

Data Summary Report Coleman Oil Yakima Bulk Plant

Site Name: Site Address: Ecology Site Cleanup ID: Facility/Site ID: Agreed Order: ERTS ID Nos.:

Coleman Oil Yakima Bulk Fuel 1 East I Street, Yakima 13200 4233 DE 15639 663825, 670092

Prepared for: Mr. Jim Cach Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

PBS Project No. 41392.000

July 19, 2018

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Site Description and Topography	
1.2 Adjacent Properties	
3.0 BACKGROUND	
3.1 Site Ownership and Operation	
3.2 Site Background	
3.3 Preliminary Site Characterization Report, PBS-June 2015	
5.0 SITE CHARACTERIZATION AND INTERIM ACTIONS	
5.1 Soil Excavation	
5.2 Heating Oil UST Removal	
5.3 Additional Soil Excavation	
5.4 Drilling Investigation and Monitoring Well Installation	
5.5 Additional Drilling Investigation and Monitoring Well Installation	
5.6 Groundwater Monitoring	
5.7 Diesel Product (NAPL) Removal 5.8 Multiphase Extraction	
5.9 Vapor Intrusion Evaluation	
5.10 Aquifer Testing	
5.11 NAPL Product Sampling	
6.0 INVESTIGATION-DERIVED WASTES	
7.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS	
7.1 Soil and Groundwater Cleanup Standards	
7.2 Vapor Intrusion and Indoor Air Cleanup Standards	
8.0 FINDINGS12	
8.1 Soil	
8.2 Groundwater	
8.3 Vapor	
8.4 Preliminary Conceptual Contaminant Migration Pathways	
	LO

SUPPORTING DATA

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Plan
- Figure 3 Site Plan: Characterization Sample Locations
- Figure 4 Site Plan: Soil Excavation and UST Removal
- Figure 5 Groundwater Flow Direction Maps
- Figure 6 Site Cross Section

TABLES

- Table 1 Soil Analytical Results (2015)
- Table 2 Soil Analytical Results (PCS Excavation, UST removal, MW install)
- Table 3 Groundwater Analytical Results
- Table 4 Groundwater Elevation Data
- Table 5 Multiphase Extraction Summary
- Table 6 Vapor Analytical Results
- Table 7 NAPL Product Characteristics

APPENDICES

- Appendix A Petroleum Contaminated Soil Disposal Documentation
- Appendix B Soil Boring and Well Construction Logs
- Appendix C Groundwater Sampling Forms
- Appendix D Diesel Product Thickness and Removal Summary
- Appendix E Air Sampling Data Sheets
- Appendix F Survey Report
- Appendix G Water Level and Product Thickness Hydrographs
- Appendix H Aquifer Testing Reports
- Appendix I Laboratory Reports / Chain-of-Custody Forms

ACRONYMS AND ABBREVIATIONS

ARAR	Applicable or Relevant and Appropriate Requirements
bgs	below ground surface
BTEX	Benzene, toluene, ethylbenzene, xylenes
СОС	Contaminant/Chemical of Concern
CSID	Cleanup Site Identification number
CSM	Conceptual Site Model
CUL	clean-up levels
Ecology	Washington State Department of Ecology
FS	Feasibility Study
FOC	Fraction of Organic Carbon
FSID	Facility Site identification number
LNAPL	Light Non-Aqueous Phase Liquid
MTCA	Model Toxics Control Act
PAHs	Polycyclic Aromatic Hydrocarbons
PCS	Petroleum Contaminated Soil
PID	Photoionization detector
QAPP	Quality Assurance Project Plan
RCW	Revised Code of Washington
RI	Remedial Investigation
SAP	Sampling and Analysis Plan
TEE	Terrestrial Ecological Evaluation
ТРН	total petroleum hydrocarbon
VCP	Voluntary Cleanup Program
VOCs	Volatile Organic Compounds
WAC	Washington State Administrative Code

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 1 of 16

1.0 INTRODUCTION

Coleman Oil entered an Agreed Order (No. DE 15639) with other potentially liable parties (PLPs) and the State of Washington Department of Ecology (Ecology). The effective date of the Agreed Order is March 29, 2018. The PLPs are currently:

- Coleman Oil Company, LLC (Coleman Oil)
- BNSF Railway Company (BNSF)
- Carol Jean Wondrack
- Wondrack Distributing, Inc.
- Chevron Environmental Management Company (Chevron)

This Order requires the PLPs to complete a Data Summary Report, Remedial Investigation (RI), Feasibility Study (FS), and to prepare Draft Cleanup Action Plan (DCAP) for the site identified by Ecology as the Coleman Oil Yakima Bulk Plant located at 1 East I Street in Yakima, Washington (the Site). Refer to Figure 1 Vicinity Map.

PBS Engineering and Environmental Inc. (PBS) has completed the Data Summary Report for the Coleman Oil facility. The property is currently developed as a petroleum storage and active fueling facility. This report summarizes the work performed at the site and presents the results of the investigations.

1.1 Site Description and Topography

The site is located in the northeast quarter of Section 13, Township 13 North, Range 18 East of the Willamette Base and Meridian (W.M.) (Figure 1). The site is located in an industrial and commercial area of Yakima. The site is generally flat (Refer to Figure 2 for site layout).

1.2 Adjacent Properties

The eastern portion of the subject property is Yakima County Parcel Number 18131314070 and the western portion of the subject property is a part of Parcel Number 18131399997, which is the Burlington Northern Santa Fe Railroad (BNSF) easement. The property to the east of the site (Parcel 18131314441) is occupied by a Jack in the Box restaurant. The property to the northeast of the site (Parcel 18131314440) is occupied by Tammy's Mexican restaurant. The parcels to the north of the site (Parcels 18131314057 and 18131314901) are occupied by Carrier Transports Inc., which is a dealer of semi-truck trailers. The parcel to the west and northwest (Parcel 18131399997) is the easement for the BNSF railroad tracks.

2.0 REGIONAL GEOLOGY AND HYDROGEOLOGY

The site is located in the Yakima Valley, which lies within the central portion of the Columbia River Plateau physiographic province. This province is comprised of a series of flood basalts covering much of central and eastern Washington. The basalt flows of the Columbia River Basalt Group (CRBG) are late Miocene Epoch and early Pliocene Epoch (between 17 and 6 million years ago) in age, forming an extensive volcanic plateau. The Yakima Valley lies between anticlinal ridges that generally trend east-west as part of the Yakima Fold Belt; which consists of basaltic lava flows that have faulted and folded from the late Tertiary to the present. Glacial outwash and river-deposited silt, sand and gravel deposits overlie the Columbia River Basalt.

The closest surface water to the site is the Yakima River, located approximately two miles to the northeast. The calculated groundwater flow direction is to the south-southeast, which is the approximate direction the Yakima River flows through this area of the valley.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 2 of 16

The property is located within the flood plain of the Yakima River and is underlain in most areas by Quaternary-age alluvium and unconsolidated terrace deposits. The alluvium is composed of unconsolidated silt, sand, gravel, and cobble. It ranges in thickness from 0 to 120 feet with an average thickness of 20 feet (USGS, 2009). The underlying terrace deposits consist of coarse-grained gravel with discontinuous layers of silt, clay, sand, or cemented gravel. The terrace gravels generally occur at the surface away from the river, and beneath the alluvium adjacent to the river. The thickness of this unit ranges from 0 to 350 feet with an average thickness of 90 feet (USGS, 2009). These unconsolidated Quaternary deposits are overlain in some areas by artificial fill material up to 20 feet deep, and are underlain by consolidated, Tertiary-age, continental sediments, primarily of the Upper Ellensburg Formation. https://fortress.wa.gov/ecy/publications/documents/1703008.pdf

The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet.

Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4×10-7 to 4 ft/d.

Source: https://wa.water.usgs.gov/projects/yakimagw/summary_of_results.htm

3.0 BACKGROUND

3.1 Site Ownership and Operation

The eastern portion of the parcel (tax parcel #18131314070) was acquired by Standard Oil Company in 1908. It was owned by Standard Oil Company and thereafter its successor in interest, Chevron U.S.A., until 1986 when it was acquired by Joseph E. Wondrack and Carol J. Wondrack. The eastern portion of the site has been owned by Carol Jean Wondrack since February 2010. The western portion of the site (part of tax parcel #18131399997) is owned by BNSF Railroad as successor in interest to the Northern Pacific Railway Company, which acquired its interest in the parcel from the United States of America, pursuant to Section 2 of the Northern Pacific Land Grant Act of 1864. Wondrack Distributing, Inc. operated the bulk fuel distributing facility located at the Site from 1976 to August 1, 2015. Since August 1, 2015, the bulk fuel distributing facility has been operated by Coleman Oil Company.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 3 of 16

3.2 Site Background

A 1920 aerial photo showed eight aboveground storage tanks (ASTs) on concrete piers along the north property boundary. This photo showed an oil storage area in the southeast corner of the property and several buildings including an office and warehouse. The tanks are shown in the location of the current tank farm. A railroad siding is shown on the west side of the site. A historical map dated 1952 shows the tanks on concrete piers have been removed and replaced by vertically standing ASTs.

3.3 Preliminary Site Characterization Report, PBS-June 2015

PBS conducted a subsurface soils investigation for Wondrack Distributing to assess potential contamination from several ASTs in June 2015. The investigation was conducted by collecting soil samples using a combination of hand tools and the use of a truck-mounted drill rig. The maximum depth of exploration was approximately 8-feet below ground surface. Groundwater was not encountered or sampled during this investigation.

A total of 42 soil samples were collected from the following locations:

- The tank farm area
- In the vicinity of an above ground waste oil tank
- In the vicinity of the loading rack and subsurface fuel lines south of the tank farm
- The oil shed
- Piping at the former railroad area
- The east side of the warehouse
- The former oil storage area
- Additionally, one sample was collected of sludge within the stormwater sump.

The soil samples were laboratory tested for hydrocarbon identification (HCID). Select samples with a detection of hydrocarbons were additionally tested to quantify gasoline by NWTPH-Gx, diesel or heavy oil concentrations by NWTPH-Dx. Select samples were tested for benzene, toluene, ethylbenzene, and xylenes (BTEX), and select metals and PAHs.

The following conclusions were presented:

- Diesel- and/or motor oil-range compounds are present in soil at the tank farm, the out-of-use tank and drum storage area, and the loading rack at concentrations that exceed the MTCA Method A cleanup levels. Gasoline range hydrocarbons were not detected above the MTCA screening criteria.
- The soil contamination is primarily, but not exclusively, associated with dark-stained soil at the surface. However, sampling by hand tools was limited to the upper 3 feet from the surface, and deeper sampling within the tank farm compound was not possible due to drill rig access limitations.
- The concentrations of cadmium and lead in soil near the waste oil tank were found to exceed the MTCA Method A cleanup level. PAH concentrations that exceed MTCA Method A cleanup levels were also detected in the samples from the waste oil tank.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 4 of 16

> The preliminary site characterization was detailed in a report titled *Preliminary Site Characterization Report, Coleman Oil, Yakima, WA, PBS, August 16, 2016.* The report was submitted to Coleman Oil. A summary of the soil analytical results from the 2015 soils investigation are presented in Table 1. Sample locations are shown on Figure 3: Characterization Sample Locations.

4.0 2016 RELEASE IDENTIFICATION AND NOTIFICATION

On March 21, 2016, on-site personnel noted what appeared to be fuel product seeping to the surface through a crack in the asphalt (<1-gallon). This observation was made when diesel fuel was being pumped through a subsurface line beneath that location. The following actions were undertaken at the time by on-site personnel:

- Ceased pumping fuel through the line.
- Mopped up fuel product on the surface using absorptive pads from the spill kit.
- Removed asphalt and overburden soil from on top of the line (pipe run is approximately 1-foot below grade).
- Observed and plugged the hole in the line.
- Excavated impacted soil in the vicinity and approximately two to three feet below the breached fuel line.
- Stockpiled impacted soil (approximately seven cubic yards) on plastic sheeting and covered with plastic sheeting.
- The fuel pipe ran from the above storage tank area to the fuel dispenser island.

Visual observation of fuel product, in context with impacted soil and the breached fuel line, constitutes a confirmed release. As such, a Site Assessment was not required per *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991). Coleman Oil personnel reported the release to Ecology within 24 hours per Washington Administrative Code (WAC) 173-340-300. The Department of Ecology (Ecology) assigned Environmental Report Tracking System (ERTS) number 663825 to the release.

Additionally, in December 2016 a release of gasoline product to the subsurface from a below grade shallow pipe was confirmed through pressure testing by Coleman Oil personnel. The fuel pipe ran from the bulk AST to the fuel dispenser canopy. Subsequently, a gasoline product was observed in the closest groundwater monitoring well (MW2) on December 12, 2016. Product was not detected in MW2 on November 2, 2017, indicating the release occurred sometime in November or early December 2016. This release was reported to Ecology on December 14, 2016. This release was assigned Ecology ERTS #670092.

In response to the reported releases, the Department of Ecology issued an Early Notice of Release of Hazardous Substances and Preliminary Determination of Liability for Release to Coleman Oil on March 30, 2017.

5.0 SITE CHARACTERIZATION AND INTERIM ACTIONS

PBS completed interim cleanup actions and site characterization investigation at the Coleman Oil facility between March 2016 and June 2017. The following sections describe these activities. Results from theses activities are presented in Section 8.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 5 of 16

5.1 Soil Excavation

Coleman Oil contracted with PBS and Able Clean-up Technologies, Inc. (ACT) to provide Interim Remedial Action at the release site. On March 21, 2016 ACT filed a public utility notification request. PBS and ACT mobilized to the site on March 23, 2016. Prior to beginning excavation work a private utility locate company conducted clearance for subsurface obstructions. A site-specific health and safety plan (HASP) was prepared and reviewed with all field personnel prior to beginning work. This Interim Action is summarized as follows:

- The excavation expanded to a pit that was approximately 8' x 8'x 5' deep.
- Approximately eight additional cubic yards (15 cubic yards total) were removed from the excavation and stockpiled on-site.
- Soil sampling for waste characterization for off-site disposal approval was conducted.
- Field screening (odor, visual observation, and/or photoionization detector [PID]) indicated the extent of impacted soil was not delineated vertically or laterally.
- Soil samples were collected from the base of the excavation and the north and west sidewalls.
- An underground storage tank (UST) was encountered within the excavation area along the south sidewall (Refer Section 5.2 Heat Oil Tank Removal).

Preliminary analytical results from samples collected from the sidewalls and base of the excavation indicated soil impacted by diesel fuel was not delineated in any direction and remained at concentrations ranging from 11,000 to 34,000 milligrams per kilogram (mg/kg).

Soil analytical results are presented in Table 2. Figure 4 presents the approximate location of the excavations and sample locations.

5.2 Heating Oil UST Removal

During soil excavation and heating oil UST of approximately 1,000-gallon capacity was discovered. Prior to UST decommissioning by removal, Able Clean-up Technologies, Inc. (ACT) of Spokane, Washington (ACT) pumped approximately 80 gallons of what appeared to be heat oil and sludge from the tank. On March 27, 2016 ACT removed the UST from the ground and temporarily stored it on-site in the contaminated soil containment area. The heating oil UST had not been in use for several years prior to the removal action.

Soil analytical results are presented in Table 2. Figure 4 presents the approximate location of the UST and sample locations.

5.3 Additional Soil Excavation

On March 30th, 2016 PBS oversaw the additional PCS excavation by ACT. The excavation was roughly square in shape and approximately 20 - 25 feet in length along the sidewalls and approximately 20 feet deep (Refer to Figure 4 – Site Plan: Soil Excavation and UST Removal and Figure 6: Cross-Section).

Representative soil analytical results were sent to an Environmental Health Specialist at the Yakima Health District (YHD). YHD approved the disposal of petroleum contaminated soil (PCS) to the Anderson Rock and Demolition Pits facility (Anderson) in Yakima, Washington.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 6 of 16

A total of 212.15 tons of PCS was disposed of at Anderson. The YHD PCS disposal approval letter and the PCS disposal documentation are presented in Appendix A.

5.4 Drilling Investigation and Monitoring Well Installation

A subsurface investigation and well installation to help determine the degree and extent of the fuel release was conducted on April 27-28, 2016.

Prior to beginning the drilling investigations, PBS filed a public utility notification request. On April 7, 2016, PBS supervised a private utility locates company, Geophysical Survey of Kennewick, WA, while they conducted borehole clearance for subsurface obstructions. PBS was on-site April 27 and 28, 2016 to conduct the drilling investigation, with Holt Services of Puyallup, Washington providing the drilling services. The borings were advanced with a hollow-stem auger drilling method.

This drilling and sampling program was comprised of the advancement of three monitoring wells (MW1 to MW3) and one recovery well (RW1). The monitoring wells were advanced to a maximum of 25 feet, with 2-inch casing diameter and 10-foot screen. RW1 was advanced to 30 feet, with a 4-inch casing diameter and 15-foot screen (Refer to Figure 4: Site Plan for well locations).

During the advancement of boreholes, soil was screened for volatiles using a hand-held PID. Cursory PID readings were taken along the flights of soil as they were brought to the surface. PID readings were also taken from select soil intervals by partially filling a sealable plastic bag and taking headspace readings within the bag. Volatiles were not detected in soil until the depth approaching the water table was reached. PID readings as high as 1,200 parts per million (ppm) were detected at groundwater depth.

In all borings, soils were logged continuously, noting grain size, density, color, odor, and moisture. Boring logs describing the subsurface lithology and PID readings are presented in Appendix B.

5.5 Additional Drilling Investigation and Monitoring Well Installation

A supplementary subsurface investigation and well installation to further determine the degree and extent of groundwater contamination was conducted on November 8-9, 2016.

Prior to beginning the drilling investigations PBS filed a public utility notification request. On November 7, 2016, Geophysical Survey of Kennewick, WA conducted borehole clearance for subsurface obstructions. PBS was on-site November 8-9, 2016 to conduct the drilling investigation. Holt Services of Puyallup, Washington provided the drilling services.

This drilling and sampling program was comprised of the advancement of three new monitoring wells (MW4, MW5, and MW6). The monitoring wells were advanced to a maximum of 25 feet, with 2-inch casing diameter and 10-foot screen (Refer to Figure 4: Site Plan for well locations).

During the advancement of boreholes, soil was screened for volatiles using a hand-held PID. Cursory PID readings were taken along the runs of soil as they were brought to the surface. PID readings were also taken from select soil intervals by partially filling a sealable plastic bag and taking headspace readings within the bag. Volatiles were not detected at significant concentrations in soil until the depth approaching the water table was reached. PID readings as high as 300 parts per million (ppm) were detected at groundwater depth.

In all borings, soils were logged continuously, noting grain size, density, color, odor, and moisture.

One soil sample was collected at each well location in the unsaturated zone. Samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported to Friedman and Bruya Laboratory in Seattle, Washington, within the specified holding times and under chain-of-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following:

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA method 8021

Boring logs describing the subsurface lithology, sample depths, and PID readings are presented in Appendix B.

5.6 Groundwater Monitoring

On May 10, 2016, December 13, 2016, and June 9, 2017 PBS was on-site to gauge and sample the groundwater wells. Well locations are presented on Figure 4 – Site Plan. Detailed groundwater sampling information, including depth to water and depth to product, is presented in Appendix C - Groundwater Sampling Forms.

	Monitoring Well Construction Summary												
Monitoring Well Identification	Screened Interval (feet bgs)	Well Depth (feet bgs)											
MW1	14.9 – 24.9	24.9											
MW2	15.3 – 25.3	25.3											
MW3	14 – 24	24											
RW1	15 – 30	30											
MW4	15 – 25	25											
MW5	15 – 25	25											
MW6	15 – 25	25											

Monitoring well information is summarized as follows:

May 10, 2016 Groundwater Monitoring Event

The May 2016 Groundwater Monitoring Event (GME) included the gauging and sampling (unless NAPL present) at monitoring wells MW1, MW2, MW3 and RW1.

Prior to sampling the wells were gauged using an interface probe. Static water levels ranged from 19.13 feet below top of casing (fbTOC) in MW1 to 19.18 fbTOC in MW2. Light, non-aqueous phase liquid (NAPL or product), in the form of diesel product, was identified in RW1 (4.2 feet thickness) and in MW3 (4.7 feet thickness). RW1 and MW3 were not sampled due to the presence of NAPL product.

Groundwater purging and sampling was conducted at MW1 and MW2 using a peristaltic pump, employing low flow sampling methodology with pumping rates not exceeding 0.20 liters/minute and creating minimal drawdown in the well. Groundwater field parameters (conductivity, pH, temperature, dissolved oxygen and oxidation-reduction potential) were recorded during purging using a YSI Model 556MSP water-quality analyzer equipped with a flow-through cell.

Once groundwater parameters stabilized, which indicates groundwater is representative of the aquifer formation and is not well column water, a sample was collected. PBS personnel wore new disposable nitrile gloves when collecting samples.

All samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported to Friedman and Bruya Laboratory in Seattle, Washington, within the specified holding times and under chain-of-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following:

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA method 8021
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270D SIM

December 13, 2016 Groundwater Monitoring Event

The December 2016 GME included the gauging and sampling (unless was present) at monitoring wells MW1 through MW6 and RW1.

Prior to sampling the wells were gauged using an interface probe. Static water levels ranged from 17.40 fbTOC in MW6 to 23.73 fbTOC in MW3. NAPL identified by the project laboratory as diesel product, was identified in MW5 (0.30-feet thickness). NAPL determined to be mixed diesel and gasoline product was identified in MW2 (8-feet thickness) and MW3 (0.14-feet thickness). RW1 and MW1 were not sampled, but NAPL was observed at thicknesses of 0.25-feet and 1.14-feet, respectively.

Groundwater purging and sampling was conducted at MW4 and MW6 using a peristaltic pump, employing low flow sampling methodology with pumping rates not exceeding 0.20 liters/minute and creating minimal drawdown in the well. Groundwater field parameters could not be collected during this sampling event due to an equipment malfunction of the YSI. PBS personnel wore new disposable nitrile gloves when collecting each sample.

All samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported to Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times and under chainof-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following: Coleman Oil Yakima Facility Data Summary Report July 2018 Page 9 of 16

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA method 8021
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270D SIM

June 9, 2017 Groundwater Monitoring Event

The June 2017 GME included the gauging and sampling (unless NAPL was present) at monitoring wells MW1 through MW6 and RW1.

Prior to sampling the wells were gauged using an interface probe. Static water levels ranged from 16.61 fbTOC in MW6 to 20.81 fbTOC in MW3. NAPL was identified in RW1 (1.48-feet thickness), MW1 (0.16-feet thickness), MW3 (2.87-feet thickness), and MW5 (0.66-feet thickness). NAPL in MW5 was identified as a diesel product and LNAPL in MW3 was identified as mixed diesel and gasoline product.

Groundwater purging and sampling was conducted at MW4, and MW6 using a peristaltic pump, employing low flow sampling methodology with pumping rates not exceeding 0.36 liters/minute and creating minimal drawdown in the well. Once groundwater parameters stabilized, which indicates groundwater is representative of the aquifer formation and is not well column water, a sample was collected. PBS personnel wore new disposable nitrile gloves when collecting samples. A "grab" groundwater sample was collected from MW2 using a disposable bailer. Detailed groundwater sampling information is presented in Appendix C - Groundwater Sampling Forms.

All samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times and under chainof-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following:

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA method 8021
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270D SIM
- Lead by EPA Method 200.8
- Select Volatile Organic Compounds (VOCs) by EPA Method 8260C

Groundwater analytical results from each event are presented in Table 3. Groundwater elevation data is presented in Table 4.

5.7 Diesel Product (NAPL) Removal

With guidance from PBS, on-site Coleman Oil staff conducted diesel product removal events using a peristaltic pump. An interface probe was used during extraction to monitor the NAPL thickness and pumping was ceased once NAPL thickness was no longer measurable. The pumped NAPL was contained into a 300-gallon tote that was labeled and stored onsite, pending disposal by Coleman Oil.

Eight NAPL removal events were conducted between May 10, 2016 and August 5, 2016. In total, approximately four gallons were removed from MW3 and 48.5 gallons were removed from RW1.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 10 of 16

A summary of diesel product thickness and removal is presented in Appendix D.

5.8 Multiphase Extraction

Multiphase extraction (MPE or vacuum extraction) is a process of rapidly removing NAPL, contaminated groundwater and vapor from the subsurface. PBS oversaw National Response Corporation (NRC) of Pasco, WA, who utilized a vacuum rig with catchment vessel to remove contaminated media from the subsurface through select wells on-site. Contaminated media was removed from the wells using transparent, reinforced down-well tubing and vacuum.

From May 10, 2016 to May 27, 2017, eleven (11) MPE events were undertaken at the property. A total of approximately 3,616-gallons of NAPL product and contaminated groundwater has been removed from the subsurface and disposed of off-site.

Based on visual observations at the tubing and vacuum truck, and conversations with NRC, PBS roughly estimates that 10% (or 350 gallons) of the removed liquid material was NAPL product. It is unknown what volume of the contaminant load was removed as vapor.

Measured product thickness and MPE volumes are presented in Table 5.

5.9 Vapor Intrusion Evaluation

PBS completed a Vapor Intrusion (VI) investigation at the subject property. Because VOCs have been identified in groundwater samples collected in close proximity to the building at concentrations exceeding the screening levels, the investigation consisted of indoor air sampling to determine if contamination is unacceptably impacting the building's indoor air.

Three six-liter Summa canisters were ordered from Friedman and Bruya, along with flow controllers set at a flow rate of 16 milliliters (mL) /minute (6-hour sample time). The canisters were batch-certified for airphase hydrocarbons and volatile organic compounds.

On December 13, 2016, PBS collected one indoor air sample in the office (VS1), one in the crawlspace (VS2) and one outdoor air sample (VS3) to allow for the comparison of indoor air quality to ambient air quality.

Collected samples were submitted to Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times and under chain of custody documentation. Analyses were conducted under normal turnaround time and included the following:

- Air-Phase Petroleum Hydrocarbons by Method MA-APH
- BTEXN and 1,2,4-Trimethylbenzene by EPA Method TO-15

The air analytical results are presented in Table 6. Air Sampling Datasheets are presented in Appendix E.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 11 of 16

5.10 Aquifer Testing

The purpose of conducting aquifer testing is to better understand properties of the aquifer and the groundwater flow system at the site. Practical applications of knowledge gained through aquifer testing include estimating groundwater flow velocity, evaluating potential contaminant migration, and evaluating feasible remedial approaches and design.

On June 9, 2017, an assessment of hydraulic conductivity was undertaken within monitoring wells MW6 and MW4, which are screened in the unconfined aquifer at the site. For the purpose of determining hydraulic conductivity, one rising head slug test was undertaken at each well. This method evaluates the hydraulic conductivity of the subsurface materials in the immediate vicinity of the screened interval of the well. An initial displacement was achieved through the removal of water from the well with a disposable bailer. The change in water level was recorded via a pressure transducer and data logger (In Situ Level Troll 700) until the water level within the well returned to or approached equilibrium.

5.11 NAPL Product Sampling

On June 9, 2017 product samples were collect from MW3 and MW5, using a disposable bailer and laboratory supplied glass containers. The samples were sent to Pace Energy Forensics Laboratory of Pittsburg, PA (Pace). Samples were analyzed for Qualitative Fingerprinting by GC/MS Full Scan (ASTM D5739).

6.0 INVESTIGATION-DERIVED WASTES

Gloves, tubing and other disposable field supplies were disposed of as solid waste. Purged groundwater and decontamination water were placed in 55-gallon drums, which are sealed, labeled and stored on-site. Soil cuttings and excavated soil were temporarily stored on-site in drums or stockpiles, before being disposed of at Anderson Rock and Demolition Pits facility (Anderson) in Yakima, Washington. Soil was disposed of as petroleum contaminated soil with written approval from the Yakima County Health District.

7.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS

Contaminated site assessment and cleanup is conducted in accordance with the substantive requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington (RCW) and its implementing regulations, Chapter 173-340 of the Washington Administrative Code (WAC). Site assessment and cleanup (if applicable) has been and will continue to be performed under MTCA. This section summarizes the cleanup standards established for this site.

7.1 Soil and Groundwater Cleanup Standards

In accordance with MTCA, development of preliminary cleanup levels includes identifying potential exposure pathways for human and ecological impacts based on the planned land use. MTCA provides for three methods (Method A, B or C) for establishing cleanup standards. Method A (unrestricted land use) is typically used as the default standard levels. Method B and C are used when developing site-specific cleanup levels.

Considering the current land use and unknown potential future land use, MTCA Method A Cleanup Levels are adopted as screening levels at this time. Method A Cleanup Levels for soil and groundwater are presented in Tables 1 and 2, along with the contaminant concentrations. MTCA Method A Industrial Cleanup Levels are also presented for soil.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 12 of 16

7.2 Vapor Intrusion and Indoor Air Cleanup Standards *Vapor Intrusion*

In the state of Washington vapor intrusion (VI) is evaluated in general accordance Ecology's *Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology VI Guidance). Ecology's *The Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion Implementation Memorandum No. 14* (March 2016) provides guidance on how to initially assess whether VI is a potential concern at sites with petroleum contamination. This memo supplements Chapter 2, "Preliminary VI Assessments," in Ecology's VI Guidance. Ecology's Screening and Cleanup Levels were updated in 2015.

The VI Evaluation is a tiered approach, in which data is evaluated and the decision is made to either "offramp" and rule out the VI pathway as a concern or proceed forward with the evaluation. The VI Evaluation is summarized as follows:

Tier II Assessment: The purpose of the Tier II Assessment is to determine the actual impact vapor intrusion has on indoor air and to evaluate what measures, if any, are required to protect indoor receptors from vapor intrusion. The Tier II Assessment includes the sampling of indoor air. Ecology's 2015 Indoor Air Cleanup Levels are the adopted cleanup criteria as it relates to vapor intrusion.

Indoor Air Quality

As the site is an industrial bulk fuel distribution facility with a worker health and safety program, the National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limits (RELs) and the Occupational Safety and Health Administration (OSHA) 8-hour time weighted average (TWA) Permissible Exposure Limits (PELs) for general industry are the adopted cleanup criteria for indoor air quality at the property.

8.0 FINDINGS

8.1 Soil

Field Observations

A typical subsurface profile encountered in excavations and soil borings on-site is presented below:

Classification	Description	Approximate Depth Range (feet bgs)
Fill	Loose, dark brown sandy gravel; medium sand; subangular fine gravel: damp	0 to 2
Silt	Medium dense, brown sandy silt with gravel; medium sand; subrounded coarse gravel; damp	2 to 8
Sand	Dense, brown and gray sand with gravel and cobbles; medium sand; subrounded coarse gravel	8 to 30

Typical Subsurface Profile

Classification	Description	Approximate Depth Range (feet bgs)
	Groundwater	19

Graphic boring logs are provided in Appendix B.

Analytical Results

2015 Subsurface Investigation

The following conclusions were presented in the 2015 Site Characterization Report:

- Diesel- and/or motor oil-range compounds are present in soil at the tank farm, the out-of-use tank and drum storage area, and the loading rack at concentrations that exceed the MTCA Method A cleanup levels. Gasoline range hydrocarbons were not detected above the MTCA screening criteria.
- The soil contamination is primarily, but not exclusively, associated with dark-stained soil at the surface. However, sampling by hand tools was limited to the upper 3 feet from the surface, and deeper sampling within the tank farm compound was not possible due to drill rig access limitations.
- The concentrations of cadmium and lead in soil near the waste oil tank were found to exceed the MTCA Method A cleanup level. PAH concentrations that exceed MTCA Method A cleanup levels were also detected in the samples from the waste oil tank.

A summary of the soil analytical results from the 2015 soils investigation are presented in Table 1.

Soil Excavation Area

Contaminant concentrations in samples collected from the north, east and south sidewalls of the excavation were either not detected or were below MTCA Method A Cleanup Levels.

Contaminant concentrations in samples collected from the west sidewall and the base of the excavation exceed the adopted Cleanup Levels for the following compounds:

- Gasoline range Total Petroleum Hydrocarbons (TPH)
- Diesel range TPHs
- Benzene, ethylbenzene and xylenes
- Naphthalene

It should be noted that an additional two feet of soil at the base of the excavation were removed after sampling was conducted. As the excavation extended below the water table, additional soil sampling was not conducted.

Soil analytical results are presented in Table 2. Figure 4 presents the approximate location of the excavations and sample locations.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 14 of 16

UST Decommissioning

Based on the findings of the UST assessment, the soil contamination identified in the vicinity of the UST are related to the nearby diesel fuel release and do not indicate a release from the heating oil UST, based on the following:

- The presence of diesel range and low levels of gasoline range petroleum hydrocarbons and volatiles indicate a fresh release. This petroleum signature is consistent with that identified during the diesel release investigation and is not consistent with a release of weathered heating oil.
- The heating oil tank was inspected after removal and was found to be in fair condition. No perforations were observed.

The heating oil UST decommissioning was detailed in a report titled UST Removal Report: Heat Oil Tank, Coleman Oil Yakima Facility, dated May 11, 2016. The report was submitted to Coleman Oil. Soil analytical results are presented in Table 2. Figure 4 presents the approximate location of the UST and sample locations.

Well Installation

During the installation of monitoring wells MW5 and MW6, one soil sample was collected from the unsaturated zone at each location. Soil samples were analyzed for the following compounds:

- Gasoline range Total Petroleum Hydrocarbons (TPH)
- Diesel range TPHs
- Benzene, toluene, ethylbenzene and xylenes

The concentration of gasoline range TPHs exceeded the Cleanup Level in sample MW5a. The remaining analyte concentrations were below the Cleanup Level and/or the laboratory method detection limit. Soil Analytical Results are presented in Table 2.

8.2 Groundwater

Depth to product (DTP) and depth to water (DTW) measurements were taken in gauging events, during groundwater sampling events and before MPE events. At each well, ground level and top of casing (TOC) elevations were measured by a licensed surveyor, so groundwater and product elevations are known. A NAPL density of 0.8 was used to calculate the potentiometric groundwater surface. DTP, DTW and groundwater elevation data is presented in Table 4. The survey report is included as Appendix F. Water level and product thickness hydrographs are presented in Appendix G.

Analytical Results

<u>Groundwater</u>

Contaminant concentrations in groundwater samples collected from each of the sampled wells have exceedances of the adopted Cleanup Levels. The following compounds have been identified above the Cleanup Level:

- Gasoline range Total Petroleum Hydrocarbons (TPH)
- Diesel range TPHs
- Oil range TPHs

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 15 of 16

- Benzene, toluene and xylenes
- Naphthalene

Groundwater analytical results are presented in Table 3. Groundwater elevation data is presented in Table 4. A copy of the laboratory reports and chain of custody documentation is included in Appendix I.

<u>NAPL</u>

Pace analyzed product samples from MW3 and MW5 and made the following conclusion, "The petroleum signatures show that MW3 and MW5 share a similar weathered #2 diesel fuel signature. MW3 exhibits an intermingling of a significant gasoline component with the #2 diesel fuel. MW5 contains the #2 diesel fuel component intermingled with a proportionately lower amount of a refined residual range petroleum."

Below is a graph and comment from the Pace letter report:

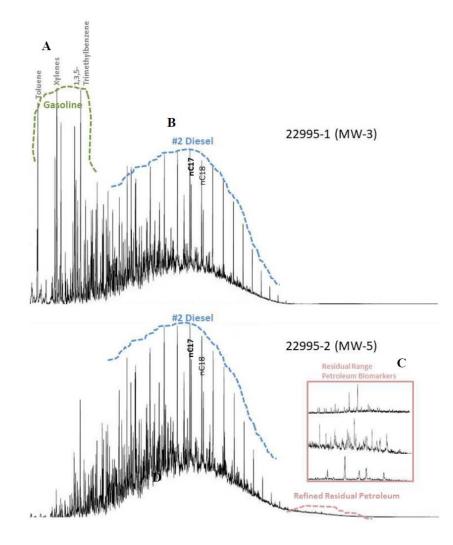


Figure 1. Diagnostic petroleum attributes of the sample – TIC & biomarkers. (A) Gasoline signature (B) diesel signature (C) Refined residual range petroleum signature

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 16 of 16

Select fuel components are presented in Table 7 to illustrate Pace findings.

The complete Pace letter and analytical report are included in Attachment I.

Hydraulic Conductivity

The rising head test data was processed using hydrogeological modeling software (AQTESOLV v4.5). The calculations were performed using the Bouwer-Rice solution. The Bouwer-Rice solution was developed for open boreholes or screened wells that partially or fully penetrate an unconfined aquifer and was therefore deemed the most appropriate solution to be used for the site.

The recovery was curved at the most valuable part of recovery, so the line matching was placed tangent to the curve at approximately 80% recovery.

The two calculated hydraulic conductivities (K values) were 1.79 feet per day (ft/day) at MW4 and 1.183 ft/day for MW6.

The calculated hydraulic conductivities are indicative of silty sands (Fetter, 1994), which is generally consistent with the subsurface lithology observed during well installations. The mean of the two K values is 1.487 feet/day and is the adopted K value for the site. The aquifer testing analysis reports are presented in Appendix H.

8.3 Vapor

Vapor Intrusion

Concentrations of benzene, naphthalene and 1,2,4-trimethylbenzene exceed the VI Cleanup Level in each sample. Concentrations of air-phase hydrocarbons (APH) in the aliphatic carbon C9 – C12 range exceed the VI Cleanup Level in the indoor and crawlspace samples.

The results indicate that soil vapor as air phase aliphatic hydrocarbons has migrated up through the soil and into the crawlspace and may be having a relatively low impact on indoor air as well.

Indoor Air Quality

Contaminant concentrations did not exceed the OSHA PELs or NIOSH RELs in any sample. These are the adopted cleanup criteria for the site as it is currently operated, as it is an industrial bulk fuel facility with a worker health and safety program.

The air analytical results are presented in Table 6.

8.4 Preliminary Conceptual Contaminant Migration Pathways

A preliminary conceptual site model (CSM) includes the identification of contaminants of concern and occurrence, impacted media and exposure pathways. The CSM will continue to be developed and will be more formally presented in the Remedial Investigation report.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 17 of 16

Contaminants of Concern and Occurrence

The primary COCs are petroleum hydrocarbon contaminants (gasoline, diesel, oil and PAHs) and metals, which are associated with the former and current site use as a fuel storage and distribution facility. Historical releases are likely related to the storage and handling of fuel, such as releases from:

- Storage vessels
- Piping
- Dispensers
- Surface spills

Known releases include the March 2016 diesel fuel release and the November/December 2016 gasoline fuel release. Both releases are from subsurface pipes and the volume of each release is unknown.

The sources of these releases have been identified and discontinued. Bulk fuel is currently stored in new ASTs (2017) and underground storage and piping is not utilized.

Impacted Media

Fuel releases are confirmed to have impacted soil and groundwater on site. NAPL has been confirmed to be present. Depth to water and depth to product measurements were taken in each well in April 2018. NAPL was identified in each of the seven wells and ranged in thickness from 0.05-feet in MW6 and 1.4-feet in RW1.

Impact to soil vapor is suspected based on the VI Evaluation.

There is no surface water or sediment in the vicinity of the releases and are not being evaluated as impacted media.

Human Health Receptors

The following complete exposure pathway is identified:

• The potential from dermal contact with impacted soil by site workers engaged in excavation activities.

The following exposure pathway is considered to be potentially complete:

• Vapor intrusion to indoor air. This pathway should be evaluated further should site use change. This pathway should be evaluated further should the site be occupied by workers who are not included in a company health and safety and medical monitoring plan.

Ecological Receptors

Impacts to subsurface soil and groundwater, resulting from on-site petroleum hydrocarbon releases, are not currently considered to be a concern to ecological receptors, based on the following:

- The site is located in an industrial and commercial urban setting.
- The site surface is comprised of structures and other hard scape materials (asphalt, concrete). The far western portion of the site adjoins the railroad, which has a coarse gravel surface (approximately 1-foot thickness). There is no exposed soil.
- The migration pathway of contaminated groundwater to surface water and/or sediment is not considered to be complete.

Coleman Oil Yakima Facility Data Summary Report July 2018 Page 18 of 16

9.0 LIMITATIONS

PBS has prepared this report for use by the Coleman Oil Company. It will be submitted to the Department of Ecology as a requirement of the Agreed Order.

This study was limited to the tests, locations, and depths as indicated to determine the absence or presence of certain contaminants. The site as a whole may have other contamination that was not characterized by this study. The findings and conclusions of this report are not scientific certainties but, rather, are probabilities based on professional judgment concerning the significance of the data gathered during the course of this investigation. PBS is not able to represent that the site or adjoining land contain no hazardous substances or other latent conditions beyond that detected or observed by PBS.

July 19, 2019

Date

Sincerely,

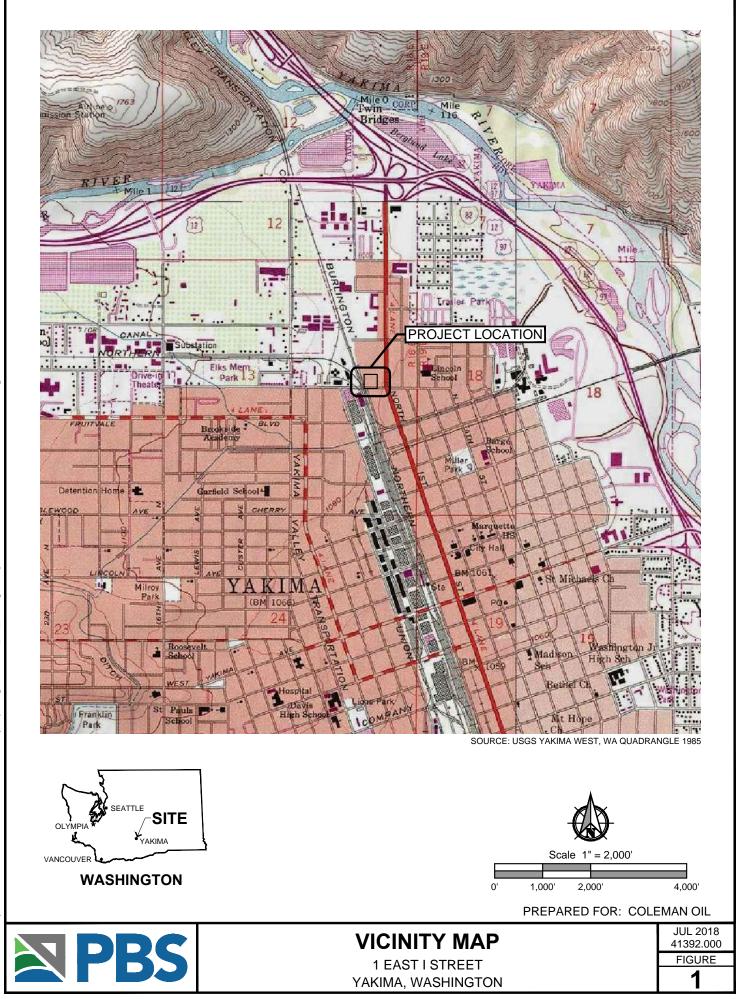
PBS Engineering and Environmental Inc.

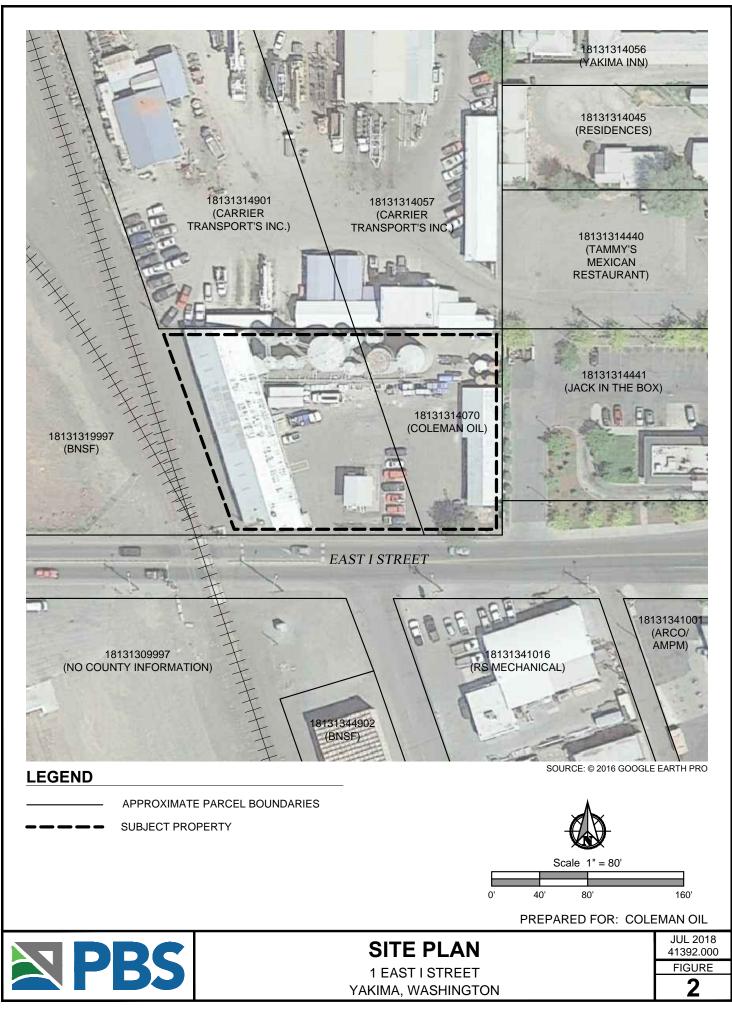
Ken Nogeire, LHG Senior Geologist/Hydrogeologist

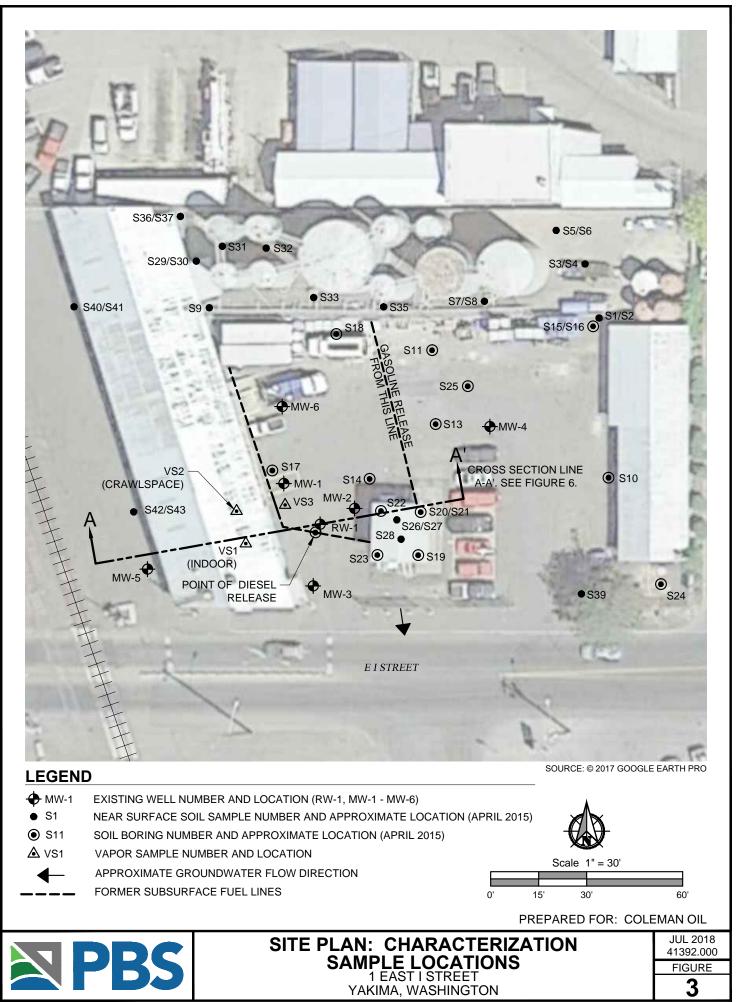
Wash

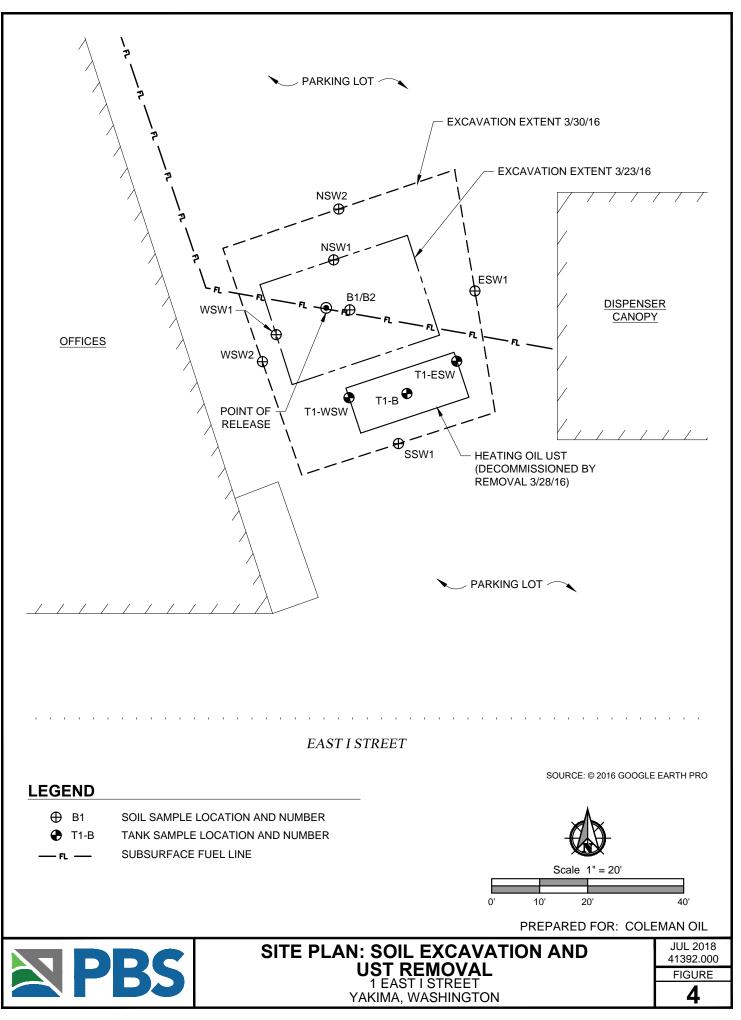
KENNETH NOGEIRE

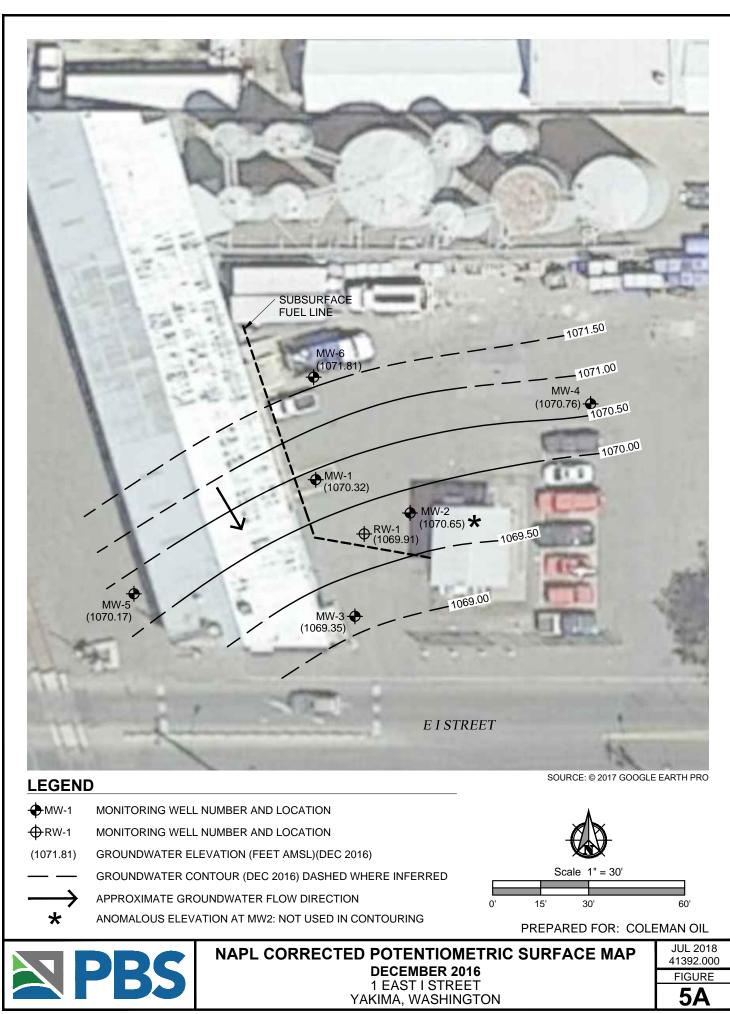
ed Ge

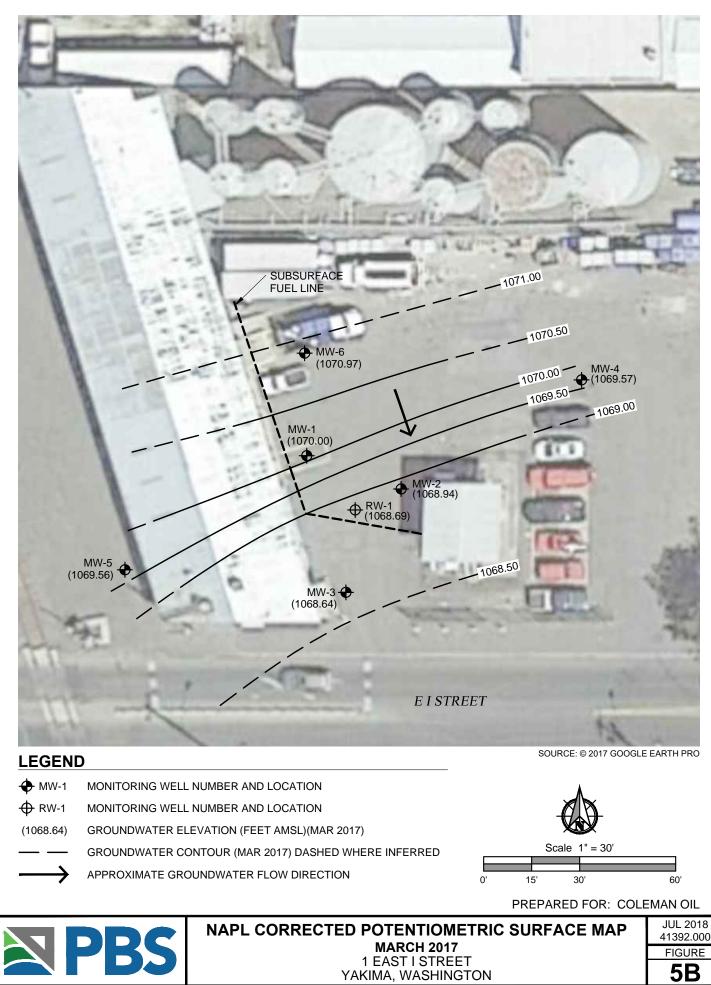

Thomas J Mergy

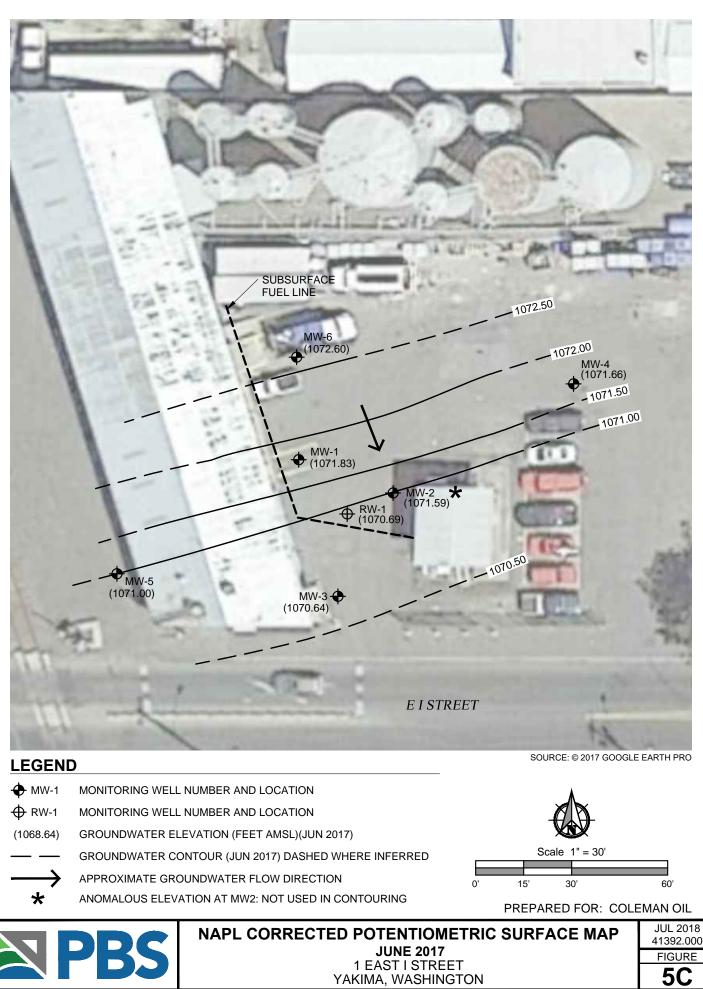

Thomas Mergy, LHG Senior Geologist/Hydrogeologist

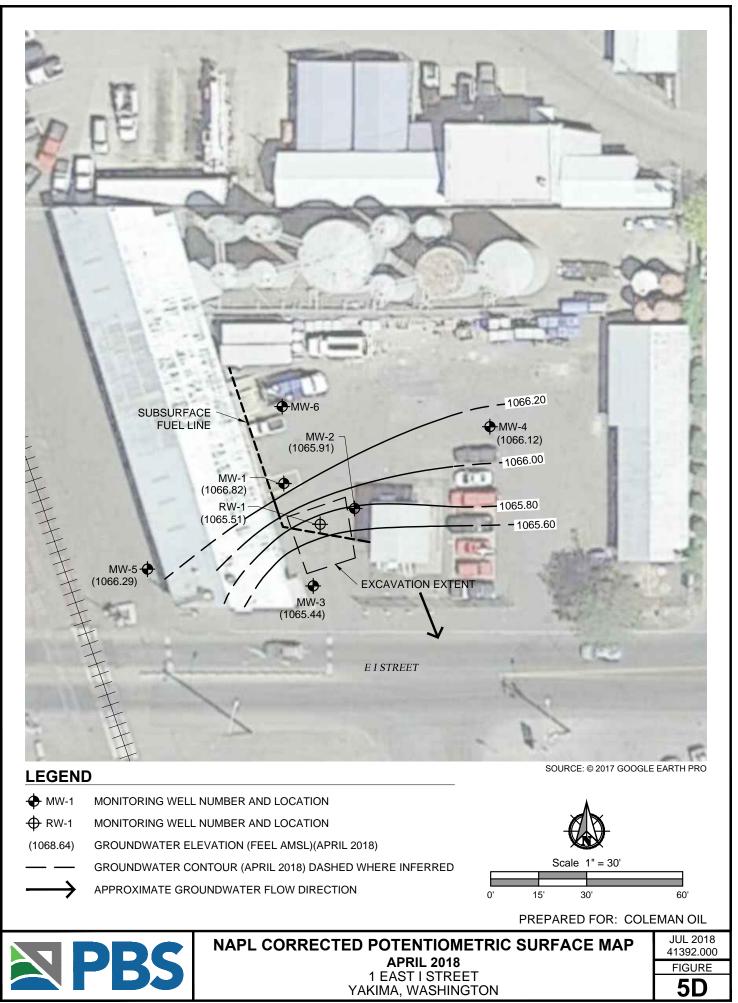

Date

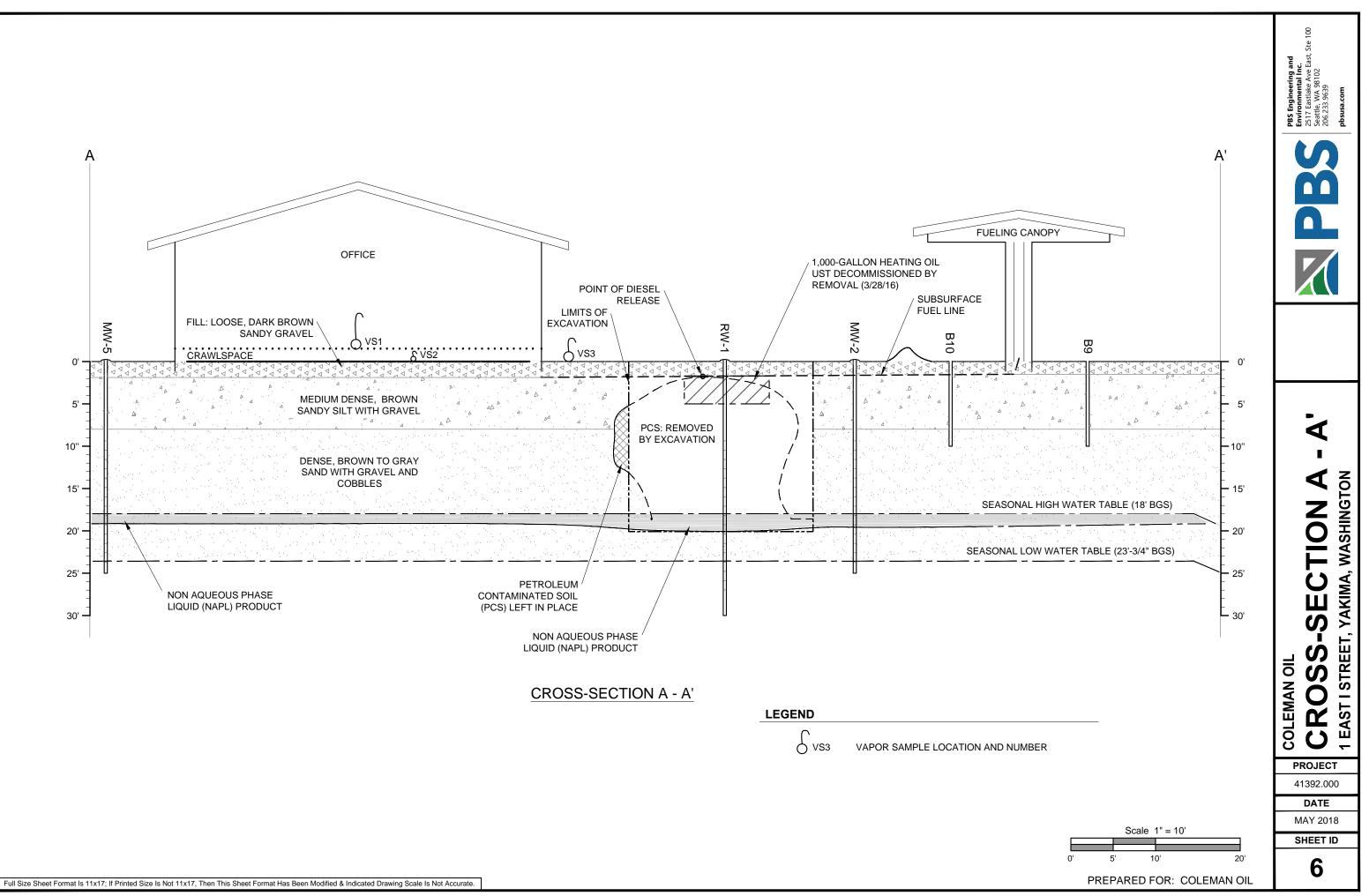

July 19, 2018


FIGURES









5B

5C

TABLES

TABLE 1: SOIL ANALYTICAL RESULTS (2015)

Site:Coleman Oil: 1 East I St, Yakima, WAProject No:41392.000

		-		Resu	lt mg/Kg								PAHs		s				
Location / Depth Description	Decorintion			HCID		PH-Dx	Dx Metals						BTEX VOCs					Nonh	Carcinogenic
	Description	Gx	Dx	Oil	Dx	Oil	Asenic	Cadmium	Chromium	Lead	Mercury	Benzene	Toluene	Ethyl Benzene	Xylenes	Various	B(a)P	Naph	PAHs**
Soil Sampling: completed A	pril 3, 2015																		
S1 / 0.5'	Native	ND	ND	2,600 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S2 / 0.75'	Native	ND	ND	590 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S3 / 0.4'	Native	ND	ND	D	2,100 x	11,000	-	-	-	-	-	-	-	-	-	-	-	-	-
S4 / 0.8'	Native	ND	ND	D	270 x	1,100	-	-	-	-	-	-	-	-	-	-	-	-	-
S5 / 0.5'	Native	ND	ND	600 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S6 / 1.0'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S7 / 0.5'	Native	ND	390 xe	470 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S8 / 1.0'	Native	ND	Dx	D	550 x	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-
S9 / 0.25'	Native	ND	ND	6,700 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Sampling: completed A	pril 8, 2015			, í															
S10 / 4.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S11	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S12	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S13 / 2'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S14 / 5.0'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S15 / 3.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S16 / 6.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S17 / 2.5'	Native	ND	ND	ND	-	-	2.62	-	-	4.56	-	< 0.03	< 0.05	<0.05	<0.05	ND	-	-	-
S18 / 5.0'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S19 / 1.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S20 / 4.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S21 / 9.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S22 / 4.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S23 / 2.0'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S24 / 5.5'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S25 / 10.0'	Native	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Sampling: completed A																			
S26 / 1.0'	Native	ND	D	D	15,000	980	-	-	-	-	-	-	-	-	-	-	-	-	-
S27 / 2.0'	Native	ND	160 e	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S28 / 0.5'	Native	ND	10,000 e	1,500 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S29 / 1.0'	Native	ND	7,300 e	7,400e	-	-	8	2.35	6	332	<1	-	-	-	-	-	-	-	-
S30 / 2.0'	Native	ND	D	D	3,200	5,000	-	-	-	-	-	-	-	-	-	-	0.1	0.12	0.11
S31 / 1.5'	Native	ND	3,300 e	2,100 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S32 / 0.5'	Native	ND	2,400 e	1,200 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S33 / 0.5'	Native	ND	2,100 e	510 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S34 / 0.5'	Native	ND	320 e	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S35 / 0.5'	Native	ND	90 e	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S36 / 0.5'	Native	ND	D	D	52,000	5,300	-	-	-	-	-	- I	-	-	-	-	-	-	· · ·
S37 / 2.75'	Native	ND	D	ND	530	<250	-	-	-	-	-	I	-	-	-	-	-	-	-
S38 / 0.5'	Native	ND	ND	310 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S39 / 3.0'	Native	-	-	-	15,000	31,000	-	-	-	-	-	I	-	-	-	-	-	-	-
S40 / 0.5'	Native	D	ND	ND	-	-	-	-	-	-	-	<0.02	< 0.02	<0.02	< 0.06	-	-	-	-
S41 / 0.5'	Native	D	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S42 / 0.5'	Native	ND	290 e	ND	660	310	-	-	-	-	-	-	-	-	-	-	-	-	-
S43 / 1.0'	Native	ND	99 e	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S44	Native	ND	1,300 e	330 e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Adopted Criteria	MTCA Method A Cleanup Levels For Soil	100	2,000	2,000	2,000	2,000	20	2	19	250	2	0.03	7	6	9	Various	0.1	5	0.1
	Method A for Industrial	28/105	39,000	39,000	39,000	39,000	2.9	3,500	19	1,000	2.1	0.03	7.3	6.1	9.1	Various	0.01	4.5	0.01

BOLD indicates above MTCA Method A Cleanup Levels for Soil

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

mg/kg - miligrams per kilogram

 ${<}0.03$ - less than the laboratory method reporting limit

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation

VOCs - volatile organic compounds

PAHs - polycyclic aromatic hydrocarbons

Naph - naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

B(a)P - benzo(a)pyrene

ND - material not detected above laboratory method reporting limit

D - detected above the method reporting limit

e - the concentration reported is a laboratory estimate

TABLE 2: SOIL ANALYTICAL RESULTS (PCS Excavation UST Decommissioning and MW Installation)

Site:

Project No:

Coleman Oil: 1 East I St, Yakima, WA 41392.000

					Result	t mg/Kg						
Location Donth			TPHs			BT	ΈX			Metals		
Location - Depth	Description	Gx	Dx	Oil	Benzene	Toluene	Ethyl Benzene	Xylenes	B(a)P	Naph	Carcinogenic PAHs**	Lead
Soil Sampling: Exca	vation confirmati	ion samplir	ng completed I	March 23, 2	2016							
NSW1 - 4	Native	-	11,000	270x	-	-	-	-	-	-	-	-
WSW1 - 4	Native	-	26,000	570x	-	-	-	-	-	-	-	-
B1 - 5.5	Native	5,100	34,000	770x	0.79	14	20	110	<0.5*	8.1	<0.05**	-
Soil Sampling: Heat	ing oil tank decor	mmissionir	ng on March 28	8, 2016								
T1-WSW - 5	Native	-	9500	<250	-	-	-	-	-	-	-	-
T1-ESW - 5	Native	-	920	<250	-	-	-	-	-	-	-	-
T1-B - 7	Native	340	190	<250	<0.02	<0.063	0.18	2.3	-	-	-	-
Soil Sampling: Exca	vation confirmati	ion samplir	ng completed M	March 30, 2	016							
NSW2 - 15	Native	<2	<50	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-
ESW1 - 15	Native	3	<50	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-
SSW1 - 15	Native	5.5	<50	<250	<0.02	0.039	0.024	0.14	-	-	-	-
WSW2 - 11	Native	3,400	9,900***	330x	<0.02	3.1	7.5	62	-	-	-	-
B2 - 18	Native	1,600	25,000***	570x	0.65	5.1	7.3	44	<0.5*	7.2	<0.05**	4.94
Soil Sampling: Duri	ng the installation	n of monito	ring wells MW	5-MW7 on	November	8-9, 2016						
MW4-6	Native	<2	<50	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-
MW5a - 20	Native	140	1,100	<250	<0.02	<0.02	0.27	1.1	-	-	-	-
MW6	Native	<2	<50	<250	<0.02	<0.02	<0.02	<0.06	-	-	-	-
Adopted Criteria	MTCA Method A Cleanup Levels For Soil	100/30	2,000	2,000	0.03	7	6	9	0.1	5	0.1	250
	Method A for Industrial	28/105	39,000	39,000	0.03	7.3	6.1	9.1	0.01	4.5	0.01	1,000

BOLD indicates above MTCA Method A Cleanup Levels for Soil

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

mg/kg - miligrams per kilogram

<50 - less than the laboratory method reporting limit

PAHs - polycyclic aromatic hydrocarbons

Naph - naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

B(a)P - benzo(a)pyrene

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation

* - Detection limit exceeded the adopted criteria due to elevated diesel concentration

**Value for carcinogenic PAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2

*** VPH/EPH analysis was also conducted for this sample, and may be used at a later date to determine appropriate Cleanup Criteria. VPH/EPH results can be found in the attached laboratory reports

TABLE 3: GROUNDWATER ANALYTICAL RESULTS

Site:Coleman Oil: 1 East I St, Yakima, WAProject No:41392.000

						F	Result ug/L									
			TPHs		VOCs									PAHs		
Location/ Depth	Description	Gx	Dx	Oil	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	EDC	EDB	Hexane	B(a)P	Naph	Carcinogenic PAHs**	Lead
	May 9, 2016		Not sampled due to the presence of LNAPL: 4.26 feet thickness													
RW1	December 13, 2016					Not	sampled o	due to the	presence	of LNAPL:	0.25 feet t	hickness	5			
	June 9, 2017	Not sampled due to the presence of LNAPL: 1.48 feet thickness														
	May 9, 2016	4,300	12,000	1,100	49	78	89	440	-	-	-	-	<1.2*	56	<1.2*	<1.2*
MW1	December 13, 2016		Not sampled due to the presence of LNAPL: 1.14 feet thickness													
	June 9, 2017					Not	sampled o	due to the	presence	of LNAPL:	0.16 feet t	hickness	;			
	May 9, 2016	420	1,300	250	<1	<1	1.1	<3	-	-	-	-	-	-	-	-
MW2	December 13, 2016		Not sampled due to the presence of LNAPL													
	June 9, 2017	83,000	-	-	2,900	9,900	1,000	5,900	<1	<1	<1	140	-	-	-	-
	May 9, 2016	-	Not sampled due to the presence of LNAPL: 4.7 feet thickness													
MW3	December 13, 2016					Not	sampled o	due to the	presence	of LNAPL:	4.91 feet t	hickness	;			
	June 9, 2017					Not	sampled o	due to the	presence	of LNAPL:	2.87 feet t	hickness	;			
MW4	December 13, 2016	12,000	3,200	460	500	<100	130	<300	-	-	-	-	< 0.06	160	<0.06	<0.06
101004	June 9, 2017	7,600	4,300	870	240	12	120	<30	<1	<1	<1	12	< 0.06	160	<0.06	<1
MW5	December 13, 2016					Not	sampled o	due to the	presence	of LNAPL:	0.57 feet t	hickness	;			
	June 9, 2017					Not	sampled o	due to the	presence	of LNAPL:	0.66 feet t	hickness	5			
MW6	December 13, 2016	13,000	3,100	<250	110	<100	130	<300	-	-	-	-	<0.06	310	<0.06	<0.06
	June 9, 2017	7,600	3,700	<400	140	100	110	69	<1	<1	<1*	49	<0.06	250	<0.06	<1
Adopted Criteria	MTCA Method A Cleanup Levels For Groundwater	800/ 1000	500	500	5	1,000	700	1,000	20	5	0.01	-	0.1	160	0.1	15

BOLD indicates above MTCA Method A Cleanup Levels for Groundwater

ug/L - micrograms per litre

<50 - less than the laboratory method reporting limit

 * - Detection limit exceeded the adopted criteria

**Value for carcinogenic PAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2

LNAPL - light, non-aqueous phase liquid

Industrial Cleanup Levels for Groundwater not available

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

PAHs - polycyclic aromatic hydrocarbons

Naph - naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

B(a)P - benzo(a)pyrene

MTBE - methyl tert-butyl ether

EDC - 1,2 dichloroethane

EDB - ethylene dibromide

TABLE 4: Groundwater Elevation Data

Site:	Coleman Oil: 1 East I St, Yakima, WA
Project No:	41392.000

Well ID	Well Screen Interval (feet)	Date	TOC elev (feet)	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Potent. Elev ³ (feet)
MW-1	9.9-25.9	5/10/2016	1089.54	0.00	19.13	0.00	1070.41
	0.0 20.0	10/5/2016		16.75	22.02	5.27	1071.74
		10/20/2016		17.15	19.94	2.79	1071.83
		11/2/2016		17.56	18.75	1.19	1071.74
		12/13/2016		18.99	20.13	1.14	1070.32
		1/20/2017		19.42	24.32	4.90	1069.14
		2/2/2017		20.42	21.51	1.09	1068.90
		3/21/2017	1089.54	18.83	22.39	3.56	1070.00
		4/4/2017	1089.54	19.35	19.59	0.24	1070.14
		4/20/2017	1089.54	18.7	19.07	0.37	1070.77
		5/8/2017		17.9	18.29	0.39	1071.56
		5/25/2017	1089.54	17.75	17.96	0.21	1071.75
		6/9/2017	1089.54	17.68	17.84	0.16	1071.83
		4/12/2018		22.60	23.20	0.60	1066.82
MW-2	10.3-25.3	5/10/2016			19.82		1069.62
	10.0 20.0	10/5/2016			16.54		1072.90
		10/20/2016			16.51		1072.93
		11/2/2016			16.54		1072.90
		12/13/2016		17.11	25.50	8.39	1072.30
		1/20/2017		21.05	23.30	0.16	1068.36
		2/2/2017		21.05	21.21		1067.94
		4/4/2017			20.24		1069.20
		4/20/2017			19.26		1070.19
		3/21/2017	1089.44		20.50		1068.94
		5/8/2017	1089.44		18.90		1070.54
		5/25/2017	1089.44		18.00		1070.34
		6/9/2017	1089.44	 17.85	17.87	0.02	1071.44
		4/12/2018		23.48	23.71	0.23	1065.91
MW-3	14-24	5/10/2016	1089.15	18.80	23.50	4.70	1069.41
10100-3	14-24	10/5/2016		17.15	23.30	5.59	1070.88
		10/20/2016		17.13	22.74	5.35	1070.88
		11/2/2016		18.06	20.86	2.80	1070.53
		12/13/2016		18.82	20.00		
						4.91	1069.35
		1/20/2017 2/2/2017		20.41	24.12	3.71	1068.00
				20.90	24.01	3.11	1067.63
		3/21/2017		19.70	23.74	4.04	1068.64
		4/4/2017		19.68	23.18	3.50	1068.77
		4/20/2017		19.05	22.93	3.88	1069.32 1069.97
		5/8/2017		18.32	22.60	4.28	
		5/25/2017		17.89	22.25	4.36	1070.39
		6/9/2017		17.94	20.81	2.87	1070.64
	15.05	4/12/2018		23.56	24.30	0.74	1065.44
MW-4	15-25	12/13/2016			18.09		1070.76
		2/2/2017		20.00	20.31	0.31	1068.79
		3/21/2017	1088.85	19.28	19.31	0.03	1069.57
		4/4/2017		19.14	19.20	0.06	1069.70
		4/20/2017		18.55	18.62	0.07	1070.29
		5/8/2017			17.62		1071.23
	I	5/25/2017	1088.85		17.22		1071.63

TABLE 4: Groundwater Elevation Data

Site:	Coleman Oil: 1 East I St, Yakima, WA
Project No:	41392.000

Well ID	Well Screen Interval (feet)	Date	TOC elev (feet)	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Potent. Elev* (feet)
		6/9/2017	1088.85		17.19		1071.66
		4/12/2018	1088.85	22.43	22.73	0.30	1066.12
MW-5	15-25	12/13/2016	1090.01	19.73	20.30	0.57	1070.17
		3/21/2017	1090.01	20.31	21.05	0.74	1069.56
		4/4/2017	1090.01	20.36	21.22	0.86	1069.48
		4/20/2017	1090.01	20.02	20.20	0.18	1069.95
		5/8/2017	1090.01	19.33	19.80	0.47	1070.59
		5/25/2017	1090.01	18.85	19.60	0.75	1071.01
		6/9/2017	1090.01	18.88	19.54	0.66	1071.00
		4/12/2018	1090.01	23.62	24.13	0.51	1066.29
MW-6	15-25	12/13/2016	1089.21		17.40		1071.81
		3/21/2017	1089.21		18.25		1070.97
		4/4/2017	1089.21		18.00		1071.21
		4/20/2017	1089.21		17.39		1071.82
		5/8/2017	1089.21		16.82		1072.39
		5/25/2017	1089.21		16.59		1072.62
		6/9/2017	1089.21		16.61		1072.60
		4/12/2018	NA*	21.50	21.55	0.05	NA*
RW-1	15.05-30.05	5/10/2016	1089.54	19.38	23.64	4.26	1069.31
		10/5/2016	1089.54	17.48	23.69	6.21	1070.82
		10/20/2016	1089.54	17.83	20.99	3.16	1071.08
		11/2/2016	1089.54	18.06	20.86	2.80	1070.92
		12/13/2016	1089.54	19.58	19.83	0.25	1069.91
		1/20/2017	1089.54	20.75	23.83	3.08	1068.17
		2/2/2017	1089.54	21.26	23.75	2.49	1067.78
		3/21/2017	1089.54	20.09	23.90	3.81	1068.69
		4/4/2017	1089.54	20.16	22.78	2.62	1068.86
		4/20/2017	1089.54	19.82	21.09	1.27	1069.47
		5/8/2017	1089.54	19.10	20.55	1.45	1070.15
		5/25/2017	1089.54	18.70	19.41	0.71	1070.70
		6/9/2017	1089.54	18.55	20.03	1.48	1070.69
		4/12/2018	1089.54	23.75	25.15	1.40	1065.51

* POT_ELEV = TOC_ELEV - [DTW - (PTH * PD)] where:

POT_ELEV = potentiometric surface elevation

TOC_ELEV = top of casing elevation

DTW = depth to water

PTH = product thickness PD = product density

0.8

* = groundwater elevation not known due to broken well casing

TABLE 5: Multiphase Extraction Summary

Site: Coleman Oil - 1 East I Street, Yakima, WA 41392

Project No:

Product Thickness¹ (feet) Removal Volume² (gallons) MPE Event Date RW1 MW3 MW1 MW2 RW1 MW3 MW1 MW2 Totals 0 10.5.16 6.2 5.6 5.27 184 158 52 0 394 10.20.16 0 178 0 3.16 5.36 2.79 186 94 458 11.2.16 0 266 0 2.8 5.17 1.19 280 154 700 12.29.16 ----93 101 78 186 458 1.20.17 3.08 4.9 3.71 0.16 15 15 15 15 60 2.2.17 2.49 3.11 1.1 0 51 51 51 0 153 3.21.17 4.04 0 64 60 0 184 3.81 3.56 60 4.4.17* 0 20 30 30 0 140 2.62 3.5 0.24 0 4.20.17** 1.27 3.88 0.37 64 105 63 0 274 0 0 525 5.8.17 1.45 4.28 0.39 230 221 74 5.25.17 0 0 0.71 4.36 0.21 224 74 224 522 Totals: 1411 1259 895 201 3868

1 - measured prior to vacuum extraction

2 - combination of LNAPL product and contaminated groundwater

* - also pumped 30 gallons of water and product from each MW4 and MW5

** - also pumped 42 gallons of water and product from MW4

TABLE 6: VAPOR INTRUSION AIR ANALYTICAL RESULTS

Site: Coleman Oil - 1 East I Street, Yakima, WA 41392

Project No:

Results (µg/m3)										
		APH		Volatile and Semi-Volatile Compounds						
Sample Location	Aliphatic Hydrocarbons (EC5-8)	Aliphatic Hydrocarbons (EC9-12)	Aromatic Hydrocarbons (EC9-10)	Benzene	Toluene	Ethylbenzene	Xylene-o	Xylene-m,p	Naphthalene	1,2,4-trimethylbenzene
September 21, 2016 Indoor Air Sampling Event										
VS1: Indoor	170	160	<75	1.7	8	2.1	3	9	0.91	6.9
VS2: Crawlspace	340	7,700	<75	2.2	19	11.0	11	38	0.28	<3.7
VS3: Outdoor	130	<110	<75	1.6	9.1	2.6	4.1	11	0.31	4.0
Vapor Intrusion Cleanup Levels ¹	2,700	140	180	0.321	2,290	457	45.7	45.7	0.0735	3.2
OSHA PEL ²	NA	NA	NA	3,190	750,000	435,000	435,000	435,000 (m- or p-)	50,000	NA
NIOSH REL ³	NA	NA	NA	319	375,000	435,000	435,000	435,000 (m- or p-)	50,000	125,000

APH- air-phase petroleum hydrocarbons

<0.32 - not detected above the laboratory method reporting limit

NA- not applicable

(-) - not analyzed

See lab report for full analyte list and method reporting limits

Bold indicates exceedance of the vapor intrusion Cleanup Level

¹ Washington State Department of Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State*: Table B-1 Method B Indoor Air Cleanup Levels (Adopted value for toxicity as a carcinogen, when available). Updated April 6, 2015.

² Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs)

³ National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL), based on a ten hour time weighted average exposure

TABLE 7: NAPL Product Characteristics

Site: Coleman Oil: 1 East I St, Yakima, WA

Project No:

41392.000

		Gasoline Indicator	Diesel Ir	ndicators
Sample	Description	1°	C8 to C9 alkylcyclohexanes	C12 to C20 normal alkane hydrocarbons (percentage of total abundance)
Product Sampling: June 9, 2018	8			
MW3	Near diesel and gasoline release point	31%	26%	65%
	West of the release between the office building and the railroad	17%	27%	74%

Refer to Pace laboratory report in Appendix I for more detail on fuel indicators

APPENDIX A

Petroleum Contaminated Soil Disposal Documentation

Yakima Health District 1210 Ahtanum Ridge Drive Union Gap, Washington 98903 Phone (509) 575-4040

March 25, 2016

Mr. Kipp Silver C\O Able Clean-Up Technologies, Inc. 4117 East Nebraska Avenue Spokane, WA 99217

RE: Coleman Oil Co., 1 East "I" Street, Yakima, WA : Petroleum Contaminated Soil

Mr. Kipp Silver,

This office has reviewed the data on the above mentioned project. The data submitted indicates that the contaminant which requires remediation is diesel. Based on the data submitted it has been determined that the soil may be processed at the Anderson PCS Facility provided that all handling is in accordance with the procedure that has been approved by this office and Washington State Department of Ecology. This letter is to notify you that currently the soil will be considered to be stored on the property and no treatment can begin until the total fee is paid. Waste material may be stored for up to 90 days. Anderson PCS Facility will notify me of the total number of tons delivered for treatment and I will bill you for the remainder of the fee at that time.

FEE ACCOUNT:

Able Clean-Up Technologies, Inc.

PROJECT NAME:	Coleman Oil Co. 1 East "I" Street Yakima, WA
PRE-TREATMENT AUTHORIZATION:	(Based on time spent prior to soil delivery to the site at \$141/hour)
TONNAGE FEE AT \$0.60 PER TON:	To be determined after delivery
BALANCE OWED:	To be billed after delivery

If you have any questions regarding this letter please contact me at (509) 249-6562.

Sincerely,

al Shater

Ted Silvestri, RS Environmental Health Specialist

cc: Anderson PCS Facility

PENDLETON EXCAVATING, INC.

3702 Kern Rd Yakima, WA 98902

Invoice

Date	Invoice #
3/31/2016	19791

Bill To	_
Able Clean-Up Technologies Inc 4117 E Nebraska Ave Spokane, WA 99217-6644	

		P.O. No.	Terms	Project
				1.24
Quantity	Des	cription	Rate	Amount
	16 loads 212.15 tons			
			Total	

Petroleum Contam We make deliverie risk only and acce damages resulting	DELIVER	IES #	omers	Addre	Fole Clean	1100	ersonrock.com
Received by		E. Glass		Phone	- (<u>Syu</u>) 99-3	600
B. Asphaltic mater (does not inclue roofing) C. Brick and maso D. Ceramic materi	de nry	F. Stainless G. Aluminu H. Lime I. Dirt Rock J. Bldg. Der	m	P.O. #	eman Oil	Co. 1 en	EISH
WEIGHT TICKET #	TIME	TRUCK NO.	QUAN		PRODUCT		
132610	9:25	<u> </u>	16.0		PC5		
132612	930	6	14.8	1	<u>PC5</u> PC5		
132616	10:20		16.9	in la	PCS		
132618	10:34	Q.	15.0		PCS		
132623	11:15	10.5	14.2	1	905		
132 6.25	2:34	Ser.		3	Pes		
132 6.27	17.54	1.	159	7	PCS		
132630	177	9	110.1	00)	PCS	ţ	
132632	1:52	6	15:	77	PCS		
132637	2:21	9	16.	20	PCS	-	
132642:	2:53	9	16.	63	RS	*	
			187	51			
		-	101	11			
		TOTAL					

LOAD	TICK	ET
LUAD	11Ch	

ERSON

Nº 78526

41 Rocky Top Road Yakima, WA 98908

We make deliveries risk only and accep damages resulting fr	nt no responsi	rb line at custo bility whatsoev	omer's ver for	Name Addre		Cle,	m Of	Techa	elo
Received by		-	-	Phone		Hama (hris		-
Date 3/29/16	Sold by			Phone Home Chris					
A. Cured concrete B. Asphaltic materi (does not inclue roofing) C. Brick and masor D. Ceramic materia	ials le nry	E. Glass F. Stainless G. Aluminus H. Lime I. Dirt Rock J. Bidg. Den	m	<u>P.O. #</u> Job # Haule	PC	S	oiL	IEIS	
WEIGHT TICKET #	TIME	TRUCK NO.	QUAN			PRODU			
132645	3:22	9	15.3	7	·PC	5			
132653	4:03	6	13.0	51	pe	\$		_	
	CALORER ESERVICE		303	\$¢	•			_	
	Cól	nan	orl	D·I	ast 4	51		-	
	Job 7	14	153		Card				
	APP		14		Polici	-		-	
	Che	<u>ck #</u>						_	

TAX

.....

PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

VES NO

愛うにろう

Petroleum Contaminate	/ERIES	Dait- Clar	an Up Bch
We make deliveries inside risk only and accept no re damages resulting from suc	the curb line at customer's esponsibility whatsoever for th deliveries.	Address	or op sa
Received by		Phone Horse W	un
32016 Sold	by	ditta	2999-360
A. Cured concrete B. Asphaltic materials (does not include roofing) C. Brick and masonry D. Ceramic materials	E. Glass F. Stainless Steel G. Aluminum H. Lime I. Dirt Rock J. Bldg. Demolition	P.O. # Job Carman (Hauled by	WEEI
WEIGHT TICKET # TI	ME TRUCK QUA	NTITY PRODUCT	
132664 4:	341 6 14	.10 265	
132665 101	3 2 9 15		
132666 103	se ≥ 6 8.	be pes	
	4		
	5 55	.43	
	6		
A. K. 1000.10	6-0		
Coleman	Dist.	ast 4 of	
Caregory.	and the second statement of th	aid:	
	100-		
1	104/11		
8.490 4	- 1		
Check #		Paid T	
Check #		-	

LOAD TICKET

78478 NO LOAD TICKET 41 Rocky Top Road Yakima, WA 98908 BOCK & DEMOLITION PITS Bus. (509) 965-3621 • Fax (509) 965-8656 Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock www.andersonrock.com DELIVERIES ian 00 no N Name ; i We make deliveries inside the curb line at customer's risk only and accept no responsibility whatsoever for Address damages resulting from such deliveries. Received by Ĩ ivu Phone Home 328/1 Sold by 1 2 CC Office A. Cured concrete E. Glass C B. Asphaltic materials F. Stainless Steel P.O. # G. Aluminum (does not include roofing) H. Lime Job i C. Brick and masonry I. Dirt Rock J. Bldg. Demolition D. Ceramic materials tradeise Hauled by 7 TRUCK NO. PRODUCT WEIGHT TICKET # QUANTITY TIME 20 -8 G X 3 12:2112 589 6.7 RS 1,34 2 Ca 3 PES 3 0 3 2.% PCS 4 141 5.00 PCS Zici 2.47 6 PCS 3 . 254 7 8 1.9 3 4 tB 10 Main 0 10 per. 11 A. 6.10 < . 4 - 1 E -1015 23 -----U TOTAL Paid ... DATE BILLED Ŧ OUT OF COUNTY? QYES Q NO OUT OF CITY? Q YES QNO CUSTOMER AGREES TO PAY (a) A LATE CHARGE OF 1.5% PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

.

5 1500 78543 LOAD TICKET NO 41 Rocky Top Road Yakima, WA 98908 BOCK & DEMOLITION PITS Bus. (509) 965-3621 • Fax (509) 965-8656 www.andersonrock.com Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock ABI leand PCI DELIVERIES 0 We make deliveries inside the curb line at customer's risk only and accept no responsibility whatsoever for damages resulting from such deliveries. Address Received by Phone Sold by Date PL A. Cured concrete E. Glass F. Stainless Steel B. Asphaltic materials P.O. # G. Aluminum (does not include roofing) H. Lime (obft I. Dirt Rock C. Brick and masonry J. Bldg. Demolition 0 2 D. Ceramic materials 3 Hauled by UNIT TRUCK AMOUNT PRODUCT QUANTITY WEIGHT TICKET # TIME NO L C no R 50 0 2/4 3:09 iS 42 3 0 5 q 15 Sminus 3,45 19 3 L The minu 3 5.39 13268 4:00 TOUAL ÷, 3 54 701 TAX 8 9 REAL R 3 国 2 12 AULIUN Paia TOTAL Check # OUT OF COUNTY? YES INO OUT OF CITY? CATE BILLED CUSTOMER AGREES TO PAY (a) A LATE CHARGE OF 1.5% PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF J YES JNO INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

APPENDIX B

Soil Boring and Well Construction Logs

	— S	00 Bradley Boulevard Suite 300		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-1
PB Engineerin Environme	ng+F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PBS	S PROJ 641	ECT NU 16.000		8:		BORING B-1 LOCATION: 3.5' W of three valves along west side and near center of oil shed
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Loose black silty GRAVEL (GP- to coarse, subrounded gravel FILL	GM); fine	- - - -	0				
2.0	-	Brown SILT (ML); homogeneous	; damp	-	0			90	
4.0		becoming moist Boring complete at 5 feet bgs Groundwater not encountered at	time of	-		S10			No blackish staining or odors
6.0 — _ _		exploration		-					
- 8.0	-			-					
- 10.0 — -	-			-					
- 12.0 — -	-			- 					
- 14.0 — -				-					
- 16.0 — -				- - -					
- 18.0 — -				- 					
DRILLED	BY: ES	DD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D ETED: 4). Ertel /08/15			

BORING LOG-ENV CORE 64116_B1-B14_061115_RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/15:RPG

	S	00 Bradley Boulevard Suite 300			DRACK 1 E. I (IMA, V	STREE	ΞT			BORING B-2
PB Engineerin Environme	┙ P ng + F ental	Richland, WA 99352 Phone: 509.942.1600 ax: 866.727.0140		PBS	PROJI 641	ECT NU 16.000		₹ :		BORING B-2 LOCATION: 12' S of concrete containment berm around tank farm, 2.5' W of concrete corner
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION		GROUND- WATER	(MPR) DIP	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Loose black to brown silty GRAN GM); fine to coarse gravel; dam FILL Brown SILT (ML); homogeneous	р		-	2				Fuel odor due to truck unloading near shed
- - 4.0 —		becomes moist; trace fine grav	vel		-		S11		60	
- - 6.0 -	000000000	Loose gray to brown GRAVEL (silt and sand; fine sand; fine to c gravel, subrounded gravel	GP) with oarse		- 	0.5			-	No black staining; fuel odor due to truck unloading
- 8.0 - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-					
10.0 — - -	-	Boring complete at 10 feet bgs Groundwater not encountered at exploration	time of		-					
12.0 — - -	-				-					
- 14.0 — -	-				- 					
- 16.0 — -	-				- 					
- 18.0 — -	-				-					
RILLED	BY: ES	DD: Direct Push SN Northwest AMETER: 21%-inch OD				ED BY: D ETED: 4				

BORING LOG-ENV CORE 64116 B1-B14 061115 RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/15:RPG

	A00 Bradley Boulevard Suite 300 Richland, WA 99352 Phone: 509.942.1600			CDISTR STREE VASHII	ΞT			BORING B-3
Engineering + Environmental	Phone: 509.942.1600 Fax: 866.727.0140	PBS	641	ECT NU 16.000	JMBEF	R:		BORING B-3 LOCATION: 48.5' S of concrete containment berm around tank farm, 11.5' W of concrete corner
DEPTH FEET	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) DIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	ASPHALT Black silty sandy GRAVEL (GM)	/	-					No fuel staining or odor
2.0	FILL Brown SILT (ML); homogeneous	; damp	- -	0	S13		85	
4.0			-	0				
6.0	Boring complete at 5 feet bgs Groundwater not encountered at exploration	time of	-					
- - 8.0			-					
			- - -					
			-					
			-					
14.0			-					
- 16.0			-					
- 18.0 - -			- - -					
	HOD: Direct Push			ED BY: D). Ertel			

BORING LOG-ENV CORE 64116_B1-B14_061115_RG.GPJ_DATATMPL.GDT_PRINT DATE: 6/15/15:RPG

	S	00 Bradley Boulevard Suite 300		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-4
PB Engineerin Environme	→ P ng + F	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PBS	641	ECT NU 16.000		R:		BORING B-4 LOCATION: 3' N of N edge of asphalt containment berm at loading rack
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	XØ	ASPHALT Loose black to dark brown sand GRAVEL (GP)	/ /	-	0				
2.0	-	FILL Brown SILT (ML) with gravel		- -	0	S14			
- 4.0		becomes wet Gray to brown sandy GRAVEL (GP); fine	-					
- 6.0 —		sand; subrounded gravel Boring complete at 5 feet bgs Groundwater not encountered at exploration		-					
- - 8.0 —				- - 					
- - 10.0 —				-					
- - 12.0 —				-					
- - 14.0 —				- - -					
				-					
16.0 — _ _ _				- - -					
				- -					
BORING N DRILLED	BY: ES	DD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D ETED: 4				

BORING LOG-ENV CORE 64116_B1-B14_061115_RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/15:RPG

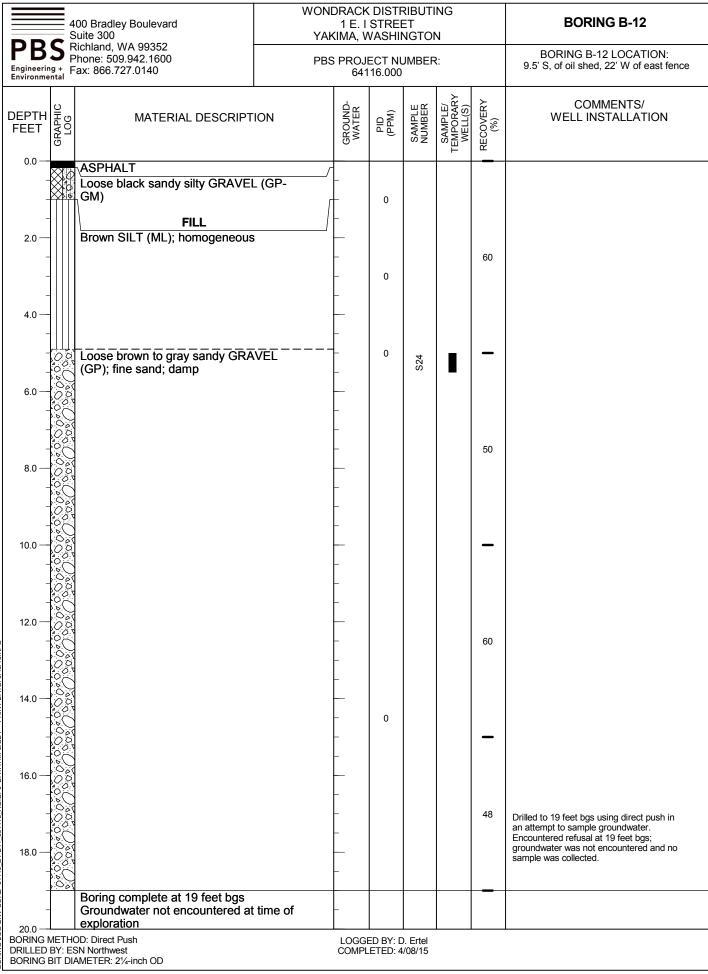
	<u> </u>	00 Bradley Boulevard Suite 300		DRACH 1 E. I KIMA, V	STRE	ΞT			BORING B-5
PB	ing + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PB	S PROJ 64	ECT NI 116.000	JMBEF	R:		BORING B-5 LOCATION: 4' SW of raised inlet valves at NW end of o shed
EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	- 	ASPHALT	/	-					
-		Loose brown to black silty GRA	/EL (GM)		0				
		FILL							
2.0 —	_	Brown SILT (ML); homogeneous	; moist	L					
				F	0			50	
	-			-		S15			
	-			-		s l			
4.0 —				 					
		becomes wet		-	0			_	
		Loose GRAVEL (GP) with sand; coarse sand; moist	Tine to	F					
6.0 —				<u> </u>		9			
	000			-		S16			
	00			-					
	1000			F				60	
8.0 —									
	00								
	- 00 00			F					
10.0 —	00	Boring complete at 10 feet bgs							
	-	Groundwater not encountered at exploration	time of	F					
	-			F					
12.0 —				L					
12.0	_			-					
	-			-					
	-			\vdash					
14.0 —	-			-					
				Ĺ					
				F					
16.0 —	-			<u> </u>					
	-			-					
	-			F					
	-			F					
18.0 —]								
				F					
	-			F					
20.0 -		OD: Direct Push							
) BY: E	OD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D _ETED: 4				

		00 Bradley Boulevard Suite 300		IDRACK 1 E. I KIMA, V	STRE	ΞT			BORING B-6
PB Engineerin Environme	ng + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PB	S PROJ 641	ECT NU 16.000		R :		BORING B-6 LOCATION: 3.5' E of loading dock, 7.5' N of steps to office
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Loose dark brown silty sandy GF (GM); fine to coarse gravel; dam	RAVEL		0				
2.0		FILL Brown SILT (ML); homogeneous	s; damp	-	0	S17		60	
- 4.0 —	1.20 1.10 1.10 1.10 1.10 1.10 1.10 1.10	Loose SAND (SP) with gravel; fi	ne sand;	-	0				
- - 6.0 —	-	damp Boring complete at 5 feet bgs Groundwater not encountered at exploration	time of	- - -					
- - 8.0 —	-			-					
- - 10.0 —	-			- - 					
- - 12.0 —	-								
- - 14.0 —	-			-					
- - 16.0 —	-			- -					
	-			- - -					
- 20.0 — BORING I	METHO	D: Direct Push			ED BY: D). Ertel			
		SN Northwest AMETER: 2¼-inch OD			ETED: 4				

BORING LOG-ENV CORE 64116_B1-B14_061115_RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/15:RPG

	<u> </u>	00 Bradley Boulevard Suite 300 Richland, WA 99352		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-7
PB Engineerin Environme	ng + F ental	Phone: 509.942.1600 Fax: 866.727.0140	PBS	641	ECT NU 16.000		8:		BORING B-7 LOCATION: 6.5' S of concrete containment berm around tank farm
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DIA (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Loose dark brown silty sandy GF (GM); dry FILL			0				
2.0		Brown SILT (ML); homogeneous	5	- - -	0			70	
4.0	0.000	becomes wet Loose gray to brown GRAVEL ((3P) ^	-	0	S18		_	
6.0	00000000000000000000000000000000000000			- -					
	00000000			- -				20	
10.0 — - -		Boring complete at 10 feet bgs Groundwater not encountered at exploration	time of	-					
- 12.0 — -	_			 - -					
- 14.0 — -	-			-					
- 16.0 — -	-			- 					
- 	_			- - -					
DRILLED	BY: E	DD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D ETED: 4				

	— S	00 Bradley Boulevard Suite 300		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-8
PB Engineeri Environmo	ing + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PBS	641	ECT NU 16.000		R:		BORING B-8 LOCATION: In concrete slab 5' N of asphalt on E side or loading rack
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DIA (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		CONCRETE							
2.0 —	-	Brown SILT (ML); homogeneous	; damp	-	0	S19			No odors or blackish staining
4.0 —	-			- - -				60	
6.0		Light gray to gray sandy GRAVE basalt; fine sand	L (GP);	- - - 	0			-	
8.0 —	CONCONSTRUCT			- - -				60	
10.0 —	National And	Boring complete at 10 feet bgs		-					
12.0 —	-	Groundwater not encountered at exploration	time of	-					
	_			-					
14.0 —	-			- -					
16.0 —	-								
- 18.0 — -	-			-					
DRILLED	BY: E	OD: Direct Push SN Northwest AMETER: 2¼-inch OD		LOGG COMPL	ED BY: D ETED: 4). Ertel /08/15			


BORING LOG-ENV CORE 64116 B1-B14 061115 RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/16.RPG

	S	00 Bradley Boulevard Suite 300		DRACK 1 E. I KIMA, V	STRE	ΞT			BORING B-9
PB Engineerin Environme	ng + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PBS	641	ECT NI 16.000		R:		BORING B-9 LOCATION: 6.5' S, 1.5' E of concrete curb on E side of loading rack
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		CONCRETE Brown silty GRAVEL (GM)							
- - 2.0 —		FILL Brown sandy SILT (ML) with gra homogeneous	vel;	+ - 	0				
- - 4.0 —		becomes wet		-	0	S20		_	
6.0 —		Light gray to brown gravelly SAN dry	1D (SP);	-					
- 8.0 —		Loose brown SAND (SP) with gr medium sand; fine gravel; moist	avel;	-	0				
-	State of			-		S21			
10.0		Boring complete at 10 feet bgs Groundwater not encountered at exploration	time of	_					
12.0 —	-			 - -					
- 14.0 —				-					
- 16.0 —	-			-					
- - 18.0 —	-			- - 					
- 20.0 30RING		DD: Direct Push) Frtel			
DRILLED	BY: ES	DD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D .ETED: 4				

Phone: 509.942.1600 PBS PROJECT NUMBER: BORING B-10 LOCATION Engineering + Environmental Fax: 866.727.0140 PBS PROJECT NUMBER: 5' S, 1.5' W of concrete curb on W loading rack		5	00 Bradley Boulevard Suite 300 Richland, WA 99352		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-10
00 State CONCRETE 0 Brown SILT (ML) with gravel; blocky; 0 0 20 FILL 0 60 40 becomes slight plasticity; wet 0 60 100 becomes slight plasticity; wet 0 80 60 COP; moist 0 80 100 Boring complete at 10 feet bgs 25 100 Boring complete at 10 feet bgs 25 100 Boring complete at 10 feet bgs 1 100 Boring complete at 10 feet bgs 1 1100 Boring complete at 10 feet bgs 1 120 1 1 140 1 1	PB Engineerin Environme	ng + F ental	Phone: 509.942.1600 Fax: 866.727.0140	PBS				R:		5' S, 1.5' W of concrete curb on W side c
00 Status CONCRETE 0 Brown SILT (ML) with gravel; blocky; 0 20 FILL Brown SILT (ML); homogeneous 0 0 60 40 becomes slight plasticity; wet 0 0 100 Boring complete at 10 feet bgs 60 Conductor not encountered at time of 100 Boring complete at 10 feet bgs 110 Groundwater not encountered at time of 120 Image: State of the	DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) DIP	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
Brown SiLT (ML) with gravel; blocky; 0 60 2.0 FILL 0 60 4.0 Brown SiLT (ML); homogeneous 0 60 4.0 becomes slight plasticity; wet 0 60 10.0 Increase in gravel 0 60 8.0 C(P); moist 0 25	0.0 —	P 4 4	CONCRETE							
2.0 Brown SILT (ML); homogeneous 0 60 4.0 becomes slight plasticity; wet 0 60 10.0 Gerg ray to brown sandy GRAVEL 0 60 8.0 Gerg ray to brown sandy GRAVEL 0 25 8.0 Gerg complete at 10 feet bgs 25 10.0 Groundwater not encountered at time of exploration 0 0 14.0 0 0 0 0	-	· · ·	damp	ocky;	-	0				
becomes slight plasticity; wet 0 increase in gravel 0 Loose gray to brown sandy GRAVEL 0 (GP); moist 25 8.0 25 8.0 60 Boring complete at 10 feet bgs 60 Groundwater not encountered at time of 60 exploration 60	2.0] \$	-	0			60	
Loose gray to brown sandy GRAVEL (GP); moist 8.0 Boring complete at 10 feet bgs Groundwater not encountered at time of exploration 14.0 14.0 Complete at 10 feet bgs Complete at 10 fe	4.0 —		becomes slight plasticity; wet		-		S22			
8.0 Boring complete at 10 feet bgs Groundwater not encountered at time of exploration	- - 60		Loose gray to brown sandy GRA	VEL	-	0			-	
8.0 8.0 10.0 Boring complete at 10 feet bgs Groundwater not encountered at time of exploration 12.0 14.	-	00000			-				25	
Boring complete at 10 reet bgs Groundwater not encountered at time of exploration 12.0 -	8.0 —	CACO CONT			-				23	
- Groundwater not encountered at time of exploration - 12.0 - - - <td>10.0 —</td> <td></td> <td>Boring complete at 10 feet bos</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	10.0 —		Boring complete at 10 feet bos		-					
	-	-	Groundwater not encountered at	time of	-					
	12.0 —	-			-					
	- 14.0	-			-					
	-	_			-					
	16.0 —	-								
	- 18.0 — -				- - -					
20.0 – LOGGED BY: D. Ertel	20.0									

400 Bradley Boulevard Suite 300 YA					CDISTR STREE VASHII	ΞT			BORING B-11
ngineerir nvironme	ng + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PB	S PROJ 64	ECT NU 16.000		R:		BORING B-11 LOCATION: 5' N, 1' W of concrete curb on W side of loading rack
EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		CONCRETE Loose black silty sandy GRAVE	_ (GM)	+					
- 2.0 —	-	FILL Brown SILT (ML); homogeneous plasticity	; slight		0	S23		40	
4.0 —				-					
- 6.0 —	000000	becomes wet Brown to gray sandy GRAVEL (sand; fine to coarse gravel, subr gravel	GP); fine ounded	-	0			-	
- - 8.0 —				-				40	
- - 10.0 —	ACC N	Boring complete at 10 feet bgs		-					
- - 12.0 —		Groundwater not encountered at exploration	time of	-					
-	_			-					
14.0 — - -				-					
- 16.0				-					
- 18.0 — -				- 					
		DD: Direct Push SN Northwest		LOGG	ED BY: D ETED: 4). Ertel			

BORING LOG-ENV CORE 64116 B1-B14 061115 RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/16:RPG

	<u> </u>	00 Bradley Boulevard Suite 300 Richland, WA 99352		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-13
PB Engineerin Environme	ng + F ental	Phone: 509.942.1600 Fax: 866.727.0140	PB	S PROJ 641	ECT NU 16.000		8:		BORING B-13 LOCATION: 3' S of suspected underground storage tank
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR) DIA	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — - -		ASPHALT Loose dark brown to black silty s GRAVEL (GP-GM); dry FILL		-	0				
2.0		Brown SILT (ML); homogeneous	; damp	-	0			76	
4.0		Loose brown sandy GRAVEL (G coarse gravel; dry	P); fine to		0			_	
6.0 — - -	2000 2000 V					S25		25	
8.0 — - -	ACCANACON			- - -					
10.0	- - -	Boring complete at 10 feet bgs Groundwater not encountered at exploration	t time of	-					
12.0 —	_								
14.0 — -	_			-					
- 16.0 				- - -					
- 18.0 — -	-			- -					
DRILLED	BY: E	DD: Direct Push SN Northwest AMETER: 2¼-inch OD			ED BY: D ETED: 4				

	S	00 Bradley Boulevard Suite 300		DRACK 1 E. I KIMA, V	STREE	ΞT			BORING B-14
PB Engineerir Environme	ng + F ental	Richland, WA 99352 Phone: 509.942.1600 Fax: 866.727.0140	PBS	8 PROJI 641	ECT NU 16.000	JMBEF	R:		BORING B-14 LOCATION: NW corner of tank farm
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPR)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — -		GRAVEL (GP) with silt FILL Brown SILT (ML) with trace grav	rel;	-		S36			Black staining; oil odor
2.0 —		homogeneous; damp	, 	-		~			
-	<u>ت</u> قر م	GRAVEL (GP) Boring complete at 2.75 feet bgs Groundwater not encountered at exploration	t time of	_		S37			
4.0	-			 					
6.0 —	-			_					
-				_					
8.0				_					
- 10.0 —	-			-					
- - 12.0 —	-			-					
-	-			_					
- 14.0 — -	-			- 					
- - 16.0 —				-					
-									
18.0 —	-			_					
- - 20.0 —				-					
DRILLED	BY: PE	DD: Post Hole 3S Employee AMETER: 6-inch			ED BY: D .ETED: 4				

BORING LOG-ENV CORE 64116_B1-B14_061115_RG.GPJ DATATMPL.GDT PRINT DATE: 6/15/15:RPG

		DDC		DLEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW1
					ECT NU 92.000		8:		BORING MW1 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DIA (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT Brown elastic SILT (MH) with sa gravel; medium plasticity; fine sa subrounded gravel; moist	nd and and; fine,	/ - - -					5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank
5.0 — - - -				-				90	- Bentonite
- 10.0 - -		Medium dense gray poorly grade (SP-SM) with silt, gravel, and co 4"; low plasticity; medium sand; subrounded gravel; moist	ed SAND bbles to coarse,	-	0.0			_	
- 15.0 — - -		- grades to dense - grades to wet		- - - 4/27/2016 - ¥	1000			95	Sand
- 20.0 — - -				-				95	2-inch 0.010-slot screen
- 25.0 — - -		Final depth 25.0 feet bgs; Gro encountered at approximately	undwater 18 feet	-	25				
- 30.0				-					
RILLED	BY: Ho	DD: Sonic Drilling blt Services AMETER: 8-inch		LOGG COMPL	ED BY: N .ETED: 4	/I. Bagley /27/16	/		

BORING LOG-ENV CORE 41392.000 MW1-6&RW1 JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

		DDC		LEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW2
		PBS	6 PROJI 413	ECT NU 92.000		8:		BORING MW2 LOCATION: (See Site Plan)	
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — - - 5.0 —		ASPHALT Brown silty SAND (SM) with gra medium plasticity; fine sand; fine subrounded gravel; moist	/el;/ ;,	-				70	5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank
-	80400000000000000000000000000000000000	Medium dense grav poorly grade	ed SAND	-					- Bentonite
10.0 — - -		Medium dense gray poorly grade (SP-SM) with silt, gravel, and co 4"; low plasticity; medium sand; subrounded gravel; moist	bbles to coarse,	-	0.0			-	Sand
- 15.0 — -		- grades to dense		- - - 4/27/2016	0.0			99	
- 20.0 — -		- grades to wet		-				95	2-inch 0.010-slot screen
- 25.0 — -		Final depth 25.0 feet bgs; Gro encountered at approximately	undwater 18 feet	-	76				
- - 30.0 —				-					
DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 8-inch		LOGGI COMPL	ED BY: N ETED: 4	1. Bagley /27/16	/		

BORING LOG-ENV CORE 41392.000 MW1-6&RW1 JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

		DDC		LEMAN 1 EAST KIMA, V	I STR	EET			BORING MW3
		PBS	PBS	S PROJI 413	ECT NU 92.000		R:		BORING MW3 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — - - 5.0 —		ASPHALT Brown silty SAND (SM) with gray medium plasticity; fine sand; fine subrounded gravel; moist	vel; e,	-				80	
-	0.000000000000000000000000000000000000	Loose gray poorly graded SAND	(SP-SM)	-				_	- Bentonite
10.0 — - -		with sill, gravel, and cobbles; lov plasticity; medium sand; coarse, subrounded gravel; moist	v	-				95	
- 15.0 — - -		- grades to dense, gray/black, cobbles to 5"	with	- - - 4/27/2016	1200			_	Sand
- 20.0 — -				-	464			95	2-inch 0.010-slot screen
- 25.0 — -		Final depth 25.0 feet bgs; Gro encountered at approximately	undwater 18 feet	-	418				
- 30.0				-					
DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 8-inch		LOGGI COMPL	ED BY: N ETED: 4	1. Bagley /27/16	/		

BORING LOG-ENV CORE 41392.000_MW1-6&RW1_JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

		DDC		DLEMAN 1 EAST KIMA, V	' I STR	EET			BORING MW4
		PBS	PB	S PROJI 413	ECT NU 92.000		R:		BORING MW4 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	(MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Brown SILT (ML) with sand, grav cobbles; low plasticity; fine sand subrounded gravel; moist	vel, and ; coarse,	-				90	5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank
- 5.0 - -		Medium dense gray poorly grade GRAVEL (GP) with sand and co medium sand; coarse, subround moist	bbles;	-	0.0	MW-4		_	- Bentonite
- 10.0 —					0.0			90	
- - 15.0 —		- grades to dense		-	3.0			50	Sand
- - - 20.0		Gray silty SAND (SM) with grave cobbles; non-plastic; medium sa coarse, subrounded gravel; mois	nd;		220			_	2-inch 0.010-slot screen
- - - 25.0 —	2000-000000000000000000000000000000000			-	300+			100	
		Final depth 25.0 feet bgs; Groundwater encountered at approximately 18 feet		-					
				-					
DRILLED	BY: Ho	DD: Sonic Drilling olt Services AMETER: 8-inch		LOGGI COMPL	ED BY: N .ETED: 1	1. Bagle 1/08/17	y		

BORING LOG-ENV CORE 41392.000_MW1-6&RW1_JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

		DDC		COLEMAN 1 EAST YAKIMA, V	' I STR	EET			BORING MW5
		PBS	F	PBS PROJECT NUMBER: 41392.000					BORING MW5 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Brown silty SAND (SM) with gra cobbles; low plasticity; fine sand subrounded gravel; moist	vel and ; coarse,	-				70	5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank
10.0		Medium dense gray poorly grade GRAVEL (GP) with sand and co coarse sand; coarse, subrounde moist	bbles;	 - - - - -	0.0			_	- Bentonite
		- grades to dense		- 11/8/2016	15			70	Sand
- 20.0 — - -		Gray silty SAND (SM) with grave cobbles; non-plastic; medium sa coarse, subrounded gravel; mois	nd;	- <u>¥</u> - - -		MW-5a		90	2-inch 0.010-slot screen
	8.0.200 0200 0200 02000	- becomes gray/black; wet Final depth 25.0 feet bgs; Gro encountered at approximately	undwater 18 feet	-	250+				
- - 30.0				-					

		DDC		COLEMAN 1 EAST YAKIMA, V	I STR	EET			BORING MW6
		PBS	F	PBS PROJI 413	ECT NI 92.000		R:		BORING MW6 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (MPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Brown SILT (ML) with sand, grav organics; low plasticity; fine sand subrounded gravel; moist	vel, and d; fine,	-				100	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 2-inch PVC blank
5.0		Medium dense poorly graded gra (SP) with gravel and cobbles; fin coarse, subrounded gravel; mois	e sand:		0.3			_	- Bentonite
-				-	73	MW-6		100	
10.0								-	Sand Sand Sand
15.0		- grades to dense Black-gray silty SAND (SM) with	gravel	- 11/8/2016 - Y	200±			90	
- 20.0		Black-gray silty SAND (SM) with and cobbles; low plasticity; coars coarse, subrounded gravel; wet	se sand;	_	300+			_	2-inch 0.010-slot screen
	20200000000000000000000000000000000000	Final death OF 0 ft have		-	300+			90	
	-	Final depth 25.0 ft bgs; Groundwater encountered at approximately 17 ft							
30.0	-			-					
DRILLED	BY: Ho	DD: Sonic Drilling blt Services AMETER: 8-inch		LOGGE Compl	ED BY: N ETED: 1	/l. Bagle 1/08/17	y		

BORING LOG-ENV CORE 41392.000 MW1-6&RW1 JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

		DDC		COLEMAN 1 EAST YAKIMA, W	I STR	EET			BORING RW1
		PBS	I	PBS PROJECT NUMBER: 41392.000				I	BORING RW1 LOCATION: (See Site Plan)
	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 — - - - 5.0 — - - -		ASPHALT Loose dark gray poorly graded (GP) with sand; medium sand; fi subangular gravel; moist	GRAVEL ne,					80	 5-inch x 12-inch flush-mount monument with 1 foot of concrete backfill 4-inch PVC blank Bentonite
 10.0 - -	$\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$	Medium dense dark gray-brown graded SAND (SP-SM) with silt, and cobbles to 4"; low plasticity; sand; coarse, subrounded grave	gravel, medium	-	0.0			_	Sand
15.0 — - - -		- grades to dense - grades to wet			820			95	
- 20.0 — - -				-				_	4-inch 0.010-slot screen
 25.0 				-				95	
- 30.0 —		Final depth 30.0 feet bgs; Gro encountered at approximately	undwater 18 feet	_	0.0				
DRILLED	BY: Ho	DD: Sonic Drilling blt Services AMETER: 8-inch		LOGGE COMPL	ED BY: N ETED: 4	I //. Bagle <u>y</u> //27/16	y	I	

BORING LOG-ENV CORE 41392.000_MW1-6&RW1_JHD.GPJ DATATMPL.GDT PRINT DATE: 7/16/18:RPG

APPENDIX C

Groundwater Sampling Forms

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)		
Initial DTW (feet bgs)	19.13	Monitoring Well ID	MW1
Screen Interval (feet bgs)	9.9 to 25.9	Sample ID (if not well ID)	
Well depth (feet bgs)	24.9	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	22.5	type:	ID Time
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN
Purge Rate (L/min)	0.16	Weather Conditions	Sunny, warm

			WELL	PURGING I	NFORMA	TION			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
1028	19.8	16.9	1408	0.55	7.13	-420.0	-	-	1.5
1032	20.0	16.8	1399	0.29	7.15	-431.2	-	-	2.5
1038	20.1	18.2	1381	0.31	7.16	-438.2	-	-	3.5
1044	20.1	19.0	1385	0.27	7.16	-434.2	-	-	4.5
							Total V	olume Purged	4.5

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well head in good condition. Groundwater is clear with yellow tint, medium recovery no odor or sheen.

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)		
Initial DTW (feet bgs)	19.82	Monitoring Well ID	MW2
Screen Interval (feet bgs)	10.3 to 25.3	Sample ID (if not well ID)	
Well depth (feet bgs)	25.3	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	22.5	type:	ID Time
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN
Purge Rate (L/min)	0.2	Weather Conditions	Sunny, warm

WELL PURGING INFORMATION						TION			
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
1115	20.4	16.1	469.7	0.47	6.94	-293.7	-	-	1
1120	20.5	16.0	469.2	0.47	6.94	-312.9	-	-	2
1125	20.5	16.1	468.6	0.49	6.94	-352.7	-	-	3
1130	20.5	16.2	468.1	0.50	6.95	-352.7	-	-	4
1133	20.5	16.3	466.5	0.33	6.94	-398.2	-	-	4.5
1135	20.5	16.3	466.7	0.33	6.95	-400.3	-	-	5
1138	20.5	16.3	466.4	0.31	6.94	-402.1	-	-	5.5
Total Volume Purged					5.5				

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well head in good condition. Groundwater is clear with yellow tint, medium recovery, strong odor/sheen.

	PBS Engineering and Environmental	Project No: 41392	000
	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA 0, 2016
Initial DTW (feet bgs)	N/A	Monitoring Well ID	MW3
Screen Interval (feet bgs)	14 to 24	Sample ID (if not well ID)	
Well depth (feet bgs)	24.0	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	N/A	type:	ID Time
Sampling method (describe pump or sampler)	N/A	Field Personnel	MN
Purge Rate (L/min)	N/A	Weather Conditions	Sunny, warm

			WELL	. PURGING I	NFORMA	TION			
Time □ elapsed □ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged □ ltr □ gal
							Total V	olume Purged	
FIELD OBSE	RVATIONS /	NOTES (suc	h as well head co	ondition, grour	ndwater col	lor, sedimen	t load, recove	ry, sheen, odor, e	quipment)

Well was not sampled due to presence of diesel product.

Depth to product: 18.8 feet bgs

Depth to water: 23.5 feet bgs

Diesel product thickness: 4.7 feet

	PBS Engineering and Environmental	Project No: 41392	000
	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA), 2016
Initial DTW (feet bgs)	N/A	Monitoring Well ID	RW1
Screen Interval (feet bgs)	15.05 to 30.05	Sample ID (if not well ID)	
Well depth (feet bgs)	30.05	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	N/A	type:	ID Time
Sampling method (describe pump or sampler)	N/A	Field Personnel	MN
Purge Rate (L/min)	N/A	Weather Conditions	Sunny, warm

	WELL PURGING INFORMATION								
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
					!				
	ļ!	ļ		ļļ	ļ!	ļ	ļ'		
		ļ	ļ'		ļ!		ļ'	ļļ	
		ļ	ļ'	ļļ	<mark>ا</mark> ـــــــــــا				ļ
 		ļ	ļ'	ļl	I	'		ļļ	ļļ
	ļļ	ļ'	<u>ا</u>	ļļ	ļ!			ļļ	
	ļ!		l'	ļļ			[']	ļ!	ŀ₽
	ļ]		├ ──── [!]	 	<u>ا</u> ــــــا		'	ļļ	
	ļ!		¦'	<u> </u>	<u>ا</u> ــــــا		'	ļļ	
	ļļ		<u> </u> '	ļļ	<u>ا</u>			ļĮ	
	ļļ		<u> </u> '	┟────┦	ا			<u> </u>	
	├ ────┦		<u> </u>		را			<u> </u>	[]
	┨────┦	<u> </u>	<u> </u> '		 ا			<u> </u>	[]
			<u> </u>		ił		<u> </u> '	++	
		[<u> </u>	+	
	+				+				
Total Volume Purged 5.5						5.5			
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)									
Well was not sampled due to presence of diesel product.									

Depth to product: 19.38 feet bgs

Depth to water: 23.64 feet bgs

Diesel product thickness: 4.26 feet

Signature of Field Personnel: MN

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)			
Initial DTW (feet bgs)	-	Monitoring Well ID	MW1	
Screen Interval (feet bgs)	9.9 to 25.9	Sample ID (if not well ID)		
Well depth (feet bgs)	24.9	QC Sample	⊠ Not collected	
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time	
Sampling method (describe pump or sampler)	-	Field Personnel	MN	
Purge Rate (L/min)	-	Weather Conditions	Sunny, cold	

WELL PURGING INFORMATION Specific Volume Dissolved DTW Temp. ORP Turbidity Time conductivity pН Observations purged oxygen elapsed (feet) (C) (NTU) (mV) □ mS/cm □ µS/cm ☐ ltr ☐ gal (mg/L) actual **Total Volume Purged** FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well head in good condition.

Well was not sampled due to presence of product.

Depth to product: 18.99 feet bgs.

Depth to water: 20.13 feet bgs.

Product thickness: 1.14 feet

	PBS Engineering and Environmental	Project No: 41392	000
	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA nber 13, 2016
Initial DTW (feet bgs)	-	Monitoring Well ID	MW2
Screen Interval (feet bgs)	10.3 to 25.3	Sample ID (if not well ID)	
Well depth (feet bgs)	25.3	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	MN
Purge Rate (L/min)	-	Weather Conditions	Sunny, cold

	WELL PURGING INFORMATION								
Time □ elapsed □ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
Total Volume Purged									
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)									

Well head in good condition.

A product sample was collected during this investigation.

Depth to product: 17.11 feet bgs. Product was detected in the entire well column to 25.3 feet bgs. No water level was reported.

Product was light yellow, with a strong hydrocarbon odor.

Signature of Field Personnel:MN

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)		
Initial DTW (feet bgs)	-	Monitoring Well ID	MW3
Screen Interval (feet bgs)	14 to 24	Sample ID (if not well ID)	
Well depth (feet bgs)	24.0	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	MN
Purge Rate (L/min)	-	Weather Conditions	Sunny, cold

			WELL	PURGING II	NFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
	ļ								
	ļ							ļ]	
	ļ		ļ					Į]	
	ļ	ļ	ļ	ļ]		ļ		ļ]	
	ļ!	ļ	ļ!	ļ]				ļ]	ا
	ļ		ļ!	ļļ					P
	├────┘		ļ ^j	 				 	
	ļļ		<u> </u>	├ ────┦				 	
	ļļ		l	<u> </u>				<u> </u>	
	ļļ	<u> </u>	<u>├</u> ────┦	 					
	/ [/]								
	1								
	+								
				[]					
							Total V	olume Purged	
FIELD OBSE	RVATIONS /	NOTES (suc	h as well head co	ondition, grour	ndwater col	lor, sedimen	t load, recove	ery, sheen, odor, eo	quipment)
-	A product sample was collected during this investigation. Depth to product: 18.82 feet bgs								

Depth to water: 23.73 feet bgs

Diesel product thickness: 4.91 feet

Product was pink with a strong hydrocarbon odor.

Signature of Field Personnel: MN

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)		
Initial DTW (feet bgs)	18.09	Monitoring Well ID	MW4
Screen Interval (feet bgs)	15 to 25	Sample ID (if not well ID)	
Well depth (feet bgs)	25	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	23	type:	ID Time
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN
Purge Rate (L/min)	0.25L/min	Weather Conditions	Sunny, cold

			WELL	. PURGING I	NFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
							Total V	olume Purged	4

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Water quality meter was not operational during this sampling event.

Well head in good condition. Groundwater is clear with yellow tint, no sediment, good recovery, strong hydrocarbon odor.

	PBS Engineering and Environmental	Project No: 41392. Project Name/ Colom	
	GROUNDWATER SAMPLING FORM (YSI 556)	Location: 1 E I S	an Oil treet, Yakima, WA ıber 13, 2016
	- ()	Date: Decen	
Initial DTW (feet bgs)	-	Monitoring Well ID	MW5
Screen Interval (feet bgs)	15 to 25	Sample ID (if not well ID)	
Well depth (feet bgs)	25	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	MN
Purge Rate (L/min)	-	Weather Conditions	Sunny, cold

			WELI	PURGING I	NFORMA	TION	WELL PURGING INFORMATION					
Time □ elapsed □ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal			
									ļ			
			ļ'					ļ!	ļ			
			ļ						ļ!			
			ļ'					ļ!	ļ!			
			├ ──── [!]					ļ/				
		ļ						ļļ				
		ļļ		 				<u> </u>	 			
								<u> </u>				
								+				
								1				
									ļ			
	ļ		ļ'									
							—		<u> </u>			
								olume Purged	<u> </u>			
FIELD OBSE	ERVATIONS /	NOTES (such	h as well head co	ondition, grour	ndwater col	lor, sedimen	t load, recove	ery, sheen, odor, eo	quipment)			
Well was n	ot sampled	due to pre	sence of prod	uct.								
Depth to pr	oduct: 19.7	73 feet bgs										
Depth to wa	Depth to water: 20.3 feet bgs											
Diesel proc	luct thickne	ess: 0.57 fe	et									

	PBS Engineering and Environmental GROUNDWATER SAMPLING FORM (YSI 556)		
Initial DTW (feet bgs)	17.40	Monitoring Well ID	MW6
Screen Interval (feet bgs)	15 to 25	Sample ID (if not well ID)	
Well depth (feet bgs)	25	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	22	type:	ID Time
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN
Purge Rate (L/min)	0.25L/min	Weather Conditions	Sunny, cold

			WELL	. PURGING I	NFORMA	TION			
Time elapsed actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
							Total V	olume Purged	4
					- duratan a al		4 a a d		

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Water quality meter was not operational during this sampling event.

Well head in good condition. Groundwater is clear, no sediment, good recovery, strong hydrocarbon odor.

	PBS Engineering and Environmental	Project No: 41392.	000
	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA nber 13, 2016
Initial DTW (feet bgs)	-	Monitoring Well ID	RW1
Screen Interval (feet bgs)	15.05 to 30.05	Sample ID (if not well ID)	
Well depth (feet bgs)	30.05	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	MN
Purge Rate (L/min)	-	Weather Conditions	Sunny, cold

	WELL PURGING INFORMATION								
Time □ elapsed □ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☐ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged Itr gal
		ļ!		 					ļ
			ļ'				ļ		ļ
			ļ'	 					ļ
			ļ'	 					ļ!
		ļļ	Į'	 					ļļ
		ļ!	l'	 					ļ
		ļ]	├ ──── [!]	 					
		ļļ	<u> '</u>	! !					
		ļļ	<u> </u>	ļ!					
		<u> </u>	<u> </u>	ļ!					
				P					
		+							
			1						
				I					
							Total V	olume Purged	
FIELD OBSE	RVATIONS /	NOTES (suci	h as well head co	ondition, grour	ndwater col	lor, sedimen	t load, recove	ery, sheen, odor, e	quipment)
Well was n	ot sampled	due to pres	sence of produ	uct.					
Depth to pr	oduct: 19.	58 feet bgs							
Depth to wa	ater: 19.83	feet bgs							
Diesel proc	luct thickne	ess: 0.25 fee	et						

Signature of Field Personnel: MN

	PBS Engineering and Environmental	Project No: 41392.	000			
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S				
	FORM (YSI 556)	Date: June 9, 2017				
Initial DTW (feet bgs)	-	Monitoring Well ID	MW-1			
Screen Interval (feet bgs)	9.90-25.90	Sample ID (if not well ID)	-			
Well depth (feet bgs)	25.90	QC Sample	⊠ Not collected			
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time			
Sampling method (describe pump or sampler)	-	Field Personnel	PB & KN			
Purge Rate (L/min)	-	Weather Conditions	Sunny, 72°			

WELL PURGING INFORMATION Specific Volume Dissolved DTW Temp. ORP Turbidity Time conductivity рΗ Observations purged oxygen (feet) (C) (NTU) elapsed (mV) □ mS/cm ⊠ μS/cm ⊠ ltr □ gal (mg/L) $\overline{\boxtimes}$ actual

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well was not sampled due to presence of product.

Depth to product: 17.68 feet bgs

Depth to water: 17.84 feet bgs

Diesel product thickness: 0.16 feet

	PBS Engineering and Environmental	Project No: 41392.	000				
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S					
	FORM (YSI 556)	Date: June 9, 2017					
Initial DTW (feet bgs)	17.85	Monitoring Well ID	MW-2				
Screen Interval (feet bgs)	10.30-25.30	Sample ID (if not well ID)	-				
Well depth (feet bgs)	25.30	QC Sample	⊠ Not collected				
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time				
Sampling method (describe pump or sampler)	grab	Field Personnel	PB & KN				
Purge Rate (L/min)	-	Weather Conditions	Sunny, 72°				

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
I		1	1	<u> </u>	I	1	1	1	

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Depth to product: 17.85 feet bgs

Depth to water: 17.87 feet bgs

Diesel product thickness: 0.02 feet

Upon checking well with a disposable bailer, no product was observed. A grab sample was collected.

	PBS Engineering and Environmental	Project No: 41392.	000
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S	
	FORM (YSI 556)	Date: June 9	, 2017
Initial DTW (feet bgs)	-	Monitoring Well ID	MW-3
Screen Interval (feet bgs)	14.00-24.00	Sample ID (if not well ID)	-
Well depth (feet bgs)	24.00	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	PB & KN
Purge Rate (L/min)	-	Weather Conditions	Sunny, 72°

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
FIELD OBSE	RVATIONS	NOTES (suc	h as well head co	ondition, grour	ndwater co	lor, sedimen	t load, recove	ry, sheen, odor, e	quipment)
Vell was no	ot sampled	l due to pre	sence of prod	uct.					

Depth to product: 17.94 feet bgs

Depth to water: 20.81 feet bgs

Diesel product thickness: 2.87 feet

	PBS Engineering and Environmental	Project No: 41392.000	
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S	
	FORM (YSI 556)	Date: June 9	, 2017
Initial DTW (feet bgs)	17.19	Monitoring Well ID	MW-4
Screen Interval (feet bgs)	15.00-25.00	Sample ID (if not well ID)	-
Well depth (feet bgs)	25.00	QC Sample	□ Not collected
Depth of pump/tubing inlet (feet bgs)	20.00	type:	IDDUP_6.9.17
Sampling method (describe pump or sampler)	Low Flow Peristaltic	Field Personnel	PB & KN
Purge Rate (L/min)	0.28	Weather Conditions	Sunny, 72°

WELL PURGING INFORMATION

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
1200	17.25	16.03	708	1.05	6.30	18.0	-	-	0.75
1205	17.29	15.98	710	1.75	5.93	30.8	-	-	2.00
1210	17.32	16.01	711	1.00	5.98	23.2	-	-	3.00
1215	17.33	16.02	711	0.70	6.05	23.5	-	-	5.00
1220	17.35	16.15	713	0.75	6.10	23.4	-	-	6.00
1225	17.36	16.16	712	0.70	6.16	22.7	-	-	7.00
Total Volume Purged					7				

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Sample time: 1225

Г

	PBS Engineering and Environmental	Project No: 41392.	000
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S	
	FORM (YSI 556)	Date: June 9	, 2017
Initial DTW (feet bgs)	-	Monitoring Well ID	MW-5
Screen Interval (feet bgs)	15.00-25.00	Sample ID (if not well ID)	-
Well depth (feet bgs)	25.00	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	PB & KN
Purge Rate (L/min)	-	Weather Conditions	Sunny, 72°

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
					L				
FIELD OBSE	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)					quipment)			
Well was not sampled due to presence of product									

Well was not sampled due to presence of product.

Depth to product: 18.88 feet bgs

Depth to water: 19.54 feet bgs

Diesel product thickness: 0.66 feet

	PBS Engineering and Environmental	Project No: 41392.000	
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S	
	FORM (YSI 556)	Date: June 9	, 2017
Initial DTW (feet bgs)	16.61	Monitoring Well ID	MW-6
Screen Interval (feet bgs)	15.00-25.00	Sample ID (if not well ID)	-
Well depth (feet bgs)	25.00	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	22.00	type:	ID Time
Sampling method (describe pump or sampler)	Low Flow Peristaltic	Field Personnel	PB & MN
Purge Rate (L/min)	0.3625	Weather Conditions	Sunny, 72°

WELL PURGING INFORMATION

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
1050									
1055	16.73	16.36	443	17.64	6.13	56.4	-	-	1.0
1100	16.75	15.68	439	7.44	5.52	55.7	-	-	2.5
1105	16.75	15.58	439	5.28	5.59	46.4	-	-	4.0
1110	16.75	15.50	441	3.65	5.65	39.8	-	-	5.5
1115	16.75	15.43	440	2.65	5.70	35.6	-	-	7.0
1118	16.75	15.32	439	2.28	5.70	34.8	-	-	8.5
1121	16.75	15.39	439	2.00	5.69	34.6	-	-	10.0
1124	16.75	15.54	440	1.99	5.78	27.2	-	-	11.2
1127	16.75	15.57	441	1.90	5.82	24.5	-	-	13.0
1130	16.75	15.59	442	1.87	5.89	24.3	-	-	14.5
							Total V	olume Purged	14.5

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Sample time: 1130

	PBS Engineering and Environmental	Project No: 41392.	000
	GROUNDWATER SAMPLING	Project Name/ Colem Location: 1 E I S	
	FORM (YSI 556)	Date: June 9	, 2017
Initial DTW (feet bgs)	-	Monitoring Well ID	RW-1
Screen Interval (feet bgs)	15.05-30.05	Sample ID (if not well ID)	-
Well depth (feet bgs)	30.05	QC Sample	⊠ Not collected
Depth of pump/tubing inlet (feet bgs)	-	type:	ID Time
Sampling method (describe pump or sampler)	-	Field Personnel	PB & KN
Purge Rate (L/min)	-	Weather Conditions	Sunny, 72°

WELL PURGING INFORMATION									
Time □ elapsed ⊠ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ⊠ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
		-							
		<u> </u>							
		<u> </u>							
	DVATIONS			ndition around	ductor	lar adimen	tland reasons	ry aboon adar a	winmont)
	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)					quipment)			
Well was not sampled due to presence of product.									
Depth to product: 18.55 feet bgs									

Depth to water: 20.03 feet bgs

Diesel product thickness: 1.48 feet

APPENDIX D

Diesel Product Thickness and Removal Summary

Diesel Product Thickness and Removal Summary

Coleman Oil Yakima Address: 1 E. I Street, Yakima, WA Ecology ERTS No: 663825 PBS Project No.: 41392

	RW1 product	RW1 product		MW3 product	MW3 product
	thickness (feet)	removed (liters)		thickness (feet)	removed (liters)
5/10/2016	4.26	0	5/10/2016	4.7	0
5/31/2016	4.94	35.4	5/31/2016	4.87	12
6/8/2016	4.25	32	6/8/2016		
6/10/2016		12	6/30/2016	4.25	3.6
6/30/2016	4.75	53			
7/12/2016	3.2	19.05			
7/21/2016	2.5	15.45			
8/5/2016	2.58	16.5			
		-	-	-	-
total		183.4			15.6

APPENDIX E

Air Sampling Datasheets

<u>Field Form – Summa Canister Sampling</u> Indoor and Outdoor Air Sampling

PBS Project No.: 41392.000					
Site Name: Coleman Oil					
Canister ID: 18572	Gauge ID: <u>N/A</u>				
Flow Controller ID: 07850					
Canister Pressure	<i>Sampling Time</i> Begin:919				
Final:14 in Hg circle one	End:1419				
desk					
PBS Project No.: 41391.000	Sample ID: VS-2				
Site Name: Coleman Oil	Date: 12/13/2016				
Canister ID: 18580	Gauge ID:N/A				
Flow Controller ID: 07851					
Canister Pressure	Sampling Time				
Initial:29 mm Hg	Begin:928				
Final:13 in Hg circle one	End:1422				
	s collected from the crawl space beneath the				

PBS Project No.: 41391.000	Sample ID: <u>VS-3</u>
Site Name: Coleman Oil	Date: <u>12/13/2016</u>
Canister ID: 20545	Gauge ID: <u>N/A</u>
Flow Controller ID: 07848	
Canister Pressure	Sampling Time
Initial:29 mm Hg	Begin:925
Final:14 in Hg circle one	End:1423
<i>Comments/Observations</i> : This sample near the entrance.	e was collected outside of the east side of the building

APPENDIX F

Survey Report

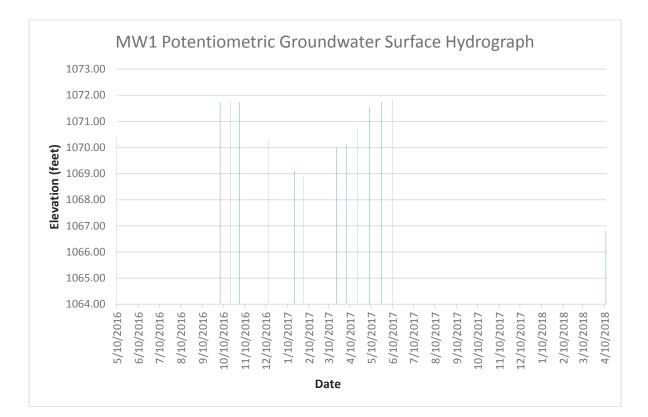
YAKIMA PLANT FUEL RELEASE - WELL LOCATION SURVEY REPORT COLEMAN OIL COMPANY JOB #4365

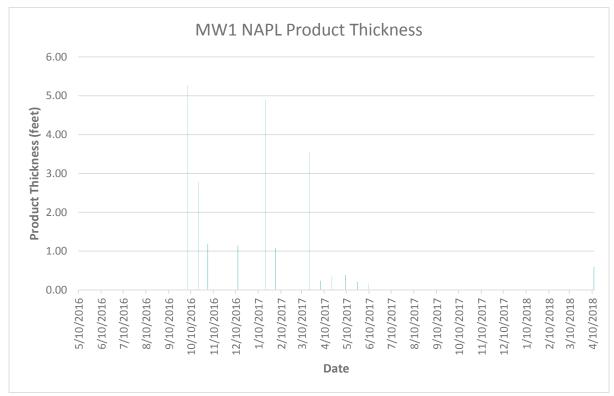
POINT	NORTHING	EASTING	ELEVATION	DESCRIPTION
1	467104.96	1636980.19	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	467054.80	1636869.03	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1000	467174.09	1636965.91	1089.65	MW3 NORTH EDGE OF EXTERNAL CASING
1001	467173.89	1636965.90	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1002	467194.51	1636962.68	1090.05	MW1 NORTH EDGE OF EXTERNAL CASING
1003	467194.30	1636962.63	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1004	467211.57	1636953.36	1090.21	MW1 NORTH EDGE OF EXTERNAL CASING
1005	467211.29	1636953.38	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1006	467209.98	1636986.28	1089.73	MW2 NORTH EDGE OF EXTERNAL CASING
1007	467209.69	1636986.34	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE
1009	467246.11	1636952.13	1089.50	MW6 NORTH EDGE OF EXTERNAL CASING
1010	467245.86	1636952.17	1089.21	MW6 NORTH EDGE OF 2IN PVC WELL PIPE
1011	467235.90	1637036.33	1089.20	MW4 NORTH EDGE OF EXTERNAL CASING
1012	467235.59	1637036.33	1088.85	MW4 NORTH EDGE OF 2IN PVC WELL PIPE
1013	467176.87	1636900.68	1090.25	MW5 NORTH EDGE OF EXTERNAL CASING
1014	467176.60	1636900.74	1090.01	MW5 NORTH EDGE OF 2IN PVC WELL PIPE

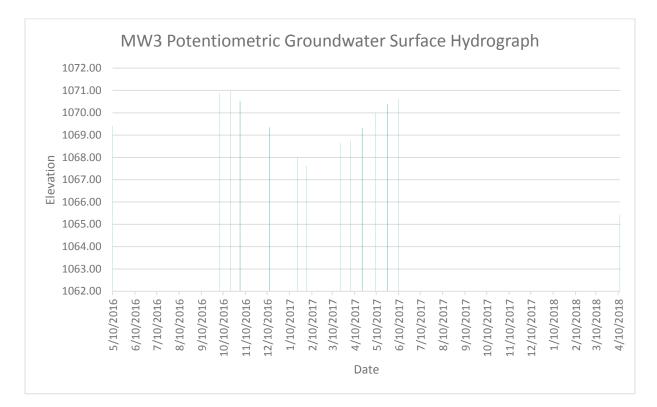
POINT	LATITUDE (NORTH)	LONGITUDE (WEST)	ELEVATION	DESCRIPTION
1	46°36'51.3018"	120°30'49.2301"	1088.59	CONTROL POINT 1, SET REBAR & HDJ RED CAP
2	46°36'50.8065"	120°30'50.8224"	1089.82	CONTROL POINT 2, SET REBAR & HDJ RED CAP
1001	46°36'51.9823"	120°30'49.4350"	1089.15	MW3 NORTH EDGE OF 2IN PVC WELL PIPE
1003	46°36'52.1837"	120°30'49.4819"	1089.54	MW1 NORTH EDGE OF 4IN PVC WELL PIPE
1005	46°36'52.3515"	120°30'49.6144"	1089.54	MW1 NORTH EDGE OF 2IN PVC WELL PIPE
1007	46°36'52.3357"	120°30'49.1423"	1089.44	MW2 NORTH EDGE OF 2IN PVC WELL PIPE
1010	46°36'52.6927"	120°30'49.6319"	1089.21	MW6 NORTH EDGE OF 2IN PVC WELL PIPE
1012	46°36'52.5915"	120°30'48.4261"	1088.85	MW4 NORTH EDGE OF 2IN PVC WELL PIPE
1014	46°36'52.0089"	120°30'50.3685"	1090.01	MW5 NORTH EDGE OF 2IN PVC WELL PIPE

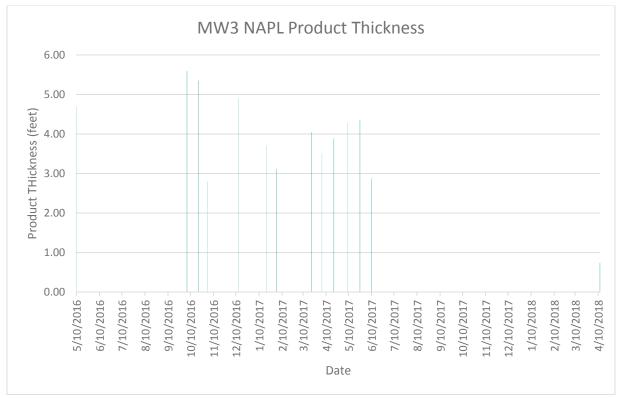
DATUM NOTES:

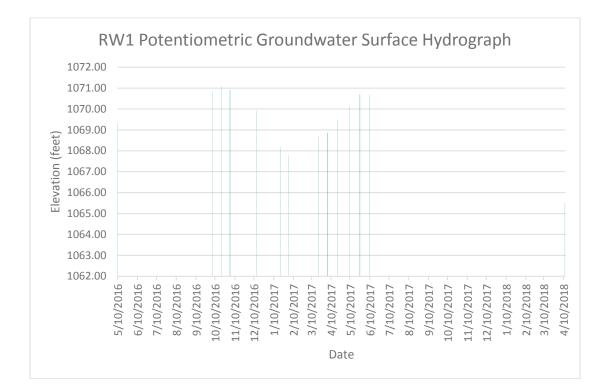
HORIZONTAL DATUM IS NAD83-2011 (EPOCH 2010.00) PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN)

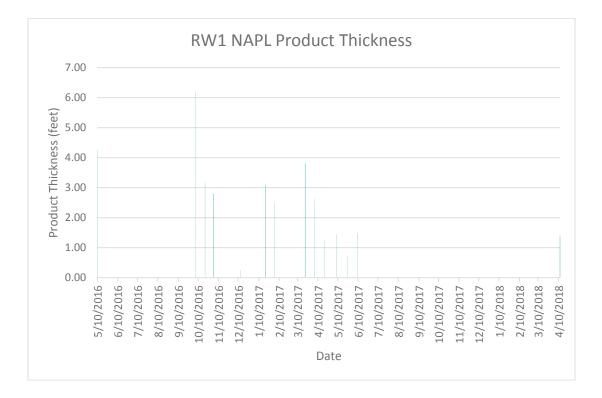

VERTICAL DATUM IS NAVD88 PER THE WASHINGTON STATE REFERENCE NETWORK (WSRN).

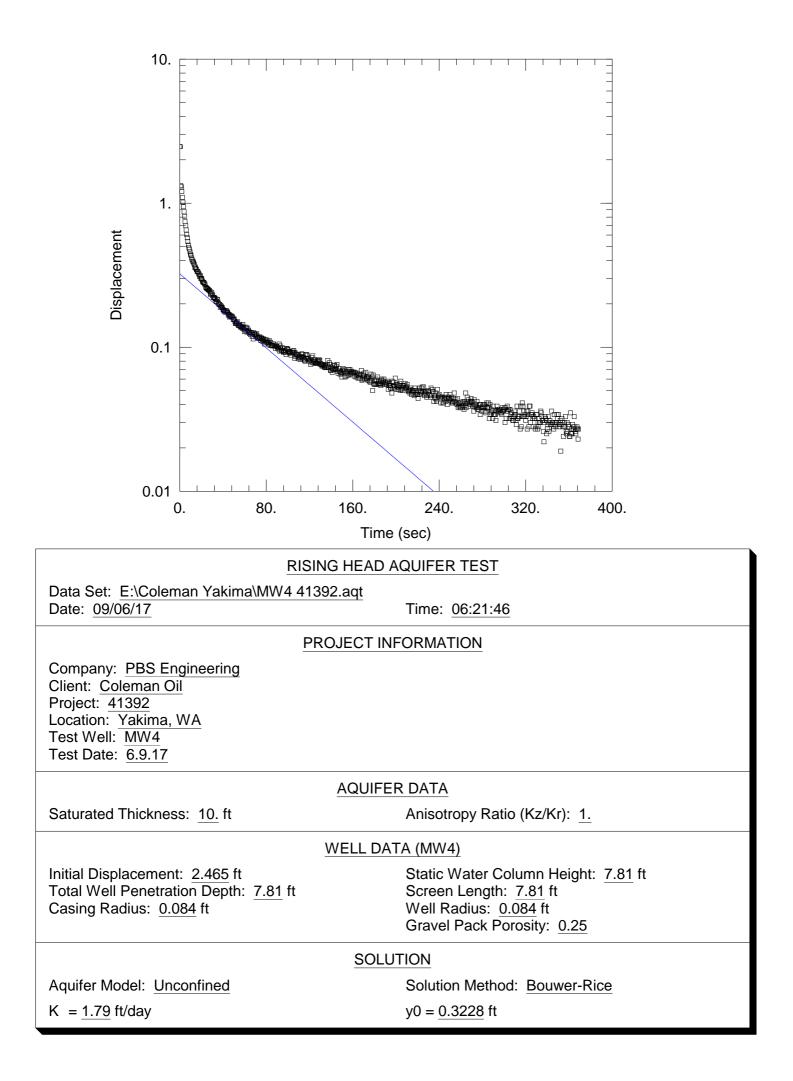

COORDINATES LISTED ARE WASHINGTON STATE PLANE SOUTH ZONE GRID

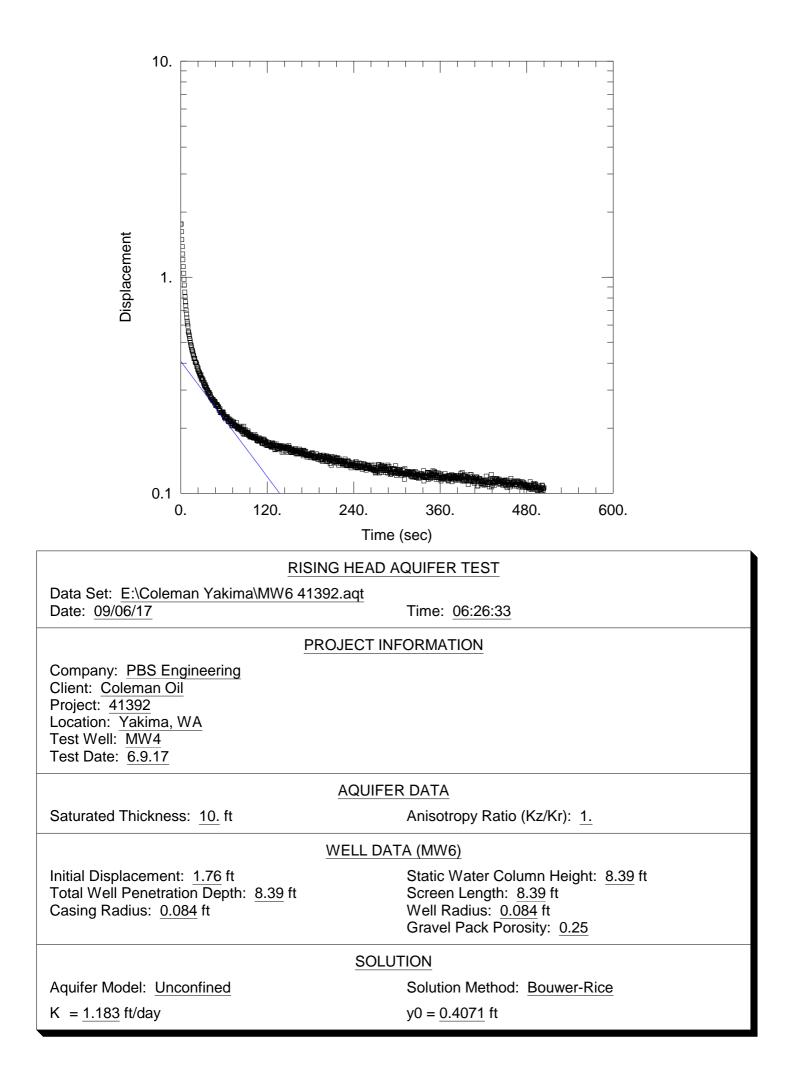



APPENDIX G


Water Level and Product Thickness Hydrographs







APPENDIX H

Aquifer Testing Reports

APPENDIX I

Laboratory Reports Chain-of-Custody Documentation

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included is the amended report from the testing of material submitted on April 8, 2015 from the 64116, F&BI 504134 project. Per your request, the estimated concentrations of the HCID analysis were included in the report for the samples that were not quantified by NWTPH-Dx analysis.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0416R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 16, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included are the results from the testing of material submitted on April 8, 2015 from the 64116, F&BI 504134 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0416R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 8, 2015 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 64116, F&BI 504134 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
504134 -01	S1
504134 -02	S2
504134 -03	S3
504134 -04	S4
504134 -05	S5
504134 -06	S6
504134 -07	S7
504134 -08	S8

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/16/15 Date Received: 04/08/15 Project: 64116, F&BI 504134 Date Extracted: 04/08/15 Date Analyzed: 04/08/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	Diesel	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S1 504134-01	ND	ND	2,600 e	72
S2 504134-02	ND	ND	590 e	99
S3 504134-03	ND	ND	D	62
S4 504134-04	ND	ND	D	74
S5 504134-05	ND	ND	600 e	99
S6 504134-06	ND	ND	ND	88
S7 504134-07	ND	390 x e	470 е	99
S8 504134-08	ND	D x	D	82
Method Blank 05-727 MB	ND	ND	ND	102

05-727 MB

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e - The concentration reported is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/16/15 Date Received: 04/08/15 Project: 64116, F&BI 504134 Date Extracted: 04/13/15 Date Analyzed: 04/13/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S3 504134-03	2,100 x	11,000	91
S4 504134-04	270 x	1,100	89
S8 504134-08	550 x	1,100	97
Method Blank ^{05-744 MB}	<50	<250	124

ENVIRONMENTAL CHEMISTS

Date of Report: 04/16/15 Date Received: 04/08/15 Project: 64116, F&BI 504134

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	504208-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	105	115	64-133	9
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	-			
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	118	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMSICOCICOCIDOC	Ph. (206) 285-8282 Fax (206) 283-5044	Seattle, WA 98119-2029	Friedman & Bruya, Inc. 3012 I6th Avenue West			85	۲۵	95	\$5	hS	٤ ٢	25	15	Sample ID		Phone # (307) 727-0873 Fax #	City, State, ZIP Lizhland, WA	5	Company PBS Environmenta	Send Report To	Sohigh
	Relinquished by: Received by:	Received by	Relinquish			1 80	1 40	8	S	ou	03	2	2	ID Lab		573 Fa	land i	ley Blu	nuire	lana Ertel	
	ed by: /		SIGNATURE			¢							4/3/15	Date Sampled		C #	WA 991	d Smit	menta	e	
		in D.	ATURE											Time Sampled		-	99352	300			
						Y							5	Sample Type			REMA		PROJE	SAMP	SAMPLE CHAIN OF CUST
		Dana Bring	> PR			¢							n	# of containers			REMARKS Pls return	64116	PROJECT NAME/NO.	SAMPLERS (signature)	CHAIN
		C CH	PRINT NAME			0				\bigcirc	\odot			TPH-Diesel	+1		reh		EN	natu	OF
		\mathbb{X}	NAI			$\left \right $								TPH-Gasoline	1		r'z		Ų.	re)	CU
		;	Ē											BTEX by 8021B]		3			0	STC
					+	$\left \right $								VOCs by8260			rler.			Par A.	ODY
														SVOCs by 8270	ANA		L			·A.	~
	╉╾╋		+		<u> </u>								•	HFS	LYS		24			3	
					ļ	<							1	HCIO	ES I	K	R			A	
	1	the	8		Sal									\	ΈQ	`	S.		PO#		>
		541	COMPANY		nple										ANALYSES REQUESTED		•				ME
		7	YN		TBC:										E	L	i				
					eived								-					Rus			04/
			+		d at											/ill c	ispo	h ch	RUSH	Pa	108
	19		A			┝╍╍╌┥╸			╾┽	-+						Return samples Will call with in	SAMPLE DISPOSAL	arges	Gandard (2 Weeks)	Page #_	21/15
		13	ATE		2°C						Ē	nu/nu	$ \mathcal{Q} $			iples	E D	auth	2 We		
-		$\frac{4}{8}$									13	\$	p	No		struc	ISPO	Ioriz	eks)		\cap
		~	TIME								k	0	X	Notes		Return samples Will call with instructions	SAL	Rush charges authorized by		Page # / of /	
			ш																		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included is the amended report from the testing of material submitted on April 13, 2015 from the Yakima 64116, F&BI 504216 project. Per your request, the estimated HCID concentrations were included in the report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

le

Michael Erdahl Project Manager

Enclosures PBR0417R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 17, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included are the results from the testing of material submitted on April 13, 2015 from the Yakima 64116, F&BI 504216 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0417R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 13, 2015 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Yakima 64116, F&BI 504216 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
504216 -01	<u>S9</u>
504216 -02	S10
504216 -03	S11
504216 -04	S13
504216 -05	S14
504216 -06	S15
504216 -07	S16
504216 -08	S17
504216 -09	S18
504216 -10	S19
504216 -11	S20
504216 -12	S21
504216 -13	S22
504216 -14	S23
504216 -15	S24
504216 -16	S25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/15 Date Received: 04/13/15 Project: Yakima 64116, F&BI 504216 Date Extracted: 04/14/15 Date Analyzed: 04/14/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 56-165)
S9 504216-01 1/10	ND	ND	6,700 e	98
S10 504216-02	ND	ND	ND	101
S11 504216-03	ND	ND	ND	96
S13 504216-04	ND	ND	ND	96
S14 504216-05	ND	ND	ND	97
S15 504216-06	ND	ND	ND	96
S16 504216-07	ND	ND	ND	98
S17 504216-08	ND	ND	ND	99
S18 504216-09	ND	ND	ND	96
S19 504216-10	ND	ND	ND	94
S20 504216-11	ND	ND	ND	96

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e - The concentration reported is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/15 Date Received: 04/13/15 Project: Yakima 64116, F&BI 504216 Date Extracted: 04/14/15 Date Analyzed: 04/14/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 56-165)
S21 504216-12	ND	ND	ND	91
S22 504216-13	ND	ND	ND	95
S23 504216-14	ND	ND	ND	95
S24 504216-15	ND	ND	ND	92
S25 504216-16	ND	ND	ND	95
Method Blank ^{05-765 MB}	ND	ND	ND	105

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S17 04/13/15 04/14/15 04/15/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Yakima 64116, F&BI 504216 504216-08 504216-08.028 ICPMS1 SP
Internal Standard: Indium Holmium	% Recovery: 80 94	Lower Limit: 60 60	Upper Limit: 125 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	2.62 4.56		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/14/15 04/15/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Yakima 64116, F&BI 504216 I5-222 mb I5-222 mb.010 ICPMS1 SP
Internal Standard: Indium Holmium	% Recovery: 94 102	Lower Limit: 60 60	Upper Limit: 125 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S17 04/13/15 04/13/15 04/13/15 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Yakima 64116, F&BI 504216-08 041320.D GCMS9 JS	
			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	99	89	113	
Toluene-d8		101	64	137	
4-Bromofluorobenz	ene	101	81	119	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethen e	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Methylene chloride	•	< 0.5	o-Xylene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propyl	lbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05		methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	etrachloroethane	< 0.05
1,2-Dichloroethane		< 0.05		chloropropane	< 0.05
1,1,1-Trichloroetha		< 0.05	2-Chloro		< 0.05
1,1-Dichloropropen		< 0.05	4-Chloro		< 0.05
Carbon tetrachlorie	de	< 0.05		ylbenzene	< 0.05
Benzene		< 0.03		methylbenzene	< 0.05
Trichloroethene		< 0.02	0	lbenzene	< 0.05
1,2-Dichloropropan		< 0.05		pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		< 0.5		lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05		omo-3-chloropropane	< 0.5
Toluene		< 0.05		chlorobenzene	< 0.25
trans-1,3-Dichlorop		< 0.05		orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha		< 0.05
2-Hexanone		<0.5	1,2,3-Tri	chlorobenzene	<0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ate Received:Not Applicaate Extracted:04/13/15ate Analyzed:04/13/15Iatrix:Soil		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Yakima 64116, F&BI 05-0718 mb 041308.D GCMS9 JS	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene		% Recovery: 100 100 100	Lower Limit: 89 64 81	Upper Limit: 113 137 119	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-Dichloropethane	hane r (MTBE) thene e ene (EDC) ne e de de	< 0.5 < 0.5 < 0.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich 1,2-Dibr	loropropane loroethene ochloromethane omoethane (EDB) enzene izerachloroethane ene vibenzene rm benzene enzene methylbenzene fetrachloroethane chloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.$
Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone		<0.05 <0.05 <0.05 <0.5	1,2,4-111 Hexachl Naphtha 1,2,3-Tri	<0.25 <0.25 <0.05 <0.25	

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/15 Date Received: 04/13/15 Project: Yakima 64116, F&BI 504216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 504171-02 (Matrix Spike) Sample Percent Percent Reporting Spike Result Acceptance RPD Recovery Recovery (Limit 20) Analyte Units Level (Wet wt) MS MSD Criteria Arsenic mg/kg (ppm) 1.92 67-121 10 75 80 6 Lead mg/kg (ppm) 50 7.41 81 87 59-148 7

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	97	83-113
Lead	mg/kg (ppm)	50	102	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/15 Date Received: 04/13/15 Project: Yakima 64116, F&BI 504216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 504208-01 (Matrix Spike)

Laboratory Code. 504208	-or (Matrix Spike)		Samula	Democrat	Percent		
		C 11	Sample	Percent		A <i>i</i>	ססס
	Reporting	Spike	Result	Recovery		Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	38	37	10-56	3
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	60 64	60 63	10-90 10-91	0 2
Bromomethane	mg/kg (ppm)	2.5	<0.5	65	65	10-51	0
Chloroethane	mg/kg (ppm)	2.5	<0.5	74	72	10-101	3
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	71	72	10-95	1
Acetone	mg/kg (ppm)	12.5	< 0.5	92	91	11-141	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	78	79	11-103	1
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	92	92	14-128	0
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	92 85	92 85	17-134 13-112	0 0
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	80 87	85 87	23-115	0
2,2-Dichloropropane	mg/kg (ppm)	2.5	<0.05	88	86	18-117	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	<0.05	91	91	25-120	õ
Chloroform	mg/kg (ppm)	2.5	< 0.05	88	89	29-117	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	99	101	20-133	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	84	86	22-124	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	90	90	27-112	0
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	89	90	26-107	1
Carbon tetrachloride Benzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.03	89 86	88 85	22-115 26-114	1
Trichloroethene	mg/kg (ppm)	2.5	<0.03	90	88	30-112	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	<0.02	91	92	31-119	1
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	93	92	31-131	1
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	91	91	27-124	0
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	102	101	16-147	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	98	97	28-137	1
Toluene	mg/kg (ppm)	2.5	< 0.05	88	90	34-112	2
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	92 88	93 89	30-136 32-126	1
2-Hexanone	mg/kg (ppm) mg/kg (ppm)	12.5	< 0.05	89	90	17-147	1
1,3-Dichloropropane	mg/kg (ppm)	2.5	<0.05	93	94	29-125	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	88	89	25-114	1
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	88	89	32-143	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	91	92	32-126	1
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	89	90	37-113	1
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	91	92	34-115	1 2
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5 5	<0.05 <0.1	91 93	93 93	35-126 25-125	20
o-Xylene	mg/kg (ppm)	2.5	<0.1	94	96	27-126	2
Styrene	mg/kg (ppm)	2.5	<0.05	95	96	39-121	1
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	97	98	34-123	1
Bromoform	mg/kg (ppm)	2.5	< 0.05	85	87	18-155	2
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	94	96	31-120	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	89	89	40-115	0
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	96 95	96 94	24-130 27-148	0 1
1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	93 87	94 89	33-123	2
2-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	93	93	39-110	0
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	93	92	39-111	1
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	102	103	36-116	1
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	96	97	35-116	1
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	96	98	33-118	2
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	96	97	32-119	1
1,3-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	87 86	90 87	38-111 39-109	3
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	86 89	87 89	39-109 40-111	1 0
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.05	92	96	37-122	4
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	93	95	31-121	2
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	90	91	24-128	ĩ
Naphthalene	mg/kg (ppm)	2.5	< 0.05	96	98	24-139	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	91	93	35-117	2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/15 Date Received: 04/13/15 Project: Yakima 64116, F&BI 504216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	and Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	52	10-76
Chloromethane	mg/kg (ppm)	2.5	67	34-98
Vinyl chloride	mg/kg (ppm)	2.5	72	42-107
Bromomethane	mg/kg (ppm)	2.5	70	46-113
Chloroethane Trickland Guerranthane	mg/kg (ppm)	2.5	78	47-115
Trichlorofluoromethane Acetone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	80 94	53-112 39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5	94 84	65-110
Methylene chloride	mg/kg (ppm)	2.5	92	50-127
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	92	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	88	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	89	74-109
2,2-Dichloropropane	mg/kg (ppm)	2.5	88	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	73-110
Chloroform	mg/kg (ppm)	2.5	90	76-110
2-Butanone (MEK)	mg/kg (ppm)	12.5	110	60-121
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	mg/kg (ppm)	2.5 2.5	91 93	73-111 72-116
1,1,1-1 richloropene	mg/kg (ppm) mg/kg (ppm)	2.5	93 93	72-110
Carbon tetrachloride	mg/kg (ppm)	2.5	93 92	67-123
Benzene	mg/kg (ppm)	2.5	90	72-106
Trichloroethene	mg/kg (ppm)	2.5	93	72-107
1,2-Dichloropropane	mg/kg (ppm)	2.5	97	74-115
Bromodichloromethane	mg/kg (ppm)	2.5	96	75-126
Dibromomethane	mg/kg (ppm)	2.5	95	76-116
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	112	80-128
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	107	71-138
Toluene	mg/kg (ppm)	2.5	93	74-111
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	101	77-135
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	77-116
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm)	12.5 2.5	107 101	70-129 75-115
Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	89	73-115
Dibromochloromethane	mg/kg (ppm)	2.5	94	64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	99	77-117
Chlorobenzene	mg/kg (ppm)	2.5	93	76-109
Ethylbenzene	mg/kg (ppm)	2.5	95	75-112
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	88	76-125
m,p-Xylene	mg/kg (ppm)	5	97	77-115
o-Xylene	mg/kg (ppm)	2.5	94	76-115
Styrene	mg/kg (ppm)	2.5	101	76-119
Isopropylbenzene	mg/kg (ppm)	2.5 2.5	97 92	76-120
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	92 99	50-174 77-115
Bromobenzene	mg/kg (ppm)	2.5	96	76-112
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	97	77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	99	74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	97	74-116
2-Chlorotoluene	mg/kg (ppm)	2.5	95	75-113
4-Chlorotoluene	mg/kg (ppm)	2.5	96	77-115
tert-Butylbenzene	mg/kg (ppm)	2.5	103	77-123
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	99	77-119
sec-Butylbenzene	mg/kg (ppm)	2.5	97	78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	98	77-120
1,3-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	91 89	76-112 74-109
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	89 89	74-109 75-114
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	92	68-122
1.2.4 Trichlorobenzene	mg/kg (ppm)	2.5	89	75-122
Hexachlorobutadiene	mg/kg (ppm)	2.5	84	74-130
Naphthalene	mg/kg (ppm)	2.5	92	73-122
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	86	75-117
	••			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	0	Samples received at	- serd	San		\vdash											FORMS/COC/COC.DOC
				2		╉									~	Received by:	Fax (206) 283-5044
	CIT/1		6	┝		+									d by:	Relinquishe	Ph. (206) 285-8282
125	ulistr-	7	TLAT	++			·	han	ž			Nhan	\$ 4	22	5	Received by:	2029
	4/w/15		SB	~						é	1,5	Dana Erre,	Et .	[``	a by		
TIME	DATE	Y	COMPANY	C O V		$\left \cdot \right $			ME	PRINT NAME	P	PRI			SIGNATURE	Delinguish	Friedman & Bruya, Inc.
		 			4							w	<i>ϵ</i>		<	191	815
			5	Ś	5			\leq				~				68	rıs
					5							w				40	915
					4							3				66	SIS
					4							Z				27	his
	<u>-</u>				5							w			418/15	ank c	513
mple Collecter	No Sa.			<u> </u>		 	ļ	ļ									No Sample (2
		4/16/15'	Dre	X	5	 						Ž	¢		<	<u>ස</u>	
				 	5	 	<u> </u>					v			-	180	0)S
					5		ļ					S	Sou		4/8/15	OIA CF	bs
Notes			Arsenic	Pb	HCID	HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
		D	ANALYSES REQUESTED	EQU	ES R	LYS	ANA]]	1							
tructions	□ Return samples Will call with instructions	□ Retu Will													#	'73 Fax	Phone # (307) 727-0873 Fax #
SPOSAL davs	SAMPLE DISPOSAL	D Disp										RKS	REMARKS	152	1A 99352	and h	City, State, ZIP Lizhland, WA
orized by	Rush charges authorized by	Rush c										6	64116	Sao	d Smith	ey Blu	r f
ks)	Standard (2 Weeks)	Standa		PO#	Ъ						N	PROJECT NAME/NO.	PROJEC		menta	n viron	~~
	Page # / of				P	\mathcal{D}	Ŕ	ara s.	Ì	re)	atu.	SAMPLERS (signature)	SAMPL			Dann Ertei	Send Report To
me	603	13	(j)	4	ME 04-13	in		YQC	STO	CU)F	CHAIN C	SAMPLE CHAIN OF CUSTODY				504246

F

			.										╞					ſ	FORMS\COC\COC.DOC	~
ຈໍ	6	Samples received at	Sample														Received by:	Rece	Fax (206) 283-5044	- T H
112S	1/12/15		4	a)	+1		د	Phan	Ph		S	Nhan			aus	Relinquished by:	nquishec		Ph. (206) 285-8282	
						<u> </u>								5	4	الا	vived by		Seattle. WA 98119-2029	\circ
TIME	DATE	X	COMPANY	8		\downarrow			AME	T N	PRINT NAME	P			TURE	SIGNATURE	S Relinquished by:	· <u> </u>	Friedman & Bruya, Inc. 3012 16th Avenue West	$\omega \sim$
]		
																	, ·			
					2						-+	ω		¥		K		16	<u>s 12</u>	1
				<u> </u>	5							ω					12	18	524	
			-		2							3					4		523	1
					2							3					4		225	
					S							ω					7	2	521	
_					5							ω				<u> </u>	11 2-4		520	
					\langle							Ł		5010		18/15	101-17		Siq	
Notes				\ \	HCID	HFS	and the second	BTEX by 8021B VOCs by8260	TPH-Gasoline	TPH-Diesel		# of containers		Sample Type	Time Sampled	Date Sampled	ID ID		Sample ID	
		Ü	ANALYSES REQUESTED	REQ	SES	P	A	$\left \right $	$\left \right $	$\left \right $	┿┥									
SPOSAL days structions	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	D Disp Retu Will											KEMARKS		52	# A 993	- Fax	-0873	City, State, ZIP Lichland, WA 99352 Phone # (309) 727-0873 Fax #	1
ks) orized by	PStandard (2 Weeks) RUSH Rush charges authorized by	□ RUSH Rush cha		PO#						1 6	64116		FROJECI NAME/NO.		300	PBS Environmental D Brodley Blud Suite	iren Blud	Env	Company <u>PBS Environmentel</u> Address 400 Bradley Blud Swife	
ND TIME	Page # 12 of 1 TURNAROUND TIME									ture,	gnat	RS (si	SAMPLERS (signature)				Ert	Jan Ert	Send Report To	
182	co3	à	13-	The second secon	NE 01	Х	γı	OL	rsn	C	OF	HAIN	SAMPLE CHAIN OF CUSTODY	SAMP				16	504 216	

÷

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included is the amended report from the testing of material submitted on April 17, 2015 from the 64116 Yakima, F&BI 504328 project. Per your request, the estimated concentrations of the HCID analysis were included in the report for the samples that were not quantified by NWTPH-Dx analysis.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0507R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 7, 2015

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included are the results from the testing of material submitted on April 17, 2015 from the 64116 Yakima, F&BI 504328 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0507R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 17, 2015 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 64116 Yakima, F&BI 504328 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
504328 -01	S26
504328 -02	S27
504328 -03	S28
504328 -04	S29
504328 -05	S30
504328 -06	S31
504328 -07	S32
504328 -08	S33
504328 -09	S34
504328 -10	S35
504328 -11	S36
504328 -12	S37
504328 -13	S38
504328 -14	S39
504328 -15	S40
504328 -16	S41
504328 -17	S42
504328 -18	S43
504328 -19	S44

The 8082A aroclor 1016 matrix spike failed below the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results are likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/20/15 Date Analyzed: 04/20/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	Diesel	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S26 504328-01	ND	D	D	ip
S27 504328-02	ND	160 e	ND	89
S28 504328-03	ND	10,000 e	1,500 e	ip
S29 504328-04	ND	7,300 e	7,400 e	78
S30 504328-05	ND	D	D	82
S31 504328-06	ND	3,300 e	2,100 e	87
S32 504328-07	ND	2,400 e	1,200 e	95
S33 504328-08	ND	2,100 e	510 e	87
S34 504328-09	ND	320 e	ND	99
S35 504328-10	ND	90 e	ND	88

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e – The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/20/15 Date Analyzed: 04/20/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	Gasoline	Diesel	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 53-144)
S36 504328-11	ND	D	D	ip
S37 504328-12	ND	D	ND	103
S38 504328-13	ND	ND	310 е	89
S40 504328-15	D	ND	ND	94
S41 504328-16	D	ND	ND	97
S42 504328-17	ND	290 e	ND	90
S43 504328-18	ND	99 e	ND	91
S44 504328-19	ND	1,300 e	330 e	91
Method Blank 05-808 MB	ND	ND	ND	89

05-808 MB

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

e – The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
S40 504328-15	<0.02	< 0.02	<0.02	<0.06	<2	89
Method Blank 05-0821 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	79

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
S26 504328-01	15,000	980	69
S30 504328-05 1/10	3,200	5,000	100
S36 504328-11 1/10	52,000	5,300	ip
S37 504328-12	530	<250	96
S39 504328-14 1/10	15,000	31,000	79
S42 504328-17	660	310	91
Method Blank ^{05-851 MB}	<50	<250	106

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S29 04/17/15 04/27/15 04/27/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-04 504328-04.065 ICPMS1 SP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	95	60	125
Indium	84	60	125
Holmium	96	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	8.00		
Cadmium	2.35		
Chromium	5.91		
Lead	332		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/27/15 04/27/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 I5-252 mb I5-252 mb.045 ICPMS1 SP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	72	60	125
Indium	78	60	125
Holmium	92	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S30 04/17/15 04/27/15 05/01/15 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-05 1/50 050110.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e- d 12	% Recovery: 88 d 103 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		0.12		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		0.14		
Anthracene		0.16		
Fluoranthene		0.11		
Pyrene		0.23		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		0.10		
Benzo(b)fluoranthe		0.11		
Benzo(k)fluoranthe		<0.1		
Indeno(1,2,3-cd)pyr		< 0.1		
Dibenz(a,h)anthrac		< 0.1		
Benzo(g,h,i)perylen	e	0.34		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

v		1 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 04/27/15 04/28/15 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 05-853 mb 1/5 042805.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 83 82	Lower Limit: 31 24	Upper Limit: 163 168
~ .		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ene	< 0.01		
Benzo(k)fluoranthe	ne	< 0.01		
Indeno(1,2,3-cd)pyr	rene	< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	S30 04/17/15 05/04/15 05/04/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 504328-05 1/50 09.D\ECD1A.CH GC7 ya
Surrogates: TCMX	% Recovery: 40 d	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ 0.37 \\ < 0.2 $		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/04/15 05/04/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 64116 Yakima, F&BI 504328 05-895 mb 1/5 07.D\ECD1A.CH GC7 ya
Surrogates: TCMX	% Recovery: 80	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	< 0.02		
Aroclor 1016	< 0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	< 0.02		
Aroclor 1260	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 504462-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	69-120
Toluene	mg/kg (ppm)	0.5	92	70-117
Ethylbenzene	mg/kg (ppm)	0.5	92	65-123
Xylenes	mg/kg (ppm)	1.5	91	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 5	04328-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	14,000	123 b	138 b	63-146	11 b
Laboratory Code: 1	aboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accept	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	110	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 504442-41 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	10.3	83 b	102 b	67-121	21 b
Cadmium	mg/kg (ppm)	10	<1	97	102	88-121	5
Chromium	mg/kg (ppm)	50	5.43	79	83	57-128	5
Lead	mg/kg (ppm)	50	68.8	114	122	59-148	7
Mercury	mg/kg (ppm	10	<1	88	95	50-150	8

Laboratory Code: Laboratory Control Sample

	Percent						
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Arsenic	mg/kg (ppm)	10	84	83-113			
Cadmium	mg/kg (ppm)	10	100	85-114			
Chromium	mg/kg (ppm)	50	88	78-121			
Lead	mg/kg (ppm)	50	105	80-120			
Mercury	mg/kg (ppm)	10	96	70-130			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 504416-03 1/5 (Matrix Spike)

Laboratory Couc. 504410		spike)		_	
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	88	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	90	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	84	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	85	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	86	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	79	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	87	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	89	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	94	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	96	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	89	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	99	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	100	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	98	37-133

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Labora	tory Control San	ipie 1/5	_	_		
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	89	90	58-121	1
Acenaphthylene	mg/kg (ppm)	0.17	85	86	54-121	1
Acenaphthene	mg/kg (ppm)	0.17	87	87	54-123	0
Fluorene	mg/kg (ppm)	0.17	91	91	56-127	0
Phenanthrene	mg/kg (ppm)	0.17	89	91	55-122	2
Anthracene	mg/kg (ppm)	0.17	83	85	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	87	88	54-129	1
Pyrene	mg/kg (ppm)	0.17	77	83	53-127	7
Benz(a)anthracene	mg/kg (ppm)	0.17	82	84	51-115	2
Chrysene	mg/kg (ppm)	0.17	88	92	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	97	98	56-123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	101	105	54-131	4
Benzo(a)pyrene	mg/kg (ppm)	0.17	90	90	51-118	0
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	98	93	49-148	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	101	95	50-141	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	98	95	52-131	3

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/15 Date Received: 04/17/15 Project: 64116 Yakima, F&BI 504328

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 504328-05 1/50 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	0.8	< 0.2	29 vo	50-150
Aroclor 1260	mg/kg (ppm)	0.8	<0.2	74	50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	82	81	55-130	1
Aroclor 1260	mg/kg (ppm)	0.8	99	89	58-133	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

					┝												FORMS\COC\COC.DOC	77
6 6	sole preived at	anloc												Y:	Received by:	Rece	Fax (206) 283-5044	~
10110		ſ	$\left \right $										•	id by:	nquisne	Keill	F N. (200) 203-0202	
<u>}</u>	3 T	A LT	H			Ľ	hay	0	Z	han	NOL		Jane	ty / tu	M		DL ())()))))))))))))))))))))))))))))))))	-
		3					·		R	Ê	Cana Circl		Murl. Lt		Received by:		Seattle. WA 98119-2020	
DATE TIME	YN	COMPANY	00		+			ME	PRINT NAME	T	PR		TURE	SIGNATURE	nquishe		Friedman & Bruya, Inc. 3012 16th Avenue West	
				<							~	e		<		,	285	
											~					8	AES	1
									 		~					30	\$33	1
											~	-			$\overline{\downarrow}$	9	7\$5	
											w				OL AK	0	115	
	\times	\times								\times	7				es-Ala	0	०४८	
			×	_							~				04	0	623	
											~				63	0	875	
At.				_							~				3	.0	225	···
1, /u u/is				5						\times	3	2.5		Or A & ulmulis	A		526	
Notes	PAHs	PCBS	MTCA 5	Heid	HFS		VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of contain ers	Sample Type	Time Sampled	Date Sampled	ID Lab		Sample ID	
	ED	ANALYSES REQUESTED	REQU	SES 1	E	A	1	1	1	\square								
 Return samples Will call with instructions 														¢ #	Fay	c873	Phone # (09) 727-0873 Fax #	
SAMPLE DISPOSAL											UKS	- REMARKS	252	vA 99352		ilan	City, State, ZIP frihand, WA	
Rush charges authorized by	Rush					: :				F	Yak		Sao	e Smith	Blu	idley	Address 400 Bradley Blud Swith Joo	
General Standard (2 Weeks)	D Standa		PO#						<u>o</u>	Ň	64116	$- \frac{PROJECT NAME/NO}{64/16}$		menta	irer	Env	Company PBS Environmental	
Page # I of C TTIRNAROUND TIME				Ø.	D	3	5	5	ure)	ratu	SAMPLERS (signature)	SAMPL		E	Er	Dane Erti	Send Report To	
7 854	17/15	14/	٥	ME	R	Y	OD	STO	CU)F	HAIN (SAMPLE CHAIN OF CUSTODY					504328	

	3. 9	vam ples received at	vamp	-											FORMSICOCICOC.DOC	FORMS
			>	-+-										Received by:	4	rax (
•																Ent
1418	4/17/15-	1-7	Fes)	â	2 Ja	Ľ	2	Uhen	1	ylan	d by:	Relinquished by:		Ph. (;
												2		Received by:		Seatt
TIME	DATE	COMPANY	COV	+			ME	PRINT NAME	Z	PR		TURE	SIGNATURE Relinquished by:	linquishe	3012 16th Avenue West Re	3012
															- I	Frie
											٩		(у н ү	
			2			ļ								8	242	
			2			<u> </u>			\times			_		1	7	
					 	ļ								6	5 11	
T Carden -				+-	_	\downarrow	\geq	\geq			Sole			· 5		
hadler	Bo Alt Ano					\perp	$\langle $	<		-				F; -	OHS	
BELDE 1	Augua		╋	++	\parallel	\prod	\prod		X	4	Sinkhulas			14	539	
	-		4								Ę			13	828	Τ
			2						X					B	125	Τ
			5						X	W	Sore		DA Julie	DA C	536	Τ
Notes			Heid	HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021E	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	ID Lab	Sample ID	
		JESTED	ANALYSES REQUESTED		<u>A</u>	1		\neg	+							
ructions	P Will call with instructions															٦
lays	Dispose after 30 days Return samples	D Disj											× #	W F	Phone # (209) 727-0873 Fax #	Ph
POSAL	SAMPLE DISPOSAL			ŀ						KS	REMARKS	99352	"A 97	ing t	City, State, ZIP Lichland, Luft	Ω
rized by	Rush charges authorized by	Rush				28	il.	Ta a	٩	64116 Yakima		Jac	nd Smith	y Bly	Address 40 Bradley Blud Swith Joe	A
(S)	Standard (2 Weeks)		PO#	{			`	ر.ق	S S	TNAM	PROJECT NAME/NO		rmenta	vire	Company PBS Environmente	Q
of 2	Page # 2							ure)	nat	SAMPLERS (signature)	SAMPL		t	an Erti	Send Report To	S
e e	ESN	511 21	120	L V	X	TODY	JST		OF	HAIN	SAMPLE CHAIN OF CUST				504325	-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on March 23, 2016 from the Coleman Yakima, 64116 PO, F&BI 603413 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
603413 -01	NSW1-4
603413 -02	WSW1-4
603413 -03	B1-5.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413 Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B1-5.5 603413-03 1/10	0.79	14	20	110	5,100	ip
Method Blank 06-556 MB	<0.02	< 0.02	< 0.02	<0.06	<2	89

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413 Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
NSW1-4 603413-01	11,000	270 x	91
WSW1-4 603413-02	26,000	570 x	72
B1-5.5 603413-03	34,000	770 x	103
Method Blank ^{06-567 MB}	<50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

J		I I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-5.5 03/23/16 03/24/16 03/24/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 603413-03 1/250 032418.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 3 d 163 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		8.1		
Acenaphthylene		<0.5		
Acenaphthene		1.4		
Fluorene		3.4		
Phenanthrene		5.0		
Anthracene		<0.5		
Fluoranthene		<0.5		
Pyrene		2.4		
Benz(a)anthracene		<0.5		
Chrysene		<0.5		
Benzo(a)pyrene		<0.5		
Benzo(b)fluoranthe		<0.5		
Benzo(k)fluoranthe		<0.5		
Indeno(1,2,3-cd)pyr		< 0.5		
Dibenz(a,h)anthrac		< 0.5		
Benzo(g,h,i)perylen	e	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 03/24/16 03/28/16 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 06-569 mb 1/5 032803.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e- d12	% Recovery: 92 102	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		<0.01		
Benzo(a)pyrene		<0.01		
Benzo(b)fluoranthe		<0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	0.5	94	91	69-120	3
Toluene	mg/kg (ppm)	0.5	100	96	70-117	4
Ethylbenzene	mg/kg (ppm)	0.5	101	98	65-123	3
Xylenes	mg/kg (ppm)	1.5	99	99	66-120	0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	603420-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	95	97	63-146	2
Laboratory Code: I	aboratory Contr.	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	104	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16 Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/5

Laboratory couch Labora	y er	I .	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	91	58-121	2
Acenaphthylene	mg/kg (ppm)	0.17	96	93	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	93	92	54-123	1
Fluorene	mg/kg (ppm)	0.17	94	91	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	94	92	55-122	2
Anthracene	mg/kg (ppm)	0.17	90	86	50-120	5
Fluoranthene	mg/kg (ppm)	0.17	93	87	54-129	7
Pyrene	mg/kg (ppm)	0.17	92	97	53-127	5
Benz(a)anthracene	mg/kg (ppm)	0.17	95	94	51-115	1
Chrysene	mg/kg (ppm)	0.17	92	95	55-129	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	99	96	56-123	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	100	99	54-131	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	93	89	51-118	4
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	87	49-148	4
Dibenz(a, h)anthracene	mg/kg (ppm)	0.17	86	83	50-141	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	86	84	52-131	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruva. Inc.					R1-5.5	H- ZMSM	NSW2 -4	Sample ID		Phone 509.512, 846 JEmail Kenny - Opbsenv. com	City, State, ZIP	Address Scn 44	Company P3S	Report To Fin Nogare	603413
	Received by:	Relinguished by:	Received by	SIC Relinquished by: 1					03 A-F	20	0/	Lab ID		mail Kennegen		Scalle WA	Enjinerar	Joste	
			- Wega	SIGNATURE					3.23.16	3.23.16	3,233,16	Date Sampled		-Opperny					
			ß.						1240	0061	1140	Time Sampled		ic of a	REMARKS	- (ok	PROJE	SAMPI	SAMPL
		The second	Kin	,					1.5	51.1	51.1	Sample Type			UKS	Coleman Y	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
		Le la	5	PRINT NAME		 			9	-	-	# of Jars				Yukima		uture)	VOF
) sx. nc	TNA	$\left - \right $	 	 	 		5	~	TPH-HCID				7		K	CUS
			5	MB		 	 	 	XX		\times	TPH-Diesel	$\left \right $					K. Noyers	TOI
						 	 	 <u> </u>	1			TPH-Gasoline BTEX by 8021B	$\left\{ \right\}$					0,10	YC
												VOCs by 8260C	AN		н	6		3	I
		T	-0			 	 					SVOCs by 8270D	SAT		INVOICE TO	64116	קי		HE
Sa		Å	SB			 	 		$\left \right\rangle$			PAHs 8270D SIM	ES R		ICE	a	PO #		
mple		h_a		OMIP		 	 						EQUI		0				1203
99				COMPANY		 	 						ANALYSES REQUESTED					-1	2
Samples received at							 	 					B	 Archiv Other 		lush	Sta		3/16
dat				$\left - \right $		 	 							nive S er	SAM		ndard	Page #	
2° #		spert -	3, 23 6	DATE					48 6.	シア				Archive Samples Other	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turnaround	ARO	ជ
Ĭ			+							٩		Notes			POSA	ized l			572/
		640	640	TIME				PAHs	6x 877	dresse					F	y:		ネーレー イレー	4

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 4, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on March 30, 2016 from the 41392, F&BI 603529 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0404R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 30, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 603529 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
603529 -01	T1-WSW
603529 -02	T1-ESW
603529 -03	T1-B

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529 Date Extracted: 03/30/16 Date Analyzed: 03/30/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
T1-B 603529-03	<0.02	0.063	0.18	2.3	340	85
Method Blank 06-608 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529 Date Extracted: 03/30/16 Date Analyzed: 03/30/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
T1-WSW 603529-01	9,500	<250	79
T1-ESW 603529-02	920	<250	84
T1-B 603529-03	190	<250	83
Method Blank 06-604 MB2	<50	<250	83

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 603520-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	95	70-117
Ethylbenzene	mg/kg (ppm)	0.5	96	65-123
Xylenes	mg/kg (ppm)	1.5	94	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/16 Date Received: 03/30/16 Project: 41392, F&BI 603529

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	303504-03 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	116	124	73-135	7
Laboratory Code: 1	Laboratory Contro	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	118	74-139)		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

, · · · ·	Seattle, WA 98119-2029 Ph. (206) 285-8282		Friedman & Bruya, Inc.				T1 - R	FI-ESW	TI-WSW	Sample ID		Email Address Ken . Mogeire Opbsenv. com	Phone # 507. 512. 8163 Fax #	City, State, ZIP	Sent	SS SS	79 	603529
Received by:	Relinquished by:	Relinquished by:	S				03 1-0 3.28.16	02	0/	Lab ID		geire Opbs	<u>}_Fax #</u>		K , WA)	ainenn	Ken Nogerra	
Euget &	Yurt	Ň	SIGNATURE				3.28.16	3.28.4	3.25.4	Date		tnv.com						
Å		N	ΥE				940	935	930	Time		-				-		SAM
Ell's	Jahn Kaba	K 7					51-1	51.1	50.1	Sample Type		ELECTRONIC DATA REQUESTED	Yakim	PROJECT ADDRESS	41392	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
both R	1 Kabs	K Corric	PRINT NAME				٢	-	-	# of containers		C DATA RE	Yakinn, Wit	DRESS	لو	ME/NO.	signature)	IN OF C
Elizabeth Radford			NAME				XXX	*	$\mathbf{\lambda}$	TPH-Diesel TPH-Gasoline BTEX by 8021B		QUESTED		>			K1, 1	USTODY
Л	T	,								VOCs by 8260 SVOCs by 8270 HFS	ANALY				4139 2		Nogere	ME
FabB	Hed Er S	1985	COMPANY	Sample							NALYSES REQUESTED			ŗ	تو	PO #		1 2 2
	00		YN	es received							ESTED	Samples	• Returr • Will ca	SA	Rush cha	• RUSH	Page * TURN	130,
3/30/16 11:45	3 30/16	3.29.16	DATE		 							Samples Received at	Return samples Will call with instructions	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turnaround RUSH	Page TURNAROUND TIME	116
1):45	11:15Am	164S	TIME	°C						Notes		, , ,	ructions	POSAL ays	-ized by:	und	D TIME	A.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 22, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on April 1, 2016 from the 41392, F&BI 604013 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0422R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 1, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 604013 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
604013 -01	NSW2-17
604013 -02	ESW1-17
604013 -03	SSW1-17
604013 -04	WSW2-11
604013 -05	B2-18
604013 -06	Trip Blank

Samples WSW2-11 and B2-18 was sent to Fremont Analytical for EPH and VPH analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16 Date Analyzed: 04/01/16 and 04/05/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
NSW2-17 604013-01	< 0.02	< 0.02	< 0.02	< 0.06	<2	81
ESW1-17 604013-02	< 0.02	< 0.02	< 0.02	< 0.06	3.1	84
SSW1-17 604013-03	< 0.02	0.039	0.024	0.14	5.5	76
WSW2-11 604013-04	< 0.02	3.1	7.5	62	3,400	ip
B2-18 604013-05	0.65	5.1	7.3	44	1,600	ip
Method Blank 06-612 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16 Date Analyzed: 04/01/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 604013-06	<1	<1	<1	<3	84
Method Blank ^{06-613 MB}	<1	<1	<1	<3	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/04/16 Date Analyzed: 04/04/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
NSW2-17 604013-01	<50	<250	93
ESW1-17 604013-02	<50	<250	105
SSW1-17 604013-03	<50	<250	91
WSW2-11 604013-04	9,900	330 x	93
B2-18 604013-05	25,000	570 x	73
Method Blank 06-660 MB	<50	<250	105

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B2-18	Client:	PBS Engineering and Environmental
Date Received:	04/01/16	Project:	41392, F&BI 604013
Date Extracted:	04/01/16	Lab ID:	604013-05
Date Analyzed:	04/01/16	Data File:	604013-05.065
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm) Dry Weight	Operator:	AP
Analyte:	Concentration mg/kg (ppm)		
Lead	4.94		

5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received:	Method Blank NA	Client: Project:	PBS Engineering and Environmental 41392, F&BI 604013
Date Extracted:	04/01/16	Lab ID:	I6-186 mb
Date Analyzed:	04/01/16	Data File:	I6-186 mb.019
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm) Dry Weight	Operator:	AP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

6

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5		1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2-18 04/01/16 04/04/16 04/04/16 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 604013 604013-05 1/250 040415.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 45 160	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		7.2		
Acenaphthylene		< 0.5		
Acenaphthene		0.86		
Fluorene		2.1		
Phenanthrene		2.5		
Anthracene		< 0.5		
Fluoranthene		< 0.5		
Pyrene		1.6		
Benz(a)anthracene		< 0.5		
Chrysene		< 0.5		
Benzo(a)pyrene		< 0.5		
Benzo(b)fluoranthe	ene	< 0.5		
Benzo(k)fluoranthe	ene	< 0.5		
Indeno(1,2,3-cd)pyr	rene	< 0.5		
Dibenz(a,h)anthrac		< 0.5		
Benzo(g,h,i)perylen	e	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Ŭ				
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 04/04/16 04/04/16 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 604013 06-657 mb 1/5 040404.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 89 90	Lower Limit: 31 24	Upper Limit: 163 168
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ene	< 0.01		
Benzo(k)fluoranthe	ene	< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 603575-02 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	93	65-123
Xylenes	mg/kg (ppm)	1.5	94	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 604014-01 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm ug/L (ppb) Toluene <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	89	74-118

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	604013-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	128	120	73-135	6
Laboratory Code: 1	Laboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	122	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Cod	e: 603575-01 (Ma	atrix Spik	e)				
·		-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	30.1	96	111	70-130	14

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 604023-02 1/5 (Matrix Spike)

J	02 1/0 (I/Iddi II 1	1 /	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	87	44-129	0
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	85	86	52-121	1
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	86	87	51-123	1
Fluorene	mg/kg (ppm)	0.17	< 0.01	82	83	37-137	1
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	87	87	34-141	0
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	85	32-124	5
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	82	80	16-160	2
Pyrene	mg/kg (ppm)	0.17	< 0.01	90	91	10-180	1
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	87	87	23-144	0
Chrysene	mg/kg (ppm)	0.17	< 0.01	90	90	32-149	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	23-176	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	42-139	0
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	83	88	21-163	6
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	95	90	23-170	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	91	89	31-146	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	93	89	37-133	4

	5	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.17	90	58-121
Acenaphthylene	mg/kg (ppm)	0.17	90	54-121
Acenaphthene	mg/kg (ppm)	0.17	89	54-123
Fluorene	mg/kg (ppm)	0.17	90	56-127
Phenanthrene	mg/kg (ppm)	0.17	91	55-122
Anthracene	mg/kg (ppm)	0.17	85	50-120
Fluoranthene	mg/kg (ppm)	0.17	91	54-129
Pyrene	mg/kg (ppm)	0.17	84	53-127
Benz(a)anthracene	mg/kg (ppm)	0.17	88	51-115
Chrysene	mg/kg (ppm)	0.17	91	55-129
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	96	56-123
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	91	54-131
Benzo(a)pyrene	mg/kg (ppm)	0.17	85	51-118
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	49-148
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	50-141
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	90	52-131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 604013 Lab ID: 1604015

April 21, 2016

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 4/1/2016 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mulchdy ...

Mike Ridgeway President

CLIENT: Project: Lab Order:	Friedman & Bruya 604013 1604015	Work Order Sample Summary						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
1604015-001	WSW2-11	03/30/2016 12:00 AM	04/01/2016 3:54 PM					
1604015-002	B1-18	03/30/2016 12:00 AM	04/01/2016 3:54 PM					

Case Narrative WO#: 1604015 Date: 4/21/2016

CLIENT:Friedman & BruyaProject:604013

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1604015** Date Reported: **4/21/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV - Initial Calibration Verification** LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Batch ID: 13409

WO#: **1604015** Date Reported: **4/21/2016**

Analyst: BC

Client: Friedman & Bruya	Collection Date: 3/30/2016									
Project: 604013 Lab ID: 1604015-001 Client Sample ID: WSW2-11				Matrix: So	oil					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed				
Extractable Petroleum Hydrocar	bons by NWEPI	<u>+</u>		Batch	1D: 13	403 Analyst: CM				
Aliphatic Hydrocarbon (C8-C10)	52.4	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM				
Aliphatic Hydrocarbon (C10-C12)	271	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM				
Aliphatic Hydrocarbon (C12-C16)	715	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM				
Aliphatic Hydrocarbon (C16-C21)	711	4.86	Q	mg/Kg-dry	1	4/20/2016 12:26:00 AM				
Aliphatic Hydrocarbon (C21-C34)	176	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM				
Aromatic Hydrocarbon (C8-C10)	31.2	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM				
Aromatic Hydrocarbon (C10-C12)	160	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM				
Aromatic Hydrocarbon (C12-C16)	531	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM				
Aromatic Hydrocarbon (C16-C21)	820	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM				
Aromatic Hydrocarbon (C21-C34)	659	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM				
Surr: 1-Chlorooctadecane	64.3	60-140		%Rec	1	4/20/2016 12:26:00 AM				
Surr: o-Terphenyl	104	60-140		%Rec	1	4/20/2016 9:30:00 AM				
NOTES: Q - Indicates an analyte with an initial or										

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons by NWVPH

Aliphatic Hydrocarbon (C5-C6)	ND	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C6-C8)	16.6	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C8-C10)	122	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aliphatic Hydrocarbon (C10-C12)	509	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C8-C10)	173	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C10-C12)	2,960	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C12-C13)	4,630	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Benzene	ND	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Toluene	1.82	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Ethylbenzene	4.23	0.558	Q	mg/Kg-dry	1	4/7/2016 12:32:08 PM
m,p-Xylene	18.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
o-Xylene	11.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Naphthalene	274	11.2	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Methyl tert-butyl ether (MTBE)	ND	0.558	*	mg/Kg-dry	1	4/7/2016 12:32:08 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 12:32:08 PM
Surr: Bromofluorobenzene	71.7	65-140	D	%Rec	20	4/7/2016 4:13:09 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

WO#: **1604015** Date Reported: **4/21/2016**

Client: Friedman & Bruya				Collection Date: 3/30/2016				
Project: 604013 Lab ID: 1604015-001				Matrix: So	oil			
Client Sample ID: WSW2-11								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Sample Moisture (Percent Moist	ure)			Batc	h ID: R2	8628 Analyst: CG		
Percent Moisture	7.71	0.500		wt%	1	4/6/2016 1:16:13 PM		

Batch ID: 13409

WO#: **1604015** Date Reported: **4/21/2016**

Analyst: BC

EPH 5.30 5.30 53.0	Qual * * D	mg/Kg-dry mg/Kg-dry	DF 1D: 13	Date Analyzed 403 Analyst: CM 4/20/2016 2:58:00 AM 4/20/2016 2:58:00 AM
EPH 5.30 5.30	*	Batch mg/Kg-dry mg/Kg-dry	1 ID: 13	403 Analyst: CM 4/20/2016 2:58:00 AM
EPH 5.30 5.30	*	Batch mg/Kg-dry mg/Kg-dry	1 ID: 13	403 Analyst: CM 4/20/2016 2:58:00 AM
5.30 5.30	*	mg/Kg-dry mg/Kg-dry	1 1	4/20/2016 2:58:00 AM
5.30	*	mg/Kg-dry	1	
		0 0 ,	-	4/20/2016 2:58:00 AM
53.0	D			
		mg/Kg-dry	10	4/20/2016 6:35:00 PM
53.0	DQ	mg/Kg-dry	10	4/20/2016 6:35:00 PM
5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
		%Rec	1	4/20/2016 2:58:00 AM
60-140		0/ 🗖 = =	1	4/20/2016 11:56:00 AM
	53.0 60-140	53.0 D 60-140	53.0 D mg/Kg-dry	53.0 D mg/Kg-dry 10 60-140 %Rec 1

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons by NWVPH

Aliphatic Hydrocarbon (C5-C6)	ND	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C6-C8)	27.5	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C8-C10)	ND	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aliphatic Hydrocarbon (C10-C12)	389	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C8-C10)	159	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C10-C12)	4,170	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C12-C13)	6,850	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Benzene	0.519	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Toluene	7.80	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Ethylbenzene	9.59	0.465	Q	mg/Kg-dry	1	4/7/2016 1:43:06 PM
m,p-Xylene	28.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
o-Xylene	14.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Naphthalene	364	23.2	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Methyl tert-butyl ether (MTBE)	ND	0.465	*	mg/Kg-dry	1	4/7/2016 1:43:06 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 1:43:06 PM
Surr: Bromofluorobenzene	73.8	65-140	D	%Rec	50	4/7/2016 4:48:40 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD,

<20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

WO#: **1604015** Date Reported: **4/21/2016**

Client: Friedman & Bruya		Collection Date: 3/30/2016						
Project:604013Lab ID:1604015-002				Matrix: So	oil			
Client Sample ID: B1-18								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Sample Moisture (Percent Moist	<u>ure)</u>			Batc	h ID: R2	Analyst: CG		

RPDLimit Qual

RPDLimit

%RPD RPDLimit

Qual S s S Q S

Qual

Surr: o-Terphenyl

Analyte

Aromatic Hydrocarbon (C8-C10)

Aromatic Hydrocarbon (C10-C12)

Aromatic Hydrocarbon (C12-C16)

Aromatic Hydrocarbon (C16-C21)

Aromatic Hydrocarbon (C21-C34)

Sample ID: MB-13403	SampType	MBLK			Units: mg/Kg		Prep Date	e: 4/6/201	6	RunNo: 28	874
Client ID: MBLKS	Batch ID:	13403					Analysis Date	e: 4/19/20	16	SeqNo: 54	2942
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPD
Aliphatic Hydrocarbon (C8-C10)		ND	5.00								
Aliphatic Hydrocarbon (C10-C12)		ND	5.00								
Aliphatic Hydrocarbon (C12-C16)		ND	5.00								
Aliphatic Hydrocarbon (C16-C21)		ND	5.00								
Aliphatic Hydrocarbon (C21-C34)		ND	5.00								
Surr: 1-Chlorooctadecane		13.4		20.00		66.8	60	140			
Sample ID: LCS-13403	SampType	LCS			Units: mg/Kg		Prep Date	e: 4/6/201	6	RunNo: 28	874
Client ID: LCSS	Batch ID:	13403					Analysis Date	e: 4/19/20	16	SeqNo: 54	2941
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPD
Aliphatic Hydrocarbon (C8-C10)		155	5.00	100.0	0	155	70	130			
Aliphatic Hydrocarbon (C10-C12)		123	5.00	50.00	0	245	70	130			
Aliphatic Hydrocarbon (C12-C16)		136	5.00	50.00	0	272	70	130			
Aliphatic Hydrocarbon (C16-C21)		41.7	5.00	50.00	0	83.3	70	130			
Aliphatic Hydrocarbon (C21-C34)		121	5.00	50.00	0	241	70	130			
Surr: 1-Chlorooctadecane		12.4		20.00		62.1	60	140			
NOTES:											
S - Outlying spike recovery obser Q - Indicates an analyte with an i	. 0	,	•			e criteria (<20%RSD, <	20% Drift o	r minimum RRF); high bias.	
		-									074
Sample ID: MB-13403	SampType	MBLK			Units: mg/Kg		Prep Date	e: 4/6/201	6	RunNo: 28	8/4

SPK value SPK Ref Val

20.00

Result

ND

ND

ND

ND

ND

21.5

RL

5.00

5.00

5.00

5.00

5.00

1604015

Friedman & Bruya

Work Order:

CLIENT:

QC SUMMARY REPORT

oons by NWEPH

%REC LowLimit HighLimit RPD Ref Val

140

60

108

Work Order: 1604015							QC	SUMMARY REF	PORT
CLIENT: Friedman &	Bruya					Ester	• -		-
Project: 604013						Extrac	ctable Petroleum	Hydrocarbons by N	IVEPF
Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Date	2 4/6/2016	RunNo: 28874	
Client ID: MBLKS	Batch ID: 13403					Analysis Date	e: 4/19/2016	SeqNo: 542976	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCS-13403	SampType: LCS			Units: mg/Kg		Prep Date	± 4/6/2016	RunNo: 28874	
Client ID: LCSS	Batch ID: 13403					Analysis Date	e: 4/19/2016	SeqNo: 542975	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	143	5.00	50.00	0	285	70	130		S
Aromatic Hydrocarbon (C10-C12)	166	5.00	50.00	0	332	70	130		S
Aromatic Hydrocarbon (C12-C16)	173	5.00	50.00	0	347	70	130		S
Aromatic Hydrocarbon (C16-C21)	62.6	5.00	50.00	0	125	70	130		
Aromatic Hydrocarbon (C21-C34)	48.8	5.00	50.00	0	97.7	70	130		
Surr: o-Terphenyl	19.3		20.00		96.3	60	140		
NOTES:									
S - Outlying spike recovery obse	rved (high bias). Detections	s will be qu	alified with a *						
Sample ID: 1604015-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 4/6/2016	RunNo: 28874	
Client ID: WSW2-11	Batch ID: 13403					Analysis Date	e: 4/20/2016	SeqNo: 543026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	192	5.33	106.5	52.43	131	70	130		S
Aliphatic Hydrocarbon (C10-C12)	378	5.33	106.5	270.9	100	70	130		
Aliphatic Hydrocarbon (C12-C16)	821	5.33	106.5	714.7	99.3	70	130		
Aliphatic Hydrocarbon (C16-C21)	664	5.33	106.5	711.0	-43.9	70	130		SQ
Aliphatic Hydrocarbon (C21-C34)	288	5.33	106.5	176.4	105	70	130		
Surr: 1-Chlorooctadecane	12.9		21.31		60.6	60	140		

NOTES:

S - Outlying spike recoveries were associated with this sample.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Work Order: 1604015

CLIENT: Friedman & Bruya

604013

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 1604015-001AMSD	SampType: MSD			Units: mg/k	g-dry	Prep Da	te: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2-11	Batch ID: 13403					Analysis Da	te: 4/20/20	16	SeqNo: 543	3027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	212	4.74	94.80	52.43	168	70	130	191.5	10.2	30	S
Aliphatic Hydrocarbon (C10-C12)	427	4.74	94.80	270.9	164	70	130	377.7	12.2	30	S
Aliphatic Hydrocarbon (C12-C16)	756	4.74	94.80	714.7	43.6	70	130	820.5	8.18	30	S
Aliphatic Hydrocarbon (C16-C21)	731	4.74	94.80	711.0	21.4	70	130	664.2	9.62	30	SQ
Aliphatic Hydrocarbon (C21-C34)	326	4.74	94.80	176.4	158	70	130	287.9	12.4	30	S
Surr: 1-Chlorooctadecane	13.5		18.96		71.3	60	140		0		

NOTES:

Project:

S - Outlying spike recoveries were associated with this sample.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: 1604015-002ADUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Dat	ie: 4/6/201	6	RunNo: 288	374	
Client ID: B1-18	Batch ID: 13403					Analysis Dat	te: 4/20/20)16	SeqNo: 543	3023	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	404	5.23						196.4	69.2	30	R*
Aliphatic Hydrocarbon (C10-C12)	693	5.23						760.7	9.32	30	*
Aliphatic Hydrocarbon (C12-C16)	1,630	5.23						1,506	7.85	30	E*
Aliphatic Hydrocarbon (C16-C21)	1,500	5.23						1,211	21.1	30	EQ
Aliphatic Hydrocarbon (C21-C34)	334	5.23						338.4	1.31	30	*
Surr: 1-Chlorooctadecane NOTES:	19.3		4.184		460	60	140		0		S

R - High RPD observed.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Sample ID: 1604015-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2-11	Batch ID: 13403					Analysis Da	te: 4/20/20)16	SeqNo: 543	8038	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	188	5.33	106.5	0	177	70	130				S
Aromatic Hydrocarbon (C10-C12)	342	5.33	106.5	0	321	70	130				S
Aromatic Hydrocarbon (C12-C16)	679	5.33	106.5	0	637	70	130				S

Work Order:	1604015									00.5	SUMMA		POR
CLIENT:	Friedman &	Bruya								•			-
Project:	604013							Extra	ctable P	Petroleum H	lydrocarb	ons by N	IWEP
Sample ID: 160401	15-001AMS	SampType	: MS			Units: mg/	/Kg-dry	Prep Date	e: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2	2-11	Batch ID:	13403					Analysis Date	e: 4/20/20	16	SeqNo: 543	8038	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocart	bon (C16-C21)		986	5.33	106.5	0	925	70	130				S
Aromatic Hydrocart	bon (C21-C34)		416	5.33	106.5	0	390	70	130				S
Surr: o-Terpheny	/l		23.6		21.31		111	60	140				
NOTES: S - Outlying spike	e recoveries were	e associated v	with this sam	nle									
Sample ID: 160401		SampType				Units: mg	/Ka-drv	Prep Date	e: 4/6/201	6	RunNo: 288	374	
Client ID: WSW2		Batch ID:	13403			5	5	Analysis Date	e: 4/20/20	16	SeqNo: 543	3034	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocart	bon (C8-C10)		217	4.74	94.80	0	229	70	130	0	200	30	S
Aromatic Hydrocart	bon (C10-C12)		413	4.74	94.80	0	435	70	130	0	200	30	S
Aromatic Hydrocart	bon (C12-C16)		815	4.74	94.80	0	860	70	130	0	200	30	S
Aromatic Hydrocark	bon (C16-C21)		1,420	4.74	94.80	0	1,490	70	130	0	200	30	S
Aromatic Hydrocart			831	4.74	94.80	0	877	70	130	0	200	30	S
Surr: o-Terpheny	/I		26.1		18.96		138	60	140		0		
NOTES:													
S - Outlying spik				ipie.		11-20-2		Dava Dat		•	Durable		
Sample ID: 160401	15-002ADUP	SampType				Units: mg	Kg-dry	•	e: 4/6/201	-	RunNo: 288		
Client ID: B1-18		Batch ID:	13403					Analysis Date	e: 4/20/20	16	SeqNo: 543	8031	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocart	bon (C8-C10)		84.1	5.23						0	200	30	*
Aromatic Hydrocart	bon (C10-C12)		278	5.23						0	200	30	*
Aromatic Hydrocart	bon (C12-C16)		853	5.23						0	200	30	*
Aromatic Hydrocart	, ,		1,730	5.23						0	200	30	Е
Aromatic Hydrocart	bon (C21-C34)		1,120	5.23						0	200	30	Е
Surr: o-Terpheny					20.92								

* - Flagged value is not within established control limits.

NOTES:

Work Order: 1604015

CLIENT: Friedman & Bruya Project:

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Project: 604013						V		Petroleum H	iyurocarb		•• • P
Sample ID: LCS-13409	SampType: LCS			Units: mg/Kg		Prep Dat	e: 4/6/201	6	RunNo: 286	573	
Client ID: LCSS	Batch ID: 13409					Analysis Dat	e: 4/7/201	6	SeqNo: 539	441	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	21.2	2.00	30.00	0	70.7	70	130				
Aliphatic Hydrocarbon (C6-C8)	8.35	2.00	10.00	0	83.5	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.26	2.00	10.00	0	92.6	70	130				
Aliphatic Hydrocarbon (C10-C12)	8.58	2.00	10.00	0	85.8	70	130				
Aromatic Hydrocarbon (C8-C10)	37.2	2.00	40.00	0	93.0	70	130				
Aromatic Hydrocarbon (C10-C12)	9.07	2.00	10.00	0	90.7	70	130				
Aromatic Hydrocarbon (C12-C13)	7.36	2.00	10.00	0	73.6	70	130				
Benzene	8.17	0.500	10.00	0	81.7	70	130				
Toluene	8.13	0.500	10.00	0	81.3	70	130				
Ethylbenzene	8.51	0.500	10.00	0	85.1	70	130				
m,p-Xylene	17.4	0.500	20.00	0	86.8	70	130				
o-Xylene	8.84	0.500	10.00	0	88.4	70	130				
Naphthalene	7.43	0.500	10.00	0	74.3	70	130				
Methyl tert-butyl ether (MTBE)	ND	0.500	10.00	0	0	70	130				SQ
Surr: 1,4-Difluorobenzene	2.57		2.500		103	65	140				
Surr: Bromofluorobenzene	2.57		2.500		103	65	140				

NOTES:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/6/20 1	16	RunNo: 286	573	
Client ID: MBLKS	Batch ID: 13409					Analysis Da	te: 4/7/201	16	SeqNo: 539	319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0						

Work Order:	1604015
CLIENT:	Friedman & Bruya
Project:	604013

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/6/20 2	16	RunNo: 286	573	
Client ID: MBLKS	Batch ID: 13409					Analysis Da	te: 4/7/201	16	SeqNo: 539	9319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.500		0	0						
Toluene	ND	0.500		0	0						
Ethylbenzene	ND	0.500		0	0						
m,p-Xylene	ND	0.500		0	0						
o-Xylene	ND	0.500		0	0						
Naphthalene	ND	0.500		0	0						
Methyl tert-butyl ether (MTBE)	ND	0.500		0	0						*
Surr: 1,4-Difluorobenzene	2.55		2.500		102	65	140				
Surr: Bromofluorobenzene NOTES:	1.91		2.500		76.4	65	140				

* - Flagged value is not within established control limits.

Sample ID: 1604014-001BDUP	SampType	: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 4/6/20 1	16	RunNo: 286	673	
Client ID: BATCH	Batch ID:	13409					Analysis Dat	e: 4/7/20 1	16	SeqNo: 539	9305	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		ND	1.65		0	0			0		25	
Aliphatic Hydrocarbon (C6-C8)		6.01	1.65		0	0			4.209	35.2	25	R
Aliphatic Hydrocarbon (C8-C10)		7.10	1.65		0	0			3.721	62.4	25	R
Aliphatic Hydrocarbon (C10-C12)		20.6	1.65		0	0			19.61	5.04	25	
Aromatic Hydrocarbon (C8-C10)		11.8	1.65		0	0			8.624	30.8	25	R
Aromatic Hydrocarbon (C10-C12)		89.9	1.65		0	0			80.54	11.0	25	Е
Aromatic Hydrocarbon (C12-C13)		64.5	1.65		0	0			62.40	3.25	25	
Benzene		ND	0.413		0	0			0		25	
Toluene		ND	0.413		0	0			0		25	
Ethylbenzene		ND	0.413		0	0			0		25	
m,p-Xylene		ND	0.413		0	0			0		25	
o-Xylene		ND	0.413		0	0			0		25	
Naphthalene		6.81	0.413		0	0			6.449	5.40	25	
Methyl tert-butyl ether (MTBE)		ND	0.413		0	0			0		25	*
Surr: 1,4-Difluorobenzene		2.10		2.064		102	65	140		0		

1604015

Work Order:

CLIENT: Friedman &	Bruva						QC	C SUMMARY REP	ORT
Project: 604013	Didya					Vo	latile Petroleur	n Hydrocarbons by N	WVPH
Sample ID: 1604014-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date:	4/6/2016	RunNo: 28673	
Client ID: BATCH	Batch ID: 13409					Analysis Date:	4/7/2016	SeqNo: 539305	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref V	al %RPD RPDLimit	Qual
Surr: Bromofluorobenzene NOTES:	2.06		2.064		99.7	65	140	0 0	
R - High RPD observed. The met * - Flagged value is not within est		ted by the L	aboratory Con	trol Sample (LCS	5).				
Sample ID: 1604015-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date:	4/6/2016	RunNo: 28673	
Client ID: B1-18	Batch ID: 13409					Analysis Date:	4/7/2016	SeqNo: 539310	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref V	al %RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	22.2	1.86	27.90	1.398	74.7	70	130		
Aliphatic Hydrocarbon (C6-C8)	41.4	1.86	9.299	27.47	149	70	130		S
Aliphatic Hydrocarbon (C8-C10)	81.4	1.86	9.299	66.78	157	70	130		SE
Aliphatic Hydrocarbon (C10-C12)	414	1.86	9.299	329.4	913	70	130		SE
Aromatic Hydrocarbon (C8-C10)	313	1.86	37.20	245.5	180	70	130		SE
Aromatic Hydrocarbon (C10-C12)	613	1.86	9.299	589.6	253	70	130		SQE
Aromatic Hydrocarbon (C12-C13)	554	1.86	9.299	813.4	-2,790	70	130		SQE
Benzene	12.8	0.465	9.299	0.5190	132	70	130		S
Toluene	17.9	0.465	9.299	7.797	108	70	130		
Ethylbenzene	17.9	0.465	9.299	9.588	89.3	70	130		Q
m,p-Xylene	44.2	0.465	18.60	28.70	83.6	70	130		
o-Xylene	22.8	0.465	9.299	14.67	87.5	70	130		
Naphthalene	152	0.465	9.299	100.5	551	70	130		S
Methyl tert-butyl ether (MTBE)	ND	0.465	9.299	0	0	70	130		S*
Surr: 1,4-Difluorobenzene	3.10		2.325		133	65	140		

192

65

140

NOTES:

Surr: Bromofluorobenzene

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

2.325

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

4.47

S

Work Order: 1604015

CLIENT: Friedman & Bruya

Project: 604013

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1604015-002BMSD	SampType:	MSD			Units: mg	/Kg-dry	Prep Da	te: 4/6/201	6	RunNo: 286	673	
Client ID: B1-18	Batch ID:	13409					Analysis Da	te: 4/7/201	6	SeqNo: 539	9311	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		23.5	1.86	27.90	1.398	79.4	70	130	22.24	5.70	30	
Aliphatic Hydrocarbon (C6-C8)		41.6	1.86	9.299	27.47	152	70	130	41.37	0.498	30	S
Aliphatic Hydrocarbon (C8-C10)		79.6	1.86	9.299	66.78	138	70	130	81.39	2.27	30	SE
Aliphatic Hydrocarbon (C10-C12)		458	1.86	9.299	329.4	1,390	70	130	414.3	10.1	30	SE
Aromatic Hydrocarbon (C8-C10)		330	1.86	37.20	245.5	227	70	130	312.6	5.44	30	SE
Aromatic Hydrocarbon (C10-C12)		593	1.86	9.299	589.6	40.2	70	130	613.1	3.29	30	SQE
Aromatic Hydrocarbon (C12-C13)		688	1.86	9.299	813.4	-1,350	70	130	554.2	21.5	30	SQE
Benzene		13.1	0.465	9.299	0.5190	135	70	130	12.80	2.14	30	S
Toluene		19.1	0.465	9.299	7.797	122	70	130	17.85	6.73	30	
Ethylbenzene		20.2	0.465	9.299	9.588	114	70	130	17.89	12.1	30	Q
m,p-Xylene		49.2	0.465	18.60	28.70	110	70	130	44.24	10.7	30	
o-Xylene		25.2	0.465	9.299	14.67	113	70	130	22.80	9.90	30	
Naphthalene		167	0.465	9.299	100.5	720	70	130	151.7	9.85	30	SE
Methyl tert-butyl ether (MTBE)		ND	0.465	9.299	0	0	70	130	0		30	S*
Surr: 1,4-Difluorobenzene		3.52		2.325		151	65	140		0		S
Surr: Bromofluorobenzene		4.89		2.325		210	65	140		0	0	S

NOTES:

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Work Order:	1604015									00.5	SUMMA		ORT
CLIENT:	Friedman &	Bruya											
Project:	604013									Sample Mo	isture (Pe	rcent Mo	isture)
Sample ID: 16040	02-001ADUP	SampTyp	e: DUP			Units: wt%		Prep Da	nte: 4/6/201	16	RunNo: 286	528	
Client ID: BATC	н	Batch ID:	R28628					Analysis Da	ate: 4/6/201	16	SeqNo: 538	3346	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture			19.5	0.500						16.74	15.4	20	

Sample Log-In Check List

Work Order Numb	er: 1604015		
Date Received:	4/1/2016	3:54:00 PM	
Yes 🔽	No 🗌	Not Present	
<u>FedEx</u>			
Yes	No 🗸		
Yes 🗹	No 🗌		
Yes	No 🗹	Not Required	
Yes 🗹	No 🗌	NA 🗌	
Yes	No 🗹		
_	No 🗌		
	No 🗌		
Yes 🗹	No 🗌	_	
Yes	No 🗹	NA	
Yes	No 🗌	NA 🔽	
Yes 🗹	No 🗌		
Yes 🗹	No 🗌		
Yes 🗸	No 🗌		
Yes 🗹	No 🗌		
Yes 🗹	No		
Yes	No 🗌	NA 🗹	
eMail Pho	one 🗌 Fax	In Person	
	Date Received: Yes FedEx Yes Yes <t< td=""><td>Yes No FedEx No Yes No </td><td>Date Received: 4/1/2016 3:54:00 PM Yes No Not Present FedEx No NA Yes No Yes Yes No Yes Yes No NA Yes No NA</td></t<>	Yes No FedEx No Yes No	Date Received: 4/1/2016 3:54:00 PM Yes No Not Present FedEx No NA Yes No Yes Yes No Yes Yes No NA Yes No NA

Item Information

Item #	Temp ⁰C
Cooler	10.1
Sample	10.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fax (206) 283-5044 Received by:		South WA 02110 9090 Received her	,. T						-			B 1-18	WSW2-11	Sample ID Lab ID		Phone #(206) 285-8282 Fax #(City, State, ZIP Seattle, WA 98119	Address 3012 16th Ave W	Company Friedman and Bruya, Inc.	Send Report To Michael Erdahl	
	lby:	1 Ser	SIGNATURE									4	3/20/16	Date Sampled		(206) 283-5044			ya, Inc.		
	a for a	2 L	TURE											Time Sampled		5044					For way, of the second to a second to a
_	ç	M										4	56:1	Matrix	1		REMARKS	• (PROJECT NAME/NO.	SUBCONTRACTER	
	Enia Silva	Michael Erdahl										*	2	# of jars		Please Email Results	KS	810409	CT NAN	NTRAC	
	Sil	rdahl	PRIN											Dioxins/Furans		Email		3	IE/NO	TER	
	Va		PRINT NAME									¥	×	EPH		Resul				T	
			ME						_			۲	×	VPH		58				anon.	
					_									Nitrate	ANALYSES			J		+	
-		H	\square						_					Sulfate	YSES			0-906	PO#		
		riedn												Alkalinity	REQ	1		0	#		,
	王	ian ai	COMPANY											TOC-9060M	REQUESTED	L		_			
		Friedman and Bruya	ANY	_											TED		D	Rus	AS		
		ıya			_			4		_	_					eturn s ill call	SAI	h char	Standard RUSH	Page #	
	21/1/10	4/11/4	DATE	-	+	+	-	+		-	-	_	_	it.		 Return samples Will call with instructions 	SAMPLE DISPOSAL	Rush charges authorized by:	⊄Standard (2 Weeks) □ RUSH	Page # 1 of 1 TURNAROUND TIME	_
	15.54	14:05.	TIME											Notes		ictions	POSAL	zed by:		D TIME	-

Fax (206) 283-5044 FORMS\COC\COC.DOC	· · · · · · · · · · · · · · · · · · ·		3012 16th America Wart					Trip Blank	152 - 18	WSW 2 11	LI-TMSS	ESW1-17	NSW2 - 17	Sample ID		con nogene entres to com	Email Address V.A.	Phone # 509.573.8163 Fax #	City, State, ZIP	7156	Company PBS E	Send Report To Ken	604013
Received by:	Relinquished by:	Received hy:	Relimmeter bur					96	05 K	oq	03	2	0/ A->	Lab ID		Jeric Certros	いうとう	3 Fax #	Santhe, MA	Enst	LUDONIA.	Ken Noneire	
	d hol 10	13							F			-	3.30.16	Date		env.com							
	and	i bettel	H											Time		、 、		 					SAN
			 						4				50:1	Sample Type			ELECTRONIC DATA REQUESTED		PROJECT ADDRESS	41392	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	hm	m B.EIKI	PRINT NAME					/		"	H	"	4	# of containers			IC DATA RE		DDRESS	لو	AME/NO.	(signature)	IN OF C
		17	AM				_		X	Ķ	X	X	X	TPH-Diesel	Π		Q U				k		US
	2		E		-+				ト	7	Ŕ	X	X	TPH-Gasoline			SIE				l l		0
	n n				-+	\dashv		X	×	\sim	×		\mathbf{x}	BTEX by 8021B			9					2	YC
	3			┝╌┥		\rightarrow	•							VOCs by 8260								\sim	
					-+	-+								SVOCs by 8270	X					ء	ľ	F,	3
	Н			┝─┨	-+	-+			X	X				HFS	YSE					41392	P0 #		(')
	FEA	3	COMPANY		+	÷	·		\sim	<u> </u>				VPH / EPH	NALYSES REQUESTED					تو	*		WE 04-01-16
	¹ 7	- 1	AN		-+	-			$\frac{2}{\times}$					lend		L							01
	1		ĸ						\sim					PAHS	STR	Γ	٤	•••	5	Ru	<u></u>	٦.	3
				-+		-+	-+										hple		i S	ush cha			
	4/1	3/14	D			_						_					Re		<u>A</u>	a g			
,	16	12016	DATE											z			Samples Received at	Will call with instri	SAMPLE DISPOSAL	Rush charges authorized by:	Standard Turneround	Page 4 of	lin
	10:00		TIME											Notes			0		OSAL.	zed by:	Ind		iet:
		4					R-			. 1	1	1			∟┛	L			!	•		ך ור הי	2 / 2 ,

Samples received at ____°C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on May 11, 2016 from the 41392, F&BI 605193 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Megan Nogeire PBS0519R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 11, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 605193 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
605193 -01	MW1
605193 -02	MW2
605193 -03	Trip blank

The 8270D laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16 and 05/13/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW1 605193-01	49	78	89	440	4,300	118
MW2 605193-02	<1	<1	1.1	<3	420	101
Method Blank 06-943 MB	<1	<1	<1	<3	<100	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip blank 605193-03	<1	<1	<1	<3	98
Method Blank ^{06-943 MB}	<1	<1	<1	<3	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW1 605193-01	12,000	1,100 x	72
MW2 605193-02	1,300	250 x	112
Method Blank ^{06-959 MB}	<50	<250	97

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW1 05/11/16 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/2 051222.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 87 67	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		38 ve		
Acenaphthylene		< 0.06		
Acenaphthene		0.16		
Fluorene		0.19		
Phenanthrene		0.18		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe		< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen		< 0.06		
•				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW1 05/11/16 05/12/16 05/13/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/40 051304.D GCMS6 VM
Surrogates: Anthracene d10 Benzo(a)anthracen	e-d12	% Recovery: 111 d 76 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		56		
Acenaphthylene		<1.2		
Acenaphthene		<1.2		
Fluorene		<1.2		
Phenanthrene		<1.2		
Anthracene		<1.2		
Fluoranthene		<1.2		
Pyrene		<1.2		
Benz(a)anthracene	;	<1.2		
Chrysene		<1.2		
Benzo(a)pyrene		<1.2		
Benzo(b)fluoranthe	ene	<1.2		
Benzo(k)fluoranthe		<1.2		
Indeno(1,2,3-cd)py		<1.2		
Dibenz(a,h)anthra		<1.2		
Benzo(g,h,i)peryler	ne	<1.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW2 05/11/16 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-02 1/2 051223.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 105 94	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		3.9		
Acenaphthylene		< 0.06		
Acenaphthene		0.23		
Fluorene		0.25		
Phenanthrene		0.42		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		0.11		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac	cene	< 0.06		
Benzo(g,h,i)perylen	e	< 0.06		

ENVIRONMENTAL CHEMISTS

·		- •		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 05/12/16 05/12/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 06-934 mb 051217.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 90 92	Lower Limit: 31 25	Upper Limit: 160 165
Compounder		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr		< 0.03		
Dibenz(a,h)anthrac	cene	< 0.03		
Benzo(g,h,i)perylen	ie	< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 605188-05 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline <100 ug/L (ppb) <100 nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	95	65-118		
Toluene	ug/L (ppb)	50	97	72-122		
Ethylbenzene	ug/L (ppb)	50	97	73-126		
Xylenes	ug/L (ppb)	150	96	74-118		
Gasoline	ug/L (ppb)	1,000	93	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	97	96	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

	5	Γ	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	98	89	67-116	10
Acenaphthylene	ug/L (ppb)	1	98	89	65-119	10
Acenaphthene	ug/L (ppb)	1	100	91	66-118	9
Fluorene	ug/L (ppb)	1	96	88	64-125	9
Phenanthrene	ug/L (ppb)	1	101	93	67-120	8
Anthracene	ug/L (ppb)	1	98	90	65-122	9
Fluoranthene	ug/L (ppb)	1	89	83	65-127	7
Pyrene	ug/L (ppb)	1	109	95	62-130	14
Benz(a)anthracene	ug/L (ppb)	1	112	98	60-118	13
Chrysene	ug/L (ppb)	1	109	96	66-125	13
Benzo(b)fluoranthene	ug/L (ppb)	1	107	91	55-135	16
Benzo(k)fluoranthene	ug/L (ppb)	1	100	93	62-125	7
Benzo(a)pyrene	ug/L (ppb)	1	102	89	58-127	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	102	77	36-142	28 vo
Dibenz(a,h)anthracene	ug/L (ppb)	1	94	69	37-133	31 vo
Benzo(g,h,i)perylene	ug/L (ppb)	1	96	74	34-135	26 vo

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLERS (simulare) PROJECT NAME/NO. PROJECT N	Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinquished by: Kan Neger Seattle, WA 98119- Received by: Can Neger Ph. (206) 285-8282 Relinquished by: Can Neger Fax (206) 283-5044 Received by: Can Neger FORMS\COC\SESGEMSR1.DoC (Revision 1) Mugt Can	Sample ID Sample Sample Lab Date Location Depth ID Sampled MWA 014-F 1044 MWA 02 - 1138 MWA 034-R	605193 Send Report To K-NUgerice Company PBS Address 2817 Easthake Are E City, State, ZIP Senther WA Phone # 509. §72. 816 Fax #
IN <		Watch Matrix Matrix Matrix	AIN OF CUSTODY S (signature) Megan NAME/NO 41393
Pre- ROUND FIME (2 Weeks) s authorized by s authorized by the Disposal ter 30 days mples th instructions Notes Notes Notes (2 Notes (2 Notes) (2 Notes)	$\frac{1}{2} \frac{1}{2} \frac{1}$	VOC's by 8260 SVOC's by 8270 RCRA-8 Metals	Page - Page - Page - TURNAROUND TURNAR

Samples received at 5 °C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 21, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on November 9, 2016 from the Coleman Oil PO 41392.000, F&BI 611160 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Mike Bagley PBS1121R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 9, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 611160 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
611160 -01	MW-5
611160 -02	MW-5a
611160 -03	MW-4
611160 -04	MW-6

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160 Date Extracted: 11/15/16 Date Analyzed: 11/15/16 and 11/16/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-5a 611160-02	< 0.02	< 0.02	0.27	1.1	140	92
MW-4 611160-03	< 0.02	< 0.02	< 0.02	< 0.06	<2	80
MW-6 611160-04	<0.02	<0.02	<0.02	<0.06	<2	79
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	82

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160 Date Extracted: 11/09/16 Date Analyzed: 11/10/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW-5 611160-01	<50	<250	115
MW-5a 611160-02	1,100	<250	103
MW-4 611160-03	<50	<250	99
MW-6 611160-04	<50	<250	100
Method Blank 06-2339 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 611184-06 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	91	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	89	65-123
Xylenes	mg/kg (ppm)	1.5	88	66-120
Gasoline	mg/kg (ppm)	20	80	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/21/16 Date Received: 11/09/16 Project: Coleman Oil PO 41392.000, F&BI 611160

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	611159-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	92	94	64-133	2
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	92	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029 Re	<u></u>	 1					MW-6	Mw-4	MW-Sa	Mw-5	Sample ID		Phone 360 830 8359 Email	City, State, ZIP Serttle, WA 48102	Address 2517 Easthave	company PBS	Report To K. Noge. R	611160
Received by:	Relinquished by:	Relinquishedby	ts ·	-				04 1	03	02 A- C	01	Lab ID			WA 9			M, Bagten	
	flow	$\left \right\rangle$	SIGNATURE					11/9	11/18	11/4	11/1	Date Sampled			8102	AVE. E. Suitelos	د د	arch	
								9:30	2;00	12:00	Sh (JI	Time Sampled			REMARKS		PROJEC	SAMPLI	SAMPLE CHAIN OF CUST
	Nhan	Mike 1						\sim	5	5	6	Sample Type			KS	Lo) eman Di	PROJECT NAME	SAMPLERS (signature)	CHAIN
		Bayley	PRINT NAME					5	3	2		# of Jars					•	ure)	OF
	Phan	12	TZ			 						TPH-HCID						2	-S
	2		AME	 		 		X X	×	×	\times	TPH-Diesel						\int	TO
						 		X	××	X		TPH-Gasoline						1	ODY
				 		 						BTEX by 8021B	A			Ч			
				 								VOCs by 8260C	JAL Y		INV	41392.000			3
				 		 						SVOCs by 8270D	SES		OIC	12.0	PO #		ME
	k	ß	8	 (0)		 				\vdash		PAHs 8270D SIM	REQ		INVOICE TO	00			2
			OMPANY	 Samples receive		 		<u> </u>		<u> </u>		· · · · · · · · · · · · · · · · · · ·	ANALYSES REQUESTED				<u>.</u>		
			YNY	 vles i				<u> </u>	<u> </u>				TED			Rus			99
				 ecei		 						· · · _ · · · · · · · · · · · · · · · ·		D Other	,S Sodsi	h cha	:ande USH	Page #	
	-+			 				<u> </u>		 				Other	SAMPLE DISPO	urges	Standard Turnaround RUSH	RNA	
	19	1/2	DATE	at	ł									sərdu	r 30 o	autho	ırnar	ROUI	
	16		Ē									Notes			SAMPLE DISPOSAL	Rush charges authorized by	ound	TURNAROUND TIME	
		1.5	II	်ငိ			ļ					ŝ			;AL	լ իչ։		ME	$-\beta$
	5	1.201M	TIME																S

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 22, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 14, 2016 from the Coleman Oil PO 41392, F&BI 612214 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS1222R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
612214 -01	MW3
612214 -02	MW2
612214 -03	MW5
612214 -04	MW4
612214 -05	MW6
612214 -06	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 56-165)
MW3 612214-01 1/1000	D	D	ND	156
MW2 612214-02 1/1000	D	D	ND	116
MW5 612214-03 1/1000	ND	D	ND	ip
Method Blank 06-2575 MB2	ND	ND	ND	103

 $\rm ND$ - Material not detected at or above 20,000 mg/kg gas, 50,000 mg/kg diesel and 250,000 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW4 612214-04 1/100	500	<100	130	<300	12,000	87
MW6 612214-05 1/100	110	<100	130	<300	13,000	88
Method Blank 06-2560 MB	<1	<1	<1	<3	<100	90

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214 Date Extracted: 12/15/16 Date Analyzed: 12/15/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW4 612214-04	3,200 x	460 x	108
MW6 612214-05	3,100 x	<250	99
Method Blank 06-2576 MB2	<50	<250	96

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-04 1/2 121911.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 91	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		150 ve		
Acenaphthylene		< 0.06		
Acenaphthene		1.1		
Fluorene		3.4		
Phenanthrene		2.2		
Anthracene		0.086		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr	rene	< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen	e	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-04 1/200 121925.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 268 d 125 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		160		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	e	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-05 1/2 121912.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 95 90	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		310 ve		
Acenaphthylene		< 0.06		
Acenaphthene		0.24		
Fluorene		0.25		
Phenanthrene		< 0.06		
Anthracene		< 0.06		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe	ene	< 0.06		
Benzo(k)fluoranthe	ene	< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen	ie	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 12/14/16 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 612214-05 1/200 121926.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 295 d 124 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		310		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe	ene	<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	e	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 12/19/16 12/19/16 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Oil PO 41392, F&BI 612214 06-2598 mb 121905.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 95 97	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr		< 0.03		
Dibenz(a,h)anthrac		< 0.03		
Benzo(g,h,i)perylen	e	< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 612173-03 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	104	65-118
Toluene	ug/L (ppb)	50	105	72-122
Ethylbenzene	ug/L (ppb)	50	108	73-126
Xylenes	ug/L (ppb)	150	104	74-118
Gasoline	ug/L (ppb)	1,000	108	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	93	103	63-142	10

ENVIRONMENTAL CHEMISTS

Date of Report: 12/22/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392, F&BI 612214

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

	J	Γ	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	91	85	67-116	7
Acenaphthylene	ug/L (ppb)	1	91	86	65-119	6
Acenaphthene	ug/L (ppb)	1	89	85	66-118	5
Fluorene	ug/L (ppb)	1	92	88	64-125	4
Phenanthrene	ug/L (ppb)	1	90	88	67-120	2
Anthracene	ug/L (ppb)	1	93	89	65-122	4
Fluoranthene	ug/L (ppb)	1	92	88	65-127	4
Pyrene	ug/L (ppb)	1	84	83	62-130	1
Benz(a)anthracene	ug/L (ppb)	1	95	91	60-118	4
Chrysene	ug/L (ppb)	1	94	89	66-125	5
Benzo(b)fluoranthene	ug/L (ppb)	1	84	81	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	90	88	62-125	2
Benzo(a)pyren e	ug/L (ppb)	1	86	82	58-127	5
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	89	83	36-142	7
Dibenz(a,h)anthracene	ug/L (ppb)	1	81	78	37-133	4
Benzo(g,h,i)perylene	ug/L (ppb)	1	87	78	34-135	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

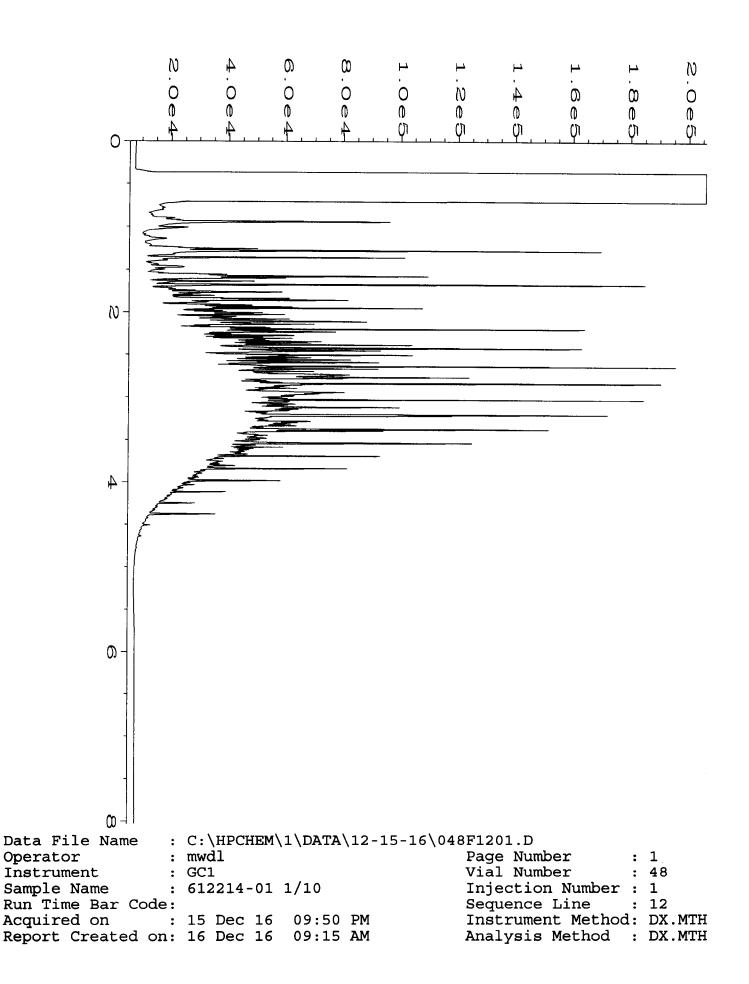
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

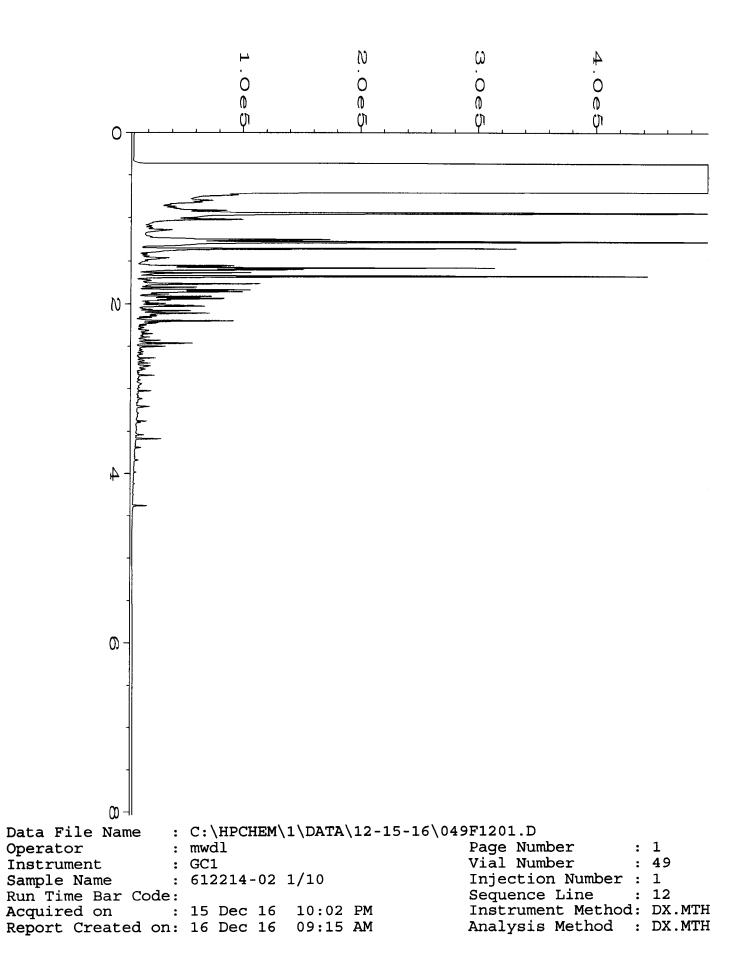
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

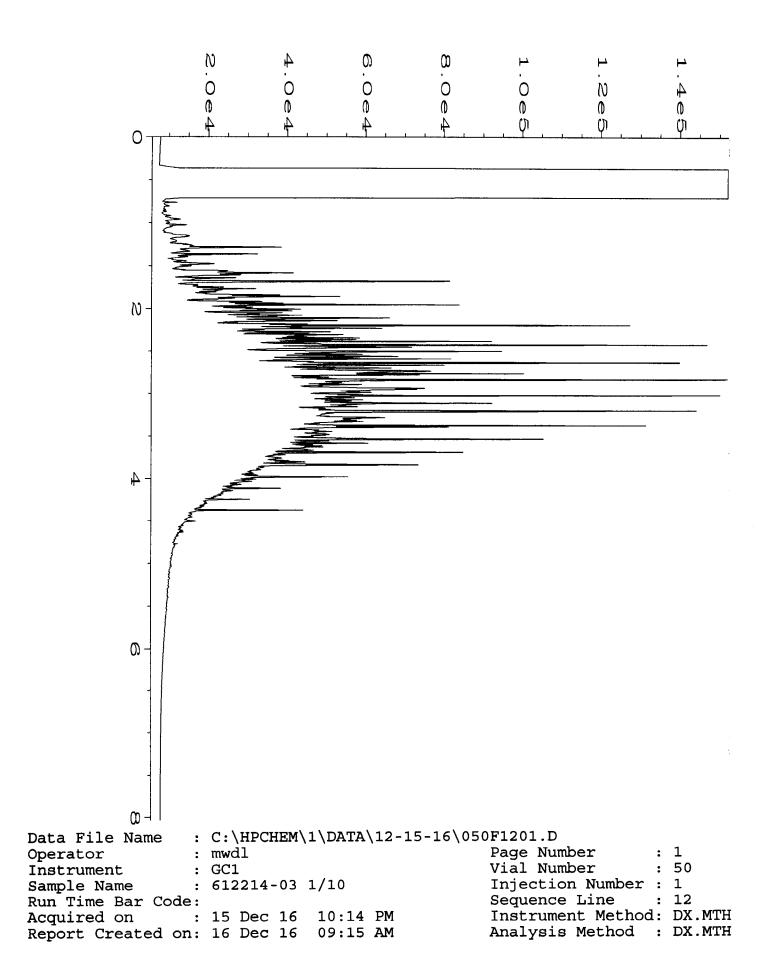
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

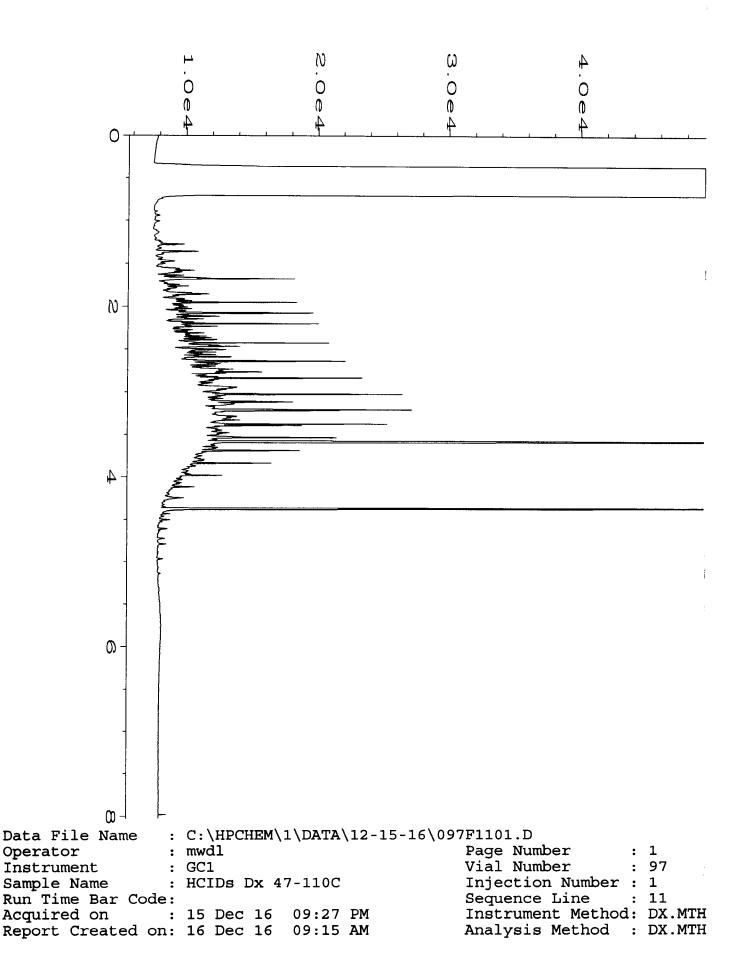
lc - The presence of the analyte is likely due to laboratory contamination.

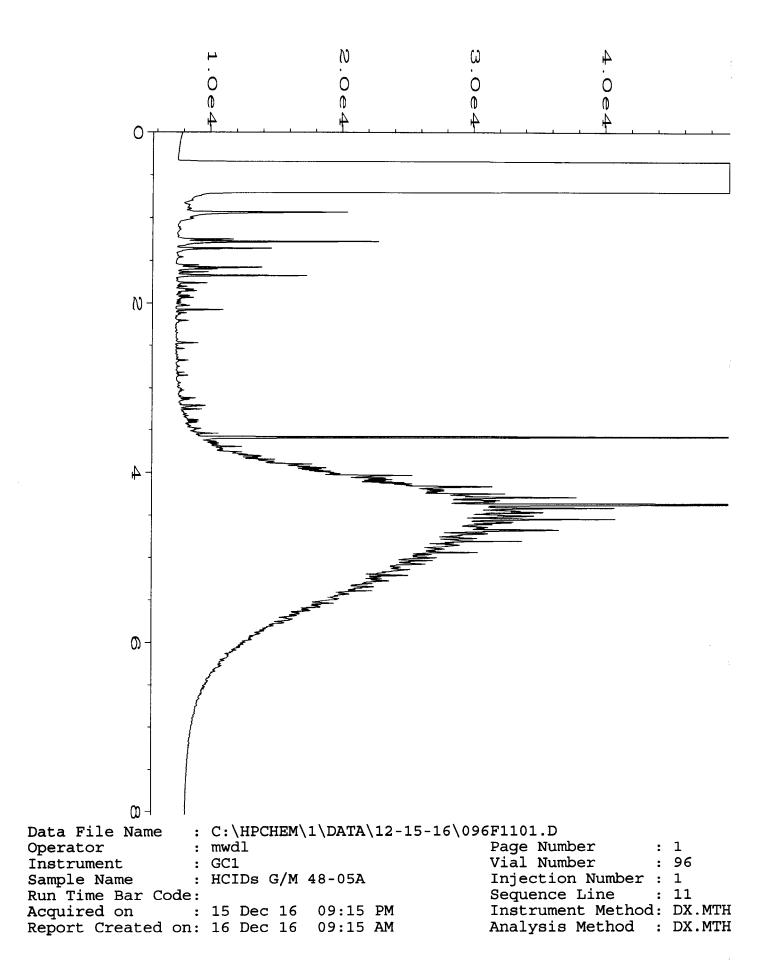
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

12/14/16												Received by:	Ph. (206) 285-8282
12/14/16		ŀ			-					•		Relinquished by:	Seattle, WA 98119-2029
12/14/16	CB T	T			3	v gur	P	3	Nhan	ł	AN	Received by Alt	3012 16 th Avenue West
	83	96	ξh	A	DOGA	Z	2	GA	MEGANN		leiro	Relinquished by:	Friedman & Bruya, Inc.
	COMPANY				स	PRINT NAME	TN	PRI			SIGNATURE	SIC	
mples received at 2	Se												
(NP) 12/14/6						1							
* Added a	Y M	¥K		X	×	245	ļ	مح	wata	1	1	06 A B	lips Blank
		×		\times	×	X	<u> </u> `	2	6W	1103	*	05 1	mwb
		X		\times	×	×		5	GW	1240		oy A-E	mw4
	×							-	Raduct	1315		· 03	MWS
	×		 				<u> </u>	_	Raduct	1212		ØZ	mwa
	×			[. .		-	Product	940	12/13/16	0	MW3
Notes	VOCs by 8260C SVOCs by 8260C PAHs 8270D SIM	SVOCs by 8270D	VOCs by 8260C	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	TPH-HCID	'' # of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID.€	Sample ID
	REQUESTE	YSES	NAL]	1	+ - 1						
Archive Samples Other												lail	Phone 206-233.963 Email
SAMPLE DISPOSAL Dispose after 30 days		INVOICE TO	IN						KS	REMARKS		, WA 9810,	
LI KUSH Rush charges authorized by:		41392	113)بل	$h\mathcal{Q}$	Coleman		Ve Etto) Eastiake Ave Etilos	Address 2577 Eas
Astandard Turnaround		PO#					-		PROJECT NAME	PROJE			
Page #				7				(the	SAMPLERS (strature)	SAMPL		Rill	Report To K. Nogcile
NWN	141141	ME	M	4	TODY		L C C	Ē	CHAIN	SAMPLE CHAIN OF CUS			412219

. /-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 20, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on December 14, 2016 from the Coleman Oil PO 41392.000, F&BI 612215 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS1220R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
612215 -01	VS-1
612215 -02	VS-2
612215 -03	VS-3

The MA-APH concentration in sample VS-2 exceeded the calibration range of the instrument. The data were flagged accordingly.

Naphthalene was reported below the standard reporting limit. The data were flagged accordingly.

Naphthalene was detected in the TO-15 method blank. Samples with naphthalene below ten times that of the method blank were flagged.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-1 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-01 1/1.5 121522.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	zene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	n		
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	170 160 <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-2 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-02 1/1.5 121523.D GCMS7 MP
Surrogates: 4-Bromofluor obenzene		% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	on		
APH EC5-8 aliphatics APH EC9-12 aliphatics APH EC9-10 aromatics		340 7,700 ve <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-3 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-03 1/1.5 121524.D GCMS7 MP
Surrogates: 4-Bromofluorobenzene		% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	n		
APH EC5-8 aliphatics APH EC9-12 aliphatics APH EC9-10 aromatics		130 <110 <75			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 12/15/16 12/15/16 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 06-2582 mb/20550 121509.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	zene	% Recovery: 99	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concentratio ug/m3	n		
APH EC9-12 aliphatics <		<46 <70 <50			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-1 12/14/16 12/13/16 12/16/16 Air ug/m3	2/14/16 2/13/16 2/16/16 .ir		le: nent: pr:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-01 1/1.5 121522.D GCMS7 MP
Surrogates: 4-Bromofluorobenzene		% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
		Concentration			
Compounds:		ug/m3	ppbv		
Benzene		1.7	0.52		
Toluene		7.7	2.1		
Ethylbenzene		2.1	0.49		
m,p-Xylene		8.6	2.0		
o-Xylene		3.4	0.79		
1,2,4-Trimethylbenzene		6.9	1.4		
Naphthalene		0.91	0.17		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-2 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-02 1/1.5 121523.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concen ug/m3	itration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene 1,2,4-Trimethylber Naphthalene	nzene	2.2 19 11 38 11 <3.7 0.28 j fb (0.70 5.0 2.4 8.7 2.5 <0.75 0.054 j fb		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VS-3 12/14/16 12/13/16 12/16/16 Air ug/m3		Client: Project: Lab ID: Data Fil Instrum Operato	ent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 612215-03 1/1.5 121524.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
- ·		Concen			
Compounds:		ug/m3	ppbv		
Benzene		1.6	0.49		
Toluene		9.1	2.4		
Ethylbenzene		2.6	0.60		
m,p-Xylene		11	2.6		
o-Xylene		4.1	0.95		
1,2,4-Trimethylber	izene	4.0	0.82		
Naphthalene		0.31 j fb ().060 j fb		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Bla Not Applica 12/15/16 12/15/16 Air ug/m3		Client: Project: Lab ID: Data Fi Instrun Operato	le: nent:	PBS Engineering and Environmental Coleman Oil PO 41392.000, F&BI 612215 06-2582 mb/20550 121509.D GCMS7 MP
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 99	Lower Limit: 70	Upper Limit: 130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Benzene		<0.29	< 0.1		
Toluene		<2.9	<1		
Ethylbenzene		< 0.77	< 0.1		
m,p-Xylene		< 0.36	< 0.1		
o-Xylene		<7	<2		
1,2,4-Trimethylber	nzene	< 0.49	<0.1		
Naphthalene		0.089 j	0.017 j		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392.000, F&BI 612215

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD APH

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	F		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	230	105	70-130
APH EC9-12 aliphatics	ug/m3	350	109	70-130
APH EC9-10 aromatics	ug/m3	251	118	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/16 Date Received: 12/14/16 Project: Coleman Oil PO 41392.000, F&BI 612215

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	ler or Bampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ppbv	10	111	70-130
Toluene	ppbv	10	108	70-130
Ethylbenzene	ppbv	10	108	70-130
m,p-Xylene	ppbv	20	105	70-130
o-Xylene	ppbv	10	104	70-130
1,2,4-Trimethylbenzene	ppbv	10	100	70-130
Naphthalene	ppbv	10	80	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS/COC/COCTO-15.DOC	Far (206) 283.5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.						VS-3	NS-2	VS-1	Sample Name		City, State, ZIP Southe Phone Ob. 233, 163 femail	7577	Company PBS	Z	516619
	Received hv	- N N	Received by:/ (a/ A A	Kelinquisted	T		•				Shello Sherrys En	02 SN-19580 07851	01 501201200000	Lab Canister Contr. ID ID ID		City, State, ZIP Southe, WA Sto 3 Phone Ob. 232, 163 femail	Easthake RueEttio		Bailcon	
			- Allacin Dacio	M. NODERAE	PRINT NAME	-			κ.		1413116-29 925 -14	12111 C-29 928 -13 1422	1413/10 -30 919 -14 1419	FieldFieldFieldFieldInitialFieldPress.InitialSampled(Hg)Time(Hg)		REMARKS	Coleman Oil	5	SAMPLERS (Spr)athra	SAMPLE CHAIN OF CUSTODY
		132	Her	PBS	COMPANY			Sampl ös racelvad at			X	Х	×	TO-15 Full Scan TO-15 BTEXN TO-15 cVOCs APHs and select VOCs per 12.8.16 emal BTEX 21.4	ANALYSIS REQUESTED	INVOICE TO	413A2.000 Rush char	PO # Standard		ME 12/14,
		c the added the	- 1	LV 8/ 19/12/	DATE TIME		•	stat 18 °C						BTEXN - Not 1,2,4 TMB		SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	L RUSH Rush charges authorized by:	TURNAROUND TIME ndard Su	* of	16

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2017

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr Nogeire:

Included are the results from the testing of material submitted on June 13, 2017 from the Coleman Yakima PO 41392, F&BI 706207 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0621R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 13, 2017 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima PO 41392, F&BI 706207 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
706207 -01	MW2
706207 -02	MW4
706207 -03	MW6
706207 -04	DUP_6.9.17

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/16/17 Date Analyzed: 06/16/17 and 06/19/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW2 706207-01 1/100	2,900	9,900	1,000	5,900	83,000	84
MW4 706207-02 1/10	240	12	120	<30	3,300	87
MW6 706207-03 1/10	140	100	110	69	7,600	92
Method Blank 07-1259 MB	<1	<1	<1	<3	<100	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/16/17 Date Analyzed: 06/19/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
DUP_6.9.17 706207-04 1/10	240	12	120	<30	86
Method Blank 07-1259 MB	<1	<1	<1	<3	83

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207 Date Extracted: 06/13/17 Date Analyzed: 06/13/17

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW4 706207-02	4,300 x	870 x	97
MW6 706207-03 1/1.6	3,700 x	<400	97
Method Blank 07-1250 MB	<50	<250	88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW4 06/13/17 06/14/17 06/14/17 Water	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 706207-02.030 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW6 06/13/17 06/14/17 06/14/17 Water	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 706207-03.031 ICPMS2
Units: Analyte:	ug/L (ppb) Concentration ug/L (ppb)	Operator:	SP
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 06/14/17 06/14/17 Water	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental Coleman Yakima PO 41392 I7-324 mb2 I7-324 mb2.029 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

7

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 1/2 061412.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 83 86	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		160 ve		
Acenaphthylene		< 0.06		
Acenaphthene		1.5		
Fluorene		4.3		
Phenanthrene		2.2		
Anthracene		0.095		
Fluoranthene		< 0.06		
Pyrene		< 0.06		
Benz(a)anthracene		< 0.06		
Chrysene		< 0.06		
Benzo(a)pyrene		< 0.06		
Benzo(b)fluoranthe		< 0.06		
Benzo(k)fluoranthe		< 0.06		
Indeno(1,2,3-cd)pyr		< 0.06		
Dibenz(a,h)anthrac		< 0.06		
Benzo(g,h,i)perylen	e	< 0.06		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/15/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 1/200 061521.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 146 d 94 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		150		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	ie	<6		

ENVIRONMENTAL CHEMISTS

0		1 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 1/2 061413.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 91 98	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		250 ve		
Acenaphthylene		<0.06		
Acenaphthene		0.30		
Fluorene		0.29		
Phenanthrene		< 0.06		
Anthracene		<0.06		
Fluoranthene		<0.06		
Pyrene		<0.06		
Benz(a)anthracene		<0.06		
Chrysene		<0.06		
Benzo(a)pyrene		<0.06		
Benzo(b)fluoranthe	ne	<0.06		
Benzo(k)fluoranthe		<0.06		
Indeno(1,2,3-cd)pyr		<0.06		
Dibenz(a,h)anthrac		<0.06		
Benzo(g,h,i)perylen		<0.06		
201120(G,11,1)peryren		~0.00		

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/15/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 1/200 061522.D GCMS6 ya
Surrogates: Anthracene d10 Benzo(a)anthracene	e-d12	% Recovery: 157 d 83 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		340		
Acenaphthylene		<6		
Acenaphthene		<6		
Fluorene		<6		
Phenanthrene		<6		
Anthracene		<6		
Fluoranthene		<6		
Pyrene		<6		
Benz(a)anthracene		<6		
Chrysene		<6		
Benzo(a)pyrene		<6		
Benzo(b)fluoranthe		<6		
Benzo(k)fluoranthe		<6		
Indeno(1,2,3-cd)pyr		<6		
Dibenz(a,h)anthrac		<6		
Benzo(g,h,i)perylen	ie	<6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 06/13/17 06/14/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 07-1249 mb2 061406.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 93 99	Lower Limit: 31 25	Upper Limit: 160 165
		Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.03		
Acenaphthylene		< 0.03		
Acenaphthene		< 0.03		
Fluorene		< 0.03		
Phenanthrene		< 0.03		
Anthracene		< 0.03		
Fluoranthene		< 0.03		
Pyrene		< 0.03		
Benz(a)anthracene		< 0.03		
Chrysene		< 0.03		
Benzo(a)pyrene		< 0.03		
Benzo(b)fluoranthe	ene	< 0.03		
Benzo(k)fluoranthe	ene	< 0.03		
Indeno(1,2,3-cd)pyr	rene	< 0.03		
Dibenz(a,h)anthrac		< 0.03		
Benzo(g,h,i)perylen	ie	< 0.03		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW2 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-01 061309.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105	57	121
Toluene-d8		106	63	127
4-Bromofluorobenz	ene	94	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		140		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-02 061314A.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57 121	
Toluene-d8		103	63	127
4-Bromofluorobenz	zene	99	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		12		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6 06/13/17 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 706207-03 061312.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57 121	
Toluene-d8		104	63	127
4-Bromofluorobenz	zene	94	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		49		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/13/17 06/13/17 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental Coleman Yakima PO 41392 07-1227 mb 061307.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		106	63	127
4-Bromofluorobenz	ene	98	60	133
Compounds:		Concentration ug/L (ppb)		
Hexane		<1		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 706226-01 (Duplicate)						
	Reporting	Sample	Duplicate	RPD		
Analyte	Units	Result	Result	(Limit 20)		
Benzene	ug/L (ppb)	<1	<1	nm		
Toluene	ug/L (ppb)	<1	<1	nm		
Ethylbenzene	ug/L (ppb)	<1	<1	nm		
Xylenes	ug/L (ppb)	<3	<3	nm		
Gasoline	ug/L (ppb)	<100	<100	nm		

Laboratory Code: Laboratory Control Sample

	Percent			
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	105	65-118
Toluene	ug/L (ppb)	50	103	72-122
Ethylbenzene	ug/L (ppb)	50	106	73-126
Xylenes	ug/L (ppb)	150	103	74-118
Gasoline	ug/L (ppb)	1,000	96	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	111	103	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Co	de: 706161-01 x	5 (Matrix	Spike)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<5	98	96	75-125	2
Laboratory Code: Laboratory Control Sample							

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/0.25

Laboratory Code. Laborato	ory Control Sal		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	89	90	67-116	1
Acenaphthylene	ug/L (ppb)	0.25	92	95	65-119	3
Acenaphthene	ug/L (ppb)	0.25	92	94	66-118	2
Fluorene	ug/L (ppb)	0.25	92	96	64-125	4
Phenanthrene	ug/L (ppb)	0.25	91	98	67-120	7
Anthracene	ug/L (ppb)	0.25	94	96	65-122	2
Fluoranthene	ug/L (ppb)	0.25	94	100	65-127	6
Pyrene	ug/L (ppb)	0.25	92	101	62-130	9
Benz(a)anthracene	ug/L (ppb)	0.25	97	109	60-118	12
Chrysene	ug/L (ppb)	0.25	94	105	66-125	11
Benzo(b)fluoranthene	ug/L (ppb)	0.25	96	107	55-135	11
Benzo(k)fluoranthene	ug/L (ppb)	0.25	94	112	62-125	17
Benzo(a)pyrene	ug/L (ppb)	0.25	93	107	58-127	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	101	117	36-142	15
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	97	106	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	101	115	34-135	13

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/17 Date Received: 06/13/17 Project: Coleman Yakima PO 41392, F&BI 706207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory C	one of Sumpre	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Hexane	ug/L (ppb)	50	105	103	57-137	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	107	100	64-147	7
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	111	107	73-132	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	106	102	82-125	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

AN TPH-HCID X X TPH-Diesel X X X TPH-Gasoline X X X TPH-Gasoline X X X BTEX by 8021B VOCs by 8260C SVOCs by 8260C SVOCs by 8270D SIM FX B T X X PAHs 8270D SIM FX B T X X Ectandid: MT65 COMPANY Humant	PROJECT NAME POJECT NAME POJECT NAME POJECT NAME PROJECT NAME Column Vulkm. H13 Q1 Ruman Project Name Remarks H13 Q1 Ruman Project Name Sampled Time Sampled Nulkm. H13 Q1 Project Name Sampled Time Sampled Sampled Nulkm. H13 Q1 Project Name Sampled Time Sampled Sample Active Stample H13 Q1 Project Name Sampled Sampled Time Sample Active Stample Active Stample Project Name Sampled Sampled Time Sample Active Stample Active Stample Project Name Sampled Time Sample Active Stample Active Stample Project Name Project Name Sampled Time Sample Active Stample Active Stample Project Name Project Name Sampled Sample Time Sample Active Stample Project Name Project Name Sampled Sample Time Sample Active Stample Project Name Project Name Sample Sample Time Sample Time Project Name Proj	d at	Samples received			Received by:	Ph. (206) 285-8282
Apprive SAMPLERS (signature) PROJECT NAME PO# Body PROJECT NAME PROJECT NAME PROJECT NAME PO# Body Project Name Date Time Sampled INVOICE TO Date Time Sampled Po# Body OJ A - C G. N.T I 30 Invoice Invoice To OJ A - C G. N.T I 30 Invoice Date OJ A - G G. N.T I 30 Invoice Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I 30 I Note Invoice OJ A - G G. N.T I Note Invoice <td>PROJECT NAME PROJECT NAME PO# Model Project Name Project NAME Project Name Po# Model Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Project Name Project Name Po# Rush Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Po# Po# Po# Rush Project Name Po# Po# Po# Po# Po# Project Name Po# Po# Po# Po# Po# Project Name Po# Po# Po# Po# Po# Po# Po# Po# Po# Po# Po#</td> <td>-6</td> <td></td> <td></td> <td></td> <td>mlof</td> <td>012 16" Avenue West eattle, WA 98119-2029</td>	PROJECT NAME PROJECT NAME PO# Model Project Name Project NAME Project Name Po# Model Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Project Name Project Name Po# Rush Project Name Project Name Project Name Po# Po# Rush Project Name Project Name Po# Po# Po# Rush Project Name Po# Po# Po# Po# Po# Project Name Po# Po# Po# Po# Po# Project Name Po# Po# Po# Po# Po# Po# Po# Po# Po# Po# Po#	-6				mlof	012 16" Avenue West eattle, WA 98119-2029
Aprin SAMPLERS (signature) PEmail Knonghingpitsson (own) PROJECT NAME PEmail Knonghingpitsson (own) PARCE Sampled Time Sampled Sampled Sampled Sampled Jass FTPH-HCID Jass TPH-HCID SVOCs by 822000 SVOCs by 822000 SVOCs by 822000 SVOCs by 822000 SVOCs by 822000 SVOCs by 822000 PAHs 82700 SIM X Y X Y X Y X Y X Y X Y	Email Knonghingphises.ow PROJECT NAME H13 92 Remarks H13 92 Email Knonghingphises.ow Date Time Sample INVOICE TO Charm Valen.ov Date Time Sample INVOICE TO OJ A - C (-9, 17) IA30 1 J AMAX935 REQUESTED OJ A - C (-9, 17) IA30 1 J TPH-HCID OJ A - G (-9, 17) IA30 1 J TPH-HCID J J X X TPH-Basoline BTEX by 8021B VOCs by 82500D SVOCs by 8250D SVOCs by 8250D SVOCs by 8250D V A - X X VOCs by 8260C X V A - X X VOCs by 8260C X V A - X X VOCs by 8250D SIM SVOCs by 8250D SIM V A - X X X VOCs by 8260C V A - X X X VOCs by 8260C V A - X X X X V A - X X X X V A - X X X X V A - X X X X V A - X X X X V A - X X X X V A - X X X	6	PBS	Kin Nosii re	N	Keunquishea by:	ruedman & Bruya, Inc.
Maprice SAMPLERS (signature) PROJECT NAME PO# Notes FROJECT NAME PROJECT NAME PO# Notes INVOICE TO Lab ID Date Time Sampled Sampled INVOICE TO OJ A - C G. 9, 171 IA30 Invoice INVOICE TO Invoice OJ A - C G. 9, 171 IA30 Invoice Invoice Invoice Invoice Sampled Type Jars TPH-HCID Invoice VOCs by 8270D State SVOCs by 8270D SVOCs by 8270D Invoice X X VOCs by 8270D X X X X X X VoCs by 8270D SVOCs by 8270D SVOCs by 8270D X X X X X X X X X X X	Image: Strate	DATE	COMPANY	PRINT NAME		SIGNATURE	4 ~ 3
Myrin SAMPLERS (signature) PROJECT NAME POTECT NAME POTECT NAME NALXES POT	Ib Date PROJECT NAME PO# Dotate Ib Lab ID Date INNOICE TO INNOICE TO Ib Date Time Sampled Sampled INNOICE TO Ib Date Time Sampled Sampled INNOICE TO Ib Date Time Sampled Sampled Kn Ib Date Time Sampled Sampled Internet Ib Date Time Sampled Sampled Internet Ib Ib Date Sampled Sampled Sampled Ib Ib Ib Sampled Stressed Ib Ib Ib Ib Ib Ib Ib Ib Ib <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Myrine SAMPLENS (signature) PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PO# Column Vuluen H1392 Invoice To Date Time Sampled Sampled Sampled Sampled Time Sampled Sampled Jars H1392 ANATYSE REQUESTED ANATYSE REQUESTED ANATYSE REQUESTED Sumpled Sampled Sampled TPH-HCID TPH-Gasoline VOCs by 8260C SVOCs by 8260C SVOCs by 8270D SVOCs by 8270D YAK YAK YAK YAK YAK YAK YAK	Ib JE mail Knopic Replace PROJECT NAME Hi3 92 Remarks Ib JE mail Knopic Replace Remarks Hi3 92 Remarks Ib JE mail Knopic Replace Remarks Hi3 92 Remarks Invoice To Date Time Sampled Sampled Remarks Invoice To Date Time Sampled Sampled Invoice To Invoice To Store Sampled Store Sampled Store Sampled Invoice To Invoice To Invoice Sampled Store Sampled Store Sampled Invoice Store Sampled Invoice Store Sampled Store Sampled Store Sampled Store Sampled Store Sampled Invoice Sampled Store Sampled <				-		
Ibb Zemail Knongki r@plowso.com PROJECT NAME PROJECT NAME PO # Remarker Ibb Zemail Knongki r@plowso.com Lab ID Date Time Remarker H 3 Q 1 Ibb Zemail Knongki r@plowso.com Lab ID Date Time Sampled Remarker Ibb Zemail Knongki r@plowso.com Lab ID Date Time Sampled INVOICE TO O1 A - C 6.9.1/7 IA1S Input diares TPH-HCID Date O2 A - G 6.9.1/7 IA330 J J X X VOCs by 8220D SIM BTEX by 8021B BTEX by 8021B MALKSES REQUESTED VOCs by 8220D SIM VOCs by 8220D SIM VOCs by 8220D SIM VA X X X VA X X X	116 JEmail Knongkingpisuse.com PROJECT NAME Hi 3 9 1 REMARKS 116 JEmail Knongkingpisuse.com Lab ID Date REMARKS INVOICE TO 116 JEmail Knongkingpisuse.com Date Time Sample # of 117 01 A - C (e. 9.17) IA 1S Invoice Invoice 03 A G (e. 9.17) IA 1S Inquit A 3 TPH-Diesel 117 04 A B 6 9.17 I 330 17 I 330 118 1355 17 I 330 TPH-Gasoline 118 SvoCs by 82500 SvOCs by 82500 SvOCs by 82500 118 VOCs by 8260C SvOCs by 8270D Invoice 119 - V - X 111 - V - X						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	163Email Kr.moyki (Qp) isus.com PROJECT NAME PO# 0.1 A. 163Email Kr.moyki (Qp) isus.com REMARKS INVOICE TO 10 BU 163Email Kr.moyki (Qp) isus.com Date Time Sampled Sampled 163Email Kr.moyki (Qp) isus.com Date Time Sampled Sampled INVOICE TO 163Email Kr.moyki (Qp) isus.com Date Time Sampled # of INVOICE TO PO# 163Email Kr.moyki (Qp) isus.com Date Time Sampled # of INVOICE TO PARU 110 OH Date Time Sampled # of INVOICE TO PARU 111 OH Sampled Sampled # of INVOICE TO PARU 111 OH Sampled Sampled # of INVOICE TO PARU 111 OH Sampled Sampled # of INVOICE TO PARU 112 OH Sampled Sampled # of INVOICE TO PARU 113 O INT INVOICE TO INVOICE TO PARU 114 O INT INT INVOICE TO INVOICE TO 115 C INT INT INVOICE TO INVOICE TO 112 O INT INT INT INT						
Myrin SAMPLERS (signature) PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PO# Column Value REMARKS INVOICE TO INVOICE TO Column Value REMARKS INVOICE TO Po# Column Value INVOICE TO Column Value REMARKS INVOICE TO Po# Column Value INVOICE TO Colue Invoice To <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ib Jemail Knnophik @pbsuss.com PROJECT NAME PROJECT NAME PO# ORU Ib Jemail Knnophik @pbsuss.com REMARKS INVOICE TO INVOICE TO Ib Jemail Knnophik @pbsuss.com Date Time Sample INVOICE TO INVOICE TO Ib Jemail Knnophik @pbsuss.com Date Time Sample INVOICE TO INVOICE TO Invoice To Date Time Sample # of Invoice To Invoice To Invoice To Jars Hof Jars Invoice To Invoice To Invoice To Sample Jars Hof Invoice To Invoice To Invoice To Jars Jars TPH-HCID Invoice To Invoice To Invoice System Jars Jars TPH-Gasoline Invoice To Invoice To Invoice System Svocs by 8250D Svocs by 8250D Invoice To Invoice To Invoice To Invoice System Jars Jars Jars Kanget Invoice To Invoice To Invoice System Svocs by 8250D Svocs by 8250D Svocs by 8250C Svocs by 8250C X X Invoice System Jars Jars Jars X X X X X	<u> </u>		V - V			DWP-6.9.17
Image: Source of the second	Ib3Email Kningki (@plisus.com PROJECT NAME PO# Name Ib3Email Kningki (@plisus.com Column Vulumi Hi3Q1 REMARKS Hi3Q1 Ib3Email Kningki (@plisus.com Date Time Sample INVOICE TO PO# Ib3Email Kningki (@plisus.com Date Time Sample INVOICE TO PO# Ib3Email Kningki (@plisus.com Date Time Sample INVOICE TO Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Date Time Sample Invoice To Pois Ib3Email Kningki (@plisus.com Sample Invoice To Invoice To Pois Ib3Email Kningki (@plisus.com Sample Invoice To Pois Pois Ib3Email Kningki (@plisus.com Sample Invoice To		XXX	T XXX	1135	5	MMG
OIA-C G. A. Market Time Sampled Sampled Time Sampled INVOICE TO POINT OIA-C G. A. Market Time Sampled Time Sampled INVOICE TO POINT VOCs by 8200C SVOCs by 8270D SIM State TPH-HCID INVOICE TO POINT VOCs by 8200C SVOCs by 8270D SIM State TPH-HCID INVOICE TO POINT VOCs by 8200C SVOCs by 8270D SIM Invoice Invoice Invoice VOCs by 8200C SVOCs by 8270D SIM Invoice Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs by 8200C SVOCs Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs by 8200C SVOCs Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs by 8200C SVOCs Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs by 8200C Invoice Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs Invoice Invoice Invoice VOCs by 8200C SVOCs by 8200C SVOCs Invoice Invoice Invoice	163Email Kn.noph R@pbsusso.com PROJECT NAME PO# 0 163Email Kn.noph R@pbsusso.com REMARKS HI392 Remarks 163Email Kn.noph R@pbsusso.com Remarks HI392 Remarks 163Email Kn.noph R@pbsusso.com Date Time Sample Remarks 163Email Kn.noph R@pbsusso.com Date Time Sample Hor His 163Email Kn.noph R@pbsusso.com Sample Hor His His His 163Email Kn.noph R@pbsusso.com Sample His His His His 163Email Kn.noph R@pbsusso.com Sample His His His His 163Email Kn.noph R@pbsusso.com Sample </td <td></td> <td>XXX</td> <td>XX</td> <td>1230</td> <td>1</td> <td>MMM</td>		XXX	XX	1230	1	MMM
Lab ID Date Time Sampled REMARKS FROJECT NAME PO# Lab ID Date Time Sampled REMARKS H13 92 Rest Sampled Sampled Type Jars FPH-HCID Kon H13 92 Rush VOCs by 82260C SVOCs by 82260C SVOCs by 82260C SVOCs by 82270D And Lyses Requestred Dots VOCs by 82270D SIM Lab ID Lab ID And Lyses Requestred Lab ID Date Invoice To Nois Lab ID Date Time Sampled Sampled Lab ID Lab ID <t< td=""><td>Ib 3 PROJECT NAME PROJECT NAME PO # Usfa Ib 3 Email Kn.noghi K@phsuso.com REMARKS Hi3 92 Rest Iab ID Date Time Sampled REMARKS Hi3 92 Rush INVOICE TO Date Time Sampled Sampled INVOICE TO Rush TPH-Diesel TPH-HCID TPH-HCID ANALYSES REQUESTED ANALYSES REQUESTED Date VOCs by 8200C SVOCs by 8270D SIM Involtes Involtes VOCs by 8270D SIM Labe Labe Involtes PAHs 8270D SIM Labe Hi65 Labe Lab ID Lab ID Lab ID Lab ID Lab ID Lab ID</td><td></td><td>×</td><td></td><td>2181</td><td></td><td>CMM</td></t<>	Ib 3 PROJECT NAME PROJECT NAME PO # Usfa Ib 3 Email Kn.noghi K@phsuso.com REMARKS Hi3 92 Rest Iab ID Date Time Sampled REMARKS Hi3 92 Rush INVOICE TO Date Time Sampled Sampled INVOICE TO Rush TPH-Diesel TPH-HCID TPH-HCID ANALYSES REQUESTED ANALYSES REQUESTED Date VOCs by 8200C SVOCs by 8270D SIM Involtes Involtes VOCs by 8270D SIM Labe Labe Involtes PAHs 8270D SIM Labe Hi65 Labe Lab ID Lab ID Lab ID Lab ID Lab ID Lab ID		×		2181		CMM
Mageire SAMPLERS (signature) PROJECT NAME PO # PROJECT NAME PO # Columon Valuence H1392 SIB3Email Konneyi Kopbsuse.com REMARKS INVOICE TO Locate Analyses REQUESTED ANALYSES REQUESTED	Image: State of the state o		VOCs by 8260C SVOCs by 8270D PAHS 8270D SIM Icaol Ectendid: MTBE EDB, EDC	한 # 것 TPH-HCID TPH-Diesel TPH-Gasoline	Time Sampled		Sample ID
Nggire SAMPLERS (signature) PROJECT NAME PO # Column Vinkm. 41392 INVOICE TO REMARKS REMARKS INVOICE TO Are Are	163Email Knogelsusse.com PROJECT NAME PO # 0 RU 163Email Knogelsusse.com REMARKS INVOICE TO PO #		ANALYSES REQUESTED				n de altre a mais de la companya de
Magaine SAMPLERS (signature) PROJECT NAME PO # Column Vinkinn 41392 REMARKS INVOICE TO	PROJECT NAME PO # DEta Column Vinkim 41392 Rush REMARKS INVOICE TO	ve Samj			ow	mail Kr.nozervapbsusa.	Phone 509.572.3163E
Marine SAMPLERS (signature) PROJECT NAME PO # D & UStan (ohnon Vuk.m. 41392 Rush	PROJECT NAME PO # USta O RU. Column Unkun. 41392 Rush	AMPLE se after	ICE TO	KS	REMAR		City, State, ZIP
Nopuire SAMPLERS (signature) PROJECT NAME PO# 0 RU	PROJECT NAME PO # USta	arges a		on Virkinse	Colem		Address Scatter
Marine SAMPLERS (signature)		ard Tu		JT NAME	PROJEC	C	
	Ken Uparine SAMPLERS (signature)	JRNAJ	Un La	ERS (signature)	SAMPL	heire	-
$2 \sqrt{2}$							

Coleman Kakima

Report Prepared for:

PBS Engineering Seattle, WA 88102

Report Prepared By:

Mark Jonathan Cejas PACE Energy Analytical Services, LLC 220 William Pitt Way Pittsburgh, PA 15238

20 July 2017

Table of Contents

- 1) INTRODUCTION
- 2) ANALYTICAL METHODOLOGY
 - a) C8-C40+ Semi Volatile Range Fingerprinting by GC/MS full scan (ASTM D5739)
- 3) PRODUCT CHARACTERIZATION

Introduction

PACE is pleased to provide this report that focuses on the chemical fingerprinting results conducted on behalf of PBS Engineering. The interpretive report was carried out on one water sample. The objective of this interpretive report was to characterize the petroleum type(s) in the sample.

Client ID	Lab ID	Date Collected	Date Received	C8-C36+ SVOC Fingerprinting by GC/MS
MW-3	22995-1	6/9/2017	6/13/2017	х
MW-5	22995-2	6/9/2017	6/13/2017	х

Supporting general site information was provided by AMRC for this interpretive report that included a detailed site map. The samples were submitted to PACE Energy Forensics Laboratory (Pittsburgh, PA) and analyzed with the following analytical method:

1) C8-C40 qualitative fingerprinting by GC/MS – full scan mode

Analytical Methodology

C8-C40+ Semi Volatile Range Fingerprinting by GC/MS full scan (ASTM D5739)

The samples were extracted and the extracts concentrated to ensure complete extraction of the sample. Extracts were injected into a GC equipped with a 60 meter DB-1 column to separate the hydrocarbons, which are detected with a mass spectrometer (MS) in full scan mode, interfaced to the GC. Hydrocarbons in the range of C_{10} to C_{40} are identified. By scanning the ion fragments shown in the following table, chromatograms of a number of hydrocarbons are generated. Aromatic hydrocarbons are identified by scanning over a large number of ion fragments, and the results are normalized in a bar diagram. This analysis also allows for tentative IDs of unknown compounds w/ NIST mass spectra library.

lon (m/z)	Compound Class
TIC	All Compounds
85	n-Alkanes
113	Iso-Alkanes and Isoprenoids
83	Alkylcyclohexanes
134	C4-Benzenes
123	Bicyclanes
191	Terpanes
217	Steranes
253	Monoaromatic Steranes
231	Triaromatic Steranes
Bar Diagram	Aromatic Hydrocarbons

Sample Characterization

The 2 product samples were analyzed by the C8-C40+ semi volatile fingerprinting method by GC/MS. Multiple visualizations of diagnostic attributes of the petroleum in the sample are provided in Figures 1 & 2. The diagnostic attributes of MW-3 dictate that the sample was composed of gasoline, and weathered #2 diesel fuel. The diagnostic attributes of MW-5 show that the sample consisted of weathered #2 diesel fuel, and refined residual range petroleum.

MW-3 (22995-1)-The gasoline component in the sample is evident by the enrichment of volatile range C2 mono-aromatics toluene, xylenes, and 1,3,5-trimethylbenzene (figure 1 A), the enrichment of alkyl benzenes (figure 2 A) relative to alkyl naphthalenes, and the enrichment of C1-C4 alkylcyclohexanes relative to C5+ (83 m/z ion trace in main data package). #2 diesel fuel is evident in the middle distillate range distribution of n-paraffins (~C8-~C25 w/ ~C17 maximum) (figures 1 and 2), the presence of middle distillate range alkylcyclohexanes with a C8-C9 maximum (83 m/z ion trace in main data package), and the enrichment of bicyclic-sesquiterpanes (123 m/z ion trace in main data package)¹.

MW-5 (22995-2)- #2 diesel fuel is evident in the middle distillate range distribution of nparaffins (~C8-~C25 w/ ~C17 maximum) (figures 1 and 2), the presence of middle distillate range alkylcyclohexanes with a C8-C9 maximum (83 m/z ion trace in main data package), and the enrichment of bicyclic-sesquiterpanes (123 m/z ion trace in main data package). The residual range petroleum component is apparent in the residual range (~C25-~C36) unresolved complex mixture (figure 1), enrichment of residual range petroleum biomarkers (figure 1 & 191, 217, 231, 253 ion traces in the main data package), and the enrichment of 3-4 ring PAHs (figure 2)². The refined character of the residual range petroleum is noticeable in the presence of 2-methyl anthracene (formed during refinery processes), and the overall distribution of C1 alkylated phenanthrenes/anthracenes distribution are less thermodynamically stable and thus become depleted during refinery processes³

¹ Kaplan, Isaac R., et al. "Forensic environmental geochemistry: differentiation of fuel-types, their sources and release time." *Organic Geochemistry* 27.5 (1997): 289-317.

² Wang, Zhendi, Merv Fingas, and David S. Page. "Oil spill identification." *Journal of Chromatography A* 843.1 (1999): 369-411.

³ Radke, Matthias, et al. "Aromatic components of coal: relation of distribution pattern to rank." *Geochimica et Cosmochimica Acta* 46.10 (1982): 1831-1848.

Conclusion

The petroleum signatures show that MW3 and MW5 share a similar weathered #2 diesel fuel signature. MW-3 exhibits an intermingling of a significant gasoline component with the #2 diesel fuel. MW-5 contains the #2 diesel fuel component intermingled with a proportionately lower amount of a refined residual range petroleum.

Please call the lab at 412-826-4481, or you may email any questions or concerns to <u>mark.cejas@pacelabs.com</u> regarding any analytical data reports or interpretations.

Respectfully submitted, *Mark Jonathan Cejas, MSc* Senior Consulting Scientist

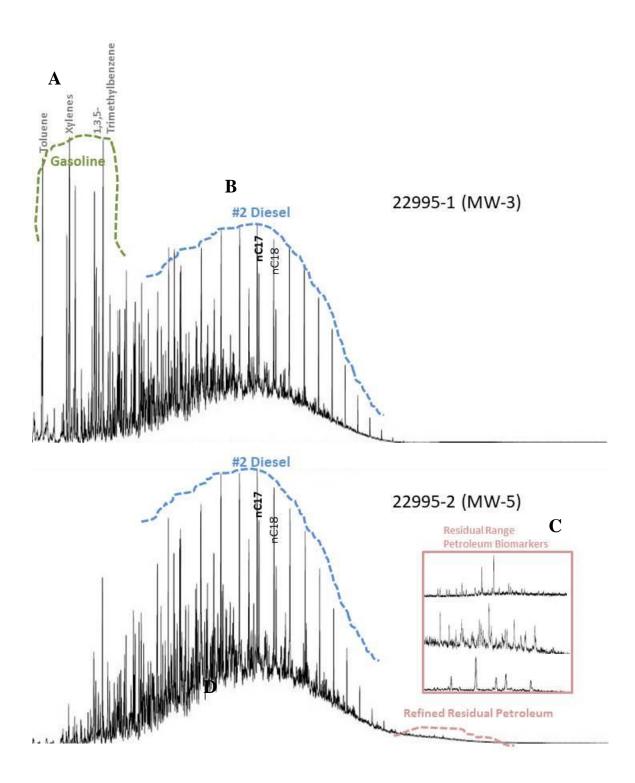


Figure 1. Diagnostic petroleum attributes of the sample – TIC & biomarkers. (A) Gasoline signature (B) diesel signature (C) Refined residual range petroleum signature

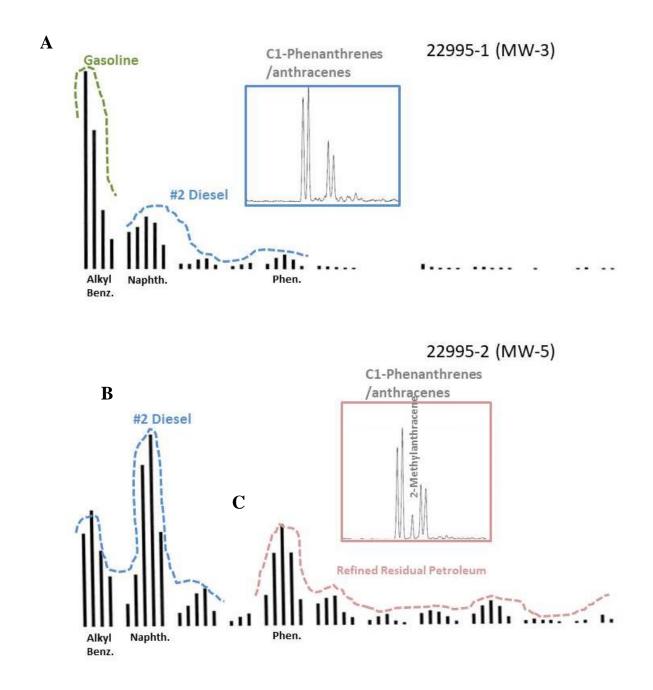


Figure 2. Diagnostic petroleum attributes of the sample - PAHs. (A) Gasoline signature (B) diesel signature (C) Refined residual range petroleum signature

June 26, 2017

Ken Nogeire PBS Engineering 2517 Eastlake Ave Suite 100 Seattle, WA 88102

RE: Coleman Kakima Project Number: 41392

Pace Analytical received 4 samples on June 13, 2017 for analysis labeled MW3, and MW5. Per client request, the following analyses were performed:

1. C8-C40 Qualitative Molecular Characterization by GC/MS – full scan mode

The samples labeled as MW1 and MW2 have been placed on hold.

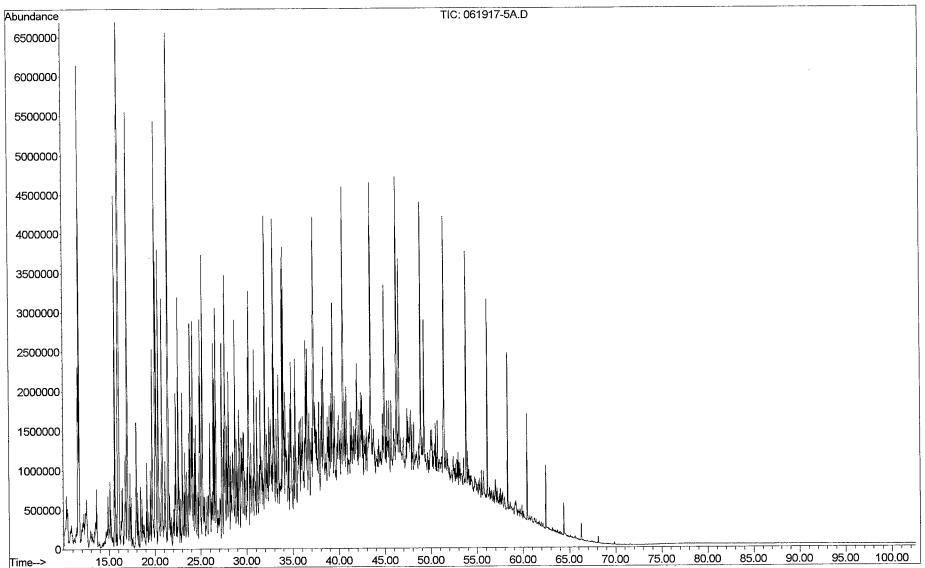
The sample was performed in house under laboratory number **22995**.

Please call the lab at 412-826-5245, or you may email any questions or concerns to <u>ruth.welsh@pacelabs.com</u> regarding any analytical data reports.

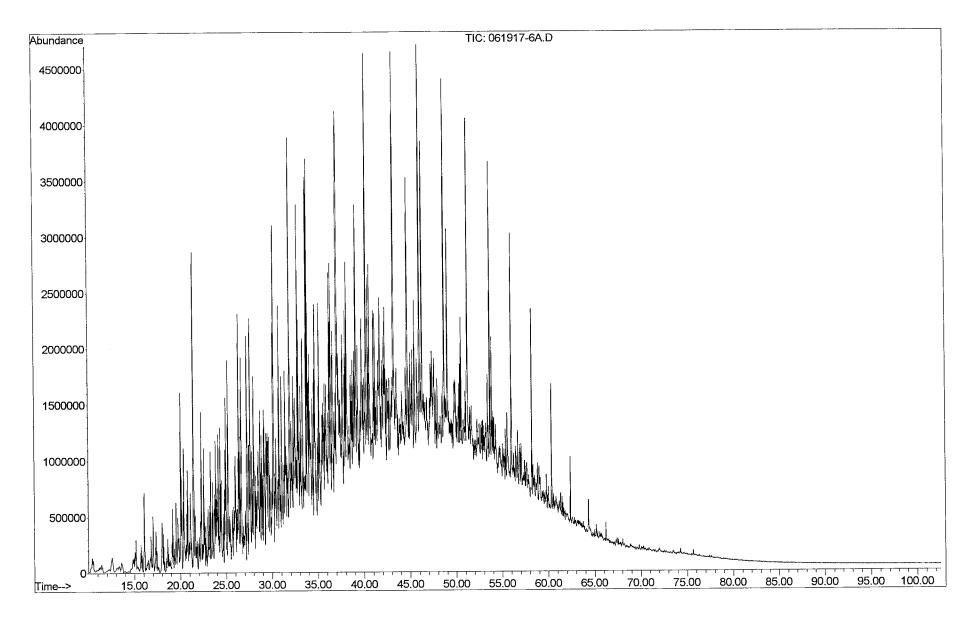
Respectfully submitted,

Ruth Welsh

Ruth Welsh Project Manager


C8-C40 - Qualitative Hydrocarbons Characterization by GC/MS - full scan mode

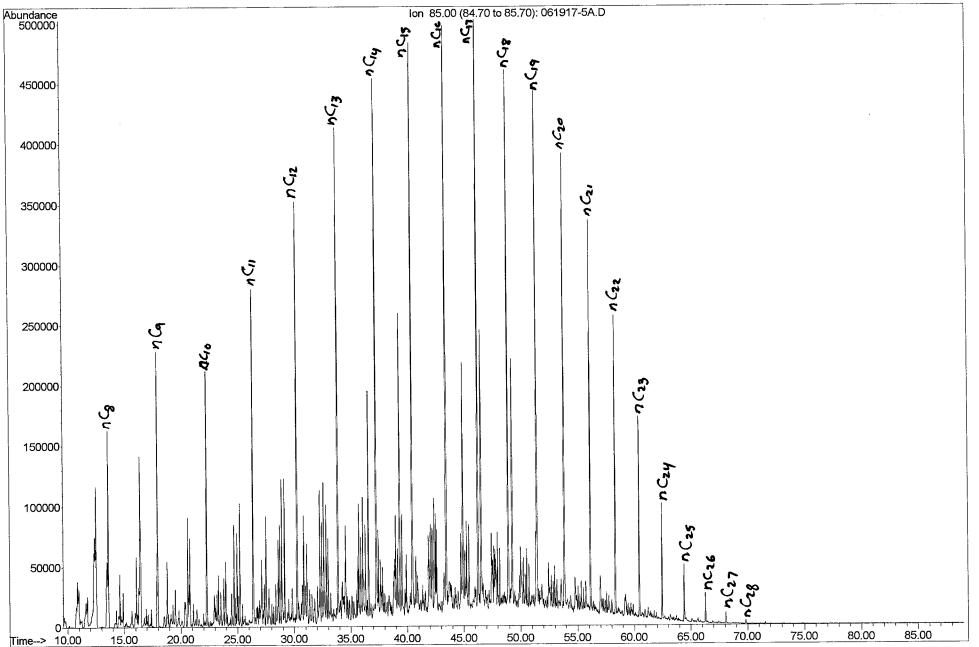
N ION (m/z)	lass Chromatograms	COMPOUND CLASS
TIC		All Compounds
85		n-Alkanes (Paraffins)
113		Iso-Alkanes (Isoparaffins) & Isoprenoids
83		Alkylcyclohexanes
134		C₄-benzenes (monoaromatics)
123		Bicyclanes
191		Terpanes
217		Steranes
Bar Diagram		Monoaromatic and Polyaromatic Hydrocarbon Distribution

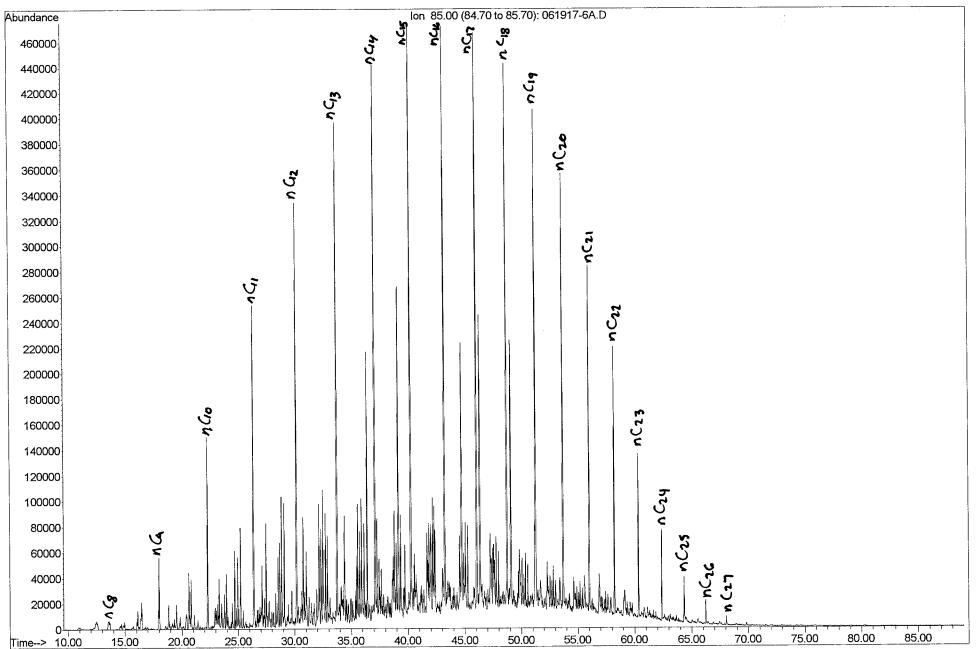

note: Chromatograms and data follow this cover page.

Submitted by, Pace Analytical Energy Services

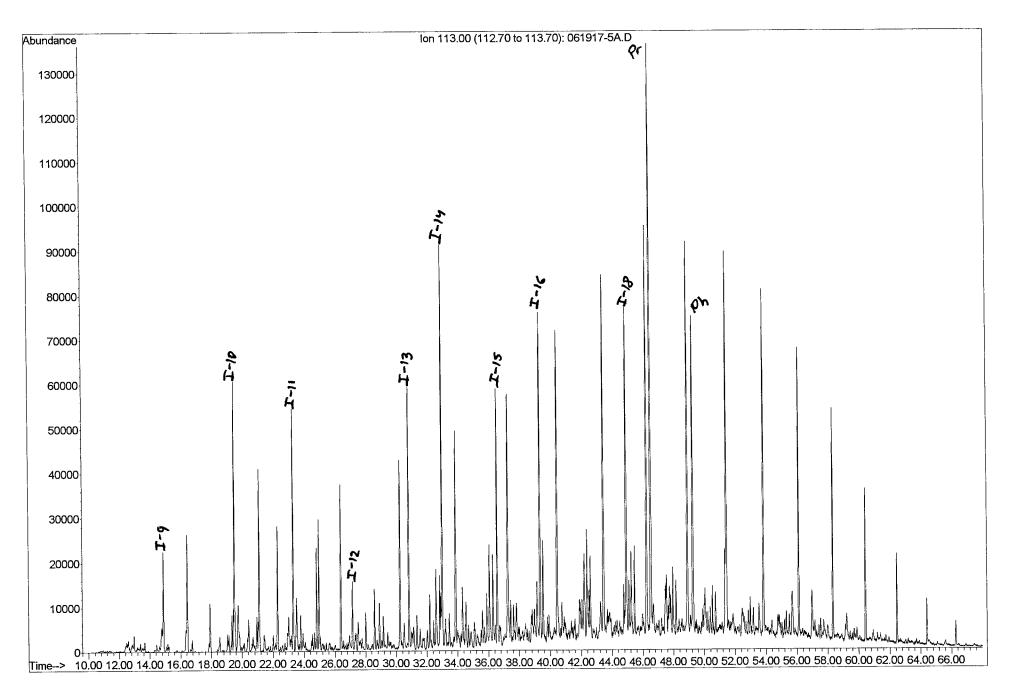
Sample Name: 22995-1 [MW-3] 1/5DILUTION Misc Info :

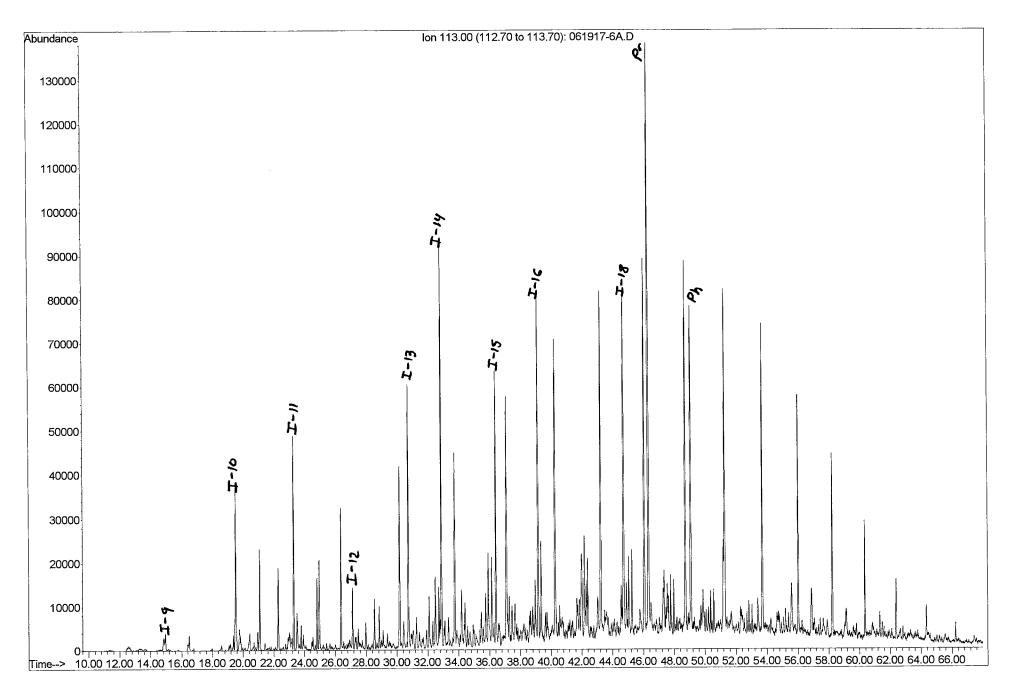
Sample Name: 22995-2 [MW-5] 1/5 DILUTION Misc Info :



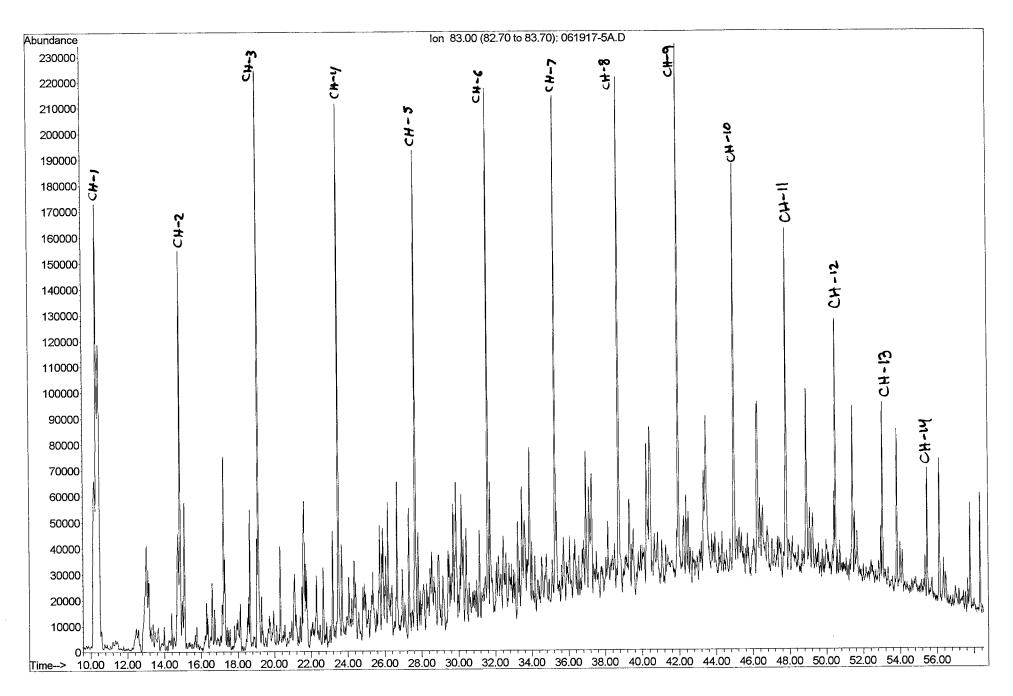


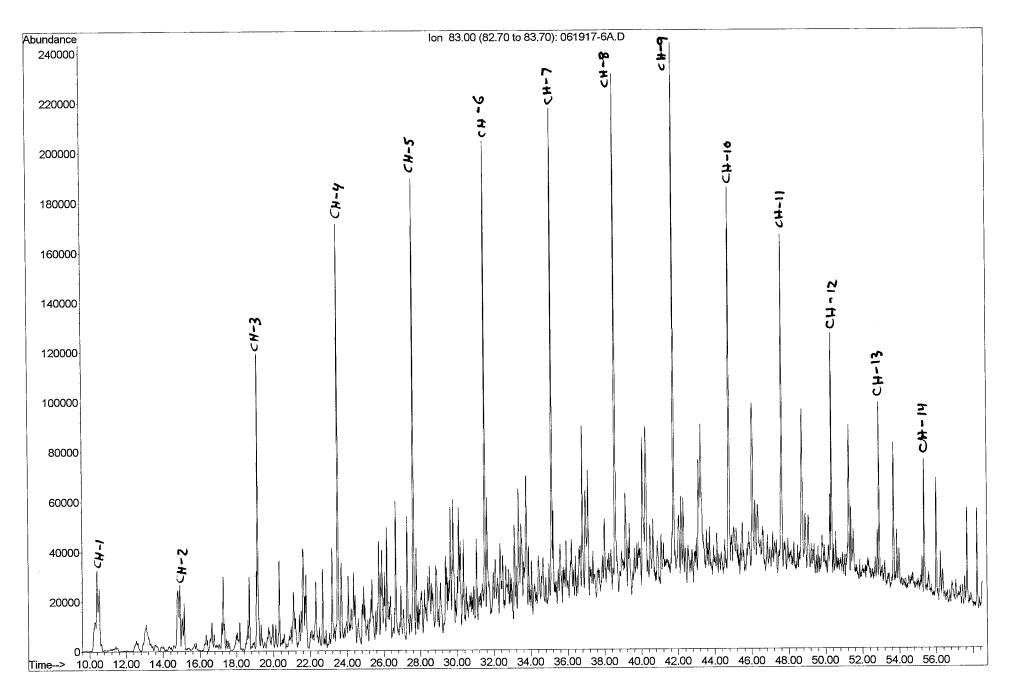
Key to Chromatogram Symbol Identification


For m/z 85 and m/z 113 Paraffins and Isoparaffins


Symbo		Detail
i-10	I	so-alkane with 10 carbon atoms
i-15	F	Farnesane (isoprenoid with 15 carbon atoms)
i-16	l	soprenoid with 16 carbon atoms
Pr	F	Pristane (isoprenoid with 19 carbon atoms)
Ph	F	Phytane (isoprenoid with 20 carbon atoms)
nC ₈	1	n-C ₈ normal Alkane
nC ₁₅	r	_{-c} 15 normal Alkane
i-8	Ĩ	2,5-(2,4)-Dimethylhexane
i-8 [′]		2,3,4-Trimethylpentane
i-8 ⁿ		2-3-Dimethylhexane
CH-n	ł	Alkylcyclohexane (where n indicates the number of carbon atoms in the
	side chain)	

- 1

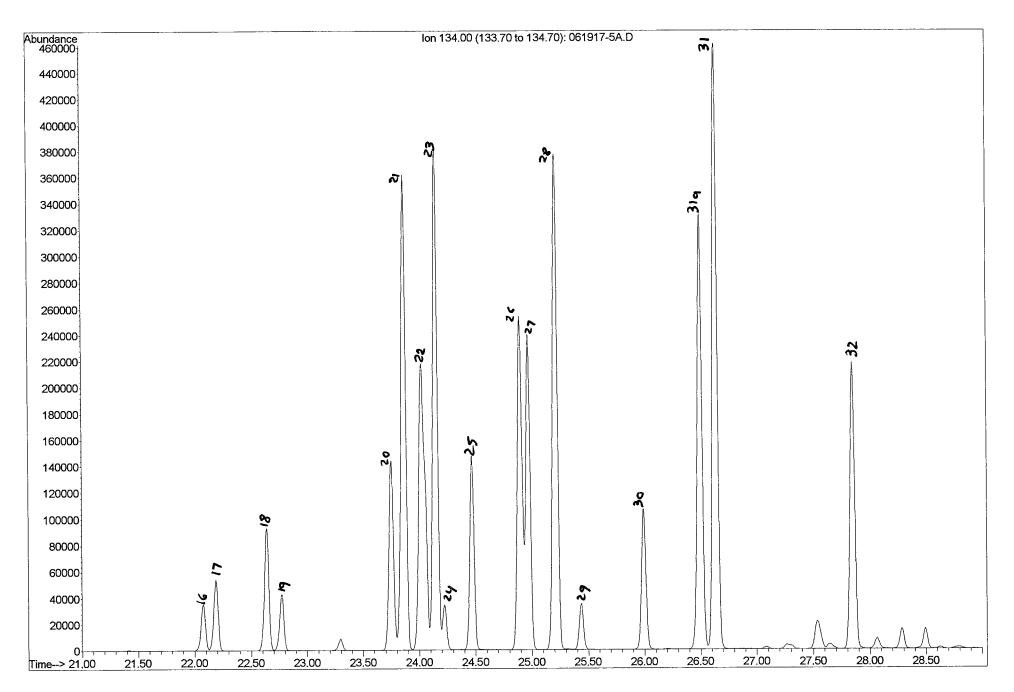


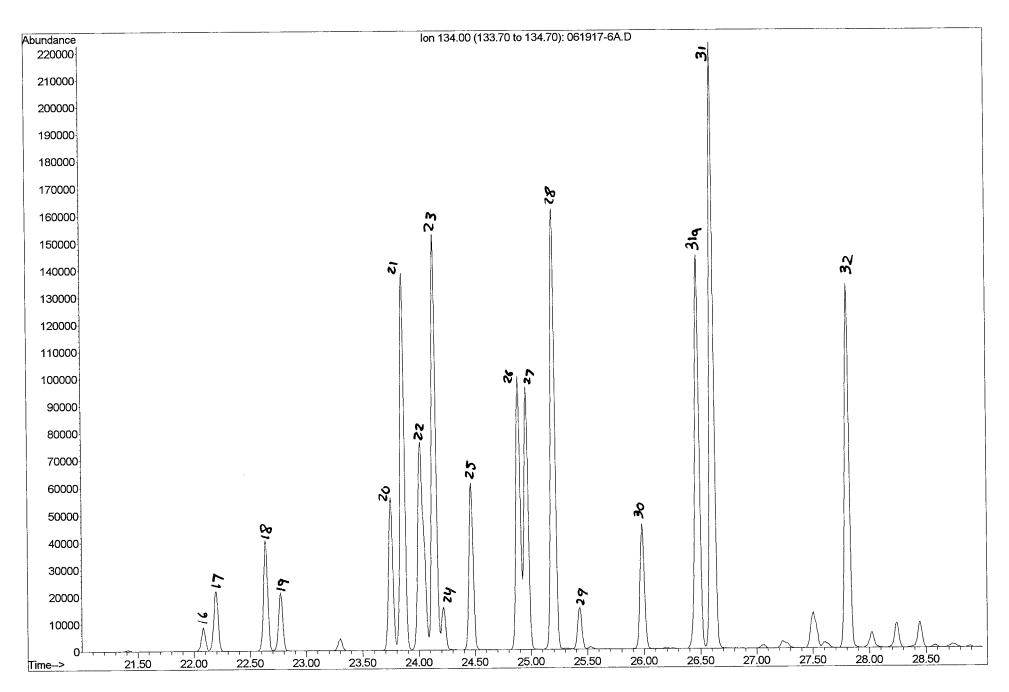


Key for Alkylcyclohexanes at m/z 83

Symbol	Detail	
<u>.</u>		
CH-1	Methylcyclohexane	
CH-2	Ethylcyclohexane	
CH-3	Propylcyclohexane	
CH-4	Butylcyclohexane	
CH-5	Pentylcyclohexane	
CH-6	Hexylcyclohexane	
CH-7	Heptylcyclohexane	
CH-8	Octylcyclohexane	
CH-9	Nonylcyclohexane	
CH-10	Decylcyclohexane	
CH-11	Undecylcyclohexane	
CH-12	Dodecylcyclohexane	
CH-13	Tridecylcyclohexane	
CH-14	Tetradecylcyclohexane	

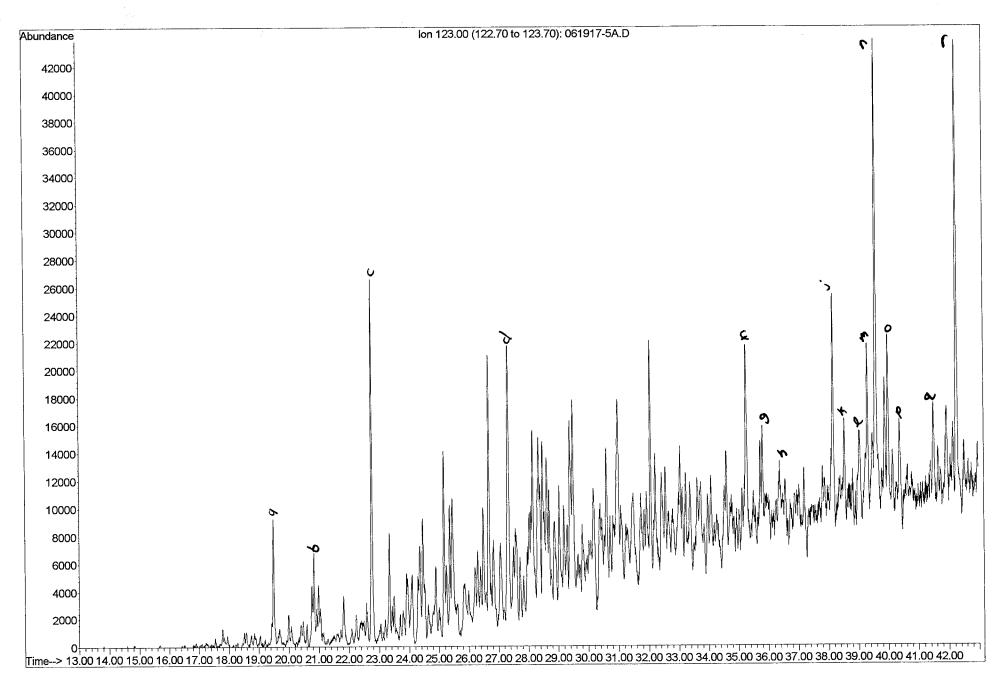
22995-1 [MW-3] 1/5DILUTION

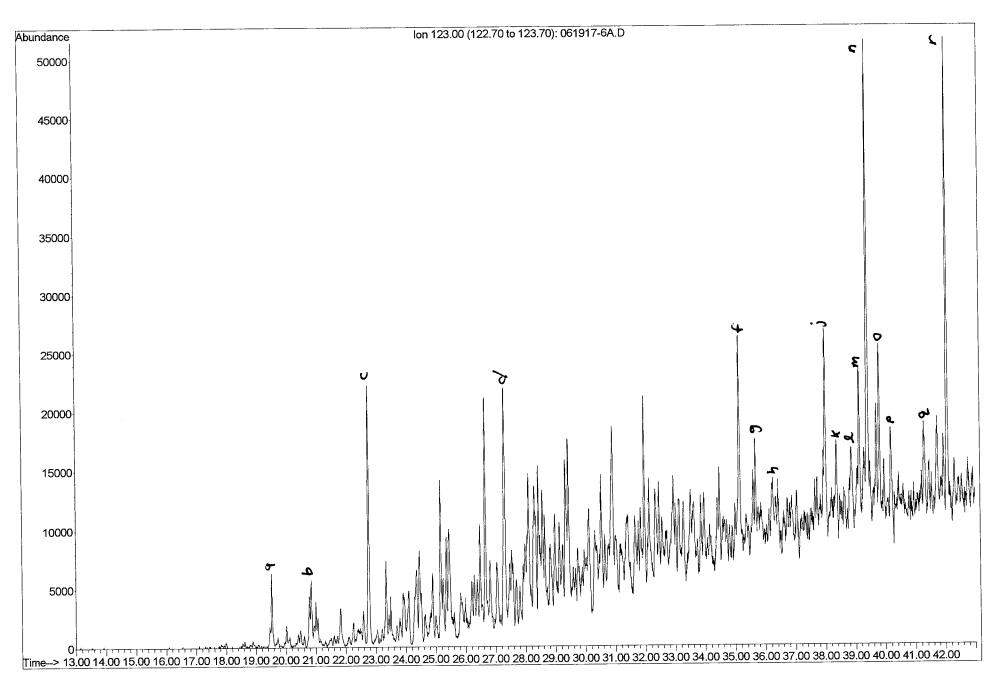




Key for C₄-Alkylbenzenes (m/z 134)

 Symbol	Detail
 16	Sec-Butylbenzene
17	1-Methyl-3-Isopropylbenzene
18	1-Methyl-4-Isopropylbenzene
19	1-Methyl-2-Isopropylbenzene
20	1,3-Diethylbenzene
21	1-Methyl-3-Propylbenzene
22	Butylbenzene
23	1,3-Diethyl-5-Ethylbenzene
24	1,2-Diethylbenzene
25	1-Methyl-2-Propylbenzene
26	1,4-Dimethyl-2-Ethylbenzene
27	1,3-Dimethyl-4-Ethylbenzene
28	1,2-Dimethyl-4-Ethylbenzene
29	1,3-Dimethyl-2-Ethylbenzene
30	1,2-Dimethyl-3-Ethylbenzene
31a	1,2,4,5-Tetramethylbenzene
31	1,2,3,5-Tetramethylbenzene
32	1,2,3,4-Tetramethylbenzene



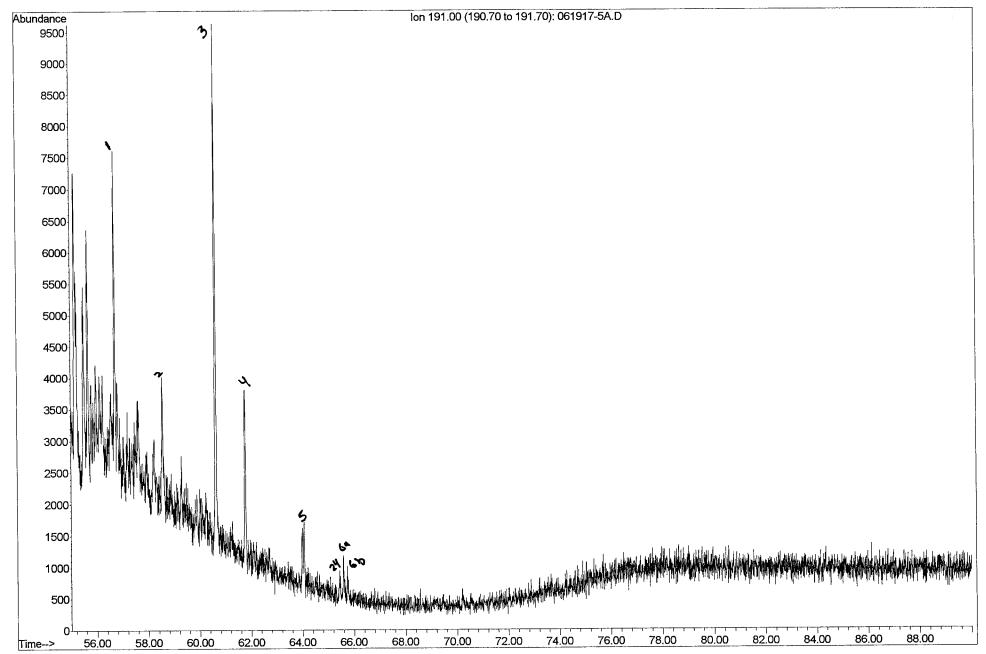


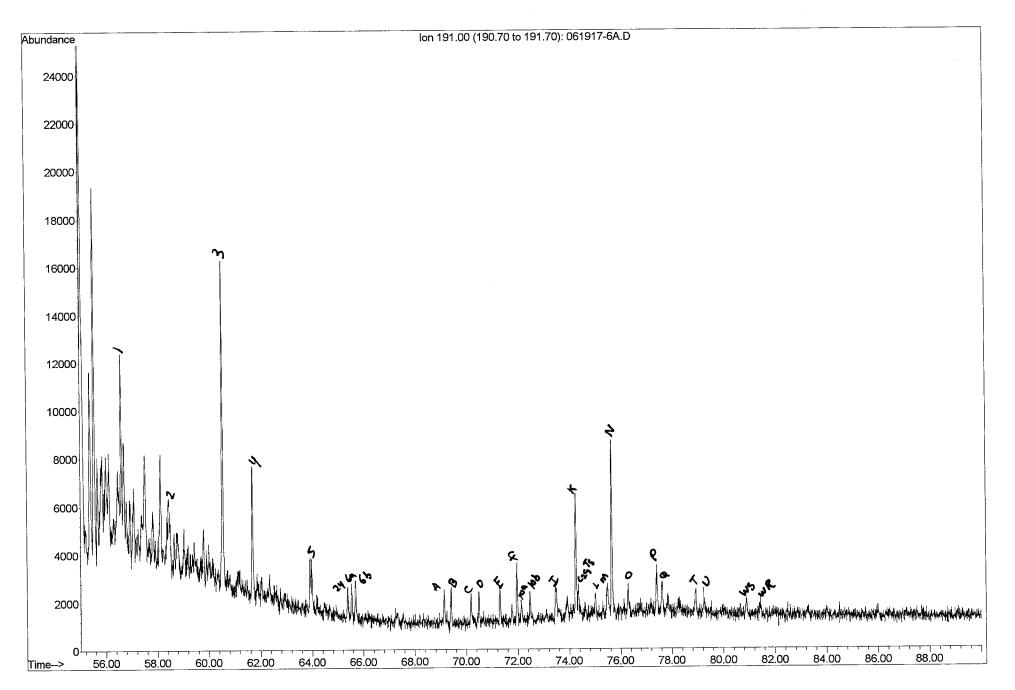
Peak No.	Identity	Formula	M.W.
a	2,2,3-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
b	C10 bicycloalkane	C ₁₀ H ₁₈	138
С	3,3,7-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
d	C ₁₁ Decalin	$C_{11}H_{20}$	152
f	Nordrimane	C ₁₄ H ₂₆	194
g	Nordrimane	$C_{14}H_{26}$	194
h	Rearranged drimane	C ₁₅ H ₂₈	208
j	Rearranged drimane	C ₁₅ H ₂₈	208
k	Isomer of Eudesmane	C ₁₅ H ₂₈	208
1	4β (H) Eudesmane	C ₁₅ H ₂₈	208
m	C ₁₅ Bicyclic Sesquiterpane	C ₁₅ H ₂₈	208
n	8β (H) Drimane	C ₁₅ H ₂₈	208
0	C ₁₅ Bicyclic Sesquiterpane	C ₁₅ H ₂₈	208
р	C ₁₆ Bicyclic Sesquiterpane	$C_{16}H_{30}$	222
q	C ₁₆ Bicyclic Sesquiterpane	$C_{16}H_{30}$	222
r	8β (H) Homodrimane	$C_{16}H_{30}$	222

Key for Identification of the Bicyclanes (m/z 123)

22995-1 [MW-3] 1/5DILUTION

Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms)

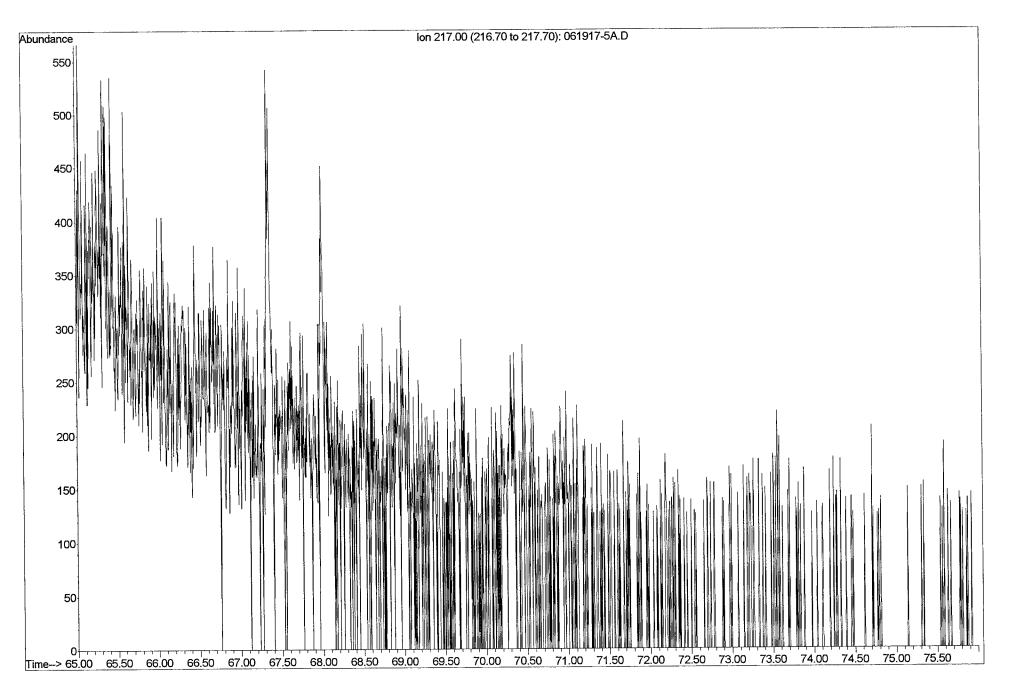

Code	Identity	Carbon #
0	C ₂₀ -Tricyclic Terpane	20
1	C ₂₁ -Tricyclic Terpane	21
2	C ₂₂ -Tricyclic Terpane	22
3	C ₂₃ -Tricyclic Terpane	23
4	C ₂₄ -Tricyclic Terpane	24
5	C ₂₅ -Tricyclic Terpane	25
Z4	C ₂₄ -Tetracyclic Terpane	24
6a	C ₂₆ -Tricyclic Terpane	26
6b	C ₂₆ -Tricyclic Terpane	26
7	C ₂₇ -Tricyclic Terpane	27
А	C ₂₈ -Tricyclic Terpane #1	28
В	C ₂₈ -Tricyclic Terpane #2	28
С	C ₂₉ -Tricyclic Terpane #1	29
D	C ₂₉ -Tricyclic Terpane #2	29
E	18 α-22,29,30-Trisnorneohopane (Ts)	27
F	17 α-22,29,30-Trisnorhopane (Tm)	27
G	17 β-22,29,30-Trisnorhopane	27
Н	17 α-23,28-Bisnorlupane	28
10a	C ₃₀ -Tricyclic Terpane #1	30
10b	C ₃₀ -Tricyclic Terpane #2	30
1	17 α-28,30 Bisnorhopane	28
11a	C ₃₁ -Tricyclic Terpane #1	31
J	17α-25-Norhopane	29
11b	C ₃₁ -Tricyclic Terpane #2	31
К	17 α,21β-30-Norhopane	29
C ₂₉ Ts	18α-30-Norneohopane	29
C ₃₀ *	17α-Diahopane	30
L	17β-21α-30-Normoretane	29
Ma	18α-Oleanane	30
Mb	18β-Oleanane	30
N	17α-21β-Hopane	30
0	17β-21α-Moretane	30
13a	C ₃₃ -Tricyclic Terpane #1	33
13b	C ₃₃ -Tricyclic Terpane #2	33

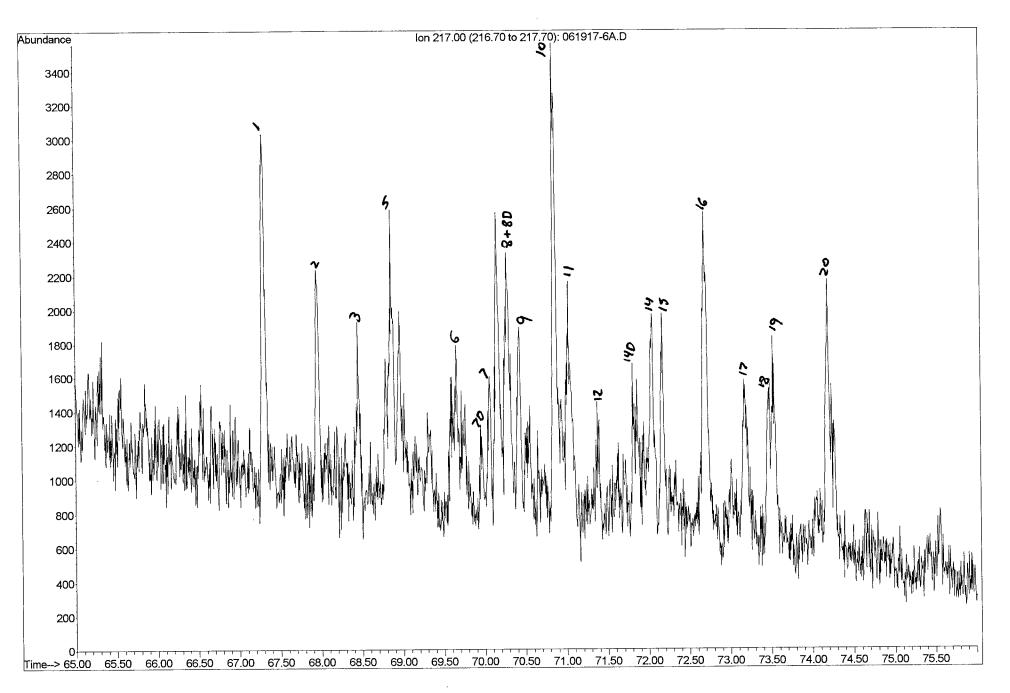

Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms) – Cont.

 Code	Identity	Carbon #
 P	22S-17α,21β-30-Homohopane	31
Q	22R-17α,21β-30-Homohopane	31
R	Gammacerane	30
14a	C ₃₄ -Tricyclic Terpane #1	34
S	17β,21α-Homomoretane	31
14b	C ₃₄ -Tricyclic Terpane #2	34
Т	22S-17α,21β-30-Bishomohopane	32
U	22R-17α,21β-30-Bishomohopane	32
15a	C ₃₅ -Tricyclic Terpane #1	35
15b	C ₃₄ -Tricyclic Terpane #2	35
V	17β , 21α -C ₃₂ -Bishomomoretane	32
WS	22S-17 α ,21 β -30-Bishomohopane	33
WR	22R-17α,21β-30,31,32-Trishomohopane	33
16a	C ₃₆ -Tricyclic Terpane #1	36
16b	C ₃₆ -Tricyclic Terpane #2	36
XS	22S-17α,21β-30,31,32,33-Tetrahomohopane	34
XR	22R-17α,21β-30,31,32,33-Tetrahomohopane	34
YS	22S-17α,21β-30,31,32,33,34-Pentahomohopane	35
YR	22R-17α,21β-30,31,32,33,34-Pentahomohopane	35

22995-1 [MW-3] 1/5DILUTION

. .

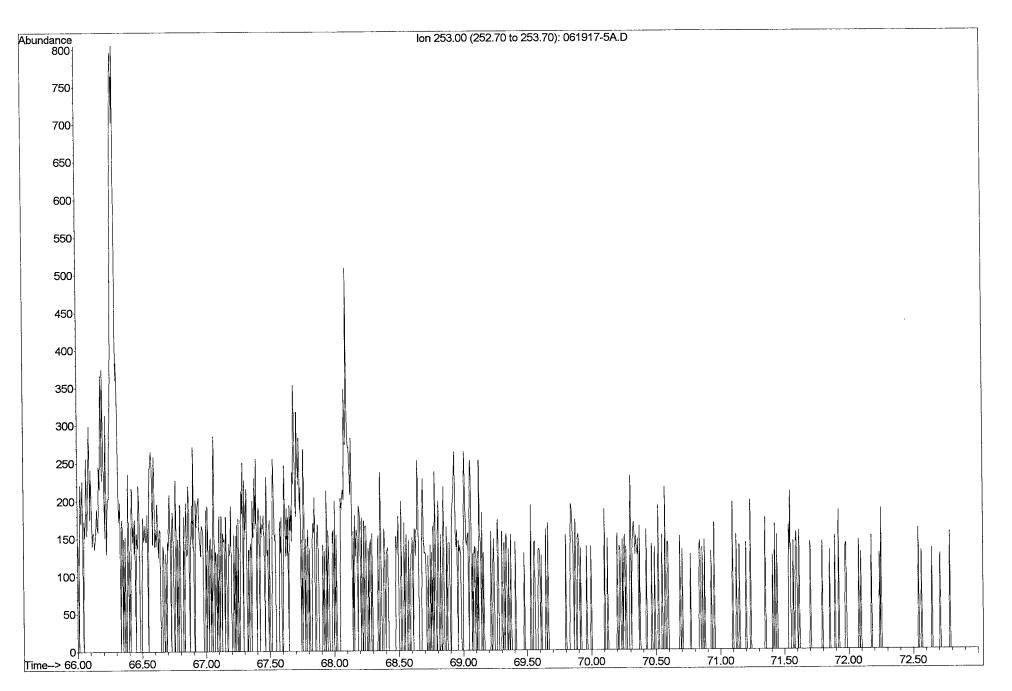


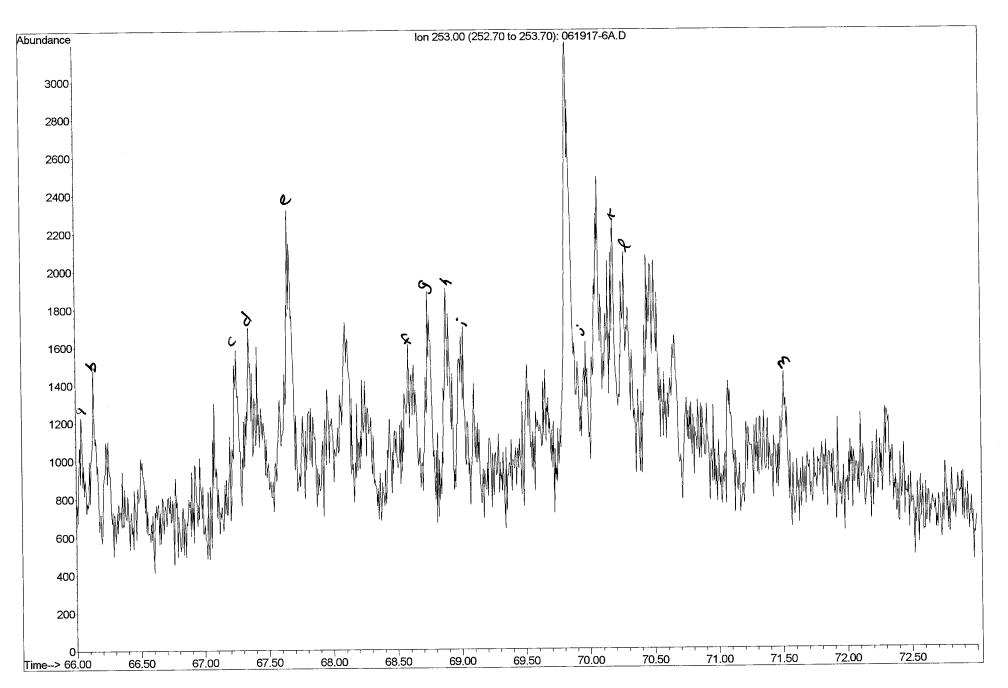


Key for Steranes Identification (m/z 217 Mass Chromatogram)

Code	Identity	Carbon #
1	13β, 17α-Diacholestane (20S)	27
2	13β, 17α-Diacholestane (20R)	27
3	13α, 17β-Diacholestane (20S)	27
4	13α, 17β-Diacholestane (20R)	27
5	24-methyl-13β,17α-Diacholestane (20S)	28
6	24-methyl-13β,17α-Diacholestane (20S)	28
7D	24-methyl-13α,17β-Diacholestane (20S)	28
7	14α,17α-Cholestane (20S)	27
8D	24-ethyl-13β, 17α-Diacholestane (20S)	29
8	14β,17β-Cholestane (20R)	27
9	14β,17β-Cholestane (20S)	27
9D	24-methyl-13α,17β-Diacholestane (20R)	28
10	14α,17α-Cholestane (20R)	27
11	24-ethyl-13β, 17α-Diacholestane (20R)	29
12	24-ethyl-13α, 17β-Diacholestane (20S)	29
13	24-ethyl-13α, 17α-Diacholestane (20S)	28
14D	24-ethyl-13 α , 17 β -Diacholestane (20R)	29
14	24-methyl-14β, 17β-Cholestane (20R)	28
15	24-methyl-14β, 17β-Cholestane (20S)	28
16	24-methyl-14α, 17α-Cholestane (20R)	28
17	24-ethyl-14α-Cholestane (20S)	29
18	24-ethyl-14β, 17β-Cholestane (20R)	29
19	24-ethyl-14β, 17β-Cholestane (20S)	29
20	24-ethyl-14α, 17α-Cholestane (20R)	29
21A	24-n-Propylcholestane (20S)	30
21B	4-methyl-24-ethylcholestane (20S)	30
22A	4α -methyl-24-ethyl-14 β ,17 β -cholestane (20S)	30
22B	24-n-Propyl-14β,17β-cholestane (20S)	30
23A	4α -methyl-24-ethyl-14 β ,17 β -cholestane (20R)	30
23B	24-n-propyl-14β,17β-cholestane (20R)	30
24A	4α -methyl-24-ethylcholestane (20R)	30
24B	24-n-propylcholestane (20R)	30

22995-1 [MW-3] 1/5DILUTION

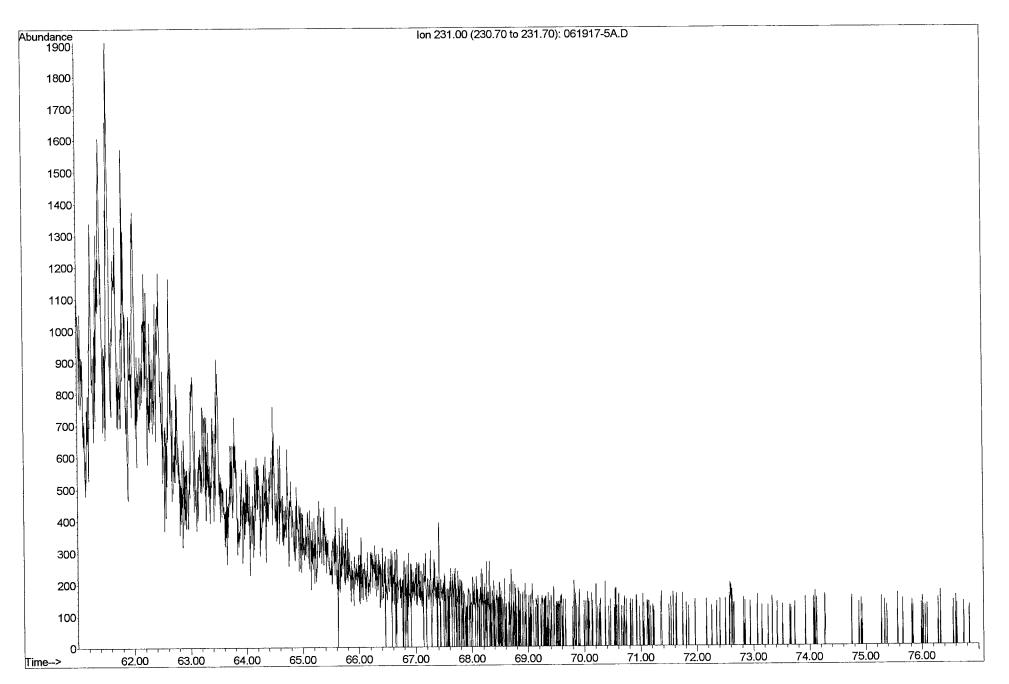


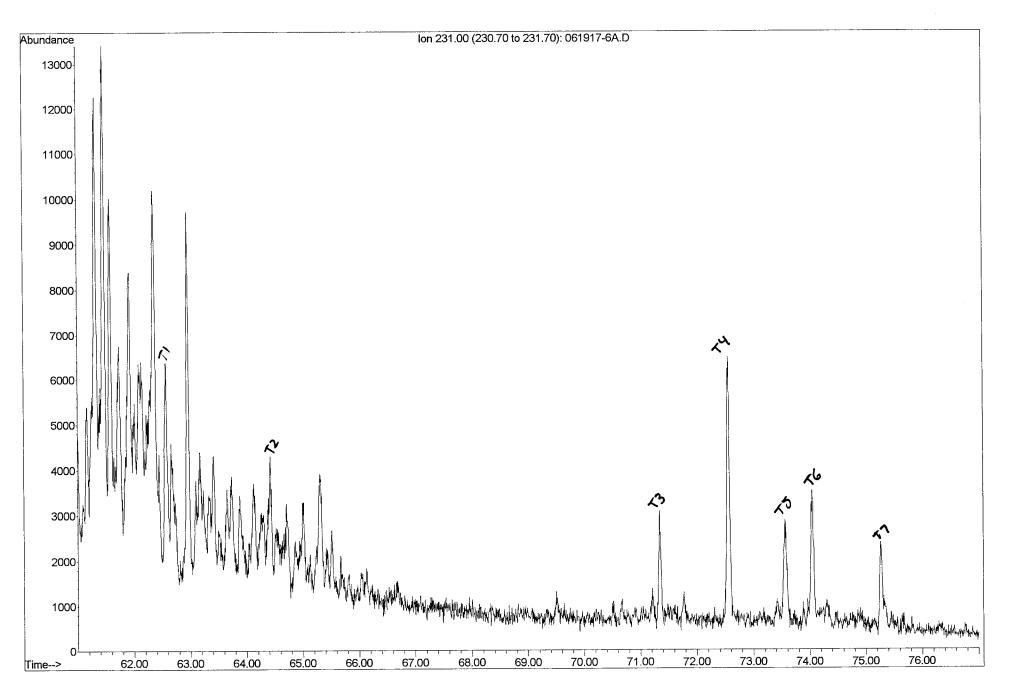


Key for Monoaromatic Steranes Identification (m/z 253 Mass Chromatogram)

Code	Identity	Elemental Composition
a	20S, 5β C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
b	20S, dia C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
С	20R, 5β C ₂₇ -Monoaromatic Sterane + 20R C ₂₇ dia MAS	C ₂₇ H ₄₂
d	20S, 5 α C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
е	20R, 5 β C ₂₈ -Monoaromatic Sterane + 20S C ₂₈ dia MAS	C ₂₈ H ₄₄
f	20R, 5 α C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
g	20S, 5 α C ₂₈ -Monoaromatic Sterane	C ₂₈ H ₄₄
h	20R, 5 β C ₂₈ -Monoaromatic Sterane + 20R C ₂₈ dia MAS	C ₂₈ H ₄₄
i	20S, 5β C ₂₉ -Monoaromatic Sterane + 20S C ₂₉ dia MAS	$C_{29}H_{46}$
j	20S, 5 α C ₂₉ -Monoaromatic Sterane	$C_{29}H_{46}$
k	20R, 5 α C ₂₈ -Monoaromatic Sterane	$C_{28}H_{44}$
l	20R, 5β C ₂₉ -Monoaromatic Sterane + 20R C ₂₉ dia MAS	$C_{29}H_{46}$
m	20R, 5 α C ₂₉ -Monoaromatic Sterane	$C_{29}H_{46}$

22995-1 [MW-3] 1/5DILUTION

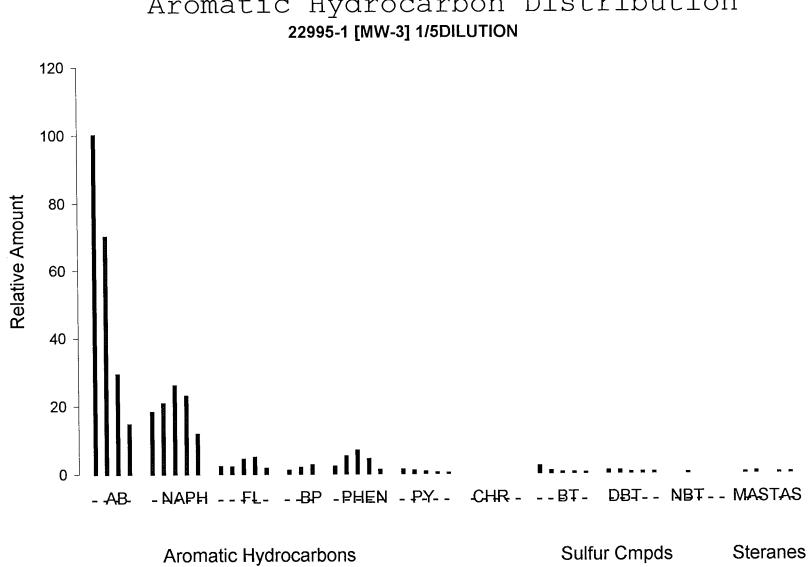




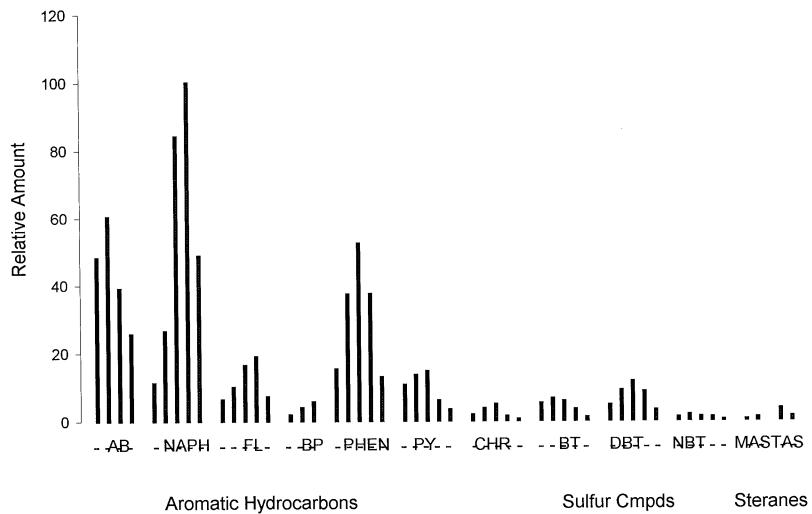
Key for Triaromatic Steranes Identification (m/z 231 Mass Chromatogram)

Code	Identity	Elemental Composition	
 T1	C ₂₀ Triaromatic Sterane	C ₂₀ H ₂₀	
T2	C ₂₁ Triaromatic Sterane	C ₂₁ H ₂₂	
Т3	20S C ₂₆ Triaromatic Sterane	$C_{26}H_{32}$	
T4	20R C ₂₆ + 20S C ₂₇ Triaromatic Steranes	$C_{26}H_{32} + C_{27}H_{34}$	
T5	20S C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆	
Т6	20R C ₂₇ Triaromatic Sterane	C ₂₇ H ₃₄	
Τ7	20R C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆	

22995-1 [MW-3] 1/5DILUTION


Key for Identifying Aromatic Hydrocarbons

1 120 AB C ₃ -slkylbenzenes 2 134 C ₄ -alkylbenzenes 3 148 C ₄ -alkylbenzenes 4 162 C ₆ -alkylbenzenes 5 128 NAPH C ₉ -naphthalene 6 142 C ₄ -naphthalenes C ₇ -naphthalenes 7 156 C ₂ -naphthalenes C ₇ -naphthalenes 8 170 C ₄ -naphthalenes C ₇ -naphthalenes 9 184 C ₄ -naphthalenes C ₇ -fluorene 10 166 FL C ₇ -fluorene C ₁₁ 11 180 C ₇ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 13 208 C ₇ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 14 222 C ₄ -fluorenes C ₇ -fluorenes C ₇ -fluorenes 15 154 BP C ₇ -biphenyl + dibenzofuran C ₇ -phenanthrenes 20 206 C ₇ -phenanthrenes C ₇ -phenanthrenes 21 220 C ₇ -phenanthrenes C ₇ -pyrenes/fluoranth	No	m/z	Abbreviation	Compound
3148Cg-alkylbenzenes4162Cg-alkylbenzenes5128NAPHCg-alkylbenzenes6142Cg-naphthalene7156Cg-naphthalenes8170Cg-naphthalenes9184Cg-naphthalenes10166FLCg-fluorene11180Cg-fluorenes12194Cg-fluorenes13208Cg-fluorenes14222Cg-fluorenes15154BPCg-biphenyl16168Cg-biphenyl17182Cg-biphenyls + dibezofuran17182Cg-phenathrene19192Cg-phenathrene20206Cg-phenathrenes21220PYCg-phenathrenes22234Cg-phenathrenes23202PYCg-phenathrenes24216Cg-pyrenes/fluoranthene25230Cg-pyrenes/fluoranthenes26244Cg-pyrenes/fluoranthenes27258CHRCg-pyrenes/fluoranthenes28284CHRCg-chrysenes31270Cg-chrysenes33148BTCg-benzothiophenes34162Cg-benzothiophenes35176Cg-benzothiophenes36190Cg-benzothiophenes	1	120	AB	C ₃ -alkylbenzenes
4162Caralkylbenzenes5128NAPHCaraphthalene6142Caraphthalenes7156Caraphthalenes8170Caraphthalenes9184Caraphthalenes9184Caraphthalenes10166FLCarfluorene11180Carfluorenes12194Carfluorenes13208Carfluorenes14222Carfluorenes15154BPCarbiphenyls + dibenzofuran16168Carbiphenyls + dibenzofuran17182Carbiphenyls + dibenzofuran18178PHENCarbiphenyls + dibenzofuran19192Carbiphenyls + dibenzofuran20206Carbiphenyls + Carbiphenes21220PYCarbiphenyls + Carbiphens2234Carphenanthrenes23202PYCarbiphenyl + diburanthene24216Carpyrenes/fluoranthenes25230Carpyrenes/fluoranthenes26244Carpyrenes/fluoranthenes27258CHRCarbiyrenes28228CHRCarbiyrenes31270Carchrysenes32284CHRCarbiyrenes33148BTCarbiphenes34162Carbiryenes35176Carbiryenes36190Carbiryenes	2	134		C ₄ -alkylbenzenes
5128NAPHConapthalene6142Canapthalenes7156Canapthalenes8170Canapthalenes9184Canapthalenes10166FLCaflurenes11180Caflurenes12194Caflurenes13208Caflurenes14222Caflurenes15154BPCablenyls + dibenzofuran16168Cablenyls + dibenzofuran17182Cablenyls + Cl Dibenzofuran18178PHENCarbiphenyls + Cl Dibenzofuran19192Carbiphenyls + Cl Dibenzofuran20206Carbiphenyls + Cl Dibenzofuran21220Carphenanthrenes23202PYCarphenanthrenes24216Carphenanthrenes25230Carpyrenes/fluoranthenes26244Carpyrenes/fluoranthenes27258Carpyrenes/fluoranthenes28228CHRCarbiysenes30256Carchysenes31270Carchysenes32284Carchysenes33148BTCarbinysenes34162Carbonysenes35176Carbenzothiophenes36190Carbinzentiophenes	3	148		C ₅ -alkylbenzenes
6 142 C_1 -naphthalenes 7 156 C_2 -naphthalenes 8 170 C_3 -naphthalenes 9 184 C_2 -naphthalenes 10 166 FL C_3 -fluorenes 11 180 C_3 -fluorenes 12 194 C_3 -fluorenes 13 208 C_3 -fluorenes 14 222 C_3 -fluorenes 15 154 BP C_2 -biphenyl 16 168 C_2 -biphenyls + dibenzofuran 17 182 C_2 -biphenyls + C1 Dibenzofuran 18 178 PHEN C_2 -phenanthrene 20 206 C_2 -phenanthrenes 21 220 C_3 -phenanthrenes 22 234 C_3 -phenanthrenes 23 202 PY C_3 -pyrenes/fluoranthenes 24 216 C_3 -pyrenes/fluoranthenes 25 230 C_2 -pyrenes/fluoranthenes 26 244 C_3 -pyrenes/fluoranthenes 27 258 C_4 -phyrsenes/fluoranthenes	4	162		C ₆ -alkylbenzenes
7156C ₂ -naphthalenes8170C ₃ -naphthalenes9184C ₄ -naphthalenes10166FLC ₄ -fluorene11180C ₂ -fluorenes12194C ₂ -fluorenes13208C ₄ -fluorenes14222C ₄ -fluorenes15154BPC ₇ -biphenyl16168C ₇ -biphenyls + dibenzofuran17182C ₇ -biphenyls + C1 Dibenzofuran18178PHENC ₇ -phenanthrenes19192C ₇ -phenanthrenes21220C ₇ -phenanthrenes23202PYC ₇ -phenanthrenes24216C ₇ -pyrenes/fluoranthene25230C ₇ -pyrenes/fluoranthenes26244C ₈ -pyrenes/fluoranthenes27258CHRC ₇ -phrens28228CHRC ₇ -chrysenes30256C ₇ -chrysenes31270C ₇ -chrysenes31148BTC ₁ -benzothiophenes32284CHRC ₇ -bryzenes/fluoranthenes33148BTC ₁ -benzothiophenes34162C ₁ -benzothiophenes35176C ₂ -benzothiophenes36190C ₈ -benzothiophenes	5	128	NAPH	C ₀ -naphthalene
8170C3-naphthalenes9184C4-naphthalenes10166FLCa-fluorene11180C3-fluorenes12194C3-fluorenes13208C3-fluorenes14222C3-fluorenes15154BPC4-fluorenes16168C3-biphenyl17182C3-biphenyls + dibenzofuran18178PHENC3-phenanthrene19192C3-phenanthrenes20206C3-phenanthrenes21220C3-phenanthrenes22234C3-phenanthrenes23202PYC3-phenanthrenes24216C3-pyrenes/fluoranthenes25230C3-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC3-chrysene30256C3-chrysenes31270C3-chrysenes32284CHRC3-chrysenes33148BTC4-chrysenes34162C4-chrysenes35176C3-benzothiophenes36190C4-benzothiophenes	6	142		C ₁ -naphthalenes
9184Cq-naphthalenes10166FLCq-fluorene11180Cq-fluorenes12194Cq-fluorenes13208Cq-fluorenes14222Cq-fluorenes15154BPCg-biphenyls + dibenzofuran16168Cg-biphenyls + dibenzofuran17182Cq-phenanthrene18178PHENCg-phenanthrenes20206Cg-phenanthrenes21220Cg-phenanthrenes2234Cg-phenanthrenes23202PYCg-phenathrenes24216Cg-pyrenes/fluoranthenes25230Cg-pyrenes/fluoranthenes26244Cg-pyrenes/fluoranthenes27258Cq-chrysenes28228CHRCg-chrysenes30256Cg-chrysenes31270Cg-chrysenes32284BTCg-chrysenes33148BTCg-chrysenes34162Cg-benzothiophenes35176Cg-benzothiophenes36190Cg-benzothiophenes	7	156		C_2 -naphthalenes
10166FL C_{a} -fluorene11180C_1fluorenes12194C_2fluorenes13208C_3-fluorenes14222C_4-fluorenes15154BPC_0-biphenyl16168C_2-biphenyls + dibenzofuran17182C_2-biphenyls + C1 Dibenzofuran18178PHENC_0-phenanthrene19192C_1-phenanthrenes20206C_2-phenanthrenes21220C_3-phenanthrenes22234C_1-phenanthrenes23202PYC_1-phens/fluoranthene24216C_1-pyrenes/fluoranthenes25230C_1-pyrenes/fluoranthenes26244C_3-pyrenes/fluoranthenes27258CHRC_1-chrysene28228CHRC_1-chrysenes30256C_2-chrysenes31270C_2-chrysenes32284BTC_1-benzothiophenes33148BTC_2-benzothiophenes34162C_2-benzothiophenes35176C_2-benzothiophenes36190C_4-benzothiophenes	8	170		C_3 -naphthalenes
11180 C_1 -fluorenes12194 C_2 -fluorenes13208 C_3 -fluorenes14222 C_3 -fluorenes15154BP C_0 -biphenyl16168 C_1 -biphenyls + dibenzofuran17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_3 -phenanthrenes23202PY C_0 -pres/fluoranthenes24216 C_3 -pyrenes/fluoranthenes25230 C_3 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_3 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes	9	184		C₄-naphthalenes
12 194 C ₂ -fluorenes 13 208 C ₃ -fluorenes 14 222 C ₄ -fluorenes 15 154 BP C ₇ -biphenyl 16 168 C ₂ -biphenyls + dibenzofuran 17 182 C ₂ -biphenyls + C1 Dibenzofuran 18 178 PHEN C ₀ -phenanthrene 19 192 C ₂ -phenanthrenes 20 206 C ₂ -phenanthrenes 21 220 C ₃ -phenanthrenes 22 234 C ₄ -phenanthrenes 23 202 PY C ₇ -pyrenes/fluoranthene 24 216 C ₁ -pyrenes/fluoranthenes 25 230 C ₂ -pyrenes/fluoranthenes 26 244 C ₃ -pyrenes/fluoranthenes 27 258 CHR C ₁ -chrysenes 30 256 C ₁ -chrysenes 31 270 C ₃ -chrysenes 32 284 CHR C ₁ -chrysenes 33 148 BT C ₁ -benzothiophenes 34 162 C ₂ -benzothiophenes <t< td=""><td>10</td><td>166</td><td>FL</td><td>C₀-fluorene</td></t<>	10	166	FL	C ₀ -fluorene
13208Ca-fluorenes14222Ca-fluorenes15154BPCa-biphenyl16168Ca-biphenyls + dibenzofuran17182Ca-biphenyls + C1 Dibenzofuran18178PHENCa-phenanthrene19192Ca-phenanthrenes20206Ca-phenanthrenes21220Ca-phenanthrenes22234Ca-phenanthrenes23202PYCa-phenanthrenes24216Ca-pyrene/fluoranthenes25230Ca-pyrenes/fluoranthenes26244Ca-pyrenes/fluoranthenes27258CHRCa-pyrenes/fluoranthenes28228CHRCa-chrysenes30256Ca-chrysenes31270Ca-chrysenes33148BTCa-chrysenes34162Ca-chrysenes35176Ca-benzothiophenes36190Ca-benzothiophenes	11	180		C ₁ -fluorenes
14222 C_a -fluorenes15154BP C_a -biphenyl16168 C_a -biphenyls + dibenzofuran17182 C_a -biphenyls + C1 Dibenzofuran18178PHEN C_a -phenanthrene19192 C_a -phenanthrenes20206 C_a -phenanthrenes21220 C_a -phenanthrenes22234 C_a -phenanthrenes23202PY C_a -phenanthrenes24216 C_a -pyrene/fluoranthenes25230 C_a -pyrenes/fluoranthenes26244 C_a -pyrenes/fluoranthenes27258 C_a -pyrenes/fluoranthenes28228CHR C_a -chrysenes30256 C_a -chrysenes31270 C_a -chrysenes32284BT C_a -chrysenes33148BT C_a -benzothiophenes34162 C_a -benzothiophenes35176 C_a -benzothiophenes	12	194		C ₂ -fluorenes
15154BP C_{0} -biphenyl16168 C_{1} -biphenyls + dibenzofuran17182 C_{2} -biphenyls + C1 Dibenzofuran18178PHEN C_{0} -phenanthrene19192 C_{1} -phenanthrenes20206 C_{2} -phenanthrenes21220 C_{3} -phenanthrenes22234 C_{0} -pyrene/fluoranthene23202PY C_{0} -pyrene/fluoranthenes24216 C_{1} -pyrenes/fluoranthenes25230 C_{1} -pyrenes/fluoranthenes26244 C_{0} -pyrenes/fluoranthenes27258 C_{1} -pyrenes/fluoranthenes28228CHR C_{0} -chrysene30256 C_{1} -chrysenes31270 C_{3} -chrysenes32284BT C_{1} -benzothiophenes33148BT C_{1} -benzothiophenes34162 C_{2} -benzothiophenes35176 C_{3} -benzothiophenes	13	208		C ₃ -fluorenes
16168 C_1 -biphenyls + dibenzofuran17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_3 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	14	222		C ₄ -fluorenes
17182 C_2 -biphenyls + C1 Dibenzofuran18178PHEN C_0 -phenanthrene19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_4 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_1 -chrysene30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	15	154	BP	C ₀ -biphenyl
18 178 PHEN C_0 -phenanthrene 19 192 C_1 -phenanthrenes 20 206 C_2 -phenanthrenes 21 220 C_3 -phenanthrenes 22 234 C_3 -phenanthrenes 23 202 PY C_0 -pyrene/fluoranthene 24 216 C_1 -pyrenes/fluoranthenes 25 230 C_2 -pyrenes/fluoranthenes 26 244 C_3 -pyrenes/fluoranthenes 27 258 C_4 -pyrenes/fluoranthenes 28 228 CHR C_0 -chrysene 29 242 C_1 -chrysenes 30 256 C_2 -chrysenes 31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 33 148 BT C_2 -benzothiophenes 34 162 C_3 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	16	168		C ₁ -biphenyls + dibenzofuran
19192 C_1 -phenanthrenes20206 C_2 -phenanthrenes21220 C_3 -phenanthrenes22234 C_4 -phenanthrenes23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284BT C_1 -benzothiophenes33148BT C_1 -benzothiophenes34162 C_3 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	17	182		C ₂ -biphenyls + C1 Dibenzofuran
19192C ₁ -phenanthrenes20206C ₂ -phenanthrenes21220C ₃ -phenanthrenes22234C ₄ -phenanthrenes23202PYC ₀ -pyrene/fluoranthene24216C ₁ -pyrenes/fluoranthenes25230C ₂ -pyrenes/fluoranthenes26244C ₃ -pyrenes/fluoranthenes27258C ₄ -pyrenes/fluoranthenes28228CHRC ₀ -chrysene29242C ₁ -chrysenes30256C ₂ -chrysenes31270C ₃ -chrysenes32284BTC ₁ -benzothiophenes33148BTC ₁ -benzothiophenes34162C ₃ -benzothiophenes35176C ₃ -benzothiophenes36190C ₄ -benzothiophenes	18	178	PHEN	C ₀ -phenanthrene
20206C2-phenanthrenes21220C3-phenanthrenes22234C4-phenanthrenes23202PYC0-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHRC0-chrysene28228CHRC1-chrysenes30256C1-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-chrysenes34162C2-benzothiophenes35176C3-chenzothiophenes36190C4-benzothiophenes	19	192		C ₁ -phenanthrenes
21220C3-phenanthrenes22234C4-phenanthrenes23202PYCo-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHRC4-pyrenes/fluoranthenes28228CHRCo-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	20	206		
23202PY C_0 -pyrene/fluoranthene24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_4 -benzothiophenes	21	220		
24216 C_1 -pyrenes/fluoranthenes25230 C_2 -pyrenes/fluoranthenes26244 C_3 -pyrenes/fluoranthenes27258 C_4 -pyrenes/fluoranthenes28228CHR C_0 -chrysene29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	22	234		C ₄ -phenanthrenes
25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	23	202	РҮ	C ₀ -pyrene/fluoranthene
26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	24	216		C1-pyrenes/fluoranthenes
27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	25	230		C ₂ -pyrenes/fluoranthenes
28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	26	244		C_3 -pyrenes/fluoranthenes
29242 C_1 -chrysenes30256 C_2 -chrysenes31270 C_3 -chrysenes32284 C_4 -chrysenes33148BT C_1 -benzothiophenes34162 C_2 -benzothiophenes35176 C_3 -benzothiophenes36190 C_4 -benzothiophenes	27	258		C ₄ -pyrenes/fluoranthenes
30 256 C_2 -chrysenes 31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	28	228	CHR	C ₀ -chrysene
31 270 C_3 -chrysenes 32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	29	242		C ₁ -chrysenes
32 284 C_4 -chrysenes 33 148 BT C_1 -benzothiophenes 34 162 C_2 -benzothiophenes 35 176 C_3 -benzothiophenes 36 190 C_4 -benzothiophenes	30	256		C ₂ -chrysenes
33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	31	270		C ₃ -chrysenes
34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes	32	284		C₄-chrysenes
35176C3-benzothiophenes36190C4-benzothiophenes	33	148	ВТ	C1-benzothiophenes
35176C3-benzothiophenes36190C4-benzothiophenes	34	162		C ₂ -benzothiophenes
36 190 C ₄ -benzothiophenes	35	176		
	36	190		C ₄ -benzothiophenes
	37	204		


No	m/z	Abbreviation	Compound
	184	DBT	C ₀ -dibenzothiophene
39	198		C ₁ -dibenzothiophenes
40	212		C ₂ -dibenzothiophenes
41	226		C ₃ -dibenzothiophenes
42	240		C ₄ -dibenzothiophenes
43	234	NBT	C ₀ -naphthobenzthiophene
44	248		C_1 -naphthobenzthiophenes
45	262		C ₂ -naphthobenzthiophenes
46	276		C ₃ -naphthobenzthiophenes
47	290		C_4 -naphthobenzthiophenes
48	253	MAS	Monoaromatic steranes
49	267		Monoaromatic steranes
50	239		Monoaromatic steranes
51	231	TAS	Triaromatic steranes
52	245		Triaromatic steranes

Key for Identifying Aromatic Hydrocarbons - Cont.

Aromatic Hydrocarbon Distribution

Aromatic Hydrocarbon Distribution 22995-2 [MW-5] 1/5 DILUTION

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

;

ent. itely.	Page: of	د		REGULATORY AGENCY		UST RCRA OTHER CONST	Site Location	STATE: VIT	sis Filtered (<i>N/</i> N)		(N/Y) эг	Residual Chlorit Residual Chlorit Pace Project No./ Lab I.D.	2			-					DATE TIME SAMPLE CONDITIONS	100 1200 1 - CV - V		d on dy (N) () () () () () () () () () () () () ()	in qrmp in coeive coeive Custo Custo Custo Custo Custo Custo Custo	298) 1 9 1 9 1
CHAIN-OF-CUSIOUY / Analytical Request Poculifient The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.		Section C Invoice Information:	Attention: Key Noge, re		1. Nure tre @pbsusa. rom		Amen Mc Grath		Requested Analysis Filtered (W/N)	Preservatives ₹ 2	23 HOR	4 OF CONTRIVER # OF CONTRIVER # OF CONTRIVER # OF CONTRIVE 	17 2 X		×	ゆく く× ×					DATE TIME ACCEPTED BY / AFFILIATION	61217 1430 XOU PLAN		GNATURE	Ken Nogeric	DATE Signed
	- {.	Section B Required Project Information:	Report To: Key MARY Co Bobs was Com	-1		Purchase Order No.: 413 a 2	Project Name: Church Va V.m.	6		(fisi	C P P P C CONPOSITI	역중統요 2) 글GOD XIATAA 25) 글역YT = 19 20	6 DATE TIME DATE	9	9	L1.6.9				5	RELINQUISHED BY / AFFILIATION D	1		ORIGINAL SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	
Pace Analytical Pittsburgh, PA 15238		Section A Required Client Information:		E. L. L. A. T & 100	agina h					Section D Matrix Codes	232501	SAMPLE ID OI (A-Z, 0-9/r-) Air Sample IDs MUST BE UNIQUE Tissue Other	E Mult		S MM S		6	8	9. 10	11	12 ADDITIONAL COMMENTS	Hold MWZ				

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

i :

........