained to implement groundwater cleanup action with the goal of re-obtaining NFA determination from Ecology. The preferred cleanup action included the installation of a single-phase product recovery system at monitoring well MW-5 to remove source product and in-situ groundwater treatment at monitoring wells MW-2, MW-3, MW-4, and MW-5 using oxygen release compounds to facilitate the degradation of residual contamination in groundwater under the Site. The overall objective is to remove source contamination and achieve cleanup levels through monitored natural attenuation.

3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

3.1 Regional and Site Geologic Conditions

The Site is situated on the Seattle Drift Plain, a gently rolling, elevated plain that formed approximately 13,500 years ago during the last period of continental glaciations. Geologic maps

for the site vicinity suggest that much of the material underlying the subject site has been modified extensively by excavation, filling, and/or construction. The Site is situated on a west-facing slope at approximately 175 above mean sea level. An arbitrary site datum was established with the sidewalk elevation at monitoring well MW-5 at 175.6 feet in elevation. This elevation was estimated using King County iMap.

Based on borings advanced by Shannon & Wilson in 1997, the Site is underlain by fill and then layers of silty sand, clayey silt, and silty fine sand. Below the fill, the soil is generally dense and hard, having been glacially overridden. The fill thickness ranges from approximately 3 to 12 feet beneath the basement and sidewalk at the Site. The fill layer is underlain by a silty sand/sandy silt layer that ranges from 1 to 12 feet thick. A hard, silty clay/clayey silt underlies the silty sand layer, ranging from 3 to 15 feet thick. The clayey silt layer was absent in the boring at monitoring well MW-5 but appears to be continuous beneath the basement and UST area. The clayey silt layer is underlain by a medium- to very dense, silty, fine sand layer.

3.2 Groundwater Conditions

Groundwater is present beneath the Site in the lower silty sand layer, below the clayey silt layer. Water level measurements collected at the four monitoring wells indicate that groundwater is at an elevation of approximately 140 feet and flows to the west-northwest. The groundwater level at monitoring well MW-5 was adjusted to account for the floating product layer, when necessary. Groundwater is approximately 34 feet below ground surface (bgs) at the sidewalk along Sixth Avenue and ranges from approximately 15 to 22 feet bgs in the basement garage levels. Estimated flow gradients from previous groundwater monitoring events are presented below:

- > 0.017 foot/foot in November 2014,
- > 0.022 foot/foot in July 2014,
- > 0.023 foot/foot in May 2014,
- > 0.017 foot/foot in February 2014,
- > 0.017 foot/foot in November 2013,
- > 0.015 foot/foot in August 2013,
- > 0.018 foot/foot in August 2011, and
- > 0.026 foot/foot in January 1998.

4.0 GROUNDWATER REMEDIATION ACTIVITIES

4.1 Conceptual Site Model

Based on measured water levels, monitoring well MW-5 is up-gradient of the location of the closed USTs, monitoring well MW-2 is cross-gradient, and monitoring wells MW-3 and MW-4

are down-gradient. When present, floating petroleum product had been observed at monitoring well MW-5 but not at monitoring wells MW-2, MW-3, or MW-4. Because floating petroleum product was not observed in what are believed to be hydraulically connected wells, the product observed at monitoring well MW-5 appears to be isolated. While the observed dense clayey silt layer is absent at monitoring well MW-5, an unknown boundary condition exists that prevents the floating product plume from migrating to down-gradient locations. The material underlying the subject site has been extensively modified by excavation, filling, and/or construction and has likely created a local subsurface depression that contains the product plume. This is further supported by the condition of the leaded gasoline petroleum product, which, based on a laboratory chromatogram of a collected sample, was relatively unweathered after being released into the environment more than 40 years ago.

Contaminants of concern (COCs) include gasoline-range hydrocarbons, BTEX, and lead. The contamination plume is approximately 34 feet bgs at monitoring well MW-5, and dissolved groundwater contamination is approximately 15 to 22 feet bgs in the basement garage levels. The depth of the contamination below the built environment prevents exposure to contaminated soil and groundwater by human and environmental receptors. Groundwater under downtown Seattle is not likely to be used for drinking water and is not considered a complete exposure pathway. A vapor survey was conducted during our 1998 site evaluation, and gasoline vapors were not measured in the hotel's parking garage, suggesting that this exposure pathway is also incomplete.

4.2 Status of Product Recovery System

A product recovery system was installed in general accordance with our CAP and features a pneumatic, single-phase skimmer pump installed in monitoring well MW-5, with air supply and product-extraction tubing routed under the sidewalk ROW to an equipment compound inside the hotel's parking garage. The system was started on November 6, 2012, and operated until August 14, 2013, when the results of a second rebound test showed petroleum product was no longer readily accumulating in monitoring well MW-5. Product was not observed through the third quarter (February 2014) monitoring event, but has been periodically observed in monitoring well MW-5. The minor volumes of product were removed using either a submersible pump or a bailer. The extraction system remains turned off. To date, approximately 125.75 total gallons of product have been removed by the system, and 128.75 total gallons have been removed when including interim cleanup actions. Additional system performance details can be found in our *First Quarter Groundwater Monitoring Report* (Shannon & Wilson, 2013).

4.3 Status of In-Situ Groundwater Treatment

In-situ groundwater treatment using oxygen release compounds (ORC) was initiated on May 28, 2013, at monitoring wells MW-2, MW-3, and MW-4 and on September 12, 2013, at monitoring well MW-5 to enhance biodegradation of contamination. Regenesis ORC Advanced[™] well socks, containing a mixture of calcium oxyhydroxide and calcium hydroxide, were installed in the wells to deliver oxygen as electron acceptors for the biodegradation of the petroleum compounds. An oil-absorbent sock was also deployed at monitoring well MW-5 to remove any minor amounts of free product from the groundwater surface as treatment continued; however, the sock was removed when product was observed in the well.

5.0 GROUNDWATER MONITORING

5.1 Monitoring Program

Quarterly monitoring is being conducted to document groundwater conditions during cleanup actions at the Site. Monitoring events are generally scheduled for the months of February, May, August, and November. While up-gradient of the closed USTs, floating product had been confined to the vicinity of monitoring well MW-5, and the well is considered to be within the contamination source. Monitoring wells MW-2, MW-3, and MW-4 are considered to be downgradient of the source, within the contaminated groundwater plume. Seventh quarter monitoring was performed at monitoring wells MW-2, MW-3, MW-4, and MW-5. Groundwater monitoring parameters include the following:

- > COCs
 - Gasoline-Range Hydrocarbons
 - BTEX
 - Total Lead
- > Primary Geochemical Indicators
 - Dissolved Oxygen (DO)
 - Oxidation-Reduction Potential (ORP)
 - pH
 - Specific Conductance
 - Temperature
- > Secondary Geochemical Indicators
 - Ferrous Iron
 - Nitrate
 - Sulfate

5.2 Groundwater Sampling

On February 25, 2014, groundwater samples were collected from monitoring wells MW-2, MW-3, and MW-4 using a peristaltic pump and low-flow sampling techniques, and from monitoring well MW-5 using a high-density polyethylene bailer. The bailer was used at monitoring well MW-5 due to the limitations of the peristaltic pump as well as to better evaluate the presence of potential floating product or sheen. ORC socks in these wells were removed one month prior to sampling to allow for subsurface conditions to equilibrate. The absorbent sock was also removed from monitoring well MW-5 prior to sampling.

Monitoring wells MW-2, MW-3, and MW-4 were purged at a low-flow (less than 500 milliliter per minute) pumping rate prior to sampling. The purge water was monitored using a YSI water quality meter until the measured groundwater quality parameters (pH, conductivity, temperature, etc.) stabilized to ±5 percent for three consecutive readings taken at three- to five-minute intervals. Monitoring well MW-5 was purged by bailing three well volumes, and water quality parameters were collected by emptying the bailer contents into the YSI flow cell. The purge water was collected in a bucket and transferred to the storage tank at the equipment compound for future disposal.

Following purging, groundwater samples were collected in clean, laboratory-supplied containers and placed in a cooler with ice for transport to the laboratory. Purging and sampling data are presented in Table 1.

5.3 Laboratory Analyses

Groundwater samples were submitted under chain-of-custody procedures to Fremont Analytical in Seattle, Washington. The collected samples were analyzed for COCs as well as geochemical indicators to continue evaluation of the potential for natural attenuation. Analyses for COCs included gasoline-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons-Gasoline Method (NWTPH-Gx), BTEX by Environmental Protection Agency (EPA) Method 8021B, and total lead by EPA Method 6020/200.8. Analyses for geochemical indicators included ferrous iron by Standard Method 3500B and nitrate and sulfate by EPA Method 300.0.

5.4 Monitoring Results

The seventh quarter groundwater monitoring results for COCs are shown in Table 2. The data are presented along with previous quarterly results and two historical datasets for comparison. One of the historical datasets is from our initial site assessment in 1997, and the other is from our evaluation of groundwater conditions prior to cleanup activities in 2011. Similarly, seventh

quarter results for geochemical indicators are shown in Table 3, with available historical results shown for comparison. The analytical laboratory report for the seventh quarter results is provided in Appendix A.

5.4.1 Contaminants of Concern

In the seventh quarter, the samples collected from the monitoring wells had detectable concentrations of gasoline, BTEX, and/or lead. Source well MW-5 had detections of all COCs above their respective MTCA Method A groundwater cleanup criteria, except for toluene. Down-gradient monitoring well MW-2 had a detection of gasoline above the MTCA Method A groundwater cleanup criterion as well as detections of toluene, ethylbenzene, and xylenes below their respective MTCA Method A groundwater cleanup criterion. Gasoline and xylenes were detected at monitoring well MW-3 below their respective MTCA cleanup criterion. No COCs were detected at monitoring well MW-4.

The concentrations of gasoline, ethylbenzene, xylenes, and lead in the groundwater at source well MW-5 decreased from the sixth quarter to the seventh quarter, while concentrations of benzene and toluene increased slightly over the previous quarter results. Concentrations of all COCs at monitoring well MW-2 decreased over sixth quarter results, except for lead which was again not detected. Benzene at monitoring well MW-2 was not detected for the first time since the start of remediation in the seventh quarter. The gasoline and xylenes detections at monitoring well MW-3 decreased over sixth quarter results. Ethylbenzene at monitoring well MW-3 was not detected in the seventh quarter after being detected for the first time in the sixth quarter since before cleanup started.

The estimated extents of gasoline and benzene in groundwater for the four most recent quarters (fourth through seventh quarters) of monitoring at the Site are shown on Figures 3 and 4, respectively. The leading edge of groundwater contaminated with gasoline extended past monitoring well MW-4 prior to cleanup and receded through the third quarter but expanded slightly through the sixth quarter (Figure 3). The leading edge again receded in the seventh quarter. The estimated extent of gasoline at concentrations above its MTCA cleanup criterion (i.e., 800 micrograms per liter $[\mu g/L]$) had been relatively stable in the central portion of the Site but receded in the seventh quarter. The leading edge of groundwater contaminated with benzene at concentrations above its MTCA cleanup criterion (i.e., 5 $\mu g/L$) has receded significantly from levels observed historically, which was beyond monitoring well MW-4, and remained stable through the seventh quarter, with the leading edge receding to a point up-gradient of monitoring well MW-2 (Figure 4).

5.4.2 Geochemical Indicators

Geochemical indicators are categorized as primary or secondary. Primary indicators were measured in the field during purging using a YSI water quality meter, and the secondary indicators were analyzed by the laboratory. Low DO concentrations (e.g., 0 to 1.0 milligrams per liter [mg/L]), measurable ferrous iron, and depleted nitrate and sulfate concentrations generally suggest that active biodegradation of hydrocarbons is occurring. ORP values are a measure of the reducing conditions present and can be correlated to the presence or absence of secondary geochemical indicators to support the identification of biodegradation processes.

In the seventh quarter, DO was depleted at 0.27 and 0.24 mg/L in monitoring wells MW-2 and MW-3, respectively, while DO was elevated at 5.98 and 6.53 mg/L in monitoring wells MW-4 and MW-5, respectively. The elevated DO measurement at monitoring well MW-5 is likely due to aeration of groundwater during transfer from bailer to water quality flow cell. Low levels of ferrous iron was measured at 290 and 30 micrograms per liter (ug/L) in monitoring wells MW-2 and MW-4, respectively; wells MW-3 and MW-5 were relatively elevated at 1,600 and 3,100 ug/L, respectively, after both being non-detect in the previous quarter. Low concentrations of nitrate were detected at 41 and 473 ug/L at monitoring wells MW-3 and MW-5, respectively; wells MW-2 and MW-4 were non-detect. Sulfate was elevated at 24,000 ug/L at monitoring well MW-4 but non-detect at all other locations. The ORP values measured correlate well with the observed detections. Additionally, elevated groundwater temperatures were observed in all wells (Table 1). The elevated temperatures, ranging from 19.8 to 21 degrees Celsius in monitoring wells MW-2 through MW-4 are likely attributable to the hotel's underground electrical vault in the immediate vicinity of the monitoring wells and may be beneficial to microbial growth. The elevated temperature measured at monitoring well MW-5 is likely due to exposure to ambient temperatures during bailing and parameter measurement.

5.5 Water Level Monitoring

Table 4 presents water level data for the seventh quarter monitoring event and historical sampling events. Figure 5 shows approximate groundwater elevation contours for the seventh quarter data. The measurements show the groundwater flow direction to the west-northwest, with a calculated groundwater flow gradient of approximately 0.015 foot/foot. The calculated flow gradient has historically ranged from approximately 0.015 foot/foot to 0.026 foot/foot.

5.6 Investigation-Derived Waste

Investigation-derived waste during the seventh quarter monitoring event included purge water from groundwater monitoring and disposable sampling equipment (nitrile gloves, bailers, etc.).

Approximately 9 gallons of purge water was added to the system storage tank during groundwater sampling in the seventh quarter for an approximate cumulative total of 30.5 gallons of waste in the tank. Shannon & Wilson will again coordinate disposal once the tank is full. Disposable sampling equipment was placed in a plastic bag and disposed as solid waste.

6.0 DATA ANALYSIS

Groundwater monitoring data was analyzed using Ecology's natural attenuation guidance for petroleum-contaminated groundwater (Ecology, 2005a,b). The technical guidance package provides six computational tools, or modules, for evaluating the feasibility and performance of natural attenuation as a cleanup action for groundwater. Available data were analyzed using modules that do not incorporate groundwater flow models, including *Module 1: Non-Parametric Analysis for Plume Stability Test, Module 2: Graphical and Regression Analysis for Plume Stability & Restoration Time Calculation*, and *Module 3: Evaluation of Geochemical Indicators*. The computational module output is provided in Appendix B.

The data analysis results for Modules 1 and 2 are summarized in Table 5. Module 1 evaluates plume stability using the Mann-Kendall non-parametric statistical method, while Module 2 evaluates plume stability using linear regression. Both evaluations provide evidence that gasoline and BTEX concentrations at monitoring well MW-2 are shrinking with high levels of confidence. The Mann-Kendall method shows gasoline concentrations as stable at monitoring well MW-3 and undetermined for BTEX, while linear regression shows gasoline and BTEX concentrations as shrinking. The results for monitoring well MW-3 are reported with moderateto-high levels of confidence for the Mann-Kendall method and are reported with high levels of confidence using linear regression. While benzene and toluene at monitoring well MW-3 are undetermined by the Mann-Kendall method, the parameters have been non-detect for the past eight sampling events and therefore do not show a strong decreasing trend. Ethylbenzene and xylenes at monitoring well MW-3 are undetermined but recent low level detections have reduced the certainty of the model result. Trend analyses are again limited in their application at monitoring well MW-4 because parameter concentrations are predominantly non-detect. The Mann-Kendall method shows gasoline and BTEX as stable at monitoring well MW-4 and linear regression shows gasoline and xylenes as stable with benzene, toluene and ethylbenzene as not applicable. Gasoline at monitoring well MW-4 was previously reported as undetermined for both the Mann-Kendall and linear regression methods in the sixth quarter.

Point decay rates and half-life results at 50 and 85 percent confidence levels were determined using linear regression (Table 5). While the module calculates values for both stable and shrinking plumes as shown, the regression analysis is only appropriate for shrinking plumes.

Furthermore, because concentrations of gasoline and BTEX at monitoring wells MW-2, MW-3, and MW-4 are generally below their respective cleanup criterion, estimating the time to achieve cleanup is also not appropriate. However, gasoline at monitoring well MW-2 is above the cleanup criterion in the seventh quarter and has point decay rates of 0.071 and 0.030 per year at 50 and 85 percent confidence levels, respectively. Half-life results for gasoline at monitoring well MW-2 were calculated to be 9.738 and 23.078 years at 50 and 85 percent confidence levels, respectively.

Module 3 calculates assimilative capacity and plots geochemical indicators. Assimilative capacity is the potential capacity of groundwater to biodegrade contaminants, and the calculation is based on background concentrations of electron acceptors (e.g., DO, nitrate, sulfate, etc.). Background geochemical values for downtown Seattle groundwater have not been established for this project; therefore, the assimilative capacities calculated by the module are not usable. However, the plots of geochemical indicators provide evidence that biodegradation is occurring. Biodegradation proceeds according to reactions that are energetically preferred by microbes. Electron acceptors evaluated for this project, from most preferred to least preferred, are oxygen, nitrate, ferric iron, and sulfate.

DO was depleted at down-gradient monitoring wells MW-2 and MW-3, but was elevated at monitoring well MW-4 and MW-5. The elevated DO measurement at MW-5 is likely due to aeration of the sampled groundwater during transfer from the bailer to the monitoring flow cell. Nitrate was depleted or non-detect at monitoring wells MW-2, MW-3, and MW-4, but not completely depleted at monitoring well MW-5. Concentrations of ferrous iron, a metabolic byproduct of reactions involving ferric iron, have historically decreased with distance from source well MW-5; however, in the seventh quarter ferrous iron was detected at low levels at monitoring wells MW-2 and MW-4 with relatively elevated levels measured at monitoring wells MW-3 and MW-5. Sulfate was depleted in the source well MW-5 and monitoring wells MW-2 and MW-3, but was elevated in monitoring wells MW-4. Additionally, ORP and pH field measurements correlate well with the observed detections.

Groundwater contaminant concentrations for gasoline and benzene were also plotted along with groundwater levels for each monitoring well location to evaluate potential trends in the data (Figures 6 through 9). Data from August 2013 to present were plotted for each location to show potential seasonal variation since the start of cleanup activities. Increasing groundwater levels at the Site have historically resulted in a corresponding increase in gasoline concentrations at monitoring well MW-2, while benzene concentrations are low and do not show much variation (Figure 6). A similar trend is observed at monitoring well MW-3 but the concentration of gasoline lags behind the groundwater fluctuation due to its proximity to source well MW-5

(Figure 7). No trends are observed in the data from monitoring well MW-4 because gasoline and benzene concentrations are non-detect (Figure 8).

Source monitoring well MW-5 shows a trend similar to monitoring wells MW-2 and MW-3 for gasoline, but also shows an increase in benzene concentrations as groundwater levels increase in spring 2014 and so far in 2015 (Figure 9). This seasonal rise in contaminant concentrations is associated with rising groundwater levels and residual petroleum product in the smear zone (or region of water table fluctuation). Figure 10 shows that the presence of product in source well MW-5 occurs during periods of rising groundwater levels. Further, as shown in Figures 11 and 12, the presence of product corresponds to increases in dissolved gasoline and benzene concentrations at source well MW-5, respectively.

7.0 CONCLUSIONS

Based on our review and analysis of the seventh quarter monitoring results, we offer the following conclusions regarding remediation at the Site.

- ➤ Observed occurrences of product returning to source well MW-5 appears to be in response to rising groundwater levels contacting and providing a pathway of transport for residual contamination in the smear zone. Increases in dissolved contaminant concentrations subsequently follow the product observations.
- Source monitoring well MW-5 had detected concentrations of all COCs and, except for toluene, the concentrations exceeded their respective MTCA Method A cleanup criterion. Concentrations of COCs decreased or remained generally stable over sixth quarter results. Concentrations at this location are expected to continue on a decreasing trend as treatment of the groundwater continues and as residual petroleum in the smear zone is removed.
- Down-gradient monitoring well MW-2 had a detected concentration of gasoline above its MTCA Method A cleanup criterion. The gasoline concentration had been below the cleanup criterion in the fifth quarter, but rebounded above the criterion in the sixth and seventh quarters. Toluene, ethlybenzene and xylenes were detected at monitoring well MW-2 but below their respective MTCA Method A cleanup criteria; benzene and lead were non-detect. The concentrations of all detected parameters decreased over sixth quarter results.
- Sasoline and xylenes were detected below their respective cleanup criterion in downgradient monitoring well MW-3. The gasoline detection represented a decrease over the sixth quarter result. Xylenes have been detected for the previous four quarters after being non-detect for three quarters prior. The seventh quarter xylenes detection represents a

- decrease over sixth quarter results. Ethylbenzene had been detected for the first at this location since before cleanup started, but was again not detected in the seventh quarter.
- No COCs were detected at down-gradient monitoring well MW-4. Lead had been previously detected at this location at concentrations below its MTCA Method A cleanup criterion in the fourth and fifth quarters.
- > Contamination is not migrating off-site, and an analysis of the data indicates that the contamination plume is stable and/or shrinking in response to remedial efforts.
- > Geochemical indicators continue to suggest that biodegradation is occurring at the Site and monitored natural attenuation appears to be a viable long-term remediation alternative.

The eighth quarter groundwater monitoring event is scheduled to be conducted May 2015. These activities will be the subject of the next quarterly groundwater monitoring report.

8.0 LIMITATIONS

This report was prepared for the exclusive use of the R.C. Hedreen Company and its representatives, and in no way guarantees that any agency or its staff will reach the same conclusions as Shannon & Wilson. The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our agreement. The conclusions presented in this report are professional opinions based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

Shannon & Wilson has prepared Appendix C, "Important Information About Your Geotechnical/Environmental Report." While not written specifically for this project, this enclosure should assist you and other in understanding the use and limitations of our reports.

We appreciate the opportunity to be of continued service on this project. If you have any questions, please contact the undersigned at (206) 632-8020.

Sincerely,

SHANNON & WILSON, INC.

Michael S. Reynolds, PE Principal Environmental Engineer

MSR:SWG/msr:aeb

Scott W. Gaulke, PE, LH.G

Vice President

9.0 REFERENCES

- Environmental Associates, Inc., 1994, Soil and groundwater sampling and testing, Hilton Hotel underground storage tanks, Sixth Avenue and University Street, Seattle, Washington, December 1.
- King County, 2011, King County iMap Property Information, http://www.metrokc.gov/GIS/iMap, August 10.
- Shannon & Wilson, Inc., 1998a, Site assessment report, Seattle Hilton Hotel, Seattle, Washington, February.
- Shannon & Wilson, Inc., 1998b, Closure services related to Hilton USTs, Seattle Hilton Hotel, Seattle, Washington, July.
- Shannon & Wilson, Inc., 2011, Seattle Hilton Hotel groundwater current conditions sampling and analysis plan, Seattle, Washington, August 4.
- Shannon & Wilson, Inc., 2012, Cleanup action plan, Hilton Seattle Hotel, Seattle, Washington, July 18.
- Shannon & Wilson, Inc., 2013, First quarter groundwater monitoring report, Hilton Seattle Hotel, Seattle, Washington, September 30.
- Washington State Department of Ecology (Ecology), 1998, Seattle Hilton Hotel parking garage voluntary cleanup program no further action letter, October.
- Washington State Department of Ecology (Ecology), 2005a, Guidance on remediation of petroleum-contaminated ground water by natural attenuation: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091 (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2005b, User's manual: Natural attenuation analysis tool package for petroleum-contaminated ground water: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091A (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2007, The Model Toxics Control Act cleanup regulation, chapter 173-340 WAC: Olympia, Washington, Washington State Department of Ecology, October 12.
- Washington State Department of Ecology (Ecology), 2010, Periodic review, Hilton Hotel Parking Garage, Facility Site ID#: 56642815, February.

TABLE 1 GROUNDWATER SAMPLING LOG

		Monitoring Well						
	MW-2	MW-3	MW-4	MW-5				
Water Level Measurement Data								
Date Water Level Measured	2/25/2015	2/25/2015	2/25/2015	2/25/2015				
Time Water Level Measured	12:46	11:30	10:20	14:00				
Measuring Point (MP) Elevation, Feet	162.55	161.24	154.30	174.35				
Depth to Water Below MP, Feet	22.37	21.35	15.71	33.90				
Water Level Elevation, Feet	140.18	139.89	138.59	140.45				
Purging/Sampling Data								
Date Sampled	2/25/2015	2/25/2015	2/25/2015	2/25/2015				
Time Sampled	13:15	12:15	11:15	14:35				
Depth to Water Below MP, Feet	22.37	21.35	15.71	33.90				
Total Depth of Well Below MP, Feet	29.40	29.23	20.61	38.50				
Water Column in Well, Feet	7.03	7.88	4.90	5.10				
Gallons per Foot	0.16	0.16	0.16	0.16				
Gallons in Well	1.05	1.26	0.68	0.82				
Total Gallons Pumped/Bailed	2.5	1.5	3.5	1.5				
Purging Method	Peristaltic	Peristaltic	Peristaltic	Bailer				
Sampling Method	Peristaltic	Peristaltic	Peristaltic	Bailer				
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch				
Water Quality Data ^B	Ī							
Temperature, °C	19.8	20.1	21.0	24.5				
Dissolved Oxygen, mg/L	0.27	0.24	5.98	6.53				
Specific Conductance, µS/cm	0.805	0.772	0.546	0.811				
pH, standard units	7.21	7.27	8.80	6.72				
Oxidation-Reduction Potential, mV	-148.7	-131.4	-132.4	-131.4				
Remarks	No free product	No free product	No free product	0.10 feet of free				
	observed.	observed.	observed.	product.				
	Strong	Hydrocarbon		observed.				
,	hydrocarbon	odor.		Strong				
	odor.			hydrocarbon				
				odor.				

Notes:

^AWater level was adjusted to account for free product observed.

 $^{^{\}rm B}Water$ quality parameters were measured with YSI instruments. -- = not applicable or not measured

[°]C = degrees Celsius

mg/L = milligram per liter

 $[\]mu S/cm = microsiemens per centimeter$

mV = millivolt

TABLE 2
GROUNDWATER MONITORING RESULTS

Monitoring Well	Sample Date Qu	Quarter	Product Thickness			Sampling F	tesults (µg/Ĺ)		<u> </u>
Monitoring West			(feet)	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
	MTCA Method A	Groundwater Cl	eanup Levels:	800	5	1,000	700	1,000	15
 	9/25/1997	Historical		4,700	6,700	210	670	590	8.00
	8/25/2011	Historical	_	2,950	76.1	2.19	863	22.0	< 1.0
	8/22/2013	QI	-	5,000	3.07	2.01	408	10.8	8.14
	11/21/2013	Q2	- '	1,760	1.40	1.57	83.3	6.89	< 1.0
MW-2	2/21/2014	Q3	_	1,360	2.90	1.62	20.8	7.44	8.10
	5/30/2014	Q4	-	2,070	1.82	2.00	36.5	8.47	2.71
Mary .	7/11/2014	Q5	-	642	1,22	< 1.0	4.80	3.07	< 1.0
	11/25/2014	Q6	-	1,350	1.01	1.63	6,53	8.19	< 1.0
	2/25/2015	Q7		1,170	< 1.0	1.33	3,36	4.52	< 1.0
	9/25/1997	Historical	-	700	7,200	10.0	74.0	97.0	9.00
	8/25/2011	Historical	-	153	< 1.0	< 1.0	< 1.0	1.35	< 1.0
	8/22/2013	Q1		209	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
	11/21/2013	Q2	-	235	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
MW-3	2/21/2014	Q3	_	114	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
	5/30/2014	Q4	-	187	< 1.0	< 1.0	< 1.0	3.59	3.42
	7/11/2014	Q5	-	397	< 1.0	< 1.0	< 1.0	1.31	< 1.0
	11/25/2014	Q6		208	< 1.0	< 1.0	1.34	5.04	< 1.0
	2/25/2015	Q7	-	140 ·	< 1.0	< 1.0	< 1.0	1.16	< 1.0
	11/14/1997	Historical	_	< 50	< 1.0	< 1.0	< 1.0	< 3.0	<4.0
	8/26/2011	Historical	-	135	< 1.0	< 1.0	< 1.0	< 2.0	5.57
	8/22/2013	Q1	-	< 50	< 1.0	< 1.0	< 1.0	<2.0	< 1.0
	11/21/2013	Q2	-	< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
MW-4	2/21/2014	Q3		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0
	5/30/2014	Q4	-	< 50	< 1.0	< 1.0	< 1.0	< 2.0	11.1
	7/11/2014	Q5	-	< 50	< 1.0	< 1.0	< 1.0	< 2.0	2.40
	11/25/2014	Q6	-	< 50	< 1.0	< 1.0	< 1.0	<2.0	< 1.0
	2/25/2015	Q7	-	< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0

TABLE 2 GROUNDWATER MONITORING RESULTS

Monitoring Well	Sample Date	Quarter	Product Thickness			Sampling I	Results (µg/L)		
Monitoring wen	Sample Date	Quarter	(feet)	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
	MTCA Method A	Froundwater C	leanup Levels:	800	5	1,000	700	1,000	15
	12/22/1997	Historical	1.69	NS	NS	NS	NS	NS .	NS
	8/11/2011	Historical	2.33	NS	NS	NS	NS	NS	NS
	8/22/2013	Q1	-	NS	NS	NS	NS	NS	NS
	11/21/2013	Q2	-	98,100	230	. 179	1,070	6,100	26,1
MW-5	2/21/2014	Q3		30,300	193	122	796	3,670	47.2
	5/30/2014	Q4	0.36	51,400	927	552	1,820	7,610	9.97
	7/11/2014	Q5	0.44	59,300	1,050	837	1,940	9,960	44.9
	11/25/2014	Q6	-	53,500	566	204	1,480	7,610	47.0
	2/25/2015	Q7	0.10	43,900	605	262	1,320	6,680	39.0

Notes

Bold indicates analyte detected above method reporting limit.

Shaded cell indicates detection is above the groundwater cleanup criterion.

-- = no product observed

< = detection below reporting limit shown

μg/L = micrograms per liter

MTCA = Washington State Model Toxics Control Act

NS = not sampled

TABLE 3
GEOCHEMICAL INDICATORS

		Quarter	-]		Secondary Indicators				
Monitoring Well	Sample Date		Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	рН ,	Specific Conductance (µS/cm)	Temperature (°C)	Nitrate (µg/L)	Ferrous Iron (µg/L)	Sulfate (µg/L)
	9/25/1997	Historical		_	-	_	-	-	_	<u> </u>
	8/25/2011	Historical	0.25	-86.0	6.94	0.701 ` -	20.5	-	_	-
	8/22/2013	Q1	0.10	40.8	8.33	0.833	22.4	< 100	980	970
	11/21/2013	Q2	0.29	-136.2	6.88	0,759	19.0	< 100	3,150	< 300
MW-2	2/21/2014	Q3	0.21	-154.1	6.95	0.845	17.8	< 100	5,100	< 300
	5/30/2014	Q4	0.19	-153.9	6.89	0.840	17.9	< 100	1,150	304
	7/11/2014	Q5	2.01	-70.4	7.06	0.831	20,5	393	< 30	428
•	11/25/2014	Q6	0.41	89.4	7.63	0.647	20,0	346	60	1,340
	2/25/2015	Q7	0.27	-148.7	7.21	0.805	19.8	< 200	290	< 600
	9/25/1997	Historical			_		- 1	_	_	_
	8/25/2011	Historical	1.87	-92.8	6.95	0.718	20.5	_	_	_
	8/22/2013	Q1	0.27	-99.8	6.37	0.739	21.5	< 100	2,430	< 300
	11/21/2013	Q2	0.31	-152.1	6.91	0.717	20.0	< 100	4,900	< 300
MW-3	2/21/2014	Q3	0.23	-142.1	7.07	0.791	18.4	< 100	3,270	< 300
	5/30/2014	Q4	0.14	-149.2	7.15	0.728	18.4	< 100	600	< 300
	7/11/2014	Q5	0.28	-118.7	6.94	0,824	21.1	528	2,940	< 300
	11/25/2014	Q6	2.43	214.3	6.90	0,703	21.0	< 100	< 30	< 300
	2/25/2015	Q7	0.24	-131.4	7.27	0.772	20.1	41	1,600	< 600
	11/14/1997	Historical		-			-	_		_
	8/26/2011	Historical	1.26	-85.1	7.56	0.447	21.2	_	_	_
	8/22/2013	Q1	0.10	51.3	9.22	0.599	21.5	< 100	80	39,100
	11/21/2013	Q2	0.51	-150,2	7.69	0.602	20.8	< 100	80	30,900
MW-4	2/21/2014	Q3	0.39	-105.6	7.80	0.680	- 19.3	< 100	100	18,300
	5/30/2014	Q4	0.41	-81.4	7.77_	0.675	19.3	< 100	2,380	31,500
•	7/11/2014	Q5	2.11	-43.1	7.58	0.654	21.3	249	< 30	34,600
	11/25/2014	Q6	1.50	209.4	7.59	0.561	21.5	222	80	26,200
	2/25/2015	Q7	5.98	-132,4	8.80	0.546	21.0	< 200	30	24,000

TABLE 3 **GEOCHEMICAL INDICATORS**

-	Sämple Date	Quarter]	Primary Indicator	Secondary Indicators				
Monitoring Well			Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	p H	Specific Conductance (µS/cm)	Temperature (°C)	Nitrate (µg/L)	Ferrous Iron (µg/L)	Sulfate (µg/L)
	11/21/2013	Q2		_	_		-	< 100	5,300	3,860
	2/21/2014	Q3		-	-		-	< 100	7,100	16,300
MW-5	5/30/2014	Q4	-	-	-			< 100	3,180	2,360
MW-5	7/11/2014	Q5	2.23	-121.9	6.68	0.801	24.7	497	3,600	1,170
	11/25/2014	Q6	1.42	- 71.4	7.10	0.697	23.8	< 100	< 30	962
	2/25/2015	Q7	6.53	-131.4	6.72	0.811	24.5	473	3,100	< 600

Notes:

°C = degrees Celsius

mg/L = milligrams per liter mV = millivolt

 μ g/L = micrograms per liter

μS/cm = microsiemens per centimeter

< = analyte not detected below reporting limit shown

→ = not tested

TABLE 4 WATER LEVEL DATA

Monitoring Well	Date	Quarter	Top of Casing Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
	9/25/1997	Historical	162.55	21.36	141.19
	8/25/2011	Historical	162.55	22.09	140.46
	8/22/2013	Q1	162.55	22.20	140.35
	11/21/2013	Q2	162.55	22.85	139.70
MW-2	2/21/2014	Q3	162.55	22.67	139.88
	5/30/2014	Q4	162.55	21.90	140.65
	7/11/2014	Q5	162.55	22.45	140.10
	11/25/2014	Q6	162.55	22.83	139.72
	2/25/2015	Q7	162.55	22.37	140.18
١.	9/25/1997	Historical	161.24	20.49	140.75
	8/25/2011	Historical	161.24	21.08	140.16
	8/22/2013	Q1	161.24	21.10	140.14
	11/21/2013	Q2	161.24	21.72	139.52
MW-3	2/21/2014	Q3	161.24	21.60	139.64
•	5/30/2014	Q4	161.24	20.92	140.32
	7/11/2014	Q5	161.24	22.25	138.99
	11/25/2014	Q6	161.24	21.80	139.44
	2/25/2015	Q7	161.24	21.35	139.89
	11/14/1997	Historical	154.30	15.31	138.99
	8/26/2011·	Historical	154.30	15.43	138.87
	8/22/2013	Q1	154.30	15.26	139.04
	11/21/2013	Q2	154.30	16.25	138.05
MW-4	2/21/2014	Q3	154.30	16.20	138.10
-	5/30/2014	Q4	154.30	14.98	139.32
	7/11/2014	Q5	154.30	16.16	138.14
	11/25/2014	Q6	154.30	16.32	137.98
	2/25/2015	Q7	154.30	15.71	138.59

TABLE 4 WATER LEVEL DATA

Monitoring Well	Date	Quarter	Top of Casing Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
	11/14/1997	Historical	175.38	32.79	142.59
	8/26/2011	Historical	175.38	34.21	141.17
	8/14/2013	Q1	174.35	33.51	140.84
ı	11/21/2013	Q2	174.35	34.17	140.18
MW-5	2/21/2014	Q3	174.35	34.10	140.25
	5/30/2014	Q4	174.35	33.40	140.95
	7/11/2014	Q5	174.35	33.40	140.95
	11/25/2014	Q6	174.35	34.17	140.18
	2/25/2015	Q7	174.35	33.90	140.45

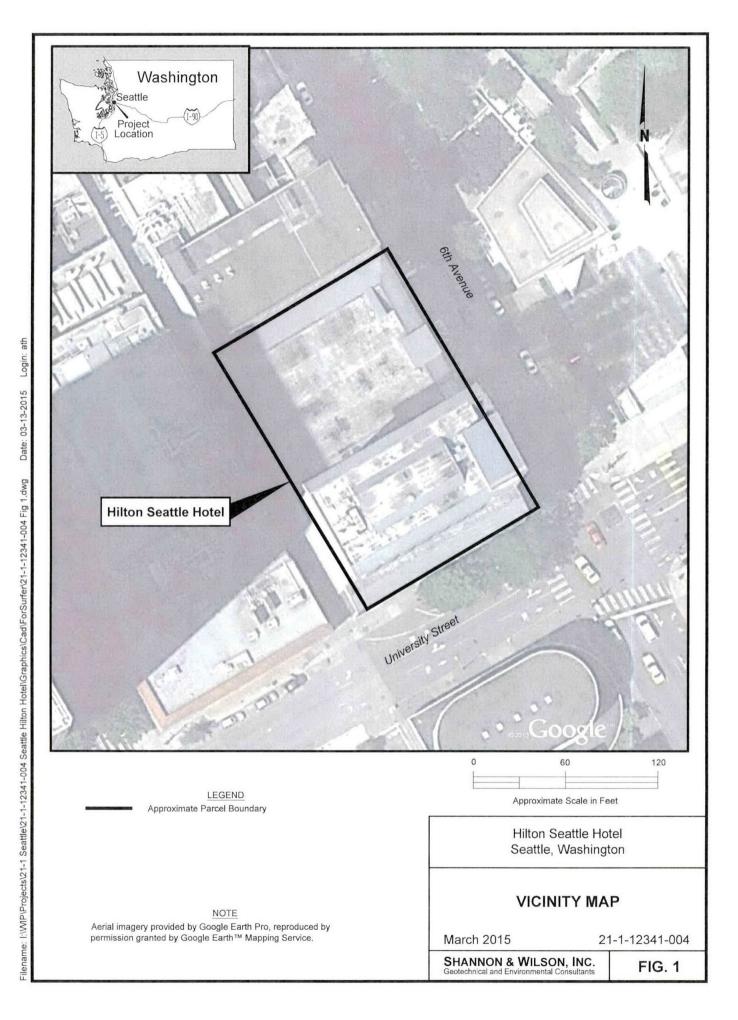
Notes:

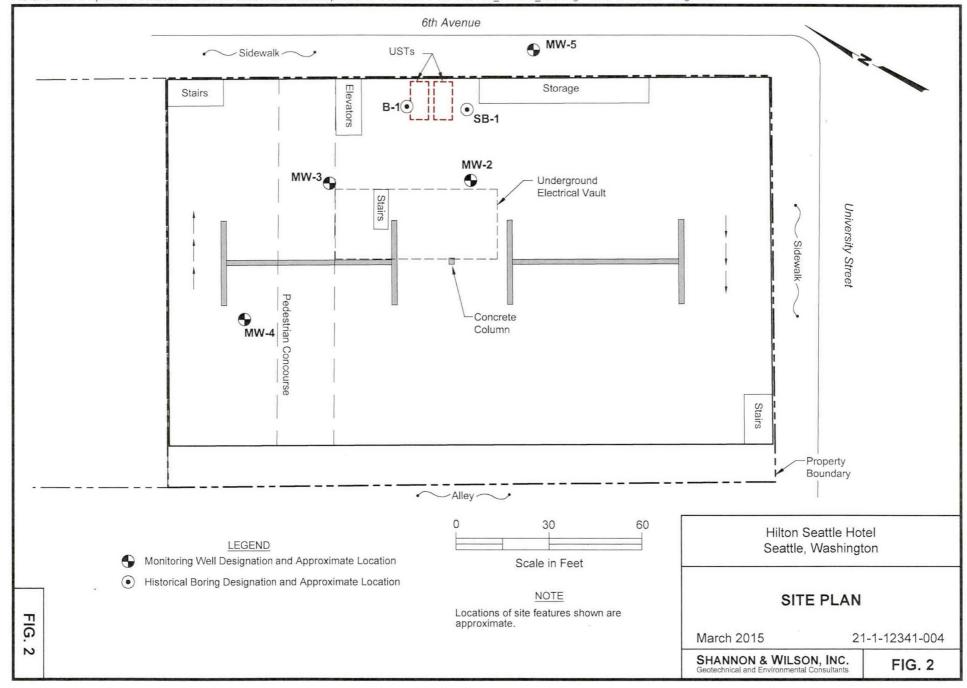
Elevations were estimated from King County iMap (Aug 2011).

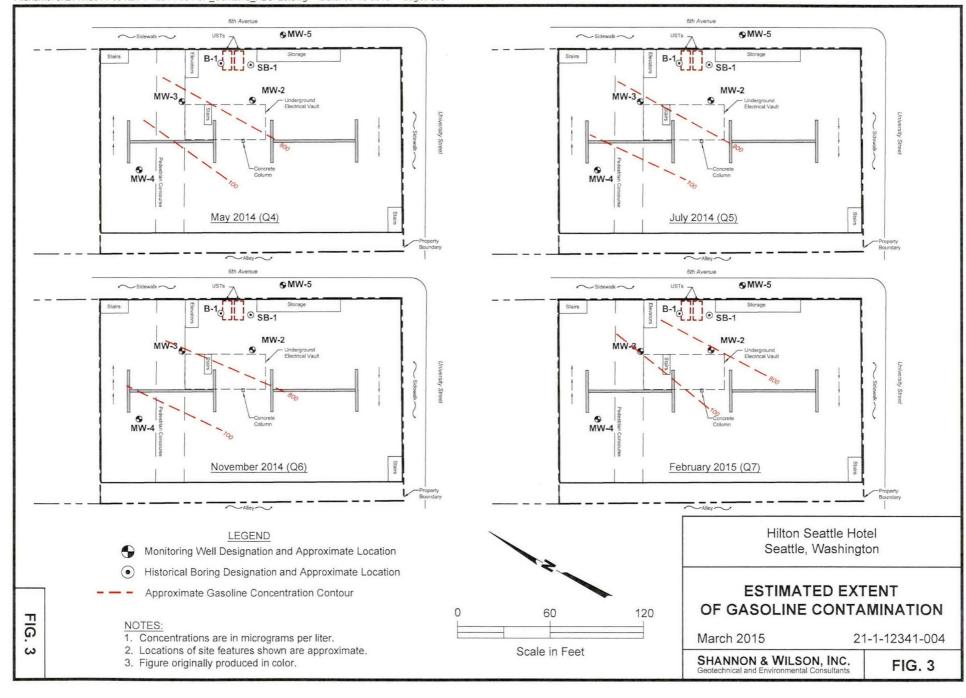
Depth to groundwater for 1997, 2011, May 2014, and July 2014 for MW-5 were adjusted to account for floating product.

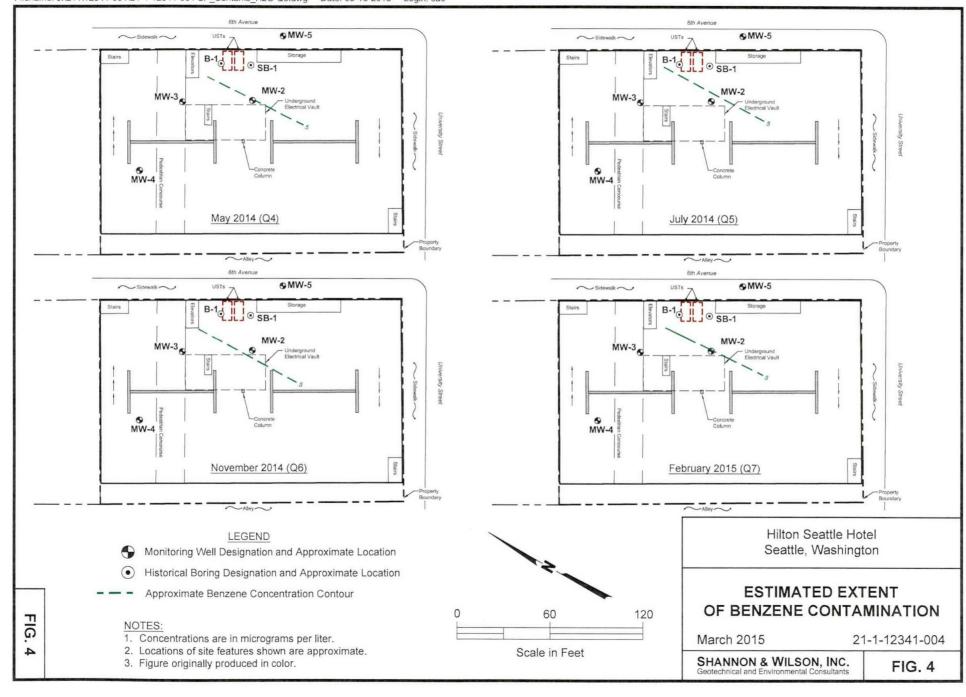
Top of casing elevation for MW-5 modified during system installation in 2012.

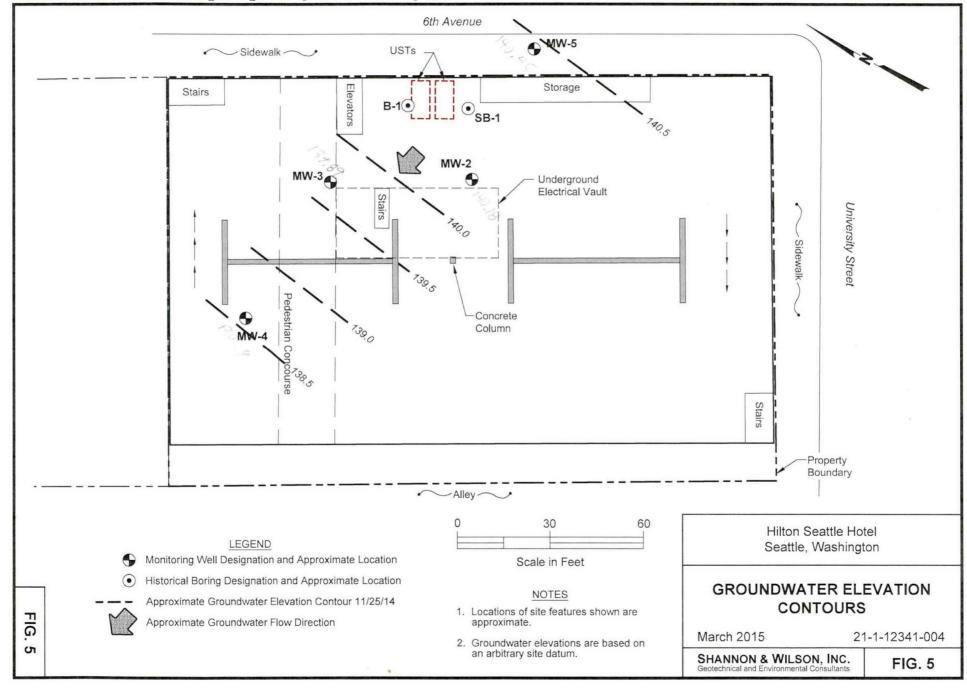
TABLE 5
DATA ANALYSIS SUMMARY

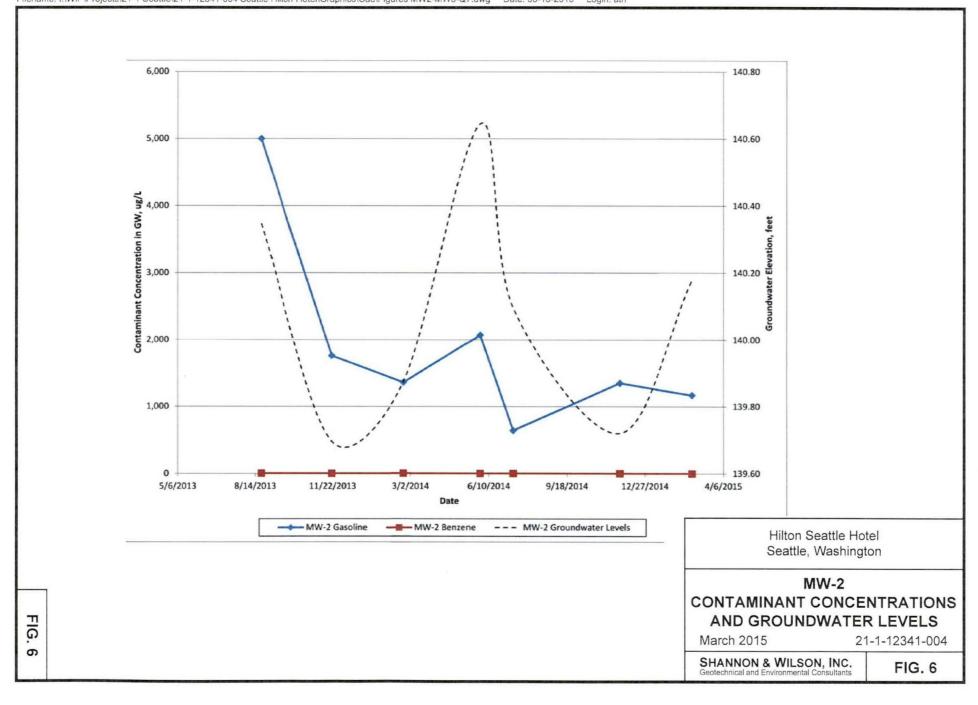

Monitoring	Analysis		Parameter							
Well		Analysis	Gașoline	Benzene	Toluene	Ethylbenzene	Xylenes			
	Mann-Kendall	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking			
	Mann-Kendan	CL	99.4%	100.0%	98.8%	100.0%	98.8%			
		Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking			
N637.2		CL	90.3%	100.0%	100.0%	90.7%	100.0%			
. MW-2	Times Desmaries	Point Decay Rate at 50% CL, yr-1	0.071	0.516	0.299	0.231	0.272			
	Linear Regression	Point Decay Rate at 85% CL, yr ⁻¹	0.030	0.445	- 0.268	0.099	0.245			
		Half Life at 50% CL, yr	9.738	1.344	2.317	3.001	2.548			
		Half Life at 85% CL, yr	23.078	1.556	2.589	6.984	2.833			
	Mann-Kendall	Plume Stability	Stable	Undetermined	Undetermined	Undetermined	Undetermined			
	Maini-Kendan	CL	76.2%	76.2%	· 76.2%	54.0%	61.9%			
	Linear Regression	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking			
MW-3		CL	97.7%	100.0%	100.0%	100.0%	- 99.8%			
(C- W IVI		Point Decay Rate at 50% CL, yr ⁻¹	0.075	0.567	0.177	0.285	0.238			
		Point Decay Rate at 85% CL, yr ⁻¹	0.046	0.523	0.164	0.247	0.185			
		Half Life at 50% CL, yr	9.292	1.222	3.907	2.431	2.909			
		Half Life at 85% CL, yr	15.019	1.326	4.239	2.808	3.754			
	Mann-Kendall	Plume Stability	Stable	Stable	Stable	Stable	Stable			
	Mann-Kenuan	CL	69.4%	46.0%	46.0%	46.0%	46.0%			
		Plume Stability	Stable	NA	NA	NA	Stable			
24337.4		CL	8.0%	NA	NA	NA	0.0%			
MW-4	Liman Dagragain	Point Decay Rate at 50% CL, yr ⁻¹	. 0	NA	NA	NA	NA			
	Linear Regression	Point Decay Rate at 85% CL, yr ⁻¹	NA	NA	NA	NA	NA			
		Half Life at 50% CL, yr	173.7	NA ^r	NA	NA	NA			
		Half Life at 85% CL, yr	NA	NA	NA	NA	NA			

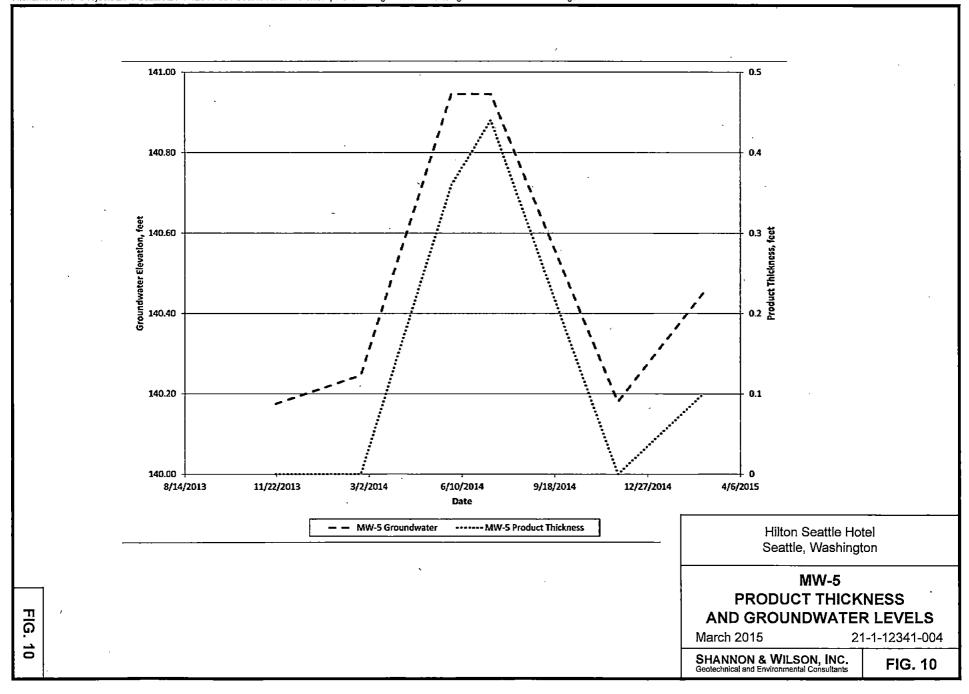

Notes:


CL = confidence level


NA = not applicable


yr = year





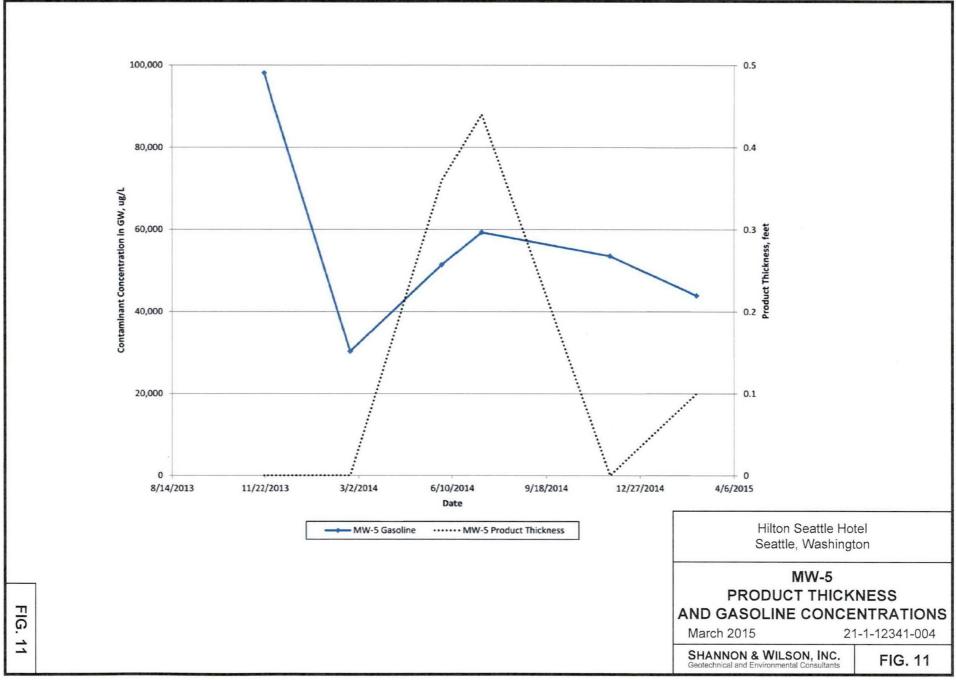

Geotechnical and Environmental Consultants

FIG. 8

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 9

SHANNON & WILSON, INC.

Geotechnical and Environmental Consultants

FIG. 12

12

SHANNON & WILSON, INC.

APPENDIX A ANALYTICAL LABORATORY REPORT

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Michael Reynolds 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Seattle Hilton Lab ID: 1502263

March 05, 2015

Attention Michael Reynolds:

Fremont Analytical, Inc. received 4 sample(s) on 2/25/2015 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B
Gasoline by NWTPH-Gx
Ion Chromatography by EPA Method 300.0
Total Metals by EPA Method 200.8
Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

CLIENT: Project: Shannon & Wilson

Seattle Hilton

Lab Order:

1502263

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1502263-001	MW-4	02/25/2015 11:15 AM	02/25/2015 3:25 PM
1502263-002	MW-3	02/25/2015 12:15 PM	02/25/2015 3:25 PM
1502263-003	MW-2	02/25/2015 1:55 PM	02/25/2015 3:25 PM
1502263-004	MW-5	02/25/2015 2:25 PM	02/25/2015 3:25 PM

Case Narrative

WO#: **1502263**Date: **3/5/2015**

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

1502263

Date Reported:

3/5/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#:

2/25/2015 5:17:45 PM

1502263

Date Reported:

3/5/2015

Client:

Shannon & Wilson

Collection Date: 2/25/2015 11:15:00 AM

Project: Seattle Hilton

Matrix: Groundwater

Lab ID: 1502263-001

Ferrous Iron

Client Sample ID: MW-4 Result RL Units DF **Date Analyzed Analyses** Qual Batch ID: R20983 Analyst: BC Gasoline by NWTPH-Gx 2/28/2015 3:52:00 PM ND 50.0 1 Gasoline µg/L 2/28/2015 3:52:00 PM %REC Surr: 4-Bromofluorobenzene 94.8 65-135 1 65-135 %REC 2/28/2015 3:52:00 PM Surr: Toluene-d8 101 Batch ID: R20980 Analyst: BC Volatile Organic Compounds by EPA Method 8260 Benzene ND 1.00 µg/L 2/28/2015 3:52:00 PM ND 2/28/2015 3:52:00 PM Toluene 1.00 µg/L 1 2/28/2015 3:52:00 PM Ethylbenzene ND 1.00 µg/L ND 2/28/2015 3:52:00 PM m,p-Xylene 1.00 µg/L 2/28/2015 3:52:00 PM ND 1.00 µg/L o-Xylene Surr: Dibromofluoromethane 99.0 77.4-147 %REC 2/28/2015 3:52:00 PM 2/28/2015 3:52:00 PM Surr: Toluene-d8 99.1 40.1-139 %REC Surr: 1-Bromo-4-fluorobenzene 98.4 64.2-128 %REC 2/28/2015 3:52:00 PM Batch ID: R20950 Analyst: KT Ion Chromatography by EPA Method 300.0 D 2 2/26/2015 2:48:00 PM Nitrate ND 0.200 mg/L 2/26/2015 2:48:00 PM Sulfate 24.0 0.600 D mg/L 2 NOTES: Diluted due to high levels of target and non-target analytes. Total Metals by EPA Method 200.8 Batch ID: 10145 Analyst: TN ND 1.00 µg/L 2/26/2015 4:19:35 PM Lead Batch ID: R20921 Analyst: KT Ferrous Iron by SM3500-Fe B

0.0300

mg/L

0.0300

WO#:

1502263

Date Reported:

3/5/2015

Client: Shannon & Wilson

Collection Date: 2/25/2015 12:15:00 PM

Project: Seattle Hilton

Matrix: Groundwater

Lab ID: 1502263-002

Client Sample ID: MW-3							
Analyses	Result	RL	Qual	Units	DF	Date A	Analyzed
Gasoline by NWTPH-Gx				Batc	h ID:	R20983 A	nalyst: BC
Gasoline	140	50.0		μg/L	1	2/28/201	5 4:21:00 PM
Surr: 4-Bromofluorobenzene	96.4	65-135		%REC	1	2/28/201	5 4:21:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	2/28/201	5 4:21:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batc	h ID:	R20980 A	nalyst: BC
Benzene	ND	1.00		μg/L	1	2/28/201	5 4:21:00 PM
Toluene	ND	1.00		μg/L	1	2/28/2015	5 4:21:00 PM
Ethylbenzene	ND	1.00		μg/L	1	2/28/2019	5 4:21:00 PM
m,p-Xylene	1.16	1.00		µg/L	1	2/28/2019	5 4:21:00 PM
o-Xylene	ND	1.00		μg/L	1	2/28/201	5 4:21:00 PM
Surr: Dibromofluoromethane	98.7	77.4-147		%REC	1	2/28/2019	5 4:21:00 PM
Surr: Toluene-d8	99.5	40.1-139		%REC	1	2/28/2019	5 4:21:00 PM
Surr: 1-Bromo-4-fluorobenzene	99.5	64.2-128		%REC	1	2/28/2019	5 4:21:00 PM
Ion Chromatography by EPA Me	ethod 300.0			Batc	h ID:	R20950 A	nalyst: KT
Nitrate	0.041	0.200	JD	mg/L	2	2/26/201	5 2:58:00 PM
Sulfate	ND	0.600	D	mg/L	2	2/26/201	5 2:58:00 PM
NOTES: Diluted due to high levels of non-target	analytes.						
Total Metals by EPA Method 20	0.8			Batc	h ID:	10145 A	nalyst: TN
Lead	ND	1.00		μg/L	1	2/26/201	5 4:23:06 PM
Ferrous Iron by SM3500-Fe B				Batc	h ID:	R20921 A	nalyst: KT
Ferrous Iron	1.60	0.0300		mg/L	1	2/25/201	5 5:21:45 PM

WO#:

1502263

Date Reported:

3/5/2015

Client: Shannon & Wilson

Collection Date: 2/25/2015 1:55:00 PM

Project: Seattle Hilton

Lab ID: 1502263-003

Matrix: Groundwater

Client Sample ID: MW-2

Analyses	Result	RL	Qual	Units	DF	- Da	ate Analyzed
Gasoline by NWTPH-Gx				Batc	h ID:	R20983	Analyst: BC
Gasoline	1,170	50.0		μg/L	1	2/28	/2015 4:50:00 PM
Surr: 4-Bromofluorobenzene	98.6	65-135		%REC	1	2/28	/2015 4:50:00 PM
Surr: Toluene-d8	102	65-135		%REC	1	2/28	/2015 4:50:00 PM
Volatile Organic Compounds by	EPA Method 8	<u>8260</u>		Batc	h ID:	R20980	Analyst: BC
Benzene	ND	1.00		μg/L	1	2/28	/2015 4:50:00 PM
Toluene	1.33	1.00		μg/L	1	2/28	/2015 4:50:00 PM
Ethylbenzene	3.36	1.00		μg/L	1	2/28	/2015 4:50:00 PM
m,p-Xylene	2.81	1.00		µg/L	1	2/28	/2015 4:50:00 PM
o-Xylene	1.71	1.00		μg/L	1	2/28/2015 4:50:00 F	
Surr: Dibromofluoromethane	97.7	77.4-147		%REC	1	2/28/2015 4:50:00 1	
Surr: Toluene-d8	99.3	40.1-139		%REC	1	2/28	/2015 4:50:00 PM
Surr: 1-Bromo-4-fluorobenzene	102	64.2-128		%REC	1	2/28	/2015 4:50:00 PM
on Chromatography by EPA Me	thod 300.0			Batc	h ID:	R20950	Analyst: KT
Nitrate	ND	0.200	D	mg/L	2	2/26	/2015 3:28:00 PM
Sulfate	ND	0.600	D	mg/L	2	2/26	/2015 3:28:00 PM
NOTES: Diluted due to high levels of non-target a	analytes.						
Total Metals by EPA Method 20	0.8			Batc	h ID:	10145	Analyst: TN
Lead	ND	1.00		μg/L	1	2/26	/2015 4:26:38 PM
Ferrous Iron by SM3500-Fe B				Batc	h ID:	R20921	Analyst: KT
Ferrous Iron	0.290	0.0300		mg/L	1	2/25	/2015 5:22:45 PM

WO#:

1502263

Date Reported:

3/5/2015

Client: Shannon & Wilson

Collection Date: 2/25/2015 2:25:00 PM

Project: Seattle Hilton Lab ID: 1502263-004

Matrix: Groundwater

Client Sample ID: MW-5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batc	h ID: R20	0983 Analyst: BC
Gasoline	43,900	5,000	D	μg/L	100	3/2/2015 4:19:00 PM
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	2/28/2015 5:19:00 PM
Surr: Toluene-d8	113	65-135		%REC	1	2/28/2015 5:19:00 PM
Volatile Organic Compounds by	EPA Method	3260		Batc	h ID: R20	0980 Analyst: BC
Benzene	605	100	D	μg/L	100	3/2/2015 4:19:00 PM
Toluene	262	100	D	µg/L	100	3/2/2015 4:19:00 PM
Ethylbenzene	1,320	100	D	μg/L	100	3/2/2015 4:19:00 PM
m,p-Xylene	4,620	100	D	μg/L	100	3/2/2015 4:19:00 PM
o-Xylene	2,060	100	D	μg/L	100	3/2/2015 4:19:00 PM
Surr: Dibromofluoromethane	105	77.4-147		%REC	1	2/28/2015 5:19:00 PM
Surr: Toluene-d8	112	40.1-139		%REC	1	2/28/2015 5:19:00 PM
Surr: 1-Bromo-4-fluorobenzene	107	64.2-128		%REC	1	2/28/2015 5:19:00 PM
on Chromatography by EPA Me	thod 300.0			Batc	h ID: R20	0950 Analyst: KT
Nitrate	0.473	0.200	D	mg/L	2	2/26/2015 3:38:00 PM
Sulfate	ND	0.600	D	mg/L	2	2/26/2015 3:38:00 PM
NOTES: Diluted due to high levels of non-target a	analytes.					
Total Metals by EPA Method 20	0.8			Batc	h ID: 101	45 Analyst: TN
Lead	39.0	1.00		μg/L	1	2/26/2015 4:30:09 PM
Ferrous Iron by SM3500-Fe B				Batc	h ID: R20	0921 Analyst: KT
Ferrous Iron	3.10	0.300	D	mg/L	10	2/25/2015 5:23:45 PM

Work Order:

1502263

CLIENT: Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Ferrous Iron by SM3500-Fe B

Sample ID MB-R20921

SampType: MBLK

Units: mg/L

Prep Date: 2/25/2015

RunNo: 20921

Client ID: MBLKW

Batch ID: R20921

Analysis Date: 2/25/2015

SeaNo: 397227

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Ferrous Iron

ND 0.0300

Sample ID LCS-R20921

SampType: LCS

Units: ma/L

Prep Date: 2/25/2015

RunNo: 20921

Client ID: LCSW Analyte

Batch ID: R20921

Analysis Date: 2/25/2015

LowLimit HighLimit RPD Ref Val

SeqNo: 397228

0.910

1.000

0

90 110

%RPD RPDLimit Qual

Ferrous Iron

Result

0.0300

RI

RL

SPK value SPK Ref Val.

SPK value SPK Ref Val

1.000

1.000

SPK value SPK Ref Val.

91.0

%REC

Client ID: MW-4

Sample ID 1502263-001CDUP

SampType: DUP

Units: mg/L

Prep Date: 2/25/2015

LowLimit HighLimit RPD Ref Val

RunNo: 20921

Analyte

Batch ID: R20921 Result

R20921

Result

0.110

Result

0.150

SPK value SPK Ref Val

Analysis Date: 2/25/2015

SeqNo: 397230

%RPD RPDLimit Qual

Ferrous Iron

0.0300 ND

0.03000

0.1100

40.0

20

Sample ID 1502263-001CMS

Batch ID:

SampType: MS

0.0300

RL

RL

0.0300

Units: mg/L

Prep Date: 2/25/2015 Analysis Date: 2/25/2015

RunNo: 20921

SeqNo: 397231

%RPD RPDLimit Qual

S

Qual

RS

20

Ferrous Iron

Analyte

Client ID: MW-4

NOTES: S - Outlying spike recovery observed, a duplicate analysis was performed with similar results indicating a matrix effect.

SampType: MSD

Units: mg/L

0.03000

0.03000

%REC

8.00

%REC

120

85

115

LowLimit HighLimit RPD Ref Val

Sample ID 1502263-001CMSD

Client ID: MW-4

Batch ID: R20921

Prep Date: 2/25/2015 Analysis Date: 2/25/2015

85

115

LowLimit HighLimit RPD Ref Val

RunNo: 20921

30.8

SeqNo: 397232 %RPD RPDLimit

Analyte

Ferrous Iron NOTES:

SR - Outlying spike recovery and high RPD due to matrix interference.

9 of 18

Work Order: 1502263

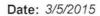
QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Seattle Hilt							Ion Ch	romatograp	hy by EP	A Method	300.0
Sample ID MB-R20950	SampType: MBLK			Units: mg/L		Prep Date	2/26/20	15	RunNo: 209	950	
Client ID: MBLKW	Batch ID: R20950					Analysis Date	2/26/20	15	SeqNo: 397	7859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate Sulfate	ND ND	0.100 0.300									
Sample ID LCS-R20950	SampType: LCS			Units: mg/L		Prep Date	2/26/20	15	RunNo: 209	950	
Client ID: LCSW	Batch ID: R20950					Analysis Date	2/26/20	15	SeqNo: 39	7862	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate Sulfate	2.78 14.3	0.100 0.300	3.000 15.00	0	92.8 95.1	90 90	110 110				
Sample ID 1502271-001ADUP	SampType: DUP			Units: mg/L		Prep Date	2/26/20	15	RunNo: 209	950	
Client ID: BATCH	Batch ID: R20950					Analysis Date	2/26/20	15	SeqNo: 39	7868	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate Sulfate	0.162 1.25	0.100 0.300						0.1600 1.221	1.55 2.09	20 20	
Sample ID 1502271-001AMS	SampType: MS			Units: mg/L		Prep Date	2/26/20	15	RunNo: 20!	950	
Client ID: BATCH	Batch ID: R20950					Analysis Date	2/26/20	15	SeqNo: 39	7869	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate Sulfate	2.91 15.5	0.100 0.300	3.000 15.00	0.1600 1.221	91.6 95.2	80 80	120 120				
Sample ID 1502271-001AMSD	SampType: MSD			Units: mg/L		Prep Date	2/26/20)15	RunNo: 20	950	
Client ID: BATCH	Batch ID: R20950					Analysis Date	2/26/20	15	SeqNo: 39	7870	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate	2.90	0.100	3.000	0.1600	91.2	80	120	2.908	0.351	20	

Work Order: 1502263

Shannon & Wilson


CLIENT: Project:

Seattle Hilton

QC SUMMARY REPORT

Ion Chromatography by EPA Method 300.0

Sample ID 1502271-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 2/26/20)15	RunNo: 209	950	
Client ID: BATCH	Batch ID: R20950					Analysis Da	te: 2/26/20)15	SeqNo: 39	7870	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	15.4	0.300	15.00	1.221	94.7	80	120	15.49	0.430	20	

CLIENT:

Shannon & Wilson

QC SUMMARY REPORT

Total Motals by EDA Mothod 200 8

Project:	Seattle Hilton	n						Total M	etals by EPA Method	200.8
Sample ID	MB-10145	SampType: MBLK			Units: µg/L		Prep Date:	2/26/2015	RunNo: 20947	
Client ID:	MBLKW	Batch ID: 10145					Analysis Date:	2/26/2015	SeqNo: 397789	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	%RPD RPDLimit	Qual
Lead		ND	1.00							
Sample ID	LCS-10145	SampType: LCS			Units: µg/L		Prep Date:	2/26/2015	RunNo: 20947	
Client ID:	LCSW	Batch ID: 10145					Analysis Date:	2/26/2015	SeqNo: 397790	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	1 %RPD RPDLimit	Qual
Lead		48.3	1.00	50.00	0	96.6	85	115		
Sample ID	1502252-001BDUP	SampType: DUP			Units: µg/L		Prep Date:	2/26/2015	RunNo: 20947	
Client ID:	BATCH	Batch ID: 10145					Analysis Date:	2/26/2015	SeqNo: 397792	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Lead		ND	1.00					C	30	
Sample ID	1502252-001BMS	SampType: MS		-	Units: µg/L		Prep Date:	2/26/2015	RunNo: 20947	
Client ID:	BATCH	Batch ID: 10145					Analysis Date:	2/26/2015	SeqNo: 397793	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Lead		226	1.00	250.0	0.1585	90.4	70	130		
Sample ID	1502252-001B M SD	SampType: MSD			Units: µg/L		Prep Date:	2/26/2015	RunNo: 20947	
Client ID:	BATCH	Batch ID: 10145					Analysis Date:	2/26/2015	SeqNo: 397794	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Lead		226	1.00	250.0	0.1585	90.5	70	130 226.2	0.0429 30	

Work Order: 1502263

QC SUMMARY REPORT

CLIENT:

Shannon & Wilson

Project: Seattle Hilto									Gasoline	by NWT	PH-G
Sample ID 1502268-001ADUP	SampType: DUP			Units: µg/L		Prep Date	2/28/20	15	RunNo: 209	983	
Client ID: BATCH	Batch ID: R20983					Analysis Date	2/28/20	15	SeqNo: 398	3413	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	25.2		25.00		101	65	135		0	0	
Surr: 4-Bromofluorobenzene	24.4		25.00		97.6	65	135		0	0	
Sample ID LCS-R20983	SampType: LCS			Units: µg/L		Prep Date	2/28/20	15	RunNo: 209	983	
Client ID: LCSW	Batch ID: R20983					Analysis Date	2/28/20	15	SeqNo: 398	3416	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	478	50.0	500.0	0	95.7	65	135				
Surr: Toluene-d8	25.2		25.00		101	65	135				
Surr: 4-Bromofluorobenzene	24.3		25.00		97.2	65	135				
Sample ID MB-R20983	SampType: MBLK			Units: µg/L		Prep Date	e: 2/28/20	15	RunNo: 20!	983	
Client ID: MBLKW	Batch ID: R20983					Analysis Date	e: 2/28/20	15	SeqNo: 39	3417	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	24.9		25.00		99.5	65	135				
Surr: 4-Bromofluorobenzene	24.8		25.00		99.2	65	135				
Sample ID CCV-C-R20983	SampType: CCV			Units: µg/L		Prep Date	e: 3/2/201	5	RunNo: 20	983	
Client ID: CCV	Batch ID: R20983					Analysis Date	e: 3/2/201	5	SeqNo: 39	8433	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	469	50.0	500.0	0	93.9	80	120				
Surr: Toluene-d8	25.5		25.00		102	65	135				
Carri Fordorio de	20.0										

CLIENT:

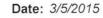

Shannon & Wilson

QC SUMMARY REPORT

Project:	Seattle Hilton							Volatile	Organi	ic Compou	nds by EP	A Metho	d 8260
Sample ID 1502:	237-002AMS	SampType	: MS			Units: µg/L		Prep Date:	2/28/20	15	RunNo: 209	980	
Client ID: BATO	СН	Batch ID:	R20980					Analysis Date:	2/28/20	15	SeqNo: 398	3372	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene			18.9	1.00	20.00	0	94.6	65.4	138				
Toluene			19.3	1.00	20.00	0.1258	95.7	64	139				
Ethylbenzene			19.9	1.00	20.00	0	99.5	64.5	136				
m,p-Xylene			39.4	1.00	40.00	0	98.4	63.3	135				
o-Xylene			19.5	1.00	20.00	0	97.5	65.4	134				
Surr: Dibromof	luoromethane		25.6		25.00		102	77.4	147				
Surr: Toluene-o	d8		25.1		25.00		101	40.1	139				
Surr: 1-Bromo-	4-fluorobenzene		25.3		25.00		101	64.2	128				
Sample ID 1502:	268-001ADUP	SampType	DUP			Units: µg/L		Prep Date:	2/28/20	15	RunNo: 209	980	
Client ID: BATO	СН	Batch ID:	R20980					Analysis Date:	2/28/20	15	SeqNo: 398	3382	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene			ND	1.00						0		30	

D: 398382 RPD RPDLimit Qual	
30	
00	
30	
30	
30	
30	
0	
0	
0	
	30 30

Sample ID LCS-R20980	SampType: LCS	SampType: LCS			Units: µg/L			Prep Date: 2/28/2015			
Client ID: LCSW	Batch ID: R20980					Analysis Da	te: 2/28/20	SeqNo: 398387			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	17.8	1.00	20.00	0	89.1	69.3	132				
Toluene	18.4	1.00	20.00	0	92.2	61.3	145				
Ethylbenzene	19.1	1.00	20.00	0	95.4	72	130				
m,p-Xylene	38.5	1.00	40.00	0	96.2	73	131				


QC SUMMARY REPORT

CLIENT:

Shannon & Wilson

Volatile Organic Compounds by EDA Mathael 2000

Project: Seattle Hilto	n					Volatil	e Organ	ic Compou	nds by EP	A Metho	d 8260
Sample ID LCS-R20980	SampType: LCS			Units: µg/L		Prep Da	te: 2/28/20	15	RunNo: 20	980	
Client ID: LCSW	Batch ID: R20980					Analysis Da	te: 2/28/20)15	SeqNo: 398	8387	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	19.3	1.00	20.00	0	96.7	72.1	131				
Surr: Dibromofluoromethane	25.2		25.00		101	77.4	147				
Surr: Toluene-d8	25.4		25.00		101	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.8		25.00		103	64.2	128				
Sample ID MB-R20980	SampType: MBLK			Units: µg/L		Prep Da	te: 2/28/20)15	RunNo: 209	980	
Client ID: MBLKW	Batch ID: R20980					Analysis Da	te: 2/28/20)15	SeqNo: 398	3388	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00								×	
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	23.7		25.00		95.0	77.4	147				
Surr: Toluene-d8	24.9		25.00		99.7	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.8		25.00		103	64.2	128				
Sample ID CCV-B-R20980	SampType: CCV			Units: µg/L		Prep Da	te: 3/2/201	5	RunNo: 209	980	
Client ID: CCV	Batch ID: R20980					Analysis Da	te: 3/2/201	5	SeqNo: 398	3430	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.5	1.00	20.00	0	92.7	80	120				
Toluene	19.0	1.00	20.00	0	95.0	80	120				
Ethylbenzene	20.1	1.00	20.00	0	101	80	120				
m,p-Xylene	40.6	1.00	40.00	0	101	80	120				
o-Xylene	20.1	1.00	20.00	0	101	80	120				
Surr: Dibromofluoromethane	24.7		25.00		98.8	72.1	122				
Surr: Toluene-d8	24.6		25.00		98.2	62.1	129				
Surr: 1-Bromo-4-fluorobenzene	25.3		25.00		101	66.8	124				

1502263

CLIENT:

Shannon & Wilson

Project:

Seattle Hilton

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260

Sample ID CCV-B-R20980

SampType: CCV

Units: µg/L

Prep Date: 3/2/2015

RunNo: 20980

Client ID: CCV

Batch ID: R20980

Analysis Date: 3/2/2015

SeqNo: 398430

Analyte

Result

RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Sample Log-In Check List

С	lient Name:	sw		Work O	rder Nu	ımber: 1502263		
L	ogged by:	Kerra Zie	gler	Date Re	eceived:	2/25/201	5 3:25:06 PM	
Cha	in of Custo	ody						
1.	Is Chain of Cu	ustody com	plete?	Yes	~	No 🗌	Not Present	
2.	How was the	sample del	ivered?	Clier	<u>nt</u>			
Log	ı In							
	Coolers are p	resent?		Yes	✓	No 🗌	NA 🗌	
4.	Shipping conta	ainer/coole	r in good condition?	Yes	~	No 🗌		
5.	Custody seals	s intact on s	shipping container/cooler?	Yes		No 🗌	Not Required 🗹	
6.	Was an attem	npt made to	cool the samples?	Yes	~	No 🗆	NA 🗌	
7.	Were all coole	ers receive	d at a temperature of >0°C to 10.0°C	C Yes	✓	No 🗌	NA \square	
8.	Sample(s) in p	proper conf	rainer(s)?	Yes	~	No 🗌		
9.	Sufficient sam	nple volume	e for indicated test(s)?	Yes	✓	No 🗌		
10.	Are samples p	properly pre	eserved?	Yes	✓	No 🗌		
11.	Was preserva	tive added	to bottles?	Yes		No 🗸	NA 🗌	
12.	Is the headspa	ace in the	√OA vials?	Yes		No 🗸	NA 🗌	
13.	Did all sample	es containe	rs arrive in good condition(unbroken))? Yes	✓	No 🗌		
14.	Does paperwo	ork match t	pottle labels?	Yes	✓	No 🗌		
15.	Are matrices	correctly id	entified on Chain of Custody?	Yes	~	No 🗌		
16.	Is it clear wha	t analyses	were requested?	Yes	~	No 🗌		
17.	Were all holdi	ng times a	ble to be met?	Yes	✓	No 🗌		
Spe	cial Handli	ng (if ap	plicable)					
			discrepancies with this order?	Yes	✓	No 🗌	NA 🗆	
	Person N	Notified:	Ed Ptak	Date		2/25/2015		
	By Whor	m:	Kerra Ziegler	/ia: eMa	ail 🗸 l	Phone Fax	☐ In Person	
	Regardir	ng:	Sample missing from COC					
	Client Ins	structions:	Add Sample and Analyze the same	e as the rest				
19.	Additional rem	narks:						4

Item Information

Item #	Temp °C	Condition
Cooler	6.2	Good
Sample	6.3	Good
Temp Blank	7.1	Good

KINAKA)	mont				Chair	of Custody Record
3600 Fremont Ave N. Te	mont Analysisal 206-352-3790 x: 206-352-7178	Date: 2/25/	/15	Laboratory Project No (interval): 15 (02263 of:
Address: 400 City, State, Zip	N 34th St.		Project Name: Location: Collected by:	Seattle	Hilton Hilton VP	11-1-12341-004
*Matrix Codes: A = Air, AQ = Aqueous	KeyMad> s, B=3ulk, O=Other, P=Pr		= Solid, W = Water, DW	= Drinking Water, GW = Gro		
	Sample Sample	Sample Type (Matrix)* John Citie 18th			S 22401 17	
Sample Name	Date Time		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X TX	X	Comments/Depth
1 MW-4 2 MW-3	7/25/15 1215 7/25/15 1215	GW X		878	<u> </u>	
3 MW-2	725/15 112	w X		NTX-	X	ADDED RED. ED DOM
4 MW-5	2/25/15-14	.25 2m ×		XTX	×	ADDED PER ED PTAK
7						,
8						
10						
Metals Analysis (Circle): MICA *Anions (Circle): Nitrate	Nitrite Chloride	Bromide O-Phospha posal by Lab (A fee may be assessed if samp Received	ite Fluoride N	Cd Co Cr Cu Fe Hig K M itrate+Nitrite Date/Time	IS.25	FDISD Se Sr Sn TI TI U V Zn Special Remarks: - neetels not field filhered
Relinquished	Date/Time	Readive		Date/Time	7,129	TAT -> SameDay* NextDay* 2 Day 3 Day *Please coordinate with the lipb in advance

SHANNON & WILSON, INC.

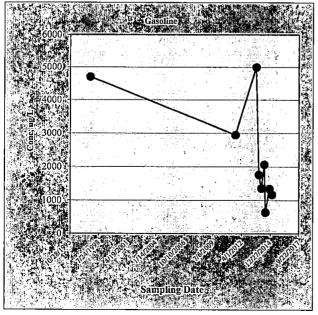
APPENDIX B NATURAL ATTENUATION ANALYSIS OUTPUT

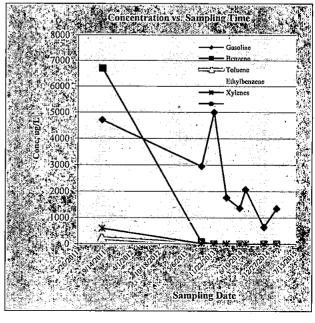
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-2
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Haz	zardous Subst	tances (unit is ug/	/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	4700	6700	210	670	590	_
#2	8/25/2011	2950	76.1	2.19	863	22	
#3	8/22/2013	5000	3.07	2.01	408	10.8	
#4	11/21/2013	1760	1.4	1.57	83.3	6.89	
#5	2/21/2014	1360	2.9	1.62	20.8	7.44	
#6	5/30/2014	2070	1.82	2	36.5	8.47	
#7	7/11/2014	642	1.22	0.5	4.8	3.07	
#8	11/25/2014	1350	1.01	1.63	6.53	8.19	
#9	2/25/2015	1170	0.5	1.33	3.36	4.52	
#10							
#11							
#12					1		_
#13							
#14						-	
#15							
#16	_		_				


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	99.40%	100.00%	98.80%	100.00%	98.80%	NA
Plume Stability?	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking	NA
Coefficient of Variation?						n<4
Mann-Kendall Statistic "S" value?	-24	-32	-22	-30	-22	0
Number of Sampling Rounds?	9	9	9	9	9	0
Average Concentration?	2333.56 .	754.22	24.76	232.92	73.49	NA
Standard Deviation?	1566.00	2229.80	69.47	331.78	193.77	NA
Coefficient of Variation?	0.67	2.96	2.81	1.42	2.64	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

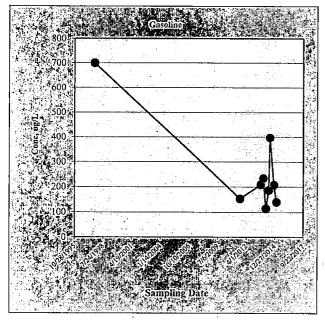
Hazardous substance? Gasoline
Plume Stability? Shrinking

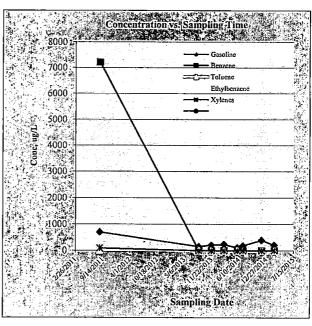
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-3
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


	<u>-</u>		Haz	zardous Subst	ances (unit is ug	/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	700	7200	10	74	97	
#2	8/25/2011	153	0.5	0.5	0.5	1.35	
#3	8/22/2013	209	0.5	0.5	0.5	1	
#4	11/21/2013	235	0.5	0.5	0.5	1	
#5	2/21/2014	114	0.5	0.5	0.5	1	
#6	5/30/2014	187	0.5	0.5	0.5	3.59	
#7	7/11/2014	397	0.5	0.5	0.5	1.31	
#8	11/25/2014	208	0.5	0.5	1.34	5.04	
#9	2/25/2015	140	0.5	0.5	0.5	1	
#10							
#11			_			-	
#12		_	_	-			
#13							
#14				_			
#15		_	-				
#16					-	-	


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	76.20%	76.20%	76.20%	54.00%	61.90%	NA
Plume Stability?	Stable	Undetermined	Undetermined	Undetermined	Undetermined	NA
Coefficient of Variation?	CV <= 1	CV > 1	CV > 1	CV > 1	CV > 1	n<4
Mann-Kendall Statistic "S" value?	-8	-8	-8	-3	-4	0
Number of Sampling Rounds?	9	9	9	9	9	0
Average Concentration?	260.33	800.44	1.56	8.76	12.48	NA
Standard Deviation?	183.98	2399.83	3.17	24.47	31.73	NA
Coefficient of Variation?	0.71	3.00	2.04	2.79	2.54	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

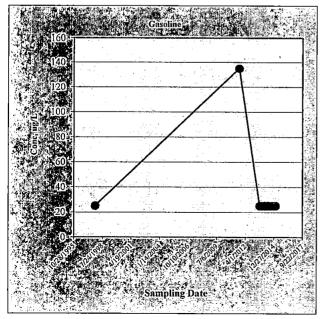
Hazardous substance? Gasoline
Plume Stability? Stable

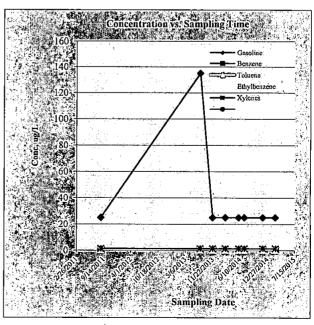
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-4
Level of Confidence (Decision Criteria)? 85%

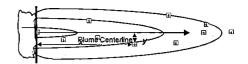
1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


:		_	Haz	zardous Subst	tances (unit is ug	/L)	-
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	11/14/1997	25	0.5	0.5	0.5	1.5	
#2	8/26/2011	135	0.5	0.5	0.5	1.5	_
#3	8/22/2013	25	0.5	0.5	0.5	1.5	
#4	11/21/2013	25	0.5	0.5	0.5	1.5	
#5	2/21/2014	25	0.5	0.5	0.5	1.5	
#6	5/30/2014	25	0.5	0.5	0.5	1.5	
#7	7/11/2014	25	0.5	0.5	0.5	1.5	
#8	11/25/2014	25	0.5	0.5	0.5	1.5	
#9	2/25/2015	25	0.5	0.5	0.5	1.5	
#10				. <u> </u>			
#11							
#12							
#13			_				
#14							
#15							
#16				-			


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline '	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	69.40%	46.00%	46.00%	46.00%	46.00%	NA
Plume Stability?	Stable	Stable	Stable	Stable	Stable	NA
Coefficient of Variation?	CV <= 1	CV <= 1	CV <= 1	CV <= 1	CV <= 1	n<4
Mann-Kendall Statistic "S" value?	-6	0	0	0	0	0
Number of Sampling Rounds?	9	9	9	9	9	0
Average Concentration?	37.22	0.50	0.50	, 0.50	1.50	NA
Standard Deviation?	36.67	0.00	0.00	0.00	0.00	NA
Coefficient of Variation?	0.99	0.00	0.00	0.00	0.00	NA
Blank if No Errors found	-	-				n<4

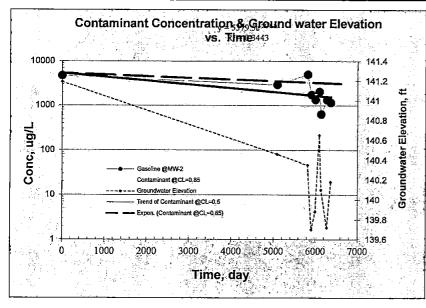
3. Temporal Trend: Plot of Concentration vs. Sampling Time

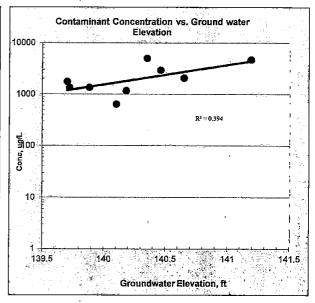

Hazardous substance? Gasoline
Plume Stability? Stable

Module 2: Inputs: Enter Historical Ground Water Data

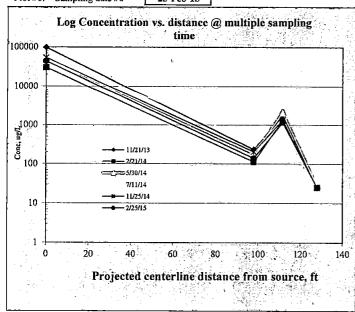
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline

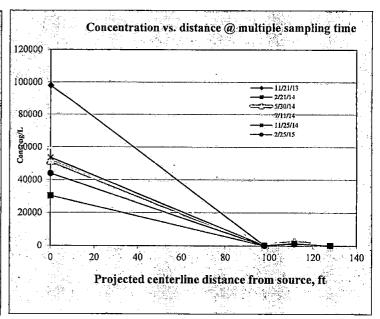
1. Monitoring W	Well information: Contaminant Concentration at a w				a well:			Note	e: relatio	nship of	` "y/x ≤	0.33" is	preferre	d				
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4							1					
Dist from source, x	-direction	ft	0.001	44	78	128												
Off-centerline dist,	y-direction	, ft	0.001	_ 18	13	0.001												
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	y/L												
. #1	9/25/97	0		4700	700	25	=		ĺ	Ī		-						
#2	8/25/11	5082		2950	153	135												
#3	8/22/13	5810		5000	209	25												
#4	11/21/13	5901	98100	1760	235	25												
#5	2/21/14	5993	30300	1360	114	25												
#6	5/30/14	6091	51400	2070	187	25				i								
#7	7/11/14	6133	59300	642	397	25												
#8 .	11/25/14	6270	53500	1350	208	25					1							
#9	2/25/15	6362	43900	1170	140	25												
#10																		
#11														1				
#12	-					1								T				
#13																		
#14																		
#15													i					
#16		_	ļ <u>.</u>															
#17																		
#18																		
#19																		
#20																		
Average Concent	verage Concentration 56083.3 2333.6 260.3 37.2			N/A	N/A	N/A	N/A	N/A	-N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Maximum Conce	ntration		98100	5000	700	135	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration	•	30300	642	114	25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


2. Groundwater Elevation:

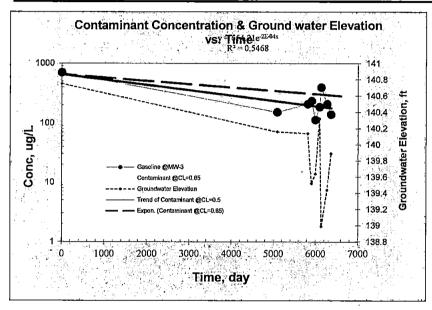

Well Location:		-													
Sampling Event	Date sampled	Day	•										*		
#1	9/25/97	0	142.59	141.19	140.75	138.99									
#2	8/25/11	5082	141,17	140.46	140.16	138.87									
#3	8/22/13	5810	140.84	140.35	140.14	139.04									
# <i>4</i>	11/21/13	5901	140.18	139.7	139,52	138.05									
#5	2/21/14	5993	140.25	139.88	139.64	138.1		_	 <u> </u>						
#6	5/30/14	6091	140.95	140.65	140.32	139.32									
#7	7/11/14	6133	140.95	140.1	138.99	138,14		1							
#8	11/25/14	6270	140.18	139.72	139.44	137.98				1					
#9	2/25/15	6362	140.45	140,18	139.89	138.59				ļ			L		
#10													1		
#11	_												•		1
#12															
#13															
#14											1				
#15											1				
#16															
#17									_						
#18															
#19															
#20							_				_	L			

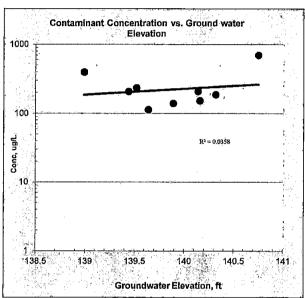
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

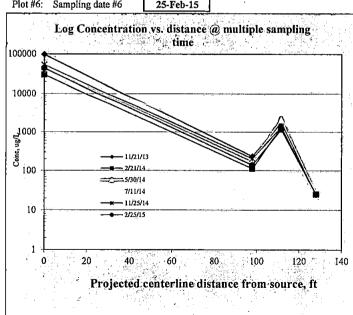

Name of Sampling Well?	MW-2	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	90.327%		
Plume Stability?	Shrinking	; Decision Criter	ia is 85%.	
Slope: Point decay rate constant (k point), yr 1	0.071 @50% C.L.;	0.030	@85% C.L.
Half Life for k_{point} , yr		9.738 @50% C.L.;	23.078	@85% C.L.

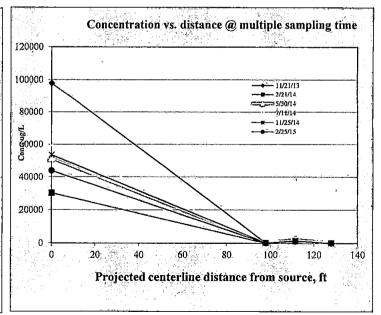
Plot#1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15



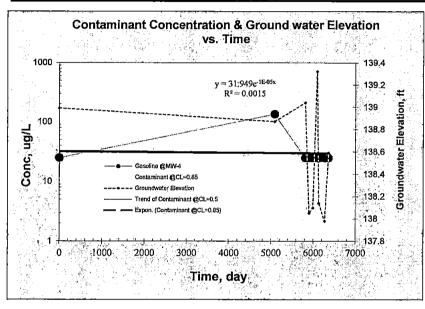

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
L Description: NA Evaluation

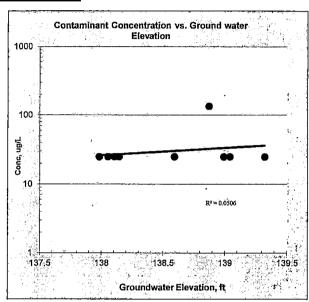
Additional Description: NA Evalu Hazardous Substance Gasoline


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

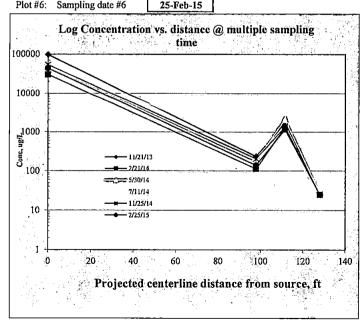

Name of Sampling Well?	MW-3	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	n log-linear regression is?	97.721%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹	0.075 @50% C.L.;	0.046	@85% C.L.
Half Life for k point, yr		9.292 @50% C.L.;	15.019	@85% C.L.

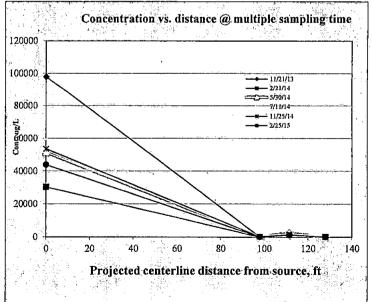
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3;	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5;	Sampling date #5	25-Nov-14
Diat #6.	Compline data #6	25 Ech 15




Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision (Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	7.993%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	-
Slope: Point decay rate constant	(k point), yr-1	0.004 @50% C.L.;	NA	@85% C.L.
Half Life for k point, yr		173.670 @50% C.L.;	NA	@85% C.L.

Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Diet #6.	Compling data #6	25 Pab 15

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA Additional Description: NA Evaluation

Hazardous Substance Gasoline																	
1. Level of Confidence (Decision Criteria)	?		85	%													
2. Prediction: Calculation of Restoration Time	e and	Predicted	d Concen	tration at	Wells												
Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Cleanup Level (Criterion) to be achieved?	ug/L	800	800	800	800												
A.1 Average (@50% CL ¹ best-fitting values)			_														
Time to reach the criterion	yr	NA	26.78	-2.70	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion to be achieved	date	NA	6/27/24	1/14/95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)																	
Time to reach the criterion ²	yr	NA	63,45	-4.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion to be achieved	date	NA	2/20/61	5/17/93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	- NA	NA
B Date of Prediction?	date	9/30/14	9/30/14	9/30/14	9/30/14					. 1				_			
B.1 Average conc predicted (@50% CL)	ug/L	NA -	1601.36	183.72	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B.2 Boundary conc predicted (@85% CL)	ug/L	NA	3226.07	298.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Log-Linear Regression Results							•										
Coefficient of Determination r^2		0.103	0.344	0.547	0.002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Correlation Coefficient r		-0.321	-0.587	-0.739	-0.039	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŊA.	NA	NA ·
Number of data points n		6	9	9	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4. Statistical Inference on the Slope of the Log	<u>-Lin</u> e:	ar Regre	ssion Lin	e with t-s	tatistics					_							
One-tailed Confidence Level calculated, %		46.453%	90,327%	97.721%	7.993%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA
Sufficient evidence to support that the slope of the regression line is significantly different from zer		NO!	YES!	YES!	NO!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Coefficient of Variation?		0.408	NA	NA	0.985	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?		Stable	Shrinking	Shrinking	Stable	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Calculation of Point Decay Rate Consta	nnt (k	point)															
Slope: Point decay rate @50% CL	yr ⁻¹	0.264	0.071	0.075	0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point) @85% CL	yr ⁻¹	NA	0.030	0.046	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA
Half Life for (k_{point}) @50% CL	yr	2.629	9.738	9.292	173.670	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
@85% CL	yr	NA	23.078	15.019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. CL: Confidence Level; UD= Undetermined

2. The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)


Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA

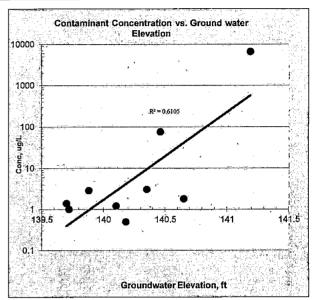
Additional Description: NA Evaluation

Hazardous Substance Benzene

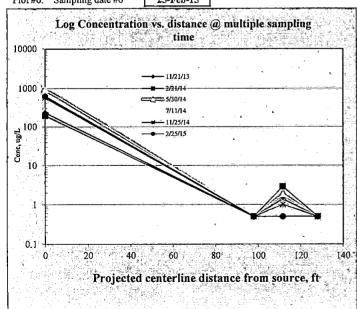
#11 9/25/97 0 6700 7200 0.5	1. Monitoring Well information: Contaminant Concentration at a well:							Note: relationship of " $y/x \le 0.33$ " is preferred											
Off-centerline dist, y-direction ft 0.001 18 13 0.001 0 <td>Well Location:</td> <td></td> <td>Unit</td> <td>MW-5</td> <td>MW-2</td> <td>MW-3</td> <td>MW-4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Well Location:		Unit	MW-5	MW-2	MW-3	MW-4							1					
Sampling Event Date sampled day Unit of concentration is ug/L	Dist from source, x	-direction	ft	0.001	44	78	128					_		i					
#11 9/25/97 0 6 6700 7200 0.5	Off-centerline dist,	y-direction	ft	100.0	18	13	0.001							İ					
#2	Sampling Event	Date sampled	day	Unit of o	concentra	tion is ug	g/L										•		
#3 8/22/13 5810 3.07 0.5 0.5 0.5	#1	9/25/97	0		6700	7200	0.5						ì	i -					
#4 11/21/13 5901 230 1.4 0.5 0.5	#2	8/25/11	5082		76.1	0,5	0,5												
#5	#3	8/22/13	5810		3.07	0.5	0.5										i		
#6	#4 -	11/21/13	5901	230	1.4	0.5	0.5									_			
#7 7/11/14 6133 1050 1.22 0.5 0.5 0.5	#5	2/21/14	5993	193	2.9	0.5	0.5												
#8 11/25/14 6270 566 1.01 0.5 0.5 0.5	#6	5/30/14	6091	927	1.82	0.5	0.5	ĺ					_						
#9	#7	7/11/14	6133	1050	1.22	0.5	0.5												
#10	#8	11/25/14	6270	566	1.01	0.5	0.5				i -								
#11	#9	2/25/15	6362	605	0.5	0.5	0.5								_				
#12	#10																		
#13	#11																		
#14		.			-													_	
#15		ĺ								Ì									
#16	#14								•						1				
#17	#15	ı																	
#18	#16																		
#19	#17									ļ									
#19	#18																		
Average Concentration 595.2 754.2 800.4 0.5 N/A	#19	,								Ì					Ĭ				
Maximum Concentration 1050 6700 7200 0.5 NA	#20															}			
	Average Concent	ration		595.2	754.2	800.4	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Minimum Concentration 193 0.5 0.5 0.5 NA				1050	6700	7200	0.5	NA	NA.	NA									
THE TALL IN THE TA	Minimum Concer	ntration		193	0.5	0.5	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

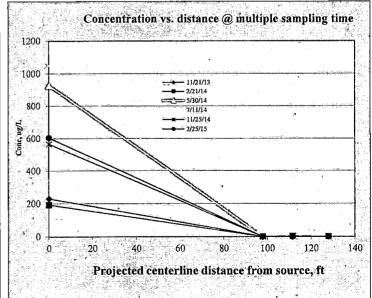
2. Groundwater Elevation:

Well Location:										[ļ					Ī
Sampling Event	Date sampled	Day														
#1	9/25/97	0	142.59	141.19	140.75	138.99				i	j					1
#2	8/25/11	5082	141.17	140.46	140.16	138.87					ľ		i			i
#3	8/22/13	5810	140.84	140.35	140.14	139.04										
#4	11/21/13	5901	140,18	139.7	139.52	138.05				-						i
#5	2/21/14	5993	140,25	139.88	139.64	138,1										ĺ
#6	5/30/14	6091	140.95	140.65	140.32	139,32						1	i			i .
#7	7/11/14	6133	140.95	140.1	138.99	138,14	-								-	
#8	11/25/14	6270	140.18	139.72	139.44	137,98			_							
#9	2/25/15	6362	140,45	140.18	139.89	138,59					İ		i			i
#10													i			
#11																
#12																
#13												_				
#14																
#15										_						
#16														_		
#17																
#18								 								
#19																
#20													<u> </u>			

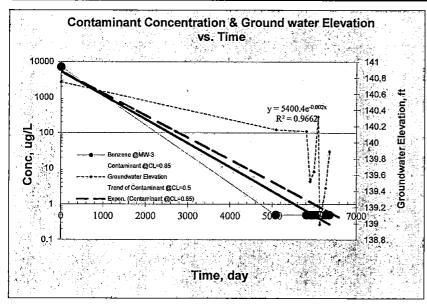

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

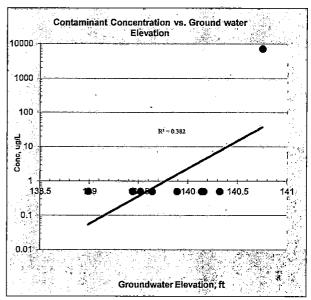
Hazardous Substance Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

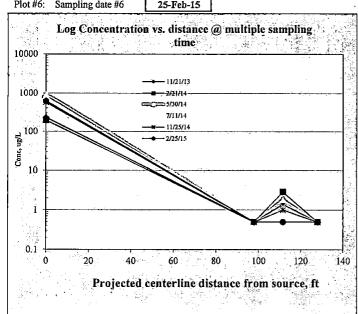

Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	h log-linear regression is?	99.992%	-	
Plume Stability?	Shrinking	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant	(k _{point}), yr ⁻¹	0.516 @50% C.L.;	0.445	@85% C.L.
Half Life for k_{point} , yr		1.344 @50% C.L.;	1.556	@85% C.L.

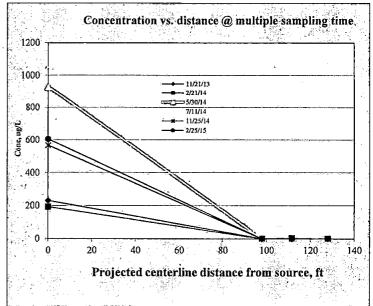
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15



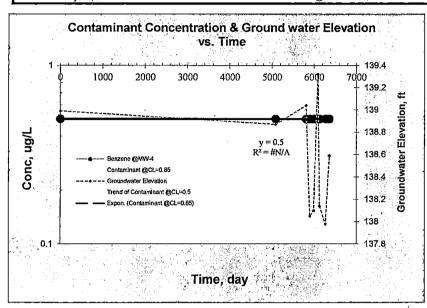


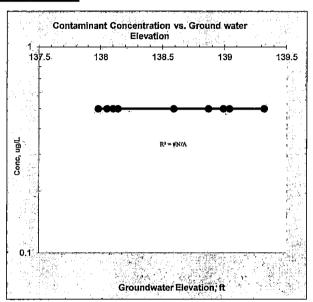
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

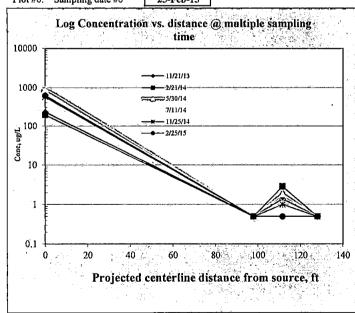

Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with l	og-linear regression is?	100.000%		_
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k	point), yr ⁻¹	0.567 @50% C.L.;	0.523	@85% C.L.
Half Life for k point, yr		1.222 @50% C.L.;	1.326	@85% C.L.

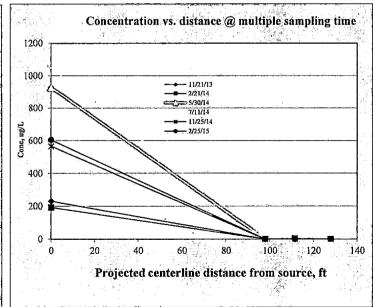
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision (Criteria)? 85.0%
Confidence Level calculated with I	og-linear regression is?	NA	
Plume Stability?	NA	; Decision Criteria	is 85%.
Slope: Point decay rate constant (k	point), yr ^{-l}	NA @50% C.L.;	NA @85% C.L.
Half Life for k_{point} , yr	•	NA @50% C.L.;	NA @85% C.L.

Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA Additional Description: NA Evaluation Hazardous Substance Benzene

1. Level of Confidence (Decision Criteria)? 85% 2. Prediction: Calculation of Restoration Time and Predicted Concentration at Wells Well Location MW-5 MW-2 MW-3 MW-4 NA NA NA NA NA NA NA NA A. Cleanup Level (Criterion) to be achieved? ug/L 5 5 5 5 A.1 Average (@50% CL¹ best-fitting values) Time to reach the criterion NA 14.78 12.32 γr NA NA NA NA NA NA NA NA NA NA NA NA NA Date when the Criterion to be achieved 7/3/12 date NA 1/16/10 NA NA NA NA NA NA NA NA NA NA NA NA NA A.2 Boundary (@85% CL) Time to reach the criterion² yr NΑ 17.12 13.37 NA NA NA NA NA NA NA NΑ NA NA NA NA NA Date when the Criterion to be achieved date NA 11/4/14 2/2/11 NA NA NA NA NA NA NA NA NA NA NA NA NA 9/30/14 B Date of Prediction? date 9/30/14 9/30/14 9/30/14 B.1 Average conc predicted (@50% CL) 1.57 ug/L NA 0.35 #DIV/0! NA NA NA NA NA NA NA NA . NA NA NA B.2 Boundary conc predicted (@85% CL) ug/L NA 5.22 0.74 #DIV/0! NA NA NA NA NA NA NA NA NA NA NA 3. Log-Linear Regression Results Coefficient of Determination r² 0.332 0.904 0,966 NA NA NA NA NA NA NA NA NA NA NA NA NA Correlation Coefficient -0.951 0.576 -0.983 NA NA NA NA NA NA NA NA NA NA NA NA NA Number of data points 9 9 ΝA NA 4. Statistical Inference on the Slope of the Log-Linear Regression Line with t-statistics One-tailed Confidence Level calculated, % 76.886% 99.992% 100.000% NA NA NA NΑ NA NA NA NA NA NA NA Sufficient evidence to support that the slope of the YES! YES! NO! NA NA NA NA NA NA NA NA NA NA NA NΑ NA regression line is significantly different from zero? Coefficient of Variation? 0.588 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Plume Stability? Stable Shrinking Shrinking NA NA NA NA NA NA NA NA NA 5. Calculation of Point Decay Rate Constant (k_{point}) Slope: Point decay rate @50% CL 0.869 0.516 0.567 NA NA NA NA NA NA NA NA NA NA NA

Note: 1. CL: Confidence Level; UD= Undetermined

@85% CL

@50% CL

@85% CL

constant (k point)

Half Life for (k point)

vr⁻¹

yr

уr

0.157

0.797

4.412

0.445

1.344

1.556

0.523

1.222

1.326

NA

NΑ

NA

^{2.} The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

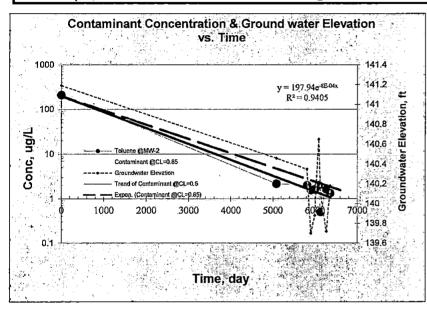
Module 2: Inputs: Enter Historical Ground Water Data

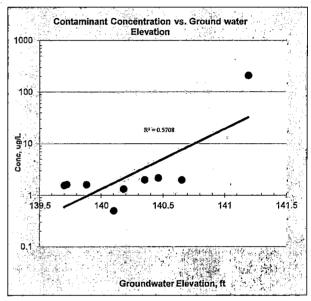
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene

1. Monitoring Well information: Contaminant Concentration at a well:								Note	e: relatio	nship of	`"y/x ≤	0.33" is	preferre	ed.				
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4					1	ĺ		_				\Box
Dist from source, x-	-direction	∖ ft	0.001	44	78	128				[ĺ	ĺ	_				\Box
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of a	concentra	tion is u	g/L												
#1	9/25/97	0		210	10	0.5						ļ						\Box
#2	8/25/11	5082		2.19	0.5	0.5												
#3	8/22/13	5810		2.01	0.5	0.5												
#4	11/21/13	5901	179	1.57	0,5	0,5							ĺ					
#5	2/21/14	5993	122	1.62	0.5	0.5												
#6	5/30/14	6091	552	2	0.5	0.5												
#7	7/11/14	6133	837	0.5	0.5	0.5								_				
#8	11/25/14	6270	204	1.63	0.5	0.5												
#9	2/25/15	6362	262	1.33	0.5	0.5				Ì								
#10									•									
#11																		
#12							_								_			
#13															i			
#14									_						<u> </u>			
#15			<u> </u>															
#16			<u> </u>															
#17			<u></u>												1		<u></u>	
#18											<u> </u>							
#19											<u> </u>							
#20						i			ļ <u> </u>	ļ								
Average Concentr	Average Concentration		359,3	24.8	1.6	0,5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concer	ntration		837	210	10	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	itration		122	0.5	0.5	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

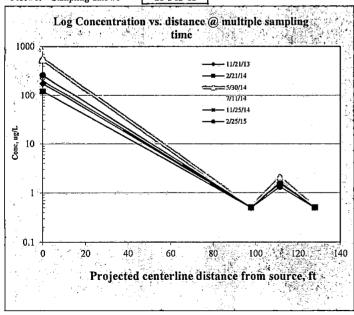
2. Groundwater Elevation:

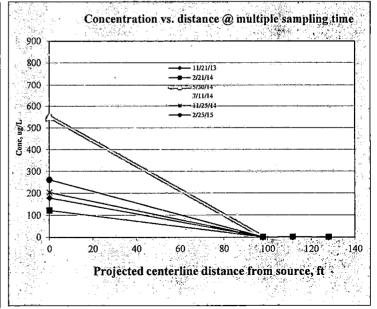
Well Location:															
Sampling Event	Date sampled	Day					_				 _			-	
#1	9/25/97	0	142.59	141.19	140.75	138.99		•					l		
#2	8/25/11	5082	141.17	140.46	140.16	138.87									
#3	8/22/13	5810	140.84	140.35	140.14	139,04									
#4	11/21/13	5901	140.18	139.7	139.52	138.05					-				
#5	2/21/14	5993	140.25	139.88	139.64	138.1						_			
#6	5/30/14	6091	140.95	140.65	140.32	139,32									
#7	7/11/14	6133	140.95	140.1	138.99	138.14									
#8	11/25/14	6270	140.18	139.72	139.44	137.98									
#9	2/25/15	6362	140.45	140.18	139.89	138.59			_						
#10															
#11															
#12															
#13														_	
#14													ĺ		_
#15		,											_		
#16														_	
#17															
#18					,										
#19													_		
#20															


Site Name: Hilton Seattle Hotel

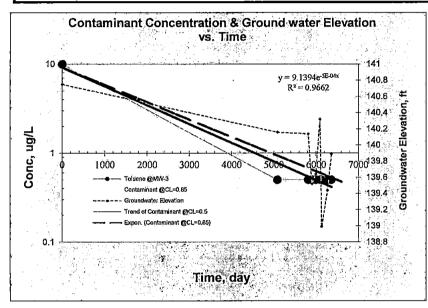

Site Address: Seattle, WA
Additional Description: NA Evaluation

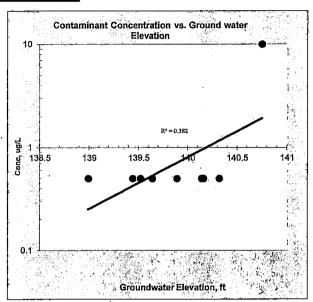
Hazardous Substance Toluene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

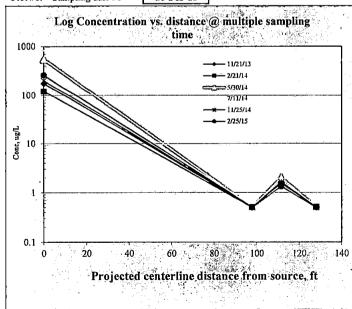

Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.998%		
Plume Stability?	Shrinking	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant (k point), yr¹	0.299 @50% C.L.;	0.268	@85% C.L.
Half Life for k point, yr		2.317 @50% C.L.;	2.589	@85% C.L.

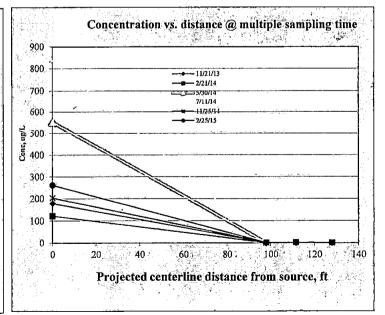
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15


Site Name: Hilton Seattle Hotel

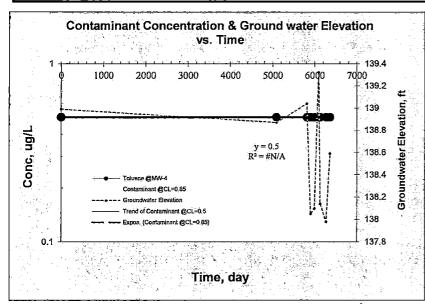

Site Address: Seattle, WA

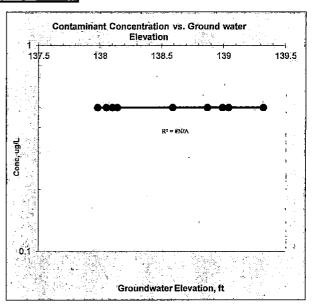
Additional Description: NA Evaluation Hazardous Substance Toluene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

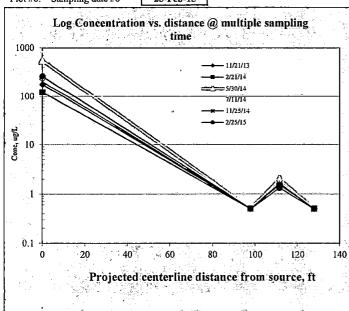

Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteria	ı is 85%.	
Slope: Point decay rate constant (k point), yr-1	0.177 @50% C.L.;	0.164 (@85% C.L.
Half Life for k_{point} , yr	•	3.907 @50% C.L.;	4.239 (@85% Ć.L.

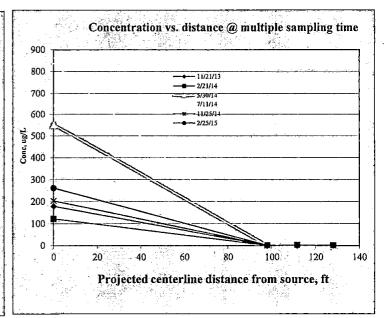
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

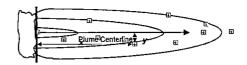

Name of Sampling Well?	MW-4	Confidence Level (Decision C	criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA .		
Plume Stability?	NA .	; Decision Criteria i	s 85%.	
Slope: Point decay rate constant (k	point), yr-1	NA @50% C.L.;	NA ·	@85% C.L.
Half Life for k point, yr		NA @50% C.L.;	NA (@85% C.L.

Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA Additional Description: NA Evaluation


Hazardous Sui	bstance Toluene																	
1. Level of Confidence (I	Decision Criteri	a)?		85	%					_								
2. Prediction: Calculation	of Restoration Ti	me and	Predicted	d Concen	tration at	Wells												
Well Location			MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Cleanup Level (Criterion) to be achieved?	ug/L	1000	1000	1000	1000							_					
A.1 Average (@50% CL1 be	st-fitting values)						•											
Time to reach the criterio	on	yr	NA	-5.41	-26.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion	to be achieved	date	NA	4/28/92	4/15/71	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A.2 Boundary (@85% CL)																		
Time to reach the criterio	on ²	уr	NA	-6.05	-28.71	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	ŊA	NA	NA
Date when the Criterion	to be achieved	date	NA	9/8/91	1/14/69	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B Date of Prediction?		date	9/30/14	9/30/14	9/30/14	9/30/14											_	
B.1 Average conc predicted	(@50% CL)	ug/L	NA	1.21	0.45	#DIV/0!	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B.2 Boundary conc predicte	d (@85% CL)	ug/L	NA	2.08	0.56	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Log-Linear Regressio	n Results																	,
Coefficient of Determination	r^2		0.046	0.940	0.966	NA	NA	NA	NA	NA	NA	NA	NA	NA	_ NA	NA	NA	NA
Correlation Coefficient	<u>r</u>		0.215	-0.970	-0.983	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Number of data points	n		6	9	9	9	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4. Statistical Inference on t	he Slope of the L	og-Line	ear Regre	ssion Lin	e with t-s	tatistics										_		
One-tailed Confidence Leve	l calculated, %		31.774%	99.998%	100.000%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to support regression line is significant	•		NO!	YES!	YES!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Coefficient of Variation?	<u> </u>		0.775	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?			Stable	Shrinking	Shrinking	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
5. Calculation of Point I	ecay Rate Cons	stant (/	k point)			<u></u>			I		1		_		ı	·	ı	
Slope: Point decay rate	@50% CL	vr ⁻¹	0.335	0.299	0,177	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point)	@85% CL	yr ⁻¹	NA	0.268	0.164	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>	@50% CL	yr	2.071	2.317	3.907	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k_{point})	@85% CL	yr	NA	2.589	4.239	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	T 1 TTD																	

Note: 1. CL: Confidence Level; UD= Undetermined

2. The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

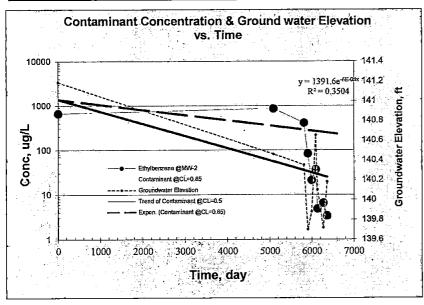
Module 2: Inputs: Enter Historical Ground Water Data

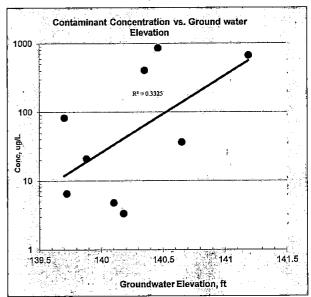
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene

1. Monitoring W	ell information	ı: Contami	nant Co	ncentra	tion at	a well:			Note	: relatio	nship of	` "y/x ≤ !	0.33" is	preferre	d			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x	-direction	ft	0.001	44	78	128									_			
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	dav	Unit of c	oncentra	tion is u	2/L												
#1	9/25/97	_ 0		670	74	0.5	-											
#2	8/25/11	5082		863	0.5	0.5												
#3	8/22/13	5810		408	0.5	0.5												
#4	11/21/13	5901	1070	83	0.5	0.5												
#5	2/21/14	5993	796	21	0.5	0.5												
#6	5/30/14	6091	1820	36.5	0.5	0.5												
#7	7/11/14	6133	1940	4.8	0.5	0.5												
#8	11/25/14	6270	1480	6,53	1.34	0.5												
#9	2/25/15	6362	1320	3,36	0.5	0.5												
#10				_														
#11				-														
#12			I											<u> </u>			·	
#13							_											
#14																		
#15					_	ļ												
#16			ļ									ļ				<u> </u>		
#17																		
#18			<u> </u>										1	ļ				
#19			<u> </u>							ļ			ļ	<u> </u>				<u> </u>
#20		ļ	<u> </u>															!
Average Concen-	tration		1404.3	232,9	8.8	0,5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		1940	863	74	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		796	3.36	0.5	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

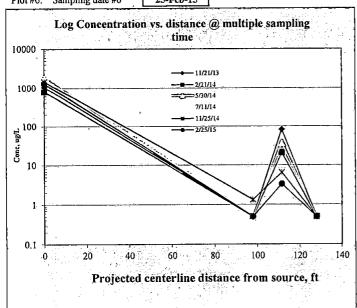
2. Groundwater Elevation:

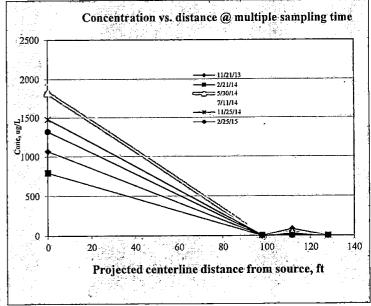
Well Location:												_	L				
Sampling Event	Date sampled	Day															
#1	9/25/97	0	142.59	141.19	140.75	138.99	L			<u> </u>				1			
#2	8/25/11	5082	141.17	140.46	140,16	138.87											
#3	8/22/13	5810	140.84	140,35	140.14	139.04											
#4	11/21/13	5901	140.18	139.7	139.52	138.05											
#5	2/21/14	5993	140.25	139,88	139.64	138.1			<u> </u>								1
#6	5/30/14	6091	140.95	140.65	140.32	139.32			· ·				1				
#7	7/11/14	6133	140.95	140.1	138.99	138.14	<u> </u>			_							
#8	11/25/14	6270	140.18	139.72	139,44	137.98									<u> </u>		
#9	2/25/15	6362	140.45	140.18	139.89	138.59				L							
#10									l				ļ			ļ .	
#11																	
#12																	
#13																	
#14								L	<u></u>				<u> </u>	<u> </u>			
#15														<u> </u>			
#16								<u> </u>			<u> </u>						
#17																	
#18										L							
#19																<u> </u>	
#20														}	1		


Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

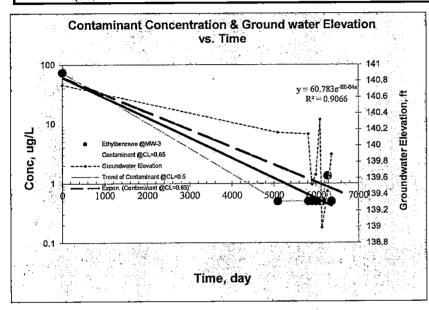

Hazardous Substance

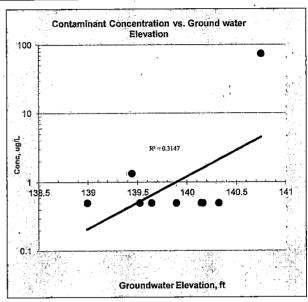
Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

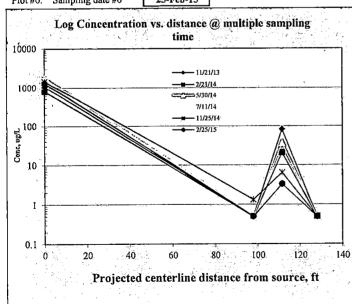

Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	90.690%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k	point), yr	0.231 @50% C.L.;	0.099	@85% C.L.
Half Life for k point, yr		3.001 @50% C.L.;	6.984	@85% C.L.

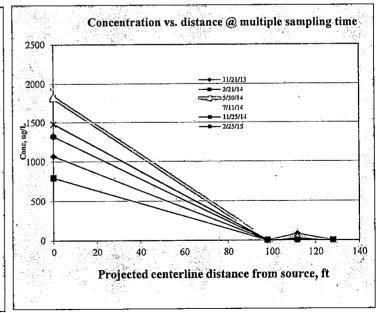
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Eeb-15



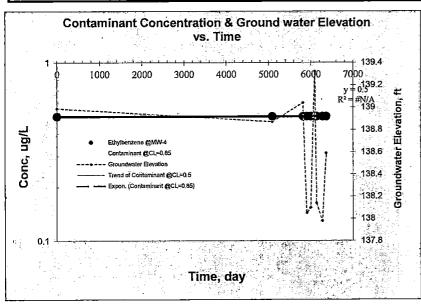

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA

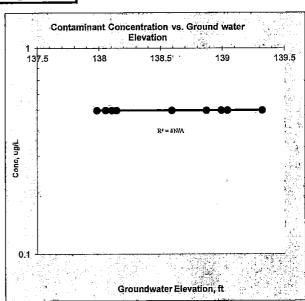
Additional Description: NA Evaluation Hazardous Substance Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

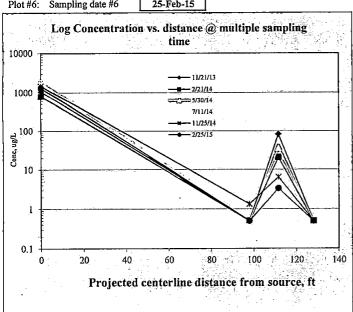

Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.992%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr1	0.285 @50% C.L.;	0.247 (985% C.L.
Half Life for k point, yr		2.431 @50% C.L.;	2.808 @	285% C.L.

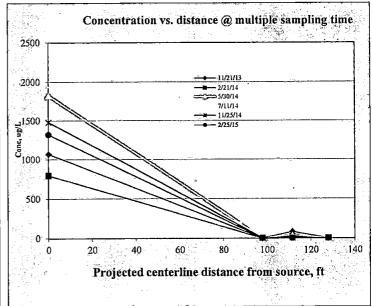
Plot#1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Piot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6	Sampling date #6	25-Feb-15





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA		
Plume Stability?	NA	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.
Half Life for k point, yr		NA @50% C.L.;	NA (@85%_C.L.

Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6	Sampling date #6	25-Feb-15

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene

1. Level of Confidence (Decision Criteria)?

85%

2. Prediction: Calculation of Restoration Time and Predicted Concentration at Wells

Well Location		MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Cleanup Level (Criterion) to be ach	nieved? ug/L	700	700	700	700												
A.1 Average (@50% CL1 best-fitting	values)		-	_													
Time to reach the criterion	yr	NA NA	2.98	-8.57	NA_	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA
Date when the Criterion to be achi	eved date	NA	9/14/00	3/3/89	NA	NA	NA	NA	NA	NA	NA	NA	NA '	NA	NA	NA	NA
A.2 Boundary (@85% CL)											_						
Time to reach the criterion ²	yr	NA	6.92	-9.90	NA	NA	NA —	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
Date when the Criterion to be achi	eved date	NA	8/25/04	11/3/87	NA	NA	NA	NA	NA	NA	NA	NA _	NA	NA	ŅΑ	NA	NA
B Date of Prediction?	date	9/30/14	9/30/14	9/30/14	9/30/14												
B.1 Average conc predicted (@50% C	CL) ug/L	NA	27.28	0.47	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B.2 Boundary conc predicted (@85%	CL) ug/L	NA	256.85	0.91	#DIV/0!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Log-Linear Regression Result		-															
Coefficient of Determination	r ²	0,183	0.350	0.907	NA	NA	NA	NA	NA	NA_	NA	NA.	NA	NA	NA	NA	NA
Correlation Coefficient		0.428	-0.592	-0.952	NA	NA_	NA	NA	NA	NA	.NA	NA	NA	NA	NA	NA	NA
Number of data points	n	6	9	9	9	NA	NA	NA	NA NA	NA	NA _	NA	NA	NA	NA_	NA	NA
4. Statistical Inference on the Slope	of the Log-Line	ear Regre	ssion Lin	e with t-s	tatistics											Υ	
One-tailed Confidence Level calculate		60.227%	90.690%	99.992%	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to support that the regression line is significantly different		NO!	YES!	YES!	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Coefficient of Variation?		0.311	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability?		Stable	Shrinking	Shrinking	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Calculation of Point Decay Ra	te Constant (k point)															
Slope: Point decay rate @50%	CL yr ⁻¹	0,306	0.231	0.285	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
constant (k point) @85%	CL yr ⁻¹	NA	0.099	0.247	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Halflife for (k) @50%	CL yr	2.263	3.001	2.431	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k_{point}) $@85\%$	CL yr	NA	6.984	2.808	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. CL: Confidence Level; UD= Undetermined

^{2.} The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA

Additional Description: NA Evaluation

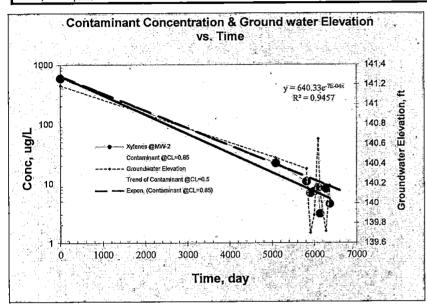
Hazardous Substance Vylenes

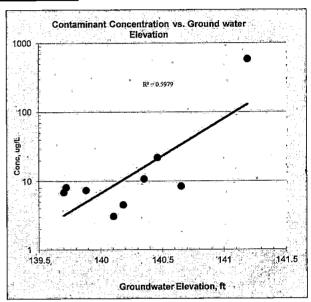
Hazardous Substance Axylenes																		
1. Monitoring Well in	nformation	: Contami	nant Co	ncentra	tion at	a well:			Note	: relatio	nship of	"y/x ≤	0.33" is	ргебегте	:d			
Well Location:		Unit _	MW-5	MW-2	MW-3	MW-4												
Dist from source, x-direct	ction	ft	0.001	44	78	128												
Off-centerline dist, y-dire	ection	ft	0.001	18	13	0.001								<u> </u>	<u> </u>			
Sampling Event Da	ate sampled	day	Unit of o	concentra	tion is u	g/L									_			
#1	9/25/97	0		590	97	1.5												
#2	8/25/11	5082		22	1.35	1.5												
#3	8/22/13	5810		10.8	1	1.5												
#4	11/21/13	5901	6100	6.9	ī	1.5	_											
#5	2/21/14	5993	3670	7.4	1	1.5												
#6	5/30/14	6091	7610	8.47	3.59	1.5												
#7	7/11/14	6133	9960	3.07	1.31	1.5												
#8	11/25/14	6270	7610	8.19	5.04	1.5												
#9	2/25/15	6362	6680	4.52	1.16	1.5								_				
#10															<u> </u>			
#11			<u>L</u>														ļ	_
#12											<u> </u>							
#13														1	<u> </u>			
#1 <u>4</u>																		
#15			<u> </u>												ļ. —			
#16			!		<u> </u>	ļ <u>-</u>												
#17																		
#18			<u> </u>	-														
#19			 	ļ											ļ	<u> </u>		
#20			L]			ļ		<u> </u>			
Average Concentratio			6938,3	73.5	12.5	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentrat	ion		9960	590	97	1.5	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concentrati	ion		3670	3.07	1	1.5	NA	NA	NA	NA	NA	NA	NA	ŇΑ	ÑΑ	NA	NA	NA

2. Groundwater Elevation:

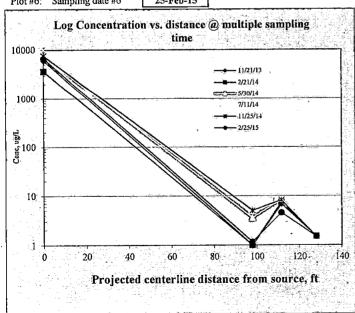
Well Location:									_					•		
Sampling Event	Date sampled	Day														
#1	9/25/97	0 _	142.59	141.19	140.75	138.99								 		
#2	8/25/11	5082	141.17	140,46	140.16	138.87										
#3	8/22/13	5810	140.84	140.35	140,14	139.04	_									
#4	11/21/13	5901	140.18	139.7	139.52	138.05										
#5	2/21/14	5993	140,25	139.88	139.64	138,1		ļ. <u>.</u>								
#6	5/30/14	6091	140.95	140.65	140.32	139.32					,					
#7	7/11/14	6133	140.95	140.1	138.99	138,14										
#8	11/25/14	6270	140.18	139.72	139.44	137.98							_	 		
#9	2/25/15	6362	140.45	140.18	139.89	138.59										L
#10																
#11																
#12														 	<u> </u>	
#13			L										_		1	
#14			<u> </u>			_						ļ				
#15																
#16			<u> </u>													<u> </u>
#17							<u> </u>			1						
#18																
#19			L											 		
#20		·												1	1	

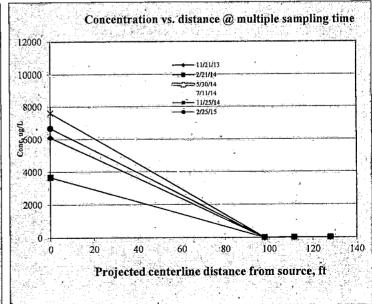
Site Name: Hilton Seattle Hotel


Site Address: Seattle, WA

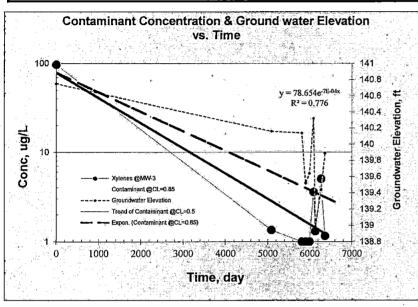

Additional Description: NA Evaluation

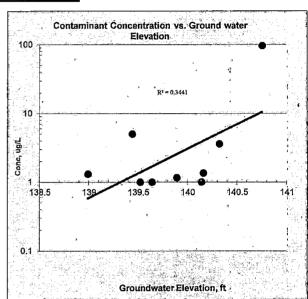
Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

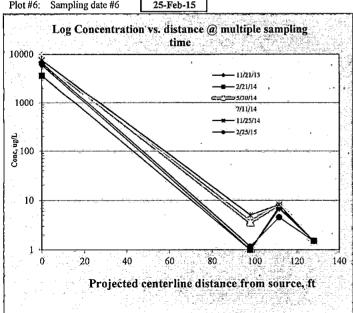

Name of Sampling Well?	M	W-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated wit	h log-linear reg	ression is?	99.999%		
Plume Stability?		Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹		0.272 @50% C.L.;	0.245	@85% C.L.
Half Life for k point, yr			3 @50% C.L.;	2.833	@85% C.L.

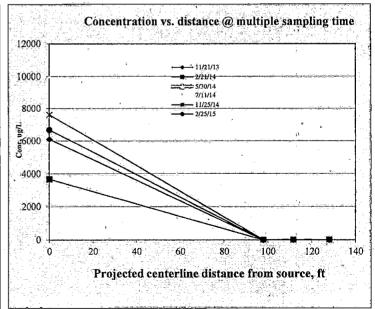
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6	Sampling date #6	25-Feb-15


Site Name: Hilton Seattle Hotel

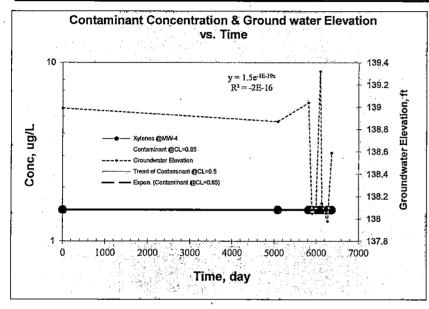

Site Address: Seattle, WA
Additional Description: NA Evaluation

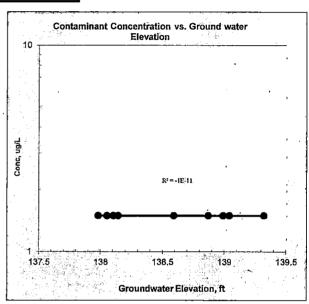
Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

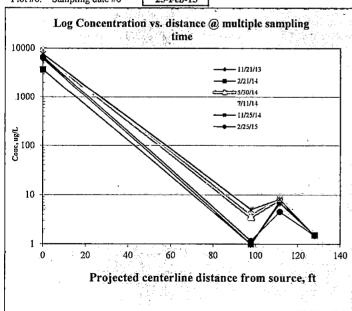

Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.830%	_	
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr 1	0.238 @50% C.L.;	0.185	@85% C.L.
Half Life for k_{point} , yr)	3 @50% C.L.;	3.754	@85% C.L.

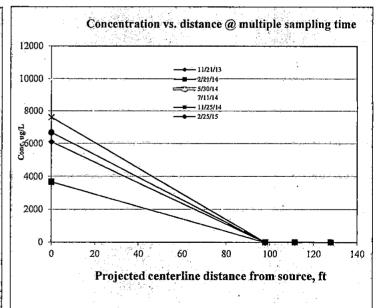
-	-	
Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3:	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Dlot #6:	Compling data #6	25 Ech 15


Site Name: Hilton Seattle Hotel


Site Address: Seattle, WA
Additional Description: NA Evaluation

Hazardous Substance Xylenes


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	h log-linear regression is?	0.000%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	(k point), yr 1	0.000 @50% C.L.;	NA	@85% C.L.
Half Life for k point, yr			NA	@85% C.L.

Plot #1:	Sampling date #1	21-Nov-13
Plot #2:	Sampling date #2	21-Feb-14
Plot #3;	Sampling date #3	30-May-14
Plot #4:	Sampling date #4	11-Jul-14
Plot #5:	Sampling date #5	25-Nov-14
Plot #6:	Sampling date #6	25-Feb-15

Module 2: Temporal Analysis: Concentration of contaminant vs. time (Regression Analysis at each well)

Site Name: Hilton Seattle Hotel

Site Address: Seattle, WA Additional Description: NA Evaluation

1. Level of Confidence (Decision Criteria)? 88%	Hazardous Sub	stance Xylenes																	
Well Location	1. Level of Confidence (I	Decision Criteri	ia)?		85	%													
A. Cleamp Level (Criterion) to be achieved? ug/L 1000 1000 1000 1000 1000 1000 1000 10	2. Prediction: Calculation of	f Restoration Ti	ime and	Predicted	Concen	tration at	Wells								•				
A.1 Average (@50% CL¹ best-fitting values) Time to reach the criterion Date when the Criterion to be achieved date NA 24496 12587 NA NA NA NA NA NA NA NA NA NA NA NA NA	Well Location			MW-5	MW-2	MW-3	MW-4	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Time to reach the criterion	A. Cleanup Level (Criterion)	to be achieved?	ug/L	1000	1000	1000	1000		ļ.,		_								
Date when the Criterion to be achieved date NA 24/96 1/25/87 NA NA NA NA NA NA NA N	A.1 Average (@50% CL1 bes	st-fitting values)																	
A 2 Boundary (@85% CL) Time to reach the criterion 2 yr NA -1.82 -13.77 NA NA NA NA NA NA NA NA NA NA NA NA NA					-1.64	-10.67													
Time to reach the criterion YT NA		to be achieved	date	NA	2/4/96	1/25/87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	_NA
Date when the Criterion to be achieved date NA 11/3095 12/21/83 NA NA NA NA NA NA NA N					_					·			·						
B Date of Prediction? date 9/30/14 9/3	Time to reach the criterio	on ²	yr	NA ·	-1.82	-13.77	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA
B.I. Average conc predicted (@50% CL) ug/L NA 6.24 1.36 NA NA NA NA NA NA NA NA NA NA NA NA NA	Date when the Criterion t	to be achieved	date	NΑ	11/30/95	12/21/83	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA
B.2 Boundary cone predicted (@85% CL) ug/L NA 9.93 3.39 NA NA NA NA NA NA NA NA NA NA NA NA NA	B Date of Prediction?	- ·	date	9/30/14	9/30/14	9/30/14	9/30/14												
3. Log-Linear Regression Results Coefficient of Determination r^2 0.167 0.946 0.776 0.000 NA NA NA NA NA NA NA NA NA NA NA NA NA	B.1 Average conc predicted ((@50% CL)	ug/L	NA	6.24	1.36	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA
Coefficient of Determination r^2 0.167 0.946 0.776 0.000 NA NA NA NA NA NA NA NA NA NA NA NA NA	B.2 Boundary conc predicted	l (@85% CL)	ug/L	NA	9.93	3.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Correlation Coefficient r 0.409 -0.972 -0.881 0.000 NA NA NA NA NA NA NA NA NA NA NA NA NA	3. Log-Linear Regression	n Results													•				-
Number of data points n 6 9 9 9 NA NA NA NA NA NA NA NA NA NA NA NA NA	Coefficient of Determination	r^2		0.167	0.946	0.776	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4. Statistical Inference on the Slope of the Log-Linear Regression Line with t-statistics One-tailed Confidence Level calculated, % S7.962% 99.999% 99.830% 0.000% NA NA NA NA NA NA NA NA NA NA NA NA NA	Correlation Coefficient	r		0.409	-0.972	-0.881	0,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
One-tailed Confidence Level calculated, % 57.962% 99.999% 99.830% 0.000% NA NA NA NA NA NA NA NA NA NA NA NA NA	Number of data points	n		6	9	9	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sufficient evidence to support that the slope of the regression line is significantly different from zero? NO! YES! YES! NO! NA NA NA NA NA NA NA N	4. Statistical Inference on the	he Slope of the L	og-Line	ar Regre	ssion Lin	e with t-si	tatistics												
regression line is significantly different from zero? NO! YEST YEST NO! NA NA NA NA NA NA NA NA NA NA NA NA NA	One-tailed Confidence Level	calculated, %		57.962%	99.999%	99.830%	0.000%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Plume Stability? Stable Shrinking Stable NA NA NA NA NA NA NA N		•		NO!	YES!	YES!	NO!	NA	NA	NA	NA	NA	NA	NA	NA .	NA	- NA	NA	NA
5. Calculation of Point Decay Rate Constant (k_{point}) Slope: Point decay rate @50% CL yr ⁻¹ 0.293 0.272 0.238 0.000 NA NA NA NA NA NA NA NA NA NA NA NA NA	Coefficient of Variation?			0.299	NA	NA	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Slope: Point decay rate @50% CL yr ⁻¹ 0.293 0.272 0.238 0.000 NA NA NA NA NA NA NA NA NA NA NA NA NA	Plume Stability?			Stable	Shrinking	Shrinking	Stable	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Constant (k point) @85% CL yr ⁻¹ NA 0.245 0.185 NA NA NA NA NA NA NA NA NA NA NA NA NA	5. Calculation of Point D	ecay Rate Con	stant (A	(point)	-											,			
Half Life for (k point) @50% CL yr 2.369 2.548 2.909 6.136E+32 NA NA NA NA NA NA NA NA NA NA NA NA NA	Slope: Point decay rate	@50% CL		0.293	0.272	0.238	0.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Half Life for (k point) @50% CL yr 2.369 2.548 2.909 6.136E+32 NA NA NA NA NA NA NA NA NA NA NA NA NA	constant (k point)	@85% CL	yr ⁻¹	NA	0.245	0.185	· NA	ŅĀ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(85% CL yr NA 2.833 3.754 NA NA NA NA NA NA NA NA NA NA NA NA NA	Half Life for (k)	@50% CL		2.369	2.548	2.909	6.136E+32	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tall Life for (N point)	@85% CL	yr	NA	2.833	3.754	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. CL: Confidence Level; UD= Undetermined

2. The length of time that will actually be required is estimated to be no more than years calculated (@ 85% of confidence level.)

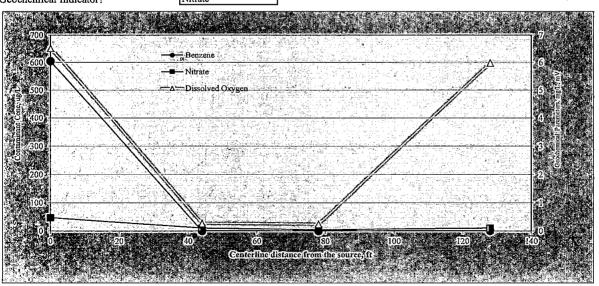
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well-information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		605	0.5	0.5	0.5			
Toluene	ug/L		262 ,	1.33	0.5	0,5			
Ethylbenzene	ug/L		1320	3.36	0.5	0.5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5			
Gasoline	ug/L		43900	1170	140	25			1
User-specified chemical1	ug/L	·							
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA ·	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1				l	
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L	_									-			
Ferrous Iron	mg/L	3.1		į į		3.1	0.29	1.6	0.03					
Methane	mg/L												,	
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L											,		
pH	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

	,														
Equivalent C	ontamina	nt Degrad	lation								,				
		Unit	UF	. NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA .
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0,0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0,0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0,22	N/A	N/A	N/A	0.0	0.0	0.0	-5,2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	.N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Benzene
Dissolved Oxygen
Nitrate

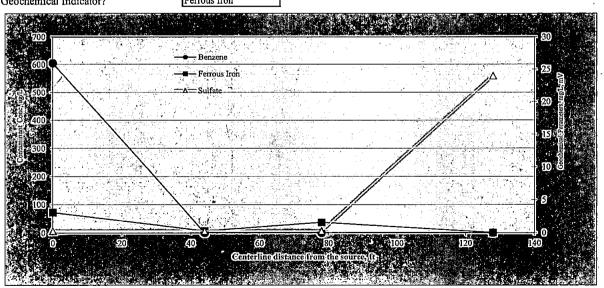
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit	1	MW-	MW-2	MW-3	MW-4			
Centerline Distance from source	ft ·		0	44	78	128			
Benzene	ug/Ľ		605	0.5	0.5	0,5			
Toluene	ug/L		262	1,33	0.5	0,5			
Ethylbenzene	ug/L		1320	3.36	0.5	0.5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5			
Gasoline	ug/L		4390	1170	140	25			
User-specified chemical I	ug/L								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53			_	6,53	0.27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0,1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L													
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L													
рН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	Equivalent Contaminant Degradation														
-		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21 '	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	. N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Benzene	
Sulfate	
Ferrous Iron	

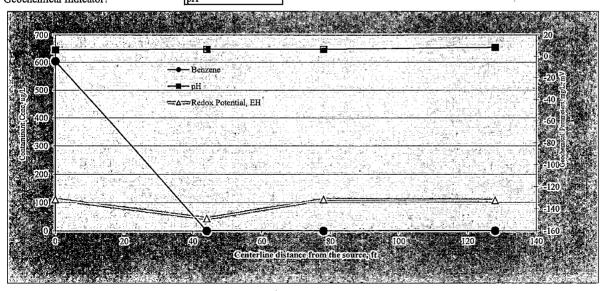
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		605	0.5	0.5	0.5			
Toluene	ug/L		262	1.33	0.5	0.5			
Ethylbenzene	ug/L		1320	3,36	0,5	0,5			
Total Xylenes	ug/L	-	6680	4.52	1.16	1.5			
Gasoline	ug/L		43900	1170	140	25			
User-specified chemical I	ug/L	15							
User-specified chemical3	ug/L			i					

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	· MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6,53				6.53	0.27	0.24	5,98			1		
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L					,								
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131,4	-148.7	-131.4	-132.4					
Alkalinity	mg/L													
рН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent Contaminant Degradation															
		,U ni t	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2.1	0,2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total .		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Benzene	
Redox Potential, EH	
nΗ	

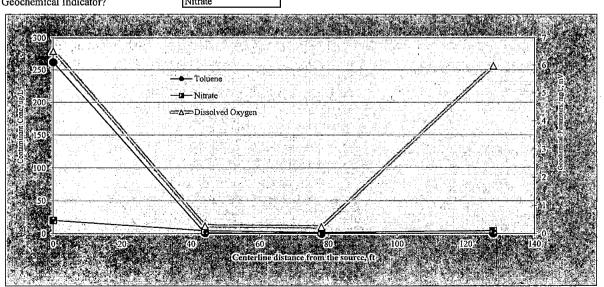
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit	ı	MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		605	0.5	0.5	0.5			
Toluene	ug/L		262	1,33	0,5	0,5			
Ethylbenzene	ug/L		1320	3,36	0,5	0,5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5			
Gasoline	ug/L		43900	1170	140	25			
User-specified chemical I	ug/L/								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA.	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0,24	5.98					
Nitrate .	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L										,			
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L													
pН	unitless	6.72				6,72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0,33	N/A	N/A	N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A .	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Toluene	
Dissolved Oxygen	
Nitrate	

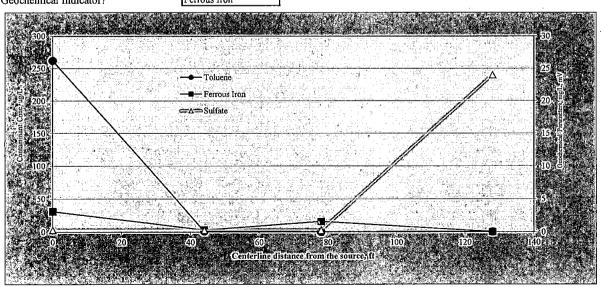
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2.	MW-3	MW-4		<u> </u>	
Centerline Distance from source	ft		. 0	44	78	128			
Benzene	ug/L		605	0.5	0,5	0.5			
Toluene	ug/L ·		262	1.33	0.5	0.5			,
Ethylbenzene	ug/L		1320	3.36	0.5	0.5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5	1		
Gasoline	ug/L		43900	1170	140	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								[]

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6,53	0,27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					,
Manganese	mg/L													
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L	•												
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L													
pН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

001111111111111111111111111111111111111	Denizent														
Equivalent C	ontaminai	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate ·	utilized	mg/L	0,22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0,047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	-	mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Toluene	
Sulfate	·
Ferrous Iron	

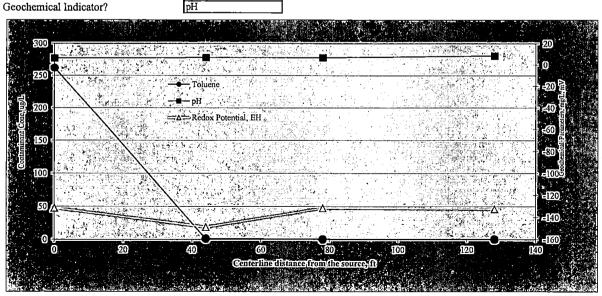
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit			MW-5	MW-2	MW-3	MW-4		1	ļ
Centerline Distance from source	ft			0	44	78	128			
Benzene	ug/L			605	0.5	0.5	0.5			
Toluene	ug/L			262	1.33	0.5	0.5			
Ethylbenzene	ug/L			1320	3.36	0.5	0.5			
Total Xylenes	ug/L			6680	4.52	1,16	1.5			
Gasoline	ug/L		ļ	43900	1170	140	25		·	
User-specified chemical1	ug/L									
User-specified chemical3	ug/L									1

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA.	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	· NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0,24	5.98					T
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L							İ						
Ferrous Iron	mg/L	3.1	_			3.1	0.29	1.6	0.03	·	1		ĺ	1
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L											-		
рН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Communication 101	OI DOIOCHO	11	Donze	MC											
Equivalent C	ontamina	nt Degrac	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0,33	N/A	N/A	N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0,21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5,1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Toluene
Redox Potential, EH
~U

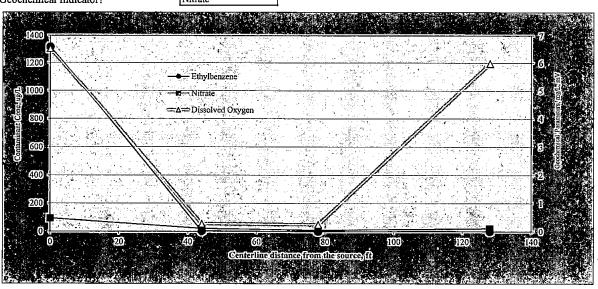
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4				
Centerline Distance from source	ft		0	44	78	128		, -		
Benzene	ug/L		605	0.5	0.5	0.5				
Toluene	ug/L		262	1,33	0.5	0.5			1-	
Ethylbenzene	ug/L		1320	3.36	0.5	0.5				
Total Xylenes	ug/L		6680	4.52	1.16	1.5	_			
Gasoline	ug/L		43900	1170	140	25			 	
User-specified chemical1	ug/L									
User-specified chemical3	ug/L									

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0.24	5.98				Ì	
Nitrate	mg/L	0.473				0,473	0.1	0.041	1.0					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L													
Ferrous Iron	mg/L	3.1				3.1	0,29	1.6	0.03					
Methane	mg/L													
Redox Potential, \overline{E}_H	mV	-131.4				-131.4	-148.7	-131.4	-132,4					
Alkalinity	mg/L													
pН	unițless	6,72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Comminant for	OI SCIEGIOI		Delize		l										
Equivalent C	ontaminai	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2.1	0,2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0.1	0,1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0,0	0,0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5,1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Ethylbenzene	
Dissolved Oxygen	
Vitrate	

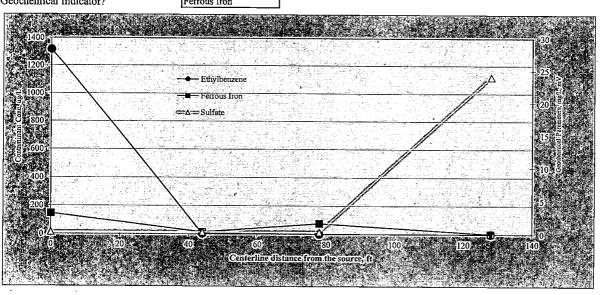
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit					MW-5	MW-2	MW-3	MW-4			_	
Centerline Distance from source	ft		Ţ			0	44	78	128			 	\vdash
Benzene	ug/L		1			605	0.5	0.5	0.5		† 	-	
Toluene	ug/L	,				262	1.33	0,5	0.5		<u> </u>		 -
Ethylbenzene	ug/L					1320	3.36	0.5	0.5		-		
Total Xylenes	ug/L					6680	4.52	1.16	1.5	 1	 		1
Gasoline	ug/L					43900	1170	140	25				
User-specified chemical l	ug/L		1									†	
User-specified chemical3	ug/L			1	-						1		

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0.24	5.98					
Nitrate	mg/L	0.473	_			0.473	0.1	0,041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24					
Manganese	mg/L							-						-
Ferrous Iron	mg/L	3.1			· <u> </u>	3.1	0.29	1.6	0.03		i	_		
Methane	mg/L	,												
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L							_				•		
pН	unitless	6.72				6.72	7.21	7.27	8.8		-			


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	ontaminar	it Degrad	ation				-						_		
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0,21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A-
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	· N/A	N/A	2.0	·2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Ethylbenzene
Sulfate
Perrous Iron

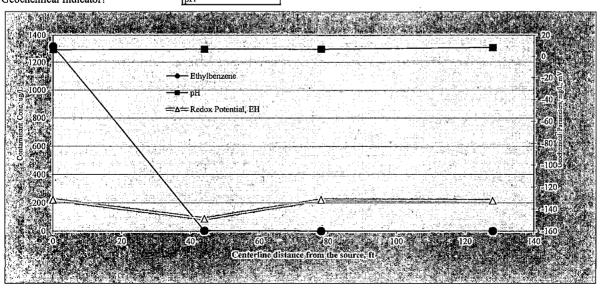
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit				MW-5	MW-2	MW-3	MW-4	,		
Centerline Distance from source	ft				0	44	78	128			
Benzene	ug/L				605	0.5	.0.5	0.5			
Toluene	ug/L	[262	1.33	0.5	0.5			
Ethylbenzene	ug/L				1320	3.36	0.5	0.5			
Total Xylenes	ug/L				6680	4.52	1.16	1.5			
Gasoline	ug/L				43900	1170	140	25			
User-specified chemical1	ug/L										
User-specified chemical3	ug/L		·	·							

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0.24	5.98		1			1
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0.3	24		ļ			
Manganese	mg/L				,									
Ferrous Iron	mg/L	3.1				3,1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L													
pН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	ontaminar	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0 ·	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0,21	N/A	N/A	N/A	0,0	0.1	0.1	0.1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0,0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1,3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	,	mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Ethylbenzene
Redox Potential, EH
ρΗ

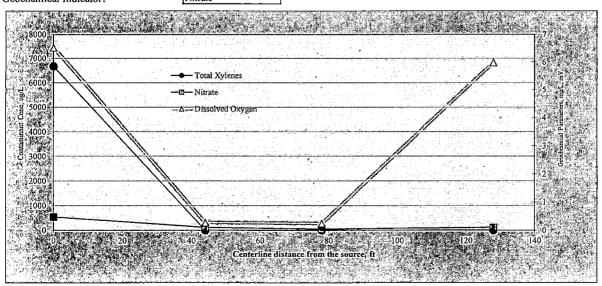
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		605	0.5	0.5	0.5		į .	
Toluene	ug/L		262	1.33	0.5	0.5			
Ethylbenzene	ug/L		1320	3.36	0.5	0.5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5		<u></u>	
Gasoline	ug/L		43900	1170	140	25			
User-specified chemical I	ug/L ,								
User-specified chemical3	ug/L								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6.53	0.27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	0,3	24					
Manganese	mg/L													
Ferrous Iron	mg/L	3.1	_		_	3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E_H	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L									_				
pH	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	_N/A	0.0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0.1	0.1	N/A	. N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator? Geochemical Indicator? Total Xylenes
Dissolved Oxygen
Nitrate

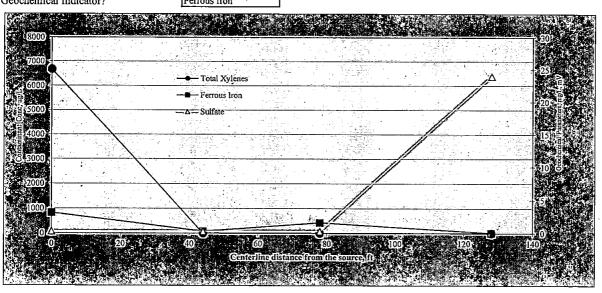
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4	_			
Centerline Distance from source	ft		0	44	78	128			Ì	
Benzene	ug/L		605	0,5	0.5	0.5				
Toluene	ug/L		262	1.33	0.5	0.5				
Ethylbenzene	ug/L		1320	3.36	0.5	0.5				
Total Xylenes	ug/L		6680	4,52	1.16	1.5				
Gasoline	ug/L		43900	1170	140	25		,		
User-specified chemical1	ug/L							<u> </u>		
User-specified chemical3	ug/L		-							

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53				6,53	0.27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3 `	0.3	0.3	24					
Manganese	mg/L										<u> </u>			
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E _{II}	mV	-131.4				-131.4	-148.7	-131.4	-132.4					
Alkalinity	mg/L					-			_					
pН	unitless	6.72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	ontaminar	ıt Degrad	ation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0.0	2.1	2,1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0,1	1.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0,09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Total Xylenes			
Sulfate	_	•	
Ferrous Iron			

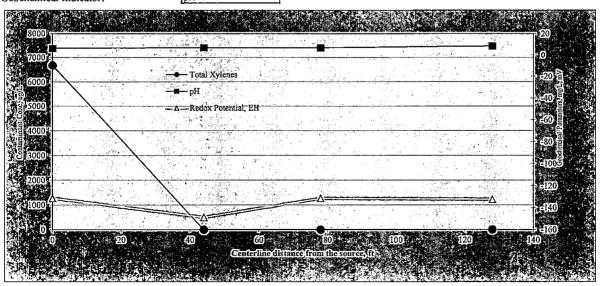
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit	Ţ	MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L	1	605	0.5	0.5	0.5	_	ļ	
Toluene	ug/L		262	1.33	0.5	0.5			
Ethylbenzene	ug/L		1320	3.36	0.5	0,5			
Total Xylenes	ug/L		6680	4.52	1.16	1.5			
Gasoline	ug/L		43900	1170	140	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L .								

2. Enter Average Geochemical Indicator's Concentrations (direct measurement) at the Monitoring Wells.

_	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	6.53	-			6,53	0.27	0.24	5.98					
Nitrate	mg/L	0.473				0.473	0.1	0.041	0.1					
Sulfate	mg/L	0.3				0.3	0.3	. 0.3	24					
Manganese	mg/L													
Ferrous Iron	mg/L	3.1				3.1	0.29	1.6	0.03					
Methane	mg/L													
Redox Potential, E 11	mV	-131.4				-131.4	-148,7	-131.4	-132.4					
Alkalinity	mg/L					-								
pН	unitless	6,72				6.72	7.21	7.27	8.8					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	· NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	0,0	2.1	2.1	0.2	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.1	0,1	0,1	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.0	0.0	0.0	-5.2	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.0	-0.1	-0.1	-0.1	N/A	N/A	N/A_	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	N/A	2.0	2.1	-5.1	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Total Xylenes	
Redox Potential, EH	
о Н	

SHANNON & WILSON, INC.

APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-12341-004

Date: March 2015

To: Mr. Zahoor Ahmed

R.C. Hedreen Company

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2014

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2014