

August 2023 Marine Drive Property

Phase 2 Environmental Assessment Report

Prepared for ABC Recycling

August 2023 Marine Drive Property

Phase 2 Environmental Assessment Report

Prepared for ABC Recycling 8081 Meadow Avenue Burnaby, British Columbia, V3N 2V9 Canada

Prepared by

Anchor QEA, LLC 1605 Cornwall Avenue Bellingham, Washington 98225

TABLE OF CONTENTS

1	Intro	oductio	on	1					
	1.1	Staten	nent of Objectives	1					
	1.2	2 Background							
	1.3	Prelim	inary Conceptual Site Model	2					
2	Sum	nmary o	of Work Performed	4					
	2.1	Field A	Activities	4					
		2.1.1	Test Pits	4					
		2.1.2	Soil Borings	4					
		2.1.3	Groundwater	5					
	2.2	Labora	atory Analysis	5					
3	Res	ults		6					
	3.1	Physic	al Features	6					
	3.2	Soil Sa	amples	7					
		3.2.1	Deviation from Sampling Plan	10					
	3.3	Groun	dwater Samples	10					
		3.3.1	Deviations from Sampling Plan	11					
	3.4	Potent	tial Exposure Pathways	11					
		3.4.1	Soil	11					
		3.4.2	Groundwater	12					
		3.4.3	Air	12					
4	Con	clusior	าร	13					
	4.1	Soils		13					
	4.2	Groun	dwater	14					
5	Refe	erences	5	15					

TABLES

Table 1	Soil Collection Summary
Table 2	Groundwater Collection Summary
Table 3	Soil Analytical Results
Table 4	Soil TCLP Metals Analytical Results
Table 5	Groundwater Analytical Results

FIGURES

Figure 1 Actual Sample Locations

APPENDICES

Appendix A	Field Forms
Appendix B	Photograph Log
Appendix C	Data Validation Report
Appendix D	Laboratory Reports

ABBREVIATIONS

bgs	below ground surface
COPC	constituent of potential concern
cPAH	carcinogenic polycyclic aromatic hydrocarbon
CSM	conceptual site model
ESA	environmental site assessment
mg/kg	milligrams per kilogram
MTCA	Washington Model Toxics Control Act
NWTPH-Dx	diesel range hydrocarbons and residual range hydrocarbons
NWTPH-Gx	gasoline range hydrocarbons
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
SAP	sampling and analysis plan
TCLP	toxicity characteristic leaching procedure
TEQ	toxic equivalents quotient
ТРН	total petroleum hydrocarbons
μg/L	micrograms per liter

1 Introduction

This Phase 2 Environmental Assessment Report describes the sampling and results from the Phase 2 Environmental Site Assessment (ESA) sampling. Sampling was conducted in response to recommendations for further studies identified as part of the Phase 1 ESA for the portion of the Lehigh Hanson-owned property that ABC Recycling is considering purchasing (the Property). The conclusions and recommendations presented in this report represent Anchor QEA's best professional judgment regarding environmental conditions at the subject Property as of November 2020. These conclusions and recommendations are based on Anchor QEA's review of the information presented in this report and on state and federal regulations and policies as they exist at the time that this report was prepared.

1.1 Statement of Objectives

The Phase 2 ESA was conducted to determine whether historical uses of the Property or nearby sites have contaminated the Property and will indicate if any contaminants present in soil have migrated into groundwater. This environmental assessment will provide information relevant to identifying, defining, and evaluating property conditions associated with metals, petroleum products, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dioxins/furans that may pose a risk to human health or the environment, or risk of bodily injury to persons on the Property and thereby give rise to potential liability. This understanding will support ABC Recycling's due diligence process to aid in determining whether to purchase the Property from Lehigh Hanson.

1.2 Background

The Property is located at 741 Marine Drive in Bellingham, Washington, 98225 (Figure 1; Whatcom County parcel number 380223124302). The Property, encompassing a total area of approximately 18 acres, is unpaved and unimproved except for a gravel lot with temporary equipment, containers, and debris in the central portion of the Property. The remaining portion of the Property for purchase is undeveloped forest. The elevation of the Property ranges from approximately 85 to 100 feet in elevation above sea level. The Property boundary is bordered by Marine Drive to the northeast and by an active railroad spur along the southwestern border. The northwestern boundary generally follows the tree line, while the southeastern boundary is delineated by asphalt or mowed grass associated with the adjacent property at 749 Marine Drive. Lehigh Hanson is the current owner of the Property. The Property is currently occupied by Northwest Recycling and Bellingham Marine. Current site activities include equipment, container, and material storage.

The central portion of the Property that is now the yard was cleared between 1968 and 1971 and established as a materials storage area for the cement plant. From 2006 to present, the yard has remained active with equipment and materials stored on site.

1

The cement plant adjacent to the Property began operation as Columbia Northwest in 1913. The plant was purchased and sold by multiple different cement companies before the Tilbury Cement Company (later Lehigh Hanson) bought the plant in 1987.

In March 2020, Lehigh Hanson conducted surface soil sampling in the developed yard portion of the Property. Samples were analyzed for total petroleum hydrocarbons (TPHs) and metals. All samples were detect for oil-range TPHs, mercury, arsenic, barium, cadmium, chromium, and lead. Chromatogram results indicated all samples likely contained lube oil and some samples likely contained weathered gasoline and diesel.

Anchor QEA recently conducted a Phase 1 ESA in October 2020 and identified the history of material storage and historical stockpiling of limestone on the Property (Anchor QEA 2020a). Geoprobe borings to groundwater and the collection of soil and groundwater samples as well as test pit soil sampling were recommended in the Phase 1 ESA to provide additional information regarding soil and groundwater quality and to refine information regarding site conditions. It is recognized that there may be potential sources of contamination remaining from historical uses on the Property and potentially from adjacent sites that are currently monitored by the Washington State Department of Ecology and the Environmental Protection Agency; however, no specific sources of on-site contamination were identified through the Phase 1 ESA process.

1.3 Preliminary Conceptual Site Model

A preliminary conceptual site model (CSM) has been developed based on the results of historical research from the Phase 1 ESA (Anchor QEA 2020a) to provide a framework for Phase 2 testing such that a general understanding of site conditions and the presence of contamination is validated through the sampling process. A discussion of the chemicals and media of concern, the fate and transport characteristics of released contaminants, and the potential exposure pathways to human and ecological receptors is included in this section. The CSM will serve as the basis for developing recommendations to inform potential concerns associated with levels of contamination that may influence whether ABC Recycling chooses to purchase the Property.

As described in the Phase 1 ESA (Anchor QEA 2020a), the Property has historically been used to stockpile materials, including limestone, although a comprehensive list of materials stockpiled on site is not available. The central yard portion of the site is currently leased to Northwest Recycling and Bellingham Marine and is used as storage space for a variety of containers, old equipment, and materials. The equipment and materials present on site do not appear to be frequently used or to contain any hazardous materials, are generally in good order, and are often stored on top of steel mats. Shipping and large bin type containers do appear to be moved routinely and a number of them were observed coming and going during both the Phase 1 site reconnaissance and Phase 2 sampling.

Soil, groundwater, and air are media within the Property that could potentially be affected by the constituents of potential concern (COPCs) identified at the site. The historical and current activities identified in the Phase 1 ESA prompted selection of metals, PAHs, TPHs, PCBs, and dioxin/furan congeners as COPCs for soil, groundwater, and air on the Property as a potential exposure risk to human receptors. Soil contamination could result from residual stockpile material; leaching of metals from storage of large metal containers; or surficial spills of gasoline, diesel, heavy oil, or hydraulic fluid from maintenance, storage, or operation of heavy machinery. Soil contamination could also possibly be present from previous undocumented landfilling activities. Groundwater contaminated soil on the Property, or via contaminants migrating from nearby contaminated sites. Air contamination could result from COPCs bound to dust particulates generated when equipment is moving materials or during ground-disturbing activities on the Property.

2 Summary of Work Performed

2.1 Field Activities

Field sampling for the Phase 2 ESA was conducted from October 20, 2020, to October 27, 2020, in accordance with the project Sampling and Analysis Plan (SAP; Anchor QEA 2020b). Figure 1 shows the actual locations of test pit samples and geoprobe boring locations. Up to three soil samples were collected from each of the boring locations and up to two soil samples were collected from each of the test pit locations. While 15 test pit samples were originally planned, an additional two were sampled (TP-16 and TP-17) based on field observations.

2.1.1 Test Pits

Anchor QEA, with support from subcontractor Anderson Environmental Contracting, collected samples from TP-4 through TP-12 and TP-16 via excavator. Anchor QEA collected samples from TP-1 through TP-3, TP-13 through TP-15, and TP-17 via hand auger, as access was not able to be cleared for the excavator to enter the wooded portions of the site. Test pit sampling details are summarized in Table 1. Test pits were used for observation of soil conditions, and for collection of surficial and subsurface soil samples. Sample intervals were collected following the procedures in the SAP (Anchor QEA 2020b) and were based on visual observations of the soils and through discussions with ABC Recycling and the project team. Sample material from the selected sample interval(s) was characterized before placement in sample jars. Each test pit was filled in, compacted with the excavator bucket, and surface graded by the excavator to the extent practicable following sampling. Test pit logs are included in Appendix A and sample photographs are included in Appendix B.

2.1.2 Soil Borings

Anchor QEA, with Anderson Environmental Contracting, advanced and collected soil borings via geoprobe at all six proposed locations (Figure 1). Due to dense surface conditions encountered in the yard area during test pits, a larger geoprobe rig than originally anticipated was used. Soil boring sampling details are summarized in Table 1. Soil borings were used for observation of subsurface soil conditions, and for collection of soil samples. Sample intervals were collected following the procedures in the SAP (Anchor QEA 2020b) based on field observations. Sample material from the selected interval(s) was characterized before placement in sample jars. Boring cuttings were characterized, contained in a 55-gallon drum on site, and will be disposed of at an appropriate disposal facility. Soil boring logs are included in Appendix A and sample photographs are included in Appendix B.

2.1.3 Groundwater

Groundwater samples were collected from temporary wells installed following the collection of soil samples from the soil borings. Groundwater sampling details are summarized in Table 2. Prior to groundwater sampling, the depth to water (below ground surface [bgs]) was measured at each location using an electronic depth-to-water indicator and recorded. Groundwater was purged with a peristaltic pump equipped with dedicated polyethylene tubing until the water quality parameters (pH, specific conductivity, dissolved oxygen, and temperature) stabilized. Once field-measured water quality parameters stabilized, groundwater was then sampled with the peristaltic pump near the bottom of the well screen interval using a low-flow sampling rate (less than 0.5 liter per minute).

Groundwater sampling was attempted at all six geoprobe locations; however, sufficient water for sampling was only found at two locations: GP-3 and GP-6 (Figure 1). Groundwater sample collection logs are included in Appendix A.

2.2 Laboratory Analysis

Following review of field observations, select samples were chosen for analysis through discussions with ABC Recycling regarding the number and type of samples collected, along with the rationale for how the sample fit with ABC Recycling's development goals. All soil samples selected for analysis were analyzed for metals, total solids, PAHs, and TPHs including gasoline, diesel, and residual range hydrocarbons (NWTPH-Gx and NWTPH-Dx). Three soil samples were selected for additional PCBs, dioxin/furan, and toxicity characteristic leaching procedure (TCLP) metals analysis. All groundwater samples were analyzed for dissolved metals, PAHs, and TPHs including NWTPH-Gx and NWTPH-Dx.

Discrete soil samples were collected from each test pit and soil boring at the sample intervals listed in Table 1. Sample containers were kept on ice for transport to the analytical laboratory. All laboratory analyses with the exception of dioxin/furan analyses, were performed at Onsite Environmental Inc. in Redmond, Washington. Dioxin/furan analyses were performed at Vista Analytical Laboratory in El Dorado Hills, California.

A summary of groundwater testing at each monitoring well is provided in Table 2. Sample containers were kept on ice for transport to the analytical laboratory. Laboratory analyses, except as noted, were performed at Onsite Environmental Inc. in Redmond, Washington.

Per the SAP, one field duplicate sample was collected for every 20 samples (Anchor QEA 2020b). A laboratory error during analysis resulted in only one field duplicate being analyzed for the 25 soil samples triggered for analysis, instead of the intended two duplicates. This error is not anticipated to affect the data quality because one field duplicate was analyzed and the standard laboratory quality control samples provide precision measurements. Additional details on sample analysis, validation, and the associated laboratory reports are provided in Appendices C and D.

3 Results

Results of the investigation are summarized in the following subsections. Soil and groundwater sampling logs are included in Appendix A. Data validation reports are included in Appendix C. Laboratory reports are included in Appendix D.

3.1 Physical Features

The samples collected from the wooded area on the northern side of the Property were generally composed of moist, fine-grained soils, with the exception of TP-3 (Figure 1). Unique soil characteristics identified at TP-3 are detailed below.

• TP-3 was selected to document conditions in a mound of fill in the woods noted during the September 30 site walk. The mound was composed of fine, limestone-like material. Debris were present on the mound and within the surrounding area.

The majority of samples collected from the yard were composed of dry, compacted gravel material that makes up the surface backfill of the yard. Native material was encountered in the yard between 4.5 and 5 feet bgs. Samples with unique soil characteristics are detailed below.

- TP-4 is along the northeastern edge of the yard and is the only location in the yard area to have native material at surface through to the depth of the bottom of the test pit (4 feet bgs). Material in this test pit contained brown grey fine-grained soil at the surface and contained more clayey soil with trace organics (wood pieces) towards the bottom of the test pit. Material from the surficial layer (0 to 0.5 feet bgs) was sampled and analyzed.
- TP-5 is located near the northwestern corner of the yard and was chosen for sampling based on observations of creosote-treated debris and creosote odor noted during the September 30 site walk. Surficial material from TP-5 (0 to 0.5 feet bgs) was sampled and analyzed.
- TP-6 is located near TP-4 on the northeastern side of the yard. This test pit was unique in that
 a slight metallic sheen was noted in the darkly colored fine-grained soil in the top 0 to
 0.5 feet. Anthropogenic debris (e.g., hose, tarp, and fabric) was also observed compacted
 within the material along the test pit sidewall. The unique surficial layer was sampled and
 analyzed.
- TP-7 is located on the northwestern side of the yard. Native material was encountered at 4.5 feet and the 4.5- to 5-foot interval was sampled and submitted for analysis.
- TP-16 is a location added to the sampling scheme based on field observations. Surficial material was wet, and dark brown in color with coarse-grained soil, as opposed to the fine-grained soil found in surficial samples elsewhere around the yard. Native material was also encountered at this test pit starting at 5 feet bgs. The unique surficial layer and native layer were sampled and the native layer was analyzed.

Samples collected from the wooded area on the southern side of the Property typically consisted of dry to moist fine-grained soil underneath a surficial layer of leaves and organic matter. No test pits from this portion of the Property had significant variations, and there were no test pits with unique materials or debris observed.

Additional notes regarding the lithology of sampled intervals can be found in Table 1. Test pit and soil boring field logs are included in Appendix A and sample photographs are included in Appendix B.

3.2 Soil Samples

Soil samples were collected from 17 test pit and six soil boring locations (Figure 1). Soil samples were collected from the locations and intervals shown in Table 1. Twenty-six soil samples from 21 stations, including two field duplicates, were submitted for analytical testing as shown in Table 1.

Soil samples were screened against the following Washington Model Toxics Control Act (MTCA) criteria and included in Table 3. MTCA cleanup regulation (Chapter 173-340 Washington Administrative Code) provides soil cleanup levels based on the reasonable maximum exposure expected to occur under both current and future site use conditions. MTCA specifies two types of land use: unrestricted land use and industrial land use. For unrestricted land use, soil cleanup levels are based on the reasonable maximum exposure expected to occur under residential land use conditions, which are determined based on a child exposure scenario. No restrictions on future use of the land are required when soil concentrations are below the unrestricted cleanup levels.

Soil cleanup levels for unrestricted land use can be determined using Method A or Method B, as described below:

- **Method A Unrestricted:** These criteria are based on the most stringent of the unrestricted and industrial land uses, and the most stringent of the applicable state and federal laws. The goal of these criteria values is to have no significant adverse effects for the protection and propagation of terrestrial ecological receptors (plants and animals). These are the most conservative criteria and are used as the first screening step for evaluating if a site has any potential contamination.
- Method B Unrestricted, Direct Contact: These criteria are based on similar inputs as Method A, but standard Method B protective values are additionally calculated for hazardous substances for which health-based concentrations have not been established, based on the direct contact pathway (i.e., ingestion and dermal absorption). For the purposes of this report, these values should only be considered for those contaminants where a Method A value does not exist.
- **Method B Unrestricted, Protection of Groundwater:** These criteria are calculated to be protective of the highest beneficial use of groundwater, namely drinking water. The

calculation considers the soil-to-groundwater leaching pathway and depends on the mobility of contaminants. The value included in Table 3 is the more stringent of the non-carcinogenic and carcinogenic values. These standard criteria are highly conservative and should be evaluated in conjunction with the empirical site groundwater data, which can be used, together with MTCA groundwater cleanup levels, to demonstrate protection of human health.

Industrial soil cleanup levels in MTCA should only be used at sites that meet the definition of an industrial property under MTCA (Washington Administrative Code 173-340-200), as this property does. These criteria are based on the reasonable maximum exposure expected to occur under industrial land use conditions, which are determined based on an adult worker exposure scenario. Restrictions on future use of the land (e.g., covenants) are required when soil concentrations are above the unrestricted land use criteria, but below the industrial land use criteria. Either Method A or Method C can be used to determine soil cleanup levels for industrial land use, if required, as described below:

- **Method A Industrial:** These criteria are largely equivalent to the Method A Unrestricted values because they are based on the protection of groundwater. The contaminants that have less stringent cleanup levels (e.g., lead) are based on protection of human health under the adult worker scenario as opposed to the child exposure scenario.
- **Method C Industrial:** These criteria are similar to the Method B Unrestricted values but are calculated using a less stringent target cancer risk and less stringent default exposure assumptions. Additionally, Method C values that are protective of the environment only need to be protective of wildlife (e.g., deer), not plants or soil biota. To qualify for use of Method C cleanup levels, the site must include appropriate institutional controls to limit exposure to residual hazardous substances (e.g., a covenant restricting future property use to industrial uses).

Leachable metals in soil (TCLP samples) were additionally screened against toxicity characteristic thresholds for hazardous waste (Table 4). Documentation of the field sampling is provided in Appendix A. Sample photographs are provided in Appendix B. Data validation and laboratory reports are included in Appendix C and Appendix D.

Results for all stations are summarized below. Soil testing results are provided in Tables 3 and 4.

• **Metals:** Metals were detected in all samples, and all samples were above at least one of the MTCA screening levels for at least one analyte. Antimony results exceed MTCA Method B for direct contact at the surface for TP-5, TP-8, and TP-12, as well as in subsurface soils at TP-3 and TP-7. Additionally, surface samples from TP-4 and TP-9 exceed MTCA Method B soil criteria for protection of groundwater. Arsenic results are above MTCA Method B direct contact and protection of groundwater criteria for all soil samples. Arsenic results are above

MTCA Method A (unrestricted and industrial) criteria in surface samples at TP-8 and TP-12, as well as in the subsurface sample at TP-7. Arsenic results are above the MTCA Method C industrial criterion in surface samples at TP-4 and TP-9, as well as in the subsurface sample at TP-3. Arsenic results range from 3.6 to 160 milligrams per kilogram (mg/kg), averaging 25.8 mg/kg. Cadmium was detected in a majority of the samples, and was above Method A (unrestricted and industrial) criteria in the surface at TP-4 and in the subsurface at TP-3 and TP-7. Cadmium results are above MTCA Method B protection of groundwater criteria in the surface at TP-5, TP-6, TP-8, and TP-12, and in the subsurface at GP-4 (7.8 to 8.7 feet bgs), TP-16, and TP-17. Results range from 0.064 to 79 mg/kg, averaging 3.65 mg/kg. Lead was detected in all samples, and results exceed the MTCA Method A industrial criterion for TP-3. Chromium, copper, nickel, mercury, and zinc were detected in all samples, and below all screening criteria. Beryllium was detected but below screening criteria in all samples with the exception of TP-8 and TP-12 where it was not detected. Silver was detected in five samples, and was below screening criteria for all five. Selenium and thallium were non-detect for all samples with the exception of TP-3. Selenium was detected above the MTCA Method B protection of groundwater criterion and thallium was detected above MTCA Method B direct contact criterion.

- TCLP Metals: TCLP metals were analyzed at GP-1 (5.7 to 9.7 feet bgs), TP-5, TP-7, and TP-17 (Table 4). All samples were non-detect for TCLP metals with the exception of barium, which was detected in all four samples. Barium concentrations ranged from 450 to 1,500 micrograms per liter (µg/L), averaging 720 µg/L, but were well below screening values indicating that no hazardous waste material was encountered.
- **PAHs:** In the soil boring samples, PAHs were only detected in GP-2 (25 to 27 feet bgs), and GP-4 (7.8 to 8.7 feet bgs). A range of PAHs were detected in all test pit samples, with the exception of TP-2, TP-14, and TP-15. Of the locations with detected results, only three locations have results that exceed MTCA screening criteria. Benzo(a)pyrene is above the MTCA Method A Unrestricted criterion at TP-5 and TP-6, and is above the MTCA Method B direct contact criterion at TP-9. Total carcinogenic polycyclic aromatic hydrocarbon (cPAH) toxic equivalents quotient (TEQ) is detected above the MTCA Method B direct contact criterion at TP-5, TP-6, and TP-9. Total naphthalene is also above the MTCA Method A (unrestricted and industrial) criteria at TP-6. All samples with results above MTCA screening criteria are surficial samples from 0 to 0.5 feet bgs.
- **PCB:** Select samples were submitted for PCB Aroclor analysis. Locations submitted for PCB analysis include GP-1 (5.7 to 9.7 feet bgs), TP-5, TP-6, and TP-7 (Table 1). PCB Aroclors were only detected in the TP-5 sample, which is below all screening criteria for Aroclor 1260 and total PCB Aroclors.
- **NWTPH-Dx:** Diesel and residual range hydrocarbons were detected only in test pit samples. Diesel range hydrocarbons were detected in surficial soils at TP-4, TP-5, and TP-6, and range

from 34 to 71 mg/kg. Residual range hydrocarbons were detected in near-surficial (0.5 to 1.5 feet bgs) soil at TP-1, and in surficial soil (0 to 0.5 feet bgs) at TP-4, TP-5, TP-6, and TP-9. Concentrations for residual range hydrocarbons range from 95 to 410 mg/kg and all are below available screening criteria.

- **NWTPH-Gx:** Gasoline range hydrocarbons were only detected at TP-6. The result was 19 mg/kg, below the 30 mg/kg MTCA Method A (unrestricted and industrial) screening criteria (Table 3).
- **Dioxins/furans:** Select samples were submitted for dioxin/furan analysis. Locations include GP-1 (5.7 to 9.7 feet bgs), TP-5, and TP-6 (Table 1). Dioxin/furans were detected at all tested locations. At TP-5 and TP-6 results were detected for all 26 analytes, while results were detected for seven analytes from GP-1. At TP-5, both Total HxCDD and Total Dioxin/Furan TEQ exceed MTCA Method B direct contact criteria (Table 3).

3.2.1 Deviation from Sampling Plan

For a few test pits, sampled intervals were collected from the bucket of the excavator when samplers were unable to collect sufficient material from the side walls of the test pit due to depth or the consolidated nature of the material. To protect the sample the excavator bucket was cleaned with alconox and rinsed with deionized water before collecting and sampling the material from the bucket.

3.3 Groundwater Samples

Groundwater sampling was attempted at each of the six soil boring locations (Figure 1). A total of three groundwater samples, including one field duplicate, were collected from two locations and submitted for analytical testing as summarized in Table 2. Groundwater samples were screened against the following MTCA criteria and are shown in Table 5.

- **MTCA Method A:** These default criteria are used to establish cleanup levels for potable groundwater at routine sites and sites with relatively few hazardous substances. They are based on the most stringent of the applicable state and federal laws and must be at least as stringent as the surface water cleanup level established. These are the most conservative criteria and should be used as the first screening step for evaluating if a site has any potential contamination.
- MTCA Method B: These criteria may be used to establish cleanup levels for potable groundwater at any site. These criteria are based on similar inputs as the Method A, but standard Method B protective values are additionally calculated for hazardous substances for which health-based concentrations have not been established. For the purposes of this report, these values should only be used for those contaminants where a Method A value does not exist.

Documentation of the field sampling is provided in Appendix A. Data validation and laboratory reports are included in Appendix C and Appendix D.

Results for both locations are summarized below. Groundwater testing results are provided in Table 5.

- Dissolved metals: Dissolved metals for both samples and the duplicate are below both MTCA Method A and Method B criteria available for groundwater. All samples were detect for arsenic, nickel, selenium, and zinc. Arsenic concentrations range from 0.56 to 0.76 μg/L, well below the Method A Unrestricted criterion of 5 μg/L and the Method B direct contact criterion of 4.8 μg/L. Nickel concentrations range from 13 to 17 μg/L. Selenium ranges from 1.4 to 5.6 μg/L. Zinc concentrations range from 3 to 7 μg/L.
- **PAHs:** PAHs were only above detection limits for the duplicate sample at GP-3-GW. Benzo(b)fluoranthene and total cPAH TEQ were detected in the sample. No MTCA criteria are available for benzo(b)fluoranthene, and the total cPAH TEQ result is below both MTCA Method A and Method B criteria for groundwater.
- **NWTPH-Dx:** Diesel range hydrocarbons and residual range hydrocarbons were detected in the sample and duplicate sample at GP-3-GW. Diesel range hydrocarbons range from 0.11 to 0.12 mg/L, and are below the MTCA Method A Unrestricted criterion (0.5 mg/L). Residual range hydrocarbons range from 0.27 to 0.29 mg/L and are also below the MTCA Method A criterion (0.5 mg/L). No Method B criteria are available for either of these analytes.
- **NWTPH-Gx:** Gasoline range hydrocarbons were not detected in either of the two groundwater samples or the duplicate.

3.3.1 Deviations from Sampling Plan

No deviations occurred during groundwater sampling. Details regarding groundwater sampling are included in Appendix A.

3.4 Potential Exposure Pathways

For a COPC to present a risk to human health or the environment, there must be a pathway from the COPC to the receptor. The COPC-to-receptor pathways judged to be present at the site are discussed by medium in this section.

3.4.1 Soil

Direct ingestion of or dermal contact with soil containing metals, PAHs, TPHs, PCBs, or dioxins/furans is considered a potential exposure pathway. The results indicate exceedances of various screening criteria for both metals and PAHs. As surface soils contain contamination and the Property is not covered with a clean soil cap or an impervious covering such as asphalt or cement, soil containing COPCs on the Property remains available for potential direct contact or ingestion. The surface soil is also susceptible to potential wind- or water-based erosion that could carry COPCs to wetlands on the Property or to surface water drainage ditches that run along the site borders.

3.4.2 Groundwater

Potential exposure pathways exist on the site for shallow groundwater. Contaminants could filter down to groundwater from undiscovered discrete contaminated soil on the Property or migrate from nearby contaminated sites. Based on the topography of the Property and surrounding area, any migration via groundwater would be expected to flow west from Marine Drive. Based on the lithology and site observations noted during the sampling effort, however, there is a limited ability for migration through the surface soils of the yard due to the highly compacted nature of the surficial gravel fill and confining nature of the subsurface clay-like layers.

3.4.3 Air

Generation of airborne dust while moving equipment or materials around, or from soil that is not removed or otherwise contained, could be a direct-contact exposure pathway. Given the highly consolidated nature of the fill material in the yard, airborne dust could likely be managed with implementation of best management practices during ground-disturbing activities on the Property.

4 Conclusions

In general, the results of the sampling agree with the expected site CSM, in that there is surficial surface contamination associated with the backfill material in the yard and the remainder of the areas sampled exhibit indicators of minimal impact from contamination. Based on data collected, there does not appear to be a source of contamination to the Property coming from off-Property sources. Some of the noted exceedances of screening levels are likely attributed to regional background, in particular arsenic, cadmium, and chromium, which are known to be naturally occurring in Whatcom County (Ecology 1994).

4.1 Soils

In the yard area, the surficial compacted gravel material (0 to 0.5 feet bgs) generally exceeded one or more MTCA screening criteria for antimony, arsenic, and cadmium. A few discrete locations exceeded the Method A (unrestricted) criteria for benzo(a)pyrene (TP-5 and TP-6) and total naphthalene (TP-6), and the Method B (direct contact) criteria for benzo(a)pyrene (TP-9) and total cPAH TEQ (TP-5, TP-6, and TP-9).

Shallow native material (approximately 4.5 to 5.5 feet) from the two analyzed subsurface samples in the yard were found to have metals concentrations exceeding the MTCA Method A and Method B (protection of groundwater) criteria (TP-7 and TP-16). However, since groundwater contamination was not detected in shallow groundwater in the vicinity of the yard (see below), this suggests that the presence of metals above the MTCA Method B level is not necessarily impacting groundwater. Native material below 6 feet in the yard and in the forested areas were generally below the MTCA Method A (unrestricted) screening criteria for all COPCs, except for exceedances likely attributed to regional natural background.

Presence of a discrete mound and debris off the northwestern corner of the yard prompted a sample to be collected (TP-3). This sample has numerous screening criteria exceedances (Table 3) and was the only sample to exceed MTCA criteria for lead (Method A), selenium (Method B protection of groundwater), and thallium (Method B direct contact).

The results of TCLP sampling indicate that if portions of the site where samples were collected were to be excavated requiring off-site disposal of excavated material, the soils from these areas would not be classified as hazardous waste. However, the fill soil in the yard areas and debris that are excavated as part of potential development would require the material be managed as "contaminated" for purposes of excavation and disposal.

4.2 Groundwater

Groundwater samples were all below the most conservative MTCA screening levels. This suggests the shallow groundwater below the yard is not contaminated from previous or current site activities. Groundwater was only collected to 16.3 feet bgs, and the possibility of deeper groundwater contamination on site remains. However, based on current data and observed soil units, it suggests that it is unlikely contamination would be present in deeper groundwater due to previous or current activities on the Property.

The possibility of contaminant migration from off site remains as a potential path to soil and groundwater at depths that are below what was sampled on the Property for this effort and should be considered an overall data gap in a full understanding of environmental site conditions. There is also the potential for point sources (i.e., drums) to be buried in the wooded portions of the Property that were not identified in sampling efforts.

The objectives of this sampling effort (Section 1.1) were accomplished in the Phase 2 environmental assessment. Sampling identified a small stockpile of on-site contamination (TP-3), a few discrete locations with PAH contamination in shallow soil intervals, as well as elevated metals concentrations at numerous locations in the fill soils located throughout the yard.

5 References

Anchor QEA, LLC (Anchor QEA), 2020a. *Phase 1 Environmental Site Assessment*. Prepared for ABC Recycling. October 2020.

Anchor QEA, 2020b. Sampling and Analysis Plan. Prepared for ABC Recycling. October 2020.

Washington State Department of Ecology (Ecology), 1994. *Natural Background Soil Metals Concentrations in Washington State*. Ecology Publication #94-115.

Tables

Table 1 Soil Collection Summary

	Loca (NAD83 \	ation WA North)						Status
Sample Location	Northing	Easting	Sample ID	Date Collected	Depth Sampled (ft)	Lithology	Analyzed ¹	On Hold
Test Pit Soil Samples		· · · · ·					-	
TP-1	1232044.2	650713.1	TP-1-0.5-1.5	10/22/2020 11:45	0.5-1.5	Dry to moist, medium brown, fine grained soil, trace silt, trace gravel (coarse), occasional organics (roots),	Х	
TP-2	1232042.5	650527.9	TP-2-1.5-2	10/22/2020 12:14	1.5-2	Dry to moist, grey-brown, fine grained soil, slight silt, trace clay, no odor.	Х	
TP-3	1232184.2	650311.5	TP-3-1.5-2	10/22/2020 12:56	1.5-2	Dry, light grey. fine grained limestone-like material with limestone-like pieces (coarse, angular), chalky odor.	Х	
			TP-4-0-0.5	10/21/2020 11:11	0-0.5 Moist, medium brown grey, fine grained soil, trace gravel (fine), slight organics (roots), no odor. Pocket of light grey clayey soil.		Х	
TP-4	1232463.7	650406.8	TP-4-3.5-4	10/21/2020 11:33	3.5-4	Moist, light grey, clayey fine grained soil, trace gravel (fine), trace organics (wood pieces), no odor. Interspersed rust-colored soil, trace potentially metallic flakes.		х
TP-5	1232330.0	650233.7	TP-5-0-0.5	10/20/2020 9:57	0-0.5	Moist, dark brown, soft, fine grained soil with gravel (coarse), trace sand, trace organics (wood debris), no odor.	X ^{2,3}	
TP-6	1232543.6	650283.0	TP-6-0-0.5	10/21/2020 12:13	0-0.5	Moist, light black, fine grained soil, moderate gravel (fine), trace organics (wood), no odor. Slight sheen (metallic). One discrete pocket with metallic flakes.	X ²	
TP-7	1232515.9	650083.5	TP-7-4.5-5	10/21/2020 10:16	4.5-5	Moist, medium brown, fine grained soil, trace gravel (fine to coarse), trace organics (roots), no odor.	X ²	
			TP-8-0-0.5	10/20/2020 11:50	0-0.5	Dry, light brown fine grained soil with gravel (fine to coarse), no odor.	Х	
TP-8	1232657.513	650184.4	TP-8-2.5-3	10/20/2020 12:17	2.5-3	Moist, light grey brown, fine grained soil with gravel (fine to coarse), trace sand, no odor. Slight rust-like staining.		х
TP-9	1232718.6	649975.9	TP-9-0-0.5	10/20/2020 8:37	0-0.5	Dry, light brown, fine grained soil with gravel (fine to coarse), slight anthropogenic material (potting soil-like pellets) no odor.	Х	
TP-10	1232837.6	650104.3	TP-10-2-2.5	10/20/2020 14:35	2-2.5	Moist, light brown grey, gravelly fine grained soil, no odor.		Х
TP-11	1232794.6	649899.3	TP-11-0-0.5	10/20/2020 15:12	0-0.5	Dry to moist, light brown, fine grained soil with gravel (fine to coarse), slight anthropogenic material (potting soil-like pellets), no odor.		х
			TP-11-1.5-2	10/20/2020 15:31	1.5-2	Moist, light grown, fine grained soil with sand, trace gravel (fine), no odor.		Х
TP-12	1232860.0	649821.7	TP-12-0-0.5	10/20/2020 16:13	0-0.5	Moist, light brown grey, fine grained clayey soil, trace gravel (fine to coarse), trace organics (roots), no odor.	Х	
			TP-12-3-3.5	10/20/2020 16:38	3-3.5	Moist, light brown, fine grained soil, trace silt, trace clay, trace organics (wood-like), no odor.		Х
TP-13	1233066.3	649872.3	TP-13-1.5-2	10/22/2020 8:37	1.5-2	Moist, light brown, fine grained soil, trace gravel (fine), slightly clayey, trace organics (fine roots), no odor. Pockets of gray, fine sand.	Х	
TP-14	1233136.1	649748.0	TP-14-1.5-2	10/22/2020 10:34	1.5-2	Dry to moist, medium brown, fine grained soil, moderate silt, trace gravel (fine), trace organics (roots), no odor.	Х	
TP-15	1233072.7	649748.2	TP-15-1-1.5	10/22/2020 10:10	1-1.5	Dry to moist, medium brown, fine grained soil, slight clay, trace gravel (fine to coarse), trace organics (fine roots), no odor.	Х	
	10000 10 0	6506.000	TP-16-0-0.5	10/21/2020 14:10	0-0.5	Wet, dark brown, coarse grained soil with sand and gravel (fine to coarse), trace organics (roots), no odor.		х
IP-16	1232942.9	650049.0	TP-16-5-5.5	10/21/2020 15:27	5-5.5	Moist, dark brown, fine grained soil, moderate silt, moderate organics (fine roots), no odor. Trace pockets of light grey, fine grained soil.	Х	
TP-17	1233035.6	649785.6	TP-17-1.5-2	10/22/2020 9:26	1.5-2	Dry to moist, dark brown, fine grained soil, trace gravel (fine to coarse, subrounded), moderate silt, moderate organics (fine roots), trace biota (worms), no odor.	X ²	

Table 1 Soil Collection Summary

	Location		Location					
	(NAD83 \	VA North)					Sample	Status
Sample Location	Northing	Easting	Sample ID	Date Collected	Depth Sampled (ft)	Lithology	Analyzed ¹	On Hold
Soil Boring Samples								
						5.7-9.3 ft: Dry, medium dense, grey with rust-colored spots, clay.		
			GP-1-5.7-9.7	10/26/2020 13:15	5.7-9.7	@ 9.3 ft: Thin layer of moist, brown grey, sand (fine), trace clay.	X ²	
						@ 9.6 ft: Grades to dry, hard, brown clay.		
	1222200.1	650 400 0				10-12 ft: Dry, hard brown clay.		
GP-1	1232389.1	650439.2	GP-1-10-12.3	10/26/2020 13:20	10-12.3	12-12.3 ft: Moist, medium dense, brown sandy clay.		Х
						20-20.8 ft: Wet, loose, brown, slightly silty sand (fine). Sand and moisture decreasing.		
			GP-1-20-22	10/26/2020 13:30	20-22	@ 20.8 ft: Grades to no sand.	X ³	
						20.8-22 ft: Dry, hard, brown clay		
			GP-2-8-9	10/26/2020 10:30	8-9	8-9 ft: Dry, light brown with pockets of grey, clayey, silty sand.	Х	
GP-2	1232265.9	650233.2	GP-2-14-20	10/26/2020 10:45	14-20	14-20 ft: Dry, hard, brown clay.		Х
			GP-2-25-27	10/26/2020 10:50	25-27	25-27 ft: Wet, loose, brown, sand (fine).	Х	
CD 2	1222725 /	6502464	GP-3-12.7-13.4	10/27/2020 12:05	12.7-13.4	12.7-13.4 ft: Moist, dense, grey and brown sandy silt (fine).		Х
GF-5	1252725.4	030240.4	GP-3-14.4-15.9	10/27/2020 12:15	14.4-15.9	14.4-15.9 ft: Moist, medium dense, brown, sand (fine).	Х	
GP_4	1222625.2	6500444	GP-4-7.8-8.7	10/27/2020 10:20	7.8-8.7	7.8-8.7 ft: Moist, medium stiff, black, clayey silt, trace organics (fibers). Color grades to brown.	Х	
01-4	1232023.2	050044.4	GP-4-15-18.7	10/27/2020 10:30	15-18.7	15-18.7 ft: Wet, loose, brown, sand (fine), trace silt. Moisture decreases to moist.	Х	
			GP-5-6.9-7.5	10/26/2020 15:15	6.9-7.5	6.9-7.5 ft: Moist, medium dense, dark grey, silty clay. Moisture increases in interval.	Х	
	1222010.0	6F0012 F	GP-5-10-11	10/26/2020 15:25	10-11	10-11 ft: Wet, loose, grey, silty sand (fine).		Х
GP-5	1233010.0	050012.5		10/26/2020 15.20	20.22	20-22 ft: Wet, soft, grey, sandy silt with moderate clay.	V	
			GP-5-20-22	10/26/2020 15:30	20-22	@ 20.5-20.9 ft: Transitions to silty clay.	~	
CD C	1000050 /	640764.0		10/06/0000 16 50	10.0.15	10.8-15 ft: Wet, loose, brown, sand (fine), trace silt.		
GP-6 1232952.4 649764.8 GP-6-10.8-15 10/26/2020 16:50		10.8-15	@ 12-12.3 ft: Void space.	X				

Notes:

1. All soil samples were analyzed for metals, total solids, PAHs, NWTPH-Dx, and NWTPH-Gx.

2. Select samples were analyzed for PCBs, dioxins and furans, and/or TCLP metals.

3. Field duplicates collected.

Abbreviations:

ft: feet

NAD83 WA North: State Plane Washington North, North American Datum 83

NWTPH-Dx: diesel and heavy oil range organics

NWTPH-Gx: gasoline range organics

PAHs: polycyclic aromatic hydrocarbons

PCBs: polychlorinated biphenyls

TCLP: toxicity characteristic leaching procedure

TPH: total petroleum hydrocarbons

Table 2 Groundwater Collection Summary

Sample	Location (NAD83 WA North) Easting Northing				Depth to Groundwater	Depth	Flow Rate
Location			Sample ID	Date Collected	(ft)	Sampled (ft)	(L/min)
GP-2	1232265.9	650233.2			24.0		
GP-3	1232725.4	650246.4	GP-3-GW	10/27/2020 13:15	12.0	16.3	0.50
GP-4	1232625.2	650044.4			14.0		
GP-6	1232952.4 649764.8		GP-6-GW	10/26/2020 17:50	8.5	12.0	0.50

Notes:

All groundwater samples were analyzed for PAHs, dissolved metals, NWTPH-Dx, and NWTPH-Gx.

Field parameters were monitored to identify when ambient groundwater conditions were reached. Parameters included pH, specific conductivity, temperature, and dissolved oxygen.

Groundwater found but well dried up during purging at GP-2 and GP-4.

Field duplicate collected at GP-3-GW.

Abbreviations:

--: not applicable

ft: feet

L: liter

min: minute

NAD83 WA North: State Plane Washington North, North American Datum 83

NWTPH-Dx: diesel and heavy oil range organics

NWTPH-Gx: gasoline range organics

PAHs: polycyclic aromatic hydrocarbons

					Task	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020
					Location ID	GP-1_2020	GP-1_2020	GP-1_2020
					Sample ID Sample Date	10/26/2020	10/26/2020	10/26/2020
					Denth	20 - 22 ft	20 - 22 ft	57-97ft
					Sample Type	N	FD	N
					Matrix	SO	so	so
					x	1232389.113	1232389.113	1232389.113
			MTCA Method B		Y	650439.1881	650439.1881	650439.1881
	MTCA Method A	MTCA Method B	Protection of	MTCA Method A	MTCA Method C			
	Unrestricted	Direct Contact	Groundwater	Industrial	Industrial			
Metals (mg/kg)								
Antimony		32	5.4		1400	3.4 U	3.5 U	3.2 U
Arsenic	20	0.67	2.9	20	88	6	6.3	9.3
Beryllium		160	63		7000	0.18	0.19	0.33
Cadmium	2	80	0.69	2	3500	0.13	0.11	0.064 U
Chromium	2000	120000	480000	2000	5300000	42	44	55
Copper		3200	280		140000	35	35	48
Lead	250		3000	1000		2	2	3.2
Mercury	2		2.1	2		0.037	0.045	0.062
Nickel		1600	130		70000	46	46	58
Selenium		400	5.2		18000	3.4 U	3.5 U	3.2 U
Silver		400	14		18000	0.17 U	0.18 U	0.16 U
Thallium		0.8	0.23		35	3.4 U	3.5 U	3.2 U
Zinc		24000	6000		1100000	64	62	64
Polycyclic Aromatic Hydrocarbons (µg/kg)			1	1			Ī	
1-Methylnaphthalene		34000			4500000	4.6 U	4.7 U	4.3 U
2-Methylnaphthalene		320000			1400000	4.6 U	4.7 U	4.3 U
Acenaphthene		4800000	98000		210000000	4.6 U	4.7 U	4.3 U
Acenaphthylene						4.6 U	4.7 U	4.3 U
Anthracene		24000000	2300000		110000000	4.6 U	4.7 U	4.3 U
Benzo(a)anthracene						4.6 U	4.7 U	4.3 U
Benzo(a)pyrene	100	190	3900	2000	130000	4.6 U	4.7 U	4.3 U
Benzo(b)fluoranthene						4.6 U	4.7 0	4.3 U
Benzo(g,h,i)perylene				-		4.6 U	4.7 U	4.3 U
Benzo(j,k)fluoranthene						4.6 U	4.7 0	4.3 U
Chrysene				-		4.6 U	4.7 0	4.3 0
Dibenzo(a,h)anthracene		2200000	620000		1.40000000	4.6 U	4.7 0	4.3 U
Fluoranthene		3200000	630000		14000000	4.6 U	4.7 0	4.3 U
		3200000	100000		14000000	4.0 U	4.7 U	4.3 U
Indeno(1,2,3-c,d)pyrene	5000	100000	4500		7000000	4.6 U	4.7 0	4.3 0
INaphthalene	5000	1600000	4500		7000000	4.6 U	4.7 U	4.3 U
Phenanthrene		2400000	650000		11000000	4.0 U	4.7 U	4.3 U
ryrene Total cDALLTEO (7 minimum CAEDA 2005) (11 1/2)	100	240000	000020	2000	11000000	4.0 U	4.7 U	4.3 U
Total Naphthalapa (1 and 2 Mathul and Naph) $(U = 1/2)$	100	190	3900	2000		4.6 U	4.7 U	4.3 U
(U = 1/2)	5000			5000		4.0 U	4.7 U	4.3 U

	ABC_Recycling_2020 GP-2_2020 GP-2-25-27 10/26/2020 25 - 27 ft N	ABC_Recycling_2020 GP-2_2020 GP-2-8-9 10/26/2020 8 - 9 ft N	ABC_Recycling_2020 GP-3_2020 GP-3-14.4-15.9 10/27/2020 14.4 - 15.9 ft N	ABC_Recycling_2020 GP-4_2020 GP-4-15-18.7 10/27/2020 15 - 18.7 ft N	ABC_Recycling_2020 GP-4_2020 GP-4-7.8-8.7 10/27/2020 7.8 - 8.7 ft N	ABC_Recycling_2020 GP-5_2020 GP-5-20-22 10/26/2020 20 - 22 ft N	ABC_Recycling_2020 GP-5_2020 GP-5-6.9-7.5 10/26/2020 6.9 - 7.5 ft N
	SO	SO	SO	SO	SO	SO	SO
	1232265.941	1232265.941	1232725.441	1232625.216	1232625.216	1233018.799	1233018.799
	650233.1583	650233.1583	650246.3624	650044.3943	650044.3943	650012.5131	650012.5131
Metals (mg/kg)	1	1			-		
Antimony	3.3 U	3.3 U	3 U	3.4 U	4.6	3.1 U	3.2 U
Arsenic	5.3	9.8	3.9	6	14	5	7.5
Beryllium	0.15	0.43	0.11	0.21	0.37	0.16	0.36
Cadmium	0.12	0.077	0.078	0.13	0.9	0.093	0.093
Chromium	31	60	28	41	37	31	43
Copper	21	49	16	28	30	19	22
Lead	2.9	4.8	1.3	2.4	44	2	4.7
Mercury	0.038	0.085	0.016	0.03	0.095	0.024	0.059
Nickel	29	58	24	39	38	28	33
Selenium	3.3 U	3.3 U	3 U	3.4 U	3.8 U	3.1 U	3.2 U
Silver	0.16 U	0.17 U	0.15 U	0.17 U	0.22	0.15 U	0.16 U
Thallium	3.3 U	3.3 U	3 U	3.4 U	3.8 U	3.1 U	3.2 U
Zinc	42	72	30	53	120	36	61
Polycyclic Aromatic Hydrocarbons (µg/kg)							
1-Methylnaphthalene	8.4	4.4 U	4 U	4.6 U	42	4.1 U	4.2 U
2-Methylnaphthalene	13	4.4 U	4 U	4.6 U	50	4.1 U	4.2 U
Acenaphthene	24	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Acenaphthylene	4.4 U	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Anthracene	25	4.4 U	4 U	4.6 U	5.3	4.1 U	4.2 U
Benzo(a)anthracene	66	4.4 U	4 U	4.6 U	13	4.1 U	4.2 U
Benzo(a)pyrene	21	4.4 U	4 U	4.6 U	13	4.1 U	4.2 U
Benzo(b)fluoranthene	55	4.4 U	4 U	4.6 U	15	4.1 U	4.2 U
Benzo(g,h,i)perylene	4.8	4.4 U	4 U	4.6 U	12	4.1 U	4.2 U
Benzo(j,k)fluoranthene	16	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Chrysene	65	4.4 U	4 U	4.6 U	20	4.1 U	4.2 U
Dibenzo(a,h)anthracene	4.4 U	4.4 U	4 U	4.6 U	4.7	4.1 U	4.2 U
Fluoranthene	200	4.4 U	4 U	4.6 U	10	4.1 U	4.2 U
Fluorene	37	4.4 U	4 U	4.6 U	4 U	4.1 U	4.2 U
Indeno(1,2,3-c,d)pyrene	5.8	4.4 U	4 U	4.6 U	7.7	4.1 U	4.2 U
Naphthalene	7.8	4.4 U	4 U	4.6 U	43	4.1 U	4.2 U
Phenanthrene	110	4.4 U	4 U	4.6 U	28	4.1 U	4.2 U
Pvrene	140	4.4 U	4 U	4.6 U	9.4	4.1 U	4.2 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = $1/2$)	36.15	4.4 U	4 U	4.6 U	17.44	4.1 U	4.2 U
Total Naphthalene (1- and 2-Methyl and Naph) ($U = 1/2$)	29.2	4.4 U	4 U	4.6 U	135	4.1 U	4.2 U

	ABC_Recycling_2020							
	GP-6_2020	TP-1_2020	TP-2_2020	TP-3_2020	TP-4_2020	TP-5_2020	TP-6_2020	TP-7_2020
	GP-6-10.8-15	IP-1-0.5-1.5	IP-2-1.5-2	IP-3-1.5-2	TP-4-0-0.5	TP-5-0-0.5	TP-6-0-0.5	IP-7-4.5-5
	10/26/2020		10/22/2020	10/22/2020	10/21/2020	10/20/2020	10/21/2020	10/21/2020
	10.8 - 15 ft	0.5 - 1.5 ft	1.5 - 2 ft	1.5 - 2 π	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	4.5 - 5 ft
	N	N	N	N	N	N	N	N
	50	50	50	50	50	50	50	50
	1232952.405	1232044.174	1232042.502	1232184.227	1232463.701	1232330.012	1232543.011	1232515.934
	649764.8397	650713.0992	650527.9031	650311.4637	650406.845	650233.7296	650282.9897	650083.4632
Metals (mg/kg)	-			•	•			
Antimony	3.1 U	3.4	3.2 U	26	46	6	5.3	8.8
Arsenic	3.6	11	11	93	100	20 J	19	25
Beryllium	0.13	0.37	0.49	0.25	0.36	0.23	0.26	0.19
Cadmium	0.092	0.44	0.13 U	79	3.8	1	1.6	3
Chromium	27	28	64	28	26	23	11	25
Copper	15	17	53	59	90	44	37	40
Lead	1.4	14	6.9	2600	130	90 J	15	39
Mercury	0.022	0.039	0.067	0.25	0.25	0.47	0.11	0.11
Nickel	28	27	58	8.1	17	21	9	22
Selenium	3.1 U	3.2 U	3.2 U	30	3.1 U	2.8 U	2.8 U	3.5 U
Silver	0.16 U	0.32 U	0.32 U	11	0.5	0.28 U	0.28 U	0.35 U
Thallium	3.1 U	3.2 U	3.2 U	8.9	3.1 U	2.8 U	2.8 U	3.5 U
Zinc	29	98	87	290	250	210	65	140
Polycyclic Aromatic Hydrocarbons (µg/kg)								
1-Methylnaphthalene	4.2 U	16	4.3 U	35	540	730 J	2500	78
2-Methylnaphthalene	4.2 U	19	4.3 U	50	800	1100 J	4400	88
Acenaphthene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	73 J	360 U	4.7
Acenaphthylene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	78 J	76 U	7
Anthracene	4.2 U	4.4 U	4.3 U	4.1 U	82	160 J	130	14
Benzo(a)anthracene	4.2 U	4.4 U	4.3 U	6.4	130	300 J	410	27
Benzo(a)pyrene	4.2 U	4.4 U	4.3 U	4.4	82 U	140 J	170	23
Benzo(b)fluoranthene	4.2 U	7.7	4.3 U	8.2	130	340 J	330	37
Benzo(g,h,i)perylene	4.2 U	6.4	4.3 U	4.7	82 U	120 J	170	30
Benzo(j,k)fluoranthene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	92 J	76 U	7.3
Chrysene	4.2 U	7.9	4.3 U	14	220	500 J	940	40
Dibenzo(a,h)anthracene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	47 J	87	8.3
Fluoranthene	4.2 U	7.3	4.3 U	7.5	170	530 J	350	40
Fluorene	4.2 U	4.4 U	4.3 U	4.1 U	84 U	90 J	410	9.3
Indeno(1,2,3-c,d)pyrene	4.2 U	4.4 U	4.3 U	4.1 U	82 U	96 J	76 U	22
Naphthalene	4.2 U	15	4.3 U	22	280	510 J	1200	77
Phenanthrene	4.2 U	15	4.3 U	40	620	870 J	3600	89
Pyrene	4.2 U	6.2	4.3 U	6.6	180	500 J	490	37
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	4.2 U	3.929	4.3 U	6.615	81.5	232.5 J	269.7	33.56
Total Naphthalene (1- and 2-Methyl and Naph) (U = $1/2$)	4.2 U	50	4.3 U	107	1620	2340 J	8100	243

	ABC_Recycling_2020 TP-8_2020	ABC_Recycling_2020 TP-9_2020	ABC_Recycling_2020 TP-12_2020	ABC_Recycling_2020 TP-13_2020	ABC_Recycling_2020 TP-14_2020	ABC_Recycling_2020 TP-15_2020	ABC_Recycling_2020 TP-16_2020	ABC_Recycling_2020 TP-17_2020
	TP-8-0-0.5 10/20/2020	TP-9-0-0.5 10/20/2020	TP-12-0-0.5 10/20/2020	TP-13-1.5-2 10/22/2020	TP-14-1.5-2 10/22/2020	TP-15-1-1.5 10/22/2020	TP-16-5-5.5 10/21/2020	TP-17-1.5-2 10/22/2020
	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	1.5 - 2 ft	1.5 - 2 ft	1 - 1.5 ft	5 - 5.5 ft	1.5 - 2 ft
	N	N	N	N	N	N	N	N
	SO	so	so	so	so	so	SO	SO
	1232657.513	1232718.597	1232859.97	1233066.29	1233136.099	1233072.659	1232942.891	1233035.603
	650184.4187	649975.912	649821.6908	649872.2961	649748.0338	649748.2293	650049.0335	649785.6025
Metals (mg/kg)								
Antimony	16	75	32	3.2 U	3 U	3 U	3.7 U	4.1 U
Arsenic	42 J	160	70 J	6.5	7.2	9.9	6.4	13
Beryllium	0.11 U	0.17	0.11 U	0.34	0.29	0.34	0.52	1.8
Cadmium	0.76	0.47	0.95	0.13 U	0.13	0.17	0.79	0.71
Chromium	9.1	74	16	50	44	45	43	16
Copper	38	240	89	41	27	43	30	36
Lead	26 J	110	29 J	3.9	3.8	4	16	31
Mercury	0.3	0.14	0.26	0.051	0.042	0.047	0.048	0.34
Nickel	7.6	52	13	48	35	48	41	18
Selenium	2.6 U	2.6 U	2.7 U	3.2 U	3 U	3 U	3.7 U	4.1 U
Silver	0.26 U	0.41	0.27 U	0.32 U	0.3 U	0.3 U	0.38	0.41 U
Thallium	2.6 U	2.6 U	2.7 U	3.2 U	3 U	3 U	3.7 U	4.1 U
Zinc	85	280	100	64	49	77	130	42
Polycyclic Aromatic Hydrocarbons (µg/kg)								
1-Methylnaphthalene	23 J	70 U	31 J	4.2 U	4 U	4 U	39	250
2-Methylnaphthalene	41 J	87	56 J	4.4	4 U	4 U	48	250
Acenaphthene	5.4 J	70 U	4.2 J	4.2 U	4 U	4 U	4.9 U	12 U
Acenaphthylene	3.5 UJ	70 U	3.6 UJ	4.2 U	4 U	4 U	5.5	14 U
Anthracene	8.4 J	70 U	3.6 UJ	4.2 U	4 U	4 U	7.1	29
Benzo(a)anthracene	61 J	840	13 J	4.2 U	4 U	4 U	11	43
Benzo(a)pyrene	53 J	960	8.6 J	4.2 U	4 U	4 U	11	20
Benzo(b)fluoranthene	83 J	1300	18 J	4.2 U	4 U	4 U	30	25
Benzo(g,h,i)perylene	43 J	760	8.8 J	4.2 U	4 U	4 U	23	18
Benzo(j,k)fluoranthene	20 J	410	3.6 UJ	4.2 U	4 U	4 U	6	4.4 U
Chrysene	72 J	770	27 J	4.2 U	4 U	4 U	25	37
Dibenzo(a,h)anthracene	11 J	180	3.6 UJ	4.2 U	4 U	4 U	4.9 U	5.3
Fluoranthene	78 J	790	18 J	4.2 U	4 U	4 U	49	36
Fluorene	8 J	70 U	11 J	4.2 U	4 U	4 U	4.9 U	16 U
Indeno(1,2,3-c,d)pyrene	40 J	740	6.7 J	4.2 U	4 U	4 U	17	9.1
Naphthalene	15 J	250 U	20 J	4.2 U	4 U	4 U	86	98
Phenanthrene	66 J	380	58 J	4.2 U	4 U	4 U	66	160
Pyrene	77 J	790	17 J	4.2 U	4 U	4 U	32	39
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	75.22 J	1314.7	13 J	4.2 U	4 U	4 U	17.895	28.83
Total Naphthalene (1- and 2-Methyl and Naph) (U = 1/2)	79 J	247	107 J	8.6	4 U	4 U	173	598

					Task	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020
					Location ID	GP-1_2020	GP-1_2020	GP-1_2020
					Sample ID	GP-1-20-22	GP-1-20-22-DUP	GP-1-5.7-9.7
					Sample Date	10/26/2020	10/26/2020	10/26/2020
					Depth	20 - 22 ft	20 - 22 ft	5.7 - 9.7 ft
					Sample Type	Ν	FD	N
					Matrix	SO	SO	SO
			MTCA Mathad D		X	1232389.113	1232389.113	1232389.113
					Y	650439.1881	650439.1881	650439.1881
	MICA Method A	MICA Method B	Protection of	MICA Method A	MTCA Method C			
	Unrestricted	Direct Contact	Groundwater	Industrial	Industrial			
Dioxin Furans (ng/kg)				-	1			<u>_</u>
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)		13			1700			0.0323 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								0.0816 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								0.14 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								0.147 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								0.165 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								2.6
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)								34.6
Total Tetrachlorodibenzo-p-dioxin (TCDD)								0.134
Total Pentachlorodibenzo-p-dioxin (PeCDD)								0.194
Total Hexachlorodibenzo-p-dioxin (HxCDD)		160						1.38 EMPC
Total Heptachlorodibenzo-p-dioxin (HpCDD)								6.48
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								0.0247 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								0.0301 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								0.0256 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								0.0403 U
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.0387 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								0.0675 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								0.0418 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								0.0849 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								0.0805 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)								0.101 U
Total Tetrachlorodibenzofuran (TCDF)								0.0999
Total Pentachlorodibenzofuran (PeCDF)								0.0301 U
Total Hexachlorodibenzofuran (HxCDF)								0.0675 U
Total Heptachlorodibenzofuran (HpCDF)								0.0849 U
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		13			1700			0.13171365

	ABC_Recycling_2020 GP-2_2020 GP-2-25-27 10/26/2020 25 - 27 ft N	ABC_Recycling_2020 GP-2_2020 GP-2-8-9 10/26/2020 8 - 9 ft N	ABC_Recycling_2020 GP-3_2020 GP-3-14.4-15.9 10/27/2020 14.4 - 15.9 ft N	ABC_Recycling_2020 GP-4_2020 GP-4-15-18.7 10/27/2020 15 - 18.7 ft N	ABC_Recycling_2020 GP-4_2020 GP-4-7.8-8.7 10/27/2020 7.8 - 8.7 ft N	ABC_Recycling_2020 GP-5_2020 GP-5-20-22 10/26/2020 20 - 22 ft N	ABC_Recycling_2020 GP-5_2020 GP-5-6.9-7.5 10/26/2020 6.9 - 7.5 ft N
	so	so	SO	SO	so	SO	SO
	1232265.941	1232265.941	1232725.441	1232625.216	1232625.216	1233018.799	1233018.799
	650233.1583	650233.1583	650246.3624	650044.3943	650044.3943	650012.5131	650012.5131
Dioxin Furans (ng/kg)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)							
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)							
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)							
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)							
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)							
Total Tetrachlorodibenzo-p-dioxin (TCDD)							
Total Pentachlorodibenzo-p-dioxin (PeCDD)							
Total Hexachlorodibenzo-p-dioxin (HxCDD)							
Total Heptachlorodibenzo-p-dioxin (HpCDD)							
2,3,7,8-Tetrachlorodibenzofuran (TCDF)							
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)							
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)							
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)							
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)							
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)							
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)							
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)							
Total Tetrachlorodibenzofuran (TCDF)							
Total Pentachlorodibenzofuran (PeCDF)							
Total Hexachlorodibenzofuran (HxCDF)							
Total Heptachlorodibenzofuran (HpCDF)							
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)							

	ABC_Recycling_2020 GP-6_2020 GP-6-10.8-15 10/26/2020 10.8 - 15 ft N SO 1232952.405 649764.8397	ABC_Recycling_2020 TP-1_2020 TP-1-0.5-1.5 10/22/2020 0.5 - 1.5 ft N SO 1232044.174 650713.0992	ABC_Recycling_2020 TP-2_2020 TP-2-1.5-2 10/22/2020 1.5 - 2 ft N SO 1232042.502 650527.9031	ABC_Recycling_2020 TP-3_2020 TP-3-1.5-2 10/22/2020 1.5 - 2 ft N SO 1232184.227 650311.4637	ABC_Recycling_2020 TP-4_2020 TP-4-0-0.5 10/21/2020 0 - 0.5 ft N SO 1232463.701 650406.845	ABC_Recycling_2020 TP-5_2020 TP-5-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232330.012 650233.7296	ABC_Recycling_2020 TP-6_2020 TP-6-0-0.5 10/21/2020 0 - 0.5 ft N SO 1232543.611 650282.9897	ABC_Recycling_2020 TP-7_2020 TP-7-4.5-5 10/21/2020 4.5 - 5 ft N SO 1232515.934 650083.4632
Dioxin Furans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)						0.761 EMPC	0.0977 EMPC	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)						6.41	0.665 J	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						11.4	0.812 EMPC	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)						110	12.6	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)						32.2	5.14	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)						2350	187	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)						23400	1720	
Total Tetrachlorodibenzo-p-dioxin (TCDD)						13.8 EMPC	1.96 EMPC	
Total Pentachlorodibenzo-p-dioxin (PeCDD)						45	4.79 EMPC	
Total Hexachlorodibenzo-p-dioxin (HxCDD)						669	90.1 EMPC	
Total Heptachlorodibenzo-p-dioxin (HpCDD)						6130	409	
2,3,7,8-Tetrachlorodibenzofuran (TCDF)						1.1	0.17 J	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)						2.99	0.189 J	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)						5.52	0.361 J	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)						10.4	0.504 J	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)						4.97	0.332 J	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)						1.6 J	0.0933 J	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)						8	0.225 J	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)						149	10.2	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)						7.02	0.509 J	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)						433	43.1	
Total Tetrachlorodibenzofuran (TCDF)						17.6 EMPC	0.69 EMPC	
Total Pentachlorodibenzofuran (PeCDF)						65.4	4.32 EMPC	
Total Hexachlorodibenzofuran (HxCDF)						264	15.1	
Total Heptachlorodibenzofuran (HpCDF)						561	41.1	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)						59.0938 J	5.37032 J	

	ABC_Recycling_2020 TP-8_2020 TP-8-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232657.513 650184.4187	ABC_Recycling_2020 TP-9_2020 TP-9-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232718.597 649975.912	ABC_Recycling_2020 TP-12_2020 TP-12-0-0.5 10/20/2020 0 - 0.5 ft N SO 1232859.97 649821.6908	ABC_Recycling_2020 TP-13_2020 TP-13-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233066.29 649872.2961	ABC_Recycling_2020 TP-14_2020 TP-14-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233136.099 649748.0338	ABC_Recycling_2020 TP-15_2020 TP-15-1-1.5 10/22/2020 1 - 1.5 ft N SO 1233072.659 649748.2293	ABC_Recycling_2020 TP-16_2020 TP-16-5-5.5 10/21/2020 5 - 5.5 ft N SO 1232942.891 650049.0335	ABC_Recycling_2020 TP-17_2020 TP-17-1.5-2 10/22/2020 1.5 - 2 ft N SO 1233035.603 649785.6025
Dioxin Furans (ng/kg)	1	1	1		1		T	
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)								
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)								
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)								
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)								
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)								
Total Tetrachlorodibenzo-p-dioxin (TCDD)								
Total Pentachlorodibenzo-p-dioxin (PeCDD)								
Total Hexachlorodibenzo-p-dioxin (HxCDD)								
Total Heptachlorodibenzo-p-dioxin (HpCDD)								
2,3,7,8-Tetrachlorodibenzofuran (TCDF)								
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)								
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)								
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)								
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)								
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)								
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)								
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)								
Total Tetrachlorodibenzofuran (TCDF)								
Total Pentachlorodibenzofuran (PeCDF)								
Total Hexachlorodibenzofuran (HxCDF)								
Total Heptachlorodibenzofuran (HpCDF)								
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)								

Notes:

Detected concentration is greater than MTCA Method A Unrestricted screening level.
Detected concentration is greater than MTCA Method B Direct Contact screening level.
Detected concentration is greater than MTCA Method B Protection of Groundwater screening level.
Detected concentration is greater than MTCA Method A Industrial screening level.
Detected concentration is greater than MTCA Method C Industrial screening level.

Bold: Detected result

-- : not applicable
µg/kg: micrograms per kilogram
cPAH: carcinogenic polycyclic aromatic hydrocarbon
EMPC: estimated maximum possible concentration
FD: field duplicate
ft: feet
J: Estimated value
mg/kg: miligrams per kilogram
MTCA: Model Toxics Control Act
N: Presumptive Evidence
ng/kg: nanogram per kilogram
SO: soil
TEQ: toxic equivalents quotient
U: Compound analyzed, but not detected above detection limit

Page 9 of 9 August 2023

	Task	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020	ABC_Recycling_2020
	Location ID	GP-1_2020	TP-17_2020	TP-5_2020	TP-7_2020
	Sample ID	GP-1-5.7-9.7	TP-17-1.5-2	TP-5-0-0.5	TP-7-4.5-5
	Sample Date	10/26/2020	10/22/2020	10/20/2020	10/21/2020
	Depth	5.7 - 9.7 ft	1.5 - 2 ft	0 - 0.5 ft	4.5 - 5 ft
	Sample Type	Ν	Ν	Ν	Ν
	Matrix	SO	SO	SO	SO
	Х	1232389.1	1233035.6	1232330.0	1232515.9
	Y	650439.2	649785.6	650233.7	650083.5
	ιοχιείτα				
	Characteristic				
	Threshold for				
	Hazardous Waste				
Leachable Metals (µg/L)					
Arsenic	5000	400 U	400 U	400 U	400 U
Barium	100000	470	1500	450	460
Cadmium	1000	20 U	20 U	20 U	20 U
Chromium	5000	20 U	20 U	20 U	20 U
Lead	5000	200 U	200 U	200 U	200 U
Mercury	200	5 U	5 U	5 U	5 U
Selenium	1000	400 U	400 U	400 U	400 U
Silver	5000	40 U	40 U	40 U	40 U

Notes:

Detected concentration is greater than Toxicity Characteristic Threshold for Hazardous Waste

Bold: Detected result

U: Compound analyzed, but not detected above detection limit

N: normal sample

µg/L: micrograms per liter

ft: feet

SO: soil

Table 5Groundwater Analytical Results

		Task	ABC Recycling 2020	ABC Recycling 2020	ABC Recycling 2020
		Location ID	GP-3 2020	GP-3 2020	GP-6 2020
		Sample ID	GP-3-GW	GP-3-GW-DUP	GP-6-GW
		Sample Date	10/27/2020	10/27/2020	10/26/2020
		Depth	16.3 - 16.3 ft	16.3 - 16.3 ft	12 - 12 ft
		Sample Type	N	FD	N
		Matrix	WG	WG	WG
		X	1232725.4	1232725.4	1232952.4
		Y	650246.4	650246.4	649764.8
	MTCA Method A	MTCA Method B			
Metals, Dissolved (µg/L)					
Antimony		6.4	1 U	1 U	1 U
Arsenic	5	4.8	0.68	0.56	0.76
Beryllium		32	0.2 U	0.2 U	0.2 U
Cadmium	5	8	0.2 U	0.2 U	0.2 U
Chromium	50		1 U	1 U	1 U
Copper		640	1 U	1 U	1 U
Lead	15		0.5 U	0.5 U	0.5 U
Mercury	2		0.025 U	0.025 U	0.025 U
Nickel		320	13	15	17
Selenium		80	1.4	1.4	5.6
Silver		80	0.2 U	0.2 U	0.2 U
Thallium		0.16	0.2 U	0.2 U	0.2 U
Zinc		4800	7	6.6	3
Polycyclic Aromatic Hydrocarbons (µg/L)					
1-Methylnaphthalene		1.5	0.056 U	0.051 U	0.06 U
2-Methylnaphthalene		32	0.056 U	0.051 U	0.06 U
Acenaphthene		960	0.056 U	0.051 U	0.06 U
Acenaphthylene			0.056 U	0.051 U	0.06 U
Anthracene		4800	0.056 U	0.051 U	0.06 U
Benzo(a)anthracene			0.0056 U	0.0051 U	0.006 U
Benzo(a)pyrene	0.1	0.2	0.0056 U	0.0051 U	0.006 U
Benzo(b)fluoranthene			0.0056 U	0.0053	0.006 U
Benzo(g,h,i)perylene			0.0056 U	0.0051 U	0.006 U
Benzo(j,k)fluoranthene			0.0056 U	0.0051 U	0.006 U
Chrysene			0.0056 U	0.0051 U	0.006 U
Dibenzo(a,h)anthracene			0.0056 U	0.0051 U	0.006 U
Fluoranthene		640	0.056 U	0.051 U	0.06 U
Fluorene		640	0.056 U	0.051 U	0.06 U
Indeno(1,2,3-c,d)pyrene			0.0056 U	0.0051 U	0.006 U
Naphthalene	160	160	0.056 U	0.051 U	0.06 U
Phenanthrene			0.056 U	0.051 U	0.06 U
Pyrene		480	0.056 U	0.051 U	0.06 U
Total cPAH TEQ (7 minimum CAEPA 2005) ($U = 1/2$)	0.1	0.2	0.0056 U	0.004126	0.006 U
Total Naphthalene (1- and 2-Methyl and Naph) (U = 7	1 160		0.056 U	0.051 U	0.06 U
Total Petroleum Hydrocarbons (mg/L)					
Diesel range hydrocarbons	0.5		0.12	0.11	0.1 U
Gasoline range hydrocarbons	0.8		0.1 U	0.1 U	0.1 U
Residual range hydrocarbons	0.5		0.29	0.27	0.2 U

Notes:

Detected concentration is greater than MTCA Method A Groundwater screening level

Detected concentration is greater than MTCA Method B Groundwater Direct Contact screening level

Bold: Detected result

µg/L: micrograms per liter

cPAH: carcinogenic polycyclic aromatic hydrocarbon

FD: field duplicate

ft: feet

mg/L: miligrams per liter

MTCA: Model Toxics Control Act

N: normal sample

TEQ: toxic equivalents quotient

U: Compound analyzed, but not detected above detection limit

WG: groundwater

Phase 2 Environmental Assessment Report Marine Drive Property

Figures

LEGEND:

- Geoprobe Boring Location
- Geoprobe Boring Locations with Groundwater Sample
- Test Pit Location (Analysis Triggered)
- Test Pit Location (No Analysis Triggered)
- Extent of Observed Fill
- Approximate Site Boundary

Publish Date: 2020/11/13, 10:34 AM | User: jsfox Filepath: \\orcas\GIS\Jobs\ABC_Recycling_2005\MarineDrive\Maps\Phase_II_Report\AQ_PhaseII_SampleLocations.mxd

0 250 Feet

Figure 1 Actual Sample Locations

Phase 2 Environmental Assessment Report Marine Drive Property

Appendix A Field Forms

	Daily Log
Esquimalt Hart	oour Remediation Project
COJECT NAM	E: ARC Peruiring DATE: 10 - 19 - 2020
SITE LOCATION	N: THI MARINE DRIVE PERSONNEL: TH
WEATHER:	WIND FROM: N
TIME	COMMENTS
See Notes on botto	om of page for detailed logging
Equipment on site	
0156	ARRIVE ONSITE Maker const. on site check-in
	@ Lehigh OFFICE sign to Dave Parsons
	about week/logistics approval of access paths
0203	DRIVE OVER to yard, Hts tailgate discuss alless
	path wil Marker Lonst.
0512	Begin utility IOCATE, check main access points
	(driveworks) - no utilities entering property
0824	continue utility locate energing edges of yard
	oneck along makine DRIVE - CONFIRM gas line OFF
	edge of side walk,
0853	APS done w/ survey - wraps up + departs site
* 0756 -	note from discussion wy Dave Parsons - NW recycling
	is allegent revant For the property ABC is considering
	purchasing
0956	Walked paths out by Markere - appive first at "Y"
	in parts - L = TP2, R = continue on parts To
	charing wi ware old encomponent. Go on I path
	out of cleaking to ocation near TPI
1017	Move to southern portion of yard for walk paths
1139	End prush clearing on souther potion - maving
	THE to more mid- location to test mound area
1141	Sign out @ main OFFICE + depart site
1	
Samples delivered	to tab:
	(RG)

Jtes: Work performed, Phone calls made, Problems Issues/Resolutions, Visitors on site, Deviations from the Workplan Safety infractions, Important comments/instructions to contractors

Safety infractions, Important comments/instructions to contractors Signature:

pg 1 of 1

	Daily Log
V QEA	CHOR
	HE PECYCLING Phase 2 DATE: 10-20-2020 PERSONNEL: JAH TX 18
WEATHER:	WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: °F . °C [trice appropriate units]
TIME	COMMENTS
0838	AFFILE ONSITE MECK-in @ Lenigh OFFICE
0807	DRIVE OVER TO yard, Hts tail gate, Delentation
	to site sample locations
0931	On location @ TB-5, PPED acar
Dasz	CONJECT TP-5-0-0.5 (6 jars +1 vial)
1016	Concerte TP-5- @ Ift, concrete - no penetration
	WI bucket of excavator, thord taken
1019	Move / adjust location wild ft from 1st attempt (10 Ft E)
1041	Attempt #3, NIDFIN (TP-5-B IN GPS) (TP-5-AINGR)
1053	Attempt #4, VID Ft S (TP-5-C in GPS)
101	Fill holes - concrete slab-like surface @ each location
11:35	Discuss TP5/Lonchete w/ Andy
1140	On location @TP-8
1150	callect TP-3-0-0.5 (6 jaks + 1 vial)
1217	COLLECT TP-8-25-3 (9 jars + 1 vial) PCBS+DIF tested
1322-	ON LOCATION @ TP-10
1435	collect TP-10-2-25, very compact material, collected
	FROM deconned bucket of excavator to collect suffart
	material given extremely compact/glaciay-till-like
	nature of material. collected dup (12 jars + 2 viaks)
1508	on location @ TP-11
1512	collect TP-11-0-0.5 (10 Jaks + 1 vial)
1531	collect TP-11-1.5-2 (6 japs + 1 vial)
1608	on location @ TP-12
1613	collect TP-12-0-0.5 (9 Jaes + vial) D/F+ PCBS tested
1638	WILLECT TP-12-3-3.5 (6)aks + 1 11(a)
1658	WRAP UP FOR day, pack up gear
	7472

Signature: Tampo Kamilh

pg 1 g 1

	Daily Log
V QE	ICHOR A =====
PROJECT NAME:	ARC Recycling Ph 2 DATE: 10/21/2020
SITE ADDRESS:	741 Marine DRIVE PERSONNEL: MH, TK
WEATHER:	WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: From . °C [Circle appropriate units]
TIME	COMMENTS
5758	Appive onsite check-in @ Lenigh Office
0810	on location @ TP-9, conduct HIS meeting
0837	(011201 TP-9-0-0.5 (63jaks + 1 Vial)
DGOH	DIA FURTMER CTP-9 to w2.5ft
0932	on location @ TP-7, begin digging
0001	Call wy matt to discuss sample intervals. Agree
	to proceed and continue scimpling intervals
	w/ native/soll maturial and no longer collect
	SURFICIAL SAMPLES PROVIDED MATERIAL RESURFACE is
	the same geavelly Fill and highly consolidated
	material found during 10/20/20 Gamping Will
	Note sufficial matchial at location and sample
	when notive matphial is found
1016	collect TP-7-4.5-5 (93 aks + 1 vial) testing
	FOR PUBS OF. Native-like material @ 45 Ftbas
1053	On location TP-4. PID Non-Functional
- MIN	collect TP-4-0-0.5, (83 jaks +1 viai) test PCBS/OF
1133	collect TP-4-3.5-4 (A3 aks + 1 vial) test PCBS DF
1156	ON IDEALFION TP-6
1213	collect FB-00 TP-6-0-0.5 (3)ars+1 vial) test PCBODE
1300	collect TP to Abandon deeper sample - REFUSAl CY
1311	TRain passing yard on RE spure
1401	on location TP-16 MH
1410	collect TP-16-075 (A31aRS + 1 Vial) test POBS/DF
1527	Collect TP-16-5-55 (2 jafs +1 vial)
1540	site walk wi Matt and Andy
1639	where up day pack up gear
1	1729

Signature: Tamo Kamil

pg. 1 of 1

	Daily Log
V QE	CHOR A =====
PROJECT NAME:	ABC Recycling DATE: OCt. 22, 2070
SITE ADDRESS:	741 Marine prive PERSONNEL: MH, TIC
WEATHER:	WIND FROM: N NE E SE S SW W NW LIGHT MEDUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: ° 5 .
TIME	COMMENTS
0127	APPINE ONSITE, MECKIN @ Lewish OFFICE, PRED GRAK
	FOR THES IN Wooded aleas, H+S meeting
0822	On location TP-13
0837	convert tP-13-1.5-2(3 jars + 1 vial)
0355	Derex Ormerod, Andy Anthony Spandon Hausmann
	are onsite conduct site walk
0914	on location TP-17
0926	collect TP-17-15-2 3 ars + I vial
0953	on ideation TP-15
1010	whect TP-15-15 (3' aps+ 1 vial)
1020	on location TP-14
1034	Collect TP-14-15-2 (3 jurs + 1 vial)
1125	on location TP-1
1145	101RC+ TP-1-0.5-1.5 (3 Jaks+1 vial)
1155	Hand angeled + characterized mound leading
	into wood from under large-cedar (adjace
	to TP-1 location
1202	On location TP-2
1214	collect TP-2-1.5-2 (3 jars + 1 vial)
1240	on location TP-3
1256	collect TP-3-1.5-2 (3) jurs + (vial)
1310	Packing up sampler
1501	Depart site sign out @ Lehigh Office
>	

	Daily Log
V QE	CHOR A ####
PROJECT NAME:	ABC Recycling DATE: 10.26.20
SITE ADDRESS:	741 Marine Drive PERSONNEL: MH, DP
WEATHER:	WIND FROM: N NE E SE S SW NW LIGHT MEDIUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: ° F 3 +
TIME	COMMENTS
0800	On site It's meeting set up for drilling station GP-2.
1100	Drill to 30: Samples collected 8-9, 14-20, 25-27!
	Install screen to develop groundwater 24-27:
1145	No ground nater developed. Pack up. Mob to GP-1.
1215	on location drilling begins.
1340	Reached 30' depth. Three Samples collected: 5.7-9.7', 10'-12.3'
	20-22. Duplicate collected on bottom interval supple. Allow
	time for well to develop
1410	Grandwater sample attempted. Filled YSI flow-through cell,
	went dry. Clean up, mobilize to GP-5
1425	On station start drilling.
1510	Reached 30' Three samples Ellected: 6.9-7-5, 10-11, 20-22. A low
	grandwater to develop.
1550	Groundwater purged n'12 salon and stopped. No GW collected.
	Clean up and mobilize to GP-6.
1615	On station, start drilling.
(650	Reached 30, one sample collected: 10.8-15
1750	Groundwater sample collected from 12° Cleanup.
1830	Depart site.
Signature	Toget
Signature	- to the second

	Daily Log
V QE	A EEE
PROJECT NAME:	ABC Recyclim DATE: 10-27.20
SITE ADDRESS: 7	141 Marine Drive PERSONNEL: Mit. DP
WEATHER:	WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: (°F)
TIME	COMMENTS
0830	On site It's meeting. Set up on GP-4.
0915	Start drilling Hard drilling probe stuck use any to
	extract porine. Easy pushing at us water incounterel uis.
1015	Drop casing in hele water depth = 14'. Pumped for a fen
	minutes then went dry
1050	Let well recharge for 10 mins. Pumped clear then we
	dry.
1100	Leave probes in ground to let Gw recharge. Mob
	seoprobe to GP.3.
1128	Start drilling. Drill to 20' break for lunch and let we
	charse.
1250	Attempt to pump groundwater from GP-it. Purged NZL à
	went dry.
1300	Set up on GP-3 for groundwater
1305	Start punping Sample collected @ 1315 for at 16.3 depth.
	Duplicate collected @1320, extra vol. for ~ S/MSD -
1415	Clean up, pack samples ? sear.
1540	Depart site.
~	
	k
C :	DC Pt

				GEOL EXCA EXCA	ogist Vatioi Vatioi		RACTOR A COMB -	
SOI	L TEST PIT LO	G		PIT D	AMETE	R_3	5"	
	SAMPLING D	DATA		1000		ы	Field location of test pit	
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMB (USCS)		SCRIPTION
				~			100 000 001 00000	A
					2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 8 9 0 1 2 3 4 5 8 9 0 1 2 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 8 8 9 1 1 1 8 8 8 9 1 1 8 8 9 1 1 1 8 8 9 1 1 1 1		eine grainéd soit occassional orge trace graver (us plor (01.5.Ft; Ref.)sal	A TRACE SILT UNICS (POOTS) ARSE), NO SUBSTANTION (2) IQUER OF GRAVE
_			-		<u>9</u>			h
		_			0			(2)

Za	NCHO EA 🚟	R		PROJI GEOL EXCA	ECT NU DGIST		RACTOR	DATE BEGAN 1 22/20 DATE COMPLETED 22 TOTAL DEPTH 21 SHEET OF
SOIL	TEST PIT LO	G		PIT DI		R_3	GL Interview of tost pit	-
	SAMPLING [ATA				BOL	Field location of test pit	
MPLING THOD	MPLE NUMBER	(mqq) CIA / C	COVERY (feet)	EPTH SAMPLED et)	EPTH IN FEET	DIL GROUP SYM SCS)		
SAN	SAI	E	RE	DE (fei	H	8 S S	LITHOLOGIC DE	ALC MALER
nand Noger				675-2* 1.5-2			0.75-2' day to mast " around cail with 's no alor no argunt cs	Nay bolin fine Raht sult, nace closes
					- ,	9		
		·			7			Gar
lotes:	Crolloct	ed	a	Lenin	<u>]</u> .	3	jaks + 1 vial	(TE

Z°	R		CLIEN PROJI GEOL EXCA	CLIENT/PROJECT NAME ABC PECYCING TEST PIT # PROJECT NUMBER 202005~01.01 DATE BEGAN GEOLOGIST MH DATE COMPL EXCAVATION CONTRACTOR TOTAL DEPTH EXCAVATION METHOD MANA ADDER					
SOIL	. TEST PIT LO)G		PIT DI	AMETE	R <u>3</u>	51	-	
	SAMPLING [DATA	-			ğ	Field location of test pit		
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYME (USCS)	LITHOLOGIC DE	SCRIPTION	
						1	0-1' medium gray		
				1+5-2	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8		2' hit vetusel w conser	el luinestonelike ustone picus vics Nece layer	
					9				
					<u> </u>			AP	
lotes:	Collect	ed	af	2 curive	2	TOT	al = 3 jaks + 1	vial	

SOIL)G		EXCAN EXCAN PIT DI		IOD L YCANALOR TOTAL DEPTH H H IOD L YCANALOR SHEET OF 1 F+ IField location of test pit IField location IField location IField location		
AMPLING IETHOD	AMPLE NUMBER	(mqq) DI / DI	ECOVERY (feet)	EPTH SAMPLED (eet)	EPTH IN FEET	ISCS)	
	F8 TP-4-0-0.5 I <tr< td=""><td></td><td></td><td></td><td>1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 8 9 0 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1</td><td>IOS</td><td>LITHOLOGIC DESCRIPTION D-0.5: Moist Medium blown alley fine glained sail, trace aparel (fine), packet of light apered (fine), packet of light apered soil, trace bioteces sight organics (poots), no odok sight operations (woost pleas), interspected pust-coloped soil, potentially metallic flakes (trace), no odof</td></tr<>				1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 8 9 0 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9 0 1 1 2 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1	IOS	LITHOLOGIC DESCRIPTION D-0.5: Moist Medium blown alley fine glained sail, trace aparel (fine), packet of light apered (fine), packet of light apered soil, trace bioteces sight organics (poots), no odok sight operations (woost pleas), interspected pust-coloped soil, potentially metallic flakes (trace), no odof

				CLIEN		IECTN	IAME ABC POCILIZING O	A) TEST DIT # TP-5
XA	NCHO	R		PROJ		IMBER	201005-01.01	DATE BEGAN 10/20/10
V-C)FA	\sim		GEOL	OGIST	MH		DATE COMPLETED
				EXCA	VATIO		RACTOR AEC	TOTAL DEPTH
				EXCA	VATIO		IOD excavator	SHEET) OF
SOI	L TEST PIT LO	OG		PIT DI	AMETE	R_3	R	
	SAMPLING	DATA				2	Field location of test pit	
	œ			0		MBC	NW CORNER OF U	Jard
	ABE ABE	Ê	(feet		L.	SY		
^U	INN	Idd)	RY	SAM!	N H	JO I		
HOL	ЪГЕ		0 N N	Η,	F	S) GR		
NET	SAM	QL	REC	DEP (feet	L E	Soll	LITHOLOGIC D	ESCRIPTION
ex canator-	TP-5-0-05	0	-	0-05			moist dark brow	n. SOFT. FINE
				-	1		grained soil, trac	2. (5/ 1'sand, that
		-	-				wood debils, wy grav	el (voarse), no ado
		-	-		Ľ		() I GE (D) () at	DOCEINE
		-			3		E I IT CONCRETE	Pravit
					1 -		1	
					4	10		
		-	-		5			
					6			
		1	-		<u> </u>	6 - P		
					<u> </u> z			
1	-	0.3						
			-	No 199 PROMINENT	<u>8</u>			n ngen sanggagater
		-	-		a			
					- <u>-</u>		1	
					<u>0</u>			
1								-
	1				1	1.58		
			-		2			
					-	1.5		
					3			
					4			
	1				5			1
					Ĭ			1
					6			1
	1.0							
					<u> </u>			
		-						
					2			1
					9			
								10
					<u>0</u>			TA
otes:	Inx Ro	521	ars	+1 VI	al			C
	V ··· V	J						

				EXCA	VATIO	N CON	TRACTOR AEC TOTAL DEPTH 4 F
SOI	L TEST PIT LO	DG		PIT DI		ER_3	Ft
	SAMPLING [DATA				4	Field location of test pit
APLING THOD	MPLE NUMBER	/ PID (ppm)	COVERY (feet)	PTH SAMPLED	PTH IN FEET	IL GROUP SYMBG	
ME	SAM	Ð	RE	DEI (fee	DEI	SO SO	LITHOLOGIC DESCRIPTION
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 8 9 0 1 2 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 1 8 8 8 9 0 1 1 8 8 9 0 1 1 8 8 9 0 1 8 8 8 9 00 1 1 8 8 8 9 0 1 8 8 8 9 0 1 8 8 8 8 9 0 1 8 8 8 9 0 1 8 8 9 0 7 8 8 9 1 8 8 8 8 9 9 0 1 8 8 8 8 9 9 0 1 8 8 8 9 9 8 8 8 9 9 0 1 8 8 8 8 9 8 8 8 8 9 9 1 8 8 8 8 8 8 8		p-Osft: moist, liant black, Fine grained coil, thate erganics (wood), moderate wars areaned, moderate fine gravel, one discrete pocket w/ metallic frakes, no odde. Sikint sheen (intra (0) 1-2' antheo material in fill (0) 21911 - still in compacted gravel - pill matched (0) - PEFUSAL

V ² O	NCHO EA 🚟	R		CLIEN PROJE GEOLI EXCAN	T/PRO ECT NU OGIST /ATION		AME ABC RECYCLING TEST PIT # 127 202005-01.01 DATE BEGAN 10/21/20 DATE COMPLETED 10/21/20 DATE COMPLETED 10/21/20 TOTAL DEPTH 5 FF NOD 2X CONCITOR SHEET 1 OF 1
SOIL	TEST PIT LO	OG		PIT DL	AMETE	R_2)Ft
-	SAMPLING	DATA				d	Field location of test pit
MPLING	MPLE NUMBER	(mqq) OIA / C	COVERY (feet)	EPTH SAMPLED et)	EPTH IN FEET	IL GROUP SYMB SCS)	
SA	SA	E	R	∐ €	ä	85	CHIPFUS THEFT WAS SUMP
ex(avator	TP-7-4.5-5			45-5	1 2 3 4 5 7 8 8 9 0 1		Sure as 10/20/2020 sumple ocations - not sample moist medium brown fine graine solid that fine gravel, that croot-like, no odde
				1	2	1	
				9.	3		
_							
					4		· · · · · · · · · · · · · · · · · · ·
					5		
					6	10	
			-		7		
				-			
		-			8		
					9		
			-		0		
Notes:	jars + 3	/	via	l			

ż

RECOVERY (feet)	DEPTH IN FEET	L GROUP SYMBOL CS)	Field location of test pit
RECOVERY (feet)	DEPTH IN FEET	L GROUP SYMBOL CS)	Heid location of test pit
	5 1		
<u> </u>	5 1	SO	LITHOLOGIC DESCRIPTION
	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 9 0 1 1 2 3 4 5 6 7 8 9 9 0 1 1 2 3 4 9 9 0 1 1 8 9 9 0 1 1 8 9 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ARY, Hant brown, Fine grained Still up gravel (Fine - coarse), no Ddor moist Hant grey bearon, Fine grained soil wight (Fine - large) trace sand, no o dore, slight staining, evist-like
		4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 9 0 0 1 2 3 4 5 6 7 8 9 9 0 0 1 2 3 4 5 6 7 8 9 9 0 0 1 1 2 3 4 5 6 7 8 9 9 0 0 1 1 2 3 4 5 6 7 7 8 9 9 0 0 1 1 2 3 4 4 5 9 0 0 1 1 2 3 4 4 5 5 6 9 0 0 1 1 2 3 4 4 5 5 6 9 0 0 1 1 2 3 4 4 5 5 6 6 9 0 0 1 1 2 3 4 4 5 5 6 9 0 0 1 1 2 3 4 4 5 5 6 6 7 7 8 9 0 0 1 1 2 3 4 4 5 5 6 6 9 0 0 1 1 2 3 4 4 5 5 6 6 7 7 7 8 9 9 0 0 1 1 2 3 4 4 5 5 6 6 7 7 8 9 9 0 0 1 1 2 3 8 9 9 0 0 1 1 2 3 8 9 9 0 0 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1	4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 6 6 7 8 9 0 1 2 3 4 5 5 6 6 7 7 8 9 0 1 2 3 4 5 5 6 6 7 7 8 9 0 1 2 3 4 5 5 6 6 7 7 8 9 0 1 1 2 3 4 5 5 6 6 7 7 8 9 0 1 1 2 3 4 5 5 6 7 7 8 8 9 0 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1

Z ^A C	NCHO	R		CLIEN PROJI GEOL EXCA EXCA	T/PRO ECT NU OGIST_ VATION	VAME ABC Recycling TEST PIT # TP 9 102005-01.01 DATE BEGANIOR 1 DATE COMPLETEDIOR 1 DATE COMPLETEDIOR 1 TOTAL DEPTH 2 100 2X(CONOTOR SHEET OF	
SOIL	L TEST PIT LO	DG		PIT DI		R_L	
	SAMPLING I					ğ	Field location of test pit
AMPLING ETHOD	AMPLE NUMBER	(mqq) Old / Ol	ECOVERY (feet)	EPTH SAMPLED eet)	EPTH IN FEET	OIL GROUP SYME JSCS)	
DV (AVK)+DA	10-9-0-05	E	L RI	5	ā	85	ten light beginsin fine regined
					1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0		soi wi gravel (r-c), attacsium anthropocenic material (pathis soi like - petrs). Rust-coloped soi streak approx 10 inches bgs eccusae (2 ~ 2 Ft
					<u>9</u>		h
Notes:		6	`Jak	25 +		ial	

				EXCA	EXCAVATION CONTRACTOR AEC TOTAL DEPTH 2.5 EXCAVATION METHOD & XCONOTOR SHEET (OF 1							
SOI	L TEST PIT LO)G		PIT DI	PIT DIAMETER							
	SAMPLING I	DATA				Ч	Field location of test pit					
MPLING	MPLE NUMBER	(mqq) OI9 / C	COVERY (feet)	EPTH SAMPLED et)	PTH IN FEET	IL GROUP SYMB(SCS)						
ME	TP JOSD AF	FIL	RE	(fe	ä	85 S		ESCRIPTION				
	12-10-0-0:0	0	C.F.	0-05	1	1	no sample contra	JEA				
					2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 9 0 7 8 8 9 9 0 7 8 8 9 9 0 7 8 8 9 9 9 0 1 8 9 9 9 0 1 8 9 9 9 9 9 9 9 9 9 9 9 1 1 8 9 9 9 9		a 2.5: moist light the grad dense gravelly fine g no adde. UDIECTED du g Deconned DUCKE and compled Ellon act sufficient vit sample	- brown gley to very dense pained soil, sample. r of excavator m isucket to plume for				
				HA .	<u>9</u>			02)				
				U	<u>o</u>			S				

	IEA CC			EXCAN	ation /Ation		TRACTOR AFC TOTAL DEPTH 2 THOD & CONVECTOR SHEET _ OF_	TOTAL DEPTH 2 Ft
SOI	L TEST PIT LO	DG		PIT DI	AMETE	4.57		
	SAMPLING DATA					ğ	Field location of test pit	
PLING	PLE NUMBER	PID (ppm)	OVERY (feet)	TH SAMPLED	TH IN FEET	. GROUP SYME		
METI	SAM	FID /	REC	DEP ⁻ (feet)	DEP.	SOIL SOIL	LITHOLOGIC DESCRIPTION	
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8		h-ikider to moist light beaun fine geomed soil w/ fine to a aravel (~ 15'/- Fine 15'/- cares slight anthe material no a antheo=like white beads in patring 1.5-2.Ft: moist, light beaun fine geomed soil, stant W/s trace (~ 10'/) geover no odd	oad so so
					9			1
	-						6	D

Z ^A C	NCHO DEA 🚟	R		CLIEN PROJE GEOL EXCAN	T/PRO ECT NU OGIST VATION		RACTOR AFC	TEST PIT #P_12 DATE BEGAN 10/20/202 DATE COMPLETED 0222 TOTAL DEPTH 3.5 SHEETOF_1
SOI	L TEST PIT LO	JG	_	PIT DI	AMETE	R		-
	SAMPLING I	DATA	-			d	Field location of test pit	
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMB (USCS)	LITHOLOGIC D	ESCRIPTION
exucitor	TP-12-0-05	0		0-0.5			moist light b	Rown-grey,
				3-3.5	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 0 1 1 2 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G	Eine grained, clay Spire (poots) Meine to coarse) moist light bron spir trace sitt the Departer (wood - like Departer 	cy spil that that ghaves who odok who odok who odok ite clay, that), no odok
					<u>9</u>			(CIT)
)		-			0			(D)
Notes: 0	-0.5 Ft 1	nte	RVC	al test	201 (OR	DIF + PCBS	

	DEA 🚟			PROJI GEOL EXCA EXCA	ECT NU OGIST_ VATION	DATE BEGANIO					
SO	L TEST PIT LO)G		PIT DI	AMETE	ER_2,5"					
	SAMPLING		-			BOL	ried location of test pit				
PLING	PLE NUMBER	PID (ppm)	OVERY (feet)	TH SAMPLED	TH IN FEET	. GROUP SYM SS)					
SAM	SAM	FID /	REC	DEP (feet)	DEP	(USC	LITHOLOGIC DE	SCRIPTION			
un d Ngeze					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 9 0 1 2 3 4 5 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 5 6 7 8 9 0 1 1 2 3 4 5 5 6 7 8 9 0 1 1 1 2 8 9 0 1 1 1 1 2 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		moist light bawn pockets fine granded soil with the organics (fine posts), slight	it any five send, fine gravel, trace ily digey, no ador			

Lo		K		PROJ GEOL EXCA EXCA	ECT NU OGIST VATION	DATE BEGAN 10 12/11 DATE COMPLETED 10/11 TOTAL DEPTH 2 SHEETOF		
SOIL	_ TEST PIT LO)G		PIT D		R_ 30	7 Field leastion of test nit	-
_	SAMPLING I			-	-	BOL	Field location of test pit	
AMPLING IETHOD	AMPLE NUMBER	(mqq) OIA / OI	ECOVERY (feet)	EPTH SAMPLED eet)	EPTH IN FEET	OIL GROUP SYM		ESCRIPTION
δΣ	ۍ ا	Ē	~	05		50	provenic laws more gray an	Church
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 0 1 2 3 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		dry to moist medium brow moderate sitt trace or roots) trace fine grand	n this grain is soil ganice (this and thick no odor

				EXCA	VATION		HOD MAND AUGUE SHEET 1 OF 1
				IPH DI			Field location of test pit
SAMPLING METHOD	SAMPLE NUMBER	FID / PID (ppm)	RECOVERY (feet)	DEPTH SAMPLED (feet)	DEPTH IN FEET	SOIL GROUP SYMBOI (USCS)	LITHOLOGIC DESCRIPTION
0 2 Vend Myger					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 9 0 1 2 3 4 5 5 6 7 8 9 0 1 2 9 0 1 2 3 4 5 5 6 9 0 1 1 2 9 0 1 1 2 3 4 5 5 6 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SII	Enne as below dry to meist malum hown fire grand sil Mitgedurate dayey very bace organiss (the i trace this to culose grand, peder Some down to 2'

V2	NCHO DEA 🚟	R		CLIEN PROJE GEOLO EXCAN	T/PRO ECT NU OGIST		ABC RELICING TEST PIT # TP 16 202005-01-01 DATE BEGAN 10/2/20 DATE COMPLETED 10/2/20 TRACTOR AEC TOTAL DEPTH
501		າດ		EXCA	ANAETE		100 <u>UXUAVOLTOK</u> SHEET <u>I</u> OF <u>I</u>
301							Field location of test pit
, DD DD	LE NUMBER	(mqq) Olo	VERY (feet)	H SAMPLED	H IN FEET	GROUP SYMBOI	5 end of yard adjacent, to gate/difiveway to markine DR.
SAMP	SAMP	FID / F	RECO	DEPT (feet)	DEPT	SOIL (USC:	LITHOLOGIC DESCRIPTION
	78-16-0-05 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-5-55 TP-16-55-				1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	S - C	D-D.G. Metidal blown D-D.G. Metidal blown and w/ F-c glovel, teace Organics (20075), no od DR Native statets @ n5ft 5-55ft.molet, date brown eme glained soil, modelate silts mallaxe organics (Fine Roots) trace pockets of ilant grey Fine grained soil
Notes:	jaks + 2 jaks +	-1	Via	L FOR L FOR	5 7 8 9 0 0	- 0.4	5 Ft interval 5FT interval

SOIL	. TEST PIT LO	DG		EXCA PIT D			or hand augere	SHEETOF
	SAMPLING	DATA			•	Ч	Field location of test pit	
1PLING THOD	APLE NUMBER	/ PID (ppm)	OVERY (feet)	YTH SAMPLED	TH IN FEET	L GROUP SYMBC CS)		
SAN	SAN	Ê	REC	DEF (fee	DEF	SO US	LITHOLOGIC DE	SCRIPTION
rund every					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		Same as below day to most dauk brown f Istrace fire to course sibr malerate sitt multrate a no oder prace inista (work 	in grained soil with anded gravel againes (fine reets)

						IFOTA	A PEC DO CURLINOS	
× 2 /	NCH	OR		CLIEN			202065-0101	DATE BEGAN (D/2/2
Vic	FA C	N		GEOI	OGIST	MI	1	DATE COMPLETED
				EXCA	VATION		TOTAL DEPTH	
				EXCA	VATION		ophand auger	SHEET OF
SOI	L TEST PIT	LOG		PIT DI	AMETE	R_3	551	-
	SAMPLING	G DATA				Ч	Field location of test pit	
	E		et)	£		MB	mound under tea	ak thee
	UMB) fu	Y (fe	MPL		LP S	adjacent to It	/
		<u> </u>	VER	H SA	Z	BROI (
SAMPI	SAMPI	FID / P	RECO	DEPTH (feet)	DEPTI	(USCS	LITHOLOGIC DE	SCRIPTION
nand	N/A	-	-	Alla	1	11.1	0-1 Ft day to	moist, feddish
N .C(-			-		-		REFUSAL W/ ROOT	s-muitiple
					2	1.1	locations attemp	sted
							3	
	-				3			
					4	2		
_		-	-		<u>5</u>			
					6			
						1		
					8	1		
					3	9		
				_	<u>o</u>			
						1.1		
	-		-			1.1.1		
					2			
			_					(
					2	1.5		/
					4			1
			_		5			1
					j			/
					<u>6</u>			
					7	0		
					1			/
		-	-	-	<u>8</u>			/
				2	9			1
					1			X
atac:					0	-		2
	cot h added	iand 1 per	a) 2 I	sgefee Defek	\$ + .\$ \$	Ch pec	ommendation	1

ABC Recyclim BORING # GP-CLIENT/PROJECT NAME: ANCHOR DATE BEGAN 10.26.20 202005-01.01 PROJECT NUMBER: DATE COMPLETED 10-26-20 QEA : GEOLOGIST/ENGINEER: MH DP TOTAL DEPTH 32.5F REC DRILLING CONTRACTOR: OF 3 PAGE **BORING LOG** (1eoprobe DRILLING METHOD: 1215 TIME WATER DEPTH HOLE DIAMETER inches SAMPLING METHOD in. by Field location of boring SAMPLING DATA SOIL GROUP SYMBOI (USCS) SAMPLING METHOD BLOW COUNTS (140-lb Hammer) TSF. TORVANE DEPTH SAMPLED (TSF) RECOVERY (ft recovered/ft driven) DEPTH IN FEET POCKET PEN. LITHOLOGIC DESCRIPTION RESIDUA (see key) ĒĀK SAMPLE ID RVL % SND % FNS 0-25" Viid 1 @25" Wet, Suft, Slightly 2 silly, medium brown, 3 F-c Sandy organic matter trace grave 4 29"- Dry, black, silty, Charconiy, gravel. 233"- Dry, gray, sand with trace clay, occasional, 5 GP-1-5.7-97 <u>6</u> 7 peach à white, challey 8 conglowerates. <u>9</u> @41" Moist, grey to Idack clayey Sand @46"-Black, medinan <u>0</u> 1 stiff clay, trace organics 2 4" piece of mylon rope. 3 @53'- Medium-dense, 4 dry. grey evirast spits <u>5</u> clay <u>6</u> @57"-Moist, med-dense <u>7</u> bram organic day. 8 C61' SAA @ 53" @12" Moist braver & 9 Svey f-Sand, trace clay AOPP = As on Previous Page SAA = Same as above Δ = change No O = No Odor Remarks: sumpled 5.7-9.7 ft, 10-12.3 ft, 20-22 ft Notes:

	BC	DRING LOG		DRILLIN WATER HOLE D	IG METH DEPTH NAMETE	IOD:	COPPOINT PAGE 2 OF 3 NA TIME 1214 inches SAMPLING METHOD in. by	5 ft		-
8		SAMPLING	DATA			OL	Field location of boring	T		T,
AETH(UNTS nmer)		(ue	Ð	ь	SYMB		TOR	VANE	
SAMPLING N	BLOW CO (140-lb Har	SAMPLE ID	RECOVERY (ft recovered/ft driv	DEPTH SAMP	DEPTH IN FEE	SOIL GROUP (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	
-					1		Oll5" Dry, hard, brann			
					-		elay.			
-			-		2		PI44" Moist, medium-			
					<u>3</u>		deuse, brown sandy			
					4		clag.			
_	-	1			5		eisz" Increasing			
					Ť		moisture content to wet			
	-				<u>6</u>		157-173" - Void			
	1			_	Z		@173" wet, loose, brown			
					<u>8</u>		Slightly silly frand			
-		T	_		<u>9</u>		Decroasing Sand, decreasing			
-					o		the isture			
					Ĩ		@187" SAA @115"			
					1		@730". SAA @173			
-				-	2		@ 250"-255"- for decreasing			
					<u>3</u>		sand to none			
					<u>4</u>		255": SAA @ 115			
					5		@269"- Dry, medium deuse,			
	-			1	6		dark brown silt			
					<u>v</u>		@271"-Dry, loose, grey			
					7		and brown f. sanon.			
_					<u>8</u>		276-288 Void			
					<u>9</u>		E208 - Niet, 1008e, t-Sand			
_	_				0		elay balls, Frace gravel			

1	R		R -	PROJE	CT NUM	IBER: IGINEEF	ATE BEGA MH/DP DATE COM		0/2 0/0	6/126	20	>
	PO			DRILLI		TRACTO	R: AEC TOTAL DEP	тн	32.1	5-1	=+	-
	БО			WATER	NG METH	HOD:	VA TIME	0F	15	_		
_	r			HOLE		R	inches SAMPLING METHOD	in.	by.	ft		_
SAMPLING METHOD	TTS	SAMPLING				MBOL	Field location of boning			TOR	VANE	SF)
	Ham		۲ driven)	MPLE	FEET	UΡSΥ			T	(Т	SF)	EN. (1
	BLOW (140-lb	SAMPLE ID	RECOVER (fl recovered/ft	DEPTH SA	DEPTH IN	soil gro	LITHOLOGIC DESCRIPTION (see key)	3RVL% SN	D% FNS%	PEAK	RESIDUAL	POCKET P
		-					@ 820"- heist, loose,					
					-		brown & Svey f-sand					
-				-	2		@ 323" Layer of					
	-				3		gravei J' gray rueva					
T					4		P.328"- Dry med-dense					
					5		brown chayery, sravely					
			-		6		Sand VVVV					
					_		@371-SAA @115"					
					<u> </u>		@336 - Dry, Louse,					
					8		scay & brick-colored					
-			-	-	9		Evandly f-c sand					
-(<u>0</u>		338-340 - James of					
					1	-	SAA QUIS"					
					2		@340"- Dra Loose crea					
					3		meniar eventel					
	-		-				trangitions to fe					
					-		Sand					
					2		2390"- End of boring.					
				-	<u>6</u>		' 0					
					7							
	-				<u>8</u>							
					<u>9</u>							
-					o							
ma	arks: N	o O = No Odor	AOPP :	= As on	Previo	us Pag	SAA = Same as abov: Δ = change	Э				

1	19	ANCHOR		CLIENT	(PROJE) CT NUM GIST/EN	CT NAME BER: GINEER	ABC. Recycling BORING # 67-2 202005-01.01 DATE BEGAN 10-2 MH DP DATE COMPLETED W.	6.20 26.2) Lul	
	X	QEA 222		DRILLIN	G CONT	RACTO	R: ACC TOTAL DEPTH 30'			
	BC	RING LOG		DRILLIN	G METH	IOD:	Creoprobe PAGE OF 3	_		
				WATER HOLE D	DEPTH	R 2	inches SAMPLING METHOD in. by) ft		
0		SAMPLING D	ATA			ы	Field location of boring			
THO	NTS mer)			£	÷	YMB		TORV		(TSF)
SAMPLING MI	BLOW COL (140-lb Harr	SAMPLE ID	RECOVERY (ft recoverad/ft drive	DEPTH SAMPL	DEPTH IN FEE	SOIL GROUP S (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK		POCKET PEN.
					1 21 33 4 15 69 7 89 99 09 1 21 33 44 15 69 7 89 99 09 1 21 33 44 15 69 7 89 99	IOS	Musist, dark gray Saud 2: 22" of wood 029" 32" Moist, hard, brown clay areg & black gravely silt 035" light gray bravely Sand Slightly gravely Sand 042" - Black, chartoody Sand 048" Dry, veddish Stey clay 051" - SAA O 35" 057" - SAA O 35" 055" - SAA O 42" 057" - SAA O 35" 055" - SAA O 42" 057" - SAA O 42" 059" - SAA O 42" 059" - Wood waste 061" - SAA O 42" wil aveck gravel 069" - Dry, nuclingand brown sttly moderate 059" - Dry wedingand brown sttly moderate 059" - Dry wedingand	PEA	RES	POC
		UK-8-1616	00		0		@82" Dry, light brown	-		
Rema Notes	arks: ^{s:} SCA	No O = No Odor mpled: 8- 14 2	AOPP 9 (-2) 5-	= As on F+ D F 27	Previo +, ft	ous Pag	e SAA = Same as above a = change w[pockets of Srey, clayey silty sand			

V2 B	ANCHOR QEA		CLIENT PROJE GEOLO DRILLIN DRILLIN	/PROJE(CT NUM GIST/EN IG CONT IG METH	CT NAMI BER: IGINEER IRACTO IOD:	E: ABC Recycling BORING # GP. 2 202005-01.0 DATE BEGAN 10.26 :	.20	20	
			WATER HOLE D	DEPTH	R 2	Inches SAMPLING METHOD in. by	ft	-	
METHOD DUNTS ammer)	SAMPLING E	ATA چ	LED	ET	SYMBOL	Field location of boring	TOR'	VANE SF)	ч. (TSF)
SAMPLING BLOW CC (140-lb Ha	SAMPLE ID	RECOVERY (ff recovered/ft dri	DEPTH SAMF	DEPTH IN FE	SOIL GROUP (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	POCKET PEN
Remarks: Notes:	Cp2-14-20 (C) Cp2-14-20 (C) Cp2-25-27 Cp2-25-27 No 0 = No Odor Sampled .		= As on	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 7 8 9 0 7 8 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 8 9 0 7 8 8 9 0 7 8 8 8 9 0 7 8 8 9 0 7 8 8 8 9 0 7 8 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 9 0 7 8 8 8 9 9 0 7 8 8 8 9 0 7 8 8 8 9 7 7 8 9 0 7 8 8 8 9 9 0 7 8 8 8 8 9 9 0 7 8 8 8 8 8 8 9 9 0 7 8 8 8 8 9 7 8 9 9 7 8 8 8 9 9 9 9 7 8 8 8 8	us Pag	vlos" increasing clay content & 180" - Dry, dark svey sravelly sand. 128" - Wood @132" - Dry, hard, brown, Clay. @147" - Damp, brown, fsond. @151" - Damp, brown, fsond. @151" - Damp, brown, silty f-sand. @163" - SAA@ 132"- @ 240" - Wet, brown, fine - grain sand, trace angular gravel. @254". Dry, hard, brown elay. @ 269 - Dry, hiedina dense, brown f-sand. @271" - Dry, loose, brown M. Sand @ 248" - Wet, boose, brown M. Sand @ 248" - Wet, boose, brown M. Sand @ 248 - Same as aboved = change -20 Ft, 25 - 27 Ft			

1	BOR	ANCHOF QEA 🚟	2	PROJE GEOLO DRILLIN DRILLIN	PROJECT NUMBER: 202005-01.0 DATE BEGAN (c-26.) BEOLOGIST/ENGINEER: MH DP DATE COMPLETED 10.2 PRILLING CONTRACTOR: AEC TOTAL DEPTH 30' PRILLING METHOD: CHECORD BE PAGE OF 3							
				HOLE D	IAMETE	R	inches SAMPLING METHOD in. by	ft				
METHOD	OUNTS ammer)	SAMPLING	DATA	PLED	EET	P SYMBOL	Field location of boring	TOR (T	VANE SF)			
SAMPLING	BLOW C (140-lb H	SAMPLE ID	RECOVERY (ft recovered/ft di	DEPTH SAM	DEPTH IN FI	SOIL GROUI	LITHOLOGIC DESCRIPTION (see key)	* PEAK	RESIDUAL			
					1		@324" Dry, loose, brown m-sand					
					∠ <u>3</u>		@350" End of buring.					
					4 5							
					<u>6</u> 7							
					1 8							
					<u>9</u> 0							
					1		-					
					2 3							
					<u>4</u>							
					9 6							
					7 <u>8</u>							
					<u>9</u>							

1	ВО	ANCHOR QEA	-	CLIENT PROJE GEOLO DRILLIN DRILLIN	/PROJEC CT NUM GIST/EN IG CONT IG METH	CT NAMI BER: IGINEER IRACTO IOD:	E: ABC Recycling BORING# GP-3 202005-01-01 DATE BEGAN 10.2 MH, DP DATE COMPLETED 10- R: AEC TOTAL DEPTH 20' Geoprobe PAGE 1 OF 2 TME HOORE	7-2.27.	20	
				HOLE D	IAMETE	R	inches SAMPLING METHOD in. by	ft	00	
ЕТНОВ	JNTS nmer)	Sampling [DATA	Ð	Ŀ	SYMBOL	Field location of boring		ANE	. (TSF)
SAMPLING M	BLOW COI (140-lb Har	SAMPLE ID	RECOVERY (ft recovered/ft drive	DEPTH SAMPI	DEPTH IN FEE	SOIL GROUP	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	POCKET PEN
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6		0-19" - Void. Ol9" Moist, Ludinan-derse, gravelly sand, brown & gray. O24" - Cavades to dry 37"-39" - Color changes to tam. O43"45" - 2 × 1" Augular gravel. O43"45" - 2 × 1" Augular gravel. O55" - Moist, med-stiff. black, clargey silt, trace organic filoers. O67" - Drg, dense, greg with rust. colored Nottling clargey silt. O120" Damp, dense, grey & brown, clay. 130"-132" - Occasional grave			
Rem	arks:	No O ≃ No Odor	AOPP	= As or	2 7 8 9 0 Previc	ous Pag	CIS2"- grades to f-sandy Silt CIGD" Dry, med-dense, brown, slightly f-sandy, clayey silt. ge SAA = Same as above () = change			
Note	s: 50	EW also	2.7 Sar	1 - 1 MPL	3.4 ed.	Ft c	, 14.4 - 15.9 Ft se GW 10g GW dup 1	(0)	ect	Cel

V I	R ANCHOR QEA 5555 ORING LOG	2	PROJEC GEOLOC DRILLIN DRILLIN WATER HOLE DI	G CONI G CONI G METH DEPTH IAMETE	BER: IGINEER IRACTO IOD:	202005-0 01 DATE BEGAN 10.27. R: MH DP DATE COMPLETED 10.2 DR: AEC TOTAL DEPTH 20' GCO: Proble PAGE 0F TIME 1128				
THOD VTS	SAMPLING	DATA	Α		MBOL	Field location of boring	TORVA			
BLOW COUN	SAMPLE ID	RECOVERY (ft recovered/ft driven)	DEPTH SAMPLE	DEPTH IN FEET	SOIL GROUP SY (USCS)	LITHOLOGIC DESCRIPTION (see key)	(TSF)	RESIDUAL		
				1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0		©165-SHA 152" wl interbelded layers of brown clay. CI71"-SAA E163" CI73-Moist, Med-deaxe brown f-sand. CI90"-Damp. deuse, Srey clay O200"-Grades to med derse. C240"-End of boring				

К	ANCHOR QEA $\underbrace{\qquad}$		CLIENT, PROJE GEOLO DRILLIN DRILLIN	PROJECT NUMBER: 20205-0 0 DATE BEGAN 10.22.20 GEOLOGIST/ENGINEER: MH, D DATE COMPLETED 10.27.20 DATE COMPLETED 10.27.2								
			WATER HOLE D	DEPTH IAMETE	R	IA TIME <u>6915</u> inches SAMPLING METHOD in. by	<u>ft</u>					
METHOD DUNTS ammer)	Sampling E	ATA (III)	PLED	ier	SYMBOL	Field location of boring	TORV (TS	/ANE SF)	N. (TSF)			
SAMPLING BLOW CC (140-Ib H	SAMPLE ID	RECOVERY (ft recovered/ft dr	DEPTH SAMI	DEPTH IN FE	SOIL GROUF (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	POCKET PEI			
Remarks: Notes:	No O = No Odor	AOPP = 7.3	= As on	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 8 9 0 7 7 8 9 0 7 7 8 9 0 7 7 8 9 0 7 7 8 9 0 7 7 8 9 0 7 7 8 9 9 0 7 7 8 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 9 9 0 7 7 8 8 9 9 0 7 7 8 9 9 0 7 7 8 8 9 9 0 7 7 8 8 9 9 0 7 7 8 8 9 9 9 0 7 7 8 8 9 9 0 9 9 0 7 7 8 8 9 9 0 9 9 0 7 7 8 8 8 9 9 0 7 7 8 8 8 9 9 9 0 7 7 8 8 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9	us Pag	Dry, havd, grey & white gravely silt, moderate gre sond. C55 "Dry, hard, grey silty clay. 60-78"-Noid C78" Daup, losse, brown Sravely f-sand, trac Silt. C80- SAA CO" C93" Daup, med stiff black, clayey silt, trace organic fibers of Grades to brown Cloy". Daup, hard, greenish grey clay. 120"-128" Void. C128" SAA CO" C135". SAA CO" CO" C135". SAA CO" C0" C135". SAA CO" C0" C135". SAA CO" C0" C135". SAA CO" CO" C135". SAA CO" CO" CO" C135". SAA CO" CO" CO" CO" CO" CO" CO" CO" CO" CO"	vey	ζīι	· .			

DEA CHOR BORING LOG					SELENT/PROJECT NAME: ABC PECALCIANS BORING # 49-4 PROJECT NUMBER: 20205-01.31 DATE BEGAN 10.27.20 PROJECT NUMBER: MH P DATE BEGAN 10.27.20 PROJECT NUMBER: MH P DATE COMPLETED 10.27.20 PRILLING CONTRACTOR: AEC TOTAL DEPTH 20 PRILLING METHOD: 1000000000000000000000000000000000000								
ETHOD	JNTS mer)	SAMPLING		<u> </u>		SYMBOL	Field location of boring	TOR		TSF)			
SAMPLING M	BLOW COL (140-lb Han	SAMPLE ID	RECOVERY (ft recovered/ft drive	DĘPTH SAMPL	DEPTH IN FEE	SOIL GROUP S (USCS)	LITHOLOGIC DESCRIPTION (see key)	»EAK	RESIDUAL				
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 8 9 0 1 1 2 8 9 0 1 1 2 9 0 1 1 2 9 0 1 1 2 1 2 9 0 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 1 2 1 2 2 2 2 1 2		Decreasing moisture content to moist. 2224 Daugn medistift brown clay. @240°-End of boring.						
	BC	DRING LOG		DRILLIN WATER HOLE D	IG METH DEPTH NAMETE	HOD: / R	Lice probe PAGE OF V/A TIME 1429 inches SAMPLING METHOD in. by			-			
---------------	---------------------	---------------	--------------------------------	----------------------------	--	---------------------	--	-------------	-------------	---			
METHOD	(OUNTS fammer)	SAMPLING E	ATA Liven	IPLED	EET	P SYMBOL	Field location of boring	TOR' (Ti	VANE SF)				
SAMPLING	BLOW C (140-lb H	SAMPLE ID	RECOVERY (ft recovered/ft d	DEPTH SAN	DEPTH IN F	SOIL GROU (USCS)	LITHOLOGIC DESCRIPTION (see key)	* PEAK	RESIDUAL				
		GP. 5-6.9-7 5			1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		0.21"-Void 0.21"- Vet, loose, svey i brown Sand. 0.24"-Dry, white is Sravelly, silt. 0.43"-Dry, dense, Srey VF - Sand, trace c-Sand. 0.48": Dry, hard, stey, Silt wittrace c-Sand. 0.60-79". Void. 0.60-79". Void. 0.75": Dry, med-dense, white, Silt. 0.83". Moist, med-dense, ark svey, Silty elay. 0.86"- in creasing Moisture content 0.90"- lli"-Dry, svey, hard clay. NOO"- color changes to brown 0.111"- Moist, loose, srey; brown elay ey f-Sand.						

1	ВС	ANCHOR QEA EEE		CLIENT PROJE GEOLO DRILLIN DRILLIN WATER HOLE D	PROJECT NUMBER: 202005-0:0 DATE BEGAN DI'20020 GEOLOGIST/ENGINEER: MDP DATE COMPLETED DI'20020 DRILLING CONTRACTOR: AF.C. TOTAL DEPTH 30 F.F. DRILLING METHOD: GEOLOGIST/ENGINEER: PAGE 2 OF 3 WATER DEPTH NA TIME 1425 HOLE DIAMETER inches SAMPLING METHOD in. by ft										
9		SAMPLING [DATA			Ч	Field location of boring	T							
ETHC	INTS imer)		Ê	G		YMB		TOF		(TSF)					
SAMPLING M	BLOW COU (140-lb Harr	SAMPLE ID	RECOVERY ft recovered/ft driver	DEPTH SAMPL	DEPTH IN FEE	soil group s (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	POCKET PEN.					
					1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		©120" Wet, LOOSE, Srey Silty f. Sand. 133"-135" - packet of clay. @136": Moist, dense, brown, clay wltrace Silt 165".167" - pocket of Sandy clay. @229". 1" pocket of dark brown slightly Silty f. Sand @231" - Damp, Loose, Srey fc Sand wl trace Srawel. @2324-240" - Noid. @246" wet, Soft Send Silt wl Moderate clay. @246" fransitions to Silty clay, @251 - SAA @ 240" @264 - Moist, Loose, dark Srey, M. Sand.	5% H							
Rema Notes	arks: s:	No O = No Odor Gampled	I AOPP : (6	= As on	Previo 7.5	pus Pag	Je SAA = Same as abov: Δ = change , 10-11 Ft, $2\hat{v}$ -22 Ft								

ВОГ	QEA EEE		PROJEC GEOLO DRILLIN DRILLIN WATER HOLE D	IROJECT NUMBER: 102006-01.01 DATE BEGAN 102000 IEOLOGIST/ENGINEER: M1 P DATE COMPLETED 102002 IRILLING CONTRACTOR: A TOTAL DEPTH 0 0 IRILLING METHOD: C2008-002 PAGE 3 0 VATER DEPTH N A TIME 1425 IOLE DIAMETER inches SAMPLING METHOD in. by ft										
ETHOD NTS mer)	SAMPLING	DATA	B		YMBOL	Field location of boring	TOF		(TSF)					
SAMPLING ME BLOW COU (140-lb Ham	(140-lb Har RECOVERY A recovered			DEPTH IN FEET	SOIL GROUP S (USCS)	LITHOLOGIC DESCRIPTION (see key)) PEAK	RESIDUAL	POCKET PEN.					
Remarks: M	No O = No Odor			1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Previo	bus Pag	BOG-BIZ'- Void BBIZ'- Moist, Loose, Svey Silty Sand. BZO'-BZS'- Void BBZS-Damp, Med-lease, Srey f-c Sand, trace Gravel. BB48''- Dry, Med-dense, gravelly, f-c Sand. BBO''- end of boring. BBO''- end of boring. BBO''- end of boring.								

	G	QEA 555	/	GEOLO	GIST/EN	IGINEER	MH, DP DATE COMPLETED 10.26.20
	BOR	ING LOG		DRILLIN	IG METH	HOD:	Geoprove PAGE OF 2
				WATER HOLE D	DEPTH	R	TIME 1(215 inches SAMPLING METHOD in. by ft
Q		SAMPLING	DATA	-		Ъ	Field location of boring
G METHC	COUNTS Hammer)		Y driven)	MPLED	FEET	UP SYMB	TORVAI (TSF)
SAMPLIN	BLOW (140-lb	SAMPLE ID	RECOVER (ft recovered/ft	DEPTH SA	DEPTH IN	SOIL GRO (USCS)	LITHOLOGIC DESCRIPTION (see key)
	-				1		0-18" Void
			_		2		@ 18"-Moist, med-dense,
					-		Srey, silty, Sravelly
					2		frand.
					4		@22"-Moist, med-dense,
_					5		Siltly sandy trace
_			-		<u>6</u>		Ball' Drawler house
					Z		Sten Cre Sandra Sill
_					<u>8</u>		PSD" Auch still
_					9		Deck charge city will
_					0		moderate rusta color l
			-				Sand.
					- <u>-</u>		@55-Moist, stiff, black,
					_ ∠		silty clay
					3		ebo"- Damp, med-stiff, brown
				_	4		silty, f-sand.
					5		CG - Dry, SSif, brown
					<u>6</u>		clay
_	-				Z		@111-Moist, med-dense,
_					8		Srey gravelly, sand
					9		SILT. R.118" SAA @ 55"
Rem	arks: No	o O = No Odor	AOPP	= As or	n Previo	l ous Pag	e SAA = Same as abov∉∆ = change

R B	R ANCHOR QEA CCC ORING LOG		PROJE GEOLO DRILLIN DRILLIN WATER HOLE D	26.2 10.2	0	0			
METHOD DUNTS	SAMPLING	DATA	PLED	ET	SYMBOL	Field location of boring	ROT T)	VANE SF)	
BLOW CO 140-lb H	SAMPLE ID	RECOVERY (ft recovered/ft dr	DEPTH SAM	DEPTH IN FE	SOIL GROUF (USCS)	LITHOLOGIC DESCRIPTION (see key)	PEAK	RESIDUAL	
	GP-6-10.8.15		= As or	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 5 6 7 8 9 0 1 2 5 6 7 8 9 0 1 2 9 0 1 7 8 9 0 1 1 2 9 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	pus Pag	 € 120-125" - Void € 129" Wet, louse, brown f-sand, trace silt. 144-148" - Void. € 148" - SAA @ 129" © 208 - Moist, Med-dense, brown, clayey f-sand. © 221 - Moist, Med-stiff, 8rey clay. 277 - 280" Diagonal contactor transitions to wet, loose brown f-sand, trace silt 280" 283" - Void. © 283 - Wet, louse, brown f-sand, trace silt © 300 - Dry, loose, brown f-sand, trace silt © 300 - Dry, loose, grey gravelly f-c sand. © 317 - Daup, Stiff brown clay © 318 - travsitions fe grey Sightly clayey silt. © 352 - Interbedded layers of material @ 331 - 346" © 360 - End of boring. e SAA = Same as about a = change 			

GROUNDWATER SAMPLING DATA SHEET

	2	AN	CHO	OR					720 Olive Way, Suite 1900											
	L_{i}	JE1	4 3	L					04	20	Seattle,	Washir	igton 98	8101	NC 207	0121				
	ECT N	TABAT	E. 4.00	. 0.0			_	_	Office		06.287.9	130	Fax		206.287	.9131				
PROJ	ADDI	DECC	-AK	- Ke	-40	ling	0.10	0	_			GP	-3	- (5)	w					
SILE	ADDI	KE55		1-1-1	ORY	12	DRIV	<u>v</u>	_	BLI		NA	7			D. D.L.A.				
TAT		0014		L				1 ctu	1	L		GF	-5-	GW	-00	P NA				
VVI	IND FI	ROM		NE	E	SE	5	SW	W	NW		SHI	ME	OF FOR						
	WEAL	HEK	: 50	NNY	L CL	OUDY	R/	ЯШ		1	J IE.	MPERA	TUKE		20+	riate units]				
HYD	ROLO	GY/I	FVFL	MEASI	IREM	ENTS	earest Q D	1.61		[Product	Thickness]	[Water	Column]	1	[Water Column x Gal/ft					
D	ate]	lime	DT-B	Bottom	DT-P	roduct	DT-	Water	DTP	-DTW	DTB	-DTW		Volu	ıme (gal)				
10 /2	27/20	13	: 15					12	· +		•	2		X 1		•				
1	/		:				•				•			X 3						
Gal/ft =	= (dia./2) ²	x 0.163	1" =	0.041	2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875				
§ METH	IODS: (A)	Submersi	ble Pump (E	3) Peristaltic	Pump (C) I	Disposable Bai	iler (D) PVC/	Teflon Baile	r (E) Dedicat	ed Bailer (F)	Dedicated I	ump (G) Oti	ner =							
GRO	UNDV	VATE	R SAM	IPLINC	G DAT	A (if prod	uct is dete	ected, do	NOT sam	iple)		Sampl	e Depth	: 16.	31	[√ if used]				
Bottle	e Type	Ι	Date	Ti	me	Method	Amour	nt & Volu	ume mL	Pres	ervative	[circle]	Ice	Filter	pH	√				
VOA	Glass	10/	27/20	13	: 15	GRO	26	40) ml		HC1		(YEŚ	NO		\checkmark				
Ambe	er Glass	10/	2720	13	:15		14	250, 5	500, IL	(None) (HCl)	(H ₂ SO ₄)	YES	NO						
Whit	te Poly	1	/		:			250, 5	500, 1L		None		YES	NO	NA					
Yello	w Poly	/	/		:			250, 5	500, 1L		H_2SO_4		YES	NO						
Gree	n Poly	1	1		:			250, 5	500, 1L		NaOH		YES	NO						
Red To	otal Poly	1	1		:			250, 5	500, 1L		HNO ₃	_	YES	NO						
Red Di	iss. Poly	10/	27/20	13	: 15		ß	250	00) 1L		HNO ₃		(YES)	(TES)						
Ambe	Pro la	10/	27/20	13	: 15		6	250	500j 1L				YES							
		To	tal Bottles	s (include	e duplica	te count):														
	B	OTTLE	туре	ΤΥΡΙCΑ	LANAL	SIS ALLO	WED PER H	BOTTLE T	YPE (Circle	e applicabl	e or write	non-standa	ard analys	is below)						
_	VOA -	Glass		(8021) (8	260B) (B	TEX) (NWI	PH-9)					- 17-		-						
ype	AMBEI	R - Glass		(PAH) (TPH-HCID) WTPH	-D) (TPH-	-418.1) (Oi	il & Grease)	(8081A)	63+	2 (8	082	A						
Allc T	YELLO	W - Poly		(PH) (C	TOC) (T	otal PO ₄) (1	Total Keldahl) (Iurbidi Nitrogen)	(NH ₂) (N	nity) (HC	U ₃ /CU ₃) ((LI) (SO ₄)	(503) (1	NO ₂) (F)						
Bot	GREEN	- Poly		(Cyanide)	100) (1			Throgeny	(1013) (10	031102)				_						
Ana	RED TO	DTAL - P	oly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd)	(Co) (Cr) ((Cu) (Fe) (Рb) (Mg) (Mn) (Ni)	(Ag) (Se)	(TI) (V) (Z	n) (Hg) (I	<) (Na)						
	RED DI	ISSOLVE	D - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) (Cd	o)((Cr))(Cu)	(Fe) (Pb) (1	Mg) (Mn) ()(V) (IT)(V)	27)(Hg) (H	(Na) (Ha	ardness) (Sil	lica)					
			-				1200	<u> </u>		<u> </u>			_							
WAT	ER QU	ALIT	Y DA'I		Purge	Start Ti	me: 70	1.5	Cam	- 60		Pump/	Bailer I	nlet Dep	th:					
Meas.	Met	hod §	Purge	d (gal)		рн	E Con	id (part	v °F Ter	mp(°C)	Other	Diss O	₂(mg/l)	V	Vater Qu	lality				
4				~																
3	B	-	_1_	.5	lu	-53	1.28	31	13.	3		0	.34	Cuc	oudy					
2	B	>	1	. 0	6	· 60	1.2	11	13.	3.3 0.45 (Loudy					[
1	P	>	0	.5	6	.70	1.3	145	13.	4		0	. 66	U	Judy					
0	E	3	0.	.00	6	.99	1.3	29	13	.5		4	.65	Mudd	1 br	nwa				
[Casing]	[Selec	t A-G]	[Cumulat	tive Totals]					[Circle units] [Clarity, Color]											

SAMPLER: Delaney Veterson (PRINTED NAME)

(SIGNATURE)

GROUNDWATER SAMPLING DATA SHEET

1	R.A	INC	CHO	DR						1	720 Oliv	ve Way,	Suite 1	1900		
X	-	DEA	ä	z					Office:	20	5eattle, 6.287.9	vvashin 130	gton 98 Fax:	2	06.287	.9131
PROJ	ECT N	AME:	AT	3C R	ecycl	2-1				W	ELL ID	GP.	6			
SITE A	ADDR	ESS:	741	Mar	rive	Driv	e			BLI	ND ID	n/	t			
										D	UP ID	S. NI	A		_	NA
WI	ND FR	OM:	Ν	NE	Е	SE	S	SW	W	NW	LIC	GHÌ '	MEL	DIUM	H	EAVY
V	VEAT	HER:	SUN	NNY	CLO	DUDY)	RA	IN	1	?	TE	MPERA	TURE:	FY	2.	°C
HYDI		CV/U	EVEL	MEAST	REM	NTS AL	Darios 0.01	6)		[Product	Thickness	[Water	Column)	lCir	le annropr [Water C	iate units) Column x Gal/ft1
Da	ite	Ti	me	DT-B	ottom	DT-P	roduct	DT-V	Nater	DTP	-DTW	DTB	DTW	1	Volu	ıme (gal)
10/2	120	17	:50			1		8	.5F		•	T		X1		
16/2	120		:											X 3		
Gal/ft =	(dia./2) ² >	0.163	1" =	0.041	2" =	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10'' =	4.080	12" =	5.875
§ METHO	DS: (A) S	ubmersibl	e Pump (B)	Peristaltic F	Pump (C) D	isposable Bail	ler (D) PVC/I	Feflon Bailer	(E) Dedicate	ed Bailer (F)	Dedicated P	ump (G) Oth	ler =			
GROU	INDW	ATE	R SAM	PLING	DAT	A (if produ	uct is dete	cted, do l	NOT sam	ple)		Sample	e Depth:	12'	-	[√ if used]
Bottle	Type	D	ate	Ti	ne	Method	Amoun	t & Volu	me mL	Pres	ervative	[circle]	Ice	Filter	pH	1
VOA	Glass	1017	6/70	17	SD.	1,80	12	40	ml		HCI		(YES)	NO	-	
Amber	Glass	10 17	6/20	12	50	ur-	6	250, 5	00(1L)	(None)) (HCl) (H₂SO₄)	YES	NO		-
White	Poly	1012	6120	+2-1	36			250, 5	00, 1L		None		YES	NO	NA	
Yellow	Polv	1	1	14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	250, 5	00, 1L	-	H ₂ SO,		YES	NO		
Green	Polv	/	1			1.5	-	250, 5	00, 1L	-	NaOH		YES	NO		
Red Tot	al Polv	10-10	120	12.	50	2p		250	JI- 66	-	HNO2		YES	NO		
Red Dis	s. Poly	10 12	6/20	12	SD		1	-250 5	00 1L		HNO ₂		YES	YES		
AWNER	2 CTOKE	10 /20	6/2-		60		2	250/5	00, 1L	-			YES			
	1	Tota	l Bottles	(include	duplica	te count):	-				-					
	BO	TTLET	YPE	TYPICAL	ANALY	SIS ALLOV	VED PER B	I SOTTLE T	YPE (Circle	applicabl	e or write	non-standa	rd analysi	is below)		
	VOA - G	lass		(8021) (82	60B) (BT	EX) (NWI	PH-GR		,		0	-			-	
bed	AMBER	- Glass		(PAH) (I	PH-HCID	(NWTPH-	Dx) (TPH-	418.1) (Oi	l &Grease)	(8081A)	16130	808	2A)			
Ty	WHITE	Poly		(pH) (Co	nductivity)	(TDS) (1	rss) (BOD)) (Turbidit	y) (Alkalir	nity) (HCC	O ₃ /CO ₃) (0	(SO4)	(NO3) (N	IO ₂) (F)		
ottle	YELLOV	V - Poly		(COD) (1	TOC) (To	otal PO ₄) (T	otal Keldahl I	Nitrogen)	(NH ₃) (N	O ₃ /NO ₂)						
er B	GREEN	- Poly		(Cyanide)						_		_		_		
₹٩	RED TO	TAL - Pol	y D.l.	(As) (Sb)	(Be) (Be)	(Ca) (Cd)	(Co) (Cr) (4	Cu) (Fe) (I	Pb) (Mg) (Mn) (Ni) ((Ag) (Se) (TI) (V) (Z	n) (Hg) (K	(Na)		
	KED DIS	SOLVED	- Poly	(val/[20] (Da) (De) ((cu)	(re) (PD) (N	vR) (win)[(N	Milling 15e	(II) (V) (сл)[(118] (k	.) (INa) (Ha	raness) (Sili	ca)	
WATE	ROU	ALITY	Y DAT	A ,	Purge	Start Tir	ne: 17	:2.7	-		1	Pump	Bailer Ir	let Dept	:h:	
Meas.	Meth	od §	Purge	d (Bal)	F	H	E Con	d (µS)	°F Ter	nproc	Other	Diss O	(mg/l)	W	ater Ou	ality
4	R	-	0	2	0	. 57.	1.40	2	V2	3		20	(mag		~	
3	R	-	0	5	10	.42	1.39	3	13	3		0	73			
2	R		D .	75	10	. 39	1.39	12	12	3		0	lol l			
1	0	-			<u> </u>				<u><u> </u></u>				101			
0	-	-	0.0	00	-			-						-		
[Casing]	[Select	A-G]	[Cumulati	ve Totals]		·	-		Circle	units]				-	[Clarity, Co	olor]

SAMPLER: Delaney Peterson (PRINTED NAME)

D (SIGNATURE)

					1	_			_	_	Test	t Par	ame	ters		-		-	-	-	
Project Name: Project Name: Project Number: Project Manager: Phone Number: ipment Method: Project Manager: Phone Number: Project Manager: Project Manager: Project Manager: Phone Number: Project Manager: Project M	2020 401109 Phase. 0-01.01 0-0-01 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	2	ainers	etais	PAHS-		c Carbon	S	NH I	ETPH			tals							V	C ANCHOR
ne Field Sample ID	Collection Date/Time	Matrix	No. of Cont	Mercury /M	Total Solids	Grain Size	Total Organi	Dioxin/Furar	Archive	TPHDx /	(a po	PcBs	TCLP me							Commen	ts/Preservation
1 TP-5-0-0.5	10/20/20 0957	5	7	X	X	_	_	Х		X	X	X	Х	-	-	-		_	-	DUP H	OLD
2 TP-8-0-0.5	10/20/20 1150	S	7	X	X		_		-	X	X		6		-	-					
3 TP-8-2.5-3	10/20/20 1217	S	1Q	X	X	_	_	×	_	X	X	X	X		-	+	\vdash		-		
4 17-10-2-2.5	10/20/20 1435	5	7	X	X		_	_	-	X	X,			-	-	-	\square		+		
5 TP-10-2-2.5-DUP	10/20/20 1435	5	7	X	X				-	X	X		_	-	_	-	\vdash	-	-		-
6 TP-11-0-0.5	10/20/20 1512	5	7	X	X				_	X.	X		_	-	_	-	\vdash	_	+	-	
7 TP-11-1.5-2	10/20/20 1531	5	7	X	X	_				X	X	-	_	-		-		-	_	-	
8 TP-12-0-0.5	10/20/20 168	5	10	X	Х			X		\mathbf{X}	X	Х	_		_	-	$ \downarrow \downarrow$	_	-	-	
9 TP-12-3-3.5	10/20/20 1638	S	7	X	X					X	X			_	_			_	-		V
10																		_		1	
11																		_	_		
2					17													-	_		
3		-													_			_	_	-	
14																			_		
15																					
16					11					10									-		
17																					
18		1																			
Nataria (D) N	ALL CAMP	ICC	1	AN	HT1	1	0	1.6.1	0-	1-10	=0		INC	TP	UC-	TIT	NI	PP	OV	INFT	1

Relinquished By:	Company: Anchor QEA, LLC	Received By:	Company:
tano Rania	Tanner Kamila 10/20/20		
Signature/Printed Name	Date/Time	Signature/Printed Name	Date/Time
Relinquished By:	Company:	Received By:	Company:

1

Page of

Chain of	Custody	Record	& Laboratory	Analysis	Reque
	Real Providence				And Street St.

Laboratory Name:	ONSite
Date:	10/22/2020
Project Name:	ABC RECUCING Phase ?
Project Number:	202005-6101
Project Manager:	Derek Ornerod
Phone Number:	206-331-1738
Shipment Method:	FEDEX

		Collection	
Lir	Field Sample ID	Date/Time	M
1	TP-9-0-0.5	10/21/2020 0837	
2	TP-7-4.5-5	10/21/2020 1016	
3	+P-4-0-0.5	10/21/2020 1111	V.
4	TP-4-3.5-4	10/21/2020 1133	
5	TP-6-0-0.5	10/21/2020 1213	
6	TP-16-0-0.5	10/21/2020 14/0	
7	TP-16-5-5.5	10/21/2020 1527	
8	TP-13-1.5-2	10/22/2020 0837	4
9	TP-17-1.5-2	10/22/2020 0926	<
10	TP-15-1-1.5	10/22/2000 1010	5
11	TP-14-1.5-2	10/22/2020 1034	
12	TP-1-0.5-1.5	10/2/2020 1145	
13	TP-2-1.5-2	0/22/2000 12/4	
14	TP-3-1.5-2	10/22/2020 1256	<
15			
16			
17			
18			
	Notes: Hold un	it'll Furth	0)

Relinquished By: Comp Tanner Signature/Printed Name

Relinquished By: Comp Signature/Printed Name

Distribution copy will be made for the laboratory and client. The Project file will retain the original.

de.

		1	1			1	i	1	Test	t Pai	rame	eters				- K					an a
	of Containers	uny/hetals	Solids / PAHS-	Size	Organic Carbon	n/Furans	Ve	DX/FTDH	9	ASW/2		metals							Z	ANCHO	R ビ
× .	10.0	Verc	otal	Brain	otal	Dioxi	Irchi	FPH	GR	MC	CBo	CLP			-			Commo	ntel	Droconvetion	
L	Ŧ	X	X	0		X	X	X	~	-	-							H	2	N	
L	+	X	X			X	X	X	X	*	×	X						MS/MS	SD,	-2	
1	4	X	X			X	X	X	X										1		-
1	4	. X	X			X	X	X	X				14								
1	4	X	X			X	X	×	×		X				1 in		-				
-	4	X	X			X	X	X	X								_				
-	3	X	X	7	200	X		X	X						-						-
	7	X	X			$\frac{X}{\nabla}$	X	X	X					-				A Contraction	-		
L	7					~ ~	X							1							
1	4	X	X			A	X	X	X						4						
L	+	XX	X			X	X	X	\mathbf{x}		S. K			1			1				
L	+	X	XX	1999 (A)	-	×	X	X	X												
L	4	X	XX			X	X	X	X					-					1	V	
	-														1						
-	-	2	1.20		21 2 4 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. S. T.			24	*** 										
			11			5 276°	1		Contrada Al contrada						-						
L	-1								-	0-				1	1						<u><u> </u></u>
	14	$\overline{\Omega}$	514		<u>C1</u>	51	<u>sv</u>	<u> </u>	P	KC	20	10	22								
An	iche (or Q 0/2	EA,	10	22		Rece	eived	By:									Company			
	D	Date/	Time			L	Signa	ature/	Printe	ed Na	ame									Date	/Time
						ſ	Rece	ived	By:									Company	r:		
	D)ate/	Time		_		Class		Dia												1

10.4.100

Please analyze for the JM for AQ 10.28.20	the analy)	ses indic Cha	ated bel	low f (Cu	ISt	00	dy											Pa	age_	L	of	2	-		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	naround Requ n working day	iest s)		La	abo	rate	ory	Nur	nbe	er:			-									1			
Phone: (425) 883-3881 · www.onsite-env.com Company: Anchor QEA Project Number: 202005-01.01 Project Name: ABC Recycling Project Manager: Derek Driverod Sampled by: MH/DP	Same	(Check One) Day [ys [dard (7 Days) (other)] 1 Day] 3 Days	er of Containers	H-HCID	H-Gx/BTEX	H-G×	H-Dx (Acid / SG Clean-up)	ss 8260C	enated Volatiles 8260C	PA 8011 (Waters Only)	olatiles 8270D/SIM ow-level PAHs)	3270D/SIM (low-level)	8082A	ochlorine Pesticides 8081B	ophosphorus Pesticides 8270D/SIM	nated Acid Herbicides 8151A	ICRA Metals	ITCA Metals (60100/2411A)	Metals	oil and grease) 1664A	DX:n Purans	asula		LD	
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTP	NWTP	Volatil	Halog	EDB E	Semiv (with I	PAHS	PCBs	Organ	Organ	Chlori	Total F	Total N	TCLP	HEM (0	Y		OH Mo	
GP-2-8-9	10.26.20	1030	Soil	3										X								X			-	
GP-2-14-20	- 1	1045	1	3		-	X	X					×	×	-				×.		-#	X				
GP.2-25-27		1050		3				Ó						X								X				
GP-1-10-12.345.7-9.7	1	1315		3																						
GP-1-10.12.3		1320		3		1	×	X					X	×					×			X				
C1P-1-20-22		1330		3					7	×				X								X				
GP-1-20-22-Dup		1331		3					12					×								×				
GP-5-6.9-7.5		1515		3						-				¥								X			(
GP.5-10-11		1525		3			X	×					X	X					×			X				
GP-5-20.22	1	1530	1	3										×								×				
Signature	Co	ompany	154		-	Date	1	1	Time			Com	men	ts/Sp	ecial	Instr	uctio	ns		-	5.1			-	h.	
Relinquished	ł	Indra Que	EA			10	28/2	20	05	20)		1.01	AS	, T	3e,	C	d, (iv,	C	u,	126	, [1	8.		
Received) reod	dy	_		10 -	.70	-20	0	820	0		N.	1 2	re,	1	9,	41	1	си						
Received Relinquished								-				Н	fui	1 o	.11	S	n my	ple	Lis	pe us.	nd	in	9			
Received								_			-	Data	Pac	kago	. Ct	anda	nd 🗆	Le		Π	Low		7			
Reviewed/Date		Reviewed/Dat	e									Chro	mato	ogran	ns w	ith fin	al rep	report Electronic Data Deliverables (EDDs)								

MA	OnSite	
	Environmental	In

Chain of Custody

	-		0
Page	6	of	2

Analytical Laboratory Tes 14648 NE 95th Street	ing Services • Redmond, WA 98052	Turnaround Request (in working days)					abo	rate	ory	Num	nbei	r:																
Project Name: Project Name: Project Name: Project Manager: Develc O Sampled by: MHDP	1 www.onsite-env.com	(C] Same D] 2 Days] Standar] Date	Check One) lay [cd (7 Days) (other) Time] 1 Day] 3 Days	imber of Containers	ИТРН-НСІD	VTPH-Gx/BTEX	VTPH-Gx	VTPH-Dx (🗌 Acid / SG Clean-up)	latiles 8260C Incremented Volatiles 8260C	DB EPA 8011 (Waters Only)	emivolatiles 8270D/SIM	ith Iow-level PAHs) AHs 8270D/SIM (Iow-level)	2Bs 8082A	rganochlorine Pesticides 8081B	rganophosphorus Pesticides 8270D/SIM	hlorinated Acid Herbicides 8151A	otal RCRA Metals	Dal MICA Metals (6 0100 (7 471 A)	CLP Metals	EM (oil and grease) 1664A	Dioxin Ruans	Diss. Metals(concelation	MS/MSD	HOLD			
Lab ID Sample Id	entification Sa	mpled	Sampled	Matrix	NI NI	Z	Z	Z	ž	> i		Š	W)	ď	0	0	0	F	F	F	I	J	-	-				
GP-6-10.8-1	<i>h</i> o.	26.20	1650	Soil	3	-	-			-	-	-			-	-					\square	X		-	-			
GP-6-GW		1	1750	Gw	11	-	-			-	-	+		X	-	-	-	-		-		X		-	+			
GP-4-7.8-8:	7 10.	27.20	1026	Soil	3					_	-	-	,	X		-				-		X	-	-	_			
GP-4-15-187	-		1030		3					-	-			X								X	_	_	_			
GP.3-12.7.13.	4		1205		3		-	X	X	_			>	X					X			X		_				
GP-3-14.4-15	9		1215	V	3				Q	10				X								¥			_			
GP-3-6W			1315	GW	23									X					*	10		X						
GP.3 - GW-D	410		1320		11									+					×	R		X						
TB-201026	10	0.26.20	1015	W	2									1.81														
			1000V				Date			Time			Comm	ents/S	necia	Instr	ructio	20					1					
Belinguished	ul Am	A	A LAN D	EA		-	10	1281	20	0	821																	
Received	Dine B	×A.	Spra	dy	-		10	-76-	.70	0	521	0																
Relinquished	~~~~~		-1	/				0																				
Received																												
Relinquished																												
Received												C	Data P	ackag	e: St	anda	Ird	Le	evel III		Leve]					
Reviewed/Date		R	eviewed/Da	te					-			C	Chrom	atogra	ms w	ith fin	nal re	port	Ele	ectron	ic Data	a Deliv	rable	⊧s (ED	Ds)			

Appendix B Photograph Log

Photograph 3

Photograph 6 TP-1

Photograph 29 TP-5

Photograph 31 TP-5

Photograph 33 TP-5

Photograph 34 TP-5

Photograph 35 TP-5

Photograph 53 TP-8

Photograph 54 TP-8

Photograph 64 TP-11

Photograph 65 TP-11

Photograph 68 TP-11

Photograph 69 TP-11

Photograph 70 TP-12 TP-11-1.5-2 Oct. 20,2020 ABC Recycling Ph.2

Photograph 85 TP-13

<text>

Photograph 97 TP-16

Photograph 98 TP-16

Photograph 99 TP-16 TP-16-0-05 Oct. 21,2020 ABC Recycling

Photograph 100 TP-16 TP-16-0-0.5 Oct. 21, 2020 ABC Recycling

Photograph 105 TP-16

Photograph 106 **TP-17** TP-17-1.5-2 October 22,2020 ABC Reaging Phase 2 Photograph 107 TP-17 TP-171-1.5-2. October 22,2020 ABC Recycling Phase 2

Photograph 109 TP-17 TP-171-1.5-2. October 22,2020 ABC Recycling Phase 2

Photograph 113 GP-1

Photograph 115 GP-1

Photograph 123 GP-2

Photograph 125 GP-2

A 85 86

97 98

101

102

1

107

Photograph 131 GP-2

Photograph 134 GP-2 GP-2 October 26,2020 ABC Recyclory Phase 2

Photograph 157 GP-4

Photograph 169 GP-5

Photograph 171 GP-5

Photograph 177 GP-5

Photograph 179 GP-6

Appendix C Data Validation Report

Data Validation Report – EPA Stage 2A

November 24, 2020

Project: Marine Drive Property Project Number: 202005-01.01

This report summarizes the review of analytical results for 25 soil samples, two water samples, two duplicate samples, and one trip blank collected in October 2020. The samples were collected by Anchor QEA, LLC, and submitted to OnSite Environmental Inc. (OnSite) in Redmond, Washington. Aliquots of three soil samples were sent to Vista Analytical Laboratory (Vista) in El Dorado Hills, California. The following analytical parameter results were reviewed in this report:

- Diesel range organics (DRO), residual range organics (RRO) and gasoline range organics (GRO) by the Northwest Total Petroleum Hydrocarbons method for extended diesel (NWTPH-Dx) and gasoline (NWTPH-Gx) ranges
- Total metals by U.S. Environmental Protection Agency (USEPA) methods 6010D, 6020B, 200.8, 7470A, and 7471B
- Toxicity Characteristic Leaching Procedure (TCLP) metals by USEPA 1311
- Polycyclic aromatic hydrocarbons (PAHs) by USEPA method 8270E select ion monitoring
- Polychlorinated biphenyl (PCB) Aroclors by USEPA method 8082A
- Total solids (TS) by Standard Method 2540G
- Polychlorinated dibenzo-p-dioxins (PCDD)/dibenzofurans (PCDF) by USEPA method 1613B

OnSite sample delivery group numbers (SDGs) 2010-264, 2010-279, and 2010-327 were reviewed in this report. Sample IDs, matrices, and analyses are presented in Table 1.

Sample ID	Lab Sample ID	Matrix	Analyses
GP-1-20-22	2010-327-06	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-1-20-22- DUP	2010-327-07	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-1-5.7-9.7	2010-327-04	Soil	DRO, RRO, GRO, total and TCLP metals, PAHs, PCBs, TS, PCDD/PCDF
GP-2-25-27	2010-327-03	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-2-8-9	2010-327-01	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-3-14.4-15.9	2010-327-16	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-3-GW	2010-327-17	Water	DRO, RRO, GRO, total metals, PAHs
GP-3-GW-DUP	2010-327-18	Water	DRO, RRO, GRO, total metals, PAHs

Table 1 Sample IDs, SDGs, Matrices, and Analyses

Sample ID	Lab Sample ID	Matrix	Analyses
GP-4-15-18.7	2010-327-14	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-4-7.8-8.7	2010-327-13	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-5-20-22	2010-327-10	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-5-6.9-7.5	2010-327-08	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-6-10.8-15	2010-327-11	Soil	DRO, RRO, GRO, total metals, PAHs, TS
GP-6-GW	2010-327-12	Water	DRO, RRO, GRO, total metals, PAHs
TB-201026	2010-327-19	Trip Blank	GRO
TP-1-0.5-1.5	2010-279-12	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-12-0-0.5	2010-264-08	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-13-1.5-2	2010-279-08	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-14-1.5-2	2010-279-11	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-15-1-1.5	2010-279-10	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-16-5-5.5	2010-279-07	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-17-1.5-2	2010-279-09	Soil	DRO, RRO, GRO, total and TCLP metals, PAHs
TP-2-1.5-2	2010-279-13	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-3-1.5-2	2010-279-14	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-4-0-0.5	2010-279-03	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-5-0-0.5	2010-264-01	Soil	DRO, RRO, GRO, total and TCLP metals, PAHs, PCBs, TS, PCDD/PCDF
TP-6-0-0.5	2010-279-05	Soil	DRO, RRO, GRO, total metals, PAHs, PCBs, TS, PCDD/PCDF
TP-7-4.5-5	2010-279-02	Soil	DRO, RRO, GRO, total and TCLP metals, PAHs, PCBs, TS
TP-8-0-0.5	2010-264-02	Soil	DRO, RRO, GRO, total metals, PAHs, TS
TP-9-0-0.5	2010-279-01	Soil	DRO, RRO, GRO, total metals, PAHs, TS

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the laboratory quality control limits and the following guidelines:

- ABC Recycling Phase II Environmental Assessment Sampling and Analysis Plan (SAP; Anchor QEA 2020)
- USEPA 1986 (SW-846, Third Edition), Test Methods for Evaluating Solid Waste: Physical/Chemical Methods
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2017a)
- National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2017b)

National Functional Guidelines for High Resolution Superfund Methods Data Review (USEPA 2016)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody (COC) forms were signed by Onsite and Vista the time of sample receipt. Samples were received in good condition and within the recommended temperature range, with the exception of one cooler received at OnSite on October 22, 2020. The cooler temperature was 11°C and the laboratory did not note which samples were affected, so associated volatile or semivolatile results were qualified "J" or "UJ" to indicate a potentially low bias. Metal and PCB results are considered environmentally stable, so no data were qualified. Sample jars submitted for PCDD/PCDF analysis were clear glass. Amber glass jars are recommended for PCDD/PCDF analysis, however, since samples were stored at \leq 6°C, in the dark, from the time of collection until extraction, no data were qualified.

Sample Preservation and Holding Times

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. Method blanks were free of target analytes.

Field Quality Control

Trip Blank

One trip blank was collected in association with the samples collected on October 26 and 27, 2020, and was free of target analytes. The samples collected on October 20, 21, and 22 did not have trip blanks associated with them; however, GRO was detected in only one sample so contamination during sample transport is unlikely and no data were qualified.

Field Duplicates

One soil and one groundwater field duplicate were collected in association with this sample set. The SAP requirement for field duplicates are one per 20 samples collected per matrix; however, only one soil duplicate was collected in association with 25 samples. A second duplicate was not analyzed due to laboratory error. Detected results are summarized in Table 2. Results that were less than five times the method reporting limit (MRL) were assessed by the difference between them instead of the relative percent difference (RPD) value. If a parent or field duplicate result was not detected and the

corresponding parent or duplicate result was detected, non-detected results were evaluated using the MRL.

Field duplicate RPD values were assessed using 50% RPD value as a control limit. Field duplicate difference values were assessed using plus or minus twice the MRL for soil samples and plus or minus the RL for water samples. All field duplicate RPD and difference values were within the control limits.

Table 2 Field Duplicates Summary

Analyte	GP-1-20-22	GP-1-20-22-DUP	RPD	Difference	Difference CL
Arsenic	6 mg/kg	6.3 mg/kg		0.3 mg/kg	7 mg/kg
Chromium	42 mg/kg	44 mg/kg	5%		
Copper	35 mg/kg	35 mg/kg	0%		
Nickel	46 mg/kg	46 mg/kg	0%		
Zinc	64 mg/kg	62 mg/kg	3%		
Beryllium	0.18 mg/kg	0.19 mg/kg		0.01 mg/kg	0.14 mg/kg
Cadmium	0.13 mg/kg	0.11 mg/kg		0.02 mg/kg	0.14 mg/kg
Lead	2 mg/kg	2 mg/kg		0 mg/kg	1.4 mg/kg
Mercury	0.037 mg/kg	0.045 mg/kg		0.008 mg/kg	0.028 mg/kg

Analyte	GP-3-GW	GP-3-GW-DUP	RPD	Difference	Difference CL
Arsenic	0.68 ug/L	0.56 ug/L		0.12 ug/L	0.5 ug/L
Nickel	13 ug/L	15 ug/L	14%		
Selenium	1.4 ug/L	1.4 ug/L		0 ug/L	1 ug/L
Zinc	7 ug/L	6.6 ug/L		0.4 ug/L	2.5 ug/L
DRO	0.12 mg/L	0.11 mg/L		0.01 mg/L	0.1 mg/L
RRO	0.29 mg/L	0.27 mg/L		0.02 mg/L	0.2 mg/L
Benzo(b)fluoranthene	0.0056U ug/L	0.0053 ug/L		0.0003 ug/L	0.0056 ug/L

Notes:

CL = control limit

µg/kg = microgram per kilogram

mg/kg = milligram per kilogram

 $\mu g/L = microgram per liter$

mg/L = milligram per liter

Surrogate and Labeled Compound Recoveries

Surrogates and labeled compounds were added to each sample as required by the method and recoveries were within laboratory control limits with one exception. The surrogate fluorobenzene recovered above the control limit in the GRO analysis of sample GP-2-25-27. GRO was not detected in the sample, so no data were qualified.

Laboratory Control and Laboratory Control Sample Duplicates

Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) were analyzed or matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed in place of LCS/LCSD samples, except for GRO, DRO and RRO. LCS/LCSD samples resulted in recoveries and/or RPD values within project control limits.

Ongoing Precision and Recovery Samples

Ongoing precision and recovery (OPR) samples were analyzed for PCDD/PCDF, and resulted in recoveries within project control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike (MS) and matrix spike duplicate (MSD) samples were analyzed at the required frequency, except for GRO, DRO and RRO. Recoveries and/or RPD values were within project-required control limits.

Laboratory Duplicates

Laboratory duplicates were analyzed at the required frequency, or MSD samples were analyzed in place of the duplicate. Sample or duplicate results that were less than five times the reporting limit were evaluated by the difference between them, using the control limit of plus or minus twice the MRL. Duplicate difference or RPD values were within control limits, with the following exceptions:

- SDG 2010-264 total metals: The duplicate RPD was above the project control limit for antimony, arsenic, and lead in the duplicate analyzed on sample TP-5-0-0.5. Antimony results were within five times the reporting limit, and the difference between them was less than two times the MRL so no data were qualified. Associated arsenic and lead results were qualified "J" to indicate they are estimated.
- SDG 2010-279 total metals: The duplicate RPD was above the project control limit for mercury in the duplicate analyzed on sample TP-7-4.5-5, however the sample and duplicate concentration were less than five times the MRL, and the difference between the results was less than two times the MRL, so no data were qualified.

Qualified results are summarized at the end of this report.

Estimated Maximum Potential Concentration

Some PCDD/PCDF results were qualified by the laboratory as estimated maximum potential concentration (EMPC). These results have been qualified "J" to indicate they are estimated.

Method Reporting Limits

Reporting limits were acceptable as reported. All values were reported using the laboratory limits and results below detection were reported to the MRL, except for PCDD/PCDF results, which were reported at the estimated detection limit. Values were reported as undiluted or when diluted, the detection and reporting limits reflect the dilution factor.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery values. Accuracy was evaluated using the surrogate percent recovery values for GRO, DRO, or RRO. Precision was acceptable as demonstrated by the LCS/LCSD, MS/MSD, laboratory and field duplicate RPD or difference values, with the exceptions noted above. All data are acceptable as reported or as qualified and no data were rejected. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definition

- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.
- J Indicates an estimated value.
- UJ Indicates the compound or analyte was analyzed for but not detected and the specified limit reported is estimated.

Table 3Data Qualification Summary

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason	
All samples in SDG 2010-264	GRO, DRO, RRO, PAH	All	Various	"J" detects "UJ" non-detects	Cooler temperature above 10°C	
GP-1-5.7-9.7	PCDD/PCDF	Total HxCDD 1.38 EMPC ng/kg 1.38J ng/kg		EMPC		
TD 10 0 05		Arsenic		70J mg/kg	Duplicate RPD	
TP-12-0-0.5	l otal metals	Lead	29 mg/kg	29J mg/kg	above control limit	
	Tatalasatala	Arsenic	20 mg/kg	20J mg/kg	Duplicate RPD	
	lotal metals	Lead	90 mg/kg	90J mg/kg	above control limit	
TP-5-0-0.5		2,3,7,8-TCDD	0.761EMPC ng/kg	0.761J ng/kg		
	PCDD/PCDF	Total TCDD	13.8 EMPC ng/kg	13.8J ng/kg	EMPC	
		Total TCDF	17.6 EMPC ng/kg	17.6J ng/kg		

Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason	
		2,3,7,8-TCDD	0.0977 EMPC ng/kg	0.0977J ng/kg		
		1,2,3,4,7,8- HxCDD	0.812 EMPC ng/kg	0.812J ng/kg		
	PCDD/PCDF	Total TCDD	1.96 EMPC ng/kg	1.96J ng/kg	EMPC	
TP-6-0-0.5		Total PeCDD	4.79 EMPC ng/kg	4.79J ng/kg		
		Total HxCDD	90.1 EMPC ng/kg	90.1J ng/kg		
		Total TCDF	0.690 EMPC ng/kg 0.690J ng/kg			
		Total PeCDF	4.32 EMPC ng/kg	4.32J ng/kg		
	Total motals	Arsenic	42 mg/kg	42J mg/kg	Duplicate RPD	
19-8-0-0.5	lotal metals	Lead	26 mg/kg	26J mg/kg	above control limit	

Notes:

mg/kg = milligram per kilogram MRL = method reporting limit

RPD = relative percent difference

n D – realive percentamerence

References

- Anchor QEA, 2020. Phase 2 Environmental Assessment Sampling and Analysis Plan. Prepared for ABC Recycling. October 2020.
- USEPA (U.S. Environmental Protection Agency), 1986. Test methods for Evaluating Solid Waste: Physical/Chemical Methods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- USEPA, 2016. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-B-16-001. April 2016.
- USEPA, 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-001. January 2017.
- USEPA, 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. United States Environmental Protection Agency. EPA-540-R-2017-002. January 2017.

Appendix D Laboratory Reports

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01 Laboratory Reference No. 2010-264

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 22, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: November 17, 2020 Samples Submitted: October 22, 2020 Laboratory Reference: 2010-264 Project: 202005-01.01

Case Narrative

Samples were collected on October 20, 2020 and received by the laboratory on October 22, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A Analysis

The Sample 10-279-02 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Total Metals EPA 6010D/6020B/7471B Analysis

The duplicate RPD for Arsenic, Lead and Nickel is outside control limits due to sample inhomogeneity.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Antimony	6.0	2.8	EPA 6010D	10-28-20	10-29-20	
Arsenic	20	2.8	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.23	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	1.0	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	23	0.56	EPA 6010D	10-28-20	10-29-20	
Copper	44	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	90	5.6	EPA 6010D	10-28-20	10-29-20	
Mercury	0.47	0.028	EPA 7471B	11-4-20	11-4-20	
Nickel	21	2.8	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.28	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Zinc	210	2.8	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Antimony	16	2.6	EPA 6010D	10-28-20	10-29-20	
Arsenic	42	2.6	EPA 6010D	10-28-20	10-29-20	
Beryllium	ND	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.76	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	9.1	0.53	EPA 6010D	10-28-20	10-29-20	
Copper	38	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	26	5.3	EPA 6010D	10-28-20	10-29-20	
Mercury	0.30	0.026	EPA 7471B	11-4-20	11-4-20	
Nickel	7.6	2.6	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.26	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Zinc	85	2.6	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Antimony	32	2.7	EPA 6010D	10-28-20	10-29-20	
Arsenic	70	2.7	EPA 6010D	10-28-20	10-29-20	
Beryllium	ND	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.95	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	16	0.54	EPA 6010D	10-28-20	10-29-20	
Copper	89	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	29	5.4	EPA 6010D	10-28-20	10-29-20	
Mercury	0.26	0.027	EPA 7471B	11-4-20	11-4-20	
Nickel	13	2.7	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.7	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.27	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.7	EPA 6010D	10-28-20	10-29-20	
Zinc	100	2.7	EPA 6010D	10-28-20	10-29-20	

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1028SH1					
Antimony	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Chromium	ND	0.50	EPA 6010D	10-28-20	10-29-20	
Copper	ND	1.0	EPA 6010D	10-28-20	10-29-20	
Lead	ND	5.0	EPA 6010D	10-28-20	10-29-20	
Nickel	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Thallium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Zinc	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Laboratory ID:	MB1102SM1					
Beryllium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Silver	ND	0.25	EPA 6020B	11-2-20	11-4-20	
Laboratory ID:	MB1104S1					
Mercury	ND	0.025	EPA 7471B	11-4-20	11-4-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-2	64-01								
	ORIG	DUP								
Antimony	5.35	9.10	NA	NA		NA	NA	52	20	С
Arsenic	17.7	26.3	NA	NA		NA	NA	39	20	L
Chromium	20.6	18.9	NA	NA		NA	NA	9	20	
Copper	38.9	43.8	NA	NA		NA	NA	12	20	
Lead	80.5	44.9	NA	NA		NA	NA	57	20	L
Nickel	18.5	14.9	NA	NA		NA	NA	22	20	L
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	191	165	NA	NA		NA	NA	15	20	
Laboratory ID:	10-2	64-01								
Beryllium	0.204	0.191	NA	NA		NA	NA	1	20	
Cadmium	0.930	1.06	NA	NA		NA	NA	13	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-2	64-01								
Mercury	0.422	0.410	NA	NA		NA	NA	3	20	
moroary	01122	01110						0	20	
Laboratory ID:	10-2	79-02								
	ORIG	DUP								
Antimony	6.30	7.95	NA	NA		NA	NA	23	20	С
Arsenic	18.0	20.0	NA	NA		NA	NA	11	20	
Chromium	18.2	19.9	NA	NA		NA	NA	9	20	
Copper	28.9	30.7	NA	NA		NA	NA	6	20	
Lead	28.2	33.5	NA	NA		NA	NA	17	20	
Nickel	16.2	17.1	NA	NA		NA	NA	5	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	104	124	NA	NA		NA	NA	18	20	
Laboratory ID:	10-2	79-02								
Beryllium	0.135	0.155	NA	NA		NA	NA	14	20	
Cadmium	2.16	2.04	NA	NA		NA	NA	5	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-2	79-02								
Mercury	0.0769	0.127	NA	NA		NA	NA	49	20	С

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	88.0	83.5	100	100	6.30	82	77	75-125	5	20	
Arsenic	114	111	100	100	18.0	96	93	75-125	3	20	
Chromium	104	105	100	100	18.2	86	86	75-125	0	20	
Copper	80.5	76.0	50.0	50.0	28.9	103	94	75-125	6	20	
Lead	241	233	250	250	28.2	85	82	75-125	3	20	
Nickel	98.5	98.0	100	100	16.2	82	82	75-125	1	20	
Selenium	97.5	94.5	100	100	ND	98	95	75-125	3	20	
Thallium	44.4	43.9	50.0	50.0	ND	89	88	75-125	1	20	
Zinc	190	183	100	100	104	87	79	75-125	4	20	
Laboratory ID:	10-2	79-02									
Beryllium	49.8	51.3	50.0	50.0	0.135	99	102	75-125	3	20	
Cadmium	46.8	47.3	50.0	50.0	2.16	89	90	75-125	1	20	
Silver	22.5	22.3	25.0	25.0	ND	90	89	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.559	0.515	0.500	0.500	0.0769	96	88	80-120	8	20	

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Naphthalene	0.51	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	1.1	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.73	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	0.078	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.073	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.090	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.87	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.16	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.53	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.50	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.30	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.50	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.34	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.092	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.14	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.096	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.047	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.12	0.019	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	46 - 113				
Pyrene-d10	82	45 - 114				
Terphenyl-d14	86	49 - 121				

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Naphthalene	0.015	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.041	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.023	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.0054	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.0080	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.066	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.0084	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.078	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.077	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.061	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.072	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.083	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.020	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.053	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.040	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.011	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.043	0.0035	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	46 - 113				
Pyrene-d10	79	45 - 114				
Terphenyl-d14	81	49 - 121				

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Naphthalene	0.020	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.056	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.031	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	0.0042	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	0.011	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.058	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.018	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.017	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.013	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.027	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.018	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.0086	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.0067	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0088	0.0036	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	79	45 - 114				
Terphenyl-d14	76	49 - 121				

10

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Naphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	82	49 - 121				

11

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-27	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.120	0.121	0.0833	0.0833	0.0558	77	78	51 - 115	1	26	
Acenaphthylene	0.0623	0.0653	0.0833	0.0833	0.00504	69	72	53 - 121	5	24	
Acenaphthene	0.0677	0.0754	0.0833	0.0833	0.00339	77	86	52 - 121	11	25	
Fluorene	0.0644	0.0705	0.0833	0.0833	0.00667	69	77	58 - 127	9	23	
Phenanthrene	0.126	0.136	0.0833	0.0833	0.0641	74	86	46 - 129	8	28	
Anthracene	0.0732	0.0793	0.0833	0.0833	0.0100	76	83	57 - 124	8	21	
Fluoranthene	0.0877	0.0932	0.0833	0.0833	0.0287	71	77	46 - 136	6	29	
Pyrene	0.0859	0.0921	0.0833	0.0833	0.0266	71	79	41 - 136	7	32	
Benzo[a]anthracene	0.0983	0.114	0.0833	0.0833	0.0191	95	114	56 - 136	15	25	
Chrysene	0.0890	0.102	0.0833	0.0833	0.0288	72	88	49 - 130	14	22	
Benzo[b]fluoranthene	0.0813	0.0937	0.0833	0.0833	0.0267	66	80	51 - 135	14	26	
Benzo(j,k)fluoranthene	0.0686	0.0758	0.0833	0.0833	0.00528	76	85	56 - 124	10	23	
Benzo[a]pyrene	0.0728	0.0833	0.0833	0.0833	0.0163	68	80	54 - 133	13	26	
Indeno(1,2,3-c,d)pyrene	0.0727	0.0819	0.0833	0.0833	0.0159	68	79	52 - 134	12	20	
Dibenz[a,h]anthracene	0.0685	0.0791	0.0833	0.0833	0.00596	75	88	58 - 127	14	17	
Benzo[g,h,i]perylene	0.0763	0.0861	0.0833	0.0833	0.0215	66	78	54 - 129	12	21	
Surrogate:											
2-Fluorobiphenyl						62	67	46 - 113			
Pyrene-d10						70	77	45 - 114			
Terphenyl-d14						71	80	49 - 121			

12

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 0 1 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Diesel Range Organics	56	28	NWTPH-Dx	10-29-20	10-29-20	Ν
Lube Oil	350	56	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Diesel Range Organics	ND	26	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	53	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Diesel Range Organics	ND	27	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	55	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Diesel Range Organics	50.4	50.5	NA	NA		NA	NA	0	NA	Ν
Lube Oil	308	289	NA	NA		NA	NA	6	NA	
Surrogate:										
o-Terphenyl						97 91	50-150			

14

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Gasoline	ND	17	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Gasoline	ND	6.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Gasoline	ND	5.7	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

						Date	Date	•	
Analyte		Result	PQL	M	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB1028S3							
Gasoline		ND	5.0	NW	TPH-Gx	10-28-20	10-28-	20	
Surrogate:	Pe	rcent Recover	y Control Lir	nits					
Fluorobenzene		94	58-129						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-26	64-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					107 108	3 58-129			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Aroclor 1016	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	0.050	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.028	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	91	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Surrogate:	Percent Recovery	Control Limits				
DCB	97	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent		Recovery			
Analyte	Result		Spike	Spike Level		Recovery		Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-279-02										
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB1104S1										
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:											
DCB						96	96	46-125			
Laboratory ID:	SB1104S1										
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.301	0.272	0.250	0.250	N/A	120	109	50-134	10	18	Х
Surrogate:											
DCB						102	101	46-125			

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.45	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM2					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T2					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

21

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-2	64-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Barium	0.452	0.448	NA	NA		Ν	JA	NA	1	20	
Cadmium	ND	ND	NA	NA		Ν	A	NA	NA	20	
Chromium	ND	ND	NA	NA		Ν	A	NA	NA	20	
Lead	ND	ND	NA	NA		Ν	A	NA	NA	20	
Selenium	ND	ND	NA	NA		Ν	A	NA	NA	20	
Silver	ND	ND	NA	NA		Ν	١A	NA	NA	20	
Laboratory ID:	10-2	64-01									
Mercury	<u>ND</u>	<u>ND</u>	NΔ	NΔ		Ν	JΔ	ΝΔ	ΝΔ	20	
Meredry		ND	11/1	11/1			•/ (1177	20	
Laboratory ID:	10-2	79-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	A	NA	NA	20	
Barium	0.462	0.462	NA	NA		NA		NA	0	20	
Cadmium	ND	ND	NA	NA		Ν	A	NA	NA	20	
Chromium	ND	ND	NA	NA		Ν	١A	NA	NA	20	
Lead	ND	ND	NA	NA		Ν	١A	NA	NA	20	
Selenium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Silver	ND	ND	NA	NA		NA		NA	NA	20	
Laboratory ID:	10-2	79-02									
Mercury	ND	ND	NA	NA		NA		NA	NA	20	
<u></u>						-					
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20	
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20	
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20	
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20	
Lead	9.55	9.51	10.0	10.0	ND	96	95	75-125	0	20	
Selenium	4.05	4.01	4.00	4.00	ND	101	100	75-125	1	20	
Silver	0.960	0.968	1.00	1.00	ND	96	97	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.0488	0.0486	0.0500	0.0500	ND	98	97	75-125	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

22

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-5-0-0.5					
Laboratory ID:	10-264-01					
Total Solids	89	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-8-0-0.5					
Laboratory ID:	10-264-02					
Total Solids	95	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-12-0-0.5					
Laboratory ID:	10-264-08					
Total Solids	92	0.50	SM 2540G	10-29-20	10-30-20	

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
_aboratory ID: 10-264-01		64-01							
	ORIG	DUP							
Total Solids	89.3	91.7	NA	NA	NA	NA	3	20	

24

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

November 17, 2020

Vista Work Order No. 2002336

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 28, 2020 under your Project Name '202005-0101'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com
Vista Work Order No. 2002336 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. The sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

The sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-5MS GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2002336-01	TP-5-0-0.5	20-Oct-20 09:57	28-Oct-20 09:49	Clear Glass Jar, 250mL

Vista Project: 2002336

Client Project: 202005-0101

ANALYTICAL RESULTS

Sample ID: Method Blank						EPA Method	1613B
Client DataName:OnSite EnviroProject:202005-0101Matrix:Solid	nmental Inc.		Laboratory Dat Lab Sample: QC Batch: Sample Size:	ra B0K0041-BLK1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	ЕМРС		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0263				13-Nov-20 10:55	1
1,2,3,7,8-PeCDD	ND	0.0497				13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDD	ND	0.0568				13-Nov-20 10:55	1
1,2,3,6,7,8-HxCDD	ND	0.0574				13-Nov-20 10:55	1
1,2,3,7,8,9-HxCDD	ND	0.0721				13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDD	ND	0.0573				13-Nov-20 10:55	1
	ND	0.116				13-Nov-20 10:55	1
2,3,7,8-1CDF	ND	0.0198				13-Nov-20 10:55	1
1,2,3,7,8-PeCDF	ND	0.0288				13-Nov-20 10:55	1
2,3,4,7,8-PeCDF	ND	0.0235				13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDF	ND	0.0329				13-Nov-20 10:55	1
2 3 4 6 7 8-HxCDF	ND	0.0389				13-Nov-20 10:55	1
1 2 3 7 8 9-HxCDF	ND	0.0698				13-Nov-20 10:55	1
1.2.3.4.6.7.8-HpCDF	ND	0.0487				13-Nov-20 10:55	1
1,2,3,4,7,8,9-HpCDF	ND	0.0568				13-Nov-20 10:55	1
OCDF	ND	0.0915				13-Nov-20 10:55	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.0263					
Total PeCDD	ND	0.0497					
Total HxCDD	ND	0.0721					
Total HpCDD	ND	0.0573					
Total TCDF	ND	0.0198					
Total PeCDF	ND	0.0288					
Total HxCDF	ND	0.0698					
Total HpCDF	ND	0.0568					
Labeled Standards	Туре	% Rec	overy	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	80.4	4	25 - 164		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDD	IS	81.	8	25 - 181		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDD	IS	88.	4	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDD	IS	89.	3	28 - 130		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDD	IS	80.	0	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDD	IS	80.	0	23 - 140		13-Nov-20 10:55	1
13C-OCDD	IS	74.	4	17 - 157		13-Nov-20 10:55	1
13C-2,3,7,8-TCDF	IS	83.	2	24 - 169		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDF	IS	84.	6	24 - 185		13-Nov-20 10:55	1
13C-2,3,4,7,8-PeCDF	IS	90.	3	21 - 178		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDF	IS	82.	0	26 - 152		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDF	IS	82.	7	26 - 123		13-Nov-20 10:55	1
13C-2,3,4,6,7,8-HxCDF	IS	83.	8	28 - 136		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDF	IS	71.	1	29 - 147		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDF	IS	75.	5	28 - 143		13-Nov-20 10:55	1
13C-1,2,3,4,7,8,9-HpCDF	IS	71.	1	26 - 138		13-Nov-20 10:55	1
13C-OCDF	IS	71.	5	17 - 157		13-Nov-20 10:55	1
37C1-2,3,7,8-TCDD	CRS	95.	5	35 - 197		13-Nov-20 10:55	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: OPR						EPA Method	1613B
Client Data Name: OnSite Env Project: 202005-01(Matrix: Solid	ironmental Inc.)1		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0K0041-BS1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 06:05 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.0	20.0	105	67-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDD	106	100	106	70-142		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDD	101	100	101	70-164		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDD	104	100	104	76-134		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDD	103	100	103	64-162		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDD	102	100	102	70-140		13-Nov-20 09:25	1
OCDD	204	200	102	78-144		13-Nov-20 09:25	1
2,3,7,8-TCDF	19.4	20.0	96.8	75-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDF	102	100	102	80-134		13-Nov-20 09:25	1
2,3,4,7,8-PeCDF	102	100	102	68-160		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDF	103	100	103	/2-134		13-Nov-20 09:25	1
1,2,3,6,7,8-HXCDF	101	100	101	84-130		13-Nov-20 09:25	1
2,3,4,0,7,8-HXCDF	100	100	100	70-130		13-INOV-20 09:25	1
1,2,3,7,6,9-HXCDF	90.9	100	98.9	/8-130		13-INOV-20 09:23	1
1,2,3,4,0,7,8 9 HpCDF	100	100	103	82-122 78-138		13-Nov-20 09.25	1
1,2,3,4,7,8,9-npCDF	200	200	100	63-170		13-Nov-20 09:25	1
Labeled Standards	Type	200	% Recovery	L imits	Qualifiers	Analyzed	1 Dilution
13C-2 3 7 8-TCDD	IS			20-175	<u> v</u>	13-Nov-20 09:25	1
13C-1.2.3.7.8-PeCDD	IS		89.5	20175		13-Nov-20 09:25	1
13C-1.2.3.4.7.8-HxCDD	IS		91.6	21-193		13-Nov-20 09:25	1
13C-1.2.3.6.7.8-HxCDD	IS		91.8	25-163		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDD	IS		90.8	21-193		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDD	IS		87.0	26-166		13-Nov-20 09:25	1
13C-OCDD	IS		79.6	13-199		13-Nov-20 09:25	1
13C-2,3,7,8-TCDF	IS		88.7	22-152		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDF	IS		93.6	21-192		13-Nov-20 09:25	1
13C-2,3,4,7,8-PeCDF	IS		95.6	13-328		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDF	IS		84.0	19-202		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDF	IS		85.3	21-159		13-Nov-20 09:25	1
13C-2,3,4,6,7,8-HxCDF	IS		85.0	22-176		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDF	IS		87.1	17-205		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDF	IS		78.0	21-158		13-Nov-20 09:25	1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.8	20-186		13-Nov-20 09:25	1
13C-OCDF	IS		77.7	13-199		13-Nov-20 09:25	1
37Cl-2,3,7,8-TCDD	CRS		106	31-191		13-Nov-20 09:25	1

Sample ID: TP-5-0-0	0.5					EPA Method	1613B
Client Data Name: OnSite Project: 20200	e Environmental Inc. 15-0101		Laboratory Da Lab Sample: QC Batch:	ta 2002336-01 B0K0041	Date Received: Date Extracted:	28-Oct-20 09 05-Nov-20	9:49
Matrix: Solid Date Collected: 20-Oc	t-20 09:57		Sample Size: % Solids:	11.6 g 87.4	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC	1	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.761			14-Nov-20 05:01	1
1,2,3,7,8-PeCDD	6.41					14-Nov-20 05:01	1
1,2,3,4,7,8-HxCDD	11.4					14-Nov-20 05:01	1
1,2,3,6,7,8-HxCDD	110					14-Nov-20 05:01	1
1,2,3,7,8,9-HxCDD	32.2					14-Nov-20 05:01	1
1,2,3,4,6,7,8-HpCDD	2350				D	14-Nov-20 05:01	1
10CDD	23400				D	14-Nov-20 16:24	20
2,5,7,6-1CDF	2.00					14-Nov-20 05:01	1
1,2,3,7,8-FeCDF	2.99					14-Nov-20 05:01	1
1 2 3 4 7 8-HxCDF	10.4					14-Nov-20 05:01	1
1.2.3.6.7.8-HxCDF	4.97					14-Nov-20 05:01	1
2.3.4.6.7.8-HxCDF	8.00					14-Nov-20 05:01	1
1,2,3,7,8,9-HxCDF	1.60				J	14-Nov-20 05:01	1
1,2,3,4,6,7,8-HpCDF	149					14-Nov-20 05:01	1
1,2,3,4,7,8,9-HpCDF	7.02					14-Nov-20 05:01	1
OCDF	433					14-Nov-20 05:01	1
Toxic Equivalent							
TEQMinWHO2005Dioxi	n 58.3						
Totals	10.0		10.0				
Total TCDD	12.9		13.8				
Total PeCDD	45.0						
Total HXCDD	6120						
	17.2		176				
Total PeCDF	65.4		17.0				
Total HxCDF	264						
Total HpCDF	561						
Labeled Standards	Туре	% Recover	·v	Limits	Qualifiers	Analyzed	Dilution
13C-2.3.7.8-TCDD	IS	98.5	5	25 - 164		14-Nov-20 05:01	1
13C-1,2,3,7,8-PeCDD	IS	98.7		25 - 181		14-Nov-20 05:01	1
13C-1,2,3,4,7,8-HxCDD	IS	96.6		32 - 141		14-Nov-20 05:01	1
13C-1,2,3,6,7,8-HxCDD	IS	97.6		28 - 130		14-Nov-20 05:01	1
13C-1,2,3,7,8,9-HxCDD	IS	97.3		32 - 141		14-Nov-20 05:01	1
13C-1,2,3,4,6,7,8-HpCDI) IS	115		23 - 140		14-Nov-20 05:01	1
13C-OCDD	IS	98.1		17 - 157	D	14-Nov-20 16:24	20
13C-2,3,7,8-TCDF	IS	99.3		24 - 169		14-Nov-20 05:01	1
13C-1,2,3,7,8-PeCDF	IS	103		24 - 185		14-Nov-20 05:01	1
13C-2,3,4,7,8-PeCDF	IS	105		21 - 178		14-Nov-20 05:01	1
13C-1,2,3,4,7,8-HxCDF	IS	93.3		26 - 152		14-Nov-20 05:01	1
13C-1,2,3,6,7,8-HxCDF	IS	92.2		26 - 123		14-Nov-20 05:01	1
13C-2,3,4,6,7,8-HxCDF	IS	92.9		28 - 136		14-Nov-20 05:01	1
13C-1,2,3,7,8,9-HxCDF	IS	95.2		29 - 147		14-Nov-20 05:01	1
13C-1,2,3,4,6,7,8-HpCDF	IS IS	91.3		28 - 143		14-Nov-20 05:01	1
13C-1,2,3,4,7,8,9-HpCDF	IS IS	98.6		26 - 138		14-Nov-20 05:01	1
13C-OCDF	IS	108		17 - 157		14-Nov-20 05:01	1
37Cl-2,3,7,8-TCDD	CRS	107		35 - 197		14-Nov-20 05:01	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
Κ	EMPC (specific projects only)
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue			
Description of Test	Method		
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B		
Dilution GC/HRMS			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A		
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C		
by GC/HRMS			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699		
HRGC/HRMS			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537		
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B		
GC/HRMS			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA		
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A		

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101
	2009

MATRIX: Non-Potable Water			
Description of Test	Method		
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B		
Dilution GC/HRMS			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A		
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C		
by GC/HRMS			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699		
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537		
Dioxin by GC/HRMS	EPA 613		
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B		
Dibenzofurans by GC/HRMS			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA		
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A		

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

2002336 2.3°C

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881		Laboratory Reference #: 10-264	
Laboratory: Vista Analytical Laboratory	Turnaround Request	Project Manager: David Baumeister	
Attention: Jennifer Miller	1 Day 2 Day 3 Day	email: dbaumeister@onsite-env.com	
Address: 1104 Windfield Way, El Dorado Hills, CA 95762	Standard	Project Number: 202005-0101	
Phone Number: (916)673-1520	Other:	Project Name:	

Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.		Requested Analyses
TP-5-0-0.5	10/20/20	9:57	S	1	Dioxin	/Furans
Signature	Con	npany		Date	Time	Comments/Special Instructions
Relinquished by:	28E .	10		10/27/2	01600	
Received by:		<u>N)</u>				CLIENT
Relinquished by:	<u>//* }</u>					
Received by: Willing ulf	VAC			10/28/2	,09:49	QA/QC
Relinquished by:						
Received by:						

Page 1 of 1

Sample Log-In Checklist

Vista Work Orde	r #:	200	2	334	2			Pa T	age # _ AT	L. Sta	of _/	_
Samples	Date/Tim	ie			Init	ials:		Loca	tion:	UR-	2	
Arrival:	10/28	20	09	1:49	(LA	υ	Shel	f/Rack	:7	JA	
Delivered By:	FedEx	UPS	\mathcal{O}	On Tra	ac	GLS	DHI	-	Hand Deliver	d red	Oth	ier
Preservation:	lc	e		Blu		è	Teo	chni ce	Dry	lce	No	ne
Temp °C: 2,2	3 (uncori	rected)	D -					Thor		tor ID:	IR	-4
Temp °C: 2,3 (corrected)									_'			
							E.			VES	NO	NΔ
Shipping Contain	er(s) Intac	:t?								i V		
Shipping Custody	Seals Int	act?						_				\times
Airbill	- Trk	# 12	Z	684E	EIV	VOI	953	33Z	127	V	F	
Shipping Docume	entation Pr	resent?	_				_			i		
Shipping Contain	er		V	ista		Client	R	etain	Re	eturn	Dis	oose
Chain of Custody	/ Sample	Docum	ent	ation Pr	eser	nt?						
Chain of Custody	/ Sample	Docum	<u>ent</u>	ation Co	ompl	ete?				V		
Holding Time Acc	ceptable?									V		
	Date/Tin	ne			Init	tials:	_	Loca	ation:	WR	2	
Logged In:	10/30/2	0	10	41		BB		Shei	f/Rack	/		
COC Anomaly/Sa	ample Acc	eptance	e Fo	orm com	nplete	ed?				\checkmark		

Comments:

CoC/Label Reconciliation Report WO# 2002336

LabNumber CoC Sample ID		Sa	mplcAlias	Sample Date/Time	Container	Sample BaseMatrix Comments
2002336-01 A TP-5-0-0.5 A		125		20-Oct-20 09:57	Clear Glass Jar, 250mL	Solid
Checkmarks indicate that information on the COC reconciled with the samp Any discrepancies are noted in the following columns.	ole label.					
	Yes	No	NA	Comments:		
Sample Container Intact?	~			A sample label Ana	lysis "Metals"	
Sample Custody Seals Intact?				(B) Sample rec'd in c	clear glass far	
Adequate Sample Volume?	~					
Container Type Appropriate for Analysis(es)			1			
Preservation Documented: Na2S2O3 Trizma None Other			V			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?						
Verifed by/Date: 13213 10/30/20	•	•		•		

Rev. Date: 11/08/2019 Rev. No: 0

ANOMALY FORM

Vista V	/ork Order _2002336
Initial/Date	The following checked issues were noted during sample receipt and login:
	1. The samples were received out of temperature at (WI-PHT): Was ice present: Yes No Melted Blue ice
	2. The Chain-of-Custody (CoC) was not relinquished properly.
	3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
	4. The sample(s) did not include a sample collection time. All or Sample Name:
	5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
	6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
	7. The CoC did not include a sample matrix. The following sample matrix will be used:
	8. Insufficent volume received for analysis. All or Sample Name:
	9. The backup bottle was received broken. Sample Name:
	10. CoC not received, illegible or destroyed.
	11. The sample(s) were received out of holding time. All or Sample Name:
	12. The CoC did not include an analysis. All or Sample Name:
	13. Sample(s) received without collection date. All or Sample Name:
	14. Sample(s) not received. All or Sample Name:
	15. Sample(s) received broken. All or Sample Name:
130/20 10/30/20	\checkmark 16. An incorrect container-type was used. All or Sample Name: <u>$TP-5-0-0.5$ *</u>
	17. Other:
	* Sample label analysis "Metals"

Bolded items require sign-off
Client Contacted: Yes, via email
Date of Contact: 10/30/2020
Vista Client Manager: KJR
Resolution: Client informed of container type in alknow reageneers rener
email

Page: 1 of 1

Page of

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Date				Ø	ed Name	re/Print	Signatu			/Time	Date							d Name	ture/Printe	Signa	
Company:						ed By:	Receiv					ny:	Compa						quished By	Relin	
company: 05	10		E	TARUL		ed By:	Signatu		RO	DEA,	chor C Date	w: And	Compar	MINO	a		Kami	d Name	ture/Printe	Signa	
INED	NOte	Ž	VCTIC	KSTR	5	ER	F	BE	STS I	3T	. NZ	020	6/2	OPT	1 co	Adt	R	HOL		Note	
					-			E	-	E	E	-	1)		-	5			1
	-	-			_									1						Ì	1
	1	-	1	1	-		_		-	11					/						10
	+	+	-	1	-		_		-							/					1
	+	-	+	-	-	1	_		-							1					1
	7	1	+	1	+		-	1	-			-					/			-	-
	1	1	+		-		_	-	-	11		-					/	/			-
	1	-	+	-					-			-						1			-
<	,	1	+	1	-	5			+	2	>	-							/		=
A	<	K	+	-	-	< <			-	×	<	L	\$	950	201	120/201	3.5 11	3-2	-12-	t	9
M	-	8	_		×	8	0	×	-	8	8	10	S	08	20 11	1001	is To	0-0	-12-1	t	00
	X	-	-			X	-		-	X	×	2	S	180	0 15	120/2	2	5-12	-11-	TP	V
	X	-	1			×			_	×	×	L	S	512	10 15	1201	01	-0.5	-11-0	ち	6
	X	-	-	-		X	×		-	X	×	1	S	8	14	20/20	S-DUP 10	2-2.5	-10-	あ	0
-	*					XX			-	×	×	1	cr	135	0 12	10/2	5 10	2-2	-10-	TE	4
	X			TO NO	X	X	V	X		X	×	NO	S	217	10 12)ool	U	2.5-	-2-	も	w
+		8	_			00	5		-	8	\otimes	1	S	50	0	200/2	5	0-0	-2-	TP	N
+0+0		8	N	0	XX			R	-	8	0		S	2957	8	0120	0,5 1	0-	1-15		-
Comments/Preserv	HOLI	Total	DUP	TCLP	PCBS	GRO	Archive	Dioxin/Fur	Grain Size	Total Solid	Mercury /	No. of Co	Matr		ction	Colle	Ū	bample	Field	le le	-
	>	52)	110	V le	~	16		ans	nic (6/f	Me	ntai					dFX	te	Method	Ipment	<u>v</u>
K OEA		1, ds 2540	ATE	etajs (rek	1 1 (200)	THE	- 0.	Carbon	Carbon	PAHS-	tais (PPI	<u>ners</u> ∓	1 P	o ma	138 PV	11000	C Pecy	PER PRO	ct Name Number Nanager Number	Project Project Project Phone	<u>v</u>
		5		meters	- Hara	les		-	-		net	1				2	ちけた	b	y Name:	borator	a
					+ D	T			-		-										

4

Sample/Cooler Receipt and Acceptance Checklist

OnSite Project Number: $10 - 264$		Initiated by Date Initiate	ed: 10 22	120
1.0 Cooler Verification				
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A 1 2	3 4
1.2 Were the custody seals intact?	Yes	No	(N/A) 1 2	3 4
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	1 2	3 4
1.4 Were the samples delivered on ice or blue ice?	Yes	No	N/A 1 2	3 4
1.5 Were samples received between 0-6 degrees Celsius?	Tes	Ng	N/A Temper	rature: 11, 4
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	N/A		1.
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx OSE F	Pickup Other
2.0 Chain of Custody Verification	-			
2.1 Was a Chain of Custody submitted with the samples?	Yes	No	1 2	3 4
2.2 Was the COC legible and written in permanent ink?	Yes	No	1 2	3 4
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No	1 2	3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	(No)	1 2	3 4
2.5 Were all of the samples listed on the COC submitted?	(Yes)	No	1 2	3 4
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC?	Yes Yes	No	1 2 1 2	3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 	Yes	No	1 2	3 4 3 4
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised?	Yes Yes		1 2 1 2 1 2	3 4 3 4 3 4
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible?	Yes Yes	£)\$	1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested?	Yes Yes Yes	No No	1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 	Yes Yes Yes Yes Yes Yes	NO NO	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 	Yes Yes Yes Yes Yes Yes Yes	N (2) NO NO NO	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 	Yes Yes Yes Yes Yes Yes Yes	N 20 N 20 N 20 N 20 N 20 N 20	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 	Yes Yes Yes Yes Yes Yes Yes Yes		1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 3.8 Was method 5035A used? 	Yes Yes Yes Yes Yes Yes Yes Yes		1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01 Laboratory Reference No. 2010-279

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 23, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: November 17, 2020 Samples Submitted: October 23, 2020 Laboratory Reference: 2010-279 Project: 202005-01.01

Case Narrative

Samples were collected on October 21 and 22, 2020 and received by the laboratory on October 23, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A Analysis

The Sample TP-7-4.5-5 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Antimony	75	2.6	EPA 6010D	10-28-20	10-29-20	
Arsenic	160	2.6	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.17	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.47	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	74	0.53	EPA 6010D	10-28-20	10-29-20	
Copper	240	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	110	5.3	EPA 6010D	10-28-20	10-29-20	
Mercury	0.14	0.026	EPA 7471B	11-4-20	11-4-20	
Nickel	52	13	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Silver	0.41	0.26	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.6	EPA 6010D	10-28-20	10-29-20	
Zinc	280	13	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Antimony	8.8	3.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	25	3.5	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.19	0.14	EPA 6020B	11-2-20	11-4-20	
Cadmium	3.0	0.14	EPA 6020B	11-2-20	11-4-20	
Chromium	25	0.69	EPA 6010D	10-28-20	10-29-20	
Copper	40	1.4	EPA 6010D	10-28-20	10-29-20	
Lead	39	6.9	EPA 6010D	10-28-20	10-29-20	
Mercury	0.11	0.035	EPA 7471B	11-4-20	11-4-20	
Nickel	22	3.5	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.5	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.35	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.5	EPA 6010D	10-28-20	10-29-20	
Zinc	140	3.5	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Antimony	46	3.1	EPA 6010D	10-28-20	10-29-20	
Arsenic	100	3.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.36	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	3.8	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	26	0.62	EPA 6010D	10-28-20	10-29-20	
Copper	90	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	130	6.2	EPA 6010D	10-28-20	10-29-20	
Mercury	0.25	0.031	EPA 7471B	11-4-20	11-4-20	
Nickel	17	3.1	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.1	EPA 6010D	10-28-20	10-29-20	
Silver	0.50	0.31	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.1	EPA 6010D	10-28-20	10-29-20	
Zinc	250	3.1	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Antimony	5.3	2.8	EPA 6010D	10-28-20	10-29-20	
Arsenic	19	2.8	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.26	0.11	EPA 6020B	11-2-20	11-4-20	
Cadmium	1.6	0.11	EPA 6020B	11-2-20	11-4-20	
Chromium	11	0.57	EPA 6010D	10-28-20	10-29-20	
Copper	37	1.1	EPA 6010D	10-28-20	10-29-20	
Lead	15	5.7	EPA 6010D	10-28-20	10-29-20	
Mercury	0.11	0.028	EPA 7471B	11-4-20	11-4-20	
Nickel	9.0	2.8	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.28	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	2.8	EPA 6010D	10-28-20	10-29-20	
Zinc	65	2.8	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Antimony	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Arsenic	6.4	3.7	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.52	0.15	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.79	0.15	EPA 6020B	11-2-20	11-4-20	
Chromium	43	0.74	EPA 6010D	10-28-20	10-29-20	
Copper	30	1.5	EPA 6010D	10-28-20	10-29-20	
Lead	16	7.4	EPA 6010D	10-28-20	10-29-20	
Mercury	0.048	0.037	EPA 7471B	11-4-20	11-4-20	
Nickel	41	3.7	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Silver	0.38	0.37	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.7	EPA 6010D	10-28-20	10-29-20	
Zinc	130	3.7	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Antimony	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	6.5	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.34	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	50	0.63	EPA 6010D	10-28-20	10-29-20	
Copper	41	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	3.9	1.3	EPA 6020B	11-2-20	11-5-20	
Mercury	0.051	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	48	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	64	3.2	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Antimony	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Arsenic	13	4.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	1.8	0.16	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.71	0.16	EPA 6020B	11-2-20	11-4-20	
Chromium	16	0.82	EPA 6010D	10-28-20	10-29-20	
Copper	36	1.6	EPA 6010D	10-28-20	10-29-20	
Lead	31	8.2	EPA 6010D	10-28-20	10-29-20	
Mercury	0.34	0.041	EPA 7471B	11-4-20	11-4-20	
Nickel	18	4.1	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.41	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	4.1	EPA 6010D	10-28-20	10-29-20	
Zinc	42	4.1	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Antimony	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Arsenic	9.9	3.0	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.34	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.17	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	45	0.60	EPA 6010D	10-28-20	10-29-20	
Copper	43	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	4.0	1.2	EPA 6020B	11-2-20	11-5-20	
Mercury	0.047	0.030	EPA 7471B	11-4-20	11-4-20	
Nickel	48	3.0	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.30	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Zinc	77	3.0	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Antimony	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Arsenic	7.2	3.0	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.29	0.12	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.13	0.12	EPA 6020B	11-2-20	11-4-20	
Chromium	44	0.60	EPA 6010D	10-28-20	10-29-20	
Copper	27	1.2	EPA 6010D	10-28-20	10-29-20	
Lead	3.8	1.2	EPA 6020B	11-2-20	11-5-20	
Mercury	0.042	0.030	EPA 7471B	11-4-20	11-4-20	
Nickel	35	3.0	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.30	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.0	EPA 6010D	10-28-20	10-29-20	
Zinc	49	3.0	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Antimony	3.4	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	11	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.37	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	0.44	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	28	0.65	EPA 6010D	10-28-20	10-29-20	
Copper	17	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	14	6.5	EPA 6010D	10-28-20	10-29-20	
Mercury	0.039	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	27	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	98	3.2	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Antimony	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Arsenic	11	3.2	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.49	0.13	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.13	EPA 6020B	11-2-20	11-4-20	
Chromium	64	0.65	EPA 6010D	10-28-20	10-29-20	
Copper	53	1.3	EPA 6010D	10-28-20	10-29-20	
Lead	6.9	6.5	EPA 6010D	10-28-20	10-29-20	
Mercury	0.067	0.032	EPA 7471B	11-4-20	11-4-20	
Nickel	58	3.2	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Silver	ND	0.32	EPA 6020B	11-2-20	11-4-20	
Thallium	ND	3.2	EPA 6010D	10-28-20	10-29-20	
Zinc	87	3.2	EPA 6010D	10-28-20	10-29-20	

Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Antimony	26	5.1	EPA 6010D	10-28-20	10-29-20	
Arsenic	93	5.1	EPA 6010D	10-28-20	10-29-20	
Beryllium	0.25	0.20	EPA 6020B	11-2-20	11-4-20	
Cadmium	79	0.20	EPA 6020B	11-2-20	11-4-20	
Chromium	28	1.0	EPA 6010D	10-28-20	10-29-20	
Copper	59	2.0	EPA 6010D	10-28-20	10-29-20	
Lead	2600	10	EPA 6010D	10-28-20	10-29-20	
Mercury	0.25	0.051	EPA 7471B	11-4-20	11-4-20	
Nickel	8.1	5.1	EPA 6010D	10-28-20	10-29-20	
Selenium	30	5.1	EPA 6010D	10-28-20	10-29-20	
Silver	11	0.51	EPA 6020B	11-2-20	11-4-20	
Thallium	8.9	5.1	EPA 6010D	10-28-20	10-29-20	
Zinc	290	5.1	EPA 6010D	10-28-20	10-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102SM1					
Lead	ND	1.0	EPA 6020B	11-2-20	11-5-20	
Laboratory ID:	MB1028SH1					
Antimony	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Arsenic	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Chromium	ND	0.50	EPA 6010D	10-28-20	10-29-20	
Copper	ND	1.0	EPA 6010D	10-28-20	10-29-20	
Lead	ND	5.0	EPA 6010D	10-28-20	10-29-20	
Nickel	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Selenium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Thallium	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Zinc	ND	2.5	EPA 6010D	10-28-20	10-29-20	
Laboratory ID:	MB1102SM1					
Beryllium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Cadmium	ND	0.10	EPA 6020B	11-2-20	11-4-20	
Silver	ND	0.25	EPA 6020B	11-2-20	11-4-20	
Laboratory ID:	MB1104S1					
Mercury	ND	0.025	EPA 7471B	11-4-20	11-4-20	

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Antimony	6.30	7.95	NA	NA		NA	NA	23	20	
Arsenic	18.0	20.0	NA	NA		NA	NA	11	20	
Chromium	18.2	19.9	NA	NA		NA	NA	9	20	
Copper	28.9	30.7	NA	NA		NA	NA	6	20	
Lead	28.2	33.5	NA	NA		NA	NA	17	20	
Nickel	16.2	17.1	NA	NA		NA	NA	5	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	104	124	NA	NA		NA	NA	18	20	
Laboratory ID:	10-27	79-02								
Beryllium	0.135	0.155	NA	NA		NA	NA	14	20	
Cadmium	2.16	2.04	NA	NA		NA	NA	5	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	10-27	79-02								
Mercury	0.0769	0.127	NA	NA		NA	NA	49	20	
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Lead	14.3	13.3	NA	NA		NA	NA	7	20	

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

0 0					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	88.0	83.5	100	100	6.30	82	77	75-125	5	20	
Arsenic	114	111	100	100	18.0	96	93	75-125	3	20	
Chromium	104	105	100	100	18.2	86	86	75-125	0	20	
Copper	80.5	76.0	50.0	50.0	28.9	103	94	75-125	6	20	
Lead	241	233	250	250	28.2	85	82	75-125	3	20	
Nickel	98.5	98.0	100	100	16.2	82	82	75-125	1	20	
Selenium	97.5	94.5	100	100	ND	98	95	75-125	3	20	
Thallium	44.4	43.9	50.0	50.0	ND	89	88	75-125	1	20	
Zinc	190	183	100	100	104	87	79	75-125	4	20	
Laboratory ID:	10-2	79-02									
Beryllium	49.8	51.3	50.0	50.0	0.135	99	102	75-125	3	20	
Cadmium	46.8	47.3	50.0	50.0	2.16	89	90	75-125	1	20	
Silver	22.5	22.3	25.0	25.0	ND	90	89	75-125	1	20	
Laboratory ID:	10-2	79-02									
Mercury	0.559	0.515	0.500	0.500	0.0769	96	88	80-120	8	20	
Laboratory ID:	10-2	79-02									
· · · · · ·	MS	MSD	MS	MSD		MS	MSD				
Lead	251	252	250	250	14.3	95	95	75-125	0	20	

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Naphthalene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.087	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.38	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.79	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.79	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.84	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.77	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	1.3	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.41	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.96	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.74	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.18	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.76	0.070	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	46 - 113				
Pyrene-d10	95	45 - 114				
Terphenyl-d14	100	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Naphthalene	0.077	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	0.088	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	0.078	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	0.0070	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	0.0047	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	0.0093	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	0.089	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	0.014	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	0.040	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	0.037	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	0.027	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	0.040	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	0.037	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	0.0073	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	0.023	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	0.022	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	0.0083	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	0.030	0.0046	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	76	45 - 114				
Terphenyl-d14	77	49 - 121				

13

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Naphthalene	0.28	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.80	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.54	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.084	EPA 8270E/SIM	10-29-20	10-31-20	U1
Phenanthrene	0.62	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.082	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.17	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.18	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.13	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.22	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.13	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	ND	0.082	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	46 - 113				
Pyrene-d10	84	45 - 114				
Terphenyl-d14	86	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Naphthalene	1.2	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	4.4	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	2.5	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.36	EPA 8270E/SIM	10-29-20	10-31-20	U1
Fluorene	0.41	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	3.6	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.13	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.35	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.49	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.41	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.94	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.33	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.17	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.087	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.17	0.076	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	105	46 - 113				
Pyrene-d10	113	45 - 114				
Terphenyl-d14	121	49 - 121				

15

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Naphthalene	0.086	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.048	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.039	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	0.0055	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.066	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.0071	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.049	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.032	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.011	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.025	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.030	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	0.0060	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.011	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.017	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.023	0.0049	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	69	45 - 114				
Terphenyl-d14	69	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Naphthalene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	0.0044	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	46 - 113				
Pyrene-d10	78	45 - 114				
Terphenyl-d14	76	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Naphthalene	0.098	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.25	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.25	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.014	EPA 8270E/SIM	10-29-20	10-31-20	U1
Acenaphthene	ND	0.012	EPA 8270E/SIM	10-29-20	10-31-20	U1
Fluorene	ND	0.016	EPA 8270E/SIM	10-29-20	10-31-20	U1
Phenanthrene	0.16	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	0.029	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.036	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.039	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.043	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.037	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.025	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.020	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	0.0091	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	0.0053	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.018	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	46 - 113				
Pyrene-d10	57	45 - 114				
Terphenyl-d14	65	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Naphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	46 - 113				
Pyrene-d10	84	45 - 114				
Terphenyl-d14	83	49 - 121				

19
Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Naphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0040	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	46 - 113				
Pyrene-d10	85	45 - 114				
Terphenyl-d14	81	49 - 121				

20

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Naphthalene	0.015	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.019	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.016	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.015	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.0073	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.0062	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.0079	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.0077	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0064	0.0044	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	46 - 113				
Pyrene-d10	70	45 - 114				
Terphenyl-d14	71	49 - 121				

21

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Naphthalene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0043	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	46 - 113				
Pyrene-d10	81	45 - 114				
Terphenyl-d14	78	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Naphthalene	0.022	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
2-Methylnaphthalene	0.050	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
1-Methylnaphthalene	0.035	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthylene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Acenaphthene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Fluorene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Phenanthrene	0.040	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Anthracene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Fluoranthene	0.0075	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Pyrene	0.0066	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]anthracene	0.0064	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Chrysene	0.014	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[b]fluoranthene	0.0082	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo(j,k)fluoranthene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[a]pyrene	0.0044	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Dibenz[a,h]anthracene	ND	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Benzo[g,h,i]perylene	0.0047	0.0041	EPA 8270E/SIM	10-29-20	10-31-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	46 - 113				
Pyrene-d10	68	45 - 114				
Terphenyl-d14	66	49 - 121				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Naphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
2-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
1-Methylnaphthalene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Acenaphthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluorene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Phenanthrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Chrysene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[b]fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo(j,k)fluoranthene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[a]pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Dibenz[a,h]anthracene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Benzo[g,h,i]perylene	ND	0.0020	EPA 8270E/SIM	10-29-20	10-30-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	82	49 - 121				

. . .

24

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-27	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.120	0.121	0.0833	0.0833	0.0558	77	78	51 - 115	1	26	
Acenaphthylene	0.0623	0.0653	0.0833	0.0833	0.00504	69	72	53 - 121	5	24	
Acenaphthene	0.0677	0.0754	0.0833	0.0833	0.00339	77	86	52 - 121	11	25	
Fluorene	0.0644	0.0705	0.0833	0.0833	0.00667	69	77	58 - 127	9	23	
Phenanthrene	0.126	0.136	0.0833	0.0833	0.0641	74	86	46 - 129	8	28	
Anthracene	0.0732	0.0793	0.0833	0.0833	0.0100	76	83	57 - 124	8	21	
Fluoranthene	0.0877	0.0932	0.0833	0.0833	0.0287	71	77	46 - 136	6	29	
Pyrene	0.0859	0.0921	0.0833	0.0833	0.0266	71	79	41 - 136	7	32	
Benzo[a]anthracene	0.0983	0.114	0.0833	0.0833	0.0191	95	114	56 - 136	15	25	
Chrysene	0.0890	0.102	0.0833	0.0833	0.0288	72	88	49 - 130	14	22	
Benzo[b]fluoranthene	0.0813	0.0937	0.0833	0.0833	0.0267	66	80	51 - 135	14	26	
Benzo(j,k)fluoranthene	0.0686	0.0758	0.0833	0.0833	0.00528	76	85	56 - 124	10	23	
Benzo[a]pyrene	0.0728	0.0833	0.0833	0.0833	0.0163	68	80	54 - 133	13	26	
Indeno(1,2,3-c,d)pyrene	0.0727	0.0819	0.0833	0.0833	0.0159	68	79	52 - 134	12	20	
Dibenz[a,h]anthracene	0.0685	0.0791	0.0833	0.0833	0.00596	75	88	58 - 127	14	17	
Benzo[g,h,i]perylene	0.0763	0.0861	0.0833	0.0833	0.0215	66	78	54 - 129	12	21	
Surrogate:											
2-Fluorobiphenyl						62	67	46 - 113			
Pyrene-d10						70	77	45 - 114			
Terphenyl-d14						71	80	49 - 121			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Diesel Range Organics	ND	26	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil	190	53	NWTPH-Dx	10-29-20	10-29-20	
Surrogate: o-Terphenyl	Percent Recovery 97	Control Limits 50-150				
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Diesel Range Organics	ND	35	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	69	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
, ,						
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Diesel Range Organics	34	31	NWTPH-Dx	10-29-20	10-29-20	Ν
Lube Oil	410	62	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Diesel Range Organics	71	29	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	160	57	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Diesel Range Organics	ND	37	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	73	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Diesel Range Organics	ND	32	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

26

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Diesel Range Organics	ND	41	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	82	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	83	50-150				
e respirentji						
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Diesel Range Organics		30		10-29-20	10-29-20	
Lube Oil Range Organics	ND	61	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits		10 20 20	10 20 20	
o-Ternhenvl		50-150				
0-reiphenyi	34	50-750				
Client ID:	TP-14-1 5-2					
Laboratory ID:	10_270_11					
Discol Pango Organico	ND	20		10 20 20	10 20 20	
Lubo Oil Pango Organico		30 60		10-29-20	10-29-20	
Surrogato:	Porcont Pocovory	Control Limite		10-29-20	10-29-20	
o Torphopul		50 150				
0-Terprienyr	91	50-750				
Client ID:	TP-1-0 5-1 5					
Laboratory ID:	10_270_12					
Discol Pango Organico	ND	22		10 20 20	10 20 20	
Lubo Oil Pango Organico	ND 95	33 65		10-29-20	10-29-20	
Lube Oil Kange Organics	J Dereent Decevery	Control Limito		10-29-20	10-29-20	
Surrogate.						
0-Terphenyi	95	50-750				
Client ID:	TD_2_1 5_2					
Laboratory ID:	10_270_13					
Diosol Rango Organico	ND	22		10 20 20	10 20 20	
Lube Oil Range Organics		55 65		10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits		10 20 20	10 20 20	
o-Ternhenvl	87	50-150				
0-reiphenyr	07	00-700				
Client ID:	TP-3-1 5-2					
Laboratory ID.	10-279-14					
Diesel Range Organics	ND	51		10-20-20	10-20-20	
Lube Oil Range Organics		100		10-29-20	10-29-20	
Surrogato:	Doroont Docovery	Control Limite		10-23-20	10-23-20	
Surroyale.	reiceni Kecovery					
o-reipnenyi	07	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

27

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-27	79-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						91 100	50-150			
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Diesel Range Organics	50.4	50.5	NA	NA		NA	NA	0	NA	Ν
Lube Oil	308	289	NA	NA		NA	NA	6	NA	
Surrogate:										
o-Terphenyl						97 91	50-150			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Gasoline	ND	6.0	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	58-129				
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Gasoline	ND	21	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	120	58-129				
Client ID:	TP-4-0-0.5					
Laboratory ID:	10-279-03					
Gasoline	ND	7.9	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	58-129				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Gasoline	19	9.2	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	58-129				
Client ID:	TP-16-5-5.5					
Laboratory ID:	10-279-07					
Gasoline	ND	11	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	58-129				
Client ID:	TP-13-1.5-2					
Laboratory ID:	10-279-08					
Gasoline	ND	7.8	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	TP-17-1.5-2					
Laboratory ID:	10-279-09					
Gasoline	ND	17	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Gasoline	ND	7.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	TP-14-1.5-2					
Laboratory ID:	10-279-11					
Gasoline	ND	7.3	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Gasoline	ND	10	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	TP-2-1.5-2					
Laboratory ID:	10-279-13					
Gasoline	ND	9.6	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Gasoline	ND	22	NWTPH-Gx	10-28-20	10-28-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

								Date	Date	•	
Analyte		Result		PQL	Ме	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1028S2									
Gasoline		ND		5.0	NWT	PH-G	ĸ	10-28-20	10-28-	20	
Surrogate:	Pei	rcent Recovery	Со	ntrol Limit	s						
Fluorobenzene		95		58-129							
Laboratory ID:		MB1028S3									
Gasoline		ND		5.0	NWT	PH-G	x	10-28-20	10-28-	20	
Surrogate:	Per	rcent Recovery	Со	ntrol Limit	s						
Fluorobenzene		94		58-129							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-27	79-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						120	121	58-129			
Laboratory ID:	10-26	64-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						107	108	58-129			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Aroclor 1016	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1221	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1232	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1242	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1248	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1254	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1260	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1262	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1268	ND	0.035	EPA 8082A	11-4-20	11-4-20	Х
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Client ID:	TP-6-0-0.5					
Laboratory ID:	10-279-05					
Aroclor 1016	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.029	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	90	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	Х
Surrogate:	Percent Recovery	Control Limits				
DCB	97	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB11	104S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:											
DCB						96	96	46-125			
Laboratory ID:	SB11	104S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.301	0.272	0.250	0.250	N/A	120	109	50-134	10	18	Х
Surrogate:											
DCB						102	101	46-125			

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.46	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Client ID:	TP-17-1-5-2					

Olicin ID.	11 17 1.5 2					
Laboratory ID:	10-279-09					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	1.5	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM1					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T1					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

					Source	Ре	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-2	79-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	0.462	0.462	NA	NA		I	NA	NA	0	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		l	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	10-2	79-02									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20	
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20	
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20	
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20	

Silver	0.960	0.968	1.00	1.00	ND	96	97	75-125	1	20	
Laboratory ID:	10-27	79-02									
Mercury	0.0488	0.0486	0.0500	0.0500	ND	98	97	75-125	0	20	
											_

ND

ND

96

101

95

100

75-125

75-125

0

1

20

20

Lead

Selenium

9.55

4.05

9.51

4.01

10.0

4.00

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

10.0

4.00

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9-0-0.5					
Laboratory ID:	10-279-01					
Total Solids	95	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-7-4.5-5					
Laboratory ID:	10-279-02					
Total Solids	72	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-4-0-0.5 10-279-03					
Total Solids	81	0.50	SM 2540G	10-29-20	10-30-20	
Client ID: Laboratory ID:	TP-6-0-0.5 10-279-05					
Total Solids	88	0.50	SM 2540G	10-29-20	10-30-20	
Client ID: Laboratory ID:	TP-16-5-5.5 10-279-07					
Total Solids	68	0.50	SM 2540G	10-29-20	10-30-20	
Client ID: Laboratory ID:	TP-13-1.5-2 10-279-08					
Total Solids	79	0.50	SM 2540G	10-29-20	10-30-20	
Client ID: Laboratory ID:	TP-17-1.5-2 10-279-09					
Total Solids	61	0.50	SM 2540G	10-29-20	10-30-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

37

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15-1-1.5					
Laboratory ID:	10-279-10					
Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:						
Laboratory ID:	10 270 11					
Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	
		0.00	01120100	10 20 20	10 00 20	
Client ID:	TP-1-0.5-1.5					
Laboratory ID:	10-279-12					
Total Solids	77	0.50	SM 2540G	10-29-20	10-30-20	
	1 P-2-1.3-2					
	10-279-13	0.50	014 05 400	10.00.00	10.00.00	
I otal Solids	11	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	TP-3-1.5-2					
Laboratory ID:	10-279-14					
Total Solids	49	0.50	SM 2540G	10-29-20	10-30-20	

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

			Source	Percent	Recovery		RPD	
Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
10-27	/9-02							
ORIG	DUP							
72.1	70.8	NA	NA	NA	NA	2	20	
10-26	64-01							
ORIG	DUP							
89.3	91.7	NA	NA	NA	NA	3	20	
	Res 10-27 ORIG 72.1 10-26 ORIG 89.3	Result 10-279-02 ORIG DUP 72.1 70.8 10-264-01 ORIG ORIG DUP 89.3 91.7	Result Spike Level 10-279-02 ORIG DUP 72.1 70.8 10-264-01 ORIG DUP 89.3 91.7	Result Spike Level Source Result 10-279-02	ResultSpike LevelSource ResultPercent Recovery10-279-02	ResultSpike LevelSource ResultPercent RecoveryRecovery Limits10-279-02	ResultSpike LevelSource ResultPercent RecoveryRecovery LimitsRPD10-279-02	ResultSpike LevelSource ResultPercent RecoveryRecoveryRPD LimitsRPD Limit10-279-02ORIGDUP72.170.8NANANANA22010-264-01ORIGDUP89.391.7NANANANA320

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

November 17, 2020

Vista Work Order No. 2002337

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 28, 2020 under your Project Name '202005-0101'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2002337 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. The sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

This sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2002337-01	TP-6-0-0.5	21-Oct-20 12:13	28-Oct-20 09:49	Clear Glass Jar, 250mL

Client Project: 202005-0101

ANALYTICAL RESULTS

Sample ID: Method Blank						EPA Method	1613B
Client DataName:OnSite EnviroProject:202005-0101Matrix:Solid	nmental Inc.		Laboratory Dat Lab Sample: QC Batch: Sample Size:	a B0K0041-BLK1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	ЕМРС		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0263				13-Nov-20 10:55	1
1,2,3,7,8-PeCDD	ND	0.0497				13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDD	ND	0.0568				13-Nov-20 10:55	1
1,2,3,6,7,8-HxCDD	ND	0.0574				13-Nov-20 10:55	1
1,2,3,7,8,9-HxCDD	ND	0.0721				13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDD	ND	0.0573				13-Nov-20 10:55	1
	ND	0.116				13-Nov-20 10:55	1
2,3,7,8-1CDF	ND	0.0198				13-Nov-20 10:55	1
1,2,3,7,8-PeCDF	ND	0.0288				13-Nov-20 10:55	1
2,3,4,7,8-PeCDF	ND	0.0235				13-Nov-20 10:55	1
1,2,3,4,7,8-fixed	ND	0.0329				13-Nov-20 10:55	1
2 3 4 6 7 8-HxCDF	ND	0.0389				13-Nov-20 10:55	1
1 2 3 7 8 9-HxCDF	ND	0.0698				13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDF	ND	0.0487				13-Nov-20 10:55	1
1,2,3,4,7,8,9-HpCDF	ND	0.0568				13-Nov-20 10:55	1
OCDF	ND	0.0915				13-Nov-20 10:55	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.0263					
Total PeCDD	ND	0.0497					
Total HxCDD	ND	0.0721					
Total HpCDD	ND	0.0573					
Total TCDF	ND	0.0198					
Total PeCDF	ND	0.0288					
Total HxCDF	ND	0.0698					
Total HpCDF	ND	0.0568					
Labeled Standards	Туре	% Rec	covery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	80.	.4	25 - 164		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDD	IS	81.	.8	25 - 181		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDD	IS	88.	.4	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDD	IS	89.	.3	28 - 130		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDD	IS	80.	.0	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDD	IS	80.	.0	23 - 140		13-Nov-20 10:55	1
13C-OCDD	IS	74.	.4	17 - 157		13-Nov-20 10:55	1
13C-2,3,7,8-TCDF	IS	83.	.2	24 - 169		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDF	IS	84.	.6	24 - 185		13-Nov-20 10:55	1
13C-2,3,4,7,8-PeCDF	IS	90.	.3	21 - 178		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDF	IS	82.	.0	26 - 152		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDF	IS	82.	.7	26 - 123		13-Nov-20 10:55	1
13C-2,3,4,6,7,8-HxCDF	IS	83.	.8	28 - 136		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDF	IS	71.	.1	29 - 147		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDF	IS	75.	.5	28 - 143		13-Nov-20 10:55	1
13C-1,2,3,4,7,8,9-HpCDF	IS	71.	.1	26 - 138		13-Nov-20 10:55	1
13C-OCDF	IS	71.	.5	17 - 157		13-Nov-20 10:55	1
37Cl-2,3,7,8-TCDD	CRS	95.	.5	35 - 197		13-Nov-20 10:55	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: OPR						EPA Method	1613B
Client Data Name: OnSite Er Project: 202005-0 Matrix: Solid	nvironmental Inc. 0101		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0K0041-BS1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 06:05 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.0	20.0	105	67-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDD	106	100	106	70-142		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDD	101	100	101	70-164		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDD	104	100	104	76-134		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDD	103	100	103	64-162		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDD	102	100	102	70-140		13-Nov-20 09:25	1
OCDD	204	200	102	78-144		13-Nov-20 09:25	1
2,3,7,8-TCDF	19.4	20.0	96.8	75-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDF	102	100	102	80-134		13-Nov-20 09:25	1
2,3,4,7,8-PeCDF	102	100	102	68-160		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDF	103	100	103	72-134		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDF	101	100	101	84-130		13-Nov-20 09:25	1
2,3,4,6,7,8-HxCDF	100	100	100	70-156		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDF	98.9	100	98.9	78-130		13-Nov-20 09:25	l
1,2,3,4,6,7,8-HpCDF	103	100	103	82-122		13-Nov-20 09:25	1
1,2,3,4,7,8,9-HpCDF	100	100	100	78-138		13-Nov-20 09:25	1
	200	200	100	63-170	0 1.6	13-Nov-20 09:25	
	Туре		% Recovery	Limits	Quanners		Dilution
13C-2,3,7,8-1CDD	18		88.5	20-175		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDD	15		89.5	21-227		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDD	IS		91.6	21-193		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDD	IS		91.8	25-163		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HXCDD	15		90.8	21-193		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDD	18		87.0	26-166		13-Nov-20 09:25	1
13C-0CDD	18		/9.6	13-199		13-Nov-20 09:25	1
13C-2,3,7,8-1CDF	IS		88.7	22-152		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDF	15		93.0	21-192		13-Nov-20 09:25	1
13C-2,3,4,7,8-PeCDF	15		95.0	13-328		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HXCDF	15		84.0	19-202		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDF	IS		85.3	21-159		13-Nov-20 09:25	l
13C-2,3,4,6,7,8-HxCDF	IS		85.0	22-176		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDF	IS		87.1	17-205		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDF	IS		78.0	21-158		13-Nov-20 09:25	1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.8	20-186		13-Nov-20 09:25	1
13C-OCDF	IS		77.7	13-199		13-Nov-20 09:25	1
37Cl-2,3,7,8-TCDD	CRS		106	31-191		13-Nov-20 09:25	1

Sample ID: TP-6-	-0-0.5					EPA Method	1613B
Client Data			Laboratory Dat	a		20.0 / 20.00	40
Name: Or	Site Environmental Ir	ю.	Lab Sample:	2002337-01 B0K0041	Date Received:	28-Oct-20 09	:49
Project: 20	12005-0101		Sample Size:	12.2 g	Column:		
Date Collected: 21	-Oct-20 12:13		% Solids:	82.4	Column.	ZB-DIOXIN	
Analyte	Conc. (j	pg/g) EDL	ЕМРС		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	Ν	1D	0.0977			14-Nov-20 05:46	1
1,2,3,7,8-PeCDD	0.0	665			J	14-Nov-20 05:46	1
1,2,3,4,7,8-HxCDD	Ν	1D	0.812			14-Nov-20 05:46	1
1,2,3,6,7,8-HxCDD	12	2.6				14-Nov-20 05:46	1
1,2,3,7,8,9-HxCDD	5.	.14				14-Nov-20 05:46	1
1,2,3,4,6,7,8-HpCDD	1	87				14-Nov-20 05:46	1
OCDD	Tr.	/20			-	14-Nov-20 05:46	1
2,3,7,8-TCDF	0.	170			J	14-Nov-20 05:46	1
1,2,3,7,8-PeCDF	0.	189			J	14-Nov-20 05:46	1
2,3,4,/,8-PeCDF	0	361 504			J	14-Nov-20 05:46	1
1,2,3,4,7,8-HXCDF	0.:	204			J	14-Nov-20 05:46	1
1,2,3,0,7,8-fixCDF	0	552 575			J	14-Nov-20 05:40	1
2,3,4,0,7,0-HXCDF	0.0	033			J	14-Nov-20 05:46	1
1,2,3,7,6,7%-HrCDF	0.0	0.2			J	14-Nov-20 05:46	1
1,2,3,4,0,7,0-HpCDF	0.4	509			I	14-Nov-20 05:46	1
OCDF	4	3.1			U	14-Nov-20 05:46	1
Toxic Equivalent						111101 20 00110	*
TEOMinWHO2005Di	ioxin 5	19					
Totals							
Total TCDD	1.	82	1.96				
Total PeCDD	3.	80	4.79				
Total HxCDD	89	9.3	90.1				
Total HpCDD	4	09					
Total TCDF	0.6	520	0.690				
Total PeCDF	3.	74	4.32				
Total HxCDF	15	5.1					
Total HpCDF	41	1.1					
Labeled Standards	Тур	e % I	Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	8	95.7	25 - 164		14-Nov-20 05:46	1
13C-1,2,3,7,8-PeCDD) IS	5	90.9	25 - 181		14-Nov-20 05:46	1
13C-1,2,3,4,7,8-HxCI	DD IS	5	92.7	32 - 141		14-Nov-20 05:46	1
13C-1,2,3,6,7,8-HxCI	DD IS	5	95.1	28 - 130		14-Nov-20 05:46	1
13C-1,2,3,7,8,9-HxCI	DD IS	5	94.9	32 - 141		14-Nov-20 05:46	1
13C-1,2,3,4,6,7,8-HpC	CDD IS	5	93.8	23 - 140		14-Nov-20 05:46	1
13C-OCDD	IS	S S	89.4	17 - 157		14-Nov-20 05:46	1
13C-2,3,7,8-TCDF	IS	5	97.3	24 - 169		14-Nov-20 05:46	1
13C-1,2,3,7,8-PeCDF	IS	S	99.0	24 - 185		14-Nov-20 05:46	1
13C-2,3,4,7,8-PeCDF	IS	5	97.5	21 - 178		14-Nov-20 05:46	1
13C-1,2,3,4,7.8-HxCI	DF IS	5	88.9	26 - 152		14-Nov-20 05:46	1
13C-1,2,3,6.7.8-HxCI	DF IS	8	90.9	26 - 123		14-Nov-20 05:46	1
13C-2,3,4,6.7.8-HxCI	DF IS	5	90.6	28 - 136		14-Nov-20 05:46	1
13C-1,2.3.7.8.9-HxCI	DF IS	5	91.5	29 - 147		14-Nov-20 05:46	1
13C-1,2.3.4.6.7.8-Hn(CDF IS	5	85.1	28 - 143		14-Nov-20 05:46	1
13C-1.2.3.4.7 8 9-Hp	CDF IS	5	86.8	26 - 138		14-Nov-20 05-46	1
13C-OCDF		-	83.4	17 - 157		14-Nov-20 05:46	1
37Cl-2.3.7 8-TCDD	CE		106	35 - 197		14-Nov-20 05:46	1
	CI CI			55 171			-

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
Κ	EMPC (specific projects only)
LOD	Limit of Detection
LOQ	Limit of Quantitation
Μ	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue			
Description of Test	Method		
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B		
Dilution GC/HRMS			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A		
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C		
by GC/HRMS			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699		
HRGC/HRMS			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537		
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B		
GC/HRMS			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA		
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A		

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

MATRIX: Non-Potable Water			
Description of Test	Method		
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B		
Dilution GC/HRMS			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A		
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C		
by GC/HRMS			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699		
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537		
Dioxin by GC/HRMS	EPA 613		
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B		
Dibenzofurans by GC/HRMS			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA		
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A		

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

2002337 2.3

		Laboratory Reference #: <u>10-279</u>					
	Turnaround Request	Project Manager:	David Baumeister				
	1 Day 2 Day 3 Day	email:	dbaumeister@onsite-env.com				
2	Standard	Project Number: _	202005-0101				
	Other:	Project Name: _					

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.		Requested Analyses
	TP-6-0-0.5	10/21/20	12:13	S	1	Dioxin/Furans	
	Signature	Con	ipany		Date	Time	Comments/Special Instructions
Relinqu	uished by:	GE			10/27/20	1600	
Receive	ed by:		UPS				
Relinquished by:		UPS				•	
Received by: Uluulut V		VAL			1-128/20	09:49	
Relinqu	iished by:						
Receive	ed by:						

Laboratory: Vista Analytical Laboratory

Attention: Jennifer Miller

Address: 1104 Windfield Way, El Dorado Hills, CA 95762

Phone Number: (916) 673-1520

Page 1 of 1

Sample Log-In Checklist

						Pa	ige # _		of	_		
Vista Work Order #: 2002337 TAT							Std		_			
Samples	Date/Time			Initials:	Location: UR-2							
Arrival:	10/23	120 0	9:49	Uch	✓ Shelf/Rack			NA_				
Delivered By:	FedEx	UPS	On Tra	ac GLS	DHI	-	Hano Deliver	d ed	Other			
Preservation:	lo	ce	Bl	ue Ice	Teo Io	hni e	Dry	Ice	None			
Temp °C: 2,3 (uncorrected) Probe used: Y / A) Thermometer ID: TR-4									4			
Temp °C: 2.3 (corrected)												
	YES NO NA											
Shipping Contain	ier(s) Intac	:t?						V				
Shipping Custody	y Seals Int	act?								\times		
Airbill	Trk	# IZ	634E	EIWOI	95	332	127	L	L_			
Shipping Docum	entation P	resent?						K	1			
Shipping Contain	Shipping Container Vista Client Retain						Re	eturn	Dis	oose		
Chain of Custody / Sample Documentation Present?												
Chain of Custody / Sample Documentation Complete?												
Holding Time Acceptable?												
	Date/Tin	ne		Initials:	Location: WR-2							
Logged In:	10/30/20	, 11	07	Vall	Shelf/Rack: + J							
COC Anomaly/Sa	ample Acc	eptance F	orm com	pleted?				~				

Comments:

CoC/Label Reconciliation Report WO# 2002337

LabNumber CoC Sample ID		Sa	mplcAlias	Sample Date/Time	Container		Sample BaseMatrix Comments
2002337-01 A TP-6-0-0.5	9° - 20	變領		21-Oct-20 12:13	Clear Glass J	ar, 250mL	Solid
Checkmarks indicate that information on the COC reconciled with the sample Any discrepancies are noted in the following columns.	label.						
	Yes	No	NA	Comments:		lass int	
Sample Container Intact?	V			(A) Sample rec'd	in clear c	flass fair	
Sample Custody Seals Intact?			V				
Adequate Sample Volume?	\checkmark						
Container Type Appropriate for Analysis(es)		\bigvee					
Preservation Documented: Na2S2O3 Trizma None Other			 ✓ 	<i>c</i>			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V				
Verifed by/Date: 10/30/20		•	•				
Rev. Date: 11/08/2019 Rev. No: 0

	Α	Ν	0	N	1A	Ĺ	Y	F	Ο	R	N	/
--	---	---	---	---	----	---	---	---	---	---	---	---

2002337

Vista Work Order

Initial/Date	The fo	lowing checked issues were noted during sample receipt and login:
		1. The samples were received out of temperature at (WI-PHT): Was ice present: Yes No Melted Blue ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
		5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
		6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
12010 30/20	\checkmark	16. An incorrect container-type was used. All or Sample Name: $TP-6-0.0.5$
		17. Other:

Bolded items require sign-off
Client Contacted: Yest via email
Date of Contact: 10/30/2020
Vista Client Manager: KJR
Resolution: Client informed of container type in accrown cargo been
letter email

Page: 1 of 1

Shipment Method Chain of Custody Record & Laboratory Analysis Request Laboratory Name: 14 Line 15 13 18 16 12 10 CT 17 0 8 V 6 4 ω N -Project Manager: Project Number: Phone Number: Project Name: トロ TP-4-1D 10-12tP-6-TP-S-TP-19-13 10-10-TP-16-0-0.5 TP-4-35-4 「アーフー Relinquished By Notes: Signature/Printed Name Relinquished By: Signature/Printed Name TP-17-1.5 -9-0-0.5 í Field Sample ID 5 Date: 1 ١ 1 í 4.5-5 0-0.5 0-0.5 0 HOK 1.5-2 1.5-2 ABC RECUCIÓN 1.5-2 5-2 5-5.5 2010-331 - 1738/ matt Wolt 10/22/2020 Ś 1 Fedex OVISite -1.5 5 1 X Added NUM III くうナビ 10/21/2020 10/24/2020 10122/2010 10/22/2020 10/12/1020 10/2-1/2020 10/21/2020 1010 10/21/2020 10/22/2022/25/ 10/22/2020 10/22/2020 10/22/2020 10/24/2020 1223 10/2/2020 Date/Time Collection 6 10/26/2020. FUR TANNER Kamilo Phase 1520 1245 00 0926 1410 1133 1111 083 1034 1527 オレク there Company: Company: Anchor QEA, LLC Matrix N A S 5 1 5 5 S Cr S n S DB F 1 t I 5 T F No. of Containers F 7 £ 1 W 1 1 STA 3 \otimes PPMatol 5 X R X \oslash Date/Time Date/Time (D/22/2020 X Mercury /Metal 51 8 R R 2 $\otimes \otimes$ Ø 2 < Ø Fotal Solids PAHS れいてけのう 1402 Grain Size Total Organic Carbon X Dioxin/Furans R × Signature/Printed Name Signature/Printed Name Archive Received By: Received By Ì R 8 R X 8 TPHDX/ETPHE 8 X 0 R X X GRO est Parameters DEON X MS/MSD Ø PCB R 5 2 TELP Metals 10.00 R M.VUUN HA X × ANA XX RRRR K X X TOTAL SOLIDS 25406 Comments/Preservation Company: Company: MS MSD 0/23/20 0-27 % ANCHOR COEA SHI O&1-SAMPLE G Date/Time Date/Time

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original

Page of

Sample/Cooler Receipt and Acceptance Checklist

Client:		Initiated by	M	91 2012	
OnSite Project Number:		Date Initiat	ed: 10/2	23/20	
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	es	No	N/A	1 2 3 4	1.00
1.2 Were the custody seals intact?	Yes	No	N/A	1234	
1.3 Were the custody seals signed and dated by last custodian?	es	No	N/A	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	Tes	No	N/A	1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Tes	No	N/A	Temperature:	55
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	Que a	~		
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
2.0 Chain of Custody Verification	0				
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	Yes	No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No		1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	(No)		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	Yes	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Yes	No	N/A	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	N/A	1 2 3 4	
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yes	No	N/A	1 2 3 4	
	#	7.	N/A	1234	

2,4) #7) -6- an 1jær	
3.2) #8-14) MeOH viels horizontal	

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

November 17, 2020

Derek Ormerod Anchor QEA 1201 3rd Ave, Suite 2600 Seattle, WA 98101

Re: Analytical Data for Project 202005-01.01 Laboratory Reference No. 2010-327

Dear Derek:

Enclosed are the analytical results and associated quality control data for samples submitted on October 28, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: November 17, 2020 Samples Submitted: October 28, 2020 Laboratory Reference: 2010-327 Project: 202005-01.01

Case Narrative

Samples were collected on October 26 and 27, 2020 and received by the laboratory on October 28, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx (soil) Analysis

The surrogate percent recovery is outside control limits on the high end for sample GP-2-25-27 due to reduced methanol volumes in the provided field-extracted Method 5035A VOA vial. Because the sample is non-detect, no further action was taken.

PCBs EPA 8082A (soil) Analysis

The Sample 10-279-02 was used as the MS/MSD pair. The RPD between the MS/MSD (26%) was above quality control limit of 15%. The sample was re-extracted and rerun with similar results and attributed to matrix effect. All other QC was within their corresponding quality control limits. No further action was performed.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Sediment						
Units: mg/kg (ppm)				-	- /	
A I		501		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	GP-2-8-9					
Laboratory ID:	10-327-01	0.4		40.00.00	10.00.00	
Gasoline		8.1	NWTPH-GX	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Gasoline	ND	20	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	163	58-129				Q
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Gasoline	ND	7.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Gasoline	ND	7.8	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	58-129				
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Gasoline	ND	7.6	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	58-129				
Client ID:	GP-5-6-9-7-5					
Laboratory ID:	10-327-08					
Gasoline	ND	6.5	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Gasoline	ND	6.4	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	58-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Sediment Units: mg/kg (ppm)

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Gasoline	ND	6.3	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	58-129				
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Gasoline	ND	11	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Gasoline	ND	8.0	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	115	58-129				
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Gasoline	ND	6.6	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Solid Units: mg/kg (ppm)

								Date	Date	•	
Analyte		Result		PQL	Ме	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1029S1									
Gasoline		ND		5.0	NWT	PH-G	x	10-29-20	10-29-	20	
Surrogate:	Pe	rcent Recovery	, Co	ntrol Limit	s						
Fluorobenzene		96		58-129							
Laboratory ID:		MB1029S2									
Gasoline		ND		5.0	NWT	PH-G	x	10-29-20	10-29-	20	
Surrogate:	Pe	rcent Recovery	, Co	ntrol Limit	s						
Fluorobenzene		96		58-129							
America	Dec		0	- 11	Source	Per	cent	Recovery		RPD	-
Analyte	Res	suit	эрік	e Levei	Result	Reco	overy	Limits	RPD	Limit	Flags
	40.00	7 40									
Laboratory ID:	000										
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						106	108	58-129			
Laboratory ID:	10-34	49-01									
-	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						96	96	58-129			

5

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	TB-201026					
Laboratory ID:	10-327-19					
Gasoline	ND	100	NWTPH-Gx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-120				

6

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • • •								Date	Date)	
Analyte		Result PQL Method Prepare		Prepared	d Analyzed		Flags				
METHOD BLANK											
Laboratory ID:		MB1029W1									
Gasoline		ND		100	NWT	PH-G	х	10-29-20	10-29-	20	
Surrogate:	Pe	rcent Recover	y Cont	rol Lim	its						
Fluorobenzene		84	6	5-120							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-17									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						83	83	65-120			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Diesel Range Organics	ND	33	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	67	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Diesel Range Organics	ND	33	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	66	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Diesel Range Organics	ND	32	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	64	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
	GP-1-20-22					
Laboratory ID.	10-327-00	04		44.0.00	44.0.00	
Lubo Oil Range Organics		34 60		11-2-20	11-2-20	
Lube Oli Range Organics	Doroont Booovory	Control Limito		11-2-20	11-2-20	
o Torphonyl	75	50 150				
0-Terphenyi	75	50-150				
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Diesel Range Organics	ND	35	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	70	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	78	50-150				
	-					
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Diesel Range Organics	ND	32	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

8

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Diesel Range Organics	ND	31	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	62	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Diesel Range Organics	ND	31	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	63	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Diesel Range Organics	ND	38	NWTPH-Dx	11-2-20	11-2-20	
		76	NVVIPH-DX	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	80	50-150				
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Diesel Range Organics	ND	35	NWTPH-Dx	11-2-20	11-2-20	
Lube Oil Range Organics	ND	69	NWTPH-Dx	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	GP-3-14 4-15 9					
Laboratory ID:	10-327-16					
Diesel Range Organics	ND	30		11-6-20	11_6_20	
Lube Oil Range Organics	ND	50 60	NW/TPH-Dv	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits		11-0-20	11-0-20	
o-Ternhenvl	105	50-150				
	100	00 100				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

							[Date	Date		
Analyte		Result		PQL	Met	hod	Pre	epared	Analyzed	FI	ags
METHOD BLANK											
Laboratory ID:		MB1102S1									
Diesel Range Organics		ND		25	NWTF	PH-Dx	11	-2-20	11-2-20		
Lube Oil Range Organics	6	ND		50	NWTF	PH-Dx	11	-2-20	11-2-20		
Surrogate:	Pe	rcent Recovery	Con	trol Limits							
o-Terphenyl		92	5	60-150							
Laboratory ID:		MB1106S1									
Diesel Range Organics		ND		25	NWTF	PH-Dx	11	-6-20	11-6-20		
Lube Oil Range Organics	6	ND		50	NWTF	PH-Dx	11	-6-20	11-6-20		
Surrogate:	Pe	rcent Recovery	Con	trol Limits							
o-Terphenyl		106	5	50-150							
					Source	Perce	nt	Recovery		RPD	
Analyte	Re	esult	Spike	e Level	Result	Recove	erv	Limits	RPD	Limit	Flags
DUPLICATE			-				,				
Laboratory ID:	10-3	327-10									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						92	74	50-150			
Laboratory ID:	SB1	102S1									
	ORIG	DUP									
Diesel Fuel #2	100	94.0	NA	NA		NA		NA	6	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						100	91	50-150			
Laboratory ID:	SB1	106S1									
	ORIG	DUP									
Diesel Fuel #2	91.0	85.2	NA	NA		NA		NA	7	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						102	98	50-150			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Posult	POI	Method	Date Prepared	Date Analyzed	Flage
	CP_6_CW	r ul	Method	Frepareu	Analyzeu	i lays
Laboratory ID:	10-327-12					
Diesel Range Organics	ND	0.10		10-20-20	10-20-20	
Lube Oil Range Organics	ND	0.10	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits		10 20 20	10 20 20	
o-Terphenyl	86	50-150				
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Diesel Range Organics	0.12	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	0.29	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Diesel Range Organics	0.11	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	0.27	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	97	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1029W1					
Diesel Range Organics	ND	0.10	NWTPH-Dx	10-29-20	10-29-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	10-29-20	10-29-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-3	27-17								
	ORIG	DUP								
Diesel Range Organics	0.120	0.0927	NA	NA		NA	NA	26	NA	
Lube Oil Range Organics	0.287	0.221	NA	NA		NA	NA	26	NA	
Surrogate:										
o-Terphenyl						97 81	50-150			

12

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Naphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	48	46 - 113				
Pyrene-d10	52	45 - 114				
Terphenyl-d14	54	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Naphthalene	0.0078	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	0.013	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	0.0084	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	0.024	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	0.037	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	0.11	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	0.025	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	0.20	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	0.14	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	0.066	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	0.065	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	0.055	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	0.016	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	0.021	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	0.0058	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	0.0048	0.0044	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	46 - 113				
Pyrene-d10	102	45 - 114				
Terphenyl-d14	101	49 - 121				

14

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Naphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0043	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	46 - 113				
Pyrene-d10	97	45 - 114				
Terphenyl-d14	100	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Naphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	46 - 113				
Pyrene-d10	104	45 - 114				
Terphenyl-d14	106	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Naphthalene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
2-Methylnaphthalene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
1-Methylnaphthalene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthylene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Fluorene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Phenanthrene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Anthracene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Fluoranthene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Pyrene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]anthracene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Chrysene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[b]fluoranthene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo(j,k)fluoranthene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]pyrene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Dibenz[a,h]anthracene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[g,h,i]perylene	ND	0.0047	EPA 8270E/SIM	11-3-20	11-3-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	46 - 113				
Pyrene-d10	60	45 - 114				
Terphenyl-d14	62	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Naphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
2-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-3-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	46 - 113				
Pyrene-d10	58	45 - 114				
Terphenyl-d14	60	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Naphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0041	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	46 - 113				
Pyrene-d10	101	45 - 114				
Terphenyl-d14	99	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Naphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0042	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	54	46 - 113				
Pyrene-d10	56	45 - 114				
Terphenyl-d14	57	49 - 121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Naphthalene	0.043	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	0.050	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	0.042	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	0.028	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	0.0053	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	0.010	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	0.0094	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	0.013	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	0.020	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	0.015	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	0.013	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	0.0077	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	0.0047	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	0.012	0.0040	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	46 - 113				
Pyrene-d10	55	45 - 114				
Terphenyl-d14	75	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Naphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
2-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
1-Methylnaphthalene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Acenaphthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluorene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Phenanthrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Chrysene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[b]fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo(j,k)fluoranthene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[a]pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Dibenz[a,h]anthracene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Benzo[g,h,i]perylene	ND	0.0046	EPA 8270E/SIM	11-3-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	46 - 113				
Pyrene-d10	50	45 - 114				
Terphenyl-d14	51	49 - 121				

22

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Naphthalene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
2-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
1-Methylnaphthalene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthylene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Fluorene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Phenanthrene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Anthracene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Fluoranthene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Pyrene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]anthracene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Chrysene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[b]fluoranthene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo(j,k)fluoranthene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]pyrene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Dibenz[a,h]anthracene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[g,h,i]perylene	ND	0.0040	EPA 8270E/SIM	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	46 - 113				
Pyrene-d10	83	45 - 114				
Terphenyl-d14	86	49 - 121				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1103S1					
Naphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
2-Methylnaphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
1-Methylnaphthalene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthylene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Acenaphthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Fluorene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Phenanthrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Chrysene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[b]fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo(j,k)fluoranthene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[a]pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Dibenz[a,h]anthracene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Benzo[g,h,i]perylene	ND	0.0027	EPA 8270E/SIM	11-3-20	11-3-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	46 - 113				
Pyrene-d10	58	45 - 114				
Terphenyl-d14	56	49 - 121				

24

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1106S1					
Naphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
2-Methylnaphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
1-Methylnaphthalene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthylene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Acenaphthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Fluorene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Phenanthrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Chrysene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[b]fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo(j,k)fluoranthene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[a]pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Dibenz[a,h]anthracene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Benzo[g,h,i]perylene	ND	0.0033	EPA 8270E/SIM	11-6-20	11-6-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	46 - 113				
Pyrene-d10	106	45 - 114				
Terphenyl-d14	95	49 - 121				

25

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-32	27-10									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0710	0.0687	0.0833	0.0833	ND	85	82	51 - 115	3	26	
Acenaphthylene	0.0733	0.0704	0.0833	0.0833	ND	88	85	53 - 121	4	24	
Acenaphthene	0.0729	0.0707	0.0833	0.0833	ND	88	85	52 - 121	3	25	
Fluorene	0.0787	0.0800	0.0833	0.0833	ND	94	96	58 - 127	2	23	
Phenanthrene	0.0779	0.0754	0.0833	0.0833	ND	94	91	46 - 129	3	28	
Anthracene	0.0802	0.0781	0.0833	0.0833	ND	96	94	57 - 124	3	21	
Fluoranthene	0.0829	0.0843	0.0833	0.0833	ND	100	101	46 - 136	2	29	
Pyrene	0.0775	0.0823	0.0833	0.0833	ND	93	99	41 - 136	6	32	
Benzo[a]anthracene	0.0804	0.0845	0.0833	0.0833	ND	97	101	56 - 136	5	25	
Chrysene	0.0790	0.0777	0.0833	0.0833	ND	95	93	49 - 130	2	22	
Benzo[b]fluoranthene	0.0792	0.0869	0.0833	0.0833	ND	95	104	51 - 135	9	26	
Benzo(j,k)fluoranthene	0.0769	0.0730	0.0833	0.0833	ND	92	88	56 - 124	5	23	
Benzo[a]pyrene	0.0777	0.0798	0.0833	0.0833	ND	93	96	54 - 133	3	26	
Indeno(1,2,3-c,d)pyrene	0.0804	0.0821	0.0833	0.0833	ND	97	99	52 - 134	2	20	
Dibenz[a,h]anthracene	0.0788	0.0784	0.0833	0.0833	ND	95	94	58 - 127	1	17	
Benzo[g,h,i]perylene	0.0787	0.0784	0.0833	0.0833	ND	94	94	54 - 129	0	21	
Surrogate:											
2-Fluorobiphenyl						88	84	46 - 113			
Pyrene-d10						96	98	45 - 114			
Terphenyl-d14						95	102	49 - 121			

Matrix: Soil Units: mg/Kg

0 0					F	Perc	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	R	eco	very	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB11	06S1									
	SB	SBD	SB	SBD	S	В	SBD				
Naphthalene	0.0752	0.0705	0.0833	0.0833	9	0	85	60 - 116	6	16	
Acenaphthylene	0.0794	0.0800	0.0833	0.0833	9	5	96	60 - 125	1	15	
Acenaphthene	0.0789	0.0776	0.0833	0.0833	9	5	93	60 - 121	2	15	
Fluorene	0.0802	0.0803	0.0833	0.0833	9	6	96	65 - 126	0	15	
Phenanthrene	0.0806	0.0801	0.0833	0.0833	9	7	96	65 - 120	1	15	
Anthracene	0.0796	0.0811	0.0833	0.0833	9	6	97	67 - 125	2	15	
Fluoranthene	0.0854	0.0829	0.0833	0.0833	10)3	100	66 - 125	3	15	
Pyrene	0.0838	0.0820	0.0833	0.0833	10)1	98	62 - 125	2	15	
Benzo[a]anthracene	0.0884	0.0859	0.0833	0.0833	10)6	103	72 - 129	3	15	
Chrysene	0.0845	0.0835	0.0833	0.0833	10)1	100	66 - 123	1	15	
Benzo[b]fluoranthene	0.0867	0.0859	0.0833	0.0833	10)4	103	68 - 128	1	15	
Benzo(j,k)fluoranthene	0.0825	0.0784	0.0833	0.0833	9	9	94	63 - 128	5	16	
Benzo[a]pyrene	0.0829	0.0792	0.0833	0.0833	10	00	95	66 - 130	5	15	
Indeno(1,2,3-c,d)pyrene	0.0754	0.0807	0.0833	0.0833	9	1	97	63 - 135	7	15	
Dibenz[a,h]anthracene	0.0704	0.0760	0.0833	0.0833	8	5	91	65 - 130	8	15	
Benzo[g,h,i]perylene	0.0729	0.0775	0.0833	0.0833	8	8	93	66 - 127	6	15	
Surrogate:											
2-Fluorobiphenyl					9	8	90	46 - 113			
Pyrene-d10					9	5	94	45 - 114			
Terphenyl-d14					10)3	106	49 - 121			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Naphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0060	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	20 - 106				
Pyrene-d10	65	26 - 104				
Terphenyl-d14	64	44 - 127				

28

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW					
Laboratory ID:	10-327-17					
Naphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0056	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	20 - 106				
Pyrene-d10	61	26 - 104				
Terphenyl-d14	62	44 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW-Dup					
Laboratory ID:	10-327-18					
Naphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	0.0053	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0051	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	20 - 106				
Pyrene-d10	70	26 - 104				
Terphenyl-d14	72	44 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102W1					
Naphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
2-Methylnaphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
1-Methylnaphthalene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthylene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Acenaphthene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Fluorene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Phenanthrene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Anthracene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Fluoranthene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Pyrene	ND	0.050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]anthracene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Chrysene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[b]fluoranthene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo(j,k)fluoranthene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[a]pyrene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Dibenz[a,h]anthracene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Benzo[g,h,i]perylene	ND	0.0050	EPA 8270E/SIM	11-2-20	11-2-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	20 - 106				
Pyrene-d10	65	26 - 104				
Terphenyl-d14	63	44 - 127				

Matrix: Water Units: ug/L

Ū					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-32	27-17									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.283	0.250	0.552	0.521	ND	51	48	30 - 98	12	40	
Acenaphthylene	0.326	0.295	0.552	0.521	ND	59	57	39 - 106	10	28	
Acenaphthene	0.348	0.313	0.552	0.521	ND	63	60	36 - 114	11	35	
Fluorene	0.361	0.339	0.552	0.521	ND	65	65	45 - 112	6	29	
Phenanthrene	0.401	0.373	0.552	0.521	ND	73	72	51 - 109	7	23	
Anthracene	0.348	0.324	0.552	0.521	ND	63	62	49 - 109	7	22	
Fluoranthene	0.378	0.349	0.552	0.521	ND	68	67	53 - 115	8	20	
Pyrene	0.376	0.346	0.552	0.521	ND	68	66	49 - 129	8	27	
Benzo[a]anthracene	0.513	0.462	0.552	0.521	ND	93	89	61 - 123	10	20	
Chrysene	0.427	0.382	0.552	0.521	ND	77	73	59 - 114	11	22	
Benzo[b]fluoranthene	0.427	0.404	0.552	0.521	ND	77	78	60 - 125	6	24	
Benzo(j,k)fluoranthene	0.436	0.354	0.552	0.521	ND	79	68	58 - 121	21	23	
Benzo[a]pyrene	0.393	0.350	0.552	0.521	ND	71	67	58 - 118	12	23	
Indeno(1,2,3-c,d)pyrene	0.450	0.407	0.552	0.521	ND	82	78	59 - 124	10	23	
Dibenz[a,h]anthracene	0.443	0.393	0.552	0.521	ND	80	75	59 - 123	12	23	
Benzo[g,h,i]perylene	0.431	0.383	0.552	0.521	ND	78	74	58 - 120	12	23	
Surrogate:											
2-Fluorobiphenyl						47	44	20 - 106			
Pyrene-d10						63	62	26 - 104			
Terphenyl-d14						64	61	44 - 127			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Aroclor 1016	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1221	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1232	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1242	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1248	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1254	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1260	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1262	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Aroclor 1268	ND	0.032	EPA 8082A	11-4-20	11-5-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	76	46-125				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1104S1					
Aroclor 1016	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1221	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1232	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1242	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1248	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1254	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1260	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1262	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Aroclor 1268	ND	0.025	EPA 8082A	11-4-20	11-4-20	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	46-125				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-2	79-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.224	0.292	0.250	0.250	ND	89	117	43-125	26	15	L, X
Surrogate:											
DCB						102	102	46-125			
SPIKE BLANKS											
Laboratory ID:	SB11	104S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.280	0.260	0.250	0.250	N/A	112	104	50-134	7	18	
Surrogate:											
DCB						96	96	46-125			

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9					
Laboratory ID:	10-327-01					
Antimony	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Arsenic	9.8	3.3	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.43	0.067	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.077	0.067	EPA 6020B	11-4-20	11-5-20	
Chromium	60	0.67	EPA 6010D	11-2-20	11-2-20	
Copper	49	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	4.8	0.67	EPA 6020B	11-4-20	11-5-20	
Mercury	0.085	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	58	3.3	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Zinc	72	3.3	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Antimony	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Arsenic	5.3	3.3	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.15	0.066	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.12	0.066	EPA 6020B	11-4-20	11-5-20	
Chromium	31	0.66	EPA 6010D	11-2-20	11-2-20	
Copper	21	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	2.9	0.66	EPA 6020B	11-4-20	11-5-20	
Mercury	0.038	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	29	3.3	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.3	EPA 6010D	11-2-20	11-2-20	
Zinc	42	3.3	EPA 6010D	11-2-20	11-2-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Antimony	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Arsenic	9.3	3.2	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.33	0.064	EPA 6020B	11-4-20	11-5-20	
Cadmium	ND	0.064	EPA 6020B	11-4-20	11-5-20	
Chromium	55	0.64	EPA 6010D	11-2-20	11-2-20	
Copper	48	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	3.2	0.64	EPA 6020B	11-4-20	11-5-20	
Mercury	0.062	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	58	3.2	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Zinc	64	3.2	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Antimony	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.0	3.4	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.18	0.068	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.13	0.068	EPA 6020B	11-4-20	11-5-20	
Chromium	42	0.68	EPA 6010D	11-2-20	11-2-20	
Copper	35	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.68	EPA 6020B	11-4-20	11-5-20	
Mercury	0.037	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	46	3.4	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Zinc	64	3.4	EPA 6010D	11-2-20	11-2-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

36

Matrix: Soil Units: mg/Kg (ppm)

0 0 1 1				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Antimony	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.3	3.5	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.19	0.070	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.11	0.070	EPA 6020B	11-4-20	11-5-20	
Chromium	44	0.70	EPA 6010D	11-2-20	11-2-20	
Copper	35	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.70	EPA 6020B	11-4-20	11-5-20	
Mercury	0.045	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	46	3.5	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.18	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.5	EPA 6010D	11-2-20	11-2-20	
Zinc	62	3.5	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Antimony	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Arsenic	7.5	3.2	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.36	0.063	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.093	0.063	EPA 6020B	11-4-20	11-5-20	
Chromium	43	0.63	EPA 6010D	11-2-20	11-2-20	
Copper	22	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	4.7	0.63	EPA 6020B	11-4-20	11-5-20	
Mercury	0.059	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	33	3.2	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.2	EPA 6010D	11-2-20	11-2-20	
Zinc	61	3.2	EPA 6010D	11-2-20	11-2-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Antimony	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Arsenic	5.0	3.1	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.16	0.062	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.093	0.062	EPA 6020B	11-4-20	11-5-20	
Chromium	31	0.62	EPA 6010D	11-2-20	11-2-20	
Copper	19	1.2	EPA 6010D	11-2-20	11-2-20	
Lead	2.0	0.62	EPA 6020B	11-4-20	11-5-20	
Mercury	0.024	0.012	EPA 7471B	11-4-20	11-5-20	
Nickel	28	3.1	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.15	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Zinc	36	3.1	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Antimony	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Arsenic	3.6	3.1	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.13	0.063	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.092	0.063	EPA 6020B	11-4-20	11-5-20	
Chromium	27	0.63	EPA 6010D	11-2-20	11-2-20	
Copper	15	1.3	EPA 6010D	11-2-20	11-2-20	
Lead	1.4	0.63	EPA 6020B	11-4-20	11-5-20	
Mercury	0.022	0.013	EPA 7471B	11-4-20	11-5-20	
Nickel	28	3.1	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.16	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.1	EPA 6010D	11-2-20	11-2-20	
Zinc	29	3.1	EPA 6010D	11-2-20	11-2-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Antimony	4.6	3.8	EPA 6010D	11-2-20	11-2-20	
Arsenic	14	3.8	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.37	0.076	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.90	0.076	EPA 6020B	11-4-20	11-5-20	
Chromium	37	0.76	EPA 6010D	11-2-20	11-2-20	
Copper	30	1.5	EPA 6010D	11-2-20	11-2-20	
Lead	44	1.5	EPA 6020B	11-4-20	11-5-20	
Mercury	0.095	0.015	EPA 7471B	11-4-20	11-5-20	
Nickel	38	3.8	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.8	EPA 6010D	11-2-20	11-2-20	
Silver	0.22	0.19	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.8	EPA 6010D	11-2-20	11-2-20	
Zinc	120	3.8	EPA 6010D	11-2-20	11-2-20	

Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Antimony	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Arsenic	6.0	3.4	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.21	0.068	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.13	0.068	EPA 6020B	11-4-20	11-5-20	
Chromium	41	0.68	EPA 6010D	11-2-20	11-2-20	
Copper	28	1.4	EPA 6010D	11-2-20	11-2-20	
Lead	2.4	0.68	EPA 6020B	11-4-20	11-5-20	
Mercury	0.030	0.014	EPA 7471B	11-4-20	11-5-20	
Nickel	39	3.4	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.17	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.4	EPA 6010D	11-2-20	11-2-20	
Zinc	53	3.4	EPA 6010D	11-2-20	11-2-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Antimony	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Arsenic	3.9	3.0	EPA 6010D	11-2-20	11-2-20	
Beryllium	0.11	0.060	EPA 6020B	11-4-20	11-5-20	
Cadmium	0.078	0.060	EPA 6020B	11-4-20	11-5-20	
Chromium	28	0.60	EPA 6010D	11-2-20	11-2-20	
Copper	16	1.2	EPA 6010D	11-2-20	11-2-20	
Lead	1.3	0.60	EPA 6020B	11-4-20	11-5-20	
Mercury	0.016	0.012	EPA 7471B	11-4-20	11-5-20	
Nickel	24	3.0	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.15	EPA 6020B	11-4-20	11-5-20	
Thallium	ND	3.0	EPA 6010D	11-2-20	11-2-20	
Zinc	30	3.0	EPA 6010D	11-2-20	11-2-20	

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Prepared	Analyzed	Flags
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-2-20	11-2-20	
11-4-20	11-5-20	
11-4-20	11-5-20	
11-4-20	11-5-20	
11-4-20	11-5-20	
11-4-20	11-5-20	
	Prepared 11-2-20 11-4-20 11-4-20 11-4-20 11-4-20 11-4-20 11-4-20 11-4-20	Prepared Analyzed 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-2-20 11-5-20 11-4-20 11-5-20 11-4-20 11-5-20 11-4-20 11-5-20 11-4-20 11-5-20

41

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-3	27-10									
	ORIG	DUP									
Antimony	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Arsenic	4.07	4.38	NA	NA		Ν	IA	NA	7	20	
Chromium	25.2	26.1	NA	NA		Ν	IA	NA	4	20	
Copper	15.5	15.4	NA	NA		Ν	IA	NA	1	20	
Nickel	22.6	23.2	NA	NA		Ν	IA	NA	3	20	
Selenium	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Thallium	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Zinc	29.0	29.8	NA	NA		Ν	IA	NA	3	20	
Laboratory ID:	10-3	27-10									
Beryllium	0.134	0.123	NA	NA		Ν	IA	NA	9	20	
Cadmium	0.0755	0.0695	NA	NA		Ν	IA	NA	8	20	
Lead	1.66	1.40	NA	NA		Ν	IA	NA	17	20	
Silver	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Laboratory ID:	10-3	27-10									
Mercury	0.0197	0.0201	NA	NA		Ν	IA	NA	2	20	
	10.2	27 10									
Laboratory ID.	 	MSD	MS	MSD		MQ	MSD				
Antimony	1VIJ	00 5	100	100		1013	00	75 105	0	20	
Anumony	00.0	00.0	100	100		09	03	75-125	1	20	
Chromium	99.0 404	101	100	100	4.07	95	90	75-125	1	20	
Connor	121	64.0	50.0	50.0	20.Z	90	97	75-125	і Б	20	
Nickol	125	124	100	100	10.0	104	97 101	75-125	1	20	
Solonium	125	02.5	100	100		102	04	75-125	ו ס	20	
Thellium	90.0 40 0	93.5 51.0	50.0	50.0		90	94 102	75-125	2	20	
Zinc	40.2	124	100	100	20.0	90 100	05	75-125	0	20	
	129	124	100	100	29.0	100	95	75-125	4	20	
Laboratory ID:	10-3	27-10									
Bervllium	48.9	47.7	50.0	50.0	0.134	97	95	75-125	2	20	
Cadmium	46.1	44.7	50.0	50.0	0.0755	92	89	75-125	3	20	
Lead	227	223	250	250	1.66	90	88	75-125	2	20	
Silver	20.7	19.9	25.0	25.0	ND	83	80	75-125	4	20	
								-		-	
Laboratory ID:	10-3	27-10									
Mercury	0.529	0.528	0.500	0.500	0.0197	102	102	80-120	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

42

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	0.47	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	

TCLP METALS EPA 1311/6010D/7470A QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1030TM1					
Arsenic	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Barium	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Cadmium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Chromium	ND	0.020	EPA 6010D	11-2-20	11-2-20	
Lead	ND	0.20	EPA 6010D	11-2-20	11-2-20	
Selenium	ND	0.40	EPA 6010D	11-2-20	11-2-20	
Silver	ND	0.040	EPA 6010D	11-2-20	11-2-20	
Laboratory ID:	MB1030T1					
Mercury	ND	0.0050	EPA 7470A	10-30-20	10-30-20	

					Source	Pe	rcent	Recovery		RPD		
Analyte	Re	sult	Spike	Level	Result	t Recovery		Limits	RPD	Limit	Flags	
DUPLICATE												
Laboratory ID:	10-2	79-02										
	ORIG	DUP										
Arsenic	ND	ND	NA	NA			NA	NA	NA	20		
Barium	0.462	0.462	NA	NA			NA	NA	0	20		
Cadmium	ND	ND	NA	NA			NA	NA	NA	20		
Chromium	ND	ND	NA	NA			NA	NA	NA	20		
Lead	ND	ND	NA	NA		NA		NA	NA	20		
Selenium	ND	ND	NA	NA		NA		NA	NA	20		
Silver	ND	ND	NA	NA			NA	NA	NA	20		
Laboratory ID:	10-2	79-02										
Mercury	ND	ND	NA	NA			NA	NA	NA	20		
MATRIX SPIKES												
Laboratory ID:	10-2	79-02										
	MS	MSD	MS	MSD		MS	MSD					
Arsenic	3.92	3.90	4.00	4.00	ND	98	98	75-125	1	20		
Barium	4.29	4.30	4.00	4.00	0.462	96	96	75-125	0	20		
Cadmium	1.82	1.81	2.00	2.00	ND	91	90	75-125	1	20		
Chromium	3.80	3.78	4.00	4.00	ND	95	95	75-125	1	20		

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10.0

4.00

1.00

ND

ND

ND

ND

96

101

96

98

95

100

97

97

75-125

75-125

75-125

75-125

0

1

1

0

20

20

20

20

9.55

4.05

0.960

0.0488

Lead

Silver

Selenium

Mercury

Laboratory ID:

ALA

9.51

4.01

0.968

0.0486

10-279-02

10.0

4.00

1.00

0.0500 0.0500

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-GW					
Laboratory ID:	10-327-12					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	0.76	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Mercury	ND	0.025	EPA 7470A		11-5-20	
Nickel	17	1.0	EPA 200.8		11-5-20	
Selenium	5.6	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	3.0	2.5	EPA 200.8		11-5-20	

Client ID:	GP-3-GW				
Laboratory ID:	10-327-17				
Antimony	ND	1.0	EPA 200.8	11-5-20	
Arsenic	0.68	0.50	EPA 200.8	11-5-20	
Beryllium	ND	0.20	EPA 200.8	11-5-20	
Cadmium	ND	0.20	EPA 200.8	11-5-20	
Chromium	ND	1.0	EPA 200.8	11-5-20	
Copper	ND	1.0	EPA 200.8	11-5-20	
Lead	ND	0.50	EPA 200.8	11-5-20	
Mercury	ND	0.025	EPA 7470A	11-5-20	
Nickel	13	1.0	EPA 200.8	11-5-20	
Selenium	1.4	1.0	EPA 200.8	11-5-20	
Silver	ND	0.20	EPA 200.8	11-5-20	
Thallium	ND	0.20	EPA 200.8	11-5-20	
Zinc	7.0	2.5	EPA 200.8	11-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

45

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-GW-Dup			-	-	
Laboratory ID:	10-327-18					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	0.56	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Mercury	ND	0.025	EPA 7470A		11-5-20	
Nickel	15	1.0	EPA 200.8		11-5-20	
Selenium	1.4	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	6.6	2.5	EPA 200.8		11-5-20	

46

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1105D1					
Antimony	ND	1.0	EPA 200.8		11-5-20	
Arsenic	ND	0.50	EPA 200.8		11-5-20	
Beryllium	ND	0.20	EPA 200.8		11-5-20	
Cadmium	ND	0.20	EPA 200.8		11-5-20	
Chromium	ND	1.0	EPA 200.8		11-5-20	
Copper	ND	1.0	EPA 200.8		11-5-20	
Lead	ND	0.50	EPA 200.8		11-5-20	
Nickel	ND	0.50	EPA 200.8		11-5-20	
Selenium	ND	1.0	EPA 200.8		11-5-20	
Silver	ND	0.20	EPA 200.8		11-5-20	
Thallium	ND	0.20	EPA 200.8		11-5-20	
Zinc	ND	2.5	EPA 200.8		11-5-20	
Laboratory ID:	MB1105D1					
Mercury	ND	0.025	EPA 7470A		11-5-20	

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-32	27-17									
	ORIG	DUP									
Antimony	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Arsenic	0.680	0.702	NA	NA		Ν	JA	NA	3	20	
Beryllium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Cadmium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Chromium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Copper	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Lead	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Nickel	12.8	13.3	NA	NA		Ν	JA	NA	4	20	
Selenium	1.37	1.34	NA	NA		Ν	JA	NA	2	20	
Silver	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Thallium	ND	ND	NA	NA		Ν	JA	NA	NA	20	
Zinc	7.02	6.84	NA	NA		Ν	IA	NA	3	20	
Laboratory ID:	10-32	27-17									
Mercury	ND	ND	NA	NA		Ν	IA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-32	27-17									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	84.0	84.8	80.0	80.0	ND	105	106	75-125	1	20	
Arsenic	86.0	84.4	80.0	80.0	0.680	107	105	75-125	2	20	
Beryllium	77.2	77.6	80.0	80.0	ND	97	97	75-125	1	20	
Cadmium	77.0	78.0	80.0	80.0	ND	96	98	75-125	1	20	
Chromium	76.6	75.4	80.0	80.0	ND	96	94	75-125	2	20	

Mercury	5.78	5.78	6.25	6.25	ND	92	92	75-125	0	20	
Laboratory ID:	10-32	27-17									
Zinc	83.2	81.0	80.0	80.0	7.02	95	93	75-125	3	20	
Thallium	74.4	75.8	80.0	80.0	ND	93	95	75-125	2	20	
Silver	69.4	68.0	80.0	80.0	ND	87	85	75-125	2	20	
Selenium	96.4	94.8	80.0	80.0	1.37	119	117	75-125	2	20	
Nickel	87.0	86.6	80.0	80.0	12.8	93	92	75-125	0	20	
Lead	74.8	75.2	80.0	80.0	ND	94	94	75-125	1	20	
Copper	71.6	72.0	80.0	80.0	ND	90	90	75-125	1	20	
Chromium	76.6	75.4	80.0	80.0	ND	96	94	75-125	2	20	
Cadmium	77.0	78.0	80.0	80.0	ND	96	98	75-125	1	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL SOLIDS SM 2540G

Matrix: Soil						
Units: % Solids				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-2-8-9			•	2	U
Laboratory ID:	10-327-01					
Total Solids	75	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-2-25-27					
Laboratory ID:	10-327-03					
Total Solids	76	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-1-5.7-9.7					
Laboratory ID:	10-327-04					
Total Solids	78	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-1-20-22					
Laboratory ID:	10-327-06					
Total Solids	73	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-1-20-22-Dup					
Laboratory ID:	10-327-07					
Total Solids	71	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-5-6.9-7.5					
Laboratory ID:	10-327-08					
Total Solids	79	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-5-20-22					
Laboratory ID:	10-327-10					
Total Solids	81	0.50	SM 2540G	10-29-20	10-30-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

49

TOTAL SOLIDS SM 2540G

Matrix: Soil Units: % Solids

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-10.8-15					
Laboratory ID:	10-327-11					
Total Solids	80	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-4-7.8-8.7					
Laboratory ID:	10-327-13					
Total Solids	66	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-4-15-18.7					
Laboratory ID:	10-327-14					
Total Solids	73	0.50	SM 2540G	10-29-20	10-30-20	
Client ID:	GP-3-14.4-15.9					
Laboratory ID:	10-327-16					
Total Solids	83	0.50	SM 2540G	10-29-20	10-30-20	

TOTAL SOLIDS SM 2540G QUALITY CONTROL

Matrix: Soil Units: % Solids

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-26	64-01							
	ORIG	DUP							
Total Solids	89.3	91.7	NA	NA	NA	NA	3	20	
Laboratory ID:	10-32	27-10							
	ORIG	DUP							
Total Solids	81.1	81.2	NA	NA	NA	NA	0	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

November 17, 2020

Vista Work Order No. 2002347

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 30, 2020 under your Project Name '202005-01.01'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2002347 Case Narrative

Sample Condition on Receipt:

One solid sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. The sample was received in a clear glass jar.

Analytical Notes:

EPA Method 1613B

This sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2002347-01	GP-1-5.7-9.7	26-Oct-20 13:15	30-Oct-20 07:49	Clear Glass Jar, 250mL

Vista Project: 2002347

Client Project: 202005-01.01

ANALYTICAL RESULTS

Sample ID: Method Blank						EPA Method	1613B
Client DataName:OnSite EnviroProject:202005-01.01Matrix:Solid	nmental Inc.		Laboratory Dat Lab Sample: QC Batch: Sample Size:	ta B0K0041-BLK1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0263				13-Nov-20 10:55	1
1,2,3,7,8-PeCDD	ND	0.0497				13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDD	ND	0.0568				13-Nov-20 10:55	1
1,2,3,6,7,8-HxCDD	ND	0.0574				13-Nov-20 10:55	1
1,2,3,7,8,9-HxCDD	ND	0.0721				13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDD	ND	0.05/3				13-Nov-20 10:55	1
	ND	0.116				13-Nov-20 10:55	1
2,3,7,8-1CDF	ND	0.0198				13-Nov-20 10:55	1
1,2,5,7,8-PeCDF	ND	0.0288				13-Nov-20 10:55	1
1, 2, 3, 4, 7, 8 HyCDF	ND	0.0233				13-Nov-20 10:55	1
1,2,3,4,7,8-HxCDF	ND	0.0327				13-Nov-20 10:55	1
2 3 4 6 7 8-HxCDF	ND	0.0389				13-Nov-20 10:55	1
1.2.3.7.8.9-HxCDF	ND	0.0698				13-Nov-20 10:55	1
1,2,3,4,6,7,8-HpCDF	ND	0.0487				13-Nov-20 10:55	1
1,2,3,4,7,8,9-HpCDF	ND	0.0568				13-Nov-20 10:55	1
OCDF	ND	0.0915				13-Nov-20 10:55	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.0263					
Total PeCDD	ND	0.0497					
Total HxCDD	ND	0.0721					
Total HpCDD	ND	0.0573					
Total TCDF	ND	0.0198					
Total PeCDF	ND	0.0288					
Total HxCDF	ND	0.0698					
Total HpCDF	ND	0.0568					
Labeled Standards	Туре	% Rec	overy	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	80.4	4	25 - 164		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDD	IS	81.	8	25 - 181		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDD	IS	88.4	4	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDD	IS	89.	3	28 - 130		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDD	IS	80.0	0	32 - 141		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDD	IS	80.	0	23 - 140		13-Nov-20 10:55	1
13C-OCDD	IS	74.4	4	17 - 157		13-Nov-20 10:55	1
13C-2,3,7,8-TCDF	IS	83.2	2	24 - 169		13-Nov-20 10:55	1
13C-1,2,3,7,8-PeCDF	IS	84.0	6	24 - 185		13-Nov-20 10:55	1
13C-2,3,4,7,8-PeCDF	IS	90.	3	21 - 178		13-Nov-20 10:55	1
13C-1,2,3,4,7,8-HxCDF	IS	82.	0	26 - 152		13-Nov-20 10:55	1
13C-1,2,3,6,7,8-HxCDF	IS	82.	7	26 - 123		13-Nov-20 10:55	1
13C-2,3,4,6,7,8-HxCDF	IS	83.	8	28 - 136		13-Nov-20 10:55	1
13C-1,2,3,7,8,9-HxCDF	IS	71.	1	29 - 147		13-Nov-20 10:55	1
13C-1,2,3,4,6,7,8-HpCDF	IS	75.:	5	28 - 143		13-Nov-20 10:55	1
13C-1,2,3,4,7,8,9-HpCDF	IS	71.	1	26 - 138		13-Nov-20 10:55	1
13C-OCDF	IS	71.:	5	17 - 157		13-Nov-20 10:55	1
37Cl-2,3,7,8-TCDD	CRS	95.:	5	35 - 197		13-Nov-20 10:55	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: OPR						EPA Method	1613B
Client Data Name: OnSite Project: 20200 Matrix: Solid	e Environmental Inc. 5-01.01		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0K0041-BS1 B0K0041 10.0 g	Date Extracted: Column:	05-Nov-20 06:05 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.0	20.0	105	67-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDD	106	100	106	70-142		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDD	101	100	101	70-164		13-Nov-20 09:25	1
1,2,3,6,7,8-HxCDD	104	100	104	76-134		13-Nov-20 09:25	1
1,2,3,7,8,9-HxCDD	103	100	103	64-162		13-Nov-20 09:25	1
1,2,3,4,6,7,8-HpCDD	102	100	102	70-140		13-Nov-20 09:25	1
OCDD	204	200	102	78-144		13-Nov-20 09:25	1
2,3,7,8-TCDF	19.4	20.0	96.8	75-158		13-Nov-20 09:25	1
1,2,3,7,8-PeCDF	102	100	102	80-134		13-Nov-20 09:25	1
2,3,4,7,8-PeCDF	102	100	102	68-160		13-Nov-20 09:25	1
1,2,3,4,7,8-HxCDF	103	100	103	/2-134		13-Nov-20 09:25	1
1,2,3,6,7,8-HXCDF	101	100	101	84-130		13-Nov-20 09:25	1
2,3,4,0,7,8-HXCDF	100	100	100	70-156		13-Nov-20 09:25	1
1,2,3,7,8,9-fixCDF	90.9	100	98.9	/8-130		13-Nov-20 09:23	1
1,2,3,4,0,7,8-HPCDF	105	100	103	82-122		13-Nov-20 09:25	1
1,2,3,4,7,8,9-прСDF	200	200	100	63 170		13-Nov-20 09:23	1
Labeled Standards	Type	200	0/ Decovery	US-170	Qualifiers	13-100-20 09.23	1 Dilution
13C-2 3 7 8-TCDD	IS			20-175	Quanners	13-Nov-20 09:25	1
13C-1 2 3 7 8-PeCDD	IS		89.5	20-173		13-Nov-20 09:25	1
13C-1,2,3,7,8-1 CCDD	IS		91.6	21-227		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDD	IS		91.8	21-193		13-Nov-20 09:25	1
13C-1,2,3,0,7,0-HxCDD	IS		90.8	23 103		13-Nov-20 09:25	1
13C-1 2 3 4 6 7 8-HpCDF) IS		87.0	21-195		13-Nov-20 09:25	1
13C-OCDD	IS		79.6	13-199		13-Nov-20 09:25	1
13C-2.3.7.8-TCDF	IS		88.7	22-152		13-Nov-20 09:25	1
13C-1,2,3,7,8-PeCDF	IS		93.6	21-192		13-Nov-20 09:25	1
13C-2,3,4,7,8-PeCDF	IS		95.6	13-328		13-Nov-20 09:25	1
13C-1,2,3,4,7,8-HxCDF	IS		84.0	19-202		13-Nov-20 09:25	1
13C-1,2,3,6,7,8-HxCDF	IS		85.3	21-159		13-Nov-20 09:25	1
13C-2,3,4,6,7,8-HxCDF	IS		85.0	22-176		13-Nov-20 09:25	1
13C-1,2,3,7,8,9-HxCDF	IS		87.1	17-205		13-Nov-20 09:25	1
13C-1,2,3,4,6,7,8-HpCDF	IS		78.0	21-158		13-Nov-20 09:25	1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.8	20-186		13-Nov-20 09:25	1
13C-OCDF	IS		77.7	13-199		13-Nov-20 09:25	1
37Cl-2.3.7.8-TCDD	CRS		106	31-191		13-Nov-20 09:25	1
	0115		- 30	51 171		20 07.20	•

Sample ID: GP-1-5.7-9.7						EPA Method	1613B
Client Data Name: OnSite Env. Project: 202005-01.	ironmental Inc. 01		Laboratory Da Lab Sample: QC Batch:	ta 2002347-01 B0K0041	Date Received: Date Extracted:	30-Oct-20 07 05-Nov-20	7:49
Matrix: Solid Date Collected: 26-Oct-20 1	13:15		Sample Size: % Solids:	12.9 g 77.8	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0323				14-Nov-20 06:31	1
1,2,3,7,8-PeCDD	ND	0.0816				14-Nov-20 06:31	1
1,2,3,4,7,8-HxCDD	ND	0.140				14-Nov-20 06:31	1
1,2,3,6,7,8-HxCDD	ND	0.147				14-Nov-20 06:31	1
1,2,3,7,8,9-HxCDD	ND 2.00	0.165				14-Nov-20 06:31	1
1,2,3,4,0,7,8-прСDD	2.00					14-Nov-20 06:31	1
2 3 7 8-TCDF	54.0 ND	0.0247				14-Nov-20 06:31	1
1 2 3 7 8-PeCDF	ND	0.0301				14-Nov-20 06:31	1
2.3.4.7.8-PeCDF	ND	0.0256				14-Nov-20 06:31	1
1,2,3,4,7,8-HxCDF	ND	0.0403				14-Nov-20 06:31	1
1,2,3,6,7,8-HxCDF	ND	0.0387				14-Nov-20 06:31	1
2,3,4,6,7,8-HxCDF	ND	0.0418				14-Nov-20 06:31	1
1,2,3,7,8,9-HxCDF	ND	0.0675				14-Nov-20 06:31	1
1,2,3,4,6,7,8-HpCDF	ND	0.0849				14-Nov-20 06:31	1
1,2,3,4,7,8,9-HpCDF	ND	0.0805				14-Nov-20 06:31	1
OCDF	ND	0.101				14-Nov-20 06:31	1
Toxic Equivalent	0.004						
TEQMinWHO2005Dioxin	0.0364						
Total TCDD	0.134						
Total PeCDD	0.194						
Total HxCDD	0.947		1.38				
Total HpCDD	6.48		1.00				
Total TCDF	0.0999						
Total PeCDF	ND	0.0301					
Total HxCDF	ND	0.0675					
Total HpCDF	ND	0.0849					
Labeled Standards	Туре	% Recove	ery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	94.5		25 - 164		14-Nov-20 06:31	1
13C-1,2,3,7,8-PeCDD	IS	94.1		25 - 181		14-Nov-20 06:31	1
13C-1,2,3,4,7,8-HxCDD	IS	93.6		32 - 141		14-Nov-20 06:31	1
13C-1,2,3,6,7,8-HxCDD	IS	94.5		28 - 130		14-Nov-20 06:31	1
13C-1,2,3,7,8,9-HxCDD	IS	95.3		32 - 141		14-Nov-20 06:31	1
13C-1,2,3,4,6,7,8-HpCDD	IS	91.5		23 - 140		14-Nov-20 06:31	1
13C-OCDD	IS	88.0		17 - 157		14-Nov-20 06:31	1
13C-2,3,7,8-TCDF	IS	97.2		24 - 169		14-Nov-20 06:31	1
13C-1,2,3,7,8-PeCDF	IS	99.6		24 - 185		14-Nov-20 06:31	1
13C-2,3,4,7,8-PeCDF	IS	100		21 - 178		14-Nov-20 06:31	1
13C-1,2,3,4,7,8-HxCDF	IS	89.4		26 - 152		14-Nov-20 06:31	1
13C-1,2,3,6,7,8-HxCDF	IS	91.2		26 - 123		14-Nov-20 06:31	1
13C-2,3,4,6,7,8-HxCDF	IS	93.5		28 - 136		14-Nov-20 06:31	1
13C-1,2,3,7,8,9-HxCDF	IS	93.2		29 - 147		14-Nov-20 06:31	1
13C-1,2,3,4,6,7,8-HpCDF	IS	86.8		28 - 143		14-Nov-20 06:31	1
13C-1,2,3,4,7,8,9-HpCDF	IS	89.8		26 - 138		14-Nov-20 06:31	1
13C-UCDF	IS	86.3		17 - 157		14-Nov-20 06:31	1
5/CI-2,3,/,8-1CDD	CKS	105		35 - 197		14-INOV-20 06:31	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
Κ	EMPC (specific projects only)
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue					
Description of Test	Method				
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B				
Dilution GC/HRMS					
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A				
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C				
by GC/HRMS					
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699				
HRGC/HRMS					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B				
GC/HRMS					
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA				
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A				

MATRIX: Drinking Water										
Description of Test	Method									
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA									
	1613/1613B									
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009									

MATRIX: Non-Potable Water									
Description of Test	Method								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B								
Dilution GC/HRMS									
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C								
by GC/HRMS									
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699								
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537								
Dioxin by GC/HRMS	EPA 613								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B								
Dibenzofurans by GC/HRMS									
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA								
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A								

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

2.3°C 2002347

Page 1 of 1

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881		Laboratory Reference #: 10-327	
Laboratory: Vista Analytical Laboratory	Turnaround Request	Project Manager: David Baumeister	
Attention: Jennifer Miller	1 Day 2 Day 3 Day	email: dbaumeister@onsite-env.com	
Address: 1104 Windfield Way, El Dorado Hills, CA 95762	Standard	Project Number: 202005-01.01	
Phone Number: (916) 673-1520	Other:	Project Name:	

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	Requested Analyses
	GP-1-5.7-9.7	10/26/20	13:15	S	1	Dioxins/Furans
		201-1			-	
		-				
		-				
	AN AN AN					
	CONTRACTOR STREET, SALE					
	Signature	Con	npany		Date	Time Comments/Special Instructions
Relinqu	ished by MURCHAUL C	YE-	-		429120	0 1600
Receive	d by: Willian Kuluz ht	IAL			10/3-120	0 67:49
Relinqu	ished by:					
Receive	ed by:		-			
Relinqu	ished by:		and the			
Receive	d by:					

Sample Log-In Checklist

						Pa	ge # _	<u> </u>	f					
Vista Work Orde	Vista Work Order #: <u>2002347</u>													
Samples	Date/Tim	ie		Initials:		Loca	tion:	6	UR-2					
Arrival:	10/30	120 7:	49	URI	J	Shelf	/Rack	_A	A					
Delivered By:	FedEx	UPS	On Tra	ac GLS	DHI	DHL Har Delive			Oth	er				
Preservation:	lc	;e	Fr	ue ice	Teo Io	chni xe	Dry	Ice	No	ne				
Temp °C: $2/3$ (uncorrected) Probe used: Y /N Thermometer ID: $\underline{TR} - \frac{4}{7}$ Temp °C: $2/3$ (corrected) Probe used: Y /N Thermometer ID: $\underline{TR} - \frac{4}{7}$														
					1二十二世	1 2		YES	NO	NA				
Shipping Contain	er(s) Intac	: <u>t</u> ?						V						
Shipping Custod	y Seals Int	act?							-	X				
Airbill	Trk	# <i>1</i> Z(284 E	IW 15	9579	383	39	V	L					
Shipping Docum	entation Pr	resent?			_			V						
Shipping Contain	ner	ý	ista	Client	R	etain	Re	eturn	Disp	ose				
Chain of Custody	/ / Sample	Documer	tation Pr	resent?				1						
Chain of Custody	/ / Sample	Documer	tation C	omplete?				1						
Holding Time Ac	ceptable?							/						
	Date/Time Initials: Location: WE-2													
Logged In:	11/02/2	.0 0'	109	KS		Shelf	f/Rack	: F-3)					
COC Anomaly/S	ample Acc	eptance F	orm con	npleted?				V						

Comments:

CoC/Label Reconciliation Report WO# 2002347

LabNumber CoC Sample ID		Sa	mplcAlia	Sample Date/Time	Container	Sample BaseMatrix Comments				
2002347-01 A GP-1-5.7-9.7 🗸 🗹	1	1	22	26-Oct-20 13:15	Clear Glass Jar, 250mL	Solid				
Checkmarks indicate that information on the COC reconciled with the same Any discrepancies are noted in the following columns.	le label.									
	Yes	No	NA	Comments:	analainar lid					
Sample Container Intact?	\checkmark			Reconciled with	Contrained ind					
Sample Custody Seals Intact?			V	+						
Adequate Sample Volume?	~									
Container Type Appropriate for Analysis(es)		~								
Preservation Documented: Na2S2O3 Trizma for Other			~]						
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V							
		•	•	→						

Verifed by/Date: 45 11/02120

ANOMALY FORM

Vista V	Vork	Order <u>2002347</u>
Initial/Date	The fo	Ilowing checked issues were noted during sample receipt and login:
		1. The samples were received out of temperature at (WI-PHT): Was ice present: Yes No Melted Blue ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
		5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
		6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
KS 11/62/20	∇	16. An incorrect container-type was used. All or Sample Name:AU
		17. Other:

Bolded items requir	e sign-off		
Client Contacted:	Yes, via email		
Date of Contact:	1102/2020		
Vista Client Manage	r: <u>KJR</u>		Letter
Resolution: CVie	nt contacted in	body of acknowledgenier	remen

Reviewed/Date	Received	Relinquished	Received	Relinquished (, L& Cbr O	Received	Relinquished Milling Jury	Signature	10 Gp-5-20-22	9 GP-5-10-11	8 GP-5-69-7.5	7 GP-1-20-22-Dup	6 Cyp-1-20-22	S GP-1-10.12.3	4 GP-1-10-12.306.7-9.7	3 GP-2-25-27	2 GP-2-14-20	1 GP-2-8-9	Lab ID Sample Identification	sampled by. MH DP	Derek Driverod	ABC Recycling	202005-01.01	Project Number: Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052	Environmental Inc.
Reviewed/Date			1	Sperely	Speed	Andre QEA	Company	1530	1535	1515	1331	1330	1320	1315	1050	1045	10.26.20 1030 5	Date Time Sampled Sampled I	(other)		(X) standard (7 Days)	2 Days 3	Same Day	(Check One)	Turnaround Request (in working days)	Chai
			875 10/28/2	10-25-20	02-82, 81	+ 1428/20	Date	4 3 20	3 X X	3	3	3	3 X X	3	3	3	1 3 WW	Numb NWTF NWTF NWTF	er of I PH-HC PH-Gx/ PH-Gx PH-Gx	D BTEX	iers	Days	Day p)		Laboratory	n of Custody
Chromatograms with	Data Package: Sta	(X) And and 10	OBSS Print	2855	0820 Ni, Se,	0820 Si, As, T3	Time Comments/Special I	×	××	×	×	Ø×	× ×	S S	×	×××	×	Volatii Halog EDB E Semix (with I PAHs PCBs Organ	es 826 enated PA 80 rolatile ow-lev 8270D 80824 sochlor	OC Volatil 11 (Wa s 8270) el PAH /SIM (In ine Pes	es 8260 ters Onl D/SIM s) bw-level	C y))) 8081B			Number: 10-32	
n final report 🗌 Electronic Data Delive	ndard Level III Level IV	28/2020. DB	Surdies berner	a second and a	Azith, En X-	e, Cd, Cr, Cu, Pb,	nstructions		XX	X	×	×	×	\otimes	8	x	×	Chlori Total I Total I TCLP HEM	ACRA	Acid He Metals Metals I grease	Pesticide erbicide (6 o id a) 1664/	s 8151.	A 	5	7	Page of
rables (EDDs)				1.0.1	HAL	148:		\otimes	×.	R	0	C.	X	, R	®	XX	8	H	OL.	5D D 25	400	÷ 1	STA	25	DLID	12
Received Reviewed/Date	Received	Relinquished	Received Wards	Relinquished Misula Day	Signature	11.115-201026	19 MP-2 - MW- Dup	1) GP3-GW	16 612-3 -14.4-15.9	15 Gp-3-12.7-13.4	19 612-4-15-18.7	13 GP-4-7.8-8.7	12 GP-6-GW	11 GP-6-10.8-15	Lab ID Sample Identification	Sampled by: MH / DO	Project Manager: Trevels Overcro d	Project Name: ABC Recycling	202005-01-01	Project Number: Project Number:	Phone: (425) 883-3881 • www.ansite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond. WA 98052	Environmental Inc.			
---	---------------	--------------	----------------	-------------------------	-------------------------------	---------------	-------------------	----------------	---------------------	-------------------	--	--------------------	------------	--------------------	---	--	--	--	----------------------------------	------------------------------------	--	--	--------------------			
Reviewed/Date		Speedy	Speady	Andre DEA	Company	101.24.101 W	A DICI A	1315 GW	1215 1	1205	1030	10.27.20 1025 Soil	1 1750 GM	10.26.20 1650 Soil	Date Time Sampled Sampled Matri	(other)]	tandard (7 Days)	2 Days 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain			
	89 218/101 BL	10-28-20 08	10-76-70 08	1220 02/20/20	Date Time	e C	2 C	23 28 28	3	3 X X X	33 () () () () () () () () () () () () ()	62 () ()		<i>23</i>	NWTP NWTP NWTP NWTP NWTP Volatil Halogu	er of Containers H-HCID H-Gx/BTEX H-Gx H-Dx (Acid / SG Clean-up) as 8260C enated Volatiles 8260C					Laboratory Numb	of Custody				
Data Package: Standard Level III Level IV Chromatograms with final report Electronic Data De	55	00	B	G	Comments/Special Instructions		×	X	X	XX			X	X	EDB E Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I TCLP	PA 801 volatiles i low-level 8270D/S 8082A nochlorin nophospl inated Ad RCRA M MTCA M MTCA M (oil and g	I (Wate 8270D PAHs SIM (lo e Pest horus I cid Hel etals letals	vers Only /SIM) w-level) icides & Pesticid rbicides) 3081B les 827 s 8151,	70D/SIM A F-471 A		oer: 10-327	Page 2 o			

Sample/Cooler Receipt and Acceptance Checklist

Client: ANC			m		
Client Project Name/Number: 202005-01,01		Initiated by	UIV,	,	
OnSite Project Number:		Date Initiate	ed: 10/2	\$20	
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A	1234	
1.2 Were the custody seals intact?	Yes	No	N/A	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	N/A	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	res	No	N/A	1 2 3 4	1.
1.5 Were samples received between 0-6 degrees Celsius?	es	No	N/A	Temperature:	2334
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	(N/A)			
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	Ves	No		1234	
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No		1234	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	res	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Tes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	Nop		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	Yes	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Yes	No	N/A	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Tes	No	N/A	1234	
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yes	No	N/A	1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	2	N/A	1 2 3 4	

Explain any discrepancies:

3.4) 1/2 Lambers uppreserved	

- 1 Discuss issue in Case Narrative
- 2 Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls