

Draft Remedial Investigation Report

Marine Drive Property Whatcom County Tax Parcel 380223106374 Bellingham, Washington

for ABC Recycling Realty Corp.

December 8, 2023

554 West Bakerview Road Bellingham, Washington 98226 360.647.1510

Draft Remedial Investigation Report

Marine Drive Property Whatcom County Tax Parcel 380223106374 Bellingham, Washington

File No. 26963-002-00

December 8, 2023

Prepared for:	

ABC Recycling Realty Corp. 8081 Meadow Avenue Burnaby, British Columbia V3N 2V9

Attention: Viral Patel, Environmental Manager

Prepared by:

GeoEngineers, Inc. 554 West Bakerview Road Bellingham, Washington 98226 360.647.1510

Mark Havighorst, P.E. Associate Engineer

MH:cdb

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

EXE	CUTIVE	SUMMARY	ES-1
1.0	INTRO	DUCTION	1
1.1	. Obiec	tives	2
	-	atory Framework	
2.0	_	GROUND	
2 1	Prone	rty Description and Land Use	2
		unding Properties	
		istory	
		gy and Hydrogeology	
		Soil Conditions	
		Groundwater Conditions	
2.5		onmental Investigation Summary	
		Preliminary Conceptual Site Model	
	2.5.2.		
	2.5.3.	Soil Analytical Results	6
	2.5.4.	Grab Groundwater Sampling	11
2.6	. Key F	indings	12
	2.6.1.	Western Area	12
	2.6.2.	Central Area	12
	2.6.3.	Eastern Area	13
2.7	. Conce	eptual Site Model	14
	2.7.1.	Confirmed and Suspected Sources of Contamination	14
	2.7.2.	Contaminants of Concern	14
	2.7.3.	Media of Concern	15
	2.7.4.	Contaminant Fate and Transport	15
	2.7.5.	Potential Exposure Pathways and Receptors	15
	2.7.6.	Terrestrial Ecological Evaluation	16
3.0	PRELI	MINARY CLEANUP STANDARDS	17
3.1	. Clean	up Levels	17
3.2	. Points	s of Compliance	18
		MARY, DATA GAPS, AND PROPOSED ADDITIONAL INVESTIGATION STRATEGY	
		Eastern and Western Areas	
		Central Area	
5.0	LIMIT	ATIONS	22
		RENCES	

LIST OF TABLES

Table 1. Summary of Soil Investigation Results

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Test Pit and Boring Locations
- Figure 3. Summary of Shallow Soil Sample Analytical Results
- Figure 4. Summary of Intermediate Soil Sample Analytical Results
- Figure 5. Summary of Deep Soil Sample Analytical Results
- Figure 6. Summary of Grab Groundwater Analytical Results

APPENDICES

- Appendix A. Previous Environmental Investigation Boring Logs
- Appendix B. Previous Environmental Investigation Tables
- Appendix C. Previous Environmental Investigation Laboratory Analytical Reports
- Appendix D. Terrestrial Ecological Evaluation
- Appendix E. Report Limitations and Guidelines for Use

EXECUTIVE SUMMARY

GeoEngineers, Inc. (GeoEngineers) has prepared this Remedial Investigation Report (RI Report) on behalf of ABC Recycling Realty Corp. (ABC Recycling) for Whatcom County Washington Tax Parcel 380223106374 (referred to herein as the Marine Drive Property). The RI Report is being submitted as part of an application for enrollment in the Washington State Department of Ecology Expedited Voluntary Cleanup Program (VCP). This RI Report documents the current environmental conditions at the Marine Drive Property and summarizes the planned redevelopment of the Marine Drive Property. The information presented in this RI Report is intended to support the development and evaluation of technically feasible cleanup alternatives in accordance with Sections 360 through 390 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-360 through 173-340-390).

The Marine Drive Property historically was owned by Lehigh Hanson and used in connection with operation of the Lehigh Northwest Cement Co. (aka Columbia Tilbury Cement Company) facility at 741 Marine Drive. The cement plant is listed under Ecology's LUST ID 4344 for a confirmed release of diesel fuel during fuel transfer. Ecology issued a "Reported Cleaned Up" letter for the release in 2002. The Cement Plant also is listed under Facility ID 2868 and Cleanup Site ID 3927 for a Site Hazard Assessment performed to evaluate impacts from cement kiln dust to surface water, groundwater, and soil in 1993. A No Further Action determination based on the Site Hazard Assessment was issued in 1993.

For the purposes of this RI Report the Marine Drive Property has been divided into the following three areas:

- Western Area. This area comprises approximately 7.59 acres that is undeveloped and forested.
- **Central Area.** This area comprises approximately 9.34 acres. An approximately 2.2-acre portion of the Central Area adjacent to Marine Drive is undeveloped and forested. The remaining approximately 6.9 acres historically was used as a storage yard associated with operation of the Cement Plant. The storage yard is covered with approximately 0.5 to 1.5 feet of compacted gravel.
- **Eastern Area.** This area comprises approximately 2.76 acres that is undeveloped and forested.

An environmental investigation was performed in 2020 as part of environmental due diligence prior to acquisition of the Marine Drive Property by ABC Recycling. Sampling activities including collecting soil samples from borings and test pits and grab groundwater samples from borings at the Marine Drive Property and analyzing the samples for contaminants of potential concern (COPCs) associated with operation of the Cement Plant, including priority pollutant metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated bi-phenyls (PCBs), dioxins, and furans.

The locations of the test pits and borings were selected to evaluate native materials in the undeveloped and forested Western and Eastern Areas, the quality of fill material emplaced in the storage yard in the Central Area and potentially impacted material based on field observations in the storage area.

Sampling identified the following areas of potential concern (AOPCs) in only the Central Area where concentrations of metals, PAHs, and/or dioxins and furans, exceed Model Toxics Control Act cleanup levels (CULs) in shallow (2 feet or less below ground surface) and/or intermediate (greater than 2 but less than approximately 15 feet below ground surface):

- Fill material. Some of the fill material in a portion of the Central Area is impacted with antimony, arsenic, and/or cadmium at concentrations exceeding Method A unrestricted CULs and Method B CULs for direct contact and/or protection of groundwater.
- **Native material.** Intermediate soil in a test pit in the southern portion of the Central Area is impacted with antimony at a concentration exceeding the Method B protection of groundwater CUL and arsenic at a concentration exceeding the Method A unrestricted, Method B direct contact and protection of groundwater, and Method A industrial CULs.
- Limestone-like material. A mound of limestone-like material present in the southwestern portion of the Central Area is impacted with arsenic, cadmium, and lead at concentrations exceeding the Method A unrestricted CUL, arsenic and thallium at concentrations exceeding the Method B direct contact CUL, and antimony, arsenic, cadmium, lead, and selenium at concentrations exceeding the Method B protection of groundwater CUL. The concentrations of arsenic, cadmium, and lead also exceed the Method A and/or C industrial CULs.
- Apparent creosote-treated debris. Shallow soil in a test pit containing apparent creosote-treated debris in the southwestern portion of the Central Area is impacted with carcinogenic PAHs (i.e., benzo(a)pyrene and the total cPAH toxic equivalent) at concentrations exceeding the Method A unrestricted CUL, and dioxins (i.e., hexachlorodibenzo-p-dioxin and the total dioxin/furan toxic equivalent) at concentrations exceeding the Method B direct contact CUL.
- Area was observed to have a metallic sheen and is impacted with antimony at a concentration exceeding the Method B protection of groundwater CUL, and benzo(a)pyrene and total naphthalenes at concentrations exceeding Method A unrestricted CULs. The concentration of total naphthalenes also exceeds the Method A industrial CUL.

COPCs have not been detected at concentrations exceeding CULs in groundwater at the Marine Drive Property.

Based on the results of the environmental investigation:

- The suspected source of contaminated soil at the Marine Drive Property is placement of imported fill material and historical use as a storage yard for the Cement Plant,
- Contaminants of concern (COCs) for the Marine Drive Property are metals, PAHs, and dioxins in shallow and/or intermediate soil.
- Potential exposure pathways for the Marine Drive Property include direct contact with soil and leaching of contaminant in soil to groundwater.
- The extent of COCs have not been fully evaluated and the potential for contaminants in soil to leach to groundwater has not been fully evaluated.

This RI Report proposes a strategy for additional remedial investigation activities to close data gaps and evaluate the extents of contaminated soil and the potential presence of contaminated groundwater. The proposed scope of work to address the data gaps will be presented in a separate work plan submitted to Ecology.

ABC Recycling plans to redevelop the portions of the Central Area where soil with concentrations of COCs exceeding relevant CULs has been detected. The redevelopment will include excavation and offsite disposal of soil from some of the AOPCs and covering soil in the Central Area with buildings, hardscapes, and other infrastructure. The approach for addressing contaminated soil and contaminated groundwater (if encountered) will be presented in a forthcoming Feasibility Study and Cleanup Action Plan.

This Executive Summary should be used only in the context of the full report for which it is intended.

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) has prepared this Remedial Investigation (RI) Report on behalf of ABC Recycling Realty Corp. (ABC Recycling) for Whatcom County Washington Tax Parcel 380223106374 and Property ID 188503 (referred to herein as the Marine Drive Property). The location of the Marine Drive Property is shown on Figure 1. The Marine Drive Property features are shown on Figure 2. General property information is summarized below.

GENERAL PROPERTY INFORMATION

Project Contacts							
Property Owner	ABC Recycling Realty Corp.						
Environmental Consultant	GeoEngineers, Inc Mark Havighorst, P.E. (Project Manager)						
Property Information and Locati	on						
Property Address	No address is available. The property consists of Whatcom County Tax Parcel 380223106374						
Approximate Surface Elevation	Approximately 85 to 100 feet (North American Vertical Datum 1988 [NAVD88]).						
General Description	The property is located south of Marine Drive and north of the BNSF Railway right-of-way.						
Parcel Number	380223106374						
GPS Coordinates	48°46'12''N, 122°31'27"W						
Section, Township, and Range	Section 23, Township 38N, Range E						
Geologic Setting and Subsurface	e Conditions						
Geologic Setting	Puget Sound Lowlands						
Nearest Surface Water Body	Puget Sound (Bellingham Bay) is approximately 800 feet to the southwest						
Soil and Geologic Conditions	Glacially deposited sediments						
Depth to Groundwater	Approximately 8.5 feet below ground surface						
Inferred Direction of Groundwater Flow	To the southwest toward Puget Sound based on topography and proximity to Puget Sound.						
Regulatory Database							
Cleanup Site ID	Not applicable						
Facility/Site ID	Not applicable						
UST Site No.	Not applicable						
LUST Release No.	Not applicable						

Notes:

bgs = below ground surface

NAVD88 = North American Vertical Datum of 1988

Based on the results of an environmental investigation conducted at the Marine Drive Property in October 2020 (further discussed in Section 2.5):

- Contaminants of potential concern (COPCs) associated with operation of the Cement Plant at the property at 741 Marine Drive in Bellingham, including priority pollutant metals, polycyclic aromatic hydrocarbons (PAHs), and dioxins are present at concentrations exceeding Washington State Model Toxics Control Act (MTCA) Method A unrestricted, Method B direct contact, and/or Method B protection of groundwater cleanup levels (CULs) in soil in some portions of the Marine Drive Property. The concentrations of metals and total naphthalenes in soil in some portions of the Marine Drive property also exceed Method A or C industrial CULs.
- Shallow groundwater has been detected in temporary groundwater monitoring wells at depths as shallow as approximately 8.5 feet bgs at the Marine Drive Property. COPCs have not been detected at concentrations exceeding CULs in shallow groundwater at the Marine Drive Property.

1.1. Objectives

This RI Report documents the environmental conditions at the Marine Drive Property, summarizes the planned redevelopment of the Marine Drive Property, and proposes a strategy for additional remedial investigation activities to close data gaps and evaluate the extents of contaminated soil and the potential presence of contaminated groundwater. The information presented in this RI Report is intended to support the development and evaluation of technically feasible cleanup alternatives in accordance with Sections 360 through 390 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-360 through 173-340-390).

1.2. Regulatory Framework

The RI Report is being submitted as part of an application for enrollment in the Washington State Department of Ecology (Ecology) Expedited Voluntary Cleanup Program (VCP).

2.0 BACKGROUND

This section provides background information relevant for this RI.

2.1. Property Description and Land Use

The Marine Drive Property comprises 19.69 acres and consists of Whatcom County Tax Parcel 380223106374 and Property ID 188503. The elevation of the Marine Drive Property ranges from approximately 85 to 100 feet.

The Marine Drive Property is zoned Heavy Impact industrial (Whatcom County Land Use Code HII). ABC Recycling plans to redevelop the Marine Drive Property for continued industrial use.

For the purpose of this RI Report the Marine Drive Property is divided into the following three areas:

■ **Western Area.** This area comprises approximately 7.59 acres that is undeveloped and heavily forested. No significant redevelopment is planned for the Western Area.

- Central Area. This area comprises approximately 9.34 acres. The Central Area was cleared between 1968 and 1971 for use as a materials storage area for the cement plant operations at the facility at 741 Marine Drive. The Central Area is covered with compacted gravel and since 2006 has been used to store materials, equipment, and metal shipping containers. Redevelopment activities planned for the Central Area include removal of materials, equipment, and containers; minor grading and trenching; construction of subsurface utilities, concrete slab-on grade foundations and working surfaces, asphalt-paved service yards and roadways, two buildings, and other hardscape features; and installation of industrial equipment. When redevelopment activities are completed the entirety of the Central Area will be covered with concrete, asphalt, or buildings.
- Eastern Area. This area comprises approximately 2.76 acres that is undeveloped and heavily vegetated. Redevelopment activities in the Eastern Area of the Marine Drive Property will include removal of materials and equipment temporarily stored in this area; clearing and grubbing of part of the eastern portion; minor grading and trenching; construction of subsurface utilities, a concrete slab-on grade building foundation and parking area, an office building; and construction of a stormwater detention pond and treatment system. A portion of the stormwater detention pond will be constructed below the current grade. When redevelopment activities are completed the entirety of the Eastern Area will be covered with compacted gravel, concrete, buildings, the stormwater detention pond, or existing and new vegetation.

2.2. Surrounding Properties

The Marine Drive Property is bounded by the following rights-of-way and properties shown on Figure 2:

- North Marine Drive and various properties zoned Light Impact Industrial (LII);
- South BNSF Railway right-of-way and the Lehigh Northwest Cement Co facility (741 Marine Drive),
 which is zoned Heavy Impact Industrial (HII);
- East a property comprising Whatcom County tax lot 38022321328 developed with a church and zoned Neighborhood Commercial (NC);
- West an undeveloped property comprising Whatcom County tax lot 3802230414 and zoned Light Impact Industrial (LII).

Properties zoned for urban residential use (Whatcom County land use codes UR3, UR6, and URMX) are located within approximately 1/8-mile of the Marine Drive Property.

2.3. Site History

The Marine Drive Property historically was owned by Lehigh Hanson and used in connection with operation of the Lehigh Northwest Cement Co (aka Columbia Tilbury Cement Company) facility located at 741 Marine Drive in Bellingham (referred to herein as the Cement Plant). The Cement Plant is listed under Ecology's LUST ID 4344 for a confirmed release of diesel fuel during fuel transfer. Ecology issued a "Reported Cleaned Up" (RCU) letter for the release in 2002. The Cement Plant also is listed under Facility ID 2868 and Cleanup Site ID 3927 for a Site Hazard Assessment performed to evaluate impacts from cement kiln dust to surface water, groundwater, and soil in 1993. A No Further Action determination based on the Site Hazard Assessment was issued in 1993.

The Marine Drive Property was undeveloped and forested until 1968. A portion of the Central Area was cleared between 1968 and 1971 for use as a storage yard for the Cement Plant. The materials stored in the yard historically included stockpiles of limestone. A comprehensive list of other materials potentially stored in the Central Area is not available. A portion of the Central Area was covered with gravel and compacted in 2006. Since then it has been used to store only equipment and metal shipping containers. The Western Area and Eastern Area remain undeveloped.

2.4. Geology and Hydrogeology

This section summarizes geology and hydrogeology at the Marine Drive Property based on the results of a Phase 2 environmental site assessment (ESA) of the Marine Drive Property performed by Anchor QEA, LLC (Anchor) in November 2020. The results of the Phase 2 ESA were described in the Phase 2 Environmental Assessment Report prepared by Anchor and dated August 2023 (Phase 2 ESA Report).

2.4.1. Soil Conditions

According to the United States Geological Survey (USGS) Bellingham topographic map, the ground surface of the Marine Drive Property and surrounding area slopes down gently to the west-southwest toward Bellingham Bay (Washington Division of Geology and Earth Sciences). The underlying soil is identified as Pleistocene deposits (Sumas outwash Qso) consisting of loose, moderately to well-sorted gravel with local boulders, sandy gravel, minor gravelly medium to coarse sand, and rare sand to silt.

The Phase 2 ESA included excavating 17 test pits in the Western, Central, and Eastern Areas, and advancing 6 borings in the Central Area. The approximate locations of the test pits and borings are shown on Figure 2. The following characterization of soil conditions in the Western, Central, and Eastern areas of the Marine Drive Property are based on observations during those test pitting and boring activities.

- **Western Area.** Two test pits (TP-1 and TP-2) were excavated to depths ranging from 1.5 to 2 feet bgs. Soil encountered in the test pits generally consisted of fine silt and sand with some organic matter.
- Central Area. Eleven test pits (TP-3 through TP-12 and TP-16) were excavated to depths ranging from 0.5 to 5.5 feet bgs and 6 borings were advanced to depths ranging approximately 15 to 27 feet bgs. Soil in test pits generally consisted of compacted gravel mixed with fine silt and sand and occasional organics to a depth of up to approximately 2 feet bgs. Underlying the fill is interbedded sand with silt and clayey silt to a depth of approximately 27 feet bgs. A hard clay layer was encountered in several borings at depths ranging from approximately 10 to 22 feet bgs.
- **Eastern Area.** Four test pits (TP-13, TP-14, TP-15, and TP-17) were excavated to a depth of 2 feet bgs. Soil in the test pits generally consisted of fine silt and sand with some organic matter.

2.4.2. Groundwater Conditions

Shallow groundwater was encountered in borings completed in Central Area of the Marine Drive Property at depths ranging from 8.5 to 24 feet bgs.

Based on the proximately of the Marine Drive Property to Puget Sound and local topography, the inferred groundwater flow direction is to the west-southwest.

2.5. Environmental Investigation Summary

Anchor performed a Phase 2 ESA of the Marine Drive Property in November 2020. The objective for the Phase 2 ESA was to evaluate whether use of the Marine Drive Property by Lehigh Hanson as a storage yard or activities at nearby properties have impacted the Marine Drive Property. Phase 2 ESA included preparing a preliminary conceptual site model (CSM) and collecting soil and grab groundwater samples for laboratory analysis of COPCs. The preliminary CSM and the results of soil and grab groundwater sampling presented in the Phase 2 ESA Report are summarized as follows.

2.5.1. Preliminary Conceptual Site Model

The preliminary CSM described in the Phase 2 ESA Report proposed that soil at the Marine Drive Property may have been impacted by the following operations:

- Historical material stockpiling in the Central Area;
- Leaching of metals from large containers in the Central Area;
- Releases of gasoline, diesel, heavy oil, or hydraulic fluid from maintenance, storage, or operation of heavy machinery in the Central Area;
- Fill material emplaced in the Central Area; and
- Airborne kiln dust from the Cement Plant.

The preliminary CSM proposed that groundwater at the Marine Drive Property may be impacted as the result of contaminants in soil at the Marine Drive Property migrating to groundwater or from groundwater at nearby properties migrating onto the Marine Drive Property.

Based on the operations at the Marine Drive Property and Cement Plant the preliminary CSM identified the following COPCs as potential exposure risks for human receptors:

- Priority pollutant metals (antimony, arsenic, beryllium, cadmium chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc);
- Petroleum hydrocarbons as gasoline-range organics (GRO), diesel-range organics (DRO), and oil-range organics (ORO);
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs); and
- Dioxins and furans.

2.5.2. Soil Sampling

Soil sampling for the Phase 2 ESA included forming 17 test pits (TP-1 through TP-17) using an excavator and advancing 6 borings (GP-1 through GP-6) using direct-push methods at the Marine Drive Property, collecting soil samples from the test pits and borings, and analyzing selected samples for one or more of the COPCs. The approximate locations of the test pits and borings are shown on Figure 2.

Test pits TP-1 and TP-2 were in the Western Area. The locations of these test pits were selected based on relatively easy access and samples were collected from TP-1 and TP-2 to evaluate general conditions in the undeveloped forested area.

Borings GP-1 through GP-6 and test pits TP-3 through TP-12 and TP-16 were in the Central Area. The locations for the borings and test pits were selected to evaluate general conditions in the storage yard. Test pits TP-3, TP-5, TP-6, and TP-16 also were selected based on field observations, specifically:

- The location of TP-3 was selected to evaluate a mound of fine limestone-like material;
- The location of TP-5 was selected to evaluate apparent creosote-treated debris;
- The location of TP-6 was selected to evaluate surface soil with a slight metallic sheen; and
- The location of TP-16 was selected to evaluate surface soil with a distinct color and composition, specifically dark brown in color with coarse-grained soil, as opposed to the fine-grained soil found in surficial samples elsewhere around the yard.

Test pits TP-13, TP-14, TP-15, and TP-17 were in the Eastern Area. The locations of these test pits were selected based on relatively easy access and samples were collected from TP-13, TP-14, TP-15, and TP-17 to evaluate general conditions in the undeveloped forested area east of the storage yard.

Thirty-five soil samples were collected from the test pits and borings within the following three depth intervals:

- Shallow 2 feet or less bgs;
- Intermediate greater than 2 feet bgs to approximately 15 feet bgs, which is the standard point of compliance for soil under MTCA; and
- Deep approximately 15 to 27 feet bgs.

Test pit and boring logs from the Phase 2 ESA Report are included as Appendix A. The depths of the test pits, borings, and soil samples collected from the test pits and borings, lithology encountered, and analytical sampling performed for the samples were summarized in Table 1 in the Phase 2 Report. That table is included in Appendix B.

2.5.3. Soil Analytical Results

Twenty-five soil samples were analyzed for one or more COPCs. Ten soil samples were not analyzed. The laboratory report for the Phase 2 ESA is included in Appendix C. Chemical analytical results for the soil samples collected during the Phase 2 ESA are presented in Table 3 in Appendix B and discussed below. A summary of the sampling and analytical scope of work is included in Table 1

2.5.3.1. Data Quality Analysis

The analytical data for the soil groundwater samples from the Phase 2 ESA were reviewed for quality assurance/quality control purposes and for use to evaluate soil conditions and define the nature and extent contamination. Data for which the sample location, sample depth, analytical methods, and chemical analytical results could be verified were considered acceptable for use. Based on our review of the

environmental data, no significant data quality exceptions were noted for the laboratory reports for the sample analyses.

2.5.3.2. Comparison to Regulatory Screening Levels

The analytical results for the soil are summarized and compared with Method A unrestricted, Method B direct contract, Method B protection of groundwater, Method A industrial, and Method C industrial CULs, and with the naturally occurring background concentrations for the Puget Sound region¹ in Table 3 in Appendix B. The results for the Western, Central, and Eastern Areas are described as follows and summarized in Table 1. The test pits and borings where COPCs were detected at concentrations exceeding Method A and B CULs in shallow, intermediate, and deep soil samples are shown on Figures 3, 4, and 5, respectively.

Western Area

Only shallow soil samples were collected from the Western Area test pits TP-1 and TP-2. The soil samples were analyzed for priority pollutant metals, GRO, DRO, ORO, and PAHs, but not for PCBs or dioxins and furans.

Only arsenic was detected at concentrations exceeding MTCA cleanup levels in the shallow soil samples collected from TP-1 and TP-2. The detected concentration was 11 milligrams per kilogram (mg/kg), which exceeds the Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration of 7 mg/kg for the Puget Sound region.²

Central Area

Shallow and intermediate soil samples were collected from test pits and deep soil samples were collected from borings in the Central Area. Sampling results are summarized as follows.

Shallow Soil

Shallow soil samples were collected from test pits TP-3 through TP-6, TP-8, TP-9, and TP-12, and analyzed for priority pollutant metals, GRO, DRO, ORO, and PAHs. Shallow soil samples collected from TP-5 and TP-6 also were analyzed for PCBs and dioxins and furans. Shallow soil samples were not collected from TP-10. Shallow soil samples were collected from TP-11 and TP-16 but not analyzed for COPCs.

Only metals, PCBs, and dioxins/furans were detected at concentrations exceeding MTCA CULs. These exceedances are summarized as follows.

TP-3. Arsenic, cadmium, and lead were detected at concentrations exceeding Method A unrestricted CULs. Arsenic and thallium were detected at concentrations exceeding Method B direct contact CULs.

² Natural Background Soil Metals Concentrations in Washington State. Washington State Department of Ecology, Toxics Cleanup Program. Publication #94-115. October 1994.

¹ Natural Background Soil Metals Concentrations in Washington State. Washington State Department of Ecology, Toxics Cleanup Program. Publication #94-115. October 1994.

Antimony, arsenic, cadmium, lead, selenium, and thallium were detected at concentrations exceeding the Method B CULs for protection of groundwater. The concentrations of arsenic, cadmium, and lead also exceed the Method A and/or C industrial CULs.

TP-4. Arsenic was detected at concentrations exceeding Method A unrestricted and Method B direct contact CULs. Antimony, arsenic, and cadmium were detected at concentrations exceeding the Method B CULs for protection of groundwater. The concentration of arsenic also exceeds the Method C industrial CUL.

TP-5. Arsenic and cadmium were detected at concentrations exceeding Method B direct contact and protection of groundwater CULs but consistent with the naturally occurring background concentrations for the Puget Sound region (7 mg/kg of arsenic and 1 mg/kg for cadmium).³ Antimony was detected at a concentration or 6 mg/kg, which exceeds the Method B protection of groundwater CUL of 5.4 mg/kg.

Concentrations of benzo(a)pyrene and the total cPAH toxic equivalent (TEQ) exceed the Method A unrestricted and Method B direct contract CULs, respectively.

The concentrations of total hexachlorodibenzo-p-dioxin and the total dioxin/furan TEQ exceed the Method B direct contact CULs.

TP-6. Arsenic and cadmium were detected at concentrations exceeding Method B direct contact and protection of groundwater CULs but consistent with the naturally occurring background concentrations for the Puget Sound region. Antimony was detected at a concentration or 6 mg/kg, which exceeds the Method B protection of groundwater CUL of 5.4 mg/kg.

Concentrations of benzo(a)pyrene and the total cPAH TEQ exceed the Method A unrestricted and Method B direct contract CULs, respectively. The concentration of total naphthalene exceeds the Method A unrestricted and Method B direct contract CULs. Concentrations of benzo(a)pyrene and the total cPAH TEQ exceed the Method A unrestricted and Method B direct contract CULs, respectively.

TP-8. Arsenic was detected at a concentration exceeding Method A unrestricted and Method B direct contact CULs. Antimony, arsenic, and cadmium were detected at concentrations exceeding Method B protection of groundwater CULs.

TP-9. Arsenic was detected at a concentration exceeding the Method A unrestricted CUL. Antimony and arsenic were detected at concentrations exceeding the Method B direct contact and protection of groundwater CULs.

TP-12. Arsenic was detected at a concentration exceeding Method A unrestricted and Method B direct contract CULs. The concentration of arsenic also exceeds the Method C industrial CUL. Antimony and arsenic were detected at concentrations exceeding Method B protection of groundwater CULs.

³ Natural Background Soil Metals Concentrations in Washington State. Washington State Department of Ecology, Toxics Cleanup Program. Publication #94-115. October 1994.

Cadmium was detected at a concentration exceeding Method B protection of groundwater CULs but consistent with the naturally occurring background concentration for the Puget Sound region.

Intermediate Soil

Intermediate soil samples were collected from test pits TP-7 and TP-16 and borings GP-1 through GP-6 and analyzed for metals, GRO, DRO, ORO, and PAHs. Intermediate soil samples collected from boring GP-1 and test pit TP-7 also was analyzed for PCBs and the sample from GP-1 was analyzed for dioxins and furans.

Only metals were detected at concentrations exceeding MTCA cleanup levels in the intermediate soil samples. These exceedances are summarized as follows.

- **TP-7.** An intermediate soil sample was collected from a depth range of 4.5 to 5 feet bgs. Arsenic was detected at a concentration exceeding Method A unrestricted, Method B protection of groundwater and Method A industrial CULs. Antimony was detected at a concentration exceeding the Method B protection of groundwater CUL. Cadmium was detected at a concentration exceeding the Method A unrestricted, Method B direct protection of groundwater, and Method A industrial CULs but consistent with the naturally occurring background concentration for the Puget Sound region.
- **TP-16.** An intermediate soil sample was collected from a depth range of 5 to 5.5 feet bgs. Arsenic and cadmium were detected at concentrations of 6.4 and 0.79 mg/kg, respectively. The arsenic concentration exceeds the Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentrations for the Puget Sound region. The cadmium concentration exceeds the Method B direct contact CUL but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-1.** An intermediate soil sample was collected from a depth interval of 7 to 9.7 feet bgs. Arsenic was detected at concentrations exceeding Method B direct contact and protection of groundwater CULs in the samples collected from both depth intervals. However, the detected concentration, which was 9.3 mg/kg, is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-2.** An intermediate soil sample was collected from a depth interval of 8 to 9 feet bgs. Arsenic was detected at a concentration of 9.8 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-3.** Intermediate soil samples were collected from depth intervals of 12.7 to 13.4 and 14.4 to 15.9 feet bgs. The sample collected from the depth interval of 12.7 to 13.4 feet bgs was not analyzed. Arsenic was detected at a concentration of 3.9 mg/kg in the soil sample collected from 14.4 to 15.9 feet bgs. This concentration exceeds the Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-4.** An intermediate soil sample was collected from a depth interval of 7.8 to 8.7 feet bgs. Arsenic was detected at a concentration of 14 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

Cadmium was detected at a concentration of 0.9 mg/kg in the soil sample collected from 7.8 to 8.7 feet bgs. This concentration exceeds the Method B protection of groundwater cleanup level of 0.69 mg/kg but is consistent with the naturally occurring background concentration for the Puget Sound region.

GP-5. An intermediate soil sample was collected from a depth interval of 6.9 to 7.5 feet bgs. Arsenic was detected at a concentration of 7.5 mg/kg, which exceeds the Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

GP-6. An intermediate soil sample was collected from a depth interval of 10.8 to 15 feet bgs. Arsenic was detected at a concentration of 3.6 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

Deep Soil

Deep soil samples were collected from borings GP-1, GP-2, GP-4, and GP-5 at depths ranging from 15 to 27 feet bgs and analyzed for metals, GRO, DRO, ORO, and PAHs. Deep soil samples were not analyzed for PCBs or dioxins and furans. A second deep soil sample was collected from boring GP-2 from a depth interval of 14 to 20 but not analyzed for COPCs.

Only metals were detected at concentrations exceeding MTCA cleanup levels in the deep soil samples. These exceedances are summarized as follows.

- **GP-1**. A deep soil sample was collected from a depth interval of 20 to 22 feet bgs. The sample consisted of wet soil. Arsenic was detected at a concentration of 6 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-2.** A deep soil sample was collected from a depth interval of 25 to 27 feet bgs. The sample consisted of wet soil. Arsenic was detected at a concentration of 5.3 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-4**. A deep soil sample was collected from a depth interval of 15 to 18.7 feet bgs. The sample consisted of wet soil. Arsenic was detected at a concentration of 6 mg/kg, which exceeds the Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.
- **GP-5.** A deep soil sample was collected from a depth interval of 20 to 22 feet bgs. The sample consisted of wet soil. Arsenic was detected at a concentration of 5 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

Eastern Area

Shallow soil samples were collected from test pits TP-13 through TP-15 and TP-17 and analyzed for total petroleum hydrocarbons as GRO, DRO, ORO, and PAHs. The soil samples collected were not analyzed for PCBs or dioxins and furans.

Only metals were detected at concentrations exceeding MTCA cleanup levels in the shallow soil samples collected from test pits in the Eastern Area. These exceedances are summarized as follows.

TP-13. Arsenic was detected at a concentration of 6.5 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

TP-14. Arsenic was detected at a concentration of 7.2 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

TP-15. Arsenic was detected at a concentration of 9.9 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

TP-17. Arsenic was detected at a concentration of 13 mg/kg, which exceeds Method B direct contact and protection of groundwater CULs but is consistent with the naturally occurring background concentration for the Puget Sound region.

Cadmium was detected at a concentration of 0.71 mg/kg, which exceeds the Method B protection of groundwater cleanup level of 0.69 mg/kg but is consistent with the naturally occurring background concentration of 1 mg/kg for the Puget Sound region.

2.5.4. Grab Groundwater Sampling

Temporary wells were installed at all 6 boring locations. Groundwater was encountered in only borings GP-2, GP-3, GP-4, and GP-6 at depths ranging from 8.5 to 24 feet bgs; however, groundwater sufficient for collection of samples was encountered in only borings GP-3 and GP-6 (Figure 6).

Grab groundwater samples were collected from boring GP-3 from a depth of 16.3 feet bgs and GP-6 from a depth of 12 feet bgs using low flow methods. The grab groundwater samples were analyzed for dissolved priority pollutant metals, GRO, DRO, ORO, and PAHs. A summary of the sampling and analytical scope of work were summarized in Table 2 in the Phase 2 Report. That table is included in Appendix B. The laboratory report for the Phase 2 ESA is included in Appendix C.

2.5.4.1. Data Quality Analysis

The analytical data for the grab groundwater samples from the Phase 2 ESA were reviewed for quality assurance/quality control purposes and for use to evaluate groundwater conditions and the nature and extent contamination. Data for which the sample location, sample depth, analytical methods, and chemical analytical results could be verified were considered acceptable for use. Based on our review of the environmental data, no significant data quality exceptions were noted for the laboratory reports for the sample analyses.

2.5.4.2. Comparison to Regulatory Screening Levels

The analytical results for the grab groundwater samples are summarized and compared with Method A and B CULs in Table 5 in Appendix B. COPCs including dissolved priority pollutant metals, GRO, DRO, ORO, and PAHs were not detected at concentrations exceeding Method A or B CULs.

2.6. Key Findings

Key findings for the three areas of the Marine Drive Property based on the results of Phase 2 ESA are as follows.

2.6.1. Western Area

The Western Area is forested, undeveloped, and has not been used for industrial purposes.

There is no evidence of historical releases occurring in the Western Area or impacts to shallow soil in the Western Area.

There is no evidence indicating that shallow soil in the Western Area is impacted with COPCs including priority pollutant metals, petroleum hydrocarbons, and PAHs at concentrations exceeding MTCA cleanup levels (and naturally occurring background levels for metals) in the Puget Sound region. Arsenic concentrations in the shallow soil samples collected from test pits TP-1 and TP-2, which represent the general condition of soil in the forest, exceed Method B direct contact and protection of groundwater CULs. However, the detected concentrations are consistent with naturally occurring background concentration for the Puget Sound region.

2.6.2. Central Area

The Central Area historically was forested. A portion of the forest was cleared between 1968 and 1971 for use as a materials storage area for the Cement Plant and was subsequently covered with compacted gravel, and since 2006 has been used to store materials, equipment, and metal shipping containers.

There is no evidence of historical releases occurring in the Central Area or that shallow and intermediate soil in the Central Area is impacted with petroleum hydrocarbons or PCBs at concentrations exceeding MTCA cleanup levels. However, the results of the Phase 2 ESA indicate that shallow and intermediate soil impacted with metals, PAHs, and/or dioxins and furans is present in the following areas of potential concern (AOPCs):

Fill material. Fill material consisting of gravelly soil was encountered in several test pits and borings in the non-forested portion of the Central Area to a depth of approximately 0.5 to 1.5 feet bgs. Sampling at test pits TP-4, TP-8, TP-9, and TP-12 suggests that the fill material in a portion of the Central Area may be impacted with arsenic at concentrations exceeding the Method A unrestricted CUL and naturally occurring background concentrations for the Puget Sound region, and antimony, arsenic, and cadmium at concentrations exceeding Method B CULs for direct contact and protection of groundwater. Intermediate soil samples were not collected from test pits TP-9 and TP-12 and intermediate soil samples were collected from TP-4 and TP-8 but were not analyzed for COPCs, and groundwater proximate to TP-4, TP-8, TP-9, and TP-12 was not evaluated as part of the Phase 2 ESA.

Native material at TP-7. Sampling from test pit TP-7 indicates that intermediate soil proximate to this test pit from a depth range of 4.5 to 5 feet bgs is impacted with antimony at a concentration exceeding the Method B protection of groundwater CUL and arsenic at a concentration exceeding the Method A unrestricted, Method B direct contact and protection of groundwater, and Method A industrial CULs. Shallow and deep soil samples were not collected from TP-7 and groundwater proximate to TP-7 was not evaluated as part of Phase 2 ESA.

A mound of fine limestone-like material. Sampling from test pit TP-3 indicates that shallow soil at the mound of limestone-like material is impacted with antimony, arsenic, cadmium, lead, selenium, and thallium at concentrations exceeding the Method A and B unrestricted CULs. The concentrations of arsenic, cadmium, and lead also exceed the Method A and/or C industrial cleanup levels. Intermediate soil samples were not collected from TP-3 and groundwater proximate to limestone-like material and TP-3 was not evaluated as part of the Phase 2 ESA.

Apparent creosote-treated debris. Sampling from test pit TP-5 indicates that shallow soil proximate to the creosote-treated debris is impacted with carcinogenic PAHs (i.e., benzo(a)pyrene and the total cPAH TEQ) at concentrations exceeding the Method A unrestricted CUL, and dioxins (i.e., hexachlorodibenzo-p-dioxin and the total dioxin/furan TEQ) at concentrations exceeding the Method B direct contract CUL. Intermediate and deep soil samples were not collected from TP-5 and groundwater proximate to limestone-like material and TP-3 was not evaluated as part of the Phase 2 ESA.

Shallow soil with metallic sheen. Sampling from test pit TP-6 indicates that shallow soil observed to have a metallic sheen is impacted with antimony at a concentration exceeding the Method B protection of groundwater CUL, benzo(a)pyrene and total naphthalenes at concentrations exceeding Method A unrestricted CULs. The concentration of total naphthalenes also exceeds the Method A industrial CUL. Intermediate and deep soil samples were not collected from TP-6 and groundwater proximate to TP-6 was not evaluated as part of the Phase 2 ESA.

There is no evidence that deep soil in the Central Area is impacted with COPCs including priority pollutant metals, petroleum hydrocarbons, and PAHs at concentrations exceeding MTCA cleanup levels and naturally occurring background levels for metals in the Puget Sound region. Arsenic concentrations in the deep soil samples collected from borings GP-1, GP-2, GP-4, and GP-5 exceed Method B direct contact and protection of groundwater CULs. However, the detected concentrations are consistent with naturally occurring background concentration for the Puget Sound region.

Shallow groundwater was encountered in borings in the Central Area at depths ranging from 8.5 to 24 feet bgs. Based on the proximately of the Marine Drive Property to surrounding surface water bodies (i.e., Puget Sound) and local topography, the inferred groundwater flow direction is to the west-southwest.

Dissolved priority pollutant metals, petroleum hydrocarbons, and PAHs were not detected in grab groundwater samples collected from the borings in the Central Area (GP-3 and GP-6).

2.6.3. Eastern Area

The Eastern Area is forested and undeveloped and has not been used for industrial purposes.

There is no evidence of historical releases occurring in the Eastern Area or impacts to shallow soil in the Eastern Area.

There is no evidence that shallow soil in the Eastern Area is impacted with COPCs including metals, petroleum hydrocarbons, and PAHs at concentrations exceeding MTCA cleanup levels and naturally occurring background levels for metals in the Puget Sound region. Arsenic concentrations in the shallow soil samples collected from test pits TP-13, TP-14, TP-15, and TP-17, and the cadmium concentration in the shallow soil sample collected from TP-17, which represent the general condition of soil in the forest, exceeds Method B direct contact and protection of groundwater CULs. However, the detected

concentrations are consistent with the naturally occurring background concentrations for the Puget Sound region.

2.7. Conceptual Site Model

An updated CSM was developed for the Marine Drive Property based on historical land use and the results of the environmental investigation described in Section 2.5. The CSM includes discussion of the confirmed and suspected sources of contamination, contaminants of concern (COCs), media of concern, and potential exposure pathways that could affect human or environmental health. It is anticipated that the CSM will be used to develop feasible cleanup options and to select a preferred cleanup action for the Marine Drive Property.

2.7.1. Confirmed and Suspected Sources of Contamination

Based on the results of the Phase 2 ESA, the areal and vertical extents of the COCs, which are the COPCs detected at concentrations exceeding relevant Method A and B CULs appears to be limited to soil in the Central Area where fill material was emplaced and at distinct areas where limestone-like material was stockpiled, apparent creosote treated debris was placed, and soil was observed to have a metallic sheen. The source(s) of the COCs in soil likely is historical use of the Central Area as a storage yard associated with operation of the Cement Plant.

ABC Recycling plans to redevelop the portions of the Central Area where COC-impacted soil has been detected. The redevelopment will include covering soil surfaces with buildings, hardscapes, and other infrastructure.

2.7.2. Contaminants of Concern

The COCs for the Marine Drive Property are the potentially hazardous compounds that have been detected in environmental media during the environmental investigations. Based on the chemical analytical results for soil samples obtained during the Phase 2 ESA, the preliminary COCs for the Marine Drive Property are the contaminants that were detected at concentrations greater than the Method A and/or B CULs as summarized in the following table.

Contaminants of Concern (COCs)	Contaminant Source					
Priority Pollutant Metals						
Antimony						
Arsenic	Imported fill from unknown source(s)					
Cadmium						
Lead						
Selenium	Limestone-like material					
Thallium						
PAHs						
Benzo(a)pyrene						
Total cPAH TEQ	Apparent creosote-treated debris and/or non-native soil with metallic sheen					
Naphthalene	non natio son mai motalilo sheen					
Dioxins						

2.7.3. Media of Concern

COCs have been detected in soil samples collected from the Marine Drive Property; therefore, soil is a media of concern for the Marine Drive Property.

COCs have not been detected in groundwater samples collected from the Marine Drive Property. However, samples have not been collected from shallow groundwater proximate to soil where COCs were detected at concentrations exceeding Method B CULs for the protection of groundwater; therefore, shallow groundwater is considered a potential media of concern for the Marine Drive Property.

2.7.4. Contaminant Fate and Transport

COCs in surface soil can potentially be mobilized in stormwater and as particulate in air. Based on topography stormwater in the Central Area generally flows towards the rail spur.

COCs in intermediate soil can potentially leach to shallow groundwater and be transported in groundwater, which based on proximity of the Marine Drive Property to surrounding surface water bodies (i.e., Puget Sound) and local topography, flows towards the west-southwest.

2.7.5. Potential Exposure Pathways and Receptors

Exposure pathways describe the mechanisms by which human and ecological receptors may be exposed to COCs originating from a site (WAC 340-350 (7)(e)(ii)). The following sections summarize potential exposure pathways for the Marine Drive Property.

2.7.5.1. Direct Contact

Soil with concentrations of COCs greater than the Method B CUL for direct contact is present in only the Central Area proximate to test pits TP-4, TP-5, TP-6, TP-8, TP-9, and TP-12 at depths of 0 to 0.5 feet bgs and TP-3 at depths from 1.5 to 2 feet bgs.

The Marine Drive Property currently is used and will continue to be used for industrial purposes, and concentrations of only arsenic in soil samples collected from test pits TP-3 and TP-4 exceed the Method C CUL for direct contact. The Marine Drive Property is unoccupied and access to the Central Area is limited by the surrounding features, such as the woodland and railroad spur.

It is anticipated that the direct contact to soil pathway will be eliminated as a result of redevelopment of the Marine Drive Property.

2.7.5.2. Soil Vapor to Indoor Air

Soil vapor (i.e., the air in the pore space between soil grains in the unsaturated zone) can be impacted by volatilization of volatile organic compounds (VOCs) from soil. Depending on type and construction of on-site structures, there is the potential for soil vapors contained in soil beyond the construction excavation footprint to impact indoor air through vapor intrusion. However, exposure via the soil vapor to indoor air pathway is not considered a high risk under current or future conditions at the Marine Drive Property for the following reasons:

- VOCs are not a COPC for the Marine Drive Property;
- Currently there are no buildings at the Marine Drive Property; and
- The new buildings planned as part of the redevelopment of the Marine Drive Property will be constructed using vapor barriers and concrete slab-on-grade foundations. This construction will limit the potential for soil vapors to infiltrate buildings.

Based on the above discussion, the soil vapor to indoor air pathway is not considered a complete exposure pathway.

2.7.5.3. Soil to Stormwater

Currently COC impacted soil is exposed to stormwater at the Marine Drive Property. As a result, this potential exposure pathway is complete.

2.7.5.4. Soil to Groundwater

Soil with concentrations of COCs exceeding the Method B CUL for protection of groundwater and not representative of natural background conditions was encountered in only shallow or intermediate soil samples collected from test pits TP-3, TP-4, TP-7, TP-8, TP-9, and TP-12 at depths no deeper than 5 feet bgs and not in intermediate soil proximate to shallow groundwater at the Marine Drive Property, which was first encountered in the Central Area at a depth of 8.5 feet bgs. However, groundwater samples have not been collected proximate to these test pits; therefore, the soil to groundwater exposure pathway is considered potentially complete.

2.7.6. Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 for any site where a release of hazardous substances to soil has occurred. The regulation requires that one of the following actions be taken:

- Document a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conduct a simplified TEE in accordance with WAC 173-340-7492; or
- Conduct a site-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(b), the Marine Property is excluded from a TEE because all COPC-impacted soil will be covered by physical barriers consisting of buildings, hardscapes, and paved surfaces that prevent exposure to plants and wildlife, provided that institutional controls are used to manage remaining contamination at the conclusion of redevelopment construction, which may occur as early as the end of 2025. Under these conditions, no further consideration of terrestrial ecological impacts is required under MTCA. The Ecology TEE form for the Marine Drive Property is provided in Appendix D.

3.0 PRELIMINARY CLEANUP STANDARDS

Cleanup standards consist of 1) CULs that are protective of human health and the environment, and 2) the point of compliance at which the CULs must be met. The preliminary cleanup standards proposed for the Marine Drive Property area as follows.

3.1. Cleanup Levels

The preliminary cleanup standards for COC-impacted soil at the Marine Drive Property are the lowest Method A and B CULs for COCs for the potential exposure pathways and receptors described in Section 2.7.5. These include the following:

- Antimony 5.4 mg/kg, Method B protection of groundwater CUL;
- Arsenic 20 mg/kg, Method A unrestricted CUL;
- Cadmium 2 mg/kg, Method A unrestricted CUL;
- Lead 250 mg/kg, Method A unrestricted CUL;
- Naphthalenes 5 mg/kg, Method A unrestricted CUL;
- cPAHs 0.1 mg/kg, Method A unrestricted CUL; and
- Dioxin/Furan Toxicity Equivalency Factor 13 nanograms per kilogram, Method B direct contact CUL.

COC-impacted groundwater has not been detected at the Marine Drive Property; therefore, a preliminary cleanup standard for COC-impacted groundwater is not proposed at this time.

It is anticipated that a Feasibility Study and Cleanup Action Plan will be prepared for the Marine Drive Property proposing industrial CULs as the final cleanup standards for the Marine Drive Property for the following reasons:

- The Marine Drive Property is zoned for Heavy Impact Industrial (Whatcom County land use code HII); therefore, it meets the general criteria for an industrial property under Washington Administrative Code (WAC) 173-340-200.
- The Central Area is the only portion of the Marine Drive Property where concentrations of COPC in soil exceed CULs. The closest properties zoned for urban residential use are located within approximately 600 feet north of the Central Area. This distance exceeds the general criteria of "a few hundred feet" that may trigger application of unrestricted cleanup levels for the protection of residential receptors under WAC 173-340-745(b)(iii).

The following two industrial cleanup levels have been established under MTCA:

- Method A cleanup levels are based on relatively conservative exposure and toxicological assumptions and protection of groundwater.
- Method C cleanup levels are based on less conservative exposure and toxicological assumptions and not based on protection of groundwater.

GeoEngineers anticipates applying Method C industrial CULs for guiding cleanup of Marine Drive Property cleanup if it can be demonstrated that groundwater is not impacted and likely will not become impacted in the future, and Method A industrial cleanup levels if groundwater is impacted with COPCs. The industrial Method A and C CULs for soil and groundwater are presented in Tables 3 and 5, respectively in Appendix B.

3.2. Points of Compliance

The points of compliance are the locations at which the preliminary cleanup levels for the COCs in each medium of concern must be attained to meet the requirements of MTCA and support the issuance of an NFA determination from Ecology for the Marine Drive Property. The points of compliance for the Marine Drive Property were established in accordance with WAC 173-340-720(8) for soil and groundwater.

- The standard point of compliance for soil is defined as all soil and groundwater throughout the Marine Drive Property.
- The standard point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth that potentially could be impacted by COCs throughout the Marine Drive Property. This groundwater interval consists of the shallow groundwater-bearing zone at the Marine Drive Property.

4.0 SUMMARY, DATA GAPS, AND PROPOSED ADDITIONAL INVESTIGATION STRATEGY

The Marine Drive Property includes Eastern, Western, and Central Areas. A Phase 2 ESA of these areas was performed by Anchor in 2020 to evaluate potential impacts from COPCs associated with operation of the Cement Plant at the property at 741 Marine Drive. These COPCs included the following chemicals commonly associated with operation of a cement plant:

- Priority pollutant metals;
- Petroleum hydrocarbons as GRO, DRO, and ORO;
- PAHs;
- PCBs; and
- Dioxins and furans.

Shallow soil samples (0 to 2 feet bgs) were collected from test pits in the Eastern and Western Areas and shallow, intermediate (2 to 15 feet bgs), and deep (15 to 27 feet bgs) soil samples were collected from test pits and borings in the portion of the Central Area that has been developed for use as a storage yard for the cement plant. The soil samples were analyzed for one or more of the COPCs.

Shallow groundwater was encountered at a depth of approximately Grab groundwater samples were collected from 2 borings in the Central Area and analyzed for dissolved priority pollutant metals, petroleum hydrocarbons (GRO, DRO, ORO), and PAHs.

A summary of the findings of the environmental investigation, data gaps, and a proposed scope of work for additional investigation to address these data gaps and fully evaluate in accordance with MTCA the nature and extent of COPC-impacted environmental media in the Western, Eastern, and Central Areas is as follows.

4.1.1. Eastern and Western Areas

The Eastern and Western Areas are forested, undeveloped, and have not been used for industrial purposes. Additionally, the results of the historical environmental investigation performed in the Eastern and Western Areas suggest that activities associated with operation of the Cement Plant have not resulted in the presence of COPC-impacted shallow soil in the Eastern or Western Areas. Furthermore, there is no reason to believe based on the results of historical environmental investigations that deeper soil or groundwater in the Eastern and Western Areas are impacted with COPCs associated with operation of the cement plant. Accordingly, there are no data gaps and no additional investigation is proposed for the Eastern and Western Areas.

4.1.2. Central Area

The Central Area is the only portion of the Marine Drive Property that has been used for industrial purposes. The Central Area was cleared between 1968 and 1971 for use as a materials storage area for the cement plant. Most of the Central Area is covered with compacted gravel and since 2006 has been used to store materials, equipment, and metal shipping containers. The remainder of the Central Area is forested and undeveloped.

The results of the Phase 2 ESA indicate that shallow and intermediate soil impacted with COCs including metals, PAHs, and/or dioxins and furans at 5 AOPCs in the Central Area. The results of the Phase 2 ESA are not sufficient to fully characterize in accordance with MTCA soil and shallow groundwater in the AOPCs in the Central Area. A summary of the environmental conditions, data gaps, and proposed strategy for addressing these data gaps for soil and groundwater at each AOPC is described as follows. The proposed scope of work to address the data gaps will be presented in a separate work plan submitted to Ecology.

4.1.2.1. AOPC 1 - Fill Material

Environmental Conditions. Fill material consisting of compacted gravelly soil was encountered in several test pits and borings in the non-forested portion of the Central Area to a depth of approximately 0.5 to 1.5 feet bgs. Sampling at test pits TP-4, TP-8, TP-9, and TP-12 suggests that the fill material in portions of the Central Area may be impacted with arsenic at concentrations exceeding the Method A unrestricted CUL and naturally occurring background concentrations for the Puget Sound region, and antimony, arsenic, and cadmium at concentrations exceeding Method B CULs for direct contact and protection of groundwater.

Soil Data Gap and Proposed Scope of Work. The areal and vertical extents of COC-impacted fill material have not been determined; however, it is likely that the areal extent of COC-impacted fill may be discontinuous within and not exceed the footprint of visible fill observed during the Phase 2 ESA and shown on Figure 2. It also is likely that the vertical extent of COC-impacted fill likely is limited to within approximately 1.5 feet bgs, which is the maximum depth of fill observed during Phase 2 ESA. In

consideration of this likely scenario, it may be appropriate to characterize the extent of COC-impacted fill using structured composite sampling of the entire Central Area.

The proposed scope of work includes using the *incremental sampling method* (ISM) to delineate extents of COC-impacted fill.

Groundwater Data Gap and Proposed Scope of Work. Potential impacts from COCs in soil to groundwater proximate to TP-4, TP-8, TP-9, and TP-12 have not been evaluated. The proposed approach to address this data gap includes installation of groundwater monitoring wells proximate to TP-9, which are the test pits where COCs were detected at the highest concentrations in soil samples, and collection and analysis of groundwater samples from the wells for COCs.

4.1.2.2. AOPC 2 - Native Material at TP-7

Environmental Conditions. Sampling from test pit TP-7 indicates that intermediate soil proximate to this test pit from a depth range of 4.5 to 5 feet bgs is impacted with antimony at a concentration of 8.8 mg/kg which exceeds the Method B protection of groundwater CUL (5.4 mg/kg), and arsenic at a concentration of 25 mg/kg, which exceeds the Method A unrestricted (20 mg/kg), Method B direct contact (0.67 mg/kg) and protection of groundwater (2.9 mg/kg), and Method A industrial (20 mg/kg) CULs.

Soil Data Gap and Proposed Scope of Work. The areal and vertical extents of antimony and arsenic-impacted soil proximate to TP-7 have not been determined. This data gap would be addressed as part of the ISM sampling.

Groundwater Data Gap and Proposed Scope of Work. Potential impacts from antimony and arsenic in soil to groundwater proximate to TP-7 have not been evaluated. However, concentrations of antimony and arsenic in the intermediate soil sample collected from TP-7 only slightly exceed the Method B protection of groundwater CULs and are significantly less than concentrations of antimony and arsenic in shallow soil samples collected from TP-9 (75 mg/kg antimony and 160 mg/kg arsenic) and TP-12 (32 mg/kg antimony and 70 mg/kg arsenic). The proposed approach to address this data gap includes advancing a boring at TP-7, collecting soil samples near first encountered groundwater and a grab sample from shallow groundwater and analyzing the samples for priority pollutant metals.

4.1.2.3. AOPC 3 - Mound of Limestone-like Material

Environmental Conditions. Sampling from test pit TP-3 indicates that shallow soil at the mound of limestone-like material is impacted with antimony, arsenic, cadmium, lead, selenium, and thallium at concentrations exceeding the Method A unrestricted and Method B direct contact and protection of groundwater and CULs. The concentrations of arsenic, cadmium, and lead also exceed the Method A and/or C industrial cleanup levels.

Soil Data Gap and Proposed Scope of Work. The areal and vertical extents of antimony and arsenic-impacted limestone-like material proximate to TP-3 have not been determined. However, no additional work to evaluate the extents of the limestone like-material is proposed at this time. The apparent aerial extent of the limestone-like material based on observations has been covered with visqueen to prevent exposure to workers and stormwater. It is anticipated that the cleanup strategy for the Marine Drive Property proposed in a forthcoming FS and CAP will include excavation and off-site disposal of the limestone-like material and collection of excavation performance samples to verify that extents of limestone-like material with concentration of antimony and arsenic exceeding CULs has been removed.

Groundwater Data Gap and Proposed Scope of Work. Potential impacts from antimony and arsenic in soil to groundwater proximate to TP-3 have not been evaluated. The proposed approach to address this data gap includes installation of a groundwater monitoring well proximate to TP-3 and collection and analysis of groundwater samples from the well for COCs.

4.1.2.4. AOPC 4- Apparent Creosote-treated Debris

Environmental Conditions. Sampling from test pit TP-5 indicates that shallow soil proximate to the creosote-treated debris is impacted with carcinogenic PAHs (i.e., benzo(a)pyrene and the total cPAH TEQ) at concentrations exceeding the Method A unrestricted CUL, dioxins (i.e., hexachlorodibenzo-p-dioxin and the total dioxin/furan TEQ) at concentrations exceeding the Method B direct contact CUL, and antimony exceeding the Method B protection of groundwater CUL.

Soil Data Gap and Proposed Scope of Work. The areal and vertical extents of soil impacted with cPAHs and dioxins/furans proximate to TP-5 have not been determined. However, no additional work to evaluate this data gap is proposed at this time. The apparent aerial extent of the soil with creosote-treated debris based on observations has been covered with visqueen to prevent exposure to workers and stormwater. It is anticipated that the cleanup strategy for the Marine Drive Property proposed in a forthcoming FS and CAP will include excavation and off-site disposal of this soil and collection of excavation performance samples to verify that the extents of soil proximate to TP-5 with concentrations of cPAHs and dioxins/furans exceeding CULs has been removed.

Groundwater Data Gap and Proposed Scope of Work. Potential impacts from antimony in soil to groundwater proximate to TP-5 have not been evaluated. However, no additional work to evaluate this data gap is proposed at this time. A grab groundwater sample will be collected from the excavation pit, if groundwater is encountered during the excavation, and analyzed for priority pollutant metals to verify that groundwater proximate to TP-5 is not impacted with antimony at concentrations exceeding the Method B protection of groundwater CUL.

4.1.2.5. AOPC 5 - Shallow Soil with Metallic Sheen

Environmental Conditions. Sampling from test pit TP-6 indicates that shallow soil observed to have a metallic sheen is impacted with antimony at a concentration exceeding the Method B protection of groundwater CUL and benzo(a)pyrene and total naphthalenes at concentrations exceeding Method A unrestricted CULs. The concentration of total naphthalenes also exceeds the Method A industrial CUL.

Soil Data Gap and Proposed Scope of Work. The areal and vertical extents of soil impacted with antimony and cPAH proximate to TP-6 have not been determined. However, no additional work to evaluate this data gap is proposed at this time. The apparent aerial extent of the soil with metallic sheen based on observations has been covered with visqueen to prevent exposure to workers and stormwater. It is anticipated that the cleanup strategy for the Marine Drive Property proposed in a forthcoming FS and CAP will include excavation and off-site disposal of this soil and collection of excavation performance samples to verify that the extents of soil proximate to TP-6 with concentrations of antimony and cPAHs exceeding relevant CULs has been removed.

Groundwater Data Gap and Proposed Scope of Work. Potential impacts from antimony and arsenic in soil to groundwater proximate to TP-6 have not been evaluated. The proposed approach to address this data gap includes installation of a groundwater monitoring well proximate to TP-6 and collection and analysis of groundwater samples from the well for COCs.

5.0 LIMITATIONS

This RI Report has been prepared for use by ABC Recycling and their authorized agents. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix E, titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this report.

6.0 REFERENCES

Anchor QEA, LLC, 2020. Phase 2 Environmental Assessment Report, Marine Drive Property. August 2023.

Washington State Department of Ecology (Ecology), 1994. Natural Background Soil Metals Concentrations in Washington State. Ecology Publication #94-115.

United States Geological Survey (USGS), Preliminary Geologic Map of the Seattle South 7.5-Minute Series Quadrangle, Washington, 2011.

Table 1

Summary of Soil Investigation Results

Marine Drive Property Bellingham, Washington

	Area	Sample Dep	oth (feet bgs)			Analytes					MTCA Cleanup Level Exceedances ¹						
Sampling Location		Start	Denth Interval	Sample Description	Metals	Petroleum Hydrocarbons	PAHS	PCBs	Dioxins/ Furans	Method A Unrestricted	Method B Direct Contact	Method B Protection of Groundwater	Method A Industrial	Method C Industrial			
		5.7	9.7	Intermediate	Native soil	Х	Х	Х	Х	Х		As*	As*				
GP-1	Central	10	12.3	Intermediate	Native soil	-	-	-	ı	-							
		20	22	Deep	Native soil	Х	Х	Х	-	-		As*	As*				
		8	9	Intermediate	Native soil	Х	Х	Х	-	-		As*	As*				
GP-2	Central	14	20	Deep	Native soil	-	-	-	-	-							
		25	27	Deep	Native soil	Х	Х	Х	ı	-		As*	As*				
00.0	0	12.7	13.4	Intermediate	Native soil	-	-	-	-	-							
GP-3	Central	14.4	15.9	Intermediate	Native soil	Х	Х	Х	-	-		As*	As*				
00.4		• • •		7.8	8.7	Intermediate	Native soil	Х	Х	Х	-	-		As*	As*,Cd*		
GP-4	Central	15	18.7	Deep	Native soil	Х	Х	Х	-	-		As*	As*				
	Central	6.9	7.5	Intermediate	Native soil	Х	Х	Х	-	-		As*	As*				
GP-5		10	11	Intermediate	Native soil	-	-	-	-	-							
		20	22	Deep	Native soil	Х	Х	Х	-	_		As*	As*				
GP-6	Central	10.8	15	Intermediate	Native soil	Х	Х	Х	-	_		As*	As*				
TP-1	Western	0.5	1.5	Shallow	Native soil with organics	Х	Х	Х	-	_		As*	As*				
TP-2	Western	1.5	2	Shallow	Native soil	Х	Х	Х	-	-		As*	As*				
TP-3	Central	1.5	2	Shallow	Limestone-like material	х	х	Х	-	-	As, Cd, Pb	As, Th	Sb, As, Cd, Pb, Se	Cd, Pb	As		
TP-4	Central	0	0.5	Shallow	Fill	Х	Х	Х	-	-	As	As	Sb, As, Cd		As		
11-4	Central	3.5	4	Intermediate	Native soil	-	-	-	-	-							
TP-5	Central	0	0.5	Shallow	Creosote-treated debris	х	х	х	Х	x	B(a)P	As*, cPAH TEQ, HxCDD, dioxin/furan TEQ	Sb, As*, Cd*				
TP-6	Central	0	0.5	Shallow	Fill with metallic sheen	х	х	х	х	Х	B(a)P, total Naphthalenes	As*	As*, Cd*	Total Naphthalenes			
TP-7	Central	4.5	5	Intermediate	Native	Х	х	х	Х		As, Cd*		Sb, As, Cd*	As, Cd*			
TD 0	Central -	0	0.5	Shallow	Fill	х	Х	Х	-	-	As	As	Sb, As, Cd				
TP-8		2.5	3	Intermediate	Fill	-	-	-	-	-							
TP-9	Central	0	0.5	Shallow	Fill	Х	х	х	-	-	As	Sb, As	Sb, As				

Table 1

Summary of Soil Investigation Results

Marine Drive Property Bellingham, Washington

		Sample Depth (feet bgs)		Sample Depth (feet bgs)		Analytes						MTCA Cleanup Level Exceedances ¹					
Sampling Location	Area	Start	End	Depth Interval	Sample Description	Metals	Petroleum Hydrocarbons	PAHs	PCBs	Dioxins/ Furans	Method A Unrestricted	Method B Direct Contact	Method B Protection of Groundwater	Method A Industrial	Method C Industrial		
TP-10	Central	2	2.5	Intermediate	Fill	-	-	-	-	-							
TP-11	Central	0	0.5	Shallow	Fill	-	-	-	-	-							
IL-TT	Central	1.5	2	Shallow	Fill	-	-	-	-	-							
TP-12	Central	0	0.5	Shallow	Fill	х	х	х	-	-	As	As	Sb, As, Cd*	As			
TP-13	Eastern	1.5	2	Shallow	Native soil	Х	Х	Х	-	-		As*	As*				
TP-14	Eastern	1.5	2	Shallow	Native soil	Х	Х	Х	-	-		As*	As*				
TP-15	Eastern	1.5	2	Shallow	Native soil	Х	Х	Х	-	-		As*	As*				
		0	0.5	Shallow	Coarse-grained soil	-	-	-	-	-							
TP-16	Central	5	5.5	Intermediate	soil with distinct color and composition	Х	Х	Х	-	-		As*, Cd*	As*				
TP-17	Eastern	1.5	2	Shallow	Native soil	Х	Х	Х	-	-		As*	As*				

Notes:

* - concentration of metal analyte is consistent with natural background concentration for the Puget Sound region published in the Washington State Department of Ecology (Ecology), 1994. Natural Background Soil Metals Concentrations in Washington State. Ecology Publication #94-115.

1. Colors are consistent with color coding used in Appendix B tables.

As - arsenic

B(a)P - benzo(a)pyrene

bgs - below ground surface

Cd - cadmium

cPAH - carcinogenic polycyclic aromatic hydrocarbons

GP - Geoprobe boring

HxCDD - hexachlorodibenzo-p-dioxin

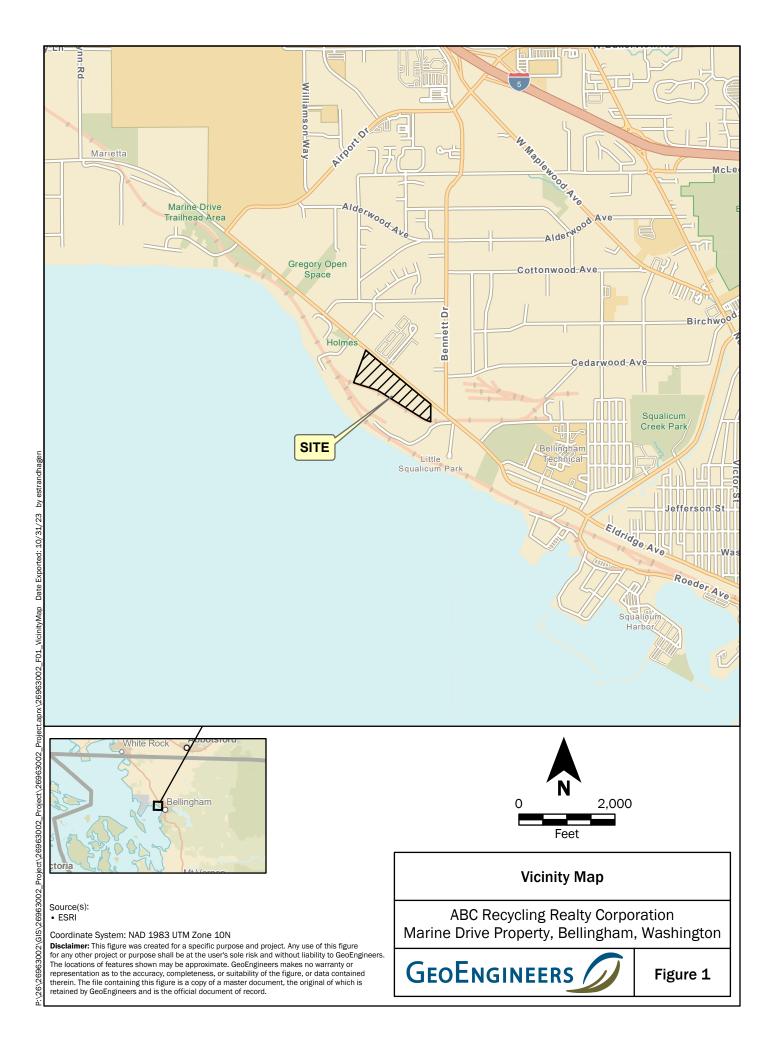
MTCA - Washington State Model Toxics Control Act

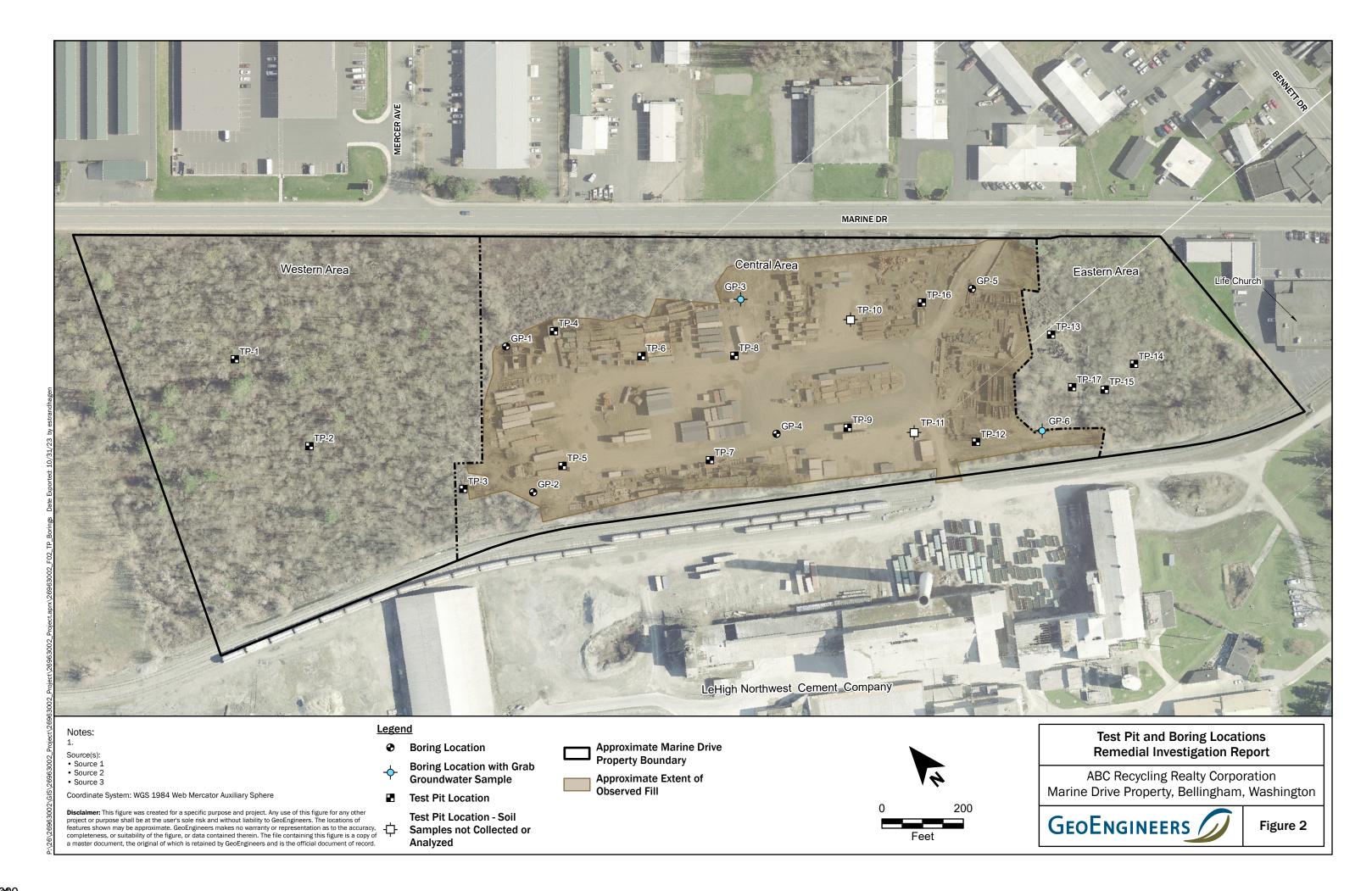
PAHs - polycyclic aromatic hydrocarbons

Pb - lead

PCBs - polychlorinated biphenyls

Sb - antimony


Se - selenium


TEQ - toxic equivalent

Th - thallium

TP - test pit

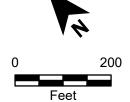
መረውጠር

Source(s):
• Whatcom County

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

■ Soil Sample Collected and Analyzed


> **Test Pit Location - Shallow** Soil Sample Collected but not Analyzed

Method A/B Cleanup Level and Method A/C Industrial Cleanup Level

Concentration Exceeds MTCA Method A/B Cleanup Level

Property Boundary

Approximate Extent of Observed Fill

Remedial Investigation Report

ABC Recycling Realty Corporation Marine Drive Property, Bellingham, Washington

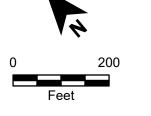
Figure 3

Source(s):
• Whatcom County

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Boring Location with Grab Groundwater Sample

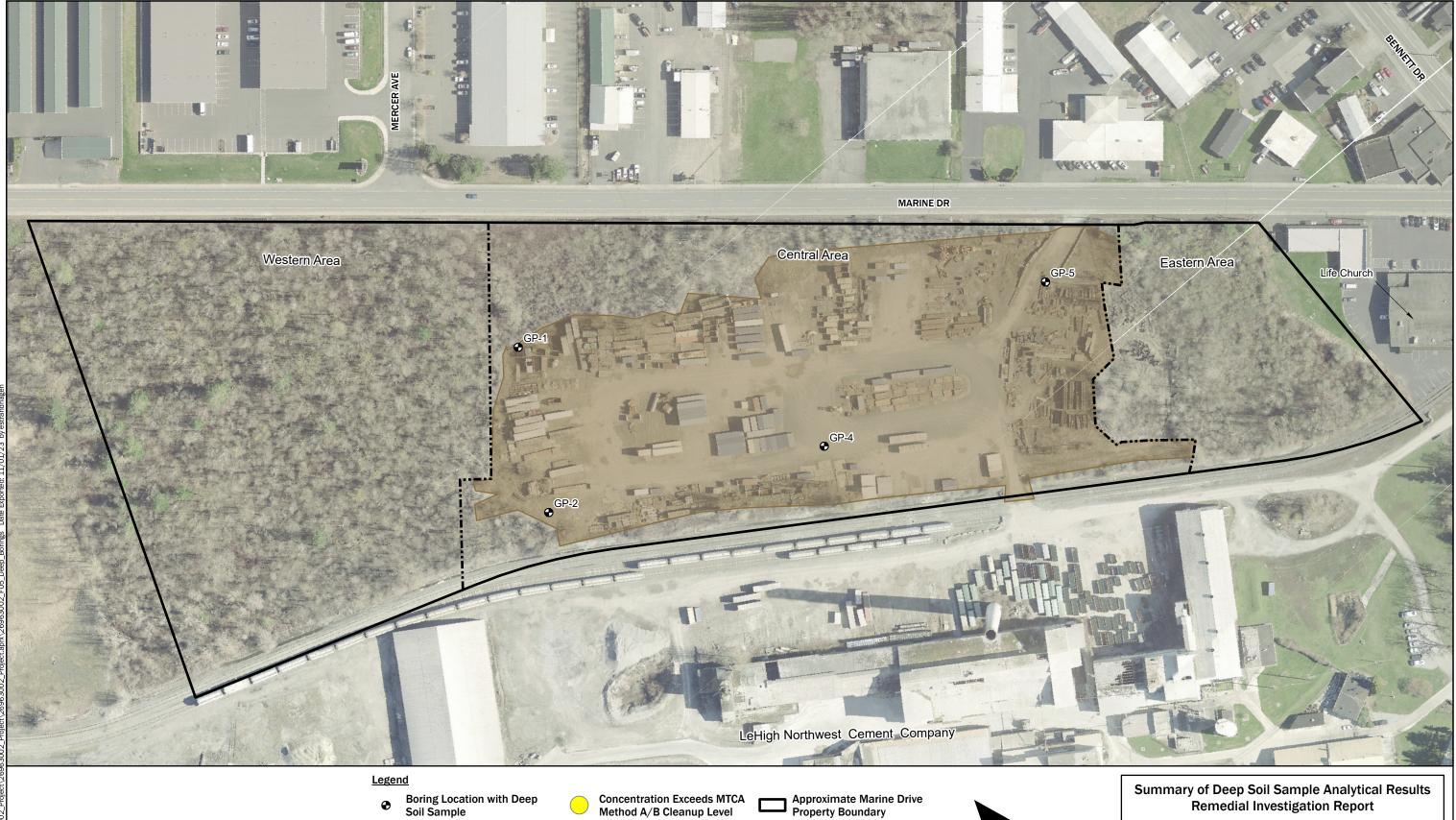

Test Pit Location -Intermediate Soil Sample **Collected and Analyzed**

Test Pit Location -- Intermediate Soil Sample Collected but not Analyzed Method A/B Cleanup Level and Method A/C Industrial Cleanup Level

Concentration Exceeds MTCA Method A/B Cleanup Level

Approximate Marine Drive Property Boundary

Approximate Extent of Observed Fill



Remedial Investigation Report

ABC Recycling Realty Corporation Marine Drive Property, Bellingham, Washington

Figure 4

Method A/B Cleanup Level

Concentration Exceeds MTCA

Method A/B Cleanup Level

and Method A/C Industrial

Cleanup Level

Approximate Extent of

Observed Fill

Feet

Remedial Investigation Report

ABC Recycling Realty Corporation Marine Drive Property, Bellingham, Washington

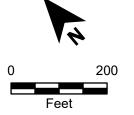
Figure 5

Source(s):
• Whatcom County

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Source(s):
• Whatcom County


Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Boring Location with Grab Groundwater Sample

Approximate Marine Drive Property Boundary

Approximate Extent of Observed Fill

Remedial Investigation Report

ABC Recycling Realty Corporation Marine Drive Property, Bellingham, Washington

Figure 6

APPENDIX A Previous Environmental Investigation Boring Logs

CLIENT/PROJECT NAME ARX VERY CLIVE TEST PIT # TP - PROJECT NUMBER 20205-01.01 DATE BEGAN 10 22 20 GEOLOGIST_M/ DATE COMPLETED 10 12420 EXCAVATION CONTRACTOR (ACCOUNT) TOTAL DEPTH 1.5 FF

6011	TECT DITL	20		EXCA	VATION	METH	HOD WALKS CLUBOR SHEET 1 OF 1
						R	.5"
	SAMPLING I	DATA	_			9	Field location of test pit
JNG DD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	
SAMPLING METHOD	SAMPL	FID / PI	RECOV	DEPTH (feet)	DEPTH	SOIL G (USCS)	LITHOLOGIC DESCRIPTION
vanol a Ugerl	17-1-05-15		1	5-15	1 2		ary-moist modium brown, eine grained shill, trace silt occassional organics (poots).
					3		HOLE GROWET (Warse), no suggestion (W1.5ft; ROF VERLE @ layer of grave)
					4		
					<u>5</u>		
					<u>6</u>		
					7		
					<u>8</u>		
-	MassC.						*Adje:
					9		
					<u>0</u>		
					1		
				15	<u>2</u>	1	
				4.0	3		
				100			
					4		
					<u>5</u>		\
					<u>6</u>		
					7		
					8		\
-					9		
					0		(78)

Notes:

conlected archive. 3 jars + 1 vial

TEST PIT # TP-2 CLIENT/PROJECT NAME ARC PENYCLING PROJECT NUMBER 20205~01.01 __ DATE BEGAN 1 22/20 DATE COMPLETED 1/22/2 GEOLOGIST_MH TOTAL DEPTH 21 EXCAVATION CONTRACTOR____ EXCAVATION METHOD WOUND a VARIE

	TEAT DIT L	20		EXCA	AMETE	2	OD WAN & a Wille SHEET OF I		
SOIL	TEST PIT LO			PIT DI	AMETE		Field location of test pit		
	SAMPLING [ATAC		0		MBOL	rield location of test pit		
ING DD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)			
SAMPLING METHOD	SAMPL	FID / P	RECO	DEPT!	DEPTI	SOIL (USCS	LITHOLOGIC DESCRIPTION		
	-0 :2 :6:3			15-2 N	# 1		0-0.75' moist dork burn, organic layer 0.75-2' day to myst gray brown fine grained coul with stight sut trace day		
where	TP-2-15-2			1.5"	<u>2</u>		no olor no argunes		
					3				
					4				
					5 6				
					7				
					<u>8</u>				
					9				
					0		\-		
					1				
					3				
					4				
					5				
					<u>e</u>				
					7	-			
					1 5	1			
,					2	2	FR		
lotes:						2	jaks + 1 vial		

A X	ANCHOR
L	QEA :::

CLIENT/PROJECT NAME ABC PECUCIVA TEST PIT # 193

PROJECT NUMBER 202005~01.01 DATE BEGAND PLUE

GEOLOGIST MH DATE COMPLETED PROJECT COMPLETED C

SOIL	. TEST PIT LO)G		PIT DI	AMETE	R S.	511
SAMPLING DATA							Field location of test pit
9 _N C	SAMPLE NUMBER		RECOVERY (feet)	DEPTH SAMPLED (feet)	IN FEET	SOIL GROUP SYMBOL (USCS)	
SAMPLING METHOD	SAMPLE	FID / PID (ppm)	RECOVE	DEPTH ((feet)	DEPTH IN FEET	SOIL GR (USCS)	LITHOLOGIC DESCRIPTION
OJ Stim	0,						0-1' medium gray
					1		0
	-40 -4			· 4= 0			
Mary	TP-3-15-2	-	ت	1-5-2	2		any light may thre mained limestone like
auger		-			2		with colors angular limestone pieces
					3		chally odor no organics
					4	9	2' nit vetusal my corner piece layer
							\
					<u>5</u>		
		\rightarrow			<u>6</u>		<u> </u>
_					7		
					-		
A					<u>8</u>		
					9		
							\
			-		0		_
		-			1		1
					-		\
					2		
					3		
		-			4		\
					4		
					<u>5</u>		
				He.	<u>6</u>		
					e _		
					7		1
-	· ·		-		<u>8</u>		
					의		
					9		
							Jan
	1 44				0		

Notes:

collected accrive. Total = 3 jars + 1 vial

CLIENT/PROJECT NAME ABC PECYCLING PROJECT NUMBER 20105-01.01 TEST PIT #_ TD U _ DATE BEGAN 10 21 20 DATE COMPLETED 10/2/1/2 GEOLOGIST_MU EXCAVATION CONTRACTOR AFC TOTAL DEPTH H FT

SOII.	. TEST PIT LO	ng.		EXCAN	VATION	METH	HOD EXCAVORED SHEET OF SHEET
	SAMPLING DATA						Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
-excounter	TP-4-0-0.5	~	_	0-05			0-0.5: moist, medium blown
	TP-4-3.5-4)		3.5~4	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		grey Fine grained soil, trace apavel (fine), partet of light after clayer soil, trace traces of start organics (roots), no odor 3.5-4: moist, light after clayer Fine arctined soil trace time armility trace organics (wood pieces), intrespersed post-colora soil. potentially metallic flakes (trace), no odof
Notes:	3 0	ja	RS	+ 1 Vi	al	FOR	e each interval

CLIENT/PROJECT NAME ABC RECYCLING Ph.2 TEST PIT # TP-5

PROJECT NUMBER 20205-01.01

DATE BEGAN 10/20/2000

GEOLOGIST MH

EXCAVATION CONTRACTOR AFC

EXCAVATION METHOD LXCOVOTOR

SHEET 1 OF 1

				EXCA	VATION	METH	OD excavator sheet of
SOIL TEST PIT LOG PIT DIA						R_3	
SAMPLING DATA						٦	Field location of test pit
NG D	SAMPLE NUMBER	(bpm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOUP SYMBOL	NW corner of yard
SAMPLING METHOD	SAMPLE	FID / PID (ppm)	RECOVI	DEPTH (feet)	DEPTH	SOIL GROUP (USCS)	LITHOLOGIC DESCRIPTION
exconotor	TP-5-0-05			0-05		0, 0	moist dark brown soft Fine
					1 1		agained soil tegro (5/1) sand this
							whom debels, we gravel (warse), no odor
					2		
							@ Ft concrete present
					3	- 5	
			-		4		
					<u>5</u>		
]		
					<u>6</u>		
					7		
		-					\
				11 / M/ M/ = 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1	. 8		
					9		
					1 7		
					<u>0</u>		\
							_
		_			1		1
		-	-		2		
1					-		
					3		
					4		
					ا ا		\
		-			5		1
					<u>6</u>		
					Ĭ		
					7		
]		
					8		
							\
					9	-	
p-					o		
Notes:	10×80	12)0	NFS	to I vi			

CLIENT/PROJECT NAME ABC PECYCLING TEST PIT # TP 10

PROJECT NUMBER 20205-01.01 DATE BEGAN 10 PA 20

GEOLOGIST MH DATE COMPLETED 10 24 PA

EXCAVATION CONTRACTOR AFC TOTAL DEPTH H FT

EXCAVATION METHOD EXCAVATOR SHEET 1 OF 1

SOIL	. TEST PIT LO)G			VATION AMETE		SHEET OF
	SAMPLING I			11100	WILL I L		Field location of test pit
ING	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	
SAMPLING METHOD		FID / PI	RECOV	DEPTH (feet)	DEPTH	SOIL G (USCS)	LITHOLOGIC DESCRIPTION
2 x CAVCUTOR	TP-10-0-0.5	- Company	_	0-05	1		n-05ft: moist, liant black, Fine grained soil, trace
					1		expanics (wood), moderate warse
					2		geower, moderate fine graver.
					3		one discrete pocket w/ metallic Flaves no odoe. Sikint sheen (menic
							@ 11-21 anthro material in fill
					4		@ 31911 - Still in compacted
					<u>5</u>		
					<u>6</u>		Q4'-PEFUSAL
					7	1	
		Supplies:			<u>8</u>		
					9		
					Ĭ		
	-				인		
					1	.4	
					<u>2</u>		
					3		
					4		
					<u>5</u>		
					<u>6</u>		
					7		
				<u> </u>	8		
					9		
_		-			0	- 1	
Notes:	a jurs +	1	rial	. And	120°D	000	Mic Material (hose, tarp, fabric)
3	6			M	con	561	Mic Material (hose, tarp, fabric) idated fill ~1-3 Ft in depth)

CLIENT/PROJECT NAME ABC RECYCLIVE TEST PIT # TD 7
PROJECT NUMBER 20205 -01.01 DATE BEGAN 10/2/20
GEOLOGIST MH DATE COMPLETED 10/2/20
EXCAVATION CONTRACTOR AFC TOTAL DEPTH 5 FL
EXCAVATION METHOD 2X (CAVINTOR SHEET OF L

SOIL	TEST PIT LO	OG		PIT DI	AMETE	R_2	Pt
	SAMPLING DATA						Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
0 2	N/A		-		-	0, 0	Surface - 45Ft was same
					1 2 3		same as 10/20/2020 sample
excavator	TP-7-4-5-5	Q		45-5	<u>4</u> <u>5</u>		soil trace Fine graves, trace
					<u>6</u>		Croor-like), no odde
					7		
			46-30mp		<u>8</u>		2 325
					9		
					<u>0</u> 1	3	
					<u>2</u>		
				9.	<u>3</u>		
					4		
					<u>5</u>		
					<u>6</u>	- 1	
					7 8		
					9		
_					<u>0</u>		

Notes: jaks + 1 vial

A	X	ANC	HOR
1		QEA	HOR

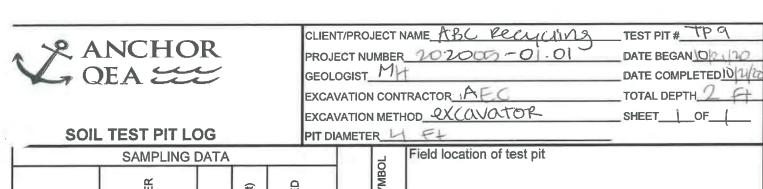
CLIENT/PROJECT NAME ABC BLYCNING TEST PIT # TPD

PROJECT NUMBER 202005 - 0 .0\

GEOLOGIST MH

EXCAVATION CONTRACTOR AEC

EXCAVATION METHOD &XCAVATOR


SHEET 1 OF 1

							HOD_ &X CONTOR SHEET 1 OF 1
SOIL	SOIL TEST PIT LOG PIT DI					R	3 F+
	SAMPLING	DATA				9	Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
2XCONCADE	TP-8-0-05	0		0-05			ary mant brown, fine arained soil
					1		wi gravel (fine - coarse), no odor
					2		20 () 1500 - 20 20 500
excavator	TP 8-253	0	_	25-3	3		moist light grey beown, fine growed soil wi growel (Fine-looks) trace sand no odor slight
1					4		staining, Rust-like
					<u>5</u>		
					6		
					7		
F (20)\$					8	4	ièm
					9		
					0 1	=	
					2		
					3		
		1			4		
					<u>5</u>		
			1		<u>6</u>		
				\	7		
					<u>8</u>		
					9		
-					0		
lotes:			-				BOOK NIE- FORFOL

Notes:

9-802 jars, 1 via

* PCBS + D/Fs tested

				EXCA	VATION	CONT	TRACTOR AFC TOTAL DEPTH 2 FT
				EXCA	OITAV	METH	HOD EXCAVATOR SHEET ! OF !
SOIL							F+
SAMPLING DATA						7	Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
excavator	TP-9-0-0.5			0-0.5			ary light brown fine grained
					1		soil w/ graver (f-c) offaceshill
							SOIL like - pelets). RUST- colored
					2		SOIL like - perets). RUST- coloped
					<u>3</u>	1	SOIL STREAK approx 10 inches bgs
							to vace la 211
					4		
					<u>5</u>		
			_				
					<u>6</u>		
					7		
			= (1	
					<u>8</u>		\
							\
					9	1	
					<u>0</u>		\
					ŭ		-
					1		
			_		2		1
					<u>3</u>	-6	1
					٦		
					4	1	
					<u>5</u>	l iš	\
					۵		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			-		<u>6</u>	13	1
					7		
	(į.	
					<u>8</u>		
							1
-					9		_
_		-			0		(A)

Notes:

6 jars + 1 vial

1 2	ANCHOR
V	ANCHOR QEA

SOIL	. TEST PIT LO	OG			AMETE		3 Ft
	SAMPLING [ATAC				7	Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	
SAN					Ë	SO (US	LITHOLOGIC DESCRIPTION
excavator	TP-10-2-25	0 D		2-25	1 2 3	(al 25: moist light brown gley. The great dense to very dense, gravelly Fine grained soil,
					<u>4</u> <u>5</u>		Deconned bucket of excavator and campled from bucket to
					<u>6</u>		sample
					7		
		12-			<u>8</u> 9	•	
					<u>0</u>		
					1		
		1			<u>2</u> 3		
					4		
			1		<u>5</u>		
					<u>6</u> 7		
					<u>1</u> 8		
					9		
					<u>0</u>		

Notes: material very compacted throughout 0-2.5 ff interval collected dup

TEST PIT # TP-11 CLIENT/PROJECT NAME ABO PECUCIÓN PROJECT NUMBER 20205-01.01 DATE BEGAN 10 20 20 GEOLOGIST_MH DATE COMPLETED (0 20 20 EXCAVATION CONTRACTOR AEC TOTAL DEPTH 2 Ft

						VATION METHOD LX CONCOR SHEET OF L					
SOIL TEST PIT LOG PIT DIA						R					
	SAMPLING DATA						Field location of test pit				
NG D	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)					
SAMPLING METHOD	PLE	/ PIC	8	Ę,	표	(S)					
MET	SAM	Ê	H	Teet Teet	l e	SOI	LITHOLOGIC DESCRIPTION				
	TP-11-0-0.5	0	_	0-0.5		0, 0	1-16 New to moist light brown,				
	11 0 0.5				1 1		Fine agained soil w/ fine to coake				
					i -		graves (N 15%. Fine 15% coarse)				
exconcitor.	TP-11-1.5-2	0	_	1.5-2	2		Slight anthro material norder				
				1	1 -		anther=like white beads in porting soil				
					<u>3</u>	Y	15-2ft: moist, light brown				
							Fine grained soil, SHOWH W/ sand				
] 4		trace (MIO') graves no odor				
							,				
					<u>5</u>						
					<u>6</u>						
					<u> </u>						
					8	_					
					9						
					0						
					١.						
					1 1						
					١,						
					_ 2						
					٠,						
					3						
					-		\				
					4 4						
					5						
					i i						
					6		1				
					1 -						
					7						
					<u>8</u>						
1											
	pro-				9						
					<u> 0</u>						

Notes:

6 jars + 1 vial for each interval

1 %	ANC	HOR
V,	QEA	HOR

CLIENT/PROJECT NAME_APC PECUCING TEST PIT #_TP 12

PROJECT NUMBER_202005-0101 DATE BEGAN_10/20/2006

GEOLOGIST_MM DATE COMPLETED_012/2006

EXCAVATION CONTRACTOR_AFC TOTAL DEPTH_3-5

EXCAVATION METHOD_EXCAVATOR_SHEET_LOF_1_

							HOD EXCAVOTOR SHEET OF 1
SOII	L TEST PIT LO	OG		PIT DI	AMETE	R_2	- f+
	SAMPLING	DATA				占	Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
ex caractae	TP-12-0-0.5		12	0-0.5		00 0	moist light brown-grey,
					<u>1</u>		Fire to coarse no odor
SXCONCITOR	TP-12-3-35	0		3-3.5	3		moist light brown sine glained
					4	G	Spil trace Sitt trace clay, trace Distate (wood-like), no odor Organics
					5		\
-					<u>6</u>		
					Ť		
					<u> </u>		
d separate					8		
					9		
					0		
					1 1		
	<u> </u>				2		\ \
					_		
		1			3		
		1	_		,		\
		1			=		
					<u>5</u>		
			1		6		
			1		6		
					7		
				\	ρ		
					8		
		-			9		
				- V@	,		
Notes:	NG (% 1)			100	0		DIF + PCBS

Notes: 0-0.5 Ft Interval tested FOR DIF + PCBS

PROJECT NUMBER 202005-01.07 DATE BEGANIO/11/10 GEOLOGIST_MA DATE COMPLETED 10/12/2 TOTAL DEPTH: 2 Ft EXCAVATION CONTRACTOR____

COLL	. TEST PIT LO	26		EXCA	DIAMETER 3.5 1) SHEET OF 1					
SOIL				PH D			Field leastion of test nit			
	SAMPLING DATA						Field location of test pit			
N.G	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)				
SAMPLING METHOD	SAMPL	ID / DI	RECOV	DEPTH (feet)	ОЕРТН	SOIL G	LITHOLOGIC DESCRIPTION			
0) 2						0,0				
					1 1					
wand -	77-13-15-2	>	-	15-2	1 -		Anc granted soil with True fine godel trace			
ware					<u>2</u>		And marked sail with mace fine panel trace			
1		7 17 1					craninics (hine roots) shahitu decre, us odor			
					3		10 101			
					4					
					-					
					5					
					6	1				
					7					
					7					
1					8					
-					Ĭ					
					9		\			
					1					
					<u>0</u>					
					1		-			
					1					
					2		\			
							\			
					3		\			
						J. B	\			
					4					
					_		\			
			-		5					
					6	1	1			
					6	Ŕ	\			
1					7					
		7			† <i>†</i>					
					8	1	\			
					1 -	1				
					9					
					1 -					
			_ 5		0		(MX)			
Notes:				^		. ,				

otes: 3 jars + 1 vial. Archive collected

1 %	ANCHOR
L	ANCHOR QEA

TP. 4
mhala -
AN 10/22/20
PLETED to hah
PTH_ 2
OF_/

SOIL	TEST PIT LO	OG		PIT	T DIA	METE	R 30	2 SILLI SI
	SAMPLING DATA							Field location of test pit
Q.C.	SAMPLE NUMBER		RECOVERY (feet)	DEPTH SAMPLED (feet)		N FEET	SOIL GROUP SYMBOL (USCS)	
SAMPLING METHOD	SAMPLE	FID / PID (ppm)	RECOVE	DEPTH ((feet)		DEPTH IN FEET	SOIL GR (USCS)	LITHOLOGIC DESCRIPTION
								organic layer more gray and chapey
to Assess	+0.14 IC.	_		15-2	-	1		0 0 1
hand war	TP-14-152			15-2		2		moderate sit trace against (thus and thick roots) trace fine gravel, no order
								nots) true fine grant no order
					_	3		\
						4		
						Ť		
						<u>5</u>		
					\dashv			
			$\overline{}$		\dashv	<u>6</u>		
						7		
		٤			_	<u>8</u>		1
					-	9		
						Ť		
						<u>0</u>		
					-	4	- 3	\
					\dashv	1		
						2		
					_	3		\\
					\dashv	<u>4</u>		\
						Ť		
						<u>5</u>		
						_	- 4	
					\neg	<u>6</u>	- 23	
						7		
					_	<u>8</u>		\
						9		
						7		tad
						0		

Notes:

3 jars + 1 vial. collected archive

	NCHO EA TEST PIT LO SAMPLING D	OG_		PROJI GEOL EXCA EXCA PIT DI	ECT NU	IMBER M CONT I METH	RACTOR— TRACTOR— TOD WAY & AVAUR Field location of test pit	TEST PIT #P\G DATE BEGAN D M/100 DATE COMPLETED D/100 TOTAL DEPTH 2
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DE	SCRIPTION
hard might	TV-15-1-15			1-1:5	1 2 3 4 5 6 7 8 9 이 1 2 3 4	7	Some as below dry to meist mulium brown interpolarate classes frace fine to course of Some down to 2	fine grained soil make organissine a gravel, preder
					5 6 7 8 9			

Notes:

3 jars + 1 vial. Archive collected

CLIENT/PROJECT NAME ABC PROJECTIVES TEST PIT # TP 16 PROJECT NUMBER 202005 -01-01 DATE BEGAN 1014/20 DATE COMPLETED TOPUTA GEOLOGIST MH EXCAVATION CONTRACTOR A E C TOTAL DEPTH

				EXCA	VATION	METH	HOD CX CON OCTOR SHEET OF
SOIL	TEST PIT LO	OG					3 F+
	SAMPLING I	DATA					Field leastion of toot nit
						180 180	5 end of yard adjacent to gate/driveway to markine Dr.
	38		eet			SXI	gate/derveway to marline DR.
(3)	NO P	ppm	₺	MP		P	
S EIN	l e	ĕ	Ä	1 S∕	<u>Z</u>	3. S. C.	
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION
Ø ∑		E	2		ä	% 2	
2X CONOCTOR	TP-16-0-05	0		0-0.5	1		wars grained soil w/ sand
					<u> </u>		and w/ f-c gravel + race
					2		ORGANICS (ROOTS), no od DR
					-		27,110
					<u>3</u>		
					4		
							Native states @ ~5ft
2x CONCENTOR	TP-10-5-5.5	0	-	5-5.5	<u>5</u>		5-55ft moist, dark brown fine
							grained soil, modellate silti
-			_		6		modelate organics (Fine Roots)
					-		trace pockets of light gray
					7		fine grained still
-					<u>8</u>		
-	-			COMMICA."	_		
					9		
					0		
					1		\\
					ر		\
					2		\
					3		\
			-		4		
		16	61				
					<u>5</u>		
					6		
					7		\
					7		
					<u>8</u>		
					9		
					0		(35)
Notes:	CA.						

3 Jaks +1 Vial For 0-0.5 ft interval 2 jaks +1 vial for 5-5.5ft interval

and disp						1		Same as below	
SAMPLING	SAMPLE	FID / PID	RECOVERY	DEPTH (feet)		DEPTH	SOIL GF (USCS)	LITHOLOGIC DE	SCRIPTION
D NG	E NUMBER	(mdd) O	ERY (feet)	DEPTH SAMPLED (feet)	(feet) DEPTH IN FEET		GROUP SYMBOL S)		
	SAMPLING DATA						9	Field location of test pit	
	TEST PIT LO			E)	XCA\ XCA\	/ATIOI /ATIOI /ATIOI	TOTAL DEPTH SHEET{OF		
V.A.	NCHO EA ##	R		Pi	ROJE	T/PRO	TEST PIT # DATE BEGAN_ DATE COMPLETE		

I trace fine to course substantial gravel
Malerate sit meterate organics (fine sorts)
no near trace insta (worm) 7 7

Notes:

3 JURS + 1 archive Archive collected

CLIENT/PROJECT NAME ARC PROJECT NUMBER 2020 65 - 01.01 DATE BEGAN 10/22/20
GEOLOGIST H DATE COMPLETED 10/22
EXCAVATION CONTRACTOR TOTAL DEPTH FT

EXCAVATION METHOD Wind A DOWN SHEET 1 OF 1

SOII	L TEST PIT LO	og.		PIT F	DIAMETE	D Q	OD VALVA OLOGOR SHEET OF I
301				PILL	JIAIVIE I E		Field leastion of toot nit
	SAMPLING DATA						mound under cedar tree adjacent to TP-1
	E E		क्चि			SOIL GROUP SYMBOL (USCS)	TO-1
	MB BB	[<u>E</u>	ě	Æ	l iii	S d	adjacent to 17-1
N 0	ž	💆	<u> </u>	SAN	Z	泛	
골	1 2	🖺	8	Ē.	ĮĘ	(S)	
SAMPLING	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOII	LITHOLOGIC DESCRIPTION
nand	N/A	-	-	NIA			0-1 ft: dry to moist feddish brown, fine agained soil hit refusal w/ roots - muitiple
anger_				7] 1		brown, fine arained soil, nit
							Refusal W/ Roots - Muitiple
					2		locations attempted
	P				3	183	1
					4		
			_		4		
		\vdash			- F		
					_ 5		
					۾ ا		
					_ 6		
-			-		7	-	
							\
					<u>8</u>	_ *	
					9		
	IE						
					<u>0</u>		\
_					-		1
					<u> 1</u>		\
					٠,		\
					_ 2		
		\vdash			3		
					٦ ×	v 1	
					4		
					1 1		
					<u>5</u>		
					<u>6</u>		
					7		
					8		\
					4 .		\
ı					9		
1-					┤		(the)
					0		

Notes:

added per Derek's recommendation

CLIENT/PROJECT NAME: ABC Recheling	
PROJECT NUMBER: 202005-01.0	DATE BEGAN 10.26.20
GEOLOGIST/ENGINEER: MH DP	DATE COMPLETED 10-26-Zu
DRILLING CONTRACTOR: KEC	TOTAL DEPTH 32.5 Ft
DRILLING METHOD: (1 coprobe	PAGE OF 3
WATER DEPTH NA	TIME 1215

				HOLE D	IAMETE	R	inches SAMPLING METHOD in. by ft
8		SAMPLING I	DATA			70	Field location of boring
э метно	OUNTS lammer)		lriven)	(PLED	EET	P SYMB	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (R recovered/R driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOI (USCS)	LITHOLOGIC DESCRIPTION (see key)
SAMPLIN	BLOW (140-lb)	SAMPLE ID	RECOVER (# recovered#	DEPTH SA	DEPTHIN 31 41 51 60 7 80 91 01 11 01 03 41 51		0.25". Viid 215"- Wet, Soft, Slightly 3ilty, Medium Brown, f-c Sandy Organic mater trace grave 229"- Dry, black, Silty, Charconly, gravel. 233"- Dry: gray, Sand with trace clay: occasional, peach & white, challa conglowerates. C41"- Moist, grey to black clayey sand. C46"-Black, medium Stiff clay, trace organics 4" piece of mylon rope. 25" Medium-donso
					<u>6</u>		dry. grey evirast spots clay @57"-Moist, med-dense
					7		bram organic day.
					<u>8</u>		1061; CAR 0,53"
					9		212" Moist brown & Svey f-Sand, trace clay
Rem:		No O = No Odor	AODD	_ ^	0	us Pac	

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as above Δ = change Notes: SQMP12d 5.7-9.7 ft, 10-12.3 ft, 20-22 ft

CLIENT/PROJECT NAME: ABC REMY CLIVE	BORING # GP-1
PROJECT NUMBER: 202005 -01.07	DATE BEGAN 10/26/20
GEOLOGIST/ENGINEER: MM DP	DATE COMPLETED 1 V126/20
DRILLING CONTRACTOR: AEC	TOTAL DEPTH 32. 5 F+
DRILLING METHOD: (SCOPPOINE	PAGE 2 OF 3
WATER DEPTH	TIME
HOLE DIAMETER inches SAMPLING I	METHOD in. by ft

				HOLE D	NAME IE	R	inches SAMPLING METHOD in. by ft
8		SAMPLING	DATA			Z S	Field location of boring
METH	OUNTS ammer)		riven)	PLED	EET	P SYMB	TORVANE (E)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ff recovered/ff driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key) CORVIL'S SIND % FAS %
Rema	arks:	No O = No Odor	AOPP	= As on	1 일 3 4 5 6 7 원 의 이 1 일 3 4 5 6 7 원 의 인 Previo		elay. Pily" Moist, medium- deuse, brown sandy clay. Pist" Increasing Moisture content to wet 177" 173" - Void Olt3" Wet, loose, brown Slightly silty from d Decreasing Sand, decreasing Moisture ©187" SAA @115" @250" 255" foll decreasing Sand to wore 255" SAA @115" @250" Dry, medium deuse, dark lorown Silt @271" Dry, loose, frey and brown f. Sand. 276" 288" Void @288" Wet, loose, f-Sand brown & grey. Occasional elay balls, frace gravel e SAA = Same as above = change

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as above Δ = change Notes: $5 \alpha \text{MPied}$ 5.7 - 9.7 ft, 10 - 12.3 ft, 20 - 22 ft

-		
	CLIENT/PROJECT NAME: ABC LEMOUNE	BORING # (1P-1
	PROJECT NUMBER: 202009-01.00	DATE BEGAN 10/26/20
	GEOLOGIST/ENGINEER: MH/DP	DATE COMPLETED 10/26/20
	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 32.5 F+
	DRILLING METHOD: GEOFFORE	page <u>3</u> of <u>3</u>
	WATER DEPTH NA	TIME 1215

				HOLE D	IAMETE	R	inches SAMPLING METHOD in. by ft
QC		SAMPLIÑG	DATA			Jo.	Field location of boring
3 METH(BLOW COUNTS (140-lb Hammer)		driven)	/PLED	EET	JP SYMB	TORVANE (TSF)
SAMPLING METHOD	BLOW (SAMPLE ID	RECOVERY (fl recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)
dema	arks: N	o O = No Odor	AOPP	= As on	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Previo		B 220"- heist, loose, brown & Stey f-sand B 323"-Dry, Strey, hard B 328"-Dry, med-dense, brown clayey, stravely Sand B 331-SAA BIS" B 336-Dry, loose, Strey & brick-colored Stravely f-c sand 338-340-loyer of SAA BIS" C 340"=Dry, loose strey angular growel, trangitions to fe Sand D 590"- End of loving.

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as above Δ = change Notes: SCAM Died 5.7-9.7 Ft, 10-12.3 ft, 20-22 ft

CLIENT/PROJECT NAME:	ABC. Recycling	BORING# GP-2
PROJECT NUMBER:	202005-01.01	DATE BEGAN 10 - 26 . 20
GEOLOGIST/ENGINEER:	MH, DP	DATE COMPLETED W. 26. 24
DRILLING CONTRACTOR:	KEC	TOTAL DEPTH 30'
DRILLING METHOD:	acoprobe	_ PAGEOF
WATER DEPTH	MA	TIME 1100
7		

0		SAMPLING D	DATA			7	Field location of boring
METHO	OUNTS ammer)		nven)	PLED	ET .	P SYMBO	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)
SAME	BL(SAMPLE ID	RECO)	DEPTH	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 9 0 1 1 2 3 4 5 5	SOS(I)	(see key) (See key) (Moist, dark grey Sand 2' 12" of wood 0 29" 32" Moist, hard, borown clay (aveg a black gravelly silt 035" light grey-borgen Sand slightly gravelly Sand 042"-Black; chartody Sand 048"- Dry, reddish Stry clay 051"- SAA 0 35" 055"- SAA 0 35" 055"- SAA 0 42" 055"- SAA 0 42" 057"- Wood naste
					<u>6</u> 7		10. 13 CAL Q 27"
		(1P2-8-9@10			<u>8</u> 9	ous Pag	DG4" SRA @ 42" WI AN COCK Gravei 169"- Dry Muchingand brown off moderate brown of the brown 18 2". Dry, light brown 18 SAA = Same as above a = change

Notes: Sampled: 8-9 Ft,
14-20 Ft, 25-27 ft

AOPP = As on Previous Page SAA = Same as above Δ = change - 9 Ft | Pockets of Srey, 1-20 Ft, clayer silty sand

1	CLIENT/PROJECT NAME: ABL RECYCLING	BORING#_GP-2
	PROJECT NUMBER: 202005-01.0	DATE BEGAN (0.26.20
	GEOLOGIST/ENGINEER: WIL DO	DATE COMPLETED 10-26.20
	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 30
	DRILLING METHOD: LIKOP FOLSE	PAGE 2 OF 3
	WATER DEPTH NA	TIME
	HOLE DIAMETER 2 inches SAMPLING	METHOD in. by ft

9	W E	SAMPLING I	7/1/1		-	8	, and the second			l G
METH	COUNTS		driven)	APLED	EET	IP SYME			VANE SF)	i
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ff recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	
		GP-2-25-27) (ous		1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		clay content Clay content Clay Content Clay Gravelly Sand. 128"- Wood Pl32"- Dry, hard, brown, Clay. Clay. Clay. Clay. Damp, brown, Fsond. Cl51"- Damp, brown, Silty f-sand. O163"- SAA @ 132"- O240"- Wet, brown, fine-grain Sand, trace angular gravel. O254". Dry, hard, brown clay. C249- Dry, hard, brown dense, brown f-sand. O271"- Dry, loose, brown M. Sand C258"- Wet, bose, brown f-sand			

Sampled : 8-9 Ft, 14-20 Ft, 25-27 Ft

CLIENT/PROJECT NAME: ABC Recycling	BORING # 4 P 2
PROJECT NUMBER: 202005-01.0	DATE BEGAN 16 - 26. 20
GEOLOGIST/ENGINEER: MH DO	DATE COMPLETED 10.26.20
DRILLING CONTRACTOR: AEC	TOTAL DEPTH 30'
DRILLING METHOD: WEGGE	PAGEOF
WATER DEPTH NA	

00		SAMPLING	DATA			Jog Of	Field location of boring						6
METHO	OUNTS (ammer)		lriven)	1PLED	ET	P SYMB						VANE SF)	101
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)		SND %	FNS %	PEAK	RESIDUAL	
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		O324"- Dry, loose, brown m-sand. O350"- End of boring	3.					

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as abov∈∆

tes: Sampled 8-9ft, 14-20 ft, 25-27 ft

2	ANCHOR
2	ANCHOR QEA

-	CLIENT/PROJECT NAME: ABC Recycling	BORING# GP-3
	PROJECT NUMBER: 202005-01-01	DATE BEGAN 10.27-20
	GEOLOGIST/ENGINEER: MH. DO	DATE COMPLETED 16-27.20
Ì	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 20°
ľ	DRILLING METHOD: Geoprobe	PAGE 1 OF 2
ì	WATER DEPTH	TIME 1100 1128
ш		1 10 4

HOLE DIAMETER			IAMETE	inches SAMPLING METHOD in. by ft			
2	SAMPLING DATA						Field location of boring
METHO	OUNTS lammer)		lriven)	1PLED	ET	P SYMB	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key) GRAVI. SIND % FINS %
SAMP	BICO (140	SAMPLE ID	RECOV (ff recoven	DEPTH	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7		(see key) O-19" - Void. O19" - Void. O19" - Woist, hadinan-derse, gravely sand, brown & gray. O24" - Cevades to dry 37'-39" - Color changes to trave. O43'-45" - 2 x 1" angular gravel. P56" - Moist, med stiff. black, changey silt, trace erganic filorers. Clo?' - Dra, dense, grey with rust colored mothing changey silt. O120". Damp, dense, svey with rust colored nothing changey silt. O120". Damp, dense, svey with rust colored nothing changey silt. O152" - grades to changey silts O152" - grades to changey silts
					<u>8</u>		Elbo-Dry, med-deuse, brown, sightly franky, clayey silt.
		No O = No Odor			0	nus Pan	

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as abov₁∆ = change

Notes: Sampled 12.7-13.4 ft, 14.4-15.9 ft

GW also sampled. See GW 109 GW dup collected

2 1	ANC	HOR
Y	QEA	

1	CLIENT/PROJECT NAME: ABC Recycling	BORING# 4P-3
	PROJECT NUMBER: 202005-0001	DATE BEGAN 10.27.20
	GEOLOGIST/ENGINEER: MH, DP	DATE COMPLETED 10.27.20
	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 20'
	DRILLING METHOD: GCO Probe	PAGE 2 OF 2
	WATER DEPTH	TIME

	HOLE DIAMETER			IAMETE	inches SAMPLING METHOD in. by ft		
GO	SAMPLING DATA		3OL	Field location of boring			
METH	COUNTS		friven)	MPLED	EET	IP SYME	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ff recovered/ff driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key) LITHOLOGIC DESCRIPTION (see key)
Rem	arks:	No O = No Odor	AOPP	= As on	1 2 3 4 5 6 7 8 9 이 1 2 3 4 5 6 7 8 9 이 이 1 Previo		e SAA = Same as above \$\in \text{change} = \text{change}

Notes: Sampled 12.7-13.4 Ft, 14.4-15.9 Ft

GW also sampled, see GW 10g. GW dup WHECTED.

CLIENT/PROJECT NAME: ABC RECYCLIA	BORING # GP-4
PROJECT NUMBER: 202005-0 0	DATE BEGAN 10.22.26
GEOLOGIST/ENGINEER: MH. D	DATE COMPLETED 10.27.20
DRILLING CONTRACTOR: KEC	TOTAL DEPTH 20'
DRILLING METHOD: GLOOVILLE	PAGE OF 2
WATER DEPTH NA	TIME 0915

				HOLE DIAMETER		R	inches SAMPLING METHOD in. by ft
go		SAMPLING I				Field location of boring	
METH(COUNTS		Inven)	APLED	EET	P SYME	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key) CRIL N. SND % FNS % OR CRIL % SND % FNS %
Rema	arks:	No O = No Odor	AOPP	= As on	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 Previo		Dry, hard, grey & white gravely silt, moderate Pre gond. C55" Dry, hard, grey Silty clay. 60-78"-Void RT8". Damp, losse, voroun Svavelly f-sand, trace Silt. C80- SAA CO" C93"-Damp, med stiff. black, clayer silt, trace organic filoers of Gvades to brown C104". Damp, hard, greenish grey clay. 120"-128": Void. C135". SAA C+04" Dry hard grey C147". Grades to brown dry, hard silt C180"- Wet, losse, brown f-sand, trace silt. e SAA = Same as above = change

Notes: Sampled 7.8-8.7 ft, 15-18.7 ft,

1 2	ANC	HOR
K	QEA	HOR

CLIENT/PROJECT NAME: ABC Peculative	BORING#
PROJECT NUMBER: 20205-01.3	DATE BEGAN 10.27 . 20
GEOLOGIST/ENGINEER: MH	DATE COMPLETED 10. 27. 20
DRILLING CONTRACTOR: AEC	TOTAL DEPTH 20°
DRILLING METHOD: (170000	PAGEOF
WATER DEPTH N/A	_TIME

				HOLE D	IAMETE	R	inches SAMPLING METHOD in. by ft
8	<i>(</i> 0, 0	SAMPLING [DATA			3OL	Field location of boring
3 МЕТН	COUNTS Hammer,		(Inven)	/PLED	EET	JP SYME	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)
		No O = No Odor		= As on	1 2 3 4 5 6 7 8 9 이 1 2 3 4 5 6 7 8 9 이		Decreasing Moisture contlent to moist. e224. Damp med stiff brown clay. @240°-End of boring.

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as above Δ = change Notes: Sample 7.8-8-7 ft, 15-18.7 ft

٦	CLIENT/PROJECT NAME: ABC RECYCLING	BORING# 47-5
١	PROJECT NUMBER: 202005-81.01	DATE BEGAN 16.26.20
١	GEOLOGIST/ENGINEER: MH, DP	DATE COMPLETED 10.26.20
1	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 30 ft
ı	DRILLING METHOD: Geprobe	PAGE OF 3
ı	WATER DEPTH // /4	TIME 1425

				HOLE	IAMETE	R	inches SAMPLING METHOD in. by ft
QC		SAMPLING	DATA			J _O	Field location of boring
METH	BLOW COUNTS (140-lb Hammer)		lriven)	1PLED		P SYMB	TORVANE (TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ff recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key) LITHOLOGIC DESCRIPTION (see key)
Dom		G.P. 5 - 6.9 - 7 5			1 2 3 4 5 6 7 8 9 이 1 2 3 4 5 6 7 8 9 이	20) 11	0.21"- Void 21"- Wet, loose, grey 3. brown sand. B24"-Dry, white & Sravelly, Silt. CH3"- Dry, dense, grey Vf - Sand, trace c-sand. CH8" Dry, hard, grey, Silt Witrace c-sand. CH60-79"- Void. CH6" Dry, and-dense, white, silt. CH6"- Dry, and-dense, white, silt. CH6"- in creasing Moisture content CH6"- in creasing Moisture content CH0"- Color changes to brown CH1"- Moist, loose, grey; brown clayey f-sand.

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as above Δ = change Notes: Sampled 6.9-7.5 ft, 10-11 ft, 20-22 ft

CLIENT/PROJECT NAME: ABC, PECUCING	BORING# 4P-5
PROJECT NUMBER: 202006-01.0	DATE BEGAN 10'20 20
GEOLOGIST/ENGINEER: MM.D	DATE COMPLETED 10/20120
DRILLING CONTRACTOR: A E-C	TOTAL DEPTH 30 ft
DRILLING METHOD: GLOPPODE	PAGE 2 OF 3
WATER DEPTH NA	TIME 1425
HOLE DIAMETER inches SAMPLING N	METHOD in by ft

	SAMPLING DATA			HOLE DIAMETER			Field location of boring			
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)			2LED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)		TORVANE (TSF)		I. (TSF)
		SAMPLE ID	RECOVERY (ff recovered/ff driven)	DEPTH SAMPLED			LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	POCKĘT PEN. (TSF)
		SAWFLE ID	M E	Δ	그 그 3 4 5 6 7 8 9 이 1 2 3 4 5 6 7 8 9		@120" Wet loose, Srey silty frand. 133"-135"-packet of clay. @136": Moist, dense, brown, clay witrace Silt 165"-167"-pocket of sandy clay. @229". I" pocket of dark brown slightly silty f-Sand will trace gravel. @231"-Damp, loose, Srey f-c Sand will trace gravel. @223"-void. @240" wet, soft sand silt wi moderate clay. @246"-fransitions to silty clay. @251"-SAA @ 240" @264. Moist, loose, dark &rey, M-Sand.	d	· ·	

Notes:

fampled 69-75 Ft, 10-11 Ft, 20-22 ft

BORING LOG

CLIENT/PROJECT NAME: A り			
PROJECT NUMBER: 2020	09-01.01	DATE BEGAN	10/26/20
GEOLOGIST/ENGINEER: MM			ETED 10126/20
DRILLING CONTRACTOR: A		TOTAL DEPTH	130 Ft
DRILLING METHOD: GRO	orobe	PAGE 3	_OF <u>3</u>
WATER DEPTH N/A	1	TIME	1425

00		SAMPLING	DATA			Jo.	Field location of boring						١,
METH	OUNTS lammer)		riven)	IPLED	EET	P SYMB		_				VANE SF)	101
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)	GRVL %	SND %	FNS %	PEAK	RESIDUAL	
					1 2 3 4 5 6 7 & 회 회 이 1 2 3 4 5 6 7 & 회 회		300-312"- Void @312"- Moist, Loose, &very Silty Sand. \$20"-328"- Void @328-Damp, Med-le &rey f-c Sand, trace Sravel. @348"- Dry, Med-deu &ravelly, f-c Sand. @360"- end of bori.	se,					

Notes:

Sampled 6.9-7.5 ft, 10-11 ft, 20-22 ft

BORING LOG

7	CLIENT/PROJECT NAME: 4BC Recyclin	BORING# GP-6
	PROJECT NUMBER: 202065.01.01	DATE BEGAN (0.26.20
	GEOLOGIST/ENGINEER: MH, TOP	DATE COMPLETED 10.26.26
	DRILLING CONTRACTOR: AEC	TOTAL DEPTH 30
	DRILLING METHOD: GEOPYONE	PAGE OF 2
	WATER DEPTH	TIME 1615
	HOLE DIAMETER inches SAMPLING	METHOD in. by ft

Q		SAMPLING	DATA			J _O	Field location of boring		
METHO	OUNTS ammer)		riven)	PLED	FEET	P SYMB	Т	ORVAN (TSF)	E Z
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN F	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK RESIDITAL	E BOCKET DEN (TCE)
SAMF	BL(SAMPLE ID	RECOVE	DEPTH	1 2 3 4 5 6 7 원 의 이 1 2 3 4 5	SOS() STOCK	(see key) O-18" Void D 18"-Moist, med-dense, Srey, Silty, Sravelly frand. D22"-Moist, med-dense, Silty sand, trace Sravel. Dry, dense, light Srey, f-c sandy silt C50"-Moist, stiff, Wack relayer silt w/ moderate rusty color & Sand. D55-Moist, Stiff, black, Silty clay, Silty clay, Silty clay, Silty, f-sand. C69"-Dry, & Stiff, brown clay		NOCO O
					6 7 8 9		Olli-Moist, med-dense, Srey gravelly, sand Silt. Oll8-SAA @ 55"		
			AOPP		<u>0</u>				

Sampled 10.8-15 ft

GW also sampled, see GW 109

BORING LOG

CLIENT/PROJECT NAME: ABC Recycling	BORING # 6 P-6
PROJECT NUMBER: 202005-01.01	DATE BEGAN 10.26.20
GEOLOGIST/ENGINEER: MH. DP	DATE COMPLETED 10.26.20
DRILLING CONTRACTOR: A E	TOTAL DEPTH 30'
DRILLING METHOD: (Les probe	
WATER DEPTH	TIME 615
HOLE DIAMETER inches SAMPLING	METHOD in. by ft

		SAMPLING I			AMETE	_	Field location of boring			
ТНОБ	NTS mer)	SAMPLING		a		YMBOI	I low location or boning		VANE	(TSF)
SAMPLING METHOD	BLOW COUNTS (140-lb Hammer)	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK ()	RESIDUAL (4	POCKET PEN. (TSF)
		GP-6-10.8-18			1 2 3 4 5 6 7 8 9 이 1 2 3 4 5 6 7 8 9 이		@120-129" Void @129" Wet, loose, brown f-sand, trace silt. 144-148"- Void. @148"- SAA @ 129" @208-Moist, med-dense, lorown, clayer f-sand. @221-Moist, med-stiff, grey clay. 272-280" Diagonal conactoristions to wet, loose lorown f-sand, trace silt 280'-283" - Void. @263-Wet, loose, brown f-sand, trace silt @300-Dry, loose, brown f-sand, trace silt @300-Dry, loose, srey gravelly f-c sand. @317-Damp, Shiff brown clay @331-transitions fo grey @331-transitions fo grey Slightly clayers of material @331 2. 346" @350-End of lovring.			

Remarks: No O = No Odor AOPP = As on Previous Page SAA = Same as abov(Δ = change Notes: Gampled (0.% - 15 Ft)

GW also sampled, see GW log

APPENDIX B Previous Environmental Investigation Tables

Table 1
Soil Collection Summary

		ation VA North)					Sample	Status
Sample Location	est Pit Soil Samples		Sample ID	Date Collected	Depth Sampled (ft)	Lithology	Analyzed ¹	On Hold
Test Pit Soil Sample							<u> </u>	•
TP-1	1232044.2	650713.1	TP-1-0.5-1.5	10/22/2020 11:45	0.5-1.5	Dry to moist, medium brown, fine grained soil, trace silt, trace gravel (coarse), occasional organics (roots), no odor.	Х	
TP-2	1232042.5	650527.9	TP-2-1.5-2	10/22/2020 12:14	1.5-2	Dry to moist, grey-brown, fine grained soil, slight silt, trace clay, no odor.	Х	
TP-3	1232463.7 650406.8 10/21/2020 11:11 0-0.5 light grey clayer fine grained soil trace gravel (fine) trace organics (wood pieces), no odor		Х					
			TP-4-0-0.5	10/21/2020 11:11	0-0.5	Moist, medium brown grey, fine grained soil, trace gravel (fine), slight organics (roots), no odor. Pocket of light grey clavey soil.	Х	
		650406.8	TP-4-3.5-4	10/21/2020 11:33	3.5-4	Moist light grey clavey fine grained soil trace gravel (fine) trace organics (wood pieces) no odor		Х
TP-5	1232330.0 650233.7 TP-5-0-0.5 10/20/2020 9:57 0-0.5 Moist, dark brown, soft, fine grained soil with gravel (coarse), trace sand, trace organics (wood debris), no odor. Moist, light black fine grained soil moderate gravel (fine), trace organics (wood), no odor. Slight sheen		X ^{2,3}					
TP-6	1232543.6 650283.0 TP-6-0-0.5 10/21/2020 12:13 0-0.5 Moist, light black, fine grained soil, moderate gravel (fine), trace organics (wood), no odor. Slight sheen (metallic). One discrete pocket with metallic flakes.		X ²					
TP-7	1232515.9	650083.5	TP-7-4.5-5	10/21/2020 10:16	4.5-5	Moist, medium brown, fine grained soil, trace gravel (fine to coarse), trace organics (roots), no odor.	X ²	
			TP-8-0-0.5	10/20/2020 11:50	0-0.5	Dry, light brown fine grained soil with gravel (fine to coarse), no odor.	Х	
TP-8	1232657.513	1232657.513 650184.4 TP-8-2.5-3 10/20/2020 12:17 2.5-3 Moist, light grey brown, fine grained soil with gravel (fine to coarse), trace sand, no odor. SI staining.		Moist, light grey brown, fine grained soil with gravel (fine to coarse), trace sand, no odor. Slight rust-like staining.		Х		
TP-9	1232718.6	649975.9	TP-9-0-0.5	10/20/2020 8:37	10/20/2020 12:17 2.5-3 staining. Dry light brown fine grained soil with gravel (fine to coarse) slight anthropogenic material (notting soil-like)		Х	
TP-10	1232837.6	650104.3	TP-10-2-2.5	10/20/2020 14:35	2-2.5	Moist, light brown grey, gravelly fine grained soil, no odor.		Х
TP-11	1232794.6	649899.3	TP-11-0-0.5	10/20/2020 15:12	0-0.5	Dry to moist, light brown, fine grained soil with gravel (fine to coarse), slight anthropogenic material (potting soil-like pellets), no odor.		Х
			TP-11-1.5-2	10/20/2020 15:31	1.5-2	Moist, light grown, fine grained soil with sand, trace gravel (fine), no odor.		Х
TP-12	1232860.0	649821.7	TP-12-0-0.5	10/20/2020 16:13	0-0.5	Moist, light brown grey, fine grained clayey soil, trace gravel (fine to coarse), trace organics (roots), no odor.	Х	
			TP-12-3-3.5	10/20/2020 16:38	3-3.5	Moist, light brown, fine grained soil, trace silt, trace clay, trace organics (wood-like), no odor.		Х
TP-13	1233066.3	649872.3	TP-13-1.5-2	10/22/2020 8:37	1.5-2	Moist, light brown, fine grained soil, trace gravel (fine), slightly clayey, trace organics (fine roots), no odor. Pockets of gray, fine sand.	Х	
TP-14	1233136.1	649748.0	TP-14-1.5-2	10/22/2020 10:34	1.5-2	Dry to moist, medium brown, fine grained soil, moderate silt, trace gravel (fine), trace organics (roots), no odor.	Х	
TP-15	1233072.7	649748.2	TP-15-1-1.5	10/22/2020 10:10	1-1.5	Dry to moist, medium brown, fine grained soil, slight clay, trace gravel (fine to coarse), trace organics (fine roots), no odor.	Х	
			TP-16-0-0.5	10/21/2020 14:10	0-0.5	Wet, dark brown, coarse grained soil with sand and gravel (fine to coarse), trace organics (roots), no odor.		Х
TP-16	1232942.9	650049.0	TP-16-5-5.5	10/21/2020 15:27	5-5.5	Moist, dark brown, fine grained soil, moderate silt, moderate organics (fine roots), no odor. Trace pockets of light grey, fine grained soil.	Х	
TP-17	1233035.6	649785.6	TP-17-1.5-2	10/22/2020 9:26	1.5-2	Dry to moist, dark brown, fine grained soil, trace gravel (fine to coarse, subrounded), moderate silt, moderate organics (fine roots), trace biota (worms), no odor.	X ²	

Table 1
Soil Collection Summary

	Location (NAD83 WA North) Northing Easting Sample ID Date Collected Depth Sampled (ft) Lithology			Sample	Status			
Sample Location	Northing	Easting	Sample ID	Date Collected	Depth Sampled (ft)	Lithology	Analyzed ¹	On Hold
Soil Boring Samples	S							
			GP-1-5.7-9.7	10/26/2020 13:15	5.7-9.7	5.7-9.3 ft: Dry, medium dense, grey with rust-colored spots, clay. @ 9.3 ft: Thin layer of moist, brown grey, sand (fine), trace clay. @ 9.6 ft: Grades to dry, hard, brown clay.	X ²	
GP-1	1232389.1	650439.2	GP-1-10-12.3	10/26/2020 13:20	10-12.3	10-12 ft: Dry, hard brown clay. 12-12.3 ft: Moist, medium dense, brown sandy clay.		Х
			GP-1-20-22	10/26/2020 13:30	20-22	20-20.8 ft: Wet, loose, brown, slightly silty sand (fine). Sand and moisture decreasing. @ 20.8 ft: Grades to no sand. 20.8-22 ft: Dry, hard, brown clay.	X ³	
			GP-2-8-9	10/26/2020 10:30	8-9	8-9 ft: Dry, light brown with pockets of grey, clayey, silty sand.	Х	
GP-2	1232265.9	650233.2	GP-2-14-20	10/26/2020 10:45	14-20	14-20 ft: Dry, hard, brown clay.		Х
			GP-2-25-27	10/26/2020 10:50	25-27	25-27 ft: Wet, loose, brown, sand (fine).	Х	
GP-3	1232725.4	650246.4	GP-3-12.7-13.4	10/27/2020 12:05	12.7-13.4	12.7-13.4 ft: Moist, dense, grey and brown sandy silt (fine).		Χ
GF-5	1232123.4	030240.4	GP-3-14.4-15.9	10/27/2020 12:15	14.4-15.9	14.4-15.9 ft: Moist, medium dense, brown, sand (fine).	Х	
GP-4	1232625.2	650044.4	GP-4-7.8-8.7	10/27/2020 10:20	7.8-8.7	7.8-8.7 ft: Moist, medium stiff, black, clayey silt, trace organics (fibers). Color grades to brown.	Х	
Gr-4	1232023.2	030044.4	GP-4-15-18.7	10/27/2020 10:30	15-18.7	15-18.7 ft: Wet, loose, brown, sand (fine), trace silt. Moisture decreases to moist.	Х	
			GP-5-6.9-7.5	10/26/2020 15:15	6.9-7.5	6.9-7.5 ft: Moist, medium dense, dark grey, silty clay. Moisture increases in interval.	X	
GP-5	1233018.8	650012.5	GP-5-10-11	10/26/2020 15:25	10-11	10-11 ft: Wet, loose, grey, silty sand (fine).		X
Gr-5	1233010.0	030012.3	GP-5-20-22	10/26/2020 15:30	20-22	20-22 ft: Wet, soft, grey, sandy silt with moderate clay. @ 20.5-20.9 ft: Transitions to silty clay.	X	
GP-6	1232952.4	649764.8	GP-6-10.8-15	10/26/2020 16:50	10.8-15	10.8-15 ft: Wet, loose, brown, sand (fine), trace silt. @ 12-12.3 ft: Void space.	Х	

Notes

- 1. All soil samples were analyzed for metals, total solids, PAHs, NWTPH-Dx, and NWTPH-Gx.
- 2. Select samples were analyzed for PCBs, dioxins and furans, and/or TCLP metals.
- 3. Field duplicates collected.

Abbreviations:

ft: fee

NAD83 WA North: State Plane Washington North, North American Datum 83

NWTPH-Dx: diesel and heavy oil range organics

NWTPH-Gx: gasoline range organics

PAHs: polycyclic aromatic hydrocarbons

PCBs: polychlorinated biphenyls

TCLP: toxicity characteristic leaching procedure

TPH: total petroleum hydrocarbons

Table 2
Groundwater Collection Summary

Sample	Locat (NAD83 W				Depth to Groundwater	Depth	Flow Rate
Location	Location Easting N		Sample ID	Date Collected	(ft)	Sampled (ft)	(L/min)
GP-2	1232265.9	650233.2			24.0		
GP-3	1232725.4	650246.4	GP-3-GW	10/27/2020 13:15	12.0	16.3	0.50
GP-4	1232625.2	650044.4			14.0		
GP-6	1232952.4	649764.8	GP-6-GW	10/26/2020 17:50	8.5	12.0	0.50

Notes:

All groundwater samples were analyzed for PAHs, dissolved metals, NWTPH-Dx, and NWTPH-Gx.

Field parameters were monitored to identify when ambient groundwater conditions were reached. Parameters included pH, specific conductivity, temperature, and dissolved oxygen.

Groundwater found but well dried up during purging at GP-2 and GP-4.

Field duplicate collected at GP-3-GW.

Abbreviations:

--: not applicable

ft: feet

L: liter

min: minute

NAD83 WA North: State Plane Washington North, North American Datum 83

NWTPH-Dx: diesel and heavy oil range organics

NWTPH-Gx: gasoline range organics

PAHs: polycyclic aromatic hydrocarbons

Table 3
Soil Analytical Results

					Task	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020
					Location ID	GP-1_2020	GP-1_2020	GP-1_2020
						_	_	
					Sample ID	GP-1-20-22	GP-1-20-22-DUP	GP-1-5.7-9.7
					Sample Date	10/26/2020	10/26/2020	10/26/2020
					Depth	20 - 22 ft	20 - 22 ft	5.7 - 9.7 ft
					Sample Type	N	FD	N
					Matrix	SO 4222200 442	SO 4222200 442	SO
			MTCA Method B		X	1232389.113	1232389.113	1232389.113
	MTCA Method A	MTCA Method B	Protection of	MTCA Method A	MTCA Method C	650439.1881	650439.1881	650439.1881
	Unrestricted	Direct Contact	Groundwater	Industrial	Industrial			
Metals (mg/kg)	omesalecea	Direct contact	Groundwater	maastrar	muustiai			
Antimony		32	5.4		1400	3.4 U	3.5 U	3.2 U
Arsenic	20	0.67	2.9	20	88	6	6.3	9.3
Beryllium		160	63		7000	0.18	0.19	0.33
Cadmium	2	80	0.69	2	3500	0.13	0.11	0.064 U
Chromium	2000	120000	480000	2000	5300000	42	44	55
Copper		3200	280		140000	35	35	48
Lead	250		3000	1000		2	2	3.2
Mercury	2		2.1	2		0.037	0.045	0.062
Nickel		1600	130		70000	46	46	58
Selenium		400	5.2		18000	3.4 U	3.5 U	3.2 U
Silver		400	14		18000	0.17 U	0.18 U	0.16 U
Thallium		0.8	0.23		35	3.4 U	3.5 U	3.2 U
Zinc		24000	6000		1100000	64	62	64
Polycyclic Aromatic Hydrocarbons (µg/kg)								
1-Methylnaphthalene		34000			4500000	4.6 U	4.7 U	4.3 U
2-Methylnaphthalene		320000			14000000	4.6 U	4.7 U	4.3 U
Acenaphthene		4800000	98000		210000000	4.6 U	4.7 U	4.3 U
Acenaphthylene						4.6 U	4.7 U	4.3 U
Anthracene		24000000	2300000		1100000000	4.6 U	4.7 U	4.3 U
Benzo(a)anthracene						4.6 U	4.7 U	4.3 U
Benzo(a)pyrene	100	190	3900	2000	130000	4.6 U	4.7 U	4.3 U
Benzo(b)fluoranthene						4.6 U	4.7 U	4.3 U
Benzo(g,h,i)perylene						4.6 U	4.7 U	4.3 U
Benzo(j,k)fluoranthene						4.6 U	4.7 U	4.3 U
Chrysene						4.6 U	4.7 U	4.3 U
Dibenzo(a,h)anthracene						4.6 U	4.7 U	4.3 U
Fluoranthene		3200000	630000		140000000	4.6 U	4.7 U	4.3 U
Fluorene		3200000	100000		140000000	4.6 U	4.7 U	4.3 U
Indeno(1,2,3-c,d)pyrene						4.6 U	4.7 U	4.3 U
Naphthalene	5000	1600000	4500		70000000	4.6 U	4.7 U	4.3 U
Phenanthrene						4.6 U	4.7 U	4.3 U
Pyrene		2400000	650000		110000000	4.6 U	4.7 U	4.3 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	100	190	3900	2000		4.6 U	4.7 U	4.3 U
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1/2)	5000			5000		4.6 U	4.7 U	4.3 U

Table 3
Soil Analytical Results

	ABC_Recycling_2020						
	GP-2_2020	GP-2_2020	GP-3_2020	GP-4_2020	GP-4_2020	GP-5_2020	GP-5_2020
	GP-2-25-27	GP-2-8-9	GP-3-14.4-15.9	GP-4-15-18.7	GP-4-7.8-8.7	GP-5-20-22	GP-5-6.9-7.5
	10/26/2020	10/26/2020	10/27/2020	10/27/2020	10/27/2020	10/26/2020	10/26/2020
	25 - 27 ft	8 - 9 ft	14.4 - 15.9 ft	15 - 18.7 ft	7.8 - 8.7 ft	20 - 22 ft	6.9 - 7.5 ft
	N	N	N	N	N	N N	N
	so						
	1232265.941	1232265.941	1232725.441	1232625.216	1232625.216	1233018.799	1233018.799
	650233.1583	650233.1583	650246.3624	650044.3943	650044.3943	650012.5131	650012.5131
	030233.1303	030233.1303	030240.3024	030044.3343	030044.3343	030012.3131	030012.3131
Metals (mg/kg)							
Antimony	3.3 U	3.3 U	3 U	3.4 U	4.6	3.1 U	3.2 U
Arsenic	5.3	9.8	3.9	6	14	5	7.5
Beryllium	0.15	0.43	0.11	0.21	0.37	0.16	0.36
Cadmium	0.12	0.077	0.078	0.13	0.9	0.093	0.093
Chromium	31	60	28	41	37	31	43
Copper	21	49	16	28	30	19	22
Lead	2.9	4.8	1.3	2.4	44	2	4.7
Mercury	0.038	0.085	0.016	0.03	0.095	0.024	0.059
Nickel	29	58	24	39	38	28	33
Selenium	3.3 U	3.3 U	3 U	3.4 U	3.8 U	3.1 U	3.2 U
Silver	0.16 U	0.17 U	0.15 U	0.17 U	0.22	0.15 U	0.16 U
Thallium	3.3 U	3.3 U	3 U	3.4 U	3.8 U	3.1 U	3.2 U
Zinc	42	72	30	53	120	36	61
Polycyclic Aromatic Hydrocarbons (μg/kg)	-						
1-Methylnaphthalene	8.4	4.4 U	4 U	4.6 U	42	4.1 U	4.2 U
2-Methylnaphthalene	13	4.4 U	4 U	4.6 U	50	4.1 U	4.2 U
Acenaphthene	24	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Acenaphthylene	4.4 U	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Anthracene	25	4.4 U	4 U	4.6 U	5.3	4.1 U	4.2 U
Benzo(a)anthracene	66	4.4 U	4 U	4.6 U	13	4.1 U	4.2 U
Benzo(a)pyrene	21	4.4 U	4 U	4.6 U	13	4.1 U	4.2 U
Benzo(b)fluoranthene	55	4.4 U	4 U	4.6 U	15	4.1 U	4.2 U
Benzo(g,h,i)perylene	4.8	4.4 U	4 U	4.6 U	12	4.1 U	4.2 U
Benzo(j,k)fluoranthene	16	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Chrysene	65	4.4 U	4 U	4.6 U	20	4.1 U	4.2 U
Dibenzo(a,h)anthracene	4.4 U	4.4 U	4 U	4.6 U	4.7	4.1 U	4.2 U
Fluoranthene	200	4.4 U	4 U	4.6 U	10	4.1 U	4.2 U
Fluorene	37	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Indeno(1,2,3-c,d)pyrene	5.8	4.4 U	4 U	4.6 U	7.7	4.1 U	4.2 U
Naphthalene	7.8	4.4 U	4 U	4.6 U	43	4.1 U	4.2 U
Phenanthrene	110	4.4 U	4 U	4.6 U	28	4.1 U	4.2 U
Pyrene	140	4.4 U	4 U	4.6 U	9.4	4.1 U	4.2 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	36.15	4.4 U	4 U	4.6 U	17.44	4.1 U	4.2 U
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1/2)	29.2	4.4 U	4 U	4.6 U	135	4.1 U	4.2 U

Table 3
Soil Analytical Results

	ABC_Recycling_2020 GP-6_2020 GP-6-10.8-15	ABC_Recycling_2020 TP-1_2020 TP-1-0.5-1.5	ABC_Recycling_2020 TP-2_2020 TP-2-1.5-2	ABC_Recycling_2020 TP-3_2020 TP-3-1.5-2	ABC_Recycling_2020 TP-4_2020 TP-4-0-0.5	ABC_Recycling_2020 TP-5_2020 TP-5-0-0.5	ABC_Recycling_2020 TP-6_2020 TP-6-0-0.5	ABC_Recycling_2020 TP-7_2020 TP-7-4.5-5
	10/26/2020 10.8 - 15 ft	10/22/2020 0.5 - 1.5 ft	10/22/2020 1.5 - 2 ft	10/22/2020 1.5 - 2 ft	10/21/2020 0 - 0.5 ft	10/20/2020 0 - 0.5 ft	10/21/2020 0 - 0.5 ft	10/21/2020 4.5 - 5 ft
	N SO	N SO	N SO	N SO	N SO	N SO	N SO	N SO
	1232952.405 649764.8397	1232044.174 650713.0992	1232042.502 650527.9031	1232184.227 650311.4637	1232463.701 650406.845	1232330.012 650233.7296	1232543.611 650282.9897	1232515.934 650083.4632
Metals (mg/kg)	•							
Antimony	3.1 U	3.4	3.2 U	26	46	6	5.3	8.8
Arsenic	3.6	11	11	93	100	20 J	19	25
Beryllium	0.13	0.37	0.49	0.25	0.36	0.23	0.26	0.19
Cadmium	0.092	0.44	0.13 U	79	3.8	1	1.6	3
Chromium	27	28	64	28	26	23	11	25
Copper	15	17	53	59	90	44	37	40
Lead	1.4	14	6.9	2600	130	90 J	15	39
Mercury	0.022	0.039	0.067	0.25	0.25	0.47	0.11	0.11
Nickel	28	27	58	8.1	17	21	9	22
Selenium	3.1 U	3.2 U	3.2 U	30	3.1 U	2.8 U	2.8 U	3.5 U
Silver	0.16 U	0.32 U	0.32 U	11	0.5	0.28 U	0.28 U	0.35 U
Thallium	3.1 U	3.2 U	3.2 U	8.9	3.1 U	2.8 U	2.8 U	3.5 U
Zinc	29	98	87	290	250	210	65	140
Polycyclic Aromatic Hydrocarbons (µg/kg)								
1-Methylnaphthalene	4.2 U	16	4.3 U	35	540	730 J	2500	78
2-Methylnaphthalene	4.2 U	19	4.3 U	50	800	1100 J	4400	88
Acenaphthene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	73 J	360 U	4.7
Acenaphthylene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	78 J	76 U	7
Anthracene	4.2 U	4.4 U	4.3 U	4.1 U	82	160 J	130	14
Benzo(a)anthracene	4.2 U	4.4 U	4.3 U	6.4	130	300 J	410	27
Benzo(a)pyrene	4.2 U	4.4 U	4.3 U	4.4	82 U	140 J	170	23
Benzo(b)fluoranthene	4.2 U	7.7	4.3 U	8.2	130	340 J	330	37
Benzo(g,h,i)perylene	4.2 U	6.4	4.3 U	4.7	82 U	120 J	170	30
Benzo(j,k)fluoranthene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	92 J	76 U	7.3
Chrysene	4.2 U	7.9	4.3 U	14	220	500 J	940	40
Dibenzo(a,h)anthracene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	47 J	87	8.3
Fluoranthene	4.2 U	7.3	4.3 U	7.5	170	530 J	350	40
Fluorene	4.2 U	4.4 U	4.3 U	4.1 U	84 U	90 J	410	9.3
Indeno(1,2,3-c,d)pyrene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	96 J	76 U	22
Naphthalene	4.2 U	15	4.3 U	22	280	510 J	1200	77
Phenanthrene	4.2 U	15	4.3 U	40	620	870 J	3600	89
Pyrene	4.2 U	6.2	4.3 U	6.6	180	500 J	490	37
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	4.2 U	3.929	4.3 U	6.615	81.5	232.5 J	269.7	33.56
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1/2)	4.2 U	50	4.3 U	107	1620	2340 J	8100	243

Table 3
Soil Analytical Results

	ABC_Recycling_2020							
	TP-8_2020	TP-9_2020	TP-12_2020	TP-13_2020	TP-14_2020	TP-15_2020	TP-16_2020	TP-17_2020
	TP-8-0-0.5	TP-9-0-0.5	TP-12-0-0.5	TP-13-1.5-2	TP-14-1.5-2	TP-15-1-1.5	TP-16-5-5.5	TP-17-1.5-2
	10/20/2020	10/20/2020	10/20/2020	10/22/2020	10/22/2020	10/22/2020	10/21/2020	10/22/2020
	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	1.5 - 2 ft	1.5 - 2 ft	1 - 1.5 ft	5 - 5.5 ft	1.5 - 2 ft
	N	N	N	N	N	N	N	N
	so							
	1232657.513	1232718.597	1232859.97	1233066.29	1233136.099	1233072.659	1232942.891	1233035.603
	650184.4187	649975.912	649821.6908	649872.2961	649748.0338	649748.2293	650049.0335	649785.6025
				,				
Metals (mg/kg)								
	16	75	32	3.2 U	3 U	3 U	3.7 U	4.1 U
Antimony	42 J	160	70 J	6.5	7.2	9.9	6.4	13
Arsenic	0.11 U		0.11 U	0.34	0.29	0.34	0.52	1.8
Beryllium Cadarium		0.17						
Cadmium	0.76	0.47	0.95	0.13 U	0.13	0.17	0.79	0.71
Chromium	9.1	74	16	50	44	45	43	16
Copper	38	240	89	41	27	43	30	36
Lead	26 J	110	29 J	3.9	3.8	4	16	31
Mercury	0.3	0.14	0.26	0.051	0.042	0.047	0.048	0.34
Nickel	7.6	52	13	48	35	48	41	18
Selenium	2.6 U	2.6 U	2.7 U	3.2 U	3 U	3 U	3.7 U	4.1 U
Silver	0.26 U	0.41	0.27 U	0.32 U	0.3 U	0.3 U	0.38	0.41 U
Thallium	2.6 U	2.6 U	2.7 U	3.2 U	3 U	3 U	3.7 U	4.1 U
Zinc	85	280	100	64	49	77	130	42
Polycyclic Aromatic Hydrocarbons (µg/kg)	_							
1-Methylnaphthalene	23 J	70 U	31 J	4.2 U	4 U	4 U	39	250
2-Methylnaphthalene	41 J	87	56 J	4.4	4 U	4 U	48	250
Acenaphthene	5.4 J	70 U	4.2 J	4.2 U	4 U	4 U	4.9 U	12 U
Acenaphthylene	3.5 UJ	70 U	3.6 UJ	4.2 U	4 U	4 U	5.5	14 U
Anthracene	8.4 J	70 U	3.6 UJ	4.2 U	4 U	4 U	7.1	29
Benzo(a)anthracene	61 J	840	13 J	4.2 U	4 U	4 U	11	43
Benzo(a)pyrene	53 J	960	8.6 J	4.2 U	4 U	4 U	11	20
Benzo(b)fluoranthene	83 J	1300	18 J	4.2 U	4 U	4 U	30	25
Benzo(g,h,i)perylene	43 J	760	8.8 J	4.2 U	4 U	4 U	23	18
Benzo(j,k)fluoranthene	20 J	410	3.6 UJ	4.2 U	4 U	4 U	6	4.4 U
Chrysene	72 J	770	27 J	4.2 U	4 U	4 U	25	37
Dibenzo(a,h)anthracene	11 J	180	3.6 UJ	4.2 U	4 U	4 U	4.9 U	5.3
Fluoranthene	78 J	790	18 J	4.2 U	4 U	4 U	49	36
Fluorene	8 J	70 U	11 J	4.2 U	4 U	4 U	4.9 U	16 U
Indeno(1,2,3-c,d)pyrene	40 J	740	6.7 J	4.2 U	4 U	4 U	17	9.1
Naphthalene	15 J	250 U	20 J	4.2 U	4 U	4 U	86	98
Phenanthrene	66 J	380	58 J	4.2 U	4 U	4 U	66	160
Pyrene	77 J	790	17 J	4.2 U	4 U	4 U	32	39
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	75.22 J	1314.7	13 J	4.2 U	4 U	4 U	17.895	28.83
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1/2)	79 J	247	107 J	8.6	4 U	4 U	173	598

Table 3
Soil Analytical Results

	MTCA Method A Unrestricted	MTCA Method B Direct Contact	MTCA Method B Protection of Groundwater	MTCA Method A Industrial	Task Location ID Sample ID Sample Date Depth Sample Type Matrix X Y MTCA Method C	GP-1_2020 GP-1-20-22 10/26/2020 20 - 22 ft N	ABC_Recycling_2020 GP-1_2020 GP-1-20-22-DUP 10/26/2020 20 - 22 ft FD SO 1232389.113 650439.1881	ABC_Recycling_2020 GP-1_2020 GP-1-5.7-9.7 10/26/2020 5.7 - 9.7 ft N SO 1232389.113 650439.1881
Dioxin Furans (ng/kg)			·					
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)		13			1700			0.0323 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								0.0816 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								0.14 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								0.147 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								0.165 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								2.6
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)								34.6
Total Tetrachlorodibenzo-p-dioxin (TCDD)								0.134
Total Pentachlorodibenzo-p-dioxin (PeCDD)								0.194
Total Hexachlorodibenzo-p-dioxin (HxCDD)		160						1.38 EMPC
Total Heptachlorodibenzo-p-dioxin (HpCDD)								6.48
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								0.0247 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								0.0301 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								0.0256 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								0.0403 U
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.0387 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								0.0675 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.0418 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								0.0849 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								0.0805 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)								0.101 U
Total Tetrachlorodibenzofuran (TCDF)								0.0999
Total Pentachlorodibenzofuran (PeCDF)								0.0301 U
Total Hexachlorodibenzofuran (HxCDF)								0.0675 U
Total Heptachlorodibenzofuran (HpCDF)								0.0849 U
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		13			1700			0.13171365

Table 3
Soil Analytical Results

	ABC_Recycling_2020 GP-2_2020 GP-2-25-27 10/26/2020 25 - 27 ft N SO 1232265.941 650233.1583	ABC_Recycling_2020 GP-2_2020 GP-2-8-9 10/26/2020 8 - 9 ft N SO 1232265.941 650233.1583	ABC_Recycling_2020 GP-3_2020 GP-3-14.4-15.9 10/27/2020 14.4 - 15.9 ft N SO 1232725.441 650246.3624	ABC_Recycling_2020 GP-4_2020 GP-4-15-18.7 10/27/2020 15 - 18.7 ft N SO 1232625.216 650044.3943	ABC_Recycling_2020 GP-4_2020 GP-4-7.8-8.7 10/27/2020 7.8 - 8.7 ft N SO 1232625.216 650044.3943	ABC_Recycling_2020 GP-5_2020 GP-5-20-22 10/26/2020 20 - 22 ft N SO 1233018.799 650012.5131	ABC_Recycling_2020 GP-5_2020 GP-5-6.9-7.5 10/26/2020 6.9 - 7.5 ft N SO 1233018.799 650012.5131
Dioxin Furans (ng/kg)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)							
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)							
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)							
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)							
Total Tetrachlorodibenzo-p-dioxin (TCDD)							
Total Pentachlorodibenzo-p-dioxin (PeCDD)							
Total Hexachlorodibenzo-p-dioxin (HxCDD)							
Total Heptachlorodibenzo-p-dioxin (HpCDD)							
2,3,7,8-Tetrachlorodibenzofuran (TCDF)							
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)							
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)							
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)							
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)							
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)							
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)							
Total Tetrachlorodibenzofuran (TCDF)							
Total Pentachlorodibenzofuran (PeCDF)							
Total Hexachlorodibenzofuran (HxCDF)							
Total Heptachlorodibenzofuran (HpCDF)							
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)							

Table 3
Soil Analytical Results

	ABC_Recycling_2020 GP-6_2020 GP-6-10.8-15 10/26/2020 10.8 - 15 ft N SO 1232952.405 649764.8397	ABC_Recycling_2020 TP-1_2020 TP-1-0.5-1.5 10/22/2020 0.5 - 1.5 ft N SO 1232044.174 650713.0992	ABC_Recycling_2020 TP-2_2020 TP-2-1.5-2 10/22/2020 1.5 - 2 ft N SO 1232042.502 650527.9031	ABC_Recycling_2020 TP-3_2020 TP-3-1.5-2 10/22/2020 1.5 - 2 ft N SO 1232184.227 650311.4637	ABC_Recycling_2020 TP-4_2020 TP-4-0-0.5 10/21/2020 0 - 0.5 ft N SO 1232463.701 650406.845	ABC_Recycling_2020 TP-5_2020 TP-5-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232330.012 650233.7296	ABC_Recycling_2020 TP-6_2020 TP-6-0-0.5 10/21/2020 0 - 0.5 ft N SO 1232543.611 650282.9897	ABC_Recycling_2020 TP-7_2020 TP-7-4.5-5 10/21/2020 4.5 - 5 ft N SO 1232515.934 650083.4632
Dioxin Furans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)						0.761 EMPC	0.0977 EMPC	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)						6.41	0.665 J	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						11.4	0.812 EMPC	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						110	12.6	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)						32.2	5.14	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)						2350	187	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)						23400	1720	
Total Tetrachlorodibenzo-p-dioxin (TCDD)						13.8 EMPC	1.96 EMPC	
Total Pentachlorodibenzo-p-dioxin (PeCDD)						45	4.79 EMPC	
Total Hexachlorodibenzo-p-dioxin (HxCDD)						669	90.1 EMPC	
Total Heptachlorodibenzo-p-dioxin (HpCDD)						6130	409	
2,3,7,8-Tetrachlorodibenzofuran (TCDF)						1.1	0.17 J	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)						2.99	0.189 J	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)						5.52	0.361 J	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)						10.4	0.504 J	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)						4.97	0.332 J	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)						1.6 J	0.0933 J	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)						8	0.225 J	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)						149	10.2	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)						7.02	0.509 J	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)						433	43.1	
Total Tetrachlorodibenzofuran (TCDF)						17.6 EMPC	0.69 EMPC	
Total Pentachlorodibenzofuran (PeCDF)						65.4	4.32 EMPC	
Total Hexachlorodibenzofuran (HxCDF)						264	15.1	
Total Heptachlorodibenzofuran (HpCDF)						561	41.1	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)						59.0938 J	5.37032 J	

Phase 2 Environmental Assessment Report

Marine Drive Property

August 2023

Table 3 **Soil Analytical Results**

	ABC_Recycling_2020 TP-8_2020 TP-8-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232657.513 650184.4187	ABC_Recycling_2020 TP-9_2020 TP-9-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232718.597 649975.912	ABC_Recycling_2020 TP-12_2020 TP-12-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232859.97 649821.6908	ABC_Recycling_2020 TP-13_2020 TP-13-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233066.29 649872.2961	ABC_Recycling_2020 TP-14_2020 TP-14-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233136.099 649748.0338	ABC_Recycling_2020 TP-15_2020 TP-15-1-1.5 10/22/2020 1 - 1.5 ft N SO 1233072.659 649748.2293	ABC_Recycling_2020 TP-16_2020 TP-16-5-5.5 10/21/2020 5 - 5.5 ft N SO 1232942.891 650049.0335	ABC_Recycling_2020 TP-17_2020 TP-17-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233035.603 649785.6025
Dioxin Furans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)								
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)								
Total Tetrachlorodibenzo-p-dioxin (TCDD)								
Total Pentachlorodibenzo-p-dioxin (PeCDD)								
Total Hexachlorodibenzo-p-dioxin (HxCDD)								
Total Heptachlorodibenzo-p-dioxin (HpCDD)								
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)								
Total Tetrachlorodibenzofuran (TCDF)								
Total Pentachlorodibenzofuran (PeCDF)								
Total Hexachlorodibenzofuran (HxCDF)								
Total Heptachlorodibenzofuran (HpCDF)								
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)								

Page 8 of 9 Phase 2 Environmental Assessment Report August 2023

Table 3

Soil Analytical Results

Notes:

Detected concentration is greater than MTCA Method A Unrestricted screening level.

Detected concentration is greater than MTCA Method B Direct Contact screening level.

Detected concentration is greater than MTCA Method B Protection of Groundwater screening level.

Detected concentration is greater than MTCA Method A Industrial screening level.

Detected concentration is greater than MTCA Method C Industrial screening level.

Bold: Detected result

--: not applicable

μg/kg: micrograms per kilogram

cPAH: carcinogenic polycyclic aromatic hydrocarbon

EMPC: estimated maximum possible concentration

FD: field duplicate

ft: feet

J: Estimated value

mg/kg: miligrams per kilogram

MTCA: Model Toxics Control Act

N: Presumptive Evidence

ng/kg: nanogram per kilogram

SO: soil

TEQ: toxic equivalents quotient

U: Compound analyzed, but not detected above detection limit

UJ: Compound analyzed, but not detected above estimated detection limit

Table 4 Soil TCLP Metals Analytical Results

	Task Location ID Sample ID Sample Date Depth	GP-1_2020 GP-1-5.7-9.7 10/26/2020 5.7 - 9.7 ft	ABC_Recycling_2020 TP-17_2020 TP-17-1.5-2 10/22/2020 1.5 - 2 ft	ABC_Recycling_2020 TP-5_2020 TP-5-0-0.5 10/20/2020 0 - 0.5 ft	ABC_Recycling_2020 TP-7_2020 TP-7-4.5-5 10/21/2020 4.5 - 5 ft
	Sample Type Matrix	so	N SO	N SO	N SO
	X	1232389.1	1233035.6	1232330.0	1232515.9
-	I OXICITY Y	650439.2	649785.6	650233.7	650083.5
	Characteristic				
	Threshold for				
	Hazardous Waste				
Leachable Metals (µg/L)					
Arsenic	5000	400 U	400 U	400 U	400 U
Barium	100000	470	1500	450	460
Cadmium	1000	20 U	20 U	20 U	20 U
Chromium	5000	20 U	20 U	20 U	20 U
Lead	5000	200 U	200 U	200 U	200 U
Mercury	200	5 U	5 U	5 U	5 U
Selenium	1000	400 U	400 U	400 U	400 U
Silver	5000	40 U	40 U	40 U	40 U

Notes

Detected concentration is greater than Toxicity Characteristic Threshold for Hazardous Waste

Bold: Detected result

U: Compound analyzed, but not detected above detection limit

N: normal sample

μg/L: micrograms per liter

ft: feet

SO: soil

Table 5
Groundwater Analytical Results

		Task	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020
		Location ID		GP-3_2020	GP-6_2020
		Sample ID	_	GP-3-GW-DUP	GP-6-GW
		Sample Date		10/27/2020	10/26/2020
		•		16.3 - 16.3 ft	10/26/2020 12 - 12 ft
		Depth Samula Tura		16.3 - 16.3 π FD	
		Sample Type			N
		Matrix		WG	WG
		X	1232725.4	1232725.4	1232952.4
	MTCA Method A	MTCA Method B	650246.4	650246.4	649764.8
Metals, Dissolved (μg/L)		mi di mana 2			
Antimony		6.4	1 U	1 U	1 U
Arsenic	5	4.8	0.68	0.56	0.76
Beryllium		32	0.2 U	0.2 U	0.2 U
Cadmium	5	8	0.2 U	0.2 U	0.2 U
Chromium	50		1 U	1 U	1 U
Copper		640	1 U	1 U	1 U
Lead	15		0.5 U	0.5 U	0.5 U
Mercury	2		0.025 U	0.025 U	0.025 U
Nickel		320	13	15	17
Selenium		80	1.4	1.4	5.6
Silver		80	0.2 U	0.2 U	0.2 U
Thallium		0.16	0.2 U	0.2 U	0.2 U
Zinc		4800	7	6.6	3
Polycyclic Aromatic Hydrocarbons (µg/L)					
1-Methylnaphthalene		1.5	0.056 U	0.051 U	0.06 U
2-Methylnaphthalene		32	0.056 U	0.051 U	0.06 U
Acenaphthene		960	0.056 U	0.051 U	0.06 U
Acenaphthylene			0.056 U	0.051 U	0.06 U
Anthracene		4800	0.056 U	0.051 U	0.06 U
Benzo(a)anthracene			0.0056 U	0.0051 U	0.006 U
Benzo(a)pyrene	0.1	0.2	0.0056 U	0.0051 U	0.006 U
Benzo(b)fluoranthene			0.0056 U	0.0053	0.006 U
Benzo(g,h,i)perylene			0.0056 U	0.0051 U	0.006 U
Benzo(j,k)fluoranthene			0.0056 U	0.0051 U	0.006 U
Chrysene			0.0056 U	0.0051 U	0.006 U
Dibenzo(a,h)anthracene			0.0056 U	0.0051 U	0.006 U
Fluoranthene		640	0.056 U	0.051 U	0.06 U
Fluorene		640	0.056 U	0.051 U	0.06 U
Indeno(1,2,3-c,d)pyrene		2.0	0.0056 U	0.0051 U	0.006 U
Naphthalene	160	160	0.056 U	0.051 U	0.06 U
Phenanthrene			0.056 U	0.051 U	0.06 U
Pyrene		480	0.056 U	0.051 U	0.06 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	0.1	0.2	0.0056 U	0.004126	0.006 U
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1			0.056 U	0.051 U	0.06 U
Total Petroleum Hydrocarbons (mg/L)			0.030 0	0.0310	5.55 5
Diesel range hydrocarbons	0.5		0.12	0.11	0.1 U
Gasoline range hydrocarbons	0.8		0.1 U	0.1 U	0.1 U
Residual range hydrocarbons	0.5		0.29	0.27	0.2 U

Notes:

Detected concentration is greater than MTCA Method A Groundwater screening level

Detected concentration is greater than MTCA Method B Groundwater Direct Contact screening level

Bold: Detected result

μg/L: micrograms per liter

 $\ \ \, \mathsf{cPAH} \mathsf{:}\, \mathsf{carcinogenic}\,\, \mathsf{polycyclic}\,\, \mathsf{aromatic}\,\, \mathsf{hydrocarbon}$

FD: field duplicate

ft: feet

mg/L: miligrams per liter

MTCA: Model Toxics Control Act

N: normal sample

TEQ: toxic equivalents quotient

U: Compound analyzed, but not detected above detection limit

WG: groundwater

APPENDIX C

Previous Environmental Investigation Laboratory
Analytical Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01

Laboratory Reference No. 2010-264

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 22, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 202005-01.01

Case Narrative

Samples were collected on October 20, 2020 and received by the laboratory on October 22, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A Analysis

The Sample 10-279-02 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Total Metals EPA 6010D/6020B/7471B Analysis

The duplicate RPD for Arsenic, Lead and Nickel is outside control limits due to sample inhomogeneity.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Antimony	6.0	2.8	EPA 6010D	10-28-20	10-29-20	
Arsenic	20	2.8	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.23	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	1.0	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	23	0.56	EPA 6010D	10-28-20	10-29-20	
Copper	44	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	90	5.6	EPA 6010D	10-28-20	10-29-20	
Mercury	0.47	0.028	EPA 7471B	11-4-20	11-4-20	
Nickel	21	2.8	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.28	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Zinc	210	2.8	EPA 6010D	10-28-20	10-29-20	
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Antimony	16	2.6	EPA 6010D	10-28-20	10-29-20	
Arsenic	42	2.6	EPA 6010D	10-28-20	10-29-20	
Beryllium	ND	0.11	EPA 6020B	11-2-20	11-4-20	
Codmium	0.76	0.11	EDA 6020B	11 2 20	11 / 20	

Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Antimony	16	2.6	EPA 6010D	10-28-20	10-29-20	_
Arsenic	42	2.6	EPA 6010D	10-28-20	10-29-20	
Beryllium	ND	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.76	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	9.1	0.53	EPA 6010D	10-28-20	10-29-20	
Copper	38	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	26	5.3	EPA 6010D	10-28-20	10-29-20	
Mercury	0.30	0.026	EPA 7471B	11-4-20	11-4-20	
Nickel	7.6	2.6	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.26	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Zinc	85	2.6	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Antimony	32	2.7	EPA 6010D	10-28-20	10-29-20	
Arsenic	70	2.7	EPA 6010D	10-28-20	10-29-20	
Beryllium	ND	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.95	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	16	0.54	EPA 6010D	10-28-20	10-29-20	
Copper	89	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	29	5.4	EPA 6010D	10-28-20	10-29-20	
Mercury	0.26	0.027	EPA 7471B	11-4-20	11-4-20	
Nickel	13	2.7	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.7	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.27	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.7	EPA 6010D	10-28-20	10-29-20	
Zinc	100	2.7	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1028SH1					
Antimony	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Chromium	ND	0.50	EPA 6010D	10-28-20	10-29-20	
Copper	ND	1.0	EPA 6010D	10-28-20	10-29-20	
Lead	ND	5.0	EPA 6010D	10-28-20	10-29-20	
Nickel	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Thallium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Zinc	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Laboratory ID:	MB1102SM1					
Beryllium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Silver	ND	0.25	EPA 6020B	11-2-20	11-4-20	
Laboratory ID:	MB1104S1					
Mercury	ND	0.025	EPA 7471B	11-4-20	11-4-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Antimony	5.35	9.10	NA	NA		NA	NA	52	20	С
Arsenic	17.7	26.3	NA	NA		NA	NA	39	20	L
Chromium	20.6	18.9	NA	NA		NA	NA	9	20	
Copper	38.9	43.8	NA	NA		NA	NA	12	20	
Lead	80.5	44.9	NA	NA		NA	NA	57	20	L
Nickel	18.5	14.9	NA	NA		NA	NA	22	20	L
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	191	165	NA	NA		NA	NA	15	20	
Laboratory ID:	10-26	3/_01								
Beryllium	0.204	0.191	NA	NA		NA	NA	7	20	
Cadmium	0.930	1.06	NA	NA		NA	NA	13	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-26	64-01								
Mercury	0.422	0.410	NA	NA		NA	NA	3	20	
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Antimony	6.30	7.95	NA	NA		NA	NA	23	20	С
Arsenic	18.0	20.0	NA	NA		NA	NA	11	20	
Chromium	18.2	19.9	NA	NA		NA	NA	9	20	
Copper	28.9	30.7	NA	NA		NA	NA	6	20	
Lead	28.2	33.5	NA	NA		NA	NA	17	20	
Nickel	16.2	17.1	NA	NA		NA	NA	5	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	104	124	NA	NA		NA	NA	18	20	
Laboratory ID:	10-27	79-02								
Beryllium	0.135	0.155	NA	NA		NA	NA	14	20	
Cadmium	2.16	2.04	NA	NA		NA	NA	5	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-27	79-02								
Mercury	0.0769	0.127	NA	NA		NA	NA	49	20	С

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	88.0	83.5	100	100	6.30	82	77	75-125	5	20	
Arsenic	114	111	100	100	18.0	96	93	75-125	3	20	
Chromium	104	105	100	100	18.2	86	86	75-125	0	20	
Copper	80.5	76.0	50.0	50.0	28.9	103	94	75-125	6	20	
Lead	241	233	250	250	28.2	85	82	75-125	3	20	
Nickel	98.5	98.0	100	100	16.2	82	82	75-125	1	20	
Selenium	97.5	94.5	100	100	ND	98	95	75-125	3	20	
Thallium	44.4	43.9	50.0	50.0	ND	89	88	75-125	1	20	
Zinc	190	183	100	100	104	87	79	75-125	4	20	
Laboratory ID:	10-2	79-02									
Beryllium	49.8	51.3	50.0	50.0	0.135	99	102	75-125	3	20	
Cadmium	46.8	47.3	50.0	50.0	2.16	89	90	75-125	1	20	
Silver	22.5	22.3	25.0	25.0	ND	90	89	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.559	0.515	0.500	0.500	0.0769	96	88	80-120	8	20	

Project: 202005-01.01

PAHs EPA 8270E/SIM

Date

Date

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Naphthalene	0.51	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	1.1	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.73	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	0.078	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.073	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.090	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.87	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.16	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.53	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.50	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.30	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.50	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.34	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.092	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.14	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.096	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.047	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.12	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	46 - 113				
Pvrene-d10	82	45 - 114				

Surrogate:	Percent Recovery	Control Limit
2-Fluorobiphenyl	84	46 - 113
Pyrene-d10	82	45 - 114
Terphenyl-d14	86	49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Naphthalene	0.015	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.041	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.023	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.0054	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.0080	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.066	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.0084	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.078	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.077	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.061	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.072	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.083	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.020	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.053	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.040	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.011	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.043	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	46 - 113				
Pyrene-d10	79	45 - 114				
T	0.4	10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Naphthalene	0.020	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.056	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.031	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.0042	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.011	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.058	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.018	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.017	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.013	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.027	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.018	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.0086	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.0067	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0088	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	79	45 - 114				

Terphenyl-d14 76 49 - 121

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Naphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	82	49 - 121				

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.120	0.121	0.0833	0.0833	0.0558	77	78	51 - 115	1	26	
Acenaphthylene	0.0623	0.0653	0.0833	0.0833	0.00504	69	72	53 - 121	5	24	
Acenaphthene	0.0677	0.0754	0.0833	0.0833	0.00339	77	86	52 - 121	11	25	
Fluorene	0.0644	0.0705	0.0833	0.0833	0.00667	69	77	58 - 127	9	23	
Phenanthrene	0.126	0.136	0.0833	0.0833	0.0641	74	86	46 - 129	8	28	
Anthracene	0.0732	0.0793	0.0833	0.0833	0.0100	76	83	57 - 124	8	21	
Fluoranthene	0.0877	0.0932	0.0833	0.0833	0.0287	71	77	46 - 136	6	29	
Pyrene	0.0859	0.0921	0.0833	0.0833	0.0266	71	79	41 - 136	7	32	
Benzo[a]anthracene	0.0983	0.114	0.0833	0.0833	0.0191	95	114	56 - 136	15	25	
Chrysene	0.0890	0.102	0.0833	0.0833	0.0288	72	88	49 - 130	14	22	
Benzo[b]fluoranthene	0.0813	0.0937	0.0833	0.0833	0.0267	66	80	51 - 135	14	26	
Benzo(j,k)fluoranthene	0.0686	0.0758	0.0833	0.0833	0.00528	76	85	56 - 124	10	23	
Benzo[a]pyrene	0.0728	0.0833	0.0833	0.0833	0.0163	68	80	54 - 133	13	26	
Indeno(1,2,3-c,d)pyrene	0.0727	0.0819	0.0833	0.0833	0.0159	68	79	52 - 134	12	20	
Dibenz[a,h]anthracene	0.0685	0.0791	0.0833	0.0833	0.00596	75	88	58 - 127	14	17	
Benzo[g,h,i]perylene	0.0763	0.0861	0.0833	0.0833	0.0215	66	78	54 - 129	12	21	
Surrogate:											
2-Fluorobiphenyl						62	67	46 - 113			
Pyrene-d10						70	77	45 - 114			
Terphenyl-d14						71	80	49 - 121			

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Diesel Range Organics	56	28	NWTPH-Dx	10-29-20	10-29-20	N
Lube Oil	350	56	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Diesel Range Organics	ND	26	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	53	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits	IVVIII II-DX	10-25-20	10-25-20	
o-Terphenyl	97	50-150				
o respiration	<i>51</i>	00 700				
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Diesel Range Organics	ND	27	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	55	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits	1444 II II-DX	10-20-20	10-25-20	
o-Terphenyl	90	50-150				
0-1 erpilettyt	90	30-130				

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB1029S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-29-20	10-29-20	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Diesel Range Organics	50.4	50.5	NA	NA		NA	NA	0	NA	N
Lube Oil	308	289	NA	NA		NA	NA	6	NA	
Surrogate:										
o-Terphenyl						97 91	50-150			

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Gasoline	ND	17	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Gasoline	ND	6.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Gasoline	ND	5.7	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	58-129				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1028S3					
Gasoline	ND	5.0	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				

Analyte	Result		Spike Level		Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	10-264-01									
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						107 108	58-120			

Fluorobenzene 107 108 58-129

Project: 202005-01.01

PCBs EPA 8082A

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Aroclor 1016	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	0.050	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.028	EPA 8082A	11-4-20	11-4-20	
•	5 (5	0 , ,,,,,,,,				

Surrogate: Percent Recovery Control Limits
DCB 91 46-125

Project: 202005-01.01

PCBs EPA 8082A **QUALITY CONTROL**

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	11000.11				7 <u>y</u>	90
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	Χ
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	Χ
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	Χ
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Surrogate:	Percent Recovery	Control Limits				
DCB	97	46-125				

DCB 97 46-125

Project: 202005-01.01

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB11	104S1									
-	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:											
DCB						96	96	46-125			
Laboratory ID:	SB11	104S1									
-	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.301	0.272	0.250	0.250	N/A	120	109	50-134	10	18	Х
Surrogate:											
DCB						102	101	46-125			

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.45	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM2					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T2					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

Omis. mg/L (ppm)					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-26	64-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Barium	0.452	0.448	NA	NA		N	lΑ	NA	1	20	
Cadmium	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Chromium	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Lead	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Selenium	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Silver	ND	ND	NA	NA		١	IA	NA	NA	20	
Laboratory ID:	10-26	64-01									
Mercury	ND	ND	NA	NA		١	IA	NA	NA	20	
Laboratory ID:	10-2	79-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			IA	NA	NA	20	
Barium	0.462	0.462	NA	NA		١	lΑ	NA	0	20	
Cadmium	ND	ND	NA	NA		١	lΑ	NA	NA	20	
Chromium	ND	ND	NA	NA		١	lΑ	NA	NA	20	
Lead	ND	ND	NA	NA		١	lΑ	NA	NA	20	
Selenium	ND	ND	NA	NA		١	lΑ	NA	NA	20	
Silver	ND	ND	NA	NA		١	IA.	NA	NA	20	
Laboratory ID:	10-27	79-02									
Mercury	ND	ND	NA	NA		١	lΑ	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-27	79-02									
•	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20	
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20	
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20	
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20	
Lead	9.55	9.51	10.0	10.0	ND	96	95	75-125	0	20	
Selenium	4.05	4.01	4.00	4.00	ND	101	100	75-125	1	20	
Silver	0.960	0.968	1.00	1.00	ND	96	97	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.0488	0.0486	0.0500	0.0500	ND	98	97	75-125	0	20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Total Solids	89	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Total Solids	95	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Total Solids	92	0.50	SM 2540G	10-29-20	10-30-20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-26	64-01							
	ORIG	DUP							
Total Solids	89.3	91.7	NA	NA	NA	NA	3	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

November 17, 2020

Vista Work Order No. 2002336

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 28, 2020 under your Project Name '202005-0101'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2002336 Page 1 of 16

Vista Work Order No. 2002336 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. The sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

The sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-5MS GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2002336 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 2002336 Page 3 of 16

Sample Inventory Report

Vista Client Sample ID Sample ID Sampled Received Components/Containers

2002336-01 TP-5-0-0.5 20-Oct-20 09:57 28-Oct-20 09:49 Clear Glass Jar, 250mL

Vista Project: 2002336 Client Project: 202005-0101

Work Order 2002336 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2002336 Page 5 of 16

Sample ID: Method Blank EPA Method 1613B

Client Data

Name:

OnSite Environmental Inc.

Project: 202005-0101 Matrix: Solid **Laboratory Data**

Lab Sample: B0K0041-BLK1

QC Batch: B0K0041 Date Extracted: 05-Nov-20 Sample Size: 10.0 g Column: ZB-DIOXIN

Matrix. Solid			1 1000 5		ZD-DIOAIN	•
Analyte	Conc. (pg/g)	EDL	EMPC	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0263			13-Nov-20 10:55	5 1
1,2,3,7,8-PeCDD	ND	0.0497			13-Nov-20 10:55	5 1
1,2,3,4,7,8-HxCDD	ND	0.0568			13-Nov-20 10:55	5 1
1,2,3,6,7,8-HxCDD	ND	0.0574			13-Nov-20 10:55	5 1
1,2,3,7,8,9-HxCDD	ND	0.0721			13-Nov-20 10:55	5 1
1,2,3,4,6,7,8-HpCDD	ND	0.0573			13-Nov-20 10:55	
OCDD	ND	0.116			13-Nov-20 10:55	5 1
2,3,7,8-TCDF	ND	0.0198			13-Nov-20 10:55	5 1
1,2,3,7,8-PeCDF	ND	0.0288			13-Nov-20 10:55	5 1
2,3,4,7,8-PeCDF	ND	0.0235			13-Nov-20 10:55	5 1
1,2,3,4,7,8-HxCDF	ND	0.0329			13-Nov-20 10:55	5 1
1,2,3,6,7,8-HxCDF	ND	0.0337			13-Nov-20 10:55	5 1
2,3,4,6,7,8-HxCDF	ND	0.0389			13-Nov-20 10:55	5 1
1,2,3,7,8,9-HxCDF	ND	0.0698			13-Nov-20 10:55	5 1
1,2,3,4,6,7,8-HpCDF	ND	0.0487			13-Nov-20 10:55	5 1
1,2,3,4,7,8,9-HpCDF	ND	0.0568			13-Nov-20 10:55	5 1
OCDF	ND	0.0915			13-Nov-20 10:55	5 1
Toxic Equivalent						
TEQMinWHO2005Dioxin	0.00					
Totals						
Total TCDD	ND	0.0263				
Total PeCDD	ND	0.0497				
Total HxCDD	ND	0.0721				
Total HpCDD	ND	0.0573				
Total TCDF	ND	0.0198				
Total PeCDF	ND	0.0288				
Total HxCDF	ND	0.0698				
Total HpCDF	ND	0.0568				
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	80.4	25 - 164		13-Nov-20 10:5:	5 1
13C-1,2,3,7,8-PeCDD	IS	81.8	25 - 181		13-Nov-20 10:5:	
13C-1,2,3,4,7,8-HxCDD	IS	88.4	32 - 141		13-Nov-20 10:5:	
13C-1,2,3,6,7,8-HxCDD	IS	89.3	28 - 130		13-Nov-20 10:5:	
13C-1,2,3,7,8,9-HxCDD	IS	80.0	32 - 141		13-Nov-20 10:5:	
13C-1,2,3,4,6,7,8-HpCDD	IS	80.0	23 - 140		13-Nov-20 10:5:	
13C-OCDD	IS				13-Nov-20 10:5:	
		74.4	17 - 157			
13C-2,3,7,8-TCDF	IS	83.2	24 - 169		13-Nov-20 10:5:	
13C-1,2,3,7,8-PeCDF	IS	84.6	24 - 185		13-Nov-20 10:5:	
13C-2,3,4,7,8-PeCDF	IS	90.3	21 - 178		13-Nov-20 10:5:	
13C-1,2,3,4,7,8-HxCDF	IS	82.0	26 - 152		13-Nov-20 10:5:	
13C-1,2,3,6,7,8-HxCDF	IS	82.7	26 - 123		13-Nov-20 10:5:	5 1
13C-2,3,4,6,7,8-HxCDF	IS	83.8	28 - 136		13-Nov-20 10:5:	5 1
13C-1,2,3,7,8,9-HxCDF	IS	71.1	29 - 147		13-Nov-20 10:5:	5 1
13C-1,2,3,4,6,7,8-HpCDF	IS	75.5	28 - 143		13-Nov-20 10:5:	5 1
13C-1,2,3,4,7,8,9-HpCDF	IS	71.1	26 - 138		13-Nov-20 10:5:	5 1
13C-OCDF	IS	71.5	17 - 157		13-Nov-20 10:5:	
37Cl-2,3,7,8-TCDD	CRS	95.5	35 - 197		13-Nov-20 10:5:	
		,	55 177			

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2002336 Page 6 of 16

Client Data Name: OnSite En Project: 202005-0 Matrix: Solid	nvironmental Inc. 101		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0K0041-BS1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 06:05 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.0	20.0	105	67-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDD	106	100	106	70-142		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDD	101	100	101	70-164		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDD	104	100	104	76-134		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDD	103	100	103	64-162		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDD	102	100	102	70-140		13-Nov-20 09:25	1
OCDD	204	200	102	78-144		13-Nov-20 09:25	1
2,3,7,8-TCDF	19.4	20.0	96.8	75-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDF	102	100	102	80-134		13-Nov-20 09:25	1
2,3,4,7,8-PeCDF	102 103	100	102 103	68-160		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	103	100 100	103	72-134 84-130		13-Nov-20 09:25 13-Nov-20 09:25	1
2,3,4,6,7,8-HxCDF	100	100	100	70-156		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDF	98.9	100	98.9	78-130		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDF	103	100	103	82-122		13-Nov-20 09:25	1
1,2,3,4,7,8,9-HpCDF	100	100	100	78-138		13-Nov-20 09:25	1
OCDF	200	200	100	63-170		13-Nov-20 09:25	1
Labeled Standards	Type		% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		88.5	20-175		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDD	IS		89.5	21-227		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDD	IS		91.6	21-193		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDD	IS		91.8	25-163		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDD	IS		90.8	21-193		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDD	IS		87.0	26-166		13-Nov-20 09:25	1
13C-OCDD	IS		79.6	13-199		13-Nov-20 09:25	1
13C-2,3,7,8-TCDF	IS		88.7	22-152		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDF	IS		93.6	21-192		13-Nov-20 09:25	1
13C-2,3,4,7,8-PeCDF	IS		95.6	13-328		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDF	IS		84.0	19-202		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDF	IS		85.3	21-159		13-Nov-20 09:25	1
13C-2,3,4,6,7,8-HxCDF	IS		85.0	22-176		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDF	IS		87.1	17-205		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDF	IS		78.0	21-158		13-Nov-20 09:25	1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.8	20-186		13-Nov-20 09:25	1
13C-OCDF	IS		77.7	13-199		13-Nov-20 09:25	1
37Cl-2,3,7,8-TCDD	CRS		106	31-191		13-Nov-20 09:25	1

EPA Method 1613B

Sample ID: OPR

Work Order 2002336 Page 7 of 16

Client Data Name:	OnSite Environme	ntal Inc.		Laboratory Dat	a 2002336-01	Date Received:	28-Oct-20 09	0:49
	202005-0101	11101		QC Batch:	B0K0041	Date Extracted:	05-Nov-20	
	Solid			Sample Size:	11.6 g	Column:	ZB-DIOXIN	
	20-Oct-20 09:57			% Solids:	87.4		ZB BIOTHI	
Analyte	Co	onc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.761			14-Nov-20 05:01	1
1,2,3,7,8-PeCDD		6.41					14-Nov-20 05:01	1
1,2,3,4,7,8-HxCDD		11.4					14-Nov-20 05:01	1
1,2,3,6,7,8-HxCDD)	110					14-Nov-20 05:01	1
1,2,3,7,8,9-HxCDD		32.2					14-Nov-20 05:01	1
1,2,3,4,6,7,8-HpCD	D	2350					14-Nov-20 05:01	1
OCDD		23400				D	14-Nov-20 16:24	20
2,3,7,8-TCDF		1.10					14-Nov-20 05:01	1
1,2,3,7,8-PeCDF		2.99					14-Nov-20 05:01	1
2,3,4,7,8-PeCDF		5.52					14-Nov-20 05:01	1
1,2,3,4,7,8-HxCDF		10.4					14-Nov-20 05:01	1
1,2,3,6,7,8-HxCDF		4.97					14-Nov-20 05:01	1
2,3,4,6,7,8-HxCDF		8.00					14-Nov-20 05:01	1
1,2,3,7,8,9-HxCDF		1.60				J	14-Nov-20 05:01	1
1,2,3,4,6,7,8-HpCD		149					14-Nov-20 05:01	1
1,2,3,4,7,8,9-HpCD		7.02					14-Nov-20 05:01	1
OCDF	•	433					14-Nov-20 05:01	1
Toxic Equivalent		100						
TEQMinWHO2005	Dioxin	58.3						
Totals	210	20.5						
Total TCDD		12.9		13.8				
Total PeCDD		45.0						
Total HxCDD		669						
Total HpCDD		6130						
Total TCDF		17.2		17.6				
Total PeCDF		65.4		1,10				
Total HxCDF		264						
Total HpCDF		561						
Labeled Standards	s	Туре	% Recover	v	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS	98.5	<i>J</i>	25 - 164		14-Nov-20 05:01	1
13C-1,2,3,7,8-PeCI		IS	98.7		25 - 181		14-Nov-20 05:01	
13C-1,2,3,4,7,8-Hx		IS	96.6		32 - 141		14-Nov-20 05:01	
13C-1,2,3,6,7,8-Hx		IS	97.6		28 - 130		14-Nov-20 05:01	
			97.3					
13C-1,2,3,7,8,9-Hx		IS			32 - 141		14-Nov-20 05:01	
13C-1,2,3,4,6,7,8-H	ірСДД	IS	115		23 - 140		14-Nov-20 05:01	
13C-OCDD		IS	98.1		17 - 157	D	14-Nov-20 16:24	
13C-2,3,7,8-TCDF		IS	99.3		24 - 169		14-Nov-20 05:01	
13C-1,2,3,7,8-PeCI		IS	103		24 - 185		14-Nov-20 05:01	
13C-2,3,4,7,8-PeCI	OF	IS	105		21 - 178		14-Nov-20 05:01	1
13C-1,2,3,4,7,8-Hx	CDF	IS	93.3		26 - 152		14-Nov-20 05:01	1
13C-1,2,3,6,7,8-Hx	CDF	IS	92.2		26 - 123		14-Nov-20 05:01	1
13C-2,3,4,6,7,8-Hx	CDF	IS	92.9		28 - 136		14-Nov-20 05:01	1
13C-1,2,3,7,8,9-Hx		IS	95.2		29 - 147		14-Nov-20 05:01	
13C-1,2,3,4,6,7,8-H		IS	91.3		28 - 143		14-Nov-20 05:01	
13C-1,2,3,4,7,8,9-H	-	IS	98.6		26 - 138		14-Nov-20 05:01	
10 U 194909T9/909/-1	1P - D1							
		18	108		17 157		$14-Nov_{-}200500$	
13C-OCDF 37Cl-2,3,7,8-TCDE)	IS CRS	108 107		17 - 157 35 - 197		14-Nov-20 05:01 14-Nov-20 05:01	

EPA Method 1613B

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

Sample ID: TP-5-0-0.5

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2002336 Page 8 of 16

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

K EMPC (specific projects only)

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2002336 Page 9 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2002336 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2002336 Page 12 of 16

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: \	Vista Analytical Laboratory	
---------------	-----------------------------	--

Attention: Jennifer Miller

Address: 1104 Windfield Way, El Dorado Hills, CA 95762

Phone Number: (916) 673-1520

2002336 2	3°C
-----------	-----

	Laboratory Reference #: _	10-264
Turnaround Request	Project Manager:	David Baumeister
1 Day 2 Day 3 Day	email:	dbaumeister@onsite-env.com
Standard	Project Number: _	202005-0101
ther:	Project Name	

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	Requested Analyses
	TP-5-0-0.5	10/20/20	9:57	S	1	Dioxin/Furans
	Signature		npany		Date	Time Comments/Special Instructions
Relinqu	ished by:	08E	nc .		ובורב מו	0 1600
Receive			<i>P</i>)			CLIENT
	I.M. a. a	VAL			1. /	
Receive		VAC			19/28/2	09:49 QA/QC
Receive	d by:					

Other:

Work Order 2002336 Page 13 of 16

Sample Log-In Checklist

Vista Work Orde	r#:	2003	334	2				age # _ AT	Sta	of <u> </u>	_
Samples	Date/Tim	ie		ln	itials:		Loca	ition:	UR-	2_	
Arrival:	10/28	120 0	9:49		Who		Shelf/Rack:				
Delivered By:	FedEx	UPS	On Tra	ac	GLS	DHI	DHI		d red	Other	
Preservation:	lo	e	Blu	ue I	ce		hni e	Dry	Ice	No	ne
Temp °C: 2		rected)	robe us	ed:	Y / N)	Ther	mome	ter ID:	IR	-4
Temp °C: 23	(correc	ted)									
									YES	NO	NA
Shipping Contain	ner(s) Intac	t?		a victoria		A Control	Marco-Did Fig. 40 (D.N. SAN)		i		
Shipping Custody		act?									\times
Airbill	- Trk	# 12	684E	=1	WOI	953	332	127	1		
Shipping Docum	entation Pr	esent?						<u> </u>	i		
Shipping Contain	ner	\ \	/ista		Client	R	etain	Re	eturn	Dis	oose
Chain of Custody	/ / Sample	Documen	tation Pr	ese	ent?						
Chain of Custody	/ / Sample	Documen	tation Co	omp	olete?				V		
Holding Time Ac	ceptable?								V		
	Date/Tin	ne		In	nitials:		Loca	ation:	WR	2	
Logged In:	10/30/2	.0 /0	94/	1	BB		Shel	f/Rack	·		
COC Anomaly/Sa	ample Acc	eptance F	orm com	nple	eted?						

Comments:

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2002336

LabNumber CoC Sample ID		San	mplcAlias	Sample Date/Time	Container	BaseMatrix Comments
2002336-01 A TP-5-0-0.5 (A)				20-Oct-20 09:57	Clear Glass Jar, 250mL	Solid
Checkmarks indicate that information on the COC reconciled with the samp Any discrepancies are noted in the following columns.	ole label.					
	Yes	No	NA	Comments:		
Sample Container Intact?	/			A Sample label And B Sample rec'd in	ilysis "Metals"	
Sample Custody Seals Intact?			/	B Sample rec'd in	clear glass jar	
Adequate Sample Volume?	V					
Container Type Appropriate for Analysis(es)		V				
Preservation Documented: Na2S2O3 Trizma None Other			V			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?						
Verifed by/Date: 120 10/20/20	•	•	•	•		

Printed: 10/30/2020 10:56:00AM

Rev. Date: 11/08/2019 Rev. No: 0 ANOMALY FORM

ID: SR-AF

ANOMALY FORM

Vista V	Vork Order <u>2003つ36</u>
Initial/Date	The following checked issues were noted during sample receipt and login:
	1. The samples were received out of temperature at (WI-PHT): Was Ice present: Yes No Melted Blue Ice
	2. The Chain-of-Custody (CoC) was not relinquished properly.
	3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
	4. The sample(s) did not include a sample collection time. All or Sample Name:
	5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
	6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
	7. The CoC dld not include a sample matrix. The following sample matrix will be used:
	8. Insufficent volume received for analysis. All or Sample Name:
	9. The backup bottle was received broken. Sample Name:
	10. CoC not received, illegible or destroyed.
	11. The sample(s) were received out of holding time. All or Sample Name:
	12. The CoC did not include an analysis. All or Sample Name:
	13. Sample(s) received without collection date. All or Sample Name:
	14. Sample(s) not received. All or Sample Name:
	15. Sample(s) received broken. All or Sample Name:
Np 10/30/20	16. An Incorrect container-type was used. All or Sample Name: TP-5-0-0.5 *
	17. Other:
	* Sample label analysis "Metals"
Bolded items i	require sign-off
Client Contact	ed: Yes, via email
Date of Conta	
Vista Client M	anager: KJR
Resolution:	client informed of container type in acknowledgement letter
	email

ID: SR - AF Rev.: 0 Rev. Date: 11/08/2019 Page: 1 of 1

Work Order 2002336 Page 16 of 16

Solution label Company	Company:						_								
ANCH Rest Perameters Company, Ort. Anchor Detailing Phase 2 ANCH Rest Perameters Company, Anchor Oct. Detailing Phase 2 ANCH Rest Perameters Company, Anchor Oct. Detailing Phase 2 ANCH Rest Perameters Rest Peramet					Ву:	Received	<u></u>				mpany:	Co		Relinquished By:	
Anche in the secondary of the secondary	any: 056		M	Name	By:	Received	[0] -7	BAE	QEA Le/Time	Dat	mpany: Ar	2 Tannor	o Ramu	Relinquished By: Comparison of the comparison o	
Sample Date Phose Phose Parameters		-	100	1281	P	HI	1 X	18	33	1 5		deled	X 410F	Notes:	
ADDITION OF CONTRACT OF THE PROPERTY OF ANOTHER STATES OF ANOTHER		1		1	-					H	/				18
ANCH ABACTER ABACTER ABACTER ABACTER ABACTER ABACTER ABACTER ABACTER Collection				+	1	+	1	-		+	-	1			17
No. of Containers No.				+	-	+	1	F		+	-				6
ANCH Real Collection ABANCH Real Collection Collection Data Time Data Time Matrix No. of Containers Real Collection Data Time Matrix No. of Containers Real Collection Archive Real Collection Real Collection Anchive Real Collection Real Collec				-	F	+	1	-		+	+				7 4
AREA CONTROLLED DATE TO COMMENTS Preservation Solution 1938 Solu						-				-	-		/		3
No. of Containers										-			/		12
ANCH ABC RECUEING Phase 2 PROBER COllection Collection Collection Date/Time Matrix Mercury / Metal/ Form Solids / PAH S Grain Size Total Organic Carbon XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX														1	1
ANCH ABC RECURS Collection Collection Collection Collection Date Time Matrix No. of Containers Collection Collection Date Time Matrix No. of Containers Collection Archive XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX														/	0
ARE RECUCING Phase 2 AREA POLICIES Phase 2 AREA POLICIES Phase 2 ARICHITIAN Phase 2 ARICHITAN Phase					X	×			X	X	Co	120/20 1638	3.5	1.	9
ARCHIVE PROSE 2 ARCHIVE PROSE 3 ARCHIVE ARCHIVE ARCHIVE PROSE 3 ARCHIVE ARCH					8	8	×		Ŏ		5 10	120/20/68	2:00	12	00
ABC PECLCING Phose 2 ABC PECLCING Phose 2 POCOSS 01-01 Collection Collection Collection Collection Collection Collection Date/Time Matrix M		X			×	×			X	×	O.	1891 00/00	-2	tr-11-1	7
ABC RECUCING Phase 2		X			×	×			X	7 >	S	, 1512	i	18-11-0	6
ANCH ABC PECUCING Phase 2 ANCH Proces of metal and martin process of martin proce		X			X	X			X	X	S		2.5-DUP	1	51
ABC PECUCINA Phose 2 ANCH Comments/Preservation Comments/Preservation Comments/Preservation Comments/Preservation		1		1	X	X			×	7 X		120		1	4
ABC RECUCITIVE PROSE 2 ABC RE				X R	X	×	X		_			120	U	1	ω
ABC PECUCINA PROSE 2 PORCE OF TOTAL PROSE 2 PORCE OF		X		0	8	8			-	8	S	120 1	-0.5	121	2
ABC PECUCIVA PROSE 2 POPOS OF OF TOTAL Solids PATE Total Solids PATE Total Organic Carbon Dioxin/Furans Archive TPHDX FTHDX FTHDX TOTAL Solids 25406 HOLD Comments Total Solids 25406	Dan Cool Admini	8	8	8	X	X	X		X	18	(N	120/20	-0.5	1	_
ABC PECUCING Phase 2 PERENT OF MATHEMATICAL PROPERTY OF MATHEMATICAL P			DUP			Archive TPHDx	Dioxin/Fur	Grain Size	- /				ample ID	Field S	ine
ABC Pecycling Phase 2 202005-01-01 ABC Pecycling Phase 2 Test Parameters Test Parameters		Solids	LICAT	Metal	V.(1)	/FT0	_					38	XI	hone Number: ment Method:	Ship :
ABC PECYCling Phose 2	* OEA IIII	25	E	s(i		4 -				2	2	Q1	00	roject Number:	P P
Ovisite: Test Parameters	A ANCHOR	3406		CRA		>			1.41	20.00	2	30	1012012 ABC RECY	Date: Project Name:	
			ers	aramet	Test	-			et	راء			DATE	ratory Name:	abo

Sample/Cooler Receipt and Acceptance Checklist

OnSite Project Number: 10-264		Initiated by	10/02/20
1.0 Cooler Verification			1 /
1.1 Were there custody seals on the outside of the cooler?	Yes	(No)	N/A 1 2 3 4
.2 Were the custody seals intact?	Yes	No	N/A 1 2 3 4
.3 Were the custody seals signed and dated by last custodian?	Yes	No	1234
.4 Were the samples delivered on ice or blue ice?	(Yes	No	N/A 1 2 3 4
1.5 Were samples received between 0-6 degrees Celsius?	(Fes	(Ng	N/A Temperature:
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	N/A	
1.7 How were the samples delivered?	Client	Courier(UPS/FedEx OSE Pickup Other
2.0 Chain of Custody Verification			
2.1 Was a Chain of Custody submitted with the samples?	Yes	No	1 2 3 4
2.2 Was the COC legible and written in permanent ink?	Yes	No	1 2 3 4
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No	1 2 3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No	1 2 3 4
	(Yes)	No	1 2 3 4
2.5 Were all of the samples listed on the COC submitted?	163/		
	Yes	Na	1 2 3 4
2.6 Were any of the samples submitted omitted from the COC?		Ng.	1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification			1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised?	Yes		
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible?	Yes		1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested?	Yes Yes Yes	(E) (S)	1 2 3 4 1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved?	Yes Yes Yes	No	1 2 3 4 1 2 3 4 1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes Yes Yes Yes Yes	No No	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses?	Yes Yes Yes Yes Yes Yes	No No No	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 3.8 Was method 5035A used?	Yes Yes Yes Yes Yes Yes Yes	NO NO NO NO NO	1 2 3 4 1 2 3 4

^{1 -} Discuss issue in Case Narrative

^{3 -} Client contacted to discuss problem

^{2 -} Process Sample As-is

^{4 -} Sample cannot be analyzed or client does not wish to proceed

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01

Laboratory Reference No. 2010-279

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 23, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 202005-01.01

Case Narrative

Samples were collected on October 21 and 22, 2020 and received by the laboratory on October 23, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A Analysis

The Sample TP-7-4.5-5 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Antimony	75	2.6	EPA 6010D	10-28-20	10-29-20	
Arsenic	160	2.6	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.17	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.47	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	74	0.53	EPA 6010D	10-28-20	10-29-20	
Copper	240	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	110	5.3	EPA 6010D	10-28-20	10-29-20	
Mercury	0.14	0.026	EPA 7471B	11-4-20	11-4-20	
Nickel	52	13	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Silver	0.41	0.26	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Zinc	280	13	EPA 6010D	10-28-20	10-29-20	
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Antimony	8.8	3.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	25	3.5	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Antimony	8.8	3.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	25	3.5	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.19	0.14	EPA 6020B	11-2-20	11-4-20	
Cadmium	3.0	0.14	EPA 6020B	11-2-20	11-4-20	
Chromium	25	0.69	EPA 6010D	10-28-20	10-29-20	
Copper	40	1.4	EPA 6010D	10-28-20	10-29-20	
Lead	39	6.9	EPA 6010D	10-28-20	10-29-20	
Mercury	0.11	0.035	EPA 7471B	11-4-20	11-4-20	
Nickel	22	3.5	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.5	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.35	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.5	EPA 6010D	10-28-20	10-29-20	
Zinc	140	3.5	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-4-0-0.5				,	1 111 9 2
Laboratory ID:	10-279-03					
Antimony	46	3.1	EPA 6010D	10-28-20	10-29-20	
Arsenic	100	3.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.36	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	3.8	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	26	0.62	EPA 6010D	10-28-20	10-29-20	
Copper	90	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	130	6.2	EPA 6010D	10-28-20	10-29-20	
Mercury	0.25	0.031	EPA 7471B	11-4-20	11-4-20	
Nickel	17	3.1	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.1	EPA 6010D	10-28-20	10-29-20	
Silver	0.50	0.31	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.1	EPA 6010D	10-28-20	10-29-20	
Zinc	250	3.1	EPA 6010D	10-28-20	10-29-20	
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Antimony	5.3	2.8	EPA 6010D	10-28-20	10-29-20	
Arsenic	19	2.8	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.26	0.11	EPA 6020B	11-2-20	11-4-20	
Cardinali una	4.0	0.44	EDA COCOD	44.0.00	44 4 00	

Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Antimony	5.3	2.8	EPA 6010D	10-28-20	10-29-20	
Arsenic	19	2.8	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.26	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	1.6	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	11	0.57	EPA 6010D	10-28-20	10-29-20	
Copper	37	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	15	5.7	EPA 6010D	10-28-20	10-29-20	
Mercury	0.11	0.028	EPA 7471B	11-4-20	11-4-20	
Nickel	9.0	2.8	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.28	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Zinc	65	2.8	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Antimony	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Arsenic	6.4	3.7	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.52	0.15	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.79	0.15	EPA 6020B	11-2-20	11-4-20	
Chromium	43	0.74	EPA 6010D	10-28-20	10-29-20	
Copper	30	1.5	EPA 6010D	10-28-20	10-29-20	
Lead	16	7.4	EPA 6010D	10-28-20	10-29-20	
Mercury	0.048	0.037	EPA 7471B	11-4-20	11-4-20	
Nickel	41	3.7	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Silver	0.38	0.37	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Zinc	130	3.7	EPA 6010D	10-28-20	10-29-20	
	_		_		_	
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Antimony	ND	3.2	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Antimony	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	6.5	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.34	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	50	0.63	EPA 6010D	10-28-20	10-29-20	
Copper	41	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	3.9	1.3	EPA 6020B	11-2-20	11-5-20	
Mercury	0.051	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	48	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	64	3.2	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2			•		
Laboratory ID:	10-279-09					
Antimony	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Arsenic	13	4.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	1.8	0.16	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.71	0.16	EPA 6020B	11-2-20	11-4-20	
Chromium	16	0.82	EPA 6010D	10-28-20	10-29-20	
Copper	36	1.6	EPA 6010D	10-28-20	10-29-20	
Lead	31	8.2	EPA 6010D	10-28-20	10-29-20	
Mercury	0.34	0.041	EPA 7471B	11-4-20	11-4-20	
Nickel	18	4.1	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.41	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Zinc	42	4.1	EPA 6010D	10-28-20	10-29-20	
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					

Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Antimony	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Arsenic	9.9	3.0	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.34	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.17	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	45	0.60	EPA 6010D	10-28-20	10-29-20	
Copper	43	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	4.0	1.2	EPA 6020B	11-2-20	11-5-20	
Mercury	0.047	0.030	EPA 7471B	11-4-20	11-4-20	
Nickel	48	3.0	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.30	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Zinc	77	3.0	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Antimony	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Arsenic	7.2	3.0	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.29	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.13	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	44	0.60	EPA 6010D	10-28-20	10-29-20	
Copper	27	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	3.8	1.2	EPA 6020B	11-2-20	11-5-20	
Mercury	0.042	0.030	EPA 7471B	11-4-20	11-4-20	
Nickel	35	3.0	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.30	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Zinc	49	3.0	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Antimony	3.4	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	11	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.37	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.44	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	28	0.65	EPA 6010D	10-28-20	10-29-20	
Copper	17	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	14	6.5	EPA 6010D	10-28-20	10-29-20	
Mercury	0.039	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	27	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	98	3.2	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Antimony	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	11	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.49	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	64	0.65	EPA 6010D	10-28-20	10-29-20	
Copper	53	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	6.9	6.5	EPA 6010D	10-28-20	10-29-20	
Mercury	0.067	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	58	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	87	3.2	EPA 6010D	10-28-20	10-29-20	
Client ID:	TD 2 4 5 2					
	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Antimony	26	5.1	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Antimony	26	5.1	EPA 6010D	10-28-20	10-29-20	_
Arsenic	93	5.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.25	0.20	EPA 6020B	11-2-20	11-4-20	
Cadmium	79	0.20	EPA 6020B	11-2-20	11-4-20	
Chromium	28	1.0	EPA 6010D	10-28-20	10-29-20	
Copper	59	2.0	EPA 6010D	10-28-20	10-29-20	
Lead	2600	10	EPA 6010D	10-28-20	10-29-20	
Mercury	0.25	0.051	EPA 7471B	11-4-20	11-4-20	
Nickel	8.1	5.1	EPA 6010D	10-28-20	10-29-20	
Selenium	30	5.1	EPA 6010D	10-28-20	10-29-20	
Silver	11	0.51	EPA 6020B	11-2-20	11-4-20	
Thallium	8.9	5.1	EPA 6010D	10-28-20	10-29-20	
Zinc	290	5.1	EPA 6010D	10-28-20	10-29-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB1102SM1						
Lead	ND	1.0	EPA 6020B	11-2-20	11-5-20		
	MD 40000114						
Laboratory ID:	MB1028SH1						
Antimony	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Arsenic	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Chromium	ND	0.50	EPA 6010D	10-28-20	10-29-20		
Copper	ND	1.0	EPA 6010D	10-28-20	10-29-20		
Lead	ND	5.0	EPA 6010D	10-28-20	10-29-20		
Nickel	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Selenium	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Thallium	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Zinc	ND	2.5	EPA 6010D	10-28-20	10-29-20		
Laboratory ID:	MB1102SM1						
Beryllium	ND	0.10	EPA 6020B	11-2-20	11-4-20		
Cadmium	ND	0.10	EPA 6020B	11-2-20	11-4-20		
Silver	ND	0.25	EPA 6020B	11-2-20	11-4-20		
Laboratory ID:	MB1104S1						
Mercury	ND	0.025	EPA 7471B	11-4-20	11-4-20		
							

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

				Source		Percent	Recovery	RPD		
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-279-02									
	ORIG	DUP								
Antimony	6.30	7.95	NA	NA		NA	NA	23	20	
Arsenic	18.0	20.0	NA	NA		NA	NA	11	20	
Chromium	18.2	19.9	NA	NA		NA	NA	9	20	
Copper	28.9	30.7	NA	NA		NA	NA	6	20	
Lead	28.2	33.5	NA	NA		NA	NA	17	20	
Nickel	16.2	17.1	NA	NA		NA	NA	5	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	104	124	NA	NA		NA	NA	18	20	
Laboratory ID:	10-279-02									
Beryllium	0.135	0.155	NA	NA		NA	NA	14	20	
Cadmium	2.16	2.04	NA	NA		NA	NA	5	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-279-02									
Mercury	0.0769	0.127	NA	NA		NA	NA	49	20	
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Lead	14.3	13.3	NA	NA		NA	NA	7	20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

onito: mg/rtg (ppm	,				Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	88.0	83.5	100	100	6.30	82	77	75-125	5	20	
Arsenic	114	111	100	100	18.0	96	93	75-125	3	20	
Chromium	104	105	100	100	18.2	86	86	75-125	0	20	
Copper	80.5	76.0	50.0	50.0	28.9	103	94	75-125	6	20	
Lead	241	233	250	250	28.2	85	82	75-125	3	20	
Nickel	98.5	98.0	100	100	16.2	82	82	75-125	1	20	
Selenium	97.5	94.5	100	100	ND	98	95	75-125	3	20	
Thallium	44.4	43.9	50.0	50.0	ND	89	88	75-125	1	20	
Zinc	190	183	100	100	104	87	79	75-125	4	20	
Laboratory ID:	10-2	79-02									
Beryllium	49.8	51.3	50.0	50.0	0.135	99	102	75-125	3	20	
Cadmium	46.8	47.3	50.0	50.0	2.16	89	90	75-125	1	20	
Silver	22.5	22.3	25.0	25.0	ND	90	89	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.559	0.515	0.500	0.500	0.0769	96	88	80-120	8	20	
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Lead	251	252	250	250	14.3	95	95	75-125	0	20	

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Naphthalene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.087	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.38	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.79	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.79	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.84	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.77	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	1.3	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.41	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.96	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.74	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.18	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.76	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	46 - 113				
Pyrene-d10	95	45 - 114				

Terphenyl-d14 100 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Naphthalene	0.077	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	0.088	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	0.078	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	0.0070	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	0.0047	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	0.0093	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	0.089	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	0.014	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	0.040	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	0.037	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	0.027	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	0.040	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	0.037	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	0.0073	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	0.023	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	0.022	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	0.0083	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	0.030	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				·
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	76	45 - 114				

Terphenyl-d14 49 - 121 77

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Naphthalene	0.28	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.80	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.54	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.084	EPA 8270E/SIM	10-29-20	10-31-20	U1
Phenanthrene	0.62	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.082	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.17	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.18	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.13	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.22	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.13	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	46 - 113				
Pyrene-d10	84	45 - 114				

Pyrene-d10 45 - 114 Terphenyl-d14 86 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Naphthalene	1.2	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	4.4	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	2.5	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.36	EPA 8270E/SIM	10-29-20	10-31-20	U1
Fluorene	0.41	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	3.6	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.13	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.35	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.49	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.41	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.94	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.33	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.17	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.087	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.17	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits		_		
2-Fluorobiphenyl	105	46 - 113				
Pyrene-d10	113	45 - 114				

Project: 202005-01.01

PAHs EPA 8270E/SIM

Date

Date

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Naphthalene	0.086	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.048	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.039	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	0.0055	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.066	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.0071	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.049	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.032	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.011	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.025	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.030	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.0060	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.011	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.017	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.023	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	69	45 - 114				

Surrogate:	Percent Recovery	Control Limit
2-Fluorobiphenyl	66	46 - 113
Pyrene-d10	69	45 - 114
Terphenyl-d14	69	49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Naphthalene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	0.0044	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	46 - 113				
Pyrene-d10	78	45 - 114				
Tarrahanidadd	76	10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Naphthalene	0.098	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.25	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.25	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.014	EPA 8270E/SIM	10-29-20	10-31-20	U1
Acenaphthene	ND	0.012	EPA 8270E/SIM	10-29-20	10-31-20	U1
Fluorene	ND	0.016	EPA 8270E/SIM	10-29-20	10-31-20	U1
Phenanthrene	0.16	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.029	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.036	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.039	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.043	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.037	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.025	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.020	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.0091	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.0053	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.018	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	46 - 113				
Pyrene-d10	57	45 - 114				
T 1 . 14 4	0.5	10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Naphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	46 - 113				
Pyrene-d10	84	45 - 114				
Terphenyl-d14	83	49 - 121				

Project: 202005-01.01

PAHs EPA 8270E/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
TP-14-1.5-2					
10-279-11					
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Percent Recovery	Control Limits				
74	46 - 113				
85	45 - 114				
81	49 - 121				
	TP-14-1.5-2 10-279-11 ND	TP-14-1.5-2 10-279-11 ND 0.0040 Percent Recovery Control Limits 74 46 - 113 85 45 - 114	TP-14-1.5-2 10-279-11 0.0040 EPA 8270E/SIM ND 0.0040 EPA 8270E/SIM	Result PQL Method Prepared TP-14-1.5-2 10-279-11 10-279-11 ND 0.0040 EPA 8270E/SIM 10-29-20 ND	Result PQL Method Prepared Analyzed TP-14-1.5-2 10-279-11 TP-14-1.5-2 10-279-11 TP-14-1.5-2 TP-10-30-20 TP-30-20 TP-30-2

Project: 202005-01.01

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Naphthalene	0.015	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.019	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.016	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.015	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.0073	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.0062	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.0079	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.0077	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0064	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	70	45 - 114				
Town born d ald 4	74	10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
TP-2-1.5-2					
10-279-13					
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Percent Recovery	Control Limits				
73	46 - 113				
81	45 - 114				
78	49 - 121				
	TP-2-1.5-2 10-279-13 ND	TP-2-1.5-2 10-279-13 0.0043 ND 0.0043 ND </td <td>TP-2-1.5-2 10-279-13 0.0043 EPA 8270E/SIM ND 0.0043 EPA 8270E/SIM</td> <td>Result PQL Method Prepared TP-2-1.5-2 10-279-13 10-279-13 ND 0.0043 EPA 8270E/SIM 10-29-20 ND</td> <td>Result PQL Method Prepared Analyzed TP-2-1.5-2 10-279-13 10-279-13 10-29-20 10-30-20 ND 0.0043 EPA 8270E/SIM 10-29-20 10-30-20</td>	TP-2-1.5-2 10-279-13 0.0043 EPA 8270E/SIM ND 0.0043 EPA 8270E/SIM	Result PQL Method Prepared TP-2-1.5-2 10-279-13 10-279-13 ND 0.0043 EPA 8270E/SIM 10-29-20 ND	Result PQL Method Prepared Analyzed TP-2-1.5-2 10-279-13 10-279-13 10-29-20 10-30-20 ND 0.0043 EPA 8270E/SIM 10-29-20 10-30-20

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Naphthalene	0.022	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.050	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.035	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.040	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.0075	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.0066	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.0064	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.014	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.0082	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.0044	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0047	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	46 - 113				
Pyrene-d10	68	45 - 114				

Terphenyl-d14 66 49 - 121

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Naphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	82	49 - 121				

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

0 0					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.120	0.121	0.0833	0.0833	0.0558	77	78	51 - 115	1	26	
Acenaphthylene	0.0623	0.0653	0.0833	0.0833	0.00504	69	72	53 - 121	5	24	
Acenaphthene	0.0677	0.0754	0.0833	0.0833	0.00339	77	86	52 - 121	11	25	
Fluorene	0.0644	0.0705	0.0833	0.0833	0.00667	69	77	58 - 127	9	23	
Phenanthrene	0.126	0.136	0.0833	0.0833	0.0641	74	86	46 - 129	8	28	
Anthracene	0.0732	0.0793	0.0833	0.0833	0.0100	76	83	57 - 124	8	21	
Fluoranthene	0.0877	0.0932	0.0833	0.0833	0.0287	71	77	46 - 136	6	29	
Pyrene	0.0859	0.0921	0.0833	0.0833	0.0266	71	79	41 - 136	7	32	
Benzo[a]anthracene	0.0983	0.114	0.0833	0.0833	0.0191	95	114	56 - 136	15	25	
Chrysene	0.0890	0.102	0.0833	0.0833	0.0288	72	88	49 - 130	14	22	
Benzo[b]fluoranthene	0.0813	0.0937	0.0833	0.0833	0.0267	66	80	51 - 135	14	26	
Benzo(j,k)fluoranthene	0.0686	0.0758	0.0833	0.0833	0.00528	76	85	56 - 124	10	23	
Benzo[a]pyrene	0.0728	0.0833	0.0833	0.0833	0.0163	68	80	54 - 133	13	26	
Indeno(1,2,3-c,d)pyrene	0.0727	0.0819	0.0833	0.0833	0.0159	68	79	52 - 134	12	20	
Dibenz[a,h]anthracene	0.0685	0.0791	0.0833	0.0833	0.00596	75	88	58 - 127	14	17	
Benzo[g,h,i]perylene	0.0763	0.0861	0.0833	0.0833	0.0215	66	78	54 - 129	12	21	
Surrogate:											
2-Fluorobiphenyl						62	67	46 - 113			
Pyrene-d10						70	77	45 - 114			
Terphenyl-d14						71	80	49 - 121			

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

0 0 11 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Diesel Range Organics	ND	26	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil	190	53	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Olis and IDs	TD 7 4 5 5					
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02	0.5	ANA/TOLL D	10.00.00	10.00.00	
Diesel Range Organics	ND	35	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND (B	69	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Diesel Range Organics	34	31	NWTPH-Dx	10-29-20	10-29-20	N
Lube Oil	410	62	NWTPH-Dx	10-29-20	10-29-20	14
Surrogate:	Percent Recovery	Control Limits	THE TENT	10 20 20	10 20 20	
o-Terphenyl	91	50-150				
c respirency.	0,	00 700				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Diesel Range Organics	71	29	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	160	57	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Diesel Range Organics	ND	37	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	73	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TD 42 4 5 0					
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08		NATOLLE	10.00.00	40.00.00	
Diesel Range Organics	ND	32	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Diesel Range Organics	ND	41	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	82	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Diesel Range Organics	ND	30	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND ND	61	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits	INVVIETI-DX	10-29-20	10-29-20	
o-Terphenyl	94	50-150				
0-Terprierryi	34	30-130				
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Diesel Range Organics	ND	30	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	60	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Diesel Range Organics	ND	33	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	95	65	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Diesel Range Organics	ND	33	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	65	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits	<u> </u>			
o-Terphenyl	87	50-150				
, ,						
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Diesel Range Organics	ND	51	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	100	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB1029S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-29-20	10-29-20	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						91 100	50-150			
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Diesel Range Organics	50.4	50.5	NA	NA		NA	NA	0	NA	N
Lube Oil	308	289	NA	NA		NA	NA	6	NA	
Surrogate:	•		•		•					
o-Terphenyl						97 91	50-150			

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

Office. Hig/kg (ppiii)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Gasoline	ND	6.0	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	58-129				
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Gasoline	ND	21	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	120	58-129				
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Gasoline	ND	7.9	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	58-129				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Gasoline	19	9.2	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	58-129				
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Gasoline	ND	11	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	58-129				
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Gasoline	ND	7.8	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Gasoline	ND	17	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Gasoline	ND	7.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Gasoline	ND	7.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Gasoline	ND	10	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Gasoline	ND	9.6	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Gasoline	ND	22	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	58-129				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1028S2					
Gasoline	ND	5.0	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	58-129				
Laboratory ID:	MB1028S3					
Gasoline	ND	5.0	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-27	9-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	_
Surrogate:											
Fluorobenzene						120	121	58-129			
Laboratory ID:	10-26	64-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:		•								•	
Fluorobenzene						107	108	58-129			

Project: 202005-01.01

PCBs EPA 8082A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Aroclor 1016	ND	0.035	EPA 8082A	11-4-20	11-4-20	Χ
Aroclor 1221	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1232	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1242	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1248	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1254	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1260	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1262	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1268	ND	0.035	EPA 8082A	11-4-20	11-4-20	X
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Aroclor 1016	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	90	46-125				

Project: 202005-01.01

PCBs EPA 8082A **QUALITY CONTROL**

Matrix: Soil

Units: mg/Kg (ppm)

0 0 ((1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	Χ
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	X
Surrogate:	Percent Recovery	Control Limits				
DCB	07	16-125				

DCB 97 46-125

Project: 202005-01.01

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level		Result Recovery		Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB11	104S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:											
DCB						96	96	46-125			
Laboratory ID:	SB11	104S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.301	0.272	0.250	0.250	N/A	120	109	50-134	10	18	Х
Surrogate:											
DCB						102	101	46-125			

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.46	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	1.5	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM1					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T1					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-27	79-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		- 1	NA	NA	NA	20	
Barium	0.462	0.462	NA	NA		ı	NA	NA	0	20	
Cadmium	ND	ND	NA	NA		ı	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		- 1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	10-27	79-02									
Mercury	ND	ND	NA	NA		l	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-27	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20	
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20	
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20	
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20	
Lead	9.55	9.51	10.0	10.0	ND	96	95	75-125	0	20	
Selenium	4.05	4.01	4.00	4.00	ND	101	100	75-125	1	20	
Silver	0.960	0.968	1.00	1.00	ND	96	97	75-125	1	20	
Laboratory ID:	10-27	79-02									
Mercury	0.0488	0.0486	0.0500	0.0500	ND	98	97	75-125	0	20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Total Solids	95	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Total Solids	72	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Total Solids	81	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05	0.50	014.0540.0	40.00.00	40.00.00	
Total Solids	88	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Total Solids	68	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Total Solids	79	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Total Solids	61	0.50	SM 2540G	10-29-20	10-30-20	
-						

Project: 202005-01.01

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-14-1.5-2 10-279-11					
Laboratory ID: Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	
Total Solids	03	0.50	3W 2340G	10-29-20	10-30-20	
Client ID: Laboratory ID:	TP-1-0.5-1.5 10-279-12					
Total Solids	77	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Total Solids	77	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Total Solids	49	0.50	SM 2540G	10-29-20	10-30-20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-27	79-02							
	ORIG	DUP							
Total Solids	72.1	70.8	NA	NA	NA	NA	2	20	
Laboratory ID:	10-26	10-264-01							
	ORIG	DUP							
Total Solids	89.3	91.7	NA	NA	NA	NA	3	20	•

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

November 17, 2020

Vista Work Order No. 2002337

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 28, 2020 under your Project Name '202005-0101'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2002337 Page 1 of 16

Vista Work Order No. 2002337 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. The sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

This sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2002337 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 2002337 Page 3 of 16

Sample Inventory Report

Vista Client
Sample ID Sample ID Sampled Received Components/Containers

2002336-01 TP-5-0-0.0 21-c t -20912:13 27-c t -20998:48 Clear9Glass9Jar,920mL

Vis a9rojet :920023369 Clien 9rojet :920200O0101

Work Order 2002337 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2002337 Page 5 of 16

Sample ID: Method Blank EPA Method 1613B

Client Data

Name:

OnSite Environmental Inc.

Project: 202005-0101 Matrix: Solid Laboratory Data

Lab Sample: B0K0041-BLK1

QC Batch: B0K0041 Date Extracted: 05-Nov-20 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Conc. (pg/g)	EDL	EMPC	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0263			13-Nov-20 10:55	1
1,2,3,7,8-PeCDD	ND	0.0497			13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDD	ND	0.0568			13-Nov-20 10:55	1
1,2,3,6,7,8-HxCDD	ND	0.0574			13-Nov-20 10:55	1
1,2,3,7,8,9-HxCDD	ND	0.0721			13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDD	ND	0.0573			13-Nov-20 10:55	1
OCDD	ND	0.116			13-Nov-20 10:55	1
2,3,7,8-TCDF	ND	0.0198			13-Nov-20 10:55	1
1,2,3,7,8-PeCDF	ND	0.0288			13-Nov-20 10:55	1
2,3,4,7,8-PeCDF	ND	0.0235			13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDF	ND	0.0329			13-Nov-20 10:55	1
1,2,3,6,7,8-HxCDF	ND	0.0337			13-Nov-20 10:55	1
2,3,4,6,7,8-HxCDF	ND	0.0389			13-Nov-20 10:55	1
1,2,3,7,8,9-HxCDF	ND	0.0698			13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDF	ND	0.0487			13-Nov-20 10:55	1
1,2,3,4,7,8,9-HpCDF	ND	0.0568			13-Nov-20 10:55	1
OCDF	ND	0.0915			13-Nov-20 10:55	1
Toxic Equivalent						
TEQMinWHO2005Dioxin	0.00					
Totals						
Total TCDD	ND	0.0263				
Total PeCDD	ND	0.0497				
Total HxCDD	ND	0.0721				
Total HpCDD	ND	0.0573				
Total TCDF	ND	0.0198				
Total PeCDF	ND	0.0288				
Total HxCDF	ND	0.0698				
Total HpCDF	ND	0.0568				
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	80.4	25 - 164		13-Nov-20 10:55	5 1
13C-1,2,3,7,8-PeCDD	IS	81.8	25 - 181		13-Nov-20 10:55	5 1
13C-1,2,3,4,7,8-HxCDD	IS	88.4	32 - 141		13-Nov-20 10:55	5 1
13C-1,2,3,6,7,8-HxCDD	IS	89.3	28 - 130		13-Nov-20 10:55	5 1
13C-1,2,3,7,8,9-HxCDD	IS	80.0	32 - 141		13-Nov-20 10:55	5 1
13C-1,2,3,4,6,7,8-HpCDD	IS	80.0	23 - 140		13-Nov-20 10:55	5 1
13C-OCDD	IS	74.4	17 - 157		13-Nov-20 10:55	
13C-2,3,7,8-TCDF	IS	83.2	24 - 169		13-Nov-20 10:55	
13C-1,2,3,7,8-PeCDF	IS	84.6	24 - 185		13-Nov-20 10:55	
13C-2,3,4,7,8-PeCDF	IS	90.3	21 - 178		13-Nov-20 10:55	
13C-1,2,3,4,7,8-HxCDF	IS	82.0	26 - 152		13-Nov-20 10:55	
13C-1,2,3,6,7,8-HxCDF	IS	82.7	26 - 123		13-Nov-20 10:55	
13C-2,3,4,6,7,8-HxCDF	IS	83.8	28 - 136		13-Nov-20 10:55	
13C-1,2,3,7,8,9-HxCDF	IS	71.1	29 - 147		13-Nov-20 10:55	
13C-1,2,3,4,6,7,8-HpCDF	IS	75.5	28 - 143		13-Nov-20 10:55	
13C-1,2,3,4,7,8,9-HpCDF	IS	71.1	26 - 138		13-Nov-20 10:55	5 1
13C-OCDF	IS	71.5	17 - 157		13-Nov-20 10:55	5 1
37Cl-2,3,7,8-TCDD	CRS	95.5	35 - 197		13-Nov-20 10:55	5 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2002337 Page 6 of 16

Client Data Name: OnSite En Project: 202005-0 Matrix: Solid	vironmental Inc. 101		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0K0041-BS1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 06:05 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.0	20.0	105	67-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDD	106	100	106	70-142		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDD	101	100	101	70-164		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDD	104	100	104	76-134		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDD	103	100	103	64-162		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDD	102	100	102	70-140		13-Nov-20 09:25	1
OCDD	204	200	102	78-144		13-Nov-20 09:25	1
2,3,7,8-TCDF	19.4	20.0	96.8	75-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDF	102	100	102	80-134		13-Nov-20 09:25	1
2,3,4,7,8-PeCDF	102	100	102	68-160		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDF	103	100	103	72-134		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDF	101	100	101	84-130		13-Nov-20 09:25	1
2,3,4,6,7,8-HxCDF	100	100	100 98.9	70-156		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	98.9 103	100	103	78-130 82-122		13-Nov-20 09:25 13-Nov-20 09:25	1
1,2,3,4,7,8,9-HpCDF	103	100	100	78-138		13-Nov-20 09:25	1
1,2,5,4,7,8,9-прСDF	200	100	100	63-170		13-Nov-20 09:25	1
Labeled Standards	Type	200	% Recovery	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS		88.5	20-175		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDD	IS		89.5	21-227		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDD	IS		91.6	21-193		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDD	IS		91.8	25-163		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDD	IS		90.8	21-193		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDD	IS		87.0	26-166		13-Nov-20 09:25	1
13C-OCDD	IS		79.6	13-199		13-Nov-20 09:25	1
13C-2,3,7,8-TCDF	IS		88.7	22-152		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDF	IS		93.6	21-192		13-Nov-20 09:25	1
13C-2,3,4,7,8-PeCDF	IS		95.6	13-328		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDF	IS		84.0	19-202		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDF	IS		85.3	21-159		13-Nov-20 09:25	1
13C-2,3,4,6,7,8-HxCDF	IS		85.0	22-176		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDF	IS		87.1	17-205		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDF	IS		78.0	21-158		13-Nov-20 09:25	1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.8	20-186		13-Nov-20 09:25	1
13C-OCDF	IS		77.7	13-199		13-Nov-20 09:25	1
37Cl-2,3,7,8-TCDD	CRS		106	31-191		13-Nov-20 09:25	1

EPA Method 1613B

Sample ID: OPR

Work Order 2002337 Page 7 of 16

Client Data				baoryatryEDat		D . W . 1	20.0 . 20.00	. 40
Name:		onmental Inc.		Lab Sample:	2002336-01	Date Xeceived:	28-Oct-20 09	0:49
Project:	202005-0101			QC Batch:	B0K0041	Date Extracted:	05-Nov-20	
Matrix: Date Collected:	Solid 21-Oct-20 12	:13		Sample Size: % Solids:	12.2 7 82.4	Colgmn:	uB-DIOZIN	
MnalEte		Crnc. (pg/g)	ADb	Ah PC		Qualifieys	MnalFze1	Dilutir
2131618-, CDD		ND		0.0966			14-Nov-20 05:4T	1
1R2R3R6R8-PeCDD		0.TT5				Н	14-Nov-20 05:4T	
1 12 13 14 16 18 -F xCDI	D	ND		0.812			14-Nov-20 05:4T	1
1 12 13 17116 18 - F x C D I	D	12.T					14-Nov-20 05:4T	1
1 12 13 16 18 19-F xCDI	D	5.14					14-Nov-20 05:4T	1
1 12 13 14 17 16 18 - F pCl	DD	186					14-Nov-20 05:4T	1
OCDD		1620					14-Nov-20 05:4T	1
2131618-, CDJ		0.160				Н	14-Nov-20 05:4T	1
1 12 13 16 18 - PeCDJ		0.189				Н	14-Nov-20 05:4T	
2BRK8-PeCDJ		0.3T1				Н	14-Nov-20 05:4T	
11213141618-F xCDJ		0.504				Н	14-Nov-20 05:4T	
1RBRR8-FxCDJ		0.332				Н	14-Nov-20 05:4T	
2BRRT6B-FxCDJ		0.225				Н	14-Nov-20 05:4T	
1RRRRP-FxCDJ		0.0933				Н	14-Nov-20 05:4T	
1 12 13 14 17 16 18 - F pCl		10.2					14-Nov-20 05:4T	
1 R R R R R P - F pCl	DJ	0.509				Н	14-Nov-20 05:4T	
OCDJ		43.1					14-Nov-20 05:4T	1
Trxic Aquivalent , EQMinWF O200		5.19						
, EQMINWF 0200 Trtals	JSDIOXIN	3.19						
, otal , CDD		1.82		1.9T				
, otal PeCDD		3.80		4.69				
, otal F xCDD		89.3		90.1				
, otal F pCDD		409		90.1				
, otal , CDJ		0.T20		0.T90				
, otal PeCDJ		3.64		4.32				
, otal F xCDJ		15.1		4.32				
, otal F pCDJ		41.1						
baoelel Stanlay	1s	TEpe	% Recryey	F.	bimits	Qualifieys	MnalEze1	Dilutir
13C-2181618-, CDI		IS	95.6	<u> </u>	25 - 1T4	Qualificity	14-Nov-20 05:4T	
13C-1R2R3R6R8-PeC		IS	90.9		25 - 181		14-Nov-20 05:4T	
13C-1R2BR46B-F:		IS	92.6		32 - 141		14-Nov-20 05:4T	
13C-1R/B/R/K/B-F:		IS	95.1		28 - 130		14-Nov-20 05:4T	
13C-1R/B/6/R/P-F:		IS	94.9		32 - 141		14-Nov-20 05:4T	
13C-1R2R3R4RT16R8-		IS	93.8		23 - 140		14-Nov-20 05:4T	
13C-OCDD	г ревв	IS	89.4		16 - 156		14-Nov-20 05:4T	
13C-2BB8-, CDJ	Ī	IS	96.3		24 - 1T9		14-Nov-20 05:4T	
13C-2181616-, CD3		IS	99.0				14-Nov-20 05:4T	
13C-2BR68-PeC		IS	96.5		24 - 185 21 - 168		14-Nov-20 05:4T	
13C-1RBR68-F:		IS	88.9				14-Nov-20 05:41 14-Nov-20 05:4T	
13C-1RBRRB-F		IS	90.9		2T - 152		14-Nov-20 05:4T	
13C-1RBRINGS-F:		IS IS			2T - 123		14-Nov-20 05:41 14-Nov-20 05:4T	
			90.T		28 - 13T			
13C-1R/R/R/R/R/F:		IS	91.5		29 - 146		14-Nov-20 05:4T	
13C-1RRRRR8-	-	IS	85.1		28 - 143		14-Nov-20 05:4T	
13C-1RRRRRP-	r pCDJ	IS	8T.8		2T - 138		14-Nov-20 05:4T	
13C-OCDJ	-	IS	83.4		16 - 156		14-Nov-20 05:4T	
36Cl-2131618-, CD	D	CXS	10T		35 - 196		14-Nov-20 05:4T	1

APMh etdr1 6563B

Sample ID: TP-5-0-0.L

EMPC - Estimated maximgm possible concentration

Work Order 2002337 Page 8 of 16

, he sample size is reported in wet wei7ht.

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

K EMPC (specific projects only)

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2002337 Page 9 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-B
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2002337 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699			
HRGC/HRMS				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B			
GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

Work Order 2002337 Page 11 of 16

MATRIX: Non-Potable Water				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Dioxin by GC/HRMS	EPA 613			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B			
Dibenzofurans by GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Solids				
Description of Test	Method			
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

Work Order 2002337 Page 12 of 16

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory:	: Vista Analytical Laboratory	
-------------	-------------------------------	--

Attention: Jennifer Miller

Address: 1104 Windfield Way, El Dorado Hills, CA 95762

Phone Number: (916) 673-1520

2002337	2.3
	01.

	Laboratory Reference #:	10-279
Turnaround Request	Project Manager:	David Baumeister
Day 2 Day 3 Day	email:	dbaumeister@onsite-env.com
Standard	Project Number:	202005-0101
er:	Project Name:	

Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.		Requested Analyses
TP-6-0-0.5	10/21/20	12:13	S	1	Dioxin/Furans	s
						-
						-
Signature	Con	ipany		Date	Time	Comments/Special Instructions
Relinquished by:	OSE			10/27/20	1600	
Received by:		UPS				
Relinquished by:	UPS	_				
Received by: Ululut	VAL			1-/28/20	09:49	
Relinquished by:						
Received by:						

1 Day

Other:

Work Order 2002337 Page 13 of 16

Sample Log-In Checklist

						Pa	age#_		of	
Vista Work Orde	r#:	20	0023	337		T/	ΔΤ	Std		_
Samples	Date/Tim	ne		Initials:		Loca	tion:	UR-	2_	
Arrival:	10/28	120 0	9:49	Cup	ω	Shelf	f/Rack	: <u>/</u>	JA	
Delivered By:	FedEx	UPS	On Tra	ac GLS	DHI	-	Hand Delive		Oth	ner
Preservation:	lo	e	Blu	ue Ice	1	chni ce	Dry	Ice	No	ne
Temp °C: Z	3 (uncor	rected)	robo us	ed: Y / (N)	Thor	mama	ter ID:	IR	4
Temp °C: 23	correc	ted)	robe us	eu. Y / (N		Titer	mome	ter ib:		_'_
	植壳鱼属						FI	YES	NO	NA
Shipping Contain	ner(s) Intac	t?			And the second			V		IVA
Shipping Custod		act?								X
Airbill	- Trk	# ! Z	684E	EIWO	95	33Z	127	1	+	
Shipping Docum	entation P	resent?						V	1	
Shipping Contain	ner		′ista	Client	R	etain	Re	eturn	Dis	pose
Chain of Custody	/ / Sample	Documen	tation Pr	esent?						
Chain of Custody	/ / Sample	Documen	tation Co	omplete?				V		
Holding Time Ac	ceptable?							V		
	Date/Tin	ne		Initials:		Loca	ation:	WR-2)	
Logged In:	10/30/20	, 11	07	PSS	3			:: <u> </u>		
COC Anomaly/S	ample Acc	eptance F	orm com	pleted?				V		

Comments:

ID.: LR – SLC Rev No.: 6 Rev Date: 07/16/2020 Page: 1 of 1

Work Order 2002337 Page 14 of 16

CoC/Label Reconciliation Report WO# 2002337

LabNumber CoC Sample ID		Sa	mplcAlias	Date/Time		Container	BaseMatrix Comments
2002337-01 A TP-6-0-0.5		麦娃		21-Oct-20 12:13		Clear Glass Jar, 250mL	A Solid
Checkmarks indicate that information on the COC reconciled with the samp Any discrepancies are noted in the following columns.	le label.						
	Yes	No	NA	Comments:		1 200 0/055	iac
Sample Container Intact?	V			A Sample r	rec'd in	clear grass	Jan.
Sample Custody Seals Intact?			V				
Adequate Sample Volume?	V						
Container Type Appropriate for Analysis(es)		V					
Preservation Documented: Na2S2O3 Trizma None Other			/	,			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?							
Verifed by/Date: 10/30/20	•	•	•	•			

Printed: 10/30/2020 12:37:48PM

Work Order 2002337

ANOMALY FORM

ID: SR-AF

ANOMALY FORM

Vista V	rk Order	37
Initial/Date	he following checked issues were noted during	ng sample receipt and login:
	1. The samples were received out of Was Ice present: Yes No	temperature at (WI-PHT):
	2. The Chain-of-Custody (CoC) was no	t relinquished properly.
	3. The CoC did not include collection ti	me(s). 00:00 will be used unless notified otherwise.
	4. The sample(s) did not include a sam	ple collection time. All or Sample Name:
	5. A sample ID discrepancy was found The CoC Sample ID will be used unles	•
	6. A sample date and/or time discrepare. The CoC Sample date/time will be use	ncy was found. See the Reconciliation report. d unless notified otherwise.
	7. The CoC dld not include a sample	matrix. The following sample matrix will be used:
	8. Insufficent volume received for an	nalysis. All or Sample Name:
	9. The backup bottle was received brol	ken. Sample Name:
	10. CoC not received, illegible or de	stroyed.
	11. The sample(s) were received out	of holding time. All or Sample Name:
	12. The CoC did not include an analy	ysis. All or Sample Name:
	13. Sample(s) received without colle	ection date. All or Sample Name:
	14. Sample(s) not received. All or S	Sample Name:
	15. Sample(s) received broken. All	
2018 10 30 20	16. An incorrect container-type was	used. All or Sample Name: TP-6-0.0.5
	17. Other:	
Bolded items	uire sign-off	
Client Contac	Yes, via email	
Date of Conta	10/30/2020	_
Vista Client M	ger: KJR	in all mariled almost.
Resolution:	ent informed of cor	stainer type in acknowledgement
	etter email	

ID: SR - AF

Rev.: 0 Rev. Date: 11/08/2019

Page: 1 of 1

Page 1

Sample/Cooler Receipt and Acceptance Checklist

Client:		Initiated by	MV	L	_
OnSite Project Number: 10-279		Date Initiat	ted: 10/2	3/20	
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	(es	No	N/A	1 2 3 4	
.2 Were the custody seals intact?	(Yes)	No	N/A	1 2 3 4	
.3 Were the custody seals signed and dated by last custodian?	(es)	No	N/A	1 2 3 4	
.4 Were the samples delivered on ice or blue ice?	Yes	No	N/A	1 2 3 4	
.5 Were samples received between 0-6 degrees Celsius?	(es)	No	N/A	Temperature: 5	5
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	NHA			
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples?	Vas	No		1 2 3 4	
	(Yes)				
2.2 Was the COC legible and written in permanent ink? 2.3 Have samples been relinquished and accepted by each custodian?	Tes	No		1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No		1 2 3 4	
	Yes	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC?	Yes	(No.)		1 2 3 4 1 2 3 4	
2.0 Vere any of the samples submitted offitted from the OOO!	163	prop		1234	
0.0.0					
3.0 Sample Verification					
	Yes	No		1 2 3 4	
3.1 Were any sample containers broken or compromised?	Yes Yes	No No		1 2 3 4 1 2 3 4	
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible?		-			
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested?	Yes	No	N/A	1 2 3 4	
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved?	Yes	No No	N/A N/A	1 2 3 4 1 2 3 4	
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes Yes	No No		1 2 3 4 1 2 3 4 1 2 3 4	
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses?	Yes Yes Yes	No No No		1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	
3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 3.8 Was method 5035A used?	Yes Yes Yes Yes	No No No No		1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	

eOH viels horizontal

^{1 -} Discuss issue in Case Narrative

^{2 -} Process Sample As-is

^{3 -} Client contacted to discuss problem

^{4 -} Sample cannot be analyzed or client does not wish to proceed

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01 Laboratory Reference No. 2010-327

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 28, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 202005-01.01

Case Narrative

Samples were collected on October 26 and 27, 2020 and received by the laboratory on October 28, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx (soil) Analysis

The surrogate percent recovery is outside control limits on the high end for sample GP-2-25-27 due to reduced methanol volumes in the provided field-extracted Method 5035A VOA vial. Because the sample is non-detect, no further action was taken.

PCBs EPA 8082A (soil) Analysis

The Sample 10-279-02 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Sediment Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Gasoline	ND	8.1	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Gasoline	ND	20	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	163	58-129				Q
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Gasoline	ND	7.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Gasoline	ND	7.8	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Gasoline	ND	7.6	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Gasoline	ND	6.5	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Gasoline	ND	6.4	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	58-129				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Sediment Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Gasoline	ND	6.3	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	58-129				
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Gasoline	ND	11	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Gasoline	ND	8.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	115	58-129				
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Gasoline	ND	6.6	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	58-129				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Solid

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S1					
Gasoline	ND	5.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Laboratory ID:	MB1029S2					
Gasoline	ND	5.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-10									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	Α	NA	NA	30	
Surrogate:											_
Fluorobenzene						106	108	58-129			
Laboratory ID:	10-34	19-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	Α	NA	NA	30	
Surrogate:	•	•	•								
Fluorobenzene						96	96	58-129			

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	TB-201026					
Laboratory ID:	10-327-19					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-120				

Project: 202005-01.01

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029W1					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	65-120				

Analyte	Res	sult	Spike	Level	Source Result	Perc Reco		Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-17									
-	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N/	Ą	NA	NA	30	
Surrogate:											
Fluorobenzene						83	83	65-120			

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

	- "	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01	33	NWTPH-Dx	11-2-20	11-2-20	
Diesel Range Organics	ND ND	33 67	NWTPH-DX NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics		Control Limits	INVV I PH-DX	11-2-20	11-2-20	
Surrogate: o-Terphenyl	Percent Recovery 85	50-150				
0-Terphenyi	65	50-150				
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Diesel Range Organics	ND	33	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	66	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
- r <i>y</i>						
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Diesel Range Organics	ND	32	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	64	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
011 115	00.4.00.00					
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06		NIMTRILLE	44.0.00	44.0.00	
Laboratory ID: Diesel Range Organics	10-327-06 ND	34	NWTPH-Dx	11-2-20	11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics	10-327-06 ND ND	69	NWTPH-Dx NWTPH-Dx	11-2-20 11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	10-327-06 ND ND Percent Recovery	69 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics	10-327-06 ND ND	69				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	10-327-06 ND ND Percent Recovery	69 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	10-327-06 ND ND Percent Recovery 75	69 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup	69 Control Limits				
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07	69 Control Limits 50-150	NWTPH-Dx	11-2-20	11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup	69 Control Limits	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND	69 Control Limits 50-150	NWTPH-Dx	11-2-20	11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND	69 Control Limits 50-150 35 70	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND Percent Recovery	69 Control Limits 50-150 35 70 Control Limits	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND Percent Recovery	69 Control Limits 50-150 35 70 Control Limits	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND Percent Recovery	69 Control Limits 50-150 35 70 Control Limits	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND Percent Recovery 78	69 Control Limits 50-150 35 70 Control Limits	NWTPH-Dx	11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID:	10-327-06 ND ND Percent Recovery 75 GP-1-20-22-Dup 10-327-07 ND ND Percent Recovery 78 GP-5-6.9-7.5	69 Control Limits 50-150 35 70 Control Limits	NWTPH-Dx	11-2-20 11-2-20 11-2-20	11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Laboratory ID:	10-327-06	69 Control Limits 50-150 35 70 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	11-2-20 11-2-20 11-2-20	11-2-20 11-2-20 11-2-20	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Surrogate: o-Terphenyl	10-327-06	69 Control Limits 50-150 35 70 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	11-2-20 11-2-20 11-2-20	11-2-20 11-2-20 11-2-20	

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

Analyta	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte Client ID:	GP-5-20-22	PQL	Metriou	Frepareu	Analyzeu	riags
Laboratory ID:	10-327-10					
Diesel Range Organics	ND	31	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	62	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits	NWII II-DX	11-2-20	11-2-20	
o-Terphenyl	92	50-150				
o respiration	02	00 700				
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Diesel Range Organics	ND	31	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Diesel Range Organics	ND	38	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	76	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
011 - 4 10	00 4 45 40 5					
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Diesel Range Organics	ND	35 69	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	Control Limits	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery 83	50-150				
o-Terphenyl	03	50-150				
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Diesel Range Organics	ND	30	NWTPH-Dx	11-6-20	11-6-20	
Lube Oil Range Organics	ND	60	NWTPH-Dx	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits			,	
o-Terphenyl	105	50-150				

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102S1					
Diesel Range Organics	ND	25	NWTPH-Dx	11-2-20	11-2-20	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Laboratory ID:	MB1106S1					
Diesel Range Organics	ND	25	NWTPH-Dx	11-6-20	11-6-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				

					Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-10									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						92	74	50-150			
Laboratory ID:	SB11	02S1									
	ORIG	DUP									
Diesel Fuel #2	100	94.0	NA	NA		NA		NA	6	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						100	91	50-150			
Laboratory ID:	SB11	06S1									
	ORIG	DUP									
Diesel Fuel #2	91.0	85.2	NA	NA		NA		NA	7	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						102	98	50-150			

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water
Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Diesel Range Organics	ND	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
	0.12	0.10	NWTPH-Dx	10-29-20	10-29-20	
Diesel Range Organics						
Lube Oil Range Organics	0.29	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Diesel Range Organics	0.11	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	0.27	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

Project: 202005-01.01

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029W1					
Diesel Range Organics	ND	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-3	27-17								
	ORIG	DUP								
Diesel Range Organics	0.120	0.0927	NA	NA		NA	NA	26	NA	
Lube Oil Range Organics	0.287	0.221	NA	NA		NA	NA	26	NA	
Surrogate:		•		•	•					
o-Terphenyl						97 81	50-150			

Project: 202005-01.01

PAHs EPA 8270E/SIM

Date

Date

Matrix: Soil Units: mg/Kg

				Date	Dato	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Naphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits	_			_
2-Fluorobiphenyl	48	46 - 113				
Pyrene-d10	52	45 - 114				

Terphenyl-d14 54 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Naphthalene	0.0078	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	0.013	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	0.0084	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	0.024	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	0.037	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	0.11	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	0.025	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	0.20	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	0.14	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	0.066	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	0.065	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	0.055	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	0.016	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	0.021	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	0.0058	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	0.0048	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	46 - 113				
Pyrene-d10	102	45 - 114				

Pyrene-d10 45 - 114 102 Terphenyl-d14 101 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Naphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	46 - 113				
Pyrene-d10	97	45 - 114				

Terphenyl-d14 100 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Naphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	46 - 113				
Pyrene-d10	104	45 - 114				

Terphenyl-d14 106 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
GP-1-20-22-Dup					
10-327-07					
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Percent Recovery	Control Limits				
53	46 - 113				
60	45 - 114				
62	49 - 121				
	GP-1-20-22-Dup 10-327-07 ND	GP-1-20-22-Dup 10-327-07 0.0047 ND 0.0047	GP-1-20-22-Dup 10-327-07 0.0047 EPA 8270E/SIM ND 0.0047 EPA 8270E/SIM	Result PQL Method Prepared GP-1-20-22-Dup 10-327-07 10-327-07 ND 0.0047 EPA 8270E/SIM 11-3-20 ND <td< td=""><td>Result PQL Method Prepared Analyzed GP-1-20-22-Dup 10-327-07 BPA 8270E/SIM 11-3-20 11-3-20 ND 0.0047 EPA 8270E/SIM 11-3-20 11-3-20 ND</td></td<>	Result PQL Method Prepared Analyzed GP-1-20-22-Dup 10-327-07 BPA 8270E/SIM 11-3-20 11-3-20 ND 0.0047 EPA 8270E/SIM 11-3-20 11-3-20 ND

Project: 202005-01.01

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Naphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
2-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	46 - 113				
Pyrene-d10	58	45 - 114				
T	00	10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Naphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	46 - 113				
Pyrene-d10	101	45 - 114				

Pyrene-d10 45 - 114 Terphenyl-d14 49 - 121 99

Project: 202005-01.01

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Naphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	54	46 - 113				
Pyrene-d10	56	45 - 114				
T		10 101				

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Naphthalene	0.043	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	0.050	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	0.042	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	0.028	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	0.0053	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	0.010	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	0.0094	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	0.013	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	0.020	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	0.015	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	0.013	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	0.0077	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	0.0047	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	0.012	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	46 - 113				
Pyrene-d10	55	45 - 114				

Terphenyl-d14 75 49 - 121

Project: 202005-01.01

PAHs EPA 8270E/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
GP-4-15-18.7					
10-327-14					
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Percent Recovery	Control Limits				
50	46 - 113				
50	45 - 114				
51	49 - 121				
	GP-4-15-18.7 10-327-14 ND	GP-4-15-18.7 10-327-14 0.0046 ND 0.0046 ND	GP-4-15-18.7 10-327-14 0.0046 EPA 8270E/SIM ND 0.0046 EPA 8270E/SIM	Result PQL Method Prepared GP-4-15-18.7 10-327-14 10-327-14 ND 0.0046 EPA 8270E/SIM 11-3-20 ND 0	Result PQL Method Prepared Analyzed GP-4-15-18.7 10-327-14 Herman Herman

Project: 202005-01.01

PAHs EPA 8270E/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
GP-3-14.4-15.9					
10-327-16					
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Percent Recovery	Control Limits				
67	46 - 113				
83	45 - 114				
86	49 - 121				
	GP-3-14.4-15.9 10-327-16 ND	GP-3-14.4-15.9 ND 0.0040 Percent Recovery Control Limits 67 46 - 113 83 45 - 114	GP-3-14.4-15.9 ND 0.0040 EPA 8270E/SIM ND 0.0040 EPA 8270E/SIM <tr< td=""><td>Result PQL Method Prepared GP-3-14.4-15.9 10-327-16 11-6-20 ND 0.0040 EPA 8270E/SIM 11-6-20 ND 0</td><td>Result PQL Method Prepared Analyzed GP-3-14.4-15.9 10-327-16 4-113.9 10-327-16 11-6-20 11-6-20 11-6-20 ND 0.0040 EPA 8270E/SIM 11-6-20 11-6-20 <</td></tr<>	Result PQL Method Prepared GP-3-14.4-15.9 10-327-16 11-6-20 ND 0.0040 EPA 8270E/SIM 11-6-20 ND 0	Result PQL Method Prepared Analyzed GP-3-14.4-15.9 10-327-16 4-113.9 10-327-16 11-6-20 11-6-20 11-6-20 ND 0.0040 EPA 8270E/SIM 11-6-20 11-6-20 <

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

3. 3				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1103S1					
Naphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
2-Methylnaphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
1-Methylnaphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthylene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Fluorene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Phenanthrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Chrysene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[b]fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo(j,k)fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
ndeno(1,2,3-c,d)pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Dibenz[a,h]anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[g,h,i]perylene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	46 - 113				
Pyrene-d10	58	45 - 114				
Terphenyl-d14	56	49 - 121				

Project: 202005-01.01

PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1106S1					
Naphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
2-Methylnaphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
1-Methylnaphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthylene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Fluorene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Phenanthrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Chrysene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[b]fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo(j,k)fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Dibenz[a,h]anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[g,h,i]perylene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	46 - 113				
Pyrene-d10	106	45 - 114				
Tornhanyl d11	0.5	10 101				

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-32	27-10									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0710	0.0687	0.0833	0.0833	ND	85	82	51 - 115	3	26	
Acenaphthylene	0.0733	0.0704	0.0833	0.0833	ND	88	85	53 - 121	4	24	
Acenaphthene	0.0729	0.0707	0.0833	0.0833	ND	88	85	52 - 121	3	25	
Fluorene	0.0787	0.0800	0.0833	0.0833	ND	94	96	58 - 127	2	23	
Phenanthrene	0.0779	0.0754	0.0833	0.0833	ND	94	91	46 - 129	3	28	
Anthracene	0.0802	0.0781	0.0833	0.0833	ND	96	94	57 - 124	3	21	
Fluoranthene	0.0829	0.0843	0.0833	0.0833	ND	100	101	46 - 136	2	29	
Pyrene	0.0775	0.0823	0.0833	0.0833	ND	93	99	41 - 136	6	32	
Benzo[a]anthracene	0.0804	0.0845	0.0833	0.0833	ND	97	101	56 - 136	5	25	
Chrysene	0.0790	0.0777	0.0833	0.0833	ND	95	93	49 - 130	2	22	
Benzo[b]fluoranthene	0.0792	0.0869	0.0833	0.0833	ND	95	104	51 - 135	9	26	
Benzo(j,k)fluoranthene	0.0769	0.0730	0.0833	0.0833	ND	92	88	56 - 124	5	23	
Benzo[a]pyrene	0.0777	0.0798	0.0833	0.0833	ND	93	96	54 - 133	3	26	
Indeno(1,2,3-c,d)pyrene	0.0804	0.0821	0.0833	0.0833	ND	97	99	52 - 134	2	20	
Dibenz[a,h]anthracene	0.0788	0.0784	0.0833	0.0833	ND	95	94	58 - 127	1	17	
Benzo[g,h,i]perylene	0.0787	0.0784	0.0833	0.0833	ND	94	94	54 - 129	0	21	
Surrogate:											
2-Fluorobiphenyl						88	84	46 - 113			
Pyrene-d10						96	98	45 - 114			
Terphenyl-d14						95	102	49 - 121			

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pe	ercent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB11	06S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0752	0.0705	0.0833	0.0833	90	85	60 - 116	6	16	
Acenaphthylene	0.0794	0.0800	0.0833	0.0833	95	96	60 - 125	1	15	
Acenaphthene	0.0789	0.0776	0.0833	0.0833	95	93	60 - 121	2	15	
Fluorene	0.0802	0.0803	0.0833	0.0833	96	96	65 - 126	0	15	
Phenanthrene	0.0806	0.0801	0.0833	0.0833	97	96	65 - 120	1	15	
Anthracene	0.0796	0.0811	0.0833	0.0833	96	97	67 - 125	2	15	
Fluoranthene	0.0854	0.0829	0.0833	0.0833	103	100	66 - 125	3	15	
Pyrene	0.0838	0.0820	0.0833	0.0833	101	98	62 - 125	2	15	
Benzo[a]anthracene	0.0884	0.0859	0.0833	0.0833	106	103	72 - 129	3	15	
Chrysene	0.0845	0.0835	0.0833	0.0833	101	100	66 - 123	1	15	
Benzo[b]fluoranthene	0.0867	0.0859	0.0833	0.0833	104	103	68 - 128	1	15	
Benzo(j,k)fluoranthene	0.0825	0.0784	0.0833	0.0833	99	94	63 - 128	5	16	
Benzo[a]pyrene	0.0829	0.0792	0.0833	0.0833	100	95	66 - 130	5	15	
Indeno(1,2,3-c,d)pyrene	0.0754	0.0807	0.0833	0.0833	91	97	63 - 135	7	15	
Dibenz[a,h]anthracene	0.0704	0.0760	0.0833	0.0833	85	91	65 - 130	8	15	
Benzo[g,h,i]perylene	0.0729	0.0775	0.0833	0.0833	88	93	66 - 127	6	15	
Surrogate:										
2-Fluorobiphenyl					98	90	46 - 113			
Pyrene-d10					95	94	45 - 114			
Terphenyl-d14					103	106	49 - 121			

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Naphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	20 - 106				
Pyrene-d10	65	26 - 104				

Terphenyl-d14 44 - 127 64

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Naphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	20 - 106				
Pyrene-d10	61	26 - 104				

44 - 127 Terphenyl-d14 62

Project: 202005-01.01

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Naphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	0.0053	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	20 - 106				
Pyrene-d10	70	26 - 104				

Terphenyl-d14 72 44 - 127

Project: 202005-01.01

PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102W1					
Naphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	20 - 106				
Pyrene-d10	65	26 - 104				

Project: 202005-01.01

PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-32	27-17									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.283	0.250	0.552	0.521	ND	51	48	30 - 98	12	40	
Acenaphthylene	0.326	0.295	0.552	0.521	ND	59	57	39 - 106	10	28	
Acenaphthene	0.348	0.313	0.552	0.521	ND	63	60	36 - 114	11	35	
Fluorene	0.361	0.339	0.552	0.521	ND	65	65	45 - 112	6	29	
Phenanthrene	0.401	0.373	0.552	0.521	ND	73	72	51 - 109	7	23	
Anthracene	0.348	0.324	0.552	0.521	ND	63	62	49 - 109	7	22	
Fluoranthene	0.378	0.349	0.552	0.521	ND	68	67	53 - 115	8	20	
Pyrene	0.376	0.346	0.552	0.521	ND	68	66	49 - 129	8	27	
Benzo[a]anthracene	0.513	0.462	0.552	0.521	ND	93	89	61 - 123	10	20	
Chrysene	0.427	0.382	0.552	0.521	ND	77	73	59 - 114	11	22	
Benzo[b]fluoranthene	0.427	0.404	0.552	0.521	ND	77	78	60 - 125	6	24	
Benzo(j,k)fluoranthene	0.436	0.354	0.552	0.521	ND	79	68	58 - 121	21	23	
Benzo[a]pyrene	0.393	0.350	0.552	0.521	ND	71	67	58 - 118	12	23	
Indeno(1,2,3-c,d)pyrene	0.450	0.407	0.552	0.521	ND	82	78	59 - 124	10	23	
Dibenz[a,h]anthracene	0.443	0.393	0.552	0.521	ND	80	75	59 - 123	12	23	
Benzo[g,h,i]perylene	0.431	0.383	0.552	0.521	ND	78	74	58 - 120	12	23	
Surrogate:											
2-Fluorobiphenyl						47	44	20 - 106			
Pyrene-d10						63	62	26 - 104			
Terphenyl-d14						64	61	44 - 127			

Project: 202005-01.01

PCBs EPA 8082A

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Aroclor 1016	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1221	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1232	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1242	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1248	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1254	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1260	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1262	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1268	ND	0.032	EPA 8082A	11-4-20	11-5-20	
0	D D	0411::4-				

Surrogate: Percent Recovery Control Limits DCB 76 46-125

Project: 202005-01.01

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	

Surrogate: Percent Recovery Control Limits
DCB 98 46-125

					Source		rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB11	04S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:					•		•			•	
DCB						96	96	46-125			

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Antimony	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Arsenic	9.8	3.3	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.43	0.067	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.077	0.067	EPA 6020B	11-4-20	11-5-20	
Chromium	60	0.67	EPA 6010D	11-2-20	11-2-20	
Copper	49	1.3	EPA 6010D	11-2-20	11-2-20	
_ead	4.8	0.67	EPA 6020B	11-4-20	11-5-20	
Mercury	0.085	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	58	3.3	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Zinc	72	3.3	EPA 6010D	11-2-20	11-2-20	
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Antimony	ND	3.3	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Antimony	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Arsenic	5.3	3.3	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.15	0.066	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.12	0.066	EPA 6020B	11-4-20	11-5-20	
Chromium	31	0.66	EPA 6010D	11-2-20	11-2-20	
Copper	21	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	2.9	0.66	EPA 6020B	11-4-20	11-5-20	
Mercury	0.038	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	29	3.3	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Zinc	42	3.3	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

onite. Thightig (ppini)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Antimony	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Arsenic	9.3	3.2	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.33	0.064	EPA 6020B	11-4-20	11-5-20	
Cadmium	ND	0.064	EPA 6020B	11-4-20	11-5-20	
Chromium	55	0.64	EPA 6010D	11-2-20	11-2-20	
Copper	48	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	3.2	0.64	EPA 6020B	11-4-20	11-5-20	
Mercury	0.062	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	58	3.2	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Zinc	64	3.2	EPA 6010D	11-2-20	11-2-20	
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Antimony	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.0	3.4	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.18	0.068	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.13	0.068	EPA 6020B	11-4-20	11-5-20	
Chromium	42	0.68	EPA 6010D	11-2-20	11-2-20	
Copper	35	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.68	EPA 6020B	11-4-20	11-5-20	
Mercury	0.037	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	46	3.4	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Zinc	64	3.4	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Antimony	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.3	3.5	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.19	0.070	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.11	0.070	EPA 6020B	11-4-20	11-5-20	
Chromium	44	0.70	EPA 6010D	11-2-20	11-2-20	
Copper	35	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.70	EPA 6020B	11-4-20	11-5-20	
Mercury	0.045	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	46	3.5	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.18	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Zinc	62	3.5	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Antimony	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Arsenic	7.5	3.2	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.36	0.063	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.093	0.063	EPA 6020B	11-4-20	11-5-20	
Chromium	43	0.63	EPA 6010D	11-2-20	11-2-20	
Copper	22	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	4.7	0.63	EPA 6020B	11-4-20	11-5-20	
Mercury	0.059	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	33	3.2	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Zinc	61	3.2	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Antimony	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Arsenic	5.0	3.1	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.16	0.062	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.093	0.062	EPA 6020B	11-4-20	11-5-20	
Chromium	31	0.62	EPA 6010D	11-2-20	11-2-20	
Copper	19	1.2	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.62	EPA 6020B	11-4-20	11-5-20	
Mercury	0.024	0.012	EPA 7471B	11-4-20	11-5-20	
Nickel	28	3.1	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.15	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Zinc	36	3.1	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Antimony	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Arsenic	3.6	3.1	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.13	0.063	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.092	0.063	EPA 6020B	11-4-20	11-5-20	
Chromium	27	0.63	EPA 6010D	11-2-20	11-2-20	
Copper	15	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	1.4	0.63	EPA 6020B	11-4-20	11-5-20	
Mercury	0.022	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	28	3.1	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Zinc	29	3.1	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Antimony	4.6	3.8	EPA 6010D	11-2-20	11-2-20	
Arsenic	14	3.8	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.37	0.076	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.90	0.076	EPA 6020B	11-4-20	11-5-20	
Chromium	37	0.76	EPA 6010D	11-2-20	11-2-20	
Copper	30	1.5	EPA 6010D	11-2-20	11-2-20	
Lead	44	1.5	EPA 6020B	11-4-20	11-5-20	
Mercury	0.095	0.015	EPA 7471B	11-4-20	11-5-20	
Nickel	38	3.8	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.8	EPA 6010D	11-2-20	11-2-20	
Silver	0.22	0.19	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.8	EPA 6010D	11-2-20	11-2-20	
Zinc	120	3.8	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Antimony	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.0	3.4	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.21	0.068	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.13	0.068	EPA 6020B	11-4-20	11-5-20	
Chromium	41	0.68	EPA 6010D	11-2-20	11-2-20	
Copper	28	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.4	0.68	EPA 6020B	11-4-20	11-5-20	
Mercury	0.030	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	39	3.4	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Zinc	53	3.4	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Antimony	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Arsenic	3.9	3.0	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.11	0.060	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.078	0.060	EPA 6020B	11-4-20	11-5-20	
Chromium	28	0.60	EPA 6010D	11-2-20	11-2-20	
Copper	16	1.2	EPA 6010D	11-2-20	11-2-20	
Lead	1.3	0.60	EPA 6020B	11-4-20	11-5-20	
Mercury	0.016	0.012	EPA 7471B	11-4-20	11-5-20	
Nickel	24	3.0	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.15	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Zinc	30	3.0	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102SH1					
Antimony	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Arsenic	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.50	EPA 6010D	11-2-20	11-2-20	
Copper	ND	1.0	EPA 6010D	11-2-20	11-2-20	
Nickel	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Thallium	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Zinc	ND	2.5	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1104SM1					
Beryllium	ND	0.050	EPA 6020B	11-4-20	11-5-20	
Cadmium	ND	0.050	EPA 6020B	11-4-20	11-5-20	
Lead	ND	0.50	EPA 6020B	11-4-20	11-5-20	
Silver	ND	0.13	EPA 6020B	11-4-20	11-5-20	
Laboratory ID:	MB1104S1					
Mercury	ND	0.010	EPA 7471B	11-4-20	11-5-20	

Project: 202005-01.01

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-10									
	ORIG	DUP									
Antimony	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Arsenic	4.07	4.38	NA	NA		N	IΑ	NA	7	20	
Chromium	25.2	26.1	NA	NA		N	IΑ	NA	4	20	
Copper	15.5	15.4	NA	NA		N	IΑ	NA	1	20	
Nickel	22.6	23.2	NA	NA		N	IΑ	NA	3	20	
Selenium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Thallium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Zinc	29.0	29.8	NA	NA		N	IA	NA	3	20	
Laboratory ID:	10-32	27-10									
Beryllium	0.134	0.123	NA	NA		Ν	IA	NA	9	20	
Cadmium	0.0755	0.0695	NA	NA		Ν	IΑ	NA	8	20	
Lead	1.66	1.40	NA	NA		Ν	IΑ	NA	17	20	
Silver	ND	ND	NA	NA		N	IA	NA	NA	20	
Laboratory ID:	10-33	27-10									
Mercury	0.0197	0.0201	NA	NA			IA	NA	2	20	
Wordary	0.0107	0.0201	1471	14/ (., .	14/ (
MATRIX SPIKES											
Laboratory ID:	10-32	27-10									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	88.5	88.5	100	100	ND	89	89	75-125	0	20	
Arsenic	99.5	101	100	100	4.07	95	96	75-125	1	20	
Chromium	121	122	100	100	25.2	96	97	75-125	1	20	
Copper	67.5	64.0	50.0	50.0	15.5	104	97	75-125	5	20	
Nickel	125	124	100	100	22.6	102	101	75-125	1	20	
Selenium	95.5	93.5	100	100	ND	96	94	75-125	2	20	
Thallium	48.2	51.0	50.0	50.0	ND	96	102	75-125	6	20	
Zinc	129	124	100	100	29.0	100	95	75-125	4	20	
Laboratory ID:	10-32	27-10									
Beryllium	48.9	47.7	50.0	50.0	0.134	97	95	75-125	2	20	
Cadmium	46.1	44.7	50.0	50.0	0.0755	92	89	75-125	3	20	
Lead	227	223	250	250	1.66	90	88	75-125	2	20	
Silver	20.7	19.9	25.0	25.0	ND	83	80	75-125	4	20	
Laboratory ID:		27-10									
Mercury	0.529	0.528	0.500	0.500	0.0197	102	102	80-120	0	20	

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.47	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

Project: 202005-01.01

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM1					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T1					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Red	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-2	79-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA AV	NA	NA	20	
Barium	0.462	0.462	NA	NA			NA	NA	0	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Selenium	ND	ND	NA	NA			NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	10-2	79-02									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20	
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20	
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20	
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20	
Lead	9.55	9.51	10.0	10.0	ND	96	95	75-125	0	20	
Selenium	4.05	4.01	4.00	4.00	ND	101	100	75-125	1	20	
Silver	0.960	0.968	1.00	1.00	ND	96	97	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.0488	0.0486	0.0500	0.0500	ND	98	97	75-125	0	20	

Project: 202005-01.01

DISSOLVED METALS EPA 200.8/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	0.76	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Mercury	ND	0.025	EPA 7470A		11-5-20	
Nickel	17	1.0	EPA 200.8		11-5-20	
Selenium	5.6	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	3.0	2.5	EPA 200.8		11-5-20	
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	0.68	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Mercury	ND	0.025	EPA 7470A		11-5-20	
Nickel	13	1.0	EPA 200.8		11-5-20	
Selenium	1.4	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	7.0	2.5	EPA 200.8		11-5-20	

Project: 202005-01.01

DISSOLVED METALS EPA 200.8/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	0.56	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Mercury	ND	0.025	EPA 7470A		11-5-20	
Nickel	15	1.0	EPA 200.8		11-5-20	
Selenium	1.4	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	6.6	2.5	EPA 200.8		11-5-20	

Project: 202005-01.01

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1105D1					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	ND	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Nickel	ND	0.50	EPA 200.8		11-5-20	
Selenium	ND	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	ND	2.5	EPA 200.8		11-5-20	
Laboratory ID:	MB1105D1					
Mercury	ND	0.025	EPA 7470A		11-5-20	

Project: 202005-01.01

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Offics. ug/L (ppb)					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-3	27-17									
	ORIG	DUP									
Antimony	ND	ND	NA	NA		١	IA	NA	NA	20	
Arsenic	0.680	0.702	NA	NA		N	IΑ	NA	3	20	
Beryllium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Cadmium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Chromium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Copper	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Lead	ND	ND	NA	NA		Ν	lΑ	NA	NA	20	
Nickel	12.8	13.3	NA	NA		N	IΑ	NA	4	20	
Selenium	1.37	1.34	NA	NA		N	IΑ	NA	2	20	
Silver	ND	ND	NA	NA		١	IΑ	NA	NA	20	
Thallium	ND	ND	NA	NA		N	IΑ	NA	NA	20	
Zinc	7.02	6.84	NA	NA		Ν	IΑ	NA	3	20	
Laboratory ID:	10-3	27-17									
Mercury	ND	ND	NA	NA		١	IA	NA	NA	20	
MATRIX SPIKES Laboratory ID:	10-3	27-17									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	84.0	84.8	80.0	80.0	ND	105	106	75-125	1	20	
Arsenic	86.0	84.4	80.0	80.0	0.680	107	105	75-125	2	20	
Beryllium	77.2	77.6	80.0	80.0	ND	97	97	75-125	1	20	
Cadmium	77.0	78.0	80.0	80.0	ND	96	98	75-125	1	20	
Chromium	76.6	75.4	80.0	80.0	ND	96	94	75-125	2	20	
Copper	71.6	72.0	80.0	80.0	ND	90	90	75-125	1	20	
Lead	74.8	75.2	80.0	80.0	ND	94	94	75-125	1	20	
Nickel	87.0	86.6	80.0	80.0	12.8	93	92	75-125	0	20	
Selenium	96.4	94.8	80.0	80.0	1.37	119	117	75-125	2	20	
Silver	69.4	68.0	80.0	80.0	ND	87	85	75-125	2	20	
Thallium	74.4	75.8	80.0	80.0	ND	93	95	75-125	2	20	
Zinc	83.2	81.0	80.0	80.0	7.02	95	93	75-125	3	20	
Laboratory ID:	10-3	27-17									
Mercury	5.78	5.78	6.25	6.25	ND	92	92	75-125	0	20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Total Solids	75	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Total Solids	76	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Total Solids	78	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Total Solids	73	0.50	SM 2540G	10-29-20	10-30-20	
Total Collas	70	0.00	OW 20400	10-23-20	10-00-20	
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Total Solids	71	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Total Solids	79	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Total Solids	81	0.50	SM 2540G	10-29-20	10-30-20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Total Solids	80	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Total Solids	66	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Total Solids	73	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	

Project: 202005-01.01

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-26	64-01							
	ORIG	DUP							
Total Solids	89.3	91.7	NA	NA	NA	NA	3	20	
Laboratory ID:	10-32	27-10							
	ORIG	DUP							
Total Solids	81.1	81.2	NA	NA	NA	NA	0	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

November 17, 0808

Vista Work Order No. 2002347

S r. Mavid Baumeister Onkite Environmental Inc. 1D6D4 NE 95th ktreet Redmond, WA 94850

Mear S r. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 28, 0808 under your Project Name '080885-81.81'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-672-1508 or by email at mmaier3 vista-analytical.com.

@hanT you for choosing Vista as part of your analytical support team.

kincerely,

S artha S aier Laboratory Mirector

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 118DWindfield Way El Morado Hills, CA 95760 ph: 916-672-1508 fx: 916-672-8186 www.vista-analytical.com

Work Order 2002347 Page 1 of 16

Vista Work Order No. 2002347 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. @ne sample was received in good condition and within the method temperature requirements. @ne sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

@his sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA S ethod 1612B using a ZB-MIOXIN GC column.

Holding @mes

@ne sample was extracted and analyzed within the method hold times.

Quality Control

@ne Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A S ethod BlanT and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the S ethod BlanT. @he OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2002347 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 2002347 Page 3 of 16

Sample Inventory Report

Vista Client
Sample ID Sample ID Sampled Received Components/Containers

2002347-01 GP-1-5.7-9.7 26-Oct-20 13:15 30-Oct-20 07:49 Clear Glass Jar, 250mL

Vista Project: 2002347 Client Project: 202005-01.01

Work Order 2002347 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2002347 Page 5 of 16

Sample ID: Method Bla	nnk					EPA Method	1613B
Client Data Name: n vpxtexd vl Project: 202005-01 i atrxS: po xO	I wovmevta z vcM		Laboratory Da baQpaml e: ChBatcD paml expxLe:	ta B0K0041-BbK1 B0K0041 10M/zg	Eatezd StracteΩ h o umv:	05-NoI -20 ZB-E . n X. N	
Analyte	Conc. (pg/g)	EDL	EMPC	,	Qualifiers	Analyzed	Dilution
2,3,7,8-Th E E	NE	0101263				13-NoI -20zl 0:55	1
1,2,3,7,8-Peh E E	NE	0 M 497				13-NoI -20zl 0:55	1
1,2,3,4,7,8-HSh E E	NE	01 01 568				13-NoI -20zl 0:55	1
1,2,3,6,7,8-HSh E E	NE	01 01 574				13-NoI -20zl 0:55	1
1,2,3,7,8,9-HSh E E	NE	01 01 721				13-NoI -20zl 0:55	1
1,2,3,4,6,7,8-Hl h E E	NE	01 01 573				13-NoI -20zl 0:55	1
n h EE	NE	0M16				13-NoI -20zl 0:55	1
2,3,7,8-Th E F	NE	0M/198				13-NoI -20zl 0:55	1
1,2,3,7,8-Peh E F	NE	01/01/288				13-NoI -20zl 0:55	1
2,3,4,7,8-Peh E F	NE	0101235				13-NoI -20zl 0:55	1
1,2,3,4,7,8-HSh E F	NE	010/1329				13-NoI -20zl 0:55	1
1,2,3,6,7,8-HSh E F	NE	010/0337				13-NoI -20zl 0:55	1
2,3,4,6,7,8-HSh E F	NE	01001389				13-NoI -20zl 0:55	1
1,2,3,7,8,9-HSh E F	NE	0101698				13-NoI -20zl 0:55	1
1,2,3,4,6,7,8-Hl h E F	NE	0104487				13-NoI -20zl 0:55	1
1,2,3,4,7,8,9-Hl h E F	NE	0101568				13-NoI -20zl 0:55	1
nhEF	NE	0101915				13-NoI -20zl 0:55	1
Toxic Equivalent							
TdCi xvWHn 2005ExoSxv	ONMO						
Totals							
Tota zTh E E	NE	01/01/263					
Tota zPeh EE	NE	010497					
Tota zHSh E E	NE	01/01/721					
Tota zHl h E E	NE	01/01573					
Tota zTh E F	NE	01001198					
Tota zPeh EF	NE	01/01/288					
Tota zHSh E F	NE	01/01/698					
Tota zHl h E F	NE	01/01/568					
Labeled Standards	Type	% Recover	у	Limits	Qualifiers	Analyzed	Dilution
13h -2,3,7,8-Th EE	.p	80 M I		225z-z164		13-NoI -20zl 0:55	1
13h -1,2,3,7,8-Peh E E	.p	81NA		225z-z181		13-NoI -20zl 0:55	1
13h -1,2,3,4,7,8-HSh EE	.p	88 M I		z32z-z141		13-NoI -20zl 0:55	1
13h -1,2,3,6,7,8-HSh EE	.p	89 M		z28z-z130		13-NoI -20zl 0:55	
13h -1,2,3,7,8,9-HSh EE	.p	80M		z32z-zz141		13-NoI -20zl 0:55	
13h -1,2,3,4,6,7,8-Hl h E E	.p	80M		223z-z140		13-NoI -20zl 0:55	
13h -n h EE	.p	74MI		zl7z-:zl57		13-NoI -20zl 0:55	
13h -2,3,7,8-Th EF		83 NI		224z-z169		13-NoI -20z10:55	
13h -1,2,3,7,8-Peh EF	.p	84M		224z:z185		13-NoI -20zl 0:55	
13h -2,3,4,7,8-Peh E F	.p	90131				13-NoI -20zl 0:55	
	.p	901M 821M		221z-z178			
13h -1,2,3,4,7,8-HSh EF	. p			262-2152		13-NoI -20zl 0:55	
13h -1,2,3,6,7,8-HSh EF	.p	82M		26z:z123		13-NoI -20zl 0:55	
13h -2,3,4,6,7,8-HSh EF	.p	83NI		28z:z136		13-NoI -20zl 0:55	
13h -1,2,3,7,8,9-HSh EF	.p	71 M		z29z-z147		13-NoI -20zl 0:55	
13h -1,2,3,4,6,7,8-Hl h E F	.p	75M		z28z-z143		13-NoI -20zl 0:55	
13h -1,2,3,4,7,8,9-Hl h E F	.p	71 M		226z-z138		13-NoI -20zl 0:55	
13h -n h E F	.p	71 M		zl 7z-zzl 57		13-NoI -20zl 0:55	
37h -2 3 7 8-Th F F	h R n	0.5 NST		-25107		13-Not-20-10-55	1

dEbz-zpaml ezslecxfczestxmateOtOetectxovzxmxzmmmmm.

37h -2,3,7,8-Th EE

z35z-z197

h Rp

13-NoI -20zl 0:55

Work Order 2002347 Page 6 of 16

95M

di PhzadstxmateOzmaSxmumzlossxQezcovcevtratxovzzzzzzz

Client Data Name: n vpxtext v Project: 202005-0 i atrxS: po xO	/I wovmevta z vcM 1MI		Laboratory Data baQpaml e: Ch BatcD paml expxLe:	B0K0041-Bp1 B0K0041 10 Mz g	E atezl StracteQ h o umv:	05-NoI -20 z 06:05 ZB-E .n X.N	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-Th EE	21 N/I	20 M	105	67z-158		13-NoI -20z09:25	1
1,2,3,7,8-Peh E E	106	100	106	70z-142		13-NoI -20z09:25	1
1,2,3,4,7,8-HSh E E	101	100	101	70z-164		13-NoI -20z09:25	1
1,2,3,6,7,8-HSh EE	104	100	104	76≥134		13-NoI -20z09:25	1
1,2,3,7,8,9-HSh EE	103	100	103	64z-162		13-NoI -20z09:25	1
1,2,3,4,6,7,8-Hl h E E	102	100	102	70z-140		13-NoI -20z09:25	1
nhEE	204	200	102	78z:144		13-NoI -20z09:25	1
2,3,7,8-Th E F	19 M I	20N/I	96NA	75z-158		13-NoI -20z09:25	1
1,2,3,7,8-Peh E F	102	100	102	80 z 134		13-NoI -20z09:25	1
2,3,4,7,8-Peh E F	102	100	102	68 z -160		13-NoI -20209:25	1
1,2,3,4,7,8-HSh EF	103	100	103	72±134		13-NoI -20209:25	1
1,2,3,6,7,8-HSh EF	101	100	101	84z130		13-NoI -20209:25	1
2,3,4,6,7,8-HSh EF	100	100	100	70z156		13-NoI -20209:25	1
1,2,3,7,8,9-HSh EF	98 N 9I	100	98M	78 z :130		13-NoI -20z09:25	1
1,2,3,4,6,7,8-HlhEF 1,2,3,4,7,8,9-HlhEF	103 100	100	103 100	82 z -122 78 z -138		13-NoI -20x09:25 13-NoI -20x09:25	1
n h E F	200	100 200	100	63z·170		13-NoI -20209:25	1
Labeled Standards	Type	200	% Recovery	Limits	Qualifiers		Dilution
13h -2,3,7,8-Th EE	.p		88M	20+175		13-NoI -20z09:25	1
13h -1,2,3,7,8-Peh E E	.p		89 M	2¥227		13-NoI -20z09:25	1
13h -1,2,3,4,7,8-HSh EE	.p		91 M I	2F193		13-NoI -20z09:25	1
13h -1,2,3,6,7,8-HSh EE	.p		91NI	2 3- 163		13-NoI -20z09:25	1
13h -1,2,3,7,8,9-HSh EE	. p		90NI	2¥193		13-NoI -20z09:25	1
13h -1,2,3,4,6,7,8-Hl h E E	.p		87NA	2 & 166		13-NoI -20z09:25	1
13h -n h E E	.p		79MI	13-199		13-NoI -20z09:25	1
13h -2,3,7,8-Th EF	.p		88 M	2 2 - 152		13-NoI -20z09:25	1
13h -1,2,3,7,8-Peh E F	.p		93M	21€192		13-NoI -20z09:25	1
13h -2,3,4,7,8-Peh E F	.p		95M	13+328		13-NoI -20z09:25	1
13h -1,2,3,4,7,8-HSh EF	.p		84N0I	19+202		13-NoI -20z09:25	1
13h -1,2,3,6,7,8-HSh EF	.p		85NN	2 ¥ 159		13-NoI -20z09:25	1
13h -2,3,4,6,7,8-HSh EF	.p		85NAI	2 2 -176		13-NoI -20z09:25	1
13h -1,2,3,7,8,9-HSh EF	.p		87 M	17-205		13-NoI -20±09:25	1
13h -1,2,3,4,6,7,8-Hl h E F	. p		78 N I	2¥158		13-NoI -20z09:25	1
13h -1,2,3,4,7,8,9-Hl h E F	.p		75NI	20-186		13-NoI -20z09:25	1
13h -n h E F	.p		77 N I	13-199		13-NoI -20z09:25	1
37h -2,3,7,8-Th EE	h Rp		106	3 F 491		13-NoI -20209:25	1

EPA Method 1613B

Sample ID: OPR

Work Order 2002347 Page 7 of 16

Client Data				Laboratory Da				
Name: OnSite Environment		nmental Inc.		Lab Sample:	2002347-01	Date Received:	30-Oct-20 07	7:49
Project:	202005-01.01			QC Batch:	B0K0041	Date Extracted:	05-Nov-20	
Matrix:	Solid			Sample Size: % Solids:	12.9 g	Column:	ZB-DIOXIN	
Date Collected:	26-Oct-20 13:1	5		% Solids:	77.8			
Analyte		Conc. (pg/g)	EDL	EMPO	C	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.0323				14-Nov-20 06:31	1
1,2,3,7,8-PeCDD		ND	0.0816				14-Nov-20 06:31	1
1,2,3,4,7,8-HxCD	D	ND	0.140				14-Nov-20 06:31	1
1,2,3,6,7,8-HxCDD		ND	0.147				14-Nov-20 06:31	1
1,2,3,7,8,9-HxCDD		ND	0.165				14-Nov-20 06:31	1
1,2,3,4,6,7,8-HpCDD		2.60					14-Nov-20 06:31	1
OCDD		34.6					14-Nov-20 06:31	1
2,3,7,8-TCDF		ND	0.0247				14-Nov-20 06:31	1
1,2,3,7,8-PeCDF		ND	0.0301				14-Nov-20 06:31	1
2,3,4,7,8-PeCDF		ND	0.0256				14-Nov-20 06:31	1
1,2,3,4,7,8-HxCD		ND	0.0403				14-Nov-20 06:31	1
1,2,3,6,7,8-HxCD		ND	0.0387				14-Nov-20 06:31	1
2,3,4,6,7,8-HxCD		ND	0.0418				14-Nov-20 06:31	1
1,2,3,7,8,9-HxCD	F	ND	0.0675				14-Nov-20 06:31	1
1,2,3,4,6,7,8-HpC		ND	0.0849				14-Nov-20 06:31	1
1,2,3,4,7,8,9-HpC	CDF	ND	0.0805				14-Nov-20 06:31	1
OCDF		ND	0.101				14-Nov-20 06:31	1
Toxic Equivalent								
TEQMinWHO20	05Dioxin	0.0364						
Totals								
Total TCDD		0.134						
Total PeCDD		0.194						
Total HxCDD		0.947		1.38				
Total HpCDD		6.48						
Total TCDF		0.0999						
Total PeCDF		ND	0.0301					
Total HxCDF		ND	0.0675					
Total HpCDF		ND	0.0849					
Labeled Standar		Type	% Reco	overy	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD		IS	94.5		25 - 164		14-Nov-20 06:31	
13C-1,2,3,7,8-PeO		IS	94.1		25 - 181		14-Nov-20 06:31	. 1
13C-1,2,3,4,7,8-H	IxCDD	IS	93.6		32 - 141		14-Nov-20 06:31	. 1
13C-1,2,3,6,7,8-H	IxCDD	IS	94.5		28 - 130		14-Nov-20 06:31	. 1
13C-1,2,3,7,8,9-H	IxCDD	IS	95.3		32 - 141		14-Nov-20 06:31	. 1
13C-1,2,3,4,6,7,8-	-HpCDD	IS	91.5		23 - 140		14-Nov-20 06:31	1
13C-OCDD		IS	88.0		17 - 157		14-Nov-20 06:31	. 1
	F	IS	97.2		24 - 169		14-Nov-20 06:31	1
13C-2,3,7,8-TCD		IS	99.6		24 - 185		14-Nov-20 06:31	
13C-2,3,7,8-TCD			100		21 - 178		14-Nov-20 06:31	
13C-1,2,3,7,8-PeC		10						
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC	CDF	IS IS			26 - 152		14-Nov-20 06:31	1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H	CDF IxCDF	IS	89.4		26 - 152 26 - 123		14-Nov-20 06:31	1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H	CDF IxCDF IxCDF	IS IS	89.4 91.2		26 - 123		14-Nov-20 06:31	
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H	CDF IxCDF IxCDF IxCDF	IS IS IS	89.4 91.2 93.5		26 - 123 28 - 136		14-Nov-20 06:31 14-Nov-20 06:31	1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H	CDF IxCDF IxCDF IxCDF IxCDF	IS IS IS IS	89.4 91.2 93.5 93.2		26 - 123 28 - 136 29 - 147		14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31	1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H 13C-1,2,3,4,6,7,8-	CDF IxCDF IxCDF IxCDF IxCDF -HpCDF	IS IS IS IS	89.4 91.2 93.5 93.2 86.8		26 - 123 28 - 136 29 - 147 28 - 143		14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31	1 1 1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H 13C-1,2,3,4,6,7,8-1 13C-1,2,3,4,6,7,8-1	CDF IxCDF IxCDF IxCDF IxCDF -HpCDF	IS IS IS IS IS IS	89.4 91.2 93.5 93.2 86.8 89.8		26 - 123 28 - 136 29 - 147 28 - 143 26 - 138		14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31	1 1 1
13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H 13C-1,2,3,4,6,7,8-	CDF IxCDF IxCDF IxCDF IxCDF IxCDF -HpCDF -HpCDF	IS IS IS IS	89.4 91.2 93.5 93.2 86.8		26 - 123 28 - 136 29 - 147 28 - 143		14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31 14-Nov-20 06:31	1 1 1 1 1

EPA Method 1613B

Sample ID: GP-1-5.7-9.7

EMPC - Estimated maximum possible concentration

Work Order 2002347 Page 8 of 16

The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

K EMPC (specific projects only)

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2002347 Page 9 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number		
Alaska Department of Environmental Conservation	17-013		
Arkansas Department of Environmental Quality	19-013-0		
California Department of Health – ELAP	2892		
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01		
Florida Department of Health	E87777-23		
Hawaii Department of Health	N/A		
Louisiana Department of Environmental Quality	01977		
Maine Department of Health	2018017		
Massachusetts Department of Environmental Protection	N/A		
Michigan Department of Environmental Quality	9932		
Minnesota Department of Health	1521520		
New Hampshire Environmental Accreditation Program	207718-В		
New Jersey Department of Environmental Protection	190001		
New York Department of Health	11411		
Oregon Laboratory Accreditation Program	4042-010		
Pennsylvania Department of Environmental Protection	016		
Texas Commission on Environmental Quality	T104704189-19-10		
Vermont Department of Health	VT-4042		
Virginia Department of General Services	10272		
Washington Department of Ecology	C584-19		
Wisconsin Department of Natural Resources	998036160		

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2002347 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B					
Dilution GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699					
HRGC/HRMS						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B					
GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Drinking Water						
Description of Test	Method					
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA					
	1613/1613B					
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009					

Work Order 2002347 Page 11 of 16

MATRIX: Non-Potable Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B					
Dilution GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Dioxin by GC/HRMS	EPA 613					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B					
Dibenzofurans by GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2002347 Page 12 of 16

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: Vista Analytical Laboratory

Attention: Jennifer Miller

Address: 1104 Windfield Way, El Dorado Hills, CA 95762

Phone Number: (916) 673-1520

1 Day 2 Day Standard

Other:

3 Day

indard

Laboratory Reference #: 10-327

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Project Number: 202005-01.01

Project Name: _____

Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont	Requested Analyses
GP-1-5.7-9.7	10/26/20	13:15	S	1	Dioxins/Furans
				0)	
Signature	Con	ipany		Date	Time Comments/Special Instructions
Relinquished by MOUN CAUW	SE			929/20	
Received by: Willian K. Wuyht	VAL			10/3/20	67:49
Relinquished by:					EDDs
Received by:					
Relinquished by:					
Received by:					

Sample Log-In Checklist

						Pa	ıge # _	<u> </u>	f	_
Vista Work Order #: 2002347									_	
Samples	Date/Time Initials: L						Location: UK-2			į.
Arrival:	10/30	120 7:	49	WRI		Shelf	/Rack	<u>_</u>	A	
Delivered By:	FedEx	UPS	On Tra	ac GLS	DHI	Hand			Oth	er
Preservation:	lo	e e	ET.	ue lce		chni ce	Dry	Ice	No	ne
Temp °C: 21	_	rected)	robe us	ed: Y /(N)		Ther	mome	ter ID:	IR	4
Temp °C: 2	3 (correc	ted)	Tope us	ed. 1 /(1		11161		ter ib.		<i>-</i>
YES NO NA										NA
Shipping Contain	ner(s) Intac	ct?					no lang sandaga san k	V		
Shipping Custod										X
Airbill —	Trk	# 17	684 E	IW 15	9578	383	39	V		
Shipping Docum								V		
Shipping Contain	ner	8	ista	Client	R	etain	Re	eturn	Disp	oose
Chain of Custody	/ / Sample	Documer	ntation P	esent?				1		
Chain of Custody	/ / Sample	Documer	ntation C	omplete?				1		
Holding Time Ac	ceptable?	_								
	Date/Tir	ne		Initials:		Loca	ition:	WR-	2	
Logged In:	11/02/12	0 0	909	aks.		Shel	f/Rack	:: <u>F-3</u>		_
COC Anomaly/Sample Acceptance Form completed?								~		

Comments:

ID.: LR - SLC Rev No.: 6 Rev Date: 07/16/2020 Page: 1 of 1

Work Order 2002347 Page 14 of 16

CoC/Label Reconciliation Report WO# 2002347

LabNumber CoC Sample ID		Sar	nplcAlias	Sample Date/Time	Container	Sample BaseMatrix Comments
2002347-01 A GP-1-5.7-9.7	1 - 10			26-Oct-20 13:15	Clear Glass Jar, 250mL	Solid
Checkmarks indicate that information on the COC reconciled with the sample l Any discrepancies are noted in the following columns.	abel.					
	Yes	No	NA	Comments:	analainar lid	
Sample Container Intact?	/			of Reconciled with	COVIDATIVOC 119	
Sample Custody Seals Intact?			~			
Adequate Sample Volume?	V	_				
Container Type Appropriate for Analysis(es)		/				
Preservation Documented: Na2S2O3 Trizma Other		/	/			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V			

2002347

Verifed by/Date: 45 11/02/20

Printed: 11/2/2020 9:33:44AM

Page 1 of 1

Work Order 2002347

ANOMALY FORM ID: SR-AF

ANOMALY FORM

Vista W	Vork	Order <u>2002347</u>
Initial/Date	The fo	ollowing checked issues were noted during sample receipt and login:
		The samples were received out of temperature at (WI-PHT): Was Ice present: Yes No Melted Blue Ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
		5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
		6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
YS11/62/20	$\sqrt{2}$	16. An incorrect container-type was used. All or Sample Name:
		17. Other:
Bolded items	require s	ign-off
Client Contact	ted:	les via email
Date of Conta	ct: <u>\\</u>	102/2020
Vista Client M	anager:	KJR 12tter
Resolution: C	vien	t contacted in body of acknowledgement letter.

Rev.: 0 Rev. Date: 11/08/2019

ID: SR - AF

Ancher QEA

Company:

Lab ID

Sampled by:

Project Manager:

Project Name:

	=	5
(
-		h
(5
9		
6	1)
0		þ
3		_
4		1
		7.

Page

of

	X	s (EDDs)	Electronic Data Deliverables (EDDs)	ctronic Data	7.	Chromatograms with final report	ms with	natogra	Chrom							Reviewed/Date	Review					ewed/Date
Sample S								ackag	Data F													ğ
					0	-	1	Add	8							(,				ished
			d	bosen	2010	Jan 20	2		5	25.80	196	188	10	0-1	200	0	-				3	7
Sample dentification	6	,	. >	0 1			-	F	F	855		8-8	0.2		1.	1010	N			2309	(7	ished
		Ś	X	7	ナルーか	D.	6		7	820		32-8	10 72		<	600	3		*	Se of	S.	á
Common Check One)		o,	Pio It	7	-	6 C	13		38	70		02/8	10/2		+	raci	Andro			de John	Muse	ished
Colored Colo	-	5110			ns sn	nstruction	pecial II	nents/S	Comn	40	Time		Date	1,100		7	Company				Signature	
	(2)		_		8				0		O)	_	^	w		30	153	~			-22	AP-5-20
Representation Repr	R	(X)	×		K				`			×		W		36	15				-	is
	0		*		&			X	0			(2)		S		o,	151				5.4.8	3P-5-6
Sample Water October	0		X		8			X	0					W		2.	133			Smo	0-22-1	1
Phone: (425) 883-3881 · www.onsitie-env.com Check One Carpe Containers	0		7.		8				0			~		W		v	133				0-22	-
Check One Chec	×	(x)	×		×				~			×		ω		20	3				12.3	
Phone: (425) 883-881 · www.onsite-enu.com Check One	0		2	8	8		\cup	(X)	0			~		W		2	13	_		4.6-4.5	12:30	at-1-9E
Check One Chec	(2)		8		8			y z	6		O	_	^	W		20	10				77	
Phone: (425) 883-3881 · www.onsite-env.com Check One Same Day	V	(X)	メ		7				×		1.			ω		\$	[0]	_			-20	2P-2-14
Phone: (425) 883-3881 · www.onsite-env.com Check One	D		×		8				<i>∞</i>		0	(2)		W				0.26.24	1		\$	3P-2-8
Phone: (425) 883-3881 · www.onsite-env.com Same Day 1 Day 2 Days 3	-	Ц		120					(with lo	- SV								Date Sampled		ification	ample Ident	+
Phone: (425) 883-3881 · www.onsite-env.com (Check One) Same Day 1 Day Phone: (425) 883-3881 · www.onsite-env.com (Check One) Same Day 1 Day D		LD	1	15017 FW				-	w-level PAHs							other)	<u></u>			nerod	0	MH TOWN
Phone: (425) 883-3881 · www.onsite-env.com (Check One) Same Day	106		waws) 1664A	PP			,	i)			/ SG Cl		ers		Days)	ndard (7	Star		imy	Recyc	A BC
Phone: (425) 883-3881 · www.onsite-env.com (Check One) Same Day 1 Day	. 1				ch							ean-up			3 Days		ays) 2 D		2	5-01.0	1 1
(Check One)	Mai				tals		D/SIM)			Day		ne Day	Sam			REA	cher
	0				2			-				_	A STATE OF THE STA	II		(One)	(Check			www.onsite-env.com	25) 883-3881 •	Phone: (4:

0

Relinquished Received

Reviewed/Date

Received Relinquished Received

Relinquished

J

0

2

00

م

Chain of Custody

П
age
2
of.
0

Reviewed/Date	Received	Relinquished	Received	Relinquished 1) & 135K	Received (985)	Relinquished Mulled Day	Signature	970107-511	19 75 751501	18 CAP-3 - CAM-Dup	17 GR3-GW	16 GP-3-14.4-15.9	15 Gp-3-127-134	4 GP-4-15-187	15 GP-4-7.8-8.7	12 GP-6-GW	11 GP-6-10.8-15	Lab ID Sample Identification	Sampled by: MH DO	Deve	Project Name: ABC Recycling	202005-01.01	Company: Anchor QEA	14648 NE 95th Street * Reamond, WA 98052 Phone: (425) 883-3881 * www.onsite-env.com	Environmental Inc. Analytical Laboratory Testing Services Analytical Control of Windows Analyt
Reviewed/Date			1	Spreak	Sprody	Anchor QEA	Company	2	2101 06 1601	1320 11	1315 UN 23	1215 4 3	1205 3	1030 3	1027.20 1026 Soil 3	11 m5 821	p.24.20 1650 Soil 3	Date Time Sampled Matrix	(other)	Contain	(T Days)	2 Days 3 Days	Same Day 1 Day	(in working mayo)	Turnaround Request
		100000	12/2012 6850	10-28-20 0853	10-76-70 0 820	0230 02 ps p1	Date Time	(8)	8	ℬ ⊗	8	×	8	8	8	8	NWTF NWTF Volati Halog	les 826 genated	BTEX	I / SG C es 82600 ers Only	0)		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard ☐ Level III ☐ Level IV ☐		4	7			Comments/Special Instructions			N X X	S X S X S X S X S X S X S X S X S X S X	8 ×	× × ×	8 ×	⊗ × × ×	× ×	⊗ × ⊗	(with PAHs PAHs PCBs Organ Organ Chlor Total TCLP HEM	low-lev 8270D 88082A nochlor nophos inated RCRA MTCA (oil and	phorus Acid He Metals Metals Grease	ticides 8 Pesticides pricides post 1664A	8081B les 827 8 8151/	OC/JULY		10-207
												8	X	8	(S)		P	%-Me	HOL	25	40	G -	TOTAL	2 5	NID:

Sample/Cooler Receipt and Acceptance Checklist

Client: A10C Client Project Name/Number: 202005 - 01,01		Initiated by	10/2	8/20		
OnSite Project Number: 10-32/		Date Initiate	ed:	o w		
1.0 Cooler Verification			250.			
1.1 Were there custody seals on the outside of the cooler?	(Yes)	No	N/A	1 2 3 4		
1.2 Were the custody seals intact?	(Yes)	No	N/A	1 2 3 4		
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	N/A	1 2 3 4		
1.4 Were the samples delivered on ice or blue ice?	(es)	No	N/A	1 2 3 4	1224	
1.5 Were samples received between 0-6 degrees Celsius?		No	N/A	Temperature:	4, 5, 5, 7	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	(N/A)				
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other	
2.0 Chain of Custody Verification						
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4		
2.2 Was the COC legible and written in permanent ink?	Yes	No		1 2 3 4		
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No		1 2 3 4		
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	(es)	No		1 2 3 4		
2.5 Were all of the samples listed on the COC submitted?	(es	No		1 2 3 4		
2.6 Were any of the samples submitted omitted from the COC?	Yes	NO		1 2 3 4		
3.0 Sample Verification						
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4		_
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4		
3.3 Have the correct containers been used for each analysis requested?	Yes	No		1 2 3 4		
3.4 Have the samples been correctly preserved?	Yes	No	N/A	1 2 3 4		
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	(Yes)	No	N/A	1 2 3 4		
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No		1 2 3 4		
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4		
3.8 Was method 5035A used?	Yes	No	N/A	1 2 3 4		
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	2	N/A	1 2 3 4		

4) 1/2 Cambers uppreserved		
	*	

^{1 -} Discuss issue in Case Narrative

^{2 -} Process Sample As-is

^{3 -} Client contacted to discuss problem

^{4 -} Sample cannot be analyzed or client does not wish to proceed

APPENDIX D Terrestrial Ecological Evaluation

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

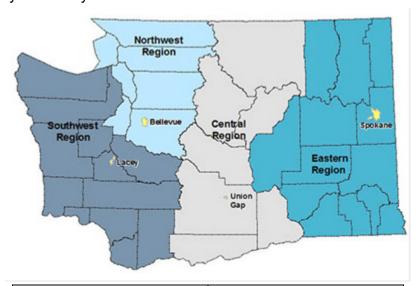
If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE	SITE
Please identify below the hazardous waste site	e for which you are documenting an evaluation.
Facility/Site Name: Marine Drive Property	
Facility/Site Address: Whatcom County Tax Pa	arcel 380223106374
Facility/Site No: NA	VCP Project No.: NA

Step 2: IDENTIFY EVAL	.UATOR			
Please identify below the p	erson who conducted	the	evaluation and	their contact information.
Name: Mark Havighorst				Title: Associate Engineer
Organization: GeoEnginee	ers, Inc.			
Mailing address: 5820 Sou	uth Kelly Avenue, Su	uite E	3	
City: Portland		Sta	te: OR	Zip code: 97239
Phone: 503-460-7146	Fax:		E-mail: mhav	vighorst@geoengineers.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? ⊠ Yes If you answered "YES," then answer Question 2. ☐ No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or X paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous[#] undeveloped[±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would

prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.


^{# &}quot;Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

В.	Simplified	evaluation.
1.	Does the Si	te qualify for a simplified evaluation?
	☐ Ye	If you answered "YES," then answer Question 2 below.
	☐ No Unkno	or If you answered " NO " or " UNKNOWN ," then skip to Step 3C of this form.
2.	Did you cor	nduct a simplified evaluation?
	☐ Ye	If you answered "YES," then answer Question 3 below.
	☐ No	If you answered "NO," then skip to Step 3C of this form.
3.	Was further	evaluation necessary?
	☐ Ye	s If you answered "YES," then answer Question 4 below.
	☐ No	If you answered "NO," then answer Question 5 below.
4.	If further ev	aluation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no further to Step 4 of	r evaluation was necessary, what was the reason? Check all that apply. Then skip this form.
	Exposure A	nalysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway An	alysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contaminan	t Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

C.	the problem, an	d (2) selecti	A site-specific evaluation process consists of two parts: (1) formulating ng the methods for addressing the identified problem. Both steps d approval by Ecology. See WAC 173-340-7493(1)(c).
1.	Was there a pr	oblem? Se	e WAC 173-340-7493(2).
	☐ Yes	If you answ	vered "YES," then answer Question 2 below.
	☐ No	If you answ below:	wered "NO," then identify the reason here and then skip to Question 5
			No issues were identified during the problem formulation step.
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did you d	lo to resolv	e the problem? See WAC 173-340-7493(3).
		ed the conce estion 5 be	entrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to low.</i>
			ore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.			ite-specific evaluations, what methods did you use? AC 173-340-7493(3).
	Lite	erature surve	eys.
	☐ Soi	l bioassays.	
	☐ Wil	dlife exposu	re model.
	Bio	markers.	
	Site	e-specific fie	ld studies.
	☐ We	eight of evide	ence.
	☐ Oth	ner methods	approved by Ecology. If so, please specify:
4.	What was the r	esult of the	se evaluations?
	☐ Co	nfirmed ther	e was no problem.
	☐ Co	nfirmed ther	e was a problem and established site-specific cleanup levels.
5.	Have you alrea problem resolu		d Ecology's approval of both your problem formulation and?
	☐ Yes	If so, pleas	se identify the Ecology staff who approved those steps:
	☐ No		

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160th Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region:

Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295

APPENDIX E Report Limitations and Guidelines for Use

APPENDIX E

REPORT LIMITATIONS AND GUIDELINES FOR USE⁴

This Appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers, Inc. (GeoEngineers) includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for ABC Recycling Realty Corp. (ABC Recycling). ABC Recycling may distribute copies of this report to ABC Recycling authorized agents and regulatory agencies as may be required for the project. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except ABC Recycling should rely on this report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report applies to the property at Whatcom County Washington Tax Parcel 380223106374 (referred to herein as the Marine Drive Property). GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

⁴ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

If important changes are made after the date of this remedial action plan, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers, Inc. before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The CULs referenced in this report are site- and situation-specific. The CULs may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced CULs. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. It is always possible that contamination exists in areas that were not explored, sampled or analyzed. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Geotechnical, Geologic, and Geoenvironmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If the client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

