REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT

CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

Prepared for:

Washington Department of Ecology 4601 N. Monroe, Suite 202 Spokane, Washington 99205-1295 (509) 456-2926

On Behalf of:

Lehigh Cement Company 7660 Imperial Way Allentown, Pennsylvania 18195 (610)530-5400

Prepared by:

GeoSyntec Consultants 2100 Main Street, Suite 150 Huntington Beach, California 92648 (714) 969-0800

5 May 2005

3 March 2005

William J. Fees, P.E. Toxics Cleanup Program Washington Department of Ecology 4601 North Monroe Street Spokane, Washington 99205

Subject: Revised Draft Feasibility Study Technical Report Closed Cement Kiln Dust Pile Metaline Falls, Washington

Dear Mr. Fees:

In accordance with Task 4 of Agreed Order DE99HS-E941, Lehigh Cement Company (Lehigh) is pleased to submit for your review this Revised Draft Feasibility Study Technical Report (Revised dFSTR) for the Closed Cement Kiln Dust (CKD) Pile site (Site) in Metaline Falls, Washington. The Revised dFSTR describes the evaluation of the six alternatives for Site groundwater remedy.

Please call Mr. Smalstig at (714) 969-0800 with questions regarding this document.

Sincerely, Brian Petty

Staff Engineer

Eric Smalstig Project Manager

Copy to: Elizabeth Mikols, Lehigh Cement Company Andrew Fitz, Esq., Washington State Attorney General's Office Tanya Barnett, Brown Reavis & Manning Hank Landau, Geosphere

HR0196-12/MFW05-13_LTR.DOC

5 May 2005

William J. Fees, P.E. Toxics Cleanup Program Washington Department of Ecology 4601 North Monroe Street Spokane, Washington 99205

Subject: Replacement Pages for the Revised Draft Feasibility Study Technical Report Closed Cement Kiln Dust Pile Metaline Falls, Washington

Dear Mr. Fees:

On behalf of Lehigh Cement Company (Lehigh), GeoSyntec Consultants (GeoSyntec) is pleased to submit the enclosed replacement pages for the Revised Draft Feasibility Study Technical Report (Revised dFSTR). Your 27 April 2005 letter states that you have accepted the Revised dFSTR as satisfying Task 4 of Agreed Order DE99HS-E941 and plan to go forward with public comment. We are encouraged and optimistic about the progress on this project.

Since the submittal of the Revised dFSTR on 4 March 2005, we have changed certain portions of the Revised dFSTR based on Ecology comments. Ecology felt that certain portions of the document needed clarification. We are providing the enclosed replacement pages to supersede the following portions of the Revised dFSTR:

- 1. The Executive Summary, in its entirety.
- 2. The text of the Revised dFSTR, in its entirety.
- 3. Exhibit ES-4, 1.1-1, 3.2-1, 4.1-1 through 4.1-7, 4.7-1, and 4.8-1.

HR0196-12/MFW05-13_LTR2.DOC

a se

William J. Fees, P.E. 5 May 2005 Page 2

Please call Mr. Smalstig at (714) 969-0800 with questions regarding this document.

Sincerely,

an

Brian Petty Staff Engineer Eric Smalstig

Project Manager

Copy to: Elizabeth Mikols, Lehigh Cement Company Andrew Fitz, Esq., Washington State Attorney General's Office Tanya Barnett, Cascadia Law Hank Landau, Geosphere

HR0196-12/MFW05-13_LTR2.DOC

REVISED DRAFT FEASIBILITY STUDY REPORT LEHIGH CEMENT COMPANY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

This document was prepared by the staff of GeoSyntec Consultants under the supervision of the engineers whose signatures appear hereon. The findings or professional opinions were prepared in accordance with generally accepted professional engineering and geologic practice. No attempt to verify the accuracy of the data provided by others was made. No warrant incorressed or implied.

03 Date:

Mark Schultheis, P.E., Peer Review

Eric Smalstig, Project Manager

EXECUTIVE SUMMARY REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON

INTRODUCTION

This Revised draft Feasibility Study Technical Report (Revised dFSTR) documents the results of the evaluation of the groundwater-related remedial alternatives¹ for the Closed Cement Kiln Dust (CKD) Pile in Metaline Falls, Washington (Site). Lehigh Cement Company (Lehigh) developed the Revised dFSTR in accordance with the Model Toxics Control Act (MTCA) regulations in Washington Administrative Code (WAC) 173-340-350 et. seq. the Agreed Order AO No. DE99HS-E941A6 (1999 AO), between Lehigh (Lehigh) and the Washington Department of Ecology (Ecology).

BACKGROUND

Lehigh operated a Portland cement production plant in Metaline Falls, Washington, from the early 1900s until 1989. CKD was generated at the plant as a byproduct of the cement production process. Lehigh periodically moved the dust byproduct from the production plant to the CKD pile, which is between the former plant location and State Route 31 (see Exhibit ES-1). The Closed CKD Pile contains approximately 544,000 metric tons of material [Dames and Moore, 1995]. Lehigh owns the Closed CKD Pile.

Ecology began its regulatory oversight of the investigation/remediation of the Site in 1991. Lehigh has implemented remedial actions at the Site since 1996 to address potential exposure pathways as described in Exhibit ES-2. Specifically, the

¹ This Feasibility Study (FS) evaluates remedial alternatives for addressing groundwater at the Metaline Falls Site. This is consistent with the 1999 Agreed Order No. DE-99HS-E941. This is appropriate as other potential risks have been addressed by previous remedial activities (e.g., direct contact with CKD prevented by approved cap placed on CKD pile). Surface water concerns will be addressed by the remediation of the CKD-affected groundwater that seeps to Sullivan Creek.

cover and surface water management facilities at the Closed CKD Pile adequately control these potential pathways:

- Direct contact;
- Inhalation;
- Precipitation-derived percolation into the CKD; and
- Surface water-derived infiltration to the CKD.

The CKD-affected groundwater downgradient of the Closed CKD Pile is localized and under property owned by Lehigh, except for a portion of Washington State Route 31. Additional details on the nature and extent of the affected groundwater are given in the Remedial Investigation (RI) Technical Report [GeoSyntec, 2001] and in the Interim Progress Report on Subsurface Treatability Study [GeoSyntec, 2000].

The CKD-affected groundwater flows north-northeasterly from the Closed CKD Pile, across the area downgradient of the Closed CKD Pile, and into Sullivan Creek. The area of the groundwater aquifer affected by CKD is not currently, nor is it anticipated to be, withdrawn for domestic use. Restrictive covenants will be recorded to ensure continued nonuse. Further groundwater remediation is required to bring the groundwater into compliance with cleanup standards. These actions will also protect surface water in Sullivan Creek.

FEASIBILITY STUDY

Lehigh conducted the Feasibility Study in accordance with the Ch.173-340 WAC and the 1999 AO. To provide the necessary technical information and analysis to select the groundwater remedy, GeoSyntec undertook literature reviews, document searches, conducted laboratory bench-scale and field pilot-scale treatability testing and prepared reports, technical memoranda, and design submittals for Ecology review including:

1. Interim Progress Report No. 1, Subsurface Treatability Study, GeoSyntec, submitted in 2000.

- 2. Feasibility Study Technical Memorandum (FSTM), GeoSyntec, submitted in 2003.
- 3. Pilot System In Situ Treatment Wall Design Drawings, GeoSyntec, submitted in 2001.
- 4. Pilot System In Situ Treatment Wall Construction Report, GeoSyntec, submitted in 2003.
- 5. Quarterly Project Status Reports, GeoSyntec, submitted in 2000, 2001, 2002, 2003, 2004, and 2005.
- 6. Project Status Meetings between Lehigh and Ecology in 2002, 2003, and 2004.
- 7. Supplement to the initial dFSTR, GeoSyntec, submitted in 2004.

Following submittal of the initial draft FSTR in November 2003, Lehigh and Ecology began discussions about additional Site investigations, based on Ecology's belief that data from additional investigations would bolster the dFSTR. In May 2004, Lehigh submitted the Supplement to the Draft Feasibility Study Technical Report and Technical Response to the Department of Ecology Request for Further Field Investigation [GeoSyntec, 2004] to address Ecology's data needs. Ecology then conducted a limited field investigation in July 2004. Ecology's investigation is documented in their letter report, dated 25 October 2004, and is included in the dFSTR (see Appendix B).

Groundwater Remedy Alternatives

The FSTM screened 20 groundwater remedy alternatives [GeoSyntec, 2003]. Lehigh determined that five alternatives passed the screening criteria and recommended that they be evaluated more extensively in the FSTR. After its review of the FSTM, Ecology recommended that the FSTR also include source abatement alternatives (i.e.,

Additional Source Control and Partial Source Removal^2). The FS process, which included further discussions with Ecology, led to the inclusion of two more alternatives. It also led Lehigh to drop one alternative from further consideration and to consolidate three technologies into a single alternative. Accordingly, the following alternatives are evaluated in this Revised dFSTR – See Exhibit ES-3.

- Alternative #1 Permeable Treatment Wall (PTW)
- Alternative #2 Groundwater Control (GWC)
- Alternative #3 Additional Source Control (ASC)
- Alternative #4 Partial Source Removal (PSR)
- Alternative #5 Funnel and Gate Treatment (FGT)
- Alternative #6 Partial Additional Source Control (PASC)

PTW (*Alternative 1*) extends the existing Pilot System treatment zone along the east side of State Route 31. CKD-affected groundwater passes through a treatment zone prior to migrating to Sullivan Creek. To address possible gaps between the treatment panels, PTW includes a limited number of wells that will extract water. This groundwater will be routed back to the treatment zone.

GWC (*Alternative 2*) continues operation of the existing pilot PTW and adds extraction wells to capture the remaining CKD-affected groundwater plume. The extracted groundwater is treated aboveground to meet cleanup standards by reducing the pH and precipitating the arsenic. The treated groundwater is discharged to Sullivan Creek.

ASC (*Alternative 3*) includes a low permeability vertical barrier (i.e., slurry wall) hydraulically upgradient of the Closed CKD Pile to direct water away from the CKD, with dewatering wells on the upgradient side of the slurry wall to capture and reroute the water around the Closed CKD Pile. The slurry wall keys into the underlying aquitard that ranges from approximately sixty to 120 feet deep. The slurry wall and dewatering wells achieve source control by reducing the amount of water that contacts CKD. ASC generates less CKD-affected water, but does not eliminate it. Inherent

² 6/11/03 Ecology correspondence to Eric Smalstig, GeoSyntec Consultants, and follow-up Ecology correspondence with Jay Manning, Esq., Brown Reavis & Manning, PLLC.

permeability and potential imperfections in the slurry wall, combined with possibility of water upwelling into the base of the Closed CKD Pile, prevent ASC from completely eliminating the generation of CKD-affected water. Thus, ASC includes downgradient groundwater extraction and aboveground treatment components. The downgradient systems are flexible, allowing modification over time as the benefits of the upgradient slurry wall and dewatering wells are realized.

PSR (Alternative 4) uses sheet piles to isolate and stabilize a portion of the toe of the Closed CKD Pile and then removes approximately 5,500 cubic yards to access the CKD that Ecology documented is in contact with groundwater under the toe [Ecology, 1997]. The PSR alternative also involves accessing CKD through the top deck of the Closed CKD Pile by removing a portion of the engineered cover, and excavating CKD using conventional slope back techniques. Excavating this area of CKD through the top deck involves removing approximately 260,000 cubic yards of CKD to access the CKD in contact with groundwater at the lower reaches of the pile [Ecology, 1997]. PSR requires the construction of a temporary storage area of about five acres in size, to hold the dangerous waste during excavation and backfilling. PSR places a non-reactive engineered fill and geotextile layers into the excavated area and then places the temporarily-stockpiled CKD back into the excavation. The CKD that does not fit back into the excavation will be hauled off-site for disposal. PSR includes reconstructing the breached and damaged engineered cover. Ecology suggested that the PSR evaluation include an assumption that only short-term groundwater treatment (five years) would be needed downgradient of the Closed CKD Pile after implementing the CKD removal operations of PSR. Lehigh has presented data and analysis showing that PSR will not be effective enough to obviate groundwater treatment over the long term. Lehigh developed two scenarios to evaluate PSR: scenario one assumes that the Site meets cleanup levels after five years and scenario two assumes that the Site needs indefinite treatment to meet clean up levels.

FGT (*Alternative 5*) installs a system of shallow (ten to twenty feet deep) subterranean slurry walls and gravel drainage layers downgradient of the Closed CKD Pile. The slurry walls and drainage layers funnel groundwater toward a central treatment corridor, where the water is treated in situ with the technology used in the Pilot System and described in *Alternative 1*, PTW. Although FGT is not a flexible alternative, FGT offers a higher degree of hydraulic control than PTW while still using

HR0196-12/MFW05-13_ES

in situ treatment technology tested in the Pilot System at the Site. A subsurface discharge corridor conveys the treated water to Sullivan Creek.

PASC (*Alternative 6*) pursues two concepts in remediation: source control and downgradient in situ treatment. PASC supplements the FGT remedy with a gravity drain installed under the Closed CKD Pile. The gravity drain is a source control technology that captures and redirects unaffected groundwater away from the Closed CKD Pile. The gravity drain intercepts water that would eventually contact and inundate the CKD. The amount of downgradient treatment will decrease with time as inundated CKD is dewatered due to the gravity drain and the transient drainage in the Closed CKD Pile reaches an equilibrium condition.

Evaluation Criteria

This Revised dFSTR uses the following criteria, identified in MTCA and the 1999 AO to evaluate each of the six alternatives.

- WAC 173-340-360(2)(a) Threshold Criteria:
 - Protect human health and the environment
 - Comply with cleanup standards
 - Comply with applicable federal and state requirements (ARARs)
 - Provide for compliance monitoring.
- WAC 173-340-360(2)(b) "Other Requirements":
 - Use permanent solutions to the maximum extent practicable (analysis is based on the disproportionate cost test described below)
 - Provide for a "reasonable restoration timeframe" to meet cleanup standards

- DRAFT
- Consider public concerns.
- WAC 173-340-360(3)(f) Evaluation Criteria ("Disproportionate Cost Analysis"):
 - Protectiveness
 - Permanence
 - Cost
 - Effectiveness over the long term
 - Management of short-term risks
 - Technical and administrative implementability
 - Consideration of public concerns (considered under "other requirements")
- 1999 AO Additional Criterion:
 - Prevent Domestic Use of CKD-affected Groundwater.

Comparison of Alternatives

All alternatives meet the threshold criteria, so this summary omits that discussion. The comparison focuses on the differences between the alternatives, which involve the elements that MTCA considers under the analysis of costdisproportionality. MTCA gives preference to permanent remedies. Lehigh's evaluation shows that no permanent remedy exists for the Site. Lehigh understands that according to Ecology PSR is a permanent remedy given certain conditions. Although Lehigh and Ecology disagree whether PSR is permanent, they agree that it exhibits the highest degree of permanence of the alternatives evaluated in the Revised dFSTR. Therefore, Lehigh and Ecology agree that PSR is the baseline against which other alternatives are compared. Each of the alternatives except PSR (scenario one) is a long-term treatment based alternative. Therefore with respect to the restoration timeframe criterion each has the same ranking.

Protectiveness: All alternatives present some short-term risks during construction. However, the construction risks associated with PSR, and to a lesser extent ASC, are significant. PSR also has the largest volume of material (untreated CKD) requiring off-site disposal. ASC and GWC involve off-site disposal of non-

HR0196-12/MFW05-13_ES

hazardous treatment residuals. The other three alternatives (PTW, FGT, and PASC) do not generate wastes requiring off-site disposal. Finally, all alternatives are expected to reduce risks at the Site to the same degree and in approximately the same time frame, with the exception of the first PSR groundwater treatment scenario (i.e., PSR with short-term treatment). Under that scenario, PSR would reduce risks over a larger area than other alternatives. Considering the factors that contribute to protectiveness, PASC ranks highest, followed by PTW, GWC, FGT, and ASC. PSR ranks lowest under either groundwater treatment scenario.

Permanence: All alternatives provide a high degree of permanence because they treat (i.e., reduce toxicity and mobility of hazardous substances) groundwater by permanently neutralizing the pH and decreasing arsenic concentrations to meet cleanup levels. PSR, ASC, and PASC provide even higher degrees of permanence because they include source control components that reduce the volume of hazardous substances in groundwater. Because PSR has the potential for the greatest reduction in hazardous substance volume, it ranks the highest for permanence, followed by ASC, PASC, FGT, PTW, and GWC.

Cost: The least expensive alternative is GWC, followed by PTW, FGT, and PASC. ASC is two or three times more costly than GWC, and the cost of PSR is an order of magnitude higher than GWC.

Effectiveness Over the Long Term: All alternatives will be effective over the long term. All incorporate treatment technologies that have proven successful. In addition, PSR and PASC incorporate source control components that will reduce the volume of hazardous substances. However, PSR may lose some effectiveness over time, as hydrogeologic conditions at the Site change. ASC also incorporates source control in the form of a slurry wall, but it will be difficult to maintain this wall over the long term. If the wall deteriorates or fails, ASC will lose some of its effectiveness. The source control component of PASC is expected to remain reliable over time. On this criterion, PASC and PSR (groundwater treatment scenario one) rank highest, followed by PTW, GWC, FGT, and PSR (groundwater treatment scenario two). ASC ranks lowest.

DRAFT

Management of Short-Term Risks: PASC, PTW, GWC, and FGT use relatively conventional construction practices, each involving short-term risks that are easily managed. While ASC uses a conventional technology, there is a danger that construction will activate the historic landslide area. Thus, ASC poses significant short-term risks. PSR also uses conventional technologies, but applies them in a soft soil that is unstable and subject to liquefaction. Furthermore, PSR requires workers to excavate and manage very large volumes of CKD, a dangerous waste. Hundreds of truckloads of CKD will be transported off-site for disposal. Thus, PASC, PTW, GWC, and FGT rank the highest on this criterion. The ASC alternative ranks below these alternatives, and PSR ranks lowest.

Technical Implementability: While all of the alternatives can be implemented, PASC, PTW, GWC, and FGT present far fewer technical implementation challenges than either ASC or PSR. ASC requires work in the vicinity of the historic landslide. PSR requires handling significant quantities of CKD, excavating CKD under liquefiable conditions, counteracting CKD slope instability, transporting CKD on public roads, and temporarily storing CKD before either backfilling or shipping off-site for disposal. Thus, GWC, PTW, FGT, and PASC rank highest, while ASC and PSR rank lowest on this criterion.

Administrative Implementability: Lehigh owns the land needed to implement GWC, PTW, and FGT. It may need to acquire or obtain access to other land to implement PASC, ASC, and PSR. For PSR, Lehigh will need approximately five acres of land on which to temporarily store CKD. All alternatives will require Lehigh to obtain an NPDES permit to discharge treated groundwater, except for PTW. Considering these factors, PTW ranks the highest, followed by FGT, GWC, PASC, ASC (at approximately the same ranking), and finally PSR ranks the lowest.

Schedule: GWC has the shortest installation schedule, followed by FGT. PTW and PASC require approximately one additional month to install. ASC requires approximately two additional months. PSR has by far the longest construction schedule, approximately three years longer than the other alternatives.

Public Concerns: The public has not had an opportunity yet to review these alternatives. The MTCA process allows the public several opportunities to

HR0196-12/MFW05-13_ES

provide input on remedy selection. The public will have an opportunity to comment on this Revised dFSTR, and Ecology will address public concerns before finalizing this document. Therefore, public comments will be considered for each of the alternatives upon receipt of the comments, giving each alternative the same ranking at this time for this criterion.

Based on the factors in the disproportionate cost analysis, the cost of PSR, in terms of dollars, difficulty in implementation, and short-term risks, is disproportionate to its potential benefits under either groundwater treatment scenario. ASC also has a high degree of permanence, but has significant short-term risks and costs that are disproportionate to its benefits.

The most promising option for satisfying the MTCA and 1999 AO criteria is combining a practical and cost-effective source control method with downgradient groundwater control components. The PASC alternative adds an additional source control component, the gravity drain installed under the Closed CKD Pile, to the collection and treatment concept presented in the FGT alternative. The FGT components of the PASC alternative will achieve compliance with cleanup standards, whether the gravity drain is added or not. However, the gravity drain is practical, cost effective and reduces the volume of water that contacts the CKD. Despite the fact that the six alternatives meet the threshold evaluation criteria (Exhibit ES-4), PASC best balances the applicable remedy selection criteria. PASC will meet the cleanup standards with a significant degree of permanence and achieves the greatest benefit for the cost expended. PASC offers the following key advantages:

- Meets cleanup standards and ARARs, and therefore enhances the CKD closure systems to protect human health and the environment;
- Uses demonstrated and proven technologies that are technically and administratively implementable;
- Will reduce the volume of CKD-affected groundwater generated at the Site, giving this alternative one of the highest degrees of permanence;

- Avoids the short-term risks, implementability concerns, and high cost associated with PSR, the baseline alternative; and
- Includes practical and cost-effective source control, providing significant benefits at a proportionate cost.

Groundwater Remedy Recommendation

Because PASC meets the evaluation criteria, provides a source control component, is practical and implementable, has a high degree of permanence and achieves the greatest benefit for the cost expended, Lehigh proposes the PASC system as the preferred remedy for the Site. PASC meets MTCA threshold and balancing requirements. In addition, it is permanent to the maximum extent practicable. The components of PASC include:

- A gravity drain installed under the southern side of the Closed CKD Pile to intercept and divert groundwater from contacting the Closed CKD Pile;
- Downgradient hydraulic control to funnel the CKD-affected groundwater to the treatment zone;
- In situ treatment using a demonstrated technology;
- Construct the necessary support facilities in or around the Existing Building; and
- Institutional controls and additional monitoring activities, including: (a) warning signage; (b) fencing; (c) restrictive covenants; and (d) ongoing compliance monitoring.

Exhibit 4.8-1 presents a conceptual layout of the PASC remedy. The recommended PASC system use the following design and operating criteria:

- The gravity drain is a source control component that reduces the CKD-affected water requiring treatment;
- The groundwater treatment technology is a demonstrated technology that meets proposed cleanup levels and ARARs, and therefore protects human health and the environment;
- The treatment zone produces no residual waste that requires temporary on-site storage, transport and off-site disposal, thereby optimizing resource expenditures on operation and maintenance; and
- The funnel and gate components accommodate the complex hydrogeology at the Site by using engineered structures to direct water.

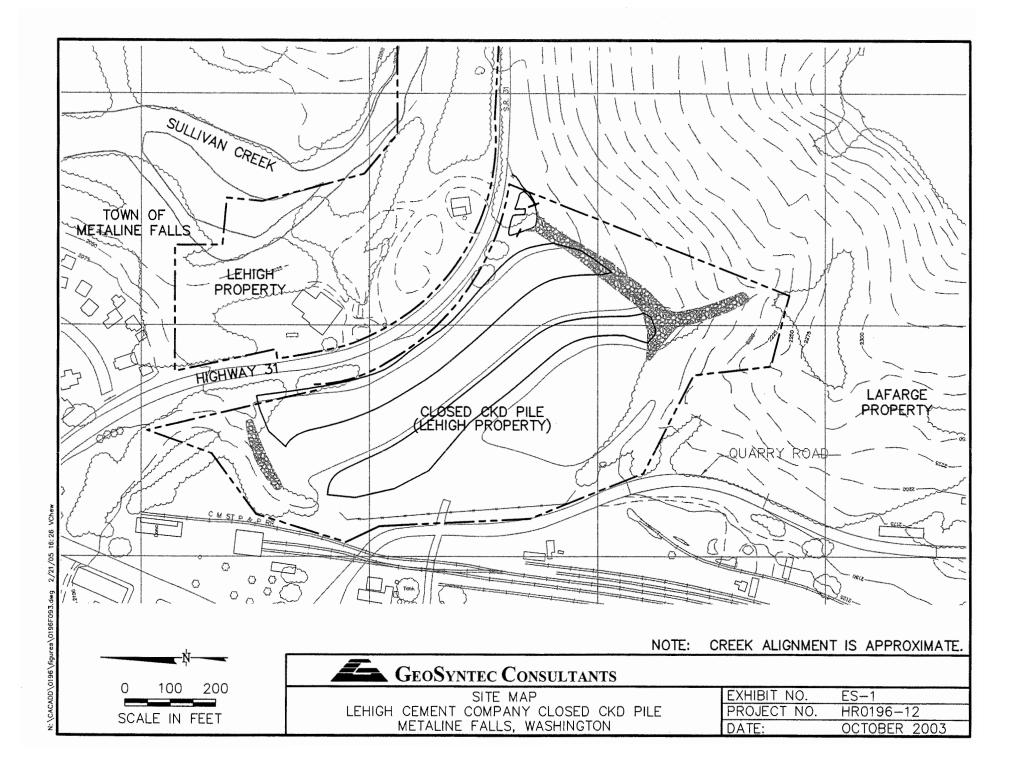
The PASC system will be maintained indefinitely.

Ecology will set the actual cleanup levels following finalization of the FSTR in the Cleanup Action Plan (CAP). Lehigh made the assumption for the purposes of this Revised dFSTR that Method A cleanup levels will apply to groundwater at the Site. Lehigh proposes the following with respect to cleanup standards:

- *Cleanup Levels (CLs).* The proposed cleanup levels relevant to the Site are pH in the range between 6.5 to 8.5, and a maximum arsenic concentration of 5.0 parts per billion.
- *Point of Compliance (POC)*. Lehigh proposes a conditional point of compliance at a point downgradient of the PASC system and upgradient of Sullivan Creek. The POC follows the last treatment component of PASC and precedes Sullivan Creek.

The cleanup standards assumptions allowed Lehigh to evaluate and compare each alternative's ability to meet cleanup standards at the Site for the purposes of conducting a FS. The method of evaluating compliance with cleanup standards will be established during development of the monitoring program defined in the CAP and design phases of the project. As stated previously, Ecology will ultimately set the actual cleanup standards in the CAP.

SCHEDULE


The actual construction schedule for the PASC Alternative will depend on:

- FSTR review process, including public comment;
- Preparation and approval of the draft CAP and consent decree;
- Regulatory review and permitting particularly NPDES permitting;
- Specialty contractor availability; and
- Favorable weather conditions.

Lehigh analyzed the future project deliverables, scheduling milestones, and implementation timeframe for PASC. Lehigh believes that the PASC can be installed in summer 2006 (see Exhibit 6.4.1). Lehigh will work with Ecology to achieve this goal.

CONCLUSION

The preferred alternative, PASC, combines a source control component with in situ groundwater treatment that restores the localized groundwater downgradient of the Closed CKD Pile, allowing the Site to meet cleanup standards. PASC has a high degree of permanence, produces benefits that are not cost-disproportionate, is implementable, and uses a demonstrated treatment technology.

EXHIBIT ES-2 SITE REMEDIES REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON

Goals	Remedy Component	Date of Implementation
Isolate CKD to prevent direct contact exposure pathway.	Source Control, 7-acre engineered composite cover, surface water management system, and access control (fences and warning signs).	1995-96
Isolate CKD to prevent dust inhalation exposure pathway and nuisance dust.	Source Control, 7-acre engineered composite cover, surface water management system, and access control (fence and warning signs).	1995-96
Isolate high pH groundwater seeps near Highway 31 to prevent direct contact exposure pathway.	WDOT deck extension, engineered backfill.	1998
Restore groundwater aquifer downgradient of CKD pile.	Pilot in-situ permeable wall treatment. Full-scale groundwater	Started in 2002 Could be as early as
	remedy installation.	2006
Stop appearance of localized seeps near Sullivan Creek to prevent direct exposure.	Full-scale groundwater remedy installation. Access control.	Could be as early as 2006

DRAFT Initial Alternative List for the FSTM: FSTM 1. CKD excavation and removal and off-site disposal [GeoSyntec, 2003b] 2. Limited CKD source removal In situ containment by vertical CKD pile soil mixing/cement grouting 3. In situ containment by vertical CKD pile chemical grouting 4. 5. In situ containment by horizontal/angled CKD pile soil **Final Alternative List** mixing/cement grouting from the FSTM: Alternatives In situ containment by horizontal/angled CKD pile chemical grouting 6. **Evaluated in dFSTR:** 1. Carbon Dioxide In 7. Source abatement by chemical infiltration 1. Permeable Treatment Situ Permeable 8. In situ neutralization by horizontal CKD pile drainage/buffering Treatment Wall Wall (PTW) In situ neutralization by metallic iron in situ permeable treatment 2. Gaseous Carbon 2. Pump-and-Treat wall Dioxide In Situ (P&Ť) Sparging Points 10. In situ neutralization by carbohydrate in situ permeable treatment 3. Additional Source wall 3. Pump-and-Treat Control (ASC) with Ferric Chloride 11. In situ neutralization by acid in situ permeable treatment wall-acid 4. Partial Source Addition injection Removal (PSR) 4. Pump-and-Treat 12. In situ neutralization by carbon dioxide in situ permeable treatment 5. Groundwater Control with Carbon Dioxide wall (GWC) or Carbonic Acid 13. In situ neutralization by gaseous carbon dioxide in situ sparging 6. Source and Seep Addition points Control (SSC) 5. Pump-and-Treat 14. In situ oxidation by pyrite in situ permeable reactive treatment wall with Strong Acid 15. In situ oxidation by electrochemical water oxidation Addition 16. Pump and treat with strong acid addition 17. Pump and treat with weak acid formation/addition (carbon dioxide Washington Department of Discussions and collaboration (CO_2) /carbonic acid (H₂CO₂) addition) Ecology (11 June 2003 Letter) with the Washington Department of Ecology. Request to consider "Source

- 18. Pump and treat with ferric chloride (FeCl₂) addition
- 19. In situ containment by slurry wall and hydraulic control
- 20. No further action

PROJECT NO. HR0196-12

Final Alternatives

dFSTR:

1. Permeable Treatment

2. Groundwater Control

3. Additional Source

Control (ASC)

Removal (PSR)

5. Funnel and Gate

Treatment (FGT)

6. Partial Additional

Source Control

(PASC)

4. Partial Source

Wall (PTW)

(GWC)

Evaluated in Revised

DATE MARCH 2005

EXHIBIT NO. ES-3

Ecology's 4 January 2005

expected final alternatives.

letter summarizes Ecology's

Abatement Options."

GEOSYNTEC CONSULTANTS

ALTERNATIVES FS SCREENING PROCESS REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT

LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON

(re: Additional Source Control

or Partial Source Removal)

EXHIBIT ES-4 COMPARATIVE ANALYSIS OF ADDITONAL SITE REMEDY ALTERNATIVES LEHIGH CEMENT COMPANY CKD PILE METALINE FALLS, WASHINGTON

	#1 – PTW	#2 – GWC	#3 – ASC	#4 – PSR (Scenario 1)	#4 – PSR (Scenario 2)	#5 – FGT	#6 - PASC
	In situ groundwater treatment with carbon dioxide via diffusion.	Combination of existing Pilot System and approximately 16 P&T extraction wells.	Slurry wall upgradient of closed CKD pile; upgradient dewatering; downgradient P&T.	Remove and replace the following closed CKD pile portions: toe using sheet piles; middle bulk excavation. Groundwater treatments using GWC for 5 years.	Remove and replace the following closed CKD pile portions: toe using sheet piles; middle via bulk excavation. Groundwater treatment using GWC indefinitely.	Funnel downgradient groundwater to treatment using the in situ PTW technology	FGT combined with a gravity drain to intercept water prior to water-CKD contact and divert it away from the Closed CKD Pile.
OVERALL RATING	MODERATE	HIGH	LOW	LOWEST	LOWEST	MODERATE	VERY HIGH
WAC THRESHOLD CRITERIA		-	-		-	-	-
Protect Human Health and the Environment	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Comply with Cleanup Standards	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Comply with ARARs	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Provide for Compliance Monitoring Protection Performance Confirmation	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
OTHER WAC REQUIREMENTS		•	-				•
Use of Permanent Solutions to the Maximum Extent Practicable				Disproportionate Cost Analysis ⁽¹⁾			
Protectiveness	Moderate-High	Moderate-High	High	Low	Low	Moderate-High	Highest
Permanence	High	High	Higher	Highest-Baseline ⁽²⁾	Highest-Baseline ⁽²⁾	High	Higher
Cost (in millions of dollars) ⁽³⁾ Implementation OMM Total Effectiveness over the Long Term	\$2.1 \$2.2 \$4.3 Moderate-High	\$1.1 \$3.0 \$4.1 Moderate-High	\$9.1 - \$14 \$3.2 \$12.3 - \$17.2 Moderate-Low	\$17.4 - \$24.2 \$1.4 \$18.8 - \$25.6 Low	\$17.4 - \$24.2 \$3.0 \$20.4 - \$27.2 High	\$2.3 - \$2.6 \$2.1 \$4.4 - 4.7 Moderate-High	\$2.4 - \$3.0 \$2.1 \$4.5 - \$5.1 High
Management of Short-Term Risks	Easy	Easy	Difficult	Very Difficult	Very Difficult	Easy	Easy
Technical and Administrative Implementability	High	Moderate	Moderate – Low	Low	Low	Moderate	Moderate
Consideration of Public Concerns ⁽⁴⁾	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Disproportionate Cost Analysis Results	Practicable, Moderate Permanence	Practicable, Moderate Permanence	Disproportionate Costs	Very Difficult, Disproportionate Costs	Very Difficult, Disproportionate Costs	Practicable, Moderate Permanence	Practicable, High Permanence
Provide for a Reasonable Restoration Time Frame	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Consider Public Concerns ⁽⁴⁾	Yes	Yes	Yes	Yes	Yes	Yes	Yes
1999 AO ⁽⁵⁾ OBJECTIVES							
Prevent Domestic Use of CKD-Affected Groundwater	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: (1) As defined in Washington Administrative Code 173-340-360(3)(e)

 (2) PSR has the highest degree of permanence. This Revised dFSTR evaluates the alternatives based on two groundwater treatment scenarios.
 (3) Appendix E lists elements of the alternatives that were included in the cost estimates. Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables (Exhibits 4.1-8, 4.3-2, 4.4-2, 4.5-2, 4.6-2, 4.7-2, and 4.8-2), show results for other project durations and discount rates.

(4) The public will be provided with opportunities to comment on project documents. Ecology will address public comments before finalizing this document.

(5) Agreed Order DE99HS-E941

HR0196-12/MFW05-13_EES4.DOC

GeoSyntec Consultants

5 MAY 05 / 12:00 PM

DRAFT

TABLE OF CONTENTS

1.	INTRO	TRODUCTION			
	1.1	Terms of Reference	1		
	1.2	Organization of the Feasibility Study Technical Report			
2.	BACK	GROUND	3		
	2.1	General	3		
	2.2	Site Location and Layout	3		
	2.3	Site Environmental Data			
		2.3.1 Surface Water	4		
		2.3.2 Site Geology			
		2.3.3 Site Hydrogeology			
		2.3.4 CKD Effects on Groundwater			
	2.4	Site Regulatory History			
	2.5	Previous Site Remedial Actions			
	2.3	2.5.1 General			
		2.5.2 Source Control			
		2.5.2 Downgradient Controls - Deck Extension			
		2.5.4 Pilot Test - In Situ Groundwater Treatment Wall			
		2.5.5 Performance Evaluation			
	2.6	Feasibility Study Technical Memorandum			
	2.0	Teasionity Study Teennical Memorandum	15		
3.	REGU	JLATORY FRAMEWORK FOR ADDITIONAL REMEDY			
	ALTE	RNATIVE SELECTION	15		
	3.1	Introduction	15		
	3.2	Remedy Selection under MTCA	15		
		3.2.1 General	15		
		3.2.2 Threshold Requirements	16		
		3.2.2.1 Introduction			
		3.2.2.2 Protect Human Health and the Environment	16		
		3.2.2.3 Cleanup Standards			
		3.2.2.4 Cleanup Levels			
		3.2.2.5 Point of Compliance			
		3.2.2.6 Applicable Federal and State Laws - ARARs			
		3.2.2.7 Compliance Monitoring			

D R A F T

TABLE OF CONTENTS (continued)

		3.2.3	Other Requirements	
			3.2.3.1 Introduction	22
			3.2.3.2 Permanent Solutions to the Maximum Extent	22
			Practicable	
		3.2.4	Groundwater Cleanup Requirements	29
4.	EVAI	LUATIO	ON OF ADDITIONAL GROUNDWATER SITE REMEDY	
	ALTE	ERNAT	IVES	31
	4.1	Gener	al	31
	4.2		non Components	
	7.2	4.2.1	General	
			Institutional Controls	
		4.2.3	Compliance Monitoring	
	4.3		eable Treatment Wall (PTW)	
	1.5	4.3.1	PTW-Alternative Description	
			4.3.1.1 General	
			4.3.1.2 System Description	
			4.3.1.3 System Performance	
			4.3.1.4 Construction Schedule	
		4.3.2	PTW-Protect Human Health and the Environment	
		4.3.3	PTW-Comply With Cleanup Standards	
		4.3.4	PTW-Comply With Applicable Federal and State Laws	
		4.3.5	PTW-Provide for Compliance Monitoring	
		4.3.6	PTW-Use Permanent Solution to the Maximum Extent	
			Practical	39
			4.3.6.1 Introduction	
			4.3.6.2 PTW-Protectiveness	
			4.3.6.3 PTW-Permanence	39
			4.3.6.4 PTW-Cost	40
			4.3.6.5 PTW-Effectiveness Over the Long Term	40
			4.3.6.6 PTW-Management of Short-Term Risks	
			4.3.6.7 PTW-Technical and Administrative	
			Implementability	41
			4.3.6.8 PTW-Consideration of Public Concerns	
		4.3.7	PTW-Provide a Reasonable Restoration Time Frame	42

TABLE OF CONTENTS (continued)

	4.3.8	PTW-Consider Public Concerns		
	4.3.9	PTW-Prevent Domestic Use of CKD-Affected Groundwater.		
4.4	Groun	dwater Control (GWC)		
	4.4.1	GWC-Alternative Description	43	
		4.4.1.1 General	43	
		4.4.1.2 System Description	43	
		4.4.1.3 System Performance	45	
		4.4.1.4 Construction Schedule	46	
	4.4.2	GWC-Protect Human Health and the Environment	47	
	4.4.3	GWC-Comply With Cleanup Standards	47	
	4.4.4	GWC-Comply With Applicable Federal and State Laws	47	
	4.4.5	GWC-Provide for Compliance Monitoring	48	
	4.4.6	GWC-Use Permanent Solution to the Maximum Extent		
		Practical	48	
		4.4.6.1 Introduction	48	
		4.4.6.2 GWC-Protectiveness	48	
		4.4.6.3 GWC-Permanence	48	
		4.4.6.4 GWC-Cost	49	
		4.4.6.5 GWC-Effectiveness Over the Long Term		
		4.4.6.6 GWC-Management of Short-Term Risks	49	
		4.4.6.7 GWC-Technical and Administrative		
		Implementability	50	
		4.4.6.8 GWC-Consideration of Public Concerns	50	
	4.4.7	GWC-Provide a Reasonable Restoration Time Frame		
	4.4.8	GWC-Consider Public Concerns	51	
	4.4.9	GWC-Prevent Domestic Use of CKD-Affected Groundwater	51	
4.5	Addit	ional Source Control (ASC)		
	4.5.1	ASC-Alternative Description	51	
		4.5.1.1 General	51	
		4.5.1.2 System Description	52	
		4.5.1.3 System Performance		
		4.5.1.4 Construction Schedule		
	4.5.2	ASC-Protect Human Health and the Environment	55	
	4.5.3	ASC-Comply With Cleanup Standards	56	
	4.5.4	ASC-Comply With Applicable Federal and State Laws	56	
	4.5.5	ASC-Provide for Compliance Monitoring	57	

TABLE OF CONTENTS (continued)

Page

	4.5.6	ASC-Use Permanent Solution to the Maximum Extent	
		Practical	
		4.5.6.1 Introduction	
		4.5.6.2 ASC-Protectiveness	57
		4.5.6.3 ASC-Permanence	57
		4.5.6.4 ASC-Cost	
		4.5.6.5 ASC-Effectiveness Over the Long Term	59
		4.5.6.6 ASC-Management of Short-Term Risks	59
		4.5.6.7 ASC-Technical and Administrative	
		Implementability6	
		4.5.6.8 ASC-Consideration of Public Concerns	60
	4.5.7	ASC-Provide a Reasonable Restoration Time Frame	60
	4.5.8	ASC-Consider Public Concerns	
	4.5.9	ASC-Prevent Domestic Use of CKD-Affected Groundwater 6	61
4.6	Partia	l Source Removal (PSR)	61
	4.6.1	PSR-Alternative Description	61
		4.6.1.1 General	61
		4.6.1.2 System Description	63
		4.6.1.3 System Performance	65
		4.6.1.4 Construction Schedule	67
	4.6.2	PSR-Protect Human Health and the Environment	68
	4.6.3	PSR-Comply With Cleanup Standards	68
	4.6.4	PSR-Comply With Applicable Federal and State Laws	68
	4.6.5	PSR-Provide for Compliance Monitoring	69
	4.6.6	PSR-Use Permanent Solution to the Maximum Extent	
		Practical	69
		4.6.6.1 Introduction	69
		4.6.6.2 PSR-Protectiveness	69
		4.6.6.3 PSR-Permanence	70
		4.6.6.4 PSR-Cost	71
		4.6.6.5 PSR-Effectiveness Over the Long Term	71
		4.6.6.6 PSR-Management of Short-Term Risks	72
		4.6.6.7 PSR-Technical and Administrative	
		Implementability7	73
		4.6.6.8 PSR-Consideration Public Concerns	74
	4.6.7	PSR-Provide a Reasonable Restoration Time Frame	74

HR0196/MFW05-13-TOC.DOC

05 05 25/09:32

D R A F T

TABLE OF CONTENTS (continued)

	4.6.8	PSR-Consider Public Concerns		
	4.6.9	PSR-Prevent Domestic use of CKD-Affected Groundwater	74	
4.7	Funnel	and Gate Treatment (FGT)	75	
	4.7.1	FGT-Alternative Description	75	
		4.7.1.1 General	75	
		4.7.1.2 System Description	75	
		4.7.1.3 System Performance	77	
		4.7.1.4 Construction Schedule	78	
	4.7.2	FGT-Protect Human Health and the Environment	79	
	4.7.3	FGT-Comply With Cleanup Standards	79	
	4.7.4	FGT-Comply With Applicable Federal and State Laws	80	
	4.7.5	FGT-Provide for Compliance Monitoring	80	
	4.7.6	FGT-Use Permanent Solution to the Maximum Extent		
		Practical		
		4.7.6.1 Introduction		
		4.7.6.2 FGT-Protectiveness	80	
		4.7.6.3 FGT-Permanence		
		4.7.6.4 FGT-Cost		
		4.7.6.5 FGT-Effectiveness Over the Long Term		
		4.7.6.6 FGT-Management of Short-Term Risks	82	
		4.7.6.7 FGT-Technical and Administrative		
		Implementability		
		4.7.6.8 FGT-Consideration of Public Concerns		
	4.7.7	FGT-Provide a Reasonable Restoration Time Frame		
	4.7.8	FGT-Consider Public Concerns		
	4.7.9	FGT-Prevent Domestic Use of CKD-Affected Groundwater		
4.8		Additional Source Control (PASC)		
	4.8.1	PASC-Alternative Description		
		4.8.1.1 General		
		4.8.1.2 System Description		
		4.8.1.3 System Performance		
		4.8.1.4 Construction Schedule		
	4.8.2	PASC-Protect Human Health and the Environment		
	4.8.3	PASC-Comply With Cleanup Standards		
	4.8.4	PASC-Comply With Applicable Federal and State Laws		
	4.8.5	PASC-Provide for Compliance Monitoring	88	

TABLE OF CONTENTS (continued)

Page

	4.8.6	PASC-U	Jse Permanent Solution to the Maximum Extent	
		Practica	1	
		4.8.6.1	Introduction	
		4.8.6.2	PASC-Protectiveness	
		4.8.6.3	PASC-Permanence	89
		4.8.6.4	PASC-Cost	89
		4.8.6.5	PASC-Effectiveness Over the Long Term	89
		4.8.6.6	PASC-Management of Short-Term Risks	90
		4.8.6.7	PASC-Technical and Administrative	
			Implementability	90
		4.8.6.8	PASC-Consideration of Public Concerns	91
	4.8.7	PASC-F	Provide a Reasonable Restoration Time Frame	91
	4.8.8	PASC-C	Consider Public Concerns	91
	4.8.9	PASC-F	Prevent Domestic Use of CKD-Affected Groundwa	ater91
COM	IPARAT	TIVE ANA	ALYSIS OF ALTERNATIVES	92
5.1	Introd	uction		
5.2			iirements	
5.3	Use P	ermanent	Solution to the Maximum Extent Practical	93
	5.3.1	Introduc	ction	93
	5.3.2	Protectiv	veness	93
	5.3.3	Permane	ence	95
	5.3.4	Cost		96
	5.3.5	Effectiv	eness Over the Long Term	97
	5.3.6	Manage	ment of Short-Term Risks	98
	5.3.7	Technic	al and Administrative Implementability	98
	5.3.8	Public C	Concerns	100
	5.3.9	Disprop	ortionate Cost Analysis Results	100
5.4	Provid	de a Reaso	onable Restoration Time Frame	102
5.5	Consi	der Public	c Concerns	103
5.6	Б			
	Preve	nt Domes	tic use of CKD-Affected Groundwater	103

5.

GeoSyntec Consultants

DRAFT

TABLE OF CONTENTS (continued)

Page 1

6.	CONCI	LUSIONS	
	6.1	Feasibility Study Conclusions	
	6.2	Next Steps	
	6.3	Implementation Schedule	107

REFERENCES

EXHIBITS (SEE NEXT PAGE)

APPENDICES

- Appendix A 2003 Work Program Description and Summary of Findings Includes Update (2003 – 2005)
- Appendix B Summer 2004 Investigation, Washington Department of Ecology
- Appendix C Boring Logs and Cross Sections
- Appendix D Response to Ecology Comments on the Feasibility Study Technical Memorandum
- Appendix E Cost Estimate Descriptions

GeoSyntec Consultants

DRAFT

TABLE OF CONTENTS (continued)

EXHIBITS

- ES-1 Site Map
- ES-2 Site Remedies
- ES-3 Alternatives FS Screening Process
- ES-4 Comparative Analysis Of Additional Site Remedy Alternatives
- 1.1-1 Agreed Order Compliance Checklist
- 2.2-1 Site Location, Layout and Existing Closure Systems
- 2.3-1 Conceptual Site Geology
- 2.3-2 Conceptual Site Hydrogeology
- 2.3-3 Historical Sampling Locations
- 2.3-4 Ph and Total Arsenic Results
- 3.2-1 Applicable or Relevant And Appropriate Requirements
- 4.1-1 Alternative #1 Permeable Treatment Wall (PTW) Evaluation
- 4.1-2 Alternative #2 Pump And Treat (P&T) Evaluation
- 4.1-3 Alternative #3 Additional Source Control (ASC) Evaluation
- 4.1-4 Alternative #4 Partial Source Removal (PSR) Evaluation
 - Scenario 1: Groundwater Treatment for Five Years
- 4.1-5 Alternative #4 Partial Source Removal (PSR) Evaluation Scenario 2: Indefinite Groundwater Treatment Period
- 4.1-6 Alternative #5 Evaluation Funnel and Gate Treatment (FGT)
- 4.1-7 Alternative #6 Partial Additional Source Control (PASC)
- 4.1-8 Comparison of Estimated Alternative Costs
- 4.3-1 Alternative #1 Permeable Treatment Wall (PTW) Layout
- 4.3-2 Permeable Treatment Wall (PTW) Cost Estimate
- 4.4-1 Alternative #2 Groundwater Control (GWC) Layout
- 4.4-2 Groundwater Control (GWC) Cost Estimate
- 4.5-1 Alternative #3 Additional Source Control (ASC) Layout
- 4.5-2 Additional Source Control (ASC) Cost Estimate

GeoSyntec Consultants

DRAFT

TABLE OF CONTENTS (continued)

- 4.6-1 Alternative #4 Partial Source Removal (PSR) Layout
- 4.6-2 Partial Source Removal (PSR) Cost Estimate
- 4.7-1 Alternative #5 Funnel and Gate Treatment (FGT) Layout
- 4.7-2 Funnel and Gate Treatment (FGT) Cost Estimate
- 4.8-1 Alternative #6 Partial Additional Source Control (PASC) Layout
- 4.8-2 Partial Additional Source Control (PASC) Cost Estimate
- 6.3-1 Schedule Milestones: PASC Design, Procurement, And Installation

1. INTRODUCTION

1.1 <u>Terms of Reference</u>

Lehigh Cement Company (Lehigh) submitted the first draft of this Feasibility Study Technical Report (dFSTR) to the Washington Department of Ecology (Ecology) in November 2003. Ecology reviewed the dFSTR and transmitted their comments on the dFSTR to Lehigh in a letter dated 13 July 2004. This document is the first revision of the dFSTR (Revised dFSTR). This Revised dFSTR addresses Ecology's comments on the first dFSTR and includes information and analyses that were compiled by Lehigh and Ecology subsequent to submittal of the first dFSTR.

This Revised dFSTR examines remedial alternatives for groundwater and groundwater-related impacts at the Lehigh Closed Cement Kiln Dust (CKD) Pile Site in Metaline Falls, Washington (the Site). The Site is owned by Lehigh. GeoSyntec Consultants (GeoSyntec) prepared this Revised dFSTR for submittal to Ecology on behalf of Lehigh. This dFSTR is one of a series of deliverables specified in Agreed Order No. DE99HS-E941 (1999 AO)¹.

1.2 Organization of the Feasibility Study Technical Report

The remainder of this Revised dFSTR is organized into the following sections:

- Section 2, *Background*, summarizes information from the Remedial Investigation (RI) and additional data gathered subsequent to preparation of the RI that is relevant to this Revised dFSTR.
- Section 3, *Regulatory Framework for Additional Remedy Alternative Selection*, describes relevant Washington Administrative Code (WAC) and 1999 AO requirements.

¹ Exhibit 1.1-1, Agreed Order Compliance Checklist, notes the status of the deliverables required by the 1999 AO.

- Section 4, *Description of Alternative Groundwater Remedies*, describes the final six alternative groundwater remedies evaluated in this Revised dFSTR.
- Section 5, *Alternative Comparison*, uses the criteria described in WAC 173-340-360 and the 1999 AO to compare the six alternative groundwater remedies.
- Section 6, *Conclusions*, presents the conclusions of this 1999 AO deliverable.

References, exhibits, and appendices are included at the end of the document.

2. BACKGROUND

2.1 <u>General</u>

This section summarizes the background information contained in the Final RI Report [GeoSyntec, 2001], the Feasibility Study Technical Memorandum [GeoSyntec, 2003b], and the Supplement to the Draft Feasibility Study Report (Supplement) [GeoSyntec, 2004]. The information in Appendices A and B to this Revised dFSTR was obtained after the RI and FSTM were submitted. These appendices contain data relevant to the comparison of alternatives. Appendix A was originally submitted with the first draft of the dFSTR to describe pilot in situ carbon dioxide groundwater treatment system (Pilot System) performance as well as the additional investigation of areas downgradient of the Closed CKD Pile that occurred in Summer 2003. Appendix A now also includes an update section that documents data and events from November 2003 through February 2005. Appendix B contains Ecology's report on their Summer 2004 investigation. Appendix C contains boring logs and geologic cross-sections developed from Lehigh's Site investigation data.

2.2 Site Location and Layout

The Closed CKD Pile is in Metaline Falls, Washington, a town of approximately 200 people, approximately 100 miles north of Spokane and 13 miles south of the Canadian border (Exhibit 2.2-1). Seasonal temperature variation is significant, with monthly average temperature extremes ranging from below 10°F to above 90°F [GeoSyntec, 2001]. The Site mean annual precipitation is 28 in. [GeoSyntec, 2001].

The Closed CKD Pile lies on approximately 7 acres west of State Route 31. It rises approximately 90 ft above State Route 31 at 2H:1V (Horizontal to Vertical) to a gently sloping upper deck with a maximum elevation of approximately 2,132 feet mean sea level (ft MSL). To the east of State Route 31 is a floodplain that gently slopes toward Sullivan Creek about 250 to 300 ft east of the highway. The average elevation of the floodplain is 2,026 ft MSL.

DRAFT

Lehigh owns the land north and hydraulically downgradient of the Closed CKD Pile and has made several improvements since the Site environmental work began (Exhibit 2.2-1).

2.3 <u>Site Environmental Data</u>

2.3.1 Surface Water

Sullivan Creek drains a watershed of approximately 90,880 ac [EIP, 1999]. The maximum mean flow in the creek is approximately 650 cubic feet per second (cfs); the minimum mean flow is approximately 100 cfs. Maximum flows in the creek occur during the months of May and June; minimum flows occur during August and September. Fluctuations in creek flows are a result of seasonal rainfall and snowmelt, as well as releases from the Sullivan Lake Dam to Sullivan Creek upstream of the Site [USGS, 1999]. The dam controls the volume of water that flows into Sullivan Creek. Since 1954, the highest recorded water level increase in the Sullivan Creek USGS gauging station² upstream from the Site is 6.20 ft. Sullivan Creek adjacent to the Site is wider than where the gauging station is located. Thus, water level fluctuations adjacent to the Site are lesser than those measured at the gauging station. The average increase during peak flow periods (May and June) is approximately 4 ft. Sullivan Creek flows northwest past the Site to join the Pend Oreille River, less than a mile downstream of the Site.

2.3.2 Site Geology

Two geologic strata at the Site are relevant to this Revised dFSTR (Exhibit 2.3-1):

• Glacial Sediments. Overlying the bedrock³ are glacial sediments composed of glaciofluvial (river terrace) and glaciolacustrine (glacial lake) sediments that consist of sandy silt and clayey silt. The glacial

² USGS Sullivan Creek station at Metaline Falls, Station 12398000.

³ See the RI for data about the bedrock, which is not considered relevant to this Revised dFSTR.

sediments are subject to landsliding. Immediately to the south of the Closed CKD Pile is an historic landslide [Dames and Moore, 1997] that is considered during the evaluation of alternatives. The historic landslide consists of disturbed sediments to an unknown depth along unknown slip planes. This area above the landslide rises in steep relief progressing south from the Closed CKD Pile.

• Holocene Alluvium. Sullivan Creek eroded a bowl into the glacial sediments. The creek deposited gravels with occasional cobbles and boulders and interspersed zones of more clayey, silty and sandy materials into the base of the bowl and on the floodplain. This layer is generally about 20 ft thick and overlays the glacial sediments.

CKD was placed in part over each of these geologic strata. In the southern and central portion of the now closed pile, boring logs from abandoned Monitoring Wells MW-11 and MW-3 indicate that CKD was placed in ravines incised into the glacial sediments [Dames and Moore, 1992, 1993]. In the central and northern portions of the pile area, CKD was placed directly over the Holocene alluvium. Appendix C contains boring logs and cross-sections of the Site.

2.3.3 Site Hydrogeology

The sources of groundwater at the Site are as follows (Exhibits 2.3-1 and 2.3-2):

- Precipitation. Rainfall and upgradient runoff infiltrates the glacial sediments, the landslide debris, and the Holocene alluvium to become groundwater.
- Glacial Sediments. Infiltrating precipitation generally seeps down and horizontally to the north and east through the Site area glacial sediments. Groundwater emerges from the glacial sediments as surface seeps along the sloping hillsides that form the bowl into which the CKD was placed. Groundwater migrates along sporadic lenses in the glacial sediments, and varies in amounts and locations according to season and precipitation intensity. Seepage from the landslide debris

D R A F T

seeps into and beneath the Closed CKD Pile and then into the Holocene alluvium (i.e., sands and gravels) beneath the pile.

• Holocene Alluvium. Seepage from the glacial sediments and portions of the Closed CKD Pile affected by this seepage enters the Holocene alluvium beneath the pile. This groundwater then moves horizontally in a general northern and eastern direction, beneath State Route 31 and hence to Sullivan Creek. The depth to groundwater in the Holocene alluvium is approximately 2 to 3 ft below ground surface within the floodplain. The depth to groundwater increases to approximately 5 to 6 feet below ground surface near the toe of the Closed CKD Pile, where the ground surface is higher in elevation than the floodplain.

Lehigh and Ecology disagree regarding the degree of seepage into the sides of the Closed CKD Pile. The Supplement summarizes Lehigh's concept [GeoSyntec, 2004]. Appendix B of the Revised dFSTR contains information on Ecology's position on the relative amounts of seep flow and underlying alluvial floodplain groundwater flow. Nevertheless, this disagreement does not affect the feasibility study for the Site or the content of this Revised dFSTR. The relative amount of seep flow and underlying alluvial floodplain groundwater flow into the Closed CKD Pile is not discussed in this report.

2.3.4 CKD Effects on Groundwater

Ecology has overseen several environmental investigations at the Site since 1991. Lehigh collected samples from CKD, groundwater, surface water, seeps, soil, and sediment media. The Site sampling points are shown on Exhibit 2.3-3. The following is a summary of the effects of the Closed CKD Pile on the Site groundwater: ⁴

• The Site groundwater table elevation under the Closed CKD Pile fluctuates seasonally and annually depending on precipitation and runoff conditions. During initial site investigations groundwater wells

⁴ See the RI Report submitted to Ecology in 2001 [GeoSyntec, 2001] and the Interim Progress Report on Subsurface Treatability Study submitted to Ecology in 2000 [GeoSyntec, 2000].

were installed into and through the regraded and compacted CKD pile. These groundwater wells were abandoned in preparation for final cover installation in 1996. Groundwater level data from those wells indicate that these fluctuations under the Closed CKD Pile typically do not exceed more than approximately one foot from the mean alluvial floodplain groundwater elevation.

- Groundwater inundates portions of the base of the Closed CKD Pile. The amount of inundated CKD increases when the groundwater level rises and decreases when groundwater level falls.
- The pH of groundwater that contacts the CKD increases as a result of the contact. The affected water subsequently moves into the groundwater, increasing its pH.
- Two other mechanisms are also contributing to groundwater effects from CKD. Water flows laterally into the buried sidewalls of the Closed CKD Pile, especially in the historic landslide area. Water is also trapped in the CKD matrix from infiltration prior to pile closure. This water drains from the CKD until moisture equilibrium within the CKD matrix is attained. The water eventually joins the underlying groundwater before it migrates north-northeasterly toward Sullivan Creek.
- The high pH groundwater causes naturally occurring arsenic in the Site soils to go into solution in the groundwater. Arsenic is not present in significant concentrations within the CKD.
- Downgradient groundwater is characterized by high pH⁵, decreased oxidation reduction potential⁶, and arsenic concentrations greater than 5 μg/L (or parts per billion (ppb)) (Exhibit 2.3-4).

7

 $^{^{5}}$ In excess of the State water quality standard of 8.5 and, in some locations, higher than the State dangerous waste threshold of 12.5.

⁶ Redox potential or Eh.

• Groundwater with elevated pH and arsenic levels seeps into and flows overland (in a localized area) into Sullivan Creek.

2.4 <u>Site Regulatory History</u>

The following summary describes the major regulatory actions at the Site since 1984, when CKD became subject to regulation under the state Dangerous Waste regulations:

- Prior to 1984, both the federal government and the State of Washington exempted CKD from regulation as a hazardous or dangerous waste. In 1984, the State of Washington withdrew its exemption and CKD became subject to regulation as a dangerous waste under the Hazardous Waste Management Act (Chapter 70.105 of the Revised Code of Washington (RCW)) and its implementing Regulations (Chapter 173-303 WAC). CKD is still exempt from the federal hazardous waste regulations (40 CFR 261.4(b)(8)).
- 1984 Lehigh submitted a "Notification of Dangerous Waste Activities" form and Part A of its Dangerous Waste Permit Application to notify Ecology that CKD would be managed at the Metaline Falls facility. Upon submittal of the Part A application, the Lehigh cement plant became an interim status dangerous waste treatment, storage, and disposal (TSD) facility.
- 1984-1992 Lehigh investigated options for the CKD. Lehigh evaluated the feasibility of CKD beneficial reuse or recycling, preliminarily assessed the Site characterization options, and compiled descriptions of potential closure options. Dames and Moore used the information as a basis for and to supplement their subsequent evaluations [Bovay, 1991 and 1992; Cemtech, 1991].
- 1992-93 Lehigh conducted an investigation to characterize the CKD Pile and to evaluate the quality of groundwater beneath and adjacent to it, the results of which are described in Section 2.3.

- 1994-95 Lehigh continued to explore closure options for the CKD pile. In a 1994 letter to Lehigh, Ecology concluded that the CKD Pile should be closed in place [Ecology, 1994].
- 1996 Lehigh submitted its "Final Closure Plan Cement Kiln Dust Pile, Metaline Falls, Washington" (7 June 1996). Ecology approved the Closure Plan by letter dated 13 June 1996.
- 1996 Lehigh implemented the approved closure plan by constructing a final cover on the surface of the CKD Pile to reduce surface water infiltration and by constructing a stormwater management system to convey surface water run-on and run-off.
- 1996 Ecology issued Administrative Order No. DE96HS-E934 (1996 AO), requiring Lehigh to submit and implement a short-term post-closure care plan. The 1996 AO required two years of groundwater monitoring.
- 1997 Lehigh submitted to Ecology a "Short-Term Postclosure Care Plan, Cement Kiln Dust (CKD) Pile, Metaline Falls, Washington," which documented Lehigh's plans for groundwater monitoring and maintenance of the final cover and stormwater management system during the "short-term" post-closure period.
- 1997 Lehigh provided closure certification, including documentation of the construction of the final cover and stormwater management system, in the "Closure Report for Cement Kiln Dust (CKD) Pile, Metaline Falls, Washington," dated 17 June 1997. Post-closure care of the Site was required, because dangerous waste (CKD) remained on the Site after closure.
- 1997-98 In accordance with the 1996 AO, Lehigh collected groundwater monitoring data on a monthly basis. Lehigh also inspected, maintained, and made routine repairs to the final cover and stormwater management system during this time period.

- 1998 Lehigh conducted an emergency remedial action under Enforcement Order No. DE98-HS-E938 (1998 EO), consisting of grading and filling a low-lying portion of the Site then owned by the Washington Department of Transportation (WDOT). This interim action, referred to as the "WDOT Deck Extension," reduced the potential for direct contact with high pH groundwater surfacing in the area.
- 1999 Lehigh submitted to Ecology the "Post-Closure Care Groundwater Monitoring Data Review, Closed Cement Kiln Dust Pile, Metaline Falls, Washington," a report summarizing post-closure groundwater monitoring data collected between December 1996 and December 1998. These data indicated that leachate was emanating from the Closed CKD Pile during the post-closure monitoring period, affecting groundwater beneath and downgradient of the Site as described in greater detail in Section 2.3.

Up to this point, Ecology had regulated the Closed CKD Pile as a TSD under Ch. 70.105 RCW. The monitoring data collected between 1996 and 1998 demonstrated that releases of hazardous substances were occurring at and downgradient of the Closed CKD Pile. Based on these data, Ecology and Lehigh began assessing potential remedial action at the Site.

- 1999 Ecology and Lehigh signed an Agreed Order (No. DE99HS-E941) (1999 AO) under the Model Toxics Control Act (MTCA) in October 1999. Under the 1999 AO, Lehigh agreed (a) to perform a remedial investigation and feasibility study (RI/FS); and (b) upon approval of the RI/FS, to prepare a preliminary draft Cleanup Action Plan (pdCAP).
- 2001 Lehigh submitted a Draft Final Remedial Investigation Report (Draft RI). The Draft RI compiled existing information and new environmental data collected over the previous two years. Lehigh prepared the Draft RI consistent with WAC 173-340-350(7).

- 2001 Lehigh began conducting a feasibility study (FS). To evaluate potential cleanup technologies, Lehigh proposed and Ecology accepted bench scale tests for various treatment technologies. Carbon dioxide diffusion bench scale tests produced promising results.
- 2002 Ecology shifted the Site from the Dangerous Waste Program to the Toxics Cleanup Program.
- 2002 Lehigh installed the Pilot System to evaluate this innovative in situ carbon dioxide diffusion groundwater treatment technology.
- 2003 As required by the 1999 AO, Lehigh submitted a Feasibility Study Technical Memorandum (FSTM) containing a preliminary screening of potential remedial technologies. Lehigh prepared the FSTM consistent with WAC 173-340-350(8)(b).
- 2003 As required by the 1999 AO, Lehigh submitted the first dFSTR to Ecology. The first dFSTR evaluated the remaining alternatives that resulted from the screening documented in the FSTM and alternatives requested by Ecology.
- 2004 Lehigh conducted further analyses of the Site's groundwater flow regime and how CKD affects groundwater at the Site. Lehigh submitted the Supplement to the Draft Feasibility Study Report to Ecology to share the results of the analyses.
- 2004 Ecology conducted a Summer work program to collect additional site data.

2.5 <u>Previous Site Remedial Actions</u>

2.5.1 General

This section describes remedial actions that Lehigh previously implemented at the Site. The capital and operation and maintenance cost for these measures exceeds \$13 million (US \$2005) over the years 1995 - 2004. Lehigh continues to operate and maintain these remedial measures in compliance with applicable regulations.

2.5.2 Source Control

In accordance with State Dangerous Waste Regulations, Lehigh closed the CKD Pile in 1995 – 1996 [D&M, 1997]. Closure involved reconfiguring and consolidating CKD deposits, installing an engineered final cover system, controlling surface water, and implementing institutional controls (See Exhibit 2.2-1). The Ecology-approved closure eliminated the primary adverse physical and chemical effects of the Site and eliminated direct contact with CKD as a human health and environmental risk. In addition, precipitation and surface run-on to the pile no longer contacts the CKD, decreasing water percolation through the pile and eliminating a mechanism for CKD to affect groundwater.

2.5.3 Downgradient Controls - Deck Extension

High pH groundwater daylighted in a low-lying area downgradient of the CKD Pile and adjacent to WDOT's working gravel deck. In 1998, Lehigh and Ecology recognized that this area posed an exposure risk and jointly developed a solution. Lehigh filled the low-lying area (Exhibit 2.2-1) 9 through 14 November 1998 consistent with the 1998 EO [GeoSyntec, 1998].

2.5.4 Pilot Test - In Situ Groundwater Treatment Wall

Lehigh installed a Pilot System in October through November 2002 (Exhibit 2.2-1). Previous reports submitted to Ecology include detailed descriptions of this treatment technology and the Pilot System [GeoSyntec, 2000, 2001, 2002, 2002, 2003a, and 2003b]. Appendix A includes an evaluation of the pilot treatment system performance.

DRAFT

2.5.5 **Performance Evaluation**

Pursuant to the 1996 AO and 1999 AO, Lehigh has performed surface water, groundwater, and systems monitoring, including:

- short-term post-closure monitoring (groundwater, surface water, and closure systems) on a monthly basis;
- long-term post-closure monitoring (groundwater, closure systems) on a quarterly basis with weekly visits to the Site;
- performance monitoring (groundwater) on a periodic basis to evaluate the Pilot System; and
- supplemental evaluations (groundwater and surface water, e.g., Sullivan Creek Assessment [EIP, 1999] and Pilot System performance studies (Appendix A)).

Results of the Site monitoring indicate that the closure systems are performing well. In 1999, Lehigh conducted an ecological assessment of Sullivan Creek, without Ecology oversight. The study [EIP, 1999] concludes that surface water in the creek is of excellent chemical and biological quality. However, the groundwater downgradient of the Closed CKD Pile, which discharges to Sullivan Creek, remains affected by high levels of pH and elevated arsenic concentrations.

2.6 Feasibility Study Technical Memorandum

The FSTM screened 20^7 groundwater remedy alternatives [GeoSyntec, 2003b]. Lehigh determined that five alternatives passed the screening criteria and recommended that they be evaluated more extensively in the FSTR. After its review of the FSTM, Ecology recommended that the FSTR also include source abatement

⁷ In accordance with WAC 173-340-350 (8)(b).

alternatives (i.e., Additional Source Control and Partial Source Removal⁸). The FS process, which included further discussions with Ecology, led to the inclusion of two more alternatives. It also led Lehigh to drop one alternative from further consideration and to consolidate three technologies into a single alternative. Accordingly, the following alternatives are evaluated in this Revised dFSTR – See Exhibit ES-3.

- Alternative #1 Permeable Treatment Wall (PTW)
- Alternative #2 Pump and Treat (P&T)
- Alternative #3 Additional Source Control (ASC)
- Alternative #4 Partial Source Removal (PSR)
- Alternative #5 Funnel and Gate Treatment (FGT)
- Alternative #6 Partial Additional Source Control (PASC)

This Revised dFSTR evaluates each of the six alternatives in detail in subsequent sections.

⁸ 6/11/03 Ecology correspondence to Eric Smalstig, GeoSyntec Consultants, and follow-up Ecology correspondence with Jay Manning, Esq., Brown Reavis & Manning, PLLC.

3. REGULATORY FRAMEWORK FOR ADDITIONAL REMEDY ALTERNATIVE SELECTION

3.1 <u>Introduction</u>

Lehigh prepared this Revised dFSTR under MTCA. The state statutes and regulations promulgated under MTCA guide the FS process, the evaluation of remedial alternatives, and subsequent remedy selection. This section of the Revised dFSTR describes the standards, criteria, and considerations guiding remedy selection.

3.2 <u>Remedy Selection under MTCA</u>

3.2.1 General

The process for identifying and evaluating cleanup alternatives is described in WAC 173-340-350 and -360. The general steps involved are:

- identification of alternatives;
- initial screening of alternatives; and
- evaluation of selected alternatives.

Lehigh completed the first two steps in the FSTM, which identified remedial alternatives and screened them to eliminate those that "so clearly do not meet the minimum requirements of WAC 173-340-360 that a more detailed analysis is unnecessary" [WAC 173-340-350(8)(b); see Feasibility Study Technical Memorandum for the Lehigh CKD pile, prepared by GeoSyntec and dated 22 May 2003]. This Revised dFSTR documents the third step.

As described in the following subsections, the MTCA rules specify criteria that must be used to evaluate selected alternatives.

3.2.2 Threshold Requirements

3.2.2.1 Introduction

A cleanup alternative must meet the minimum requirements specified in WAC 173-340-360(2). The following threshold requirements are used as evaluation criteria in this Revised dFSTR:

- 1. protect human health and the environment;
- 2. comply with cleanup standards;
- 3. comply with applicable federal and state laws; and
- 4. provide for compliance monitoring.

If a remedial alternative fails to meet any one of these threshold requirements, it must be eliminated from further consideration.

3.2.2.2 Protect Human Health and the Environment

The first threshold requirement, that the remedy protect human health and the environment, is also an evaluation criterion under the 1999 AO ("overall protection of human health and the environment"). Cleanup actions that attain cleanup levels at the applicable point of compliance, and comply with applicable state and federal laws, are presumed to be protective of human health and the environment [WAC 173-340-702(5)].

3.2.2.3 Cleanup Standards

The second threshold requirement is that the remedy meets MTCA cleanup standards. When a cleanup action is selected, cleanup standards are set for specific contaminants of concern and for each affected medium, such as groundwater. "Cleanup standards" consist of three elements:

• Cleanup levels (maximum allowable concentrations of a hazardous substance in a given medium) (see WAC 173-340-700(3)(a)).

HR0196-12/MFW05-13.DOC

- Point of compliance where compliance with the cleanup level will be measured (see WAC 173-340-700(3)(b)).
- Other regulatory requirements that apply to the site because of the type of action and/or location of the site ("applicable state and federal laws") (see WAC 173-340-700(3)(c)).

3.2.2.4 Cleanup Levels

Cleanup levels must:

- Ensure compliance with applicable state and federal laws, also known as Applicable or Relevant and Appropriate Requirements (ARARs, see Section 3.2.2.6).
- Prevent cross-contamination of other media (WAC 173-340-700(6) (b)).
- Not be set below the practical quantification limit achievable by a chemical analytical laboratory or the natural background concentration

Cleanup levels are established by using one of three methods described in MTCA. Ecology will set final cleanup levels in the Cleanup Action Plan (CAP). For purposes of the Revised dFSTR, Lehigh assumed that Method A cleanup levels will apply⁹. Lehigh used the Method A cleanup levels set forth in tables in the MTCA regulations. The table for groundwater is Table 720-1, codified at WAC 173-340-900. The assumption of cleanup levels for this Revised dFSTR allows the six alternatives to be evaluated for their ability to meet the cleanup levels.

⁹ Method A is used to establish cleanup levels at sites that have few hazardous substances. Numerical standards must be available either in MTCA or in applicable state or federal laws for all hazardous substances in the medium for which the Method A cleanup level is used.

To select cleanup levels for contaminated groundwater, it is important to determine whether the groundwater is potable. Under MTCA, groundwater is considered potable unless:

- the groundwater does not currently serve as a source of drinking water;
- the groundwater is not a potential future source of drinking water due to inadequate supply, naturally occurring contaminants, or great depth that makes groundwater use technically impossible; and
- it is unlikely that hazardous substances will be transported to a current or potential future source of drinking water in concentrations that exceed water quality criteria in chapter 173-200 WAC (WAC 173-340-720(2)).

Groundwater at the Site is not a current source of drinking water. Lehigh plans to record a restrictive covenant that prohibits withdrawal of groundwater for domestic purposes. Groundwater at the Site discharges to Sullivan Creek. Thus groundwater cleanup levels must be set to be protective of drinking water and surface water. Method A cleanup levels shall be at least as stringent as concentrations listed under WAC 173-340-720(3). For arsenic, the most stringent of these concentrations is the National Toxics Rule (NTR) concentration of 0.018 ppb which is less than the Method A level of 5ppb. The Method A level is derived from the arsenic background concentration of 5 ppb in groundwater. Since the NTR concentration of 0.018 ppb is less than the background concentration of approximately 5 ppb, the groundwater Method A cleanup level for arsenic of 5 ppb will apply. The pH cleanup level, based on the water quality criteria under WAC 173-201A WAC, ranges from 6.5 to 8.5 standard units.

3.2.2.5 Point of Compliance

Ecology will define the POC in the CAP. MTCA provides for the selection of either a "standard" or a "conditional" POC, depending on the medium at issue and other site-specific factors.

HR0196-12/MFW05-13.DOC

GeoSyntec Consultants

DRAFT

Under a standard POC, cleanup levels must be met everywhere, throughout a site. Specifically:

- "Site" is defined to include "any ... area where a hazardous substance ... has come to be located" (WAC 173-340-200).
- For groundwater, this includes meeting cleanup levels from the uppermost level of the saturated zone extending vertically to the lowest depth that could be affected by the site (WAC 173-340-720(8)(b)).

Ecology may grant a conditional POC for groundwater where it can be demonstrated that it is not practicable to meet the cleanup level throughout the Site within a reasonable restoration time frame. This practicability analysis is governed by the factors set out in WAC 173-340-350 and 360, and is described in greater detail below in Section 3.2.3. If a conditional POC is used, it must be set "as close as practicable to the source of hazardous substances" and must not exceed the property boundary unless the off-property exception of WAC 173-340-720(8)(d) applies. In addition, "all practicable methods of treatment" must be used.

As described in Section 4, there is not a practicable remedial alternative that will meet groundwater cleanup levels throughout the Site within a reasonable restoration time frame. Consequently, Lehigh proposes a conditional POC for groundwater at a location downgradient of the Closed CKD Pile and selected treatment facilities, but upgradient of Sullivan Creek. Ecology will define the POC in the CAP. The Revised dFSTR assumed the conditional POC briefly described as a basis to evaluate the alternatives against. The discussion in Sections 4 and 5 demonstrates that this location meets the requirements of WAC 173-340-720(8)(c) because: (1) a standard POC is not practicable; (2) it is as close as practicable to the source of the hazardous substances; (3) it does not exceed the property boundary; and (4) all practicable methods of treatment will be used. Each of the alternatives evaluated in this FS process incorporates treatment-based remedies. There is inherent variability involved in operating engineered treatment systems. The method of evaluating compliance with cleanup standards will be established during development of the monitoring program defined in the CAP and design phases of the project, and ultimately approved by Ecology.

Lehigh owns the land affected by the plume, including the proposed conditional POC for groundwater, with the exception of the State Route 31 and its right-of-way. As such, the off-property conditional POC exception of WAC 173-340-720(8)(d) need not be applied.

3.2.2.6 Applicable Federal and State Laws - ARARs

The third threshold requirement is that the remedy complies with applicable federal and state laws, which "include (a) all legally applicable requirements and (b) those requirements that the department determines are "relevant and appropriate requirements." These are referred to jointly as ARARs (WAC 173-340-710(1)). The 1999 AO also requires that this factor ("compliance with remedial action objectives (RAOs) and ARARs") be used in evaluating selected alternatives. "Relevant and appropriate requirements" include those cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at that site that their use is well suited to the particular site (WAC 173-340-710(4)). WAC 173-340-710(7) identifies a number of state and federal laws, compliance with which must be considered in the cleanup action selection process if applicable. Lehigh analyzed various ARARs, permits, and approvals that apply to the remedy alternatives described in this Revised dFSTR. Exhibit 3.2-1 summarizes Lehigh's analysis.

ARARs may include requirements to obtain permits or other regulatory approvals to conduct some part of the cleanup. Under MTCA, a person conducting a cleanup under an order or consent decree is exempt from any requirements to obtain state or local permits or approvals for the remedial action. (RCW 70.105D.090). However, Ecology must ensure compliance with the substantive provisions of any such state or local laws. This usually requires consultation with the state or local agency that administers the relevant law. Ecology will address these issues in more detail in the CAP.

MTCA has no exemption for any federal permits or approvals required to conduct the remedial action. Thus, Lehigh must obtain any required federal permits, and must meet the substantive provisions of any state or local laws that would, but for the MTCA exemption, require a permit or approval.

Lehigh has identified applicable state and local laws that, but for the MTCA exemption, might require a permit or approval to implement one or more of the six alternatives. Lehigh also has identified the federal laws that could require Lehigh to obtain permits or approvals to implement one or more alternatives. Depending on the alternative, the applicable federal, state, and local programs are, as follows:

- Federal:
 - Clean Water Act Section 404 dredge and fill permit and Rivers and Harbors Act Section 10 permit
 - Clean Water Act Section 402 NPDES permit
 - Clean Water Act Section 401 water quality certification
- State:
 - Hydraulics Project Approval
 - Aquatic Use Authorization
 - State Waste Discharge permit
 - Water Right permit
- Local:
 - Shoreline Management permit
 - Floodplain Management permit
 - Clearing/grading/building permit

In Exhibit 3.2-1, Lehigh shows the alternatives potentially subject to each of these federal, state, and local programs. Each alternative requires a combination of permits or is subject to certain restrictions. Lehigh's preliminary research shows that there are no significant restrictions or permitting programs that would make any remedy difficult to implement. Specific permit issues are usually resolved during remedy design for MTCA Clean Ups. Of all the programs identified, the NPDES permitting process requires the most amount of time to complete, approximately six to nine

months. Thus, the remainder of the Revised dFSTR emphasizes the NPDES process due to its effect on the project schedule.

3.2.2.7 Compliance Monitoring

The final threshold requirement is that any remedy implemented under MTCA must provide for "compliance monitoring." The 1999 AO also requires that this factor ("provision for compliance monitoring") be used in evaluating selected alternatives. Compliance monitoring consists of three different types of monitoring:

- Protection Monitoring: performed during remedy construction for protection of workers, the public, and the environment;
- Performance Monitoring: confirms that the remedy has met cleanup standards;
- Confirmation Monitoring: affirms that the remedy will be effective in the long term in meeting cleanup standards.

3.2.3 Other Requirements

3.2.3.1 Introduction

WAC 173-340-360(2)(b) defines conditions, referred to as "Other Requirements," that any remedy must meet in addition to the threshold requirements. They are:

- 1) use permanent solutions to the maximum extent practicable;
- 2) provide for a "reasonable restoration timeframe" to meet cleanup levels; and
- 3) consider public concerns.

3.2.3.2 Permanent Solutions to the Maximum Extent Practicable

3.2.3.2.1 General

MTCA does not require that a permanent cleanup action alternative be selected. Rather, Ecology must select a remedy that "uses permanent solutions to the maximum extent practicable." It must use the "disproportionate cost analysis" to determine whether a cleanup action alternative meets this requirement (WAC 173-340-360(3)(b)).

One of the criteria in the disproportionate cost analysis is permanence (WAC 173-340-360(3)(f)(ii)). This criterion is closely related to the concept of "permanent solution," but because differences between the two terms are important they are discussed separately in the Revised dFSTR.

3.2.3.2.2 Permanent Cleanup Action

"Permanent solution" or "permanent clean-up action" means a cleanup action that meets the cleanup standards of WAC 173-340-700 – 173-340-760 without further action being required at a site being cleaned up or at any other site involved with the cleanup action, other than the approved disposal of any residue from the treatment of hazardous substances (WAC 173-340-200 (definition of "permanent solution" or "permanent cleanup action")).

MTCA generally requires that the FS include at least one permanent cleanup action alternative to serve as a baseline against which other alternatives are evaluated to determine which is "permanent to the maximum extent practicable" (WAC 173-340-350(8)(c)(ii)). However, the FS need not include a permanent cleanup action alternative if none is "technically possible" (WAC 173-340-350(8)(c)(ii)(B)(II)). MTCA defines "technically possible" as "capable of being designed, constructed and implemented in a reliable and effective manner, regardless of cost" (WAC 173-340-200).

Ecology and Lehigh understand the term "permanent" differently, as explained below. However, this difference of opinion does not affect the evaluation of alternatives in this Revised dFSTR.

Lehigh believes that no "permanent" remedies exist for the Site because no treatment process has been identified that can completely render the CKD inert. As Lehigh understands MTCA, the only remedies that meet the definition of permanent are those that treat the hazardous substances, rendering them non-hazardous. Treatment may occur on-site or off-site, but the remedy will not qualify as permanent if any further remedial action (including monitoring, institutional controls, or maintenance) is required (see WAC 173-340-200).

For example, Lehigh does not believe that source removal and off-site disposal is a permanent remedy since further remedial action would be required to manage the removed hazardous substances at the disposal facility. Any CKD removed from the pile would have to be transported to a permitted disposal facility, which would in turn require engineering controls, monitoring, and possibly remediation. This is "further action." Thus, in Lehigh's view removal and off-site disposal cannot be a permanent solution.

Source removal or source isolation alternatives also would have to be supplemented with on-site groundwater remediation, another form of "further action." Lehigh believes that the only way to eliminate the need for downgradient groundwater treatment is to remove the entire Closed CKD Pile and to render it completely inert. Unless all of the CKD is excavated and moved elsewhere, Lehigh believes that it is not technically possible to reduce contact between groundwater and the Closed CKD Pile sufficiently to result in groundwater meeting cleanup levels. Even after full pile removal, it will take many years for natural attenuation to cleanse the groundwater and subsurface materials, so that groundwater meets clean up levels throughout the Site. Lehigh has presented data and analysis that support this belief [GeoSyntec, 2004]. These analyses show that more than 99% of the contact must be eliminated before cleanup levels would be met. Since this level is not achievable, supplemental groundwater remediation would be required for an indefinite time period to meet cleanup levels. Such groundwater remediation is "further action," which means that neither source removal nor source control is a permanent remedy.

Furthermore, even if groundwater ceased to contact the Closed CKD Pile, through some form of source control, MTCA would require engineering controls and long-term monitoring to maintain the long-term effectiveness of the source control alternative (WAC 173-340-360(3)(f)(iv) and 173-340-410(3)). Thus, because all of the partial source removal or source control options would require "further action" either at the Site or at an off-site disposal facility, Lehigh believes that none of them qualifies as a permanent remedy.

Ecology has indicated that it believes that PSR with off-site disposal and remediation of residual CKD-affected groundwater is a permanent remedy, even if the removed hazardous substances are not treated or destroyed. Based on conversations with Ecology, they believe that PSR is permanent remedy for the following reasons: the majority of CKD-water contact occurs where the base is inundated, and removing that base area will sufficiently reduce overall CKD-water contact; PSR could be designed and implemented with a high degree of reliability; the remaining CKD-water contact could be diluted by unaffected groundwater so that groundwater beneath the Closed CKD Pile meets cleanup levels; and greater than 99% effectiveness is not required for PSR to be permanent.

Although Ecology and Lehigh disagree whether there are any permanent cleanup action alternatives for this Site, they agree that PSR offers the greatest degree of "permanence," a concept described below in Section 3.2.3.2.4. MTCA requires that, if a permanent cleanup action alternative is not available, the alternative with the greatest degree of permanence shall be the baseline cleanup action alternative (WAC 173-340-360(3)(e)(ii)(B)). PSR therefore will be the baseline against which other alternatives are evaluated.

3.2.3.2.3 Disproportionate Cost Analysis

Under the disproportionate cost analysis, "costs are disproportionate to the benefits provided by a remedy if the incremental costs of the alternative over that of a lower cost alternative exceed the incremental degree of benefits achieved by the alternative over that of the other lower cost alternative" (WAC 173-340-360(3)(e)(i)).

DRAFT

The disproportionate cost analysis takes into consideration the following seven factors, which are adopted as evaluation criteria in this Revised dFSTR:

- protectiveness;
- permanence;
- cost;
- effectiveness over the long term;
- management of short-term risks;
- technical and administrative implementability; and
- public concerns.

The 1999 AO also requires that these factors (described in the Agreed Order as "overall protection of human health and the environment"; "permanent reduction of mobility, toxicity, and volume"; cost; "long-term effectiveness"; "short-term effectiveness"; "implementability"; and "community concerns") be used in evaluating selected alternatives.

3.2.3.2.4 Permanence

As stated above, the second of these criteria, "permanence" is related, but not identical, to the concept of a "permanent" remedy. MTCA defines "permanence" as follows:

> (ii) Permanence. The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated.

A cleanup action that requires further action to meet cleanup standards is not permanent, but it may still exhibit a high degree of permanence. For example, although Lehigh does not believe that PSR is permanent, Ecology and Lehigh agree that PSR has a high degree of permanence because it reduces the toxicity, mobility, and volume of hazardous substance releases. Because cleanup treatment components reduce the toxicity and mobility of hazardous substance releases, the treatment exhibits permanence.

The regulations require that the degree of permanence, even of nonpermanent remedies, be considered during remedy selection. The Revised dFSTR evaluates the alternatives with respect to this characteristic, as well as the other criteria in the disproportionate costs analysis.

3.2.3.2.5 Cost

The Revised dFSTR presents costs for the alternatives in 2005 U.S. dollars. Lehigh developed three scenarios for the cost calculations. First, the standard thirtyyear project duration with a seven percent discount rate is presented. Lehigh included a second scenario using a one hundred-year project duration because of the indefinite time period that most alternatives will need to operate. The second scenario uses a seven percent discount rate and a one hundred year period. Lehigh developed a third scenario based on Ecology comments and EPA guidance [EPA, 2000a]. EPA guidance suggests that a non-discounting scenario be presented only for comparison purposes. The third scenario uses the one hundred-year project duration. The cost estimates also included periodic replacement or rehabilitation costs for minor and major alternative components.

3.2.3.2.6 Restoration Time Frame

The reasonableness of a proposed restoration time frame—the period of time required to achieve cleanup levels at the POC—is determined by considering a number of factors, including those in WAC 173-340-360(4)(b):

- potential risks to human health and the environment;
- practicability of a shorter time frame;
- current use of the site, surrounding areas, and associated resources that may be affected by releases at the site;

- potential future use of the site, surrounding areas, and associated resources;
- availability of alternative water supplies;
- likely effectiveness and reliability of institutional controls;
- ability to control and monitor migration of hazardous substances from the site;
- toxicity of those substances; and
- natural processes that reduce concentrations of hazardous substances.

The 1999 AO also requires that this factor ("restoration time frame") be used in evaluating selected alternatives.

3.2.3.2.7 Public Concerns

Public concerns must be considered following the public participation process set out in WAC 173-340-600.

3.2.3.2.8 Agreed Order Criterion

The 1999 AO establishes the following additional criterion that is also used in this Revised dFSTR to evaluate alternatives: Prevent Domestic Uses of CKD-Affected Groundwater.

3.2.4 Groundwater Cleanup Requirements

The MTCA regulations contain specific requirements for cleanups that address contaminated groundwater in WAC 173-340-360(2)(c)(i):

Permanent ground water cleanup actions. A permanent cleanup action shall be used to achieve the cleanup levels for ground water in WAC <u>173-340-720</u> at the standard point(s) of compliance (see WAC <u>173-340-720(8)</u>) where a permanent cleanup action is practicable or determined by the department to be in the public interest.

As discussed above, Lehigh and Ecology disagree whether there is a permanent remedy for this Site. Even if PSR is a permanent remedy, it is not practicable because its costs are disproportionate to its benefits, as discussed below in Chapter $5.^{10}$

MTCA recognizes that permanent cleanup actions are not available or not practicable at all sites. When a permanent cleanup action is not selected for groundwater, Ecology must ensure that:

- highly mobile hazardous substances, liquid wastes, highly concentrated hazardous substances, or those that cannot be reliably contained are removed or treated (WAC 173-340-360(2)(c)(ii)(A)); and
- groundwater containment measures are implemented to avoid lateral and vertical expansion of the groundwater volume affected by the hazardous substance (WAC 173-340-360(2)(c)(ii)(B)).

As discussed below in Section 4, the six alternatives evaluated for the Site involve treatment components, which satisfies WAC 173-340-360(2)(c)(ii)(A). The

¹⁰ In 1994, Ecology concluded that full CKD Pile removal was not a viable option. The following quote contains Ecology's conclusion [Ecology, 1994]:

[&]quot;Ecology believes that excavation and/or treatment of the CKD waste pile to meet MTCA cleanup levels is not economically feasible. It is our opinion that the CKD waste pile should be closed in place..."

D R A F T

Closed CKD Pile cover is a containment measure, and each of the six alternatives uses techniques to control the spreading of the CKD-affected groundwater plume. Thus, each of the six alternatives meets the nonpermanent groundwater cleanup requirements of WAC 173-340-360(2)(c)(ii).

Section 4 presents the analysis of six groundwater remedy alternatives with respect to the aforementioned criteria. Section 5 contains the comparative analysis of the six alternatives.

4. EVALUATION OF ADDITIONAL GROUNDWATER SITE REMEDY ALTERNATIVES

4.1 <u>General</u>

The FSTM screened 20 groundwater remedy alternatives [GeoSyntec, 2003b]. Lehigh determined that five alternatives passed the screening criteria and recommended that they be evaluated more extensively in the FSTR. After its review of the FSTM, Ecology recommended that the FSTR also include source abatement alternatives (i.e., Additional Source Control and Partial Source Removal¹¹). The FS process, which included further discussions with Ecology, led to the inclusion of two more alternatives. It also led Lehigh to drop one alternative from further consideration and to consolidate three technologies into a single alternative. Accordingly, the following alternatives are evaluated in this Revised dFSTR – See Exhibit ES-3.

- Alternative #1 Permeable Treatment Wall (PTW)
- Alternative #2 Pump and Treat (P&T)
- Alternative #3 Additional Source Control (ASC)
- Alternative #4 Partial Source Removal (PSR)
- Alternative #5 Funnel and Gate Treatment (FGT)
- Alternative #6 Partial Additional Source Control (PASC)

Section 4 presents descriptions of each of the six alternatives. The descriptions begin with features that are common to each of them, such as institutional controls, followed by the essential features of each alternative and the advantages and disadvantages of the alternative relative to each of the evaluation criteria identified in Section 3. As described in Section 3, each alternative is evaluated against the threshold requirements, other requirements, disproportionate cost analysis criteria, and the 1999 AO criteria. For purposes of the disproportionate costs analysis, Alternative # 4 - PSR, is used as the baseline remedy since it exhibits the highest degree of permanence. Exhibits 4.1-1 through 4.1-6 summarize the criteria evaluation of each alternative as

¹¹ 6/11/03 Ecology correspondence to Eric Smalstig, GeoSyntec Consultants, and follow-up Ecology correspondence with Jay Manning, Esq., Brown Reavis & Manning, PLLC.

further discussed in this section¹². Exhibit 4.1-7 summarizes the cost estimate results for the six alternatives for the three cost scenarios described in Section 3.2.3.2.5.

The engineering layouts of each alternative are presented in Exhibits 4.3-1, 4.4-1, 4.5-1, 4.6-1, 4.7-1, and 4.8-1. The layout and work elements for the alternatives are conceptual. The layouts are intended only for the purpose of illustration and are not meant as final design layouts. Ecology will draft the CAP following FSTR finalization.

4.2 <u>Common Components</u>

4.2.1 General

Although each of the six alternatives uses a different technical approach to remediate the Site, they share certain components. Specifically, each alternative includes institutional controls and compliance monitoring. These components are described once, under Alternative 1, and referenced in Alternatives 2 through 6.

4.2.2 Institutional Controls

Institutional controls are non-engineered mitigation measures that reduce the potential for human exposure to contaminated media. Institutional controls include:

- **Fencing** restricts access to contaminated media and limits the potential for exposure (implemented in 1996 on the Closed CKD Pile and maintenance continues).
- Education (Warning Signs) warns people of the potential for exposure (implemented in 1996 and maintenance continues).

¹² See Nyer (1992) for a general discussion of alternative groundwater treatment technologies. EPA (1998) describes and compares alternative innovative groundwater treatment technologies including applications similar to those evaluated in this Revised dFSTR. EPA (2000) includes descriptions of case studies of groundwater remediation including sites and technologies that involve issues and processes similar to those addressed in this Revised dFSTR.

• **Restrictive Covenants** – where appropriate, Lehigh may file restrictive covenants noting specific conditions (e.g., high pH groundwater) and prohibiting certain uses.

4.2.3 Compliance Monitoring

Each of the alternatives includes provisions for compliance monitoring. Compliance monitoring has three components: protection monitoring, performance monitoring, and confirmation monitoring. To demonstrate protection monitoring, Lehigh will prepare worker health and safety plans and standard operating procedures. Performance monitoring consists of monitoring groundwater quality by using wells downgradient of the treatment systems. To demonstrate compliance with cleanup levels, groundwater monitoring wells will be located at the POC.

Lehigh has proposed cleanup levels for groundwater based on the beneficial use of Sullivan Creek (Sullivan Creek is considered a source of potable water, and groundwater flows into Sullivan Creek). As discussed above, Lehigh has proposed a conditional POC for groundwater between the treatment system of the various alternatives and Sullivan Creek. Ecology will locate the official POC in the CAP. Each of the alternatives evaluated in this FS process incorporates treatment-based remedies. There is inherent variability involved in operating engineered treatment systems. The method of evaluating compliance with cleanup standards will be established during development of the monitoring program defined in the CAP and design phases of the project, and ultimately approved by Ecology. Lehigh will report monitoring results to Ecology regularly, pursuant to provisions of the CAP and/or Consent Decree developed for the Site.

4.3 <u>Permeable Treatment Wall (PTW)</u>

4.3.1 **PTW-Alternative Description**

4.3.1.1 General

Alternative #1 – Permeable Treatment Wall (PTW) is a largely in situ technology that uses carbon dioxide diffusion into the CKD-affected groundwater to

HR0196-12/MFW05-13.DOC

decrease pH of the groundwater. Treatment occurs within a trench excavated to intercept CKD-affected groundwater. The conceptual layout of this system is shown in Exhibit 4.3-1. Lehigh tested this technology in the pilot scale phase.

4.3.1.2 System Description

The PTW would be constructed to the east of State Route 31 and includes:

- Several trenches filled with coarse gravel, arranged in a line roughly parallel to Route 31 (approximately 1,500 cubic yards);
- Treatment trenches keyed into the underlying clay layer, which becomes the bottom of the treatment zone;
- Perforated plastic pipes buried in the treatment trench (approximately 3,000 lineal feet);
- Silicon tubing within the plastic pipes (approximately 60,000 lineal feet);
- A carbon dioxide source (approximately 28 tons of capacity);
- Mechanical and control systems;
- Control building;
- Barrier wall panels connecting the coarse gravel treatment zones;
- A limited number of groundwater extraction wells downgradient of the PTW to capture water that migrates through likely gaps in the treatment zone (See Section 4.3.1.3 for a more complete description); and
- The existing pilot carbon dioxide treatment system.

5 MAY 05 / 12:00 PM

Exhibit 4.2.1 show

Exhibit 4.3-1 shows PTW components in plan and cross-sectional views, including a process diagram. Exhibit 4.3-1 does not show the limited number of groundwater extraction wells because their location and design would depend on the PTW construction. The PTW technology neutralizes pH in the CKD-affected groundwater. Carbon dioxide in the presence of water forms carbonic acid, which neutralizes hydroxide ions (the chemical cause for high pH in the Site groundwater) through the following reactions:

$$CO_2 + H_2O \rightarrow H_2CO_3 \tag{4-1}$$

$$H_2CO_3 + OH^- \rightarrow H_2O + HCO_3^-$$
(4-2)

The decrease in pH reduces soluble arsenic in the groundwater. The arsenic forms insoluble complexes, returning to the aquifer solids (i.e., soil matrix) from which it originated. These chemical processes are described in detail in the Interim Progress Report [GeoSyntec, 2000].

The treatment zone in the PTW is approximately 400 ft long by 18 to 20 ft deep, with in situ carbon dioxide delivery systems. The treatment zones are in alignment with the current Pilot System, and they use the demonstrated and reliable treatment-based technology of the Pilot System installed in 2002¹³.

4.3.1.3 System Performance

The treatment zones of the PTW intercept CKD-affected groundwater¹⁴ as it flows downgradient of the Closed CKD Pile. The carbonic acid (from in situ diffusion of carbon dioxide into the groundwater) neutralizes the high pH water entering the treatment zones. As a result of the reduced pH, arsenic in solution precipitates out (i.e., form insoluble complexes) in the alluvial soil downgradient of the treatment zone. The

¹³ See EPA (1999a through c) for a general description of the design, installation, and general performance of reactive barriers, which are similar in many ways to the PTW alternative.

¹⁴ See EPA (1993) for a description of the performance of Passive Treatments Walls, a technology that is similar to that used in PTW. This reference also provides an exhaustive comparison of alternative remediation technologies.

groundwater treated in the treatment zone will meet cleanup levels for both pH and arsenic at a conditional POC located between the treatment zone and Sullivan Creek.

Lehigh evaluated a variety of neutralization agents to reduce the Site's groundwater pH, and determined that carbon dioxide is the most appropriate neutralization agent. In water, carbon dioxide forms carbonic acid, a weak acid. Other neutralization agents, such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and organic acids, have disadvantages with respect to system performance, including: storage and handling requirements for strong acids, over acidification potential, heat generation, production of regulated daughter compounds (e.g., chloride, sulfate, nitrate, phosphate), nutrient loading on Sullivan Creek (e.g., nitrogen, phosphorus), and further reducing redox potential, E_h , in situ. Reducing E_h would not result in arsenic precipitation and could cause the mobilization of other undesirable mineral constituents. The Pilot System has demonstrated that carbon dioxide treatment systems perform successfully at the Site by lowering pH, generally increasing E_h , and precipitating arsenic.

Because of certain design constraints of the diffusion tubing and physical limitations of the alignment, the PTW includes several treatment zone units, or segments (i.e., panels). Each of the treatment zone units is keyed into the low-permeability clay layer underlying the Site. Barrier panels, installed between the PTW segments and constructed of low-permeability material, divert untreated CKD-affected groundwater to the PTW treatment panels. Gaps in the treatment zone may occur due to construction challenges, such as limited visibility while installing system components under groundwater, the tendency of the thick plastic components to bend, and potentially not treating in the targeted location. Groundwater extraction wells downgradient of the treatment panels capture the groundwater can be treated aboveground and discharged into Sullivan Creek or routed back to the treatment zone. To avoid pump and treat (P&T) treatment residuals, the Revised dFSTR assumes that escaped groundwater will be routed to the treatment zone.

The change in pH in the treatment zone will precipitate a variety of minerals, in addition to arsenic minerals such as carbonates and silicates. Arsenic is a relatively small component of the groundwater that contains other dissolved solids. PTW treatment precipitates the arsenic as a small fraction of the overall mineral precipitate

HR0196-12/MFW05-13.DOC

matrix. Treatment process modeling and stoichiometric calculations predict that arsenic will not accumulate in concentrations that exceed dangerous waste levels.

4.3.1.4 Construction Schedule

PTW design, contracting, and procurement requires approximately eight months. If required, approximately two months are needed to obtain regulatory approval for floodplain construction. PTW installation requires approximately five to six months. This estimated timeframe does not account for construction during inclement weather or winter conditions. The winter temperatures and hours of daylight in Metaline Falls adversely affect installation of the PTW, specifically the excavation of the trench, insertion of the perforated pipe into the treatment trench and construction of the barrier walls. Although possible, construction of PTW during the winter months is not advisable.

4.3.2 PTW-Protect Human Health and the Environment

The PTW will protect human health and the environment for the following reasons:

- *Groundwater Quality.* The PTW meets MTCA groundwater cleanup levels at a conditional POC. The Site-specific bench and pilot scale treatability studies [GeoSyntec, 2000, 2002, 2003a, and 2003b] demonstrated that this alternative effectively treats CKD-affected groundwater.
- *ARAR Compliance*. The PTW complies with ARARs.
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

DRAFT

4.3.3 PTW-Comply With Cleanup Standards

The Site-specific PTW bench scale and Pilot System test results established that this technology will meet cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

- *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.
- *Point of Compliance (POC)*. Lehigh proposes a conditional POC for groundwater at a point downgradient of the PTW treatment zone and upgradient of Sullivan Creek (Exhibit 4.3-1).

4.3.4 PTW-Comply With Applicable Federal and State Laws

The PTW complies with ARARs. Exhibit 3.2-1 presents a summary of ARARs that apply to this alternative.

4.3.5 **PTW-Provide for Compliance Monitoring**

Lehigh will provide compliance monitoring as outlined in Section 3.2.2.7. Lehigh will perform worker and public safety protection monitoring during construction when workers may be exposed to CKD-affected water and when the construction activities may disturb public areas (e.g., transportation on public streets). For performance and confirmational monitoring, Lehigh will use groundwater wells installed in accessible locations at the proposed conditional POC for groundwater. Standard groundwater monitoring wells will document the cleanup of the groundwater and demonstrate compliance with cleanup levels at the POC.

DRAFT

4.3.6 PTW-Use Permanent Solution to the Maximum Extent Practical

4.3.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion in the disproportionate cost analysis is discussed below.

4.3.6.2 PTW-Protectiveness

As described in Section 4.3.2, PTW protects human health and the environment because it meets groundwater cleanup levels at a conditional groundwater POC. In addition, it complies with applicable state and federal laws.

4.3.6.3 PTW-Permanence

Permanent Solution. PTW is not a permanent solution. PTW requires maintenance, continual operation, and repairs, as needed, for an indefinite time period.

Permanence. PTW exhibits a high degree of permanence because it is a treatment-based technology that decreases pH and reduces the solubility (mobility) and toxicity of arsenic, obviating further groundwater treatment at the POC. In addition, it generates no treatment residuals¹⁵ that require future management and/or disposal. However, PTW will not prevent the generation of high-pH groundwater at the Closed CKD Pile.

¹⁵ A general term adopted here to designate treatment-produced material or by-product (e.g., treatment solids), generated by this or other processes, that will have to be stored, potentially further treated, transported from the Site, and ultimately disposed of at an appropriate disposal facility.

4.3.6.4 PTW-Cost

The estimated present value cost to design and install a PTW is approximately \$2.1 million (US \$2005)¹⁶ (see Exhibit 4.3-2). The estimated annual operating and maintenance cost is approximately \$150,000. Hence, the present value of this alternative for 30 years at an annual discount rate of seven percent is approximately \$4.3 million. Actual costs may vary depending on the details of the final PTW system design and implementation procedures. Exhibit 4.1-7 includes the estimated costs of the six alternatives for the three scenarios described in Section 3.2.3.2.5 (See Appendix E).

4.3.6.5 PTW-Effectiveness Over the Long Term

Based on the past performance of the Pilot System, Lehigh has a high degree of confidence that PTW will be effective over the long term. Lehigh will operate and maintain the PTW as long as necessary to maintain compliance with cleanup levels at the point of compliance. Lehigh also will provide a financial assurance mechanism to cover the long-term operation and maintenance. PTW components could be added or decommissioned as needed, and could be replaced, as necessary (with some difficulty due to the in situ nature of many of the PTW components). As such, the PTW will be effective over the long term.

4.3.6.6 PTW-Management of Short-Term Risks

There are few short-term risks associated with PTW. During construction of the PTW, workers may be exposed for a short time to high pH water, but this risk is common to each of the alternatives evaluated. The potential exposure to high pH water occurs while the treatment trench is open, allowing the CKD-affected groundwater to fill the treatment zone. Workers must take care when using heavy equipment and relocating utility lines, including the municipal water line trending along the Sullivan

¹⁶ See EPA (2001) for a detailed discussion of the comparative costs and benefits of Permeable Reactive Walls (which are similar to the PTW) and Pump and Treat systems. Unless otherwise indicated, all costs are US \$ 2005.

Creek side of State Route 31, potential utilities to the existing building, a potential septic tank and associated features related to the existing building, and portions of stormwater conveyance pipe between the north culvert and Sullivan Creek. The risks posed are manageable with good construction safety practices. Construction and initial operation of the Pilot System created no significant short-term risk to workers or to the environment. Similarly, installation and operation of the PTW will also involve no significant construction or operation risks.

Construction during the winter months may increase the short-term risks associated with PTW. Since the trenching operation is performed in saturated conditions, short or dim daylight periods would pose additional safety concerns for workers. The winter conditions in Metaline Falls affect certain components of the PTW installation, specifically the perforated pipe installation in the treatment trench. Although possible, construction of PTW during the winter months is not advisable.

4.3.6.7 PTW-Technical and Administrative Implementability

4.3.6.7.1 Technical Implementability

Construction of several components is difficult in the winter months. The Pilot System installation demonstrated that the PTW is technically implementable during other times of the year.

4.3.6.7.2 Administrative Implementability

The PTW is administratively implementable. PTW does not require any Federal permit to discharge treated groundwater or to work near Sullivan Creek, although a local floodplain construction approval may be required. PTW produces no treatment residual that requires management. Lehigh owns all of the property needed to construct PTW.

4.3.6.8 PTW-Consideration of Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.3.7 PTW-Provide a Reasonable Restoration Time Frame

Lehigh has proposed a conditional POC because PTW will not meet cleanup levels throughout the entire Site. It is difficult to precisely estimate when groundwater downgradient of the PTW will meet the cleanup levels for pH and arsenic at the conditional POC. However, the performance and confirmational monitoring components allow Lehigh and Ecology to monitor progress toward meeting groundwater restoration. The PTW will operate indefinitely to maintain compliance with cleanup standards.

The PTW will achieve compliance with groundwater cleanup levels at a conditional POC in approximately the same time frame as other alternatives evaluated in this Revised dFSTR. The detailed design phase will more fully evaluate the restoration time frame for the PTW.

4.3.8 PTW-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.3.9 PTW-Prevent Domestic Use of CKD-Affected Groundwater

Lehigh will institute restrictive covenants to preclude domestic use of the groundwater.

4.4 <u>Groundwater Control (GWC)</u>

4.4.1 **GWC-Alternative Description**

4.4.1.1 General

Alternative #2 – Groundwater Control (GWC) combines the existing in situ permeable treatment wall Pilot System with P&T components to extract, treat, and discharge groundwater into Sullivan Creek. The P&T component addresses the CKD-affected groundwater that is not treated by the Pilot System. This approach offers certain advantages over either remedy by itself. In particular, it offers the advantages of in situ treatment via the Pilot System, combined with the flexibility of P&T construction around certain obstacles (e.g., the toe of the slope below the residential area near Sullivan Creek) and expandability, as needed. For the P&T component, an aboveground treatment process uses carbon dioxide to neutralize the high pH and ferric chloride to precipitate arsenic. The GWC collects the P&T precipitate containing arsenic for off-site disposal. The GWC discharges treated water into Sullivan Creek in compliance with an NPDES permit. Exhibit 4.4.1 shows the conceptual layout of the GWC system.

4.4.1.2 System Description

A GWC system includes the following components:

- An approximately 80-foot long in situ treatment zone (the existing Pilot System). No new panels are added.
- Groundwater extraction wells (approximately 16) to capture affected groundwater to the north and south of the Pilot System and pump it to a centralized, above-ground treatment system prior to discharge. The P&T components are described below.

Because P&T is a proven and commonly used technology¹⁷, P&T is welldocumented. The wealth of literature about P&T technology provides Lehigh abundant information to design, install, and operate an effective P&T system. A P&T system at the Site includes the following components:

- Groundwater extraction wells and collection manifold system;
- Above-ground treatment system;
- Discharge piping; and
- Waste storage area for temporary storage of treatment residuals pending transport off-site for disposal.

Exhibit 4.4-1 shows GWC components in plan and cross-sectional views. A conceptual process flow diagram is also included in the exhibit. Within the treatment system carbon dioxide forms carbonic acid in the presence of the CKD-affected water, which neutralizes the hydroxide ion (the chemical cause for high pH in the Site groundwater) through the reactions 4-1 and 4-2 presented in Section 4.3.1.2. As described in section 4.3.1.3, Lehigh selected carbon dioxide as the primary neutralizing agent to reduce the pH to levels that are conducive to ferric chloride (FeCl₃) treatment. FeCl₃ is commonly used as a coagulant in water treatment processes to remove colloidal metals [Reynolds, 1982]. Preliminary calculations show that a relatively small dosage (approximately 30 to 50 mg/L) of FeCl₃ is needed to achieve the proposed arsenic cleanup level. When mixed with water, FeCl₃ decomposes to yield hydrochloric acid and forms a dense, rapid settling floc composed mainly of ferric hydroxide, Fe(OH)₃:

$$FeCl_3 + 3 H_2O \Longrightarrow Fe(OH)_{3(s)} + 3 Cl^2 + 3 H^+$$
(4-3)

 $^{^{17}}$ See EPA (1997), which states that "A common approach to deal with contaminated ground water is to extract the contaminated water and treat it at the surface prior to discharge...". Keeley (1989) states that "One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment." See also EPA (1996). The Wisconsin Department of Natural Resources (WDNR – 1993) provides detailed information about pump and treat test technologies. Ecology has approved several cleanup actions that include covering the source and treating downgradient groundwater with pump and treat technology.

Since the H^+ reaction products are limited, the relatively small FeCl₃ dosage will not cause a significant change in the pH of the water. Lehigh will monitor the water's pH as part of the treatment process to adjust the carbon dioxide and FeCl₃ dosages, as needed. The use of ferric chloride to treat groundwater has several advantages. As a common water treatment process, ferric chloride is well understood and readily available in large quantities. Because the literature shows that the process works well over a range of field conditions, Lehigh did not test ferric chloride on the Site groundwater. However, geochemical modeling results indicate that the ferric chloride will be effective at treating the Site groundwater.

As shown in Exhibit 4.4-1, the GWC has a network of approximately 16 groundwater extraction wells (approximately 15 to 20 feet deep) placed between State Route 31 and Sullivan Creek. Preliminary modeling suggests that each well will pump between two and four gallons per minute (gpm). The final design will set the actual number and location of wells. The final design will also address hydraulic interaction between the wells and Sullivan Creek. Preliminary calculations indicate that the capture zone of the wells extends downgradient only for tens of feet (less than 50 ft). Options for addressing the hydraulic interaction include reducing the groundwater extraction rate when Sullivan Creek is at high water levels to limit drawing Sullivan Creek water into the system. Although not contemplated as part of the GWC, Lehigh could later install an impermeable slurry wall between the extraction wells and Sullivan Creek if hydraulic interaction persisted. The total extracted volume of approximately 55 gpm is pumped into a collection header, leading to the on-site treatment facility. The system generates an estimated 40 to 150 pounds per day of residual solids, depending on the CKD-affected groundwater influent chemical characteristics. Preliminary calculations and geochemical modeling predict that the residuals will not designate as dangerous waste. Following treatment described above, the treated water is discharged to Sullivan Creek under an NPDES permit. Treatment residuals are collected and transported off-site for disposal.

4.4.1.3 System Performance

The GWC system intercepts CKD-affected groundwater. The following explains how each primary component of the GWC system works together to achieve cleanup standards.

The Pilot System lowers the pH of the groundwater by diffusing carbon dioxide into the water. As a result of the reduced pH, arsenic in solution precipitates out in the soil downgradient of the Pilot System. The groundwater meets cleanup levels for pH and arsenic at a conditional POC between the Pilot System and Sullivan Creek.

The P&T components intercept CKD-affected groundwater as it flows downgradient of the Closed CKD Pile outside of the Pilot System treatment area, extract it with pumps, and treat it aboveground using carbon dioxide and ferric chloride. Carbon dioxide is the neutralization agent to lower pH, and ferric chloride precipitates the arsenic out of solution by forming insoluble complexes. See section 4.3.1.3 for the rationale Lehigh used to select carbon dioxide as the neutralizing agent. Section 4.4.1.2 provides details on the behavior of ferric chloride flocculent. Preliminary calculations show that the relatively small dosage of ferric chloride will not contribute significant dissolved chloride to the treated water stream.

The P&T components are between State Route 31 and Sullivan Creek to address the CKD-affected groundwater that is not treated by the Pilot System. Although the layout (see Exhibit 4.4-1) shows the P&T components adjacent to a portion of State Route 31, the alignment may change based on the Site conditions. An advantage of P&T is the flexibility to locate extraction points throughout the affected area, where they are most effective. P&T has added flexibility because Lehigh can optimize the location of extraction wells, based on performance monitoring results.

4.4.1.4 Construction Schedule

GWC design, contracting, and procurement requires approximately eight months. GWC permitting and obtaining regulatory approvals requires approximately six to nine months (see Exhibit 3.2-1 for the list of permits and regulatory approvals). GWC installation requires approximately three months. This estimated timeframe does not account for construction during inclement weather or winter conditions. Winter weather minimally affects the construction of GWC, so that time of year will not appreciably affect the schedule. However, construction of GWC during the winter months is not advisable.

DRAFT

4.4.2 GWC-Protect Human Health and the Environment

The GWC system will protect human health and the environment for the following reasons:

- *Groundwater Quality.* The GWC meets MTCA groundwater cleanup levels at a conditional POC.
- *ARAR Compliance*. GWC complies with ARARs.
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

4.4.3 GWC-Comply With Cleanup Standards

The GWC system complies with cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

- *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.
- *Point of Compliance (POC)*. Lehigh proposes a conditional POC for groundwater at a point between the GWC system and Sullivan Creek (Exhibit 4.4-1).

4.4.4 GWC-Comply With Applicable Federal and State Laws

The GWC complies with ARARs. Exhibit 3.2-1 presents a summary of ARARs that apply to this alternative.

Calculations show that treatment residuals generated by the P&T component will not designate as dangerous waste and will be managed in accordance with applicable solid waste regulations.

DRAFT

4.4.5 GWC-Provide for Compliance Monitoring

Lehigh will perform protection, performance, and confirmational monitoring as described in Section 4.3.5.

4.4.6 GWC-Use Permanent Solution to the Maximum Extent Practical

4.4.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion in the disproportionate cost analysis is discussed below.

4.4.6.2 GWC-Protectiveness

As described in Section 4.4.2, GWC protects human health and the environment because it meets groundwater cleanup levels at a conditional groundwater POC. In addition, it complies with applicable state and federal laws. GWC will generate groundwater treatment residuals requiring management and off-site disposal.

4.4.6.3 GWC-Permanence

Permanent Solution. GWC is not a permanent solution. The Pilot System and P&T components require maintenance, operation, repairs, and replacement for the foreseeable future.

Permanence. The GWC system exhibits a high degree of permanence. It uses treatment-based technologies that obviate further groundwater treatment at the POC. The technology chemically neutralizes the high pH water, resulting in a permanent reduction in pH and lower solubility (mobility) and toxicity of arsenic. However, the process also produces treatment residuals requiring off-site management. According to WAC, the generation of treatment residuals does not affect the degree of permanence of this alternative. In addition, GWC will not prevent the generation of high-pH groundwater at the Closed CKD Pile.

HR0196-12/MFW05-13.DOC

4.4.6.4 GWC-Cost

The estimated present value cost to design and install a GWC is approximately \$1.1 million (US \$2005) (see Exhibit 4.4-2). The annual operating and maintenance cost is estimated to be approximately \$230,000. Hence, the present value of this alternative for 30 years at an annual discount rate of seven percent is approximately \$4.1 million. Actual costs may vary depending on the details of the final GWC system design and implementation procedures. Exhibit 4.1-7 includes the estimated costs of GWC for the three costing scenarios described in Section 3.2.3.2.5. See Appendix E for supporting information, including assumptions used in the cost analysis.

4.4.6.5 GWC-Effectiveness Over the Long Term

Based on the past performance of the Pilot System and the proven success of P&T, Lehigh has a high degree of confidence that GWC will be effective over the long term. Lehigh will operate, maintain, and replace the GWC as long as necessary to maintain compliance with cleanup standards. Lehigh also will provide a financial assurance mechanism to cover long-term operation and maintenance. The P&T components are easy to add, remove, or re-locate over the long term. As such, the GWC will be effective over the long term.

4.4.6.6 GWC-Management of Short-Term Risks

The GWC has few short-term risks associated with the Pilot System or the P&T components. Workers will encounter a small amount of CKD-affected groundwater during well development. Workers also will use heavy equipment and relocate utility lines. The risks are manageable with good construction safety practices. P&T is a proven technology with known and manageable construction and operation risks. P&T operation poses no significant risks other than those associated with the treatment residuals produced and handled during ongoing operation and maintenance of the system. As with the other alternatives, it is best to avoid construction during winter conditions in Metaline Falls.

4.4.6.7 GWC-Technical and Administrative Implementability

4.4.6.7.1 Technical Implementability

The P&T component is a proven technology and is technically implementable. Construction involves less earth-moving and subsurface work than any other alternative, so that P&T is less subject to seasonal weather constraints than other alternatives. The more innovative and challenging component, the Pilot System, is already installed and operating at the Site.

4.4.6.7.2 Administrative Implementability

All components of GWC are administratively implementable. Lehigh will obtain an NPDES permit to discharge the treated water into Sullivan Creek. See Exhibit 3.2-1, which shows the permits and approvals needed for GWC. Lehigh's preliminary research suggests that GWC will meet the conditions connected with these permits and approvals. Lehigh owns all of the property needed to construct GWC.

4.4.6.8 GWC-Consideration of Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.4.7 GWC-Provide a Reasonable Restoration Time Frame

Lehigh has proposed a conditional POC because GWC will not meet cleanup levels throughout the entire Site. It is difficult to precisely estimate when groundwater downgradient of the GWC will meet the cleanup levels for pH and arsenic at the conditional POC. However, the performance and confirmational monitoring components allow Lehigh and Ecology to monitor progress toward meeting groundwater restoration. The GWC will operate indefinitely to maintain compliance with cleanup standards. The GWC will achieve compliance with groundwater cleanup levels at a conditional POC in approximately the same time frame as other alternatives evaluated in this Revised dFSTR. The detailed design phase will more fully evaluate the restoration time frame for the GWC.

4.4.8 GWC-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.4.9 GWC-Prevent Domestic Use of CKD-Affected Groundwater

Measures to prevent domestic use of CKD-affected groundwater are discussed in Section 4.3.9.

4.5 Additional Source Control (ASC)

4.5.1 ASC-Alternative Description

4.5.1.1 General

Alternative #3 – Additional Source Control (ASC) diverts groundwater that flows around and into the Closed CKD Pile, reducing the amount of CKD-affected groundwater generated at the Site. ASC includes a low-permeability slurry wall that limits upgradient seepage water from entering the pile materials and a vertical dewatering system upgradient of the slurry wall that removes water that piles up against the upgradient side of the slurry wall. The dewatering system protects the wall, helps prevent re-activating the historic landslide by not allowing water to build up behind the slurry wall, and enhances the performance of the slurry wall. To treat CKD-affected water that continues to emanate from the Closed CKD Pile, ASC includes a downgradient P&T system. ASC discharges water into Sullivan Creek from the dewatering wells and treatment system under an NPDES permit. Exhibit 4.5.1 shows the conceptual layout of the ASC.

4.5.1.2 System Description

The ASC includes the following components:

- *Slurry Wall.* A slurry wall¹⁸ about 2 ft wide is constructed hydrogeologically upgradient of the Closed CKD Pile and in soils and water unaffected by CKD. The slurry wall alignment is approximately 1,600 ft long and generally parallel to the current surface water control features along the southwestern and western extent of the Closed CKD Pile. The slurry wall is approximately 40 to 120 ft deep and would key into the low permeability glacial sediments (i.e., clay) that underlie the Site. The slurry wall is not constructed in one trench of approximately 1,600 ft in length. Trench installation occurs in segments, especially in the vicinity of the historic landslide where one long trench has the potentially to trigger a landslide or other slope stability issues.
- Upgradient Groundwater/Seepage Control. A necessary component of the slurry wall system is a dewatering system. It consists of a series of between approximately 10 and 15 groundwater dewatering wells upgradient of the slurry wall, each pumping up to approximately 15 gallons per minute, and toe drains at either end of the slurry wall. The groundwater wells and toe drains will drain the existing landslide area to enhance slope stability during construction of the slurry wall. During operation, they will preclude the development of high groundwater hydraulic pressure behind the wall. Such pressure would allow water to penetrate or overflow the wall and migrate into the Closed CKD Pile. The clean water extracted from the wells is discharged into Sullivan Creek via overland flow through existing the Site's surface water control features. Land not currently owned by

¹⁸ See Xanthakos (1979) for a very detailed description of the design, construction, and performance of slurry walls. ASTM (1985) includes numerous papers on slurry wall design, construction, and performance.

Lehigh will contain some of the upgradient groundwater/seepage control elements.

• **Downgradient Groundwater Control.** A downgradient P&T system will control and remediate affected groundwater. The P&T system is relatively flexible and easily modified over time as the slurry wall and upgradient groundwater/seepage control systems reduce the volume and the extent of the CKD-affected groundwater.

Exhibit 4.5-1 shows each of these components in plan and cross-sectional views.

4.5.1.3 System Performance

As explained above, the slurry wall and dewatering wells reduce the quantity of groundwater contacting the CKD by diverting groundwater around the pile. However, seepage of high pH and arsenic-containing groundwater downgradient of the Closed CKD Pile will continue, due to the following factors:

• **Transient Drainage**¹⁹ from the Closed CKD Pile. Parts of the Closed CKD Pile are saturated. The saturated portions of the pile will continue to drain until the moisture content of the pile is in equilibrium with gravity drainage forces. GeoSyntec analyzed the Closed CKD Pile using finite element modeling techniques. The modeling results estimate that transient drainage will continue for decades, but that the rate will drop to approximately 10 percent of its current rate in 50 to 100 years [GeoSyntec, 2004].

¹⁹ Transient drainage is described in DOE/AL (1999) as follows: "The term 'transient drainage' was used to differentiate short-term seepage from disposal embankments from long-term seepage, which was expected to occur at smaller rates than short-term seepage." See the numerous case histories regarding transient drainage considerations in complying with groundwater cleanup standards. Stein et al (2000) describe a case history for which they predict that transient drainage from a tailing pond would continue for 50 to 70 years after closure.

- *Slurry Wall Performance*. The slurry wall will not eliminate groundwater contact with CKD. Consequently, affected groundwater will migrate from the pile, due to the following reasons:
 - <u>Slurry Wall Seepage</u>. Although slurry walls can be substantially less permeable than other soils at the Site, no slurry wall is truly impermeable²⁰. The Site conditions such as the slurry wall depth, the historic landslide, steep terrain, and segmented installation exacerbate permeability issues with the ASC slurry wall. Common practice achieves a hydraulic conductivity of about 10⁻⁷ cm/sec (i.e., water passes through the slurry wall material at this or greater rates depending on the hydraulic head on the slurry wall). In spite of even the highest construction standards, some imperfections may remain in the as-constructed slurry wall, especially at the depths envisioned for ASC. Upgradient groundwater will seep through these imperfections and move through the CKD.
 - Groundwater upwelling into the base of the Closed CKD Pile. The slurry wall will be keyed into the clay layer that exists under the Closed CKD Pile. Although the clay is relatively impermeable, it will not hydraulically isolate the upgradient and downgradient sides of the slurry wall. Water will continue to pass under the slurry wall, but at a significantly slower rate than water passes through that area currently. The groundwater elevation under the CKD will equilibrate with the water on the upgradient side of the slurry wall. Additionally, wet seasons will cause high groundwater elevations in the Holocene alluvium, upwelling into the CKD that overlies these alluvial materials.

Thus, ASC will reduce, but not eliminate, the amount of downgradient groundwater that requires treatment. A P&T system will treat the CKD-affected groundwater. As the downgradient groundwater quality improves, Lehigh will reduce

²⁰ See EPA (1998b) for a recent evaluation of the performance of engineered subsurface barriers, including slurry walls, at waste sites.

the number of extraction wells in the P&T system. Once CKD saturation equilibrium is obtained and transient drainage ceases, a few groundwater extraction wells will operate indefinitely to treat affected groundwater arising from slurry wall imperfections and groundwater upwelling.

This evaluation assumes the placement of a slurry wall with supplemental dewatering to control as much of the source as possible. If, however, one wished to reduce the size of the wall, the information herein provides a basis for analysis of these lesser alternatives. With a lesser alternative comes reduced control, diminishing the benefits of the alternative. See Exhibit 4.5-2 and Appendix E for more detailed information on cost and assumptions.

4.5.1.4 Construction Schedule

ASC design, contracting, and procurement requires approximately eight months. ASC permitting and obtaining regulatory approvals requires approximately six months to one year (see Exhibit 3.2-1 for the list of permits and regulatory approvals). ASC installation requires approximately seven months. This estimated timeframe does not account for construction during inclement weather or winter conditions. The winter conditions in Metaline Falls adversely affect installation of ASC, specifically slurry wall construction, dewatering well network and drainage installation, and some P&T elements. When working with time frames for tasks that last longer than six months, the construction schedule may bridge over into a second construction season. As explained earlier, it is not advisable to install components of the ASC during the winter.

4.5.2 ASC-Protect Human Health and the Environment

The ASC alternative protects human health and the environment for the following reasons:

• *Groundwater Quality.* The slurry wall and upgradient groundwater/seepage control components, combined with downgradient P&T components, will meet MTCA groundwater cleanup levels at a conditional POC.

- ARAR Compliance. ASC will comply with ARARs .
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

4.5.3 ASC-Comply With Cleanup Standards

The ASC will comply with cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

- *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.
- *Point of Compliance (POC)*. Lehigh proposes a conditional POC for groundwater between the P&T system components and Sullivan Creek (Exhibit 4.5-1).

4.5.4 ASC-Comply With Applicable Federal and State Laws

The ASC will comply with ARARs. A summary of ARARs that apply to this alternative is presented in Exhibit 3.2-1.

The slurry wall and upgradient groundwater/seepage control components alone will not achieve cleanup standards for reasons detailed in Section 4.5.1.3, but they would reduce the amount of water that the P&T components must treat. As discussed in previous sections, the P&T components will meet cleanup standards. Calculations show that treatment residuals generated by the P&T component will not designate as dangerous waste and will be managed in accordance with applicable solid waste regulations.

4.5.5 ASC-Provide for Compliance Monitoring

Lehigh will perform protection, performance, and confirmational monitoring as described in Section 4.3.5.

4.5.6 ASC-Use Permanent Solution to the Maximum Extent Practical

4.5.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion in the disproportionate cost analysis is discussed below.

4.5.6.2 ASC-Protectiveness

As described in Section 4.5.2, ASC protects human health and the environment because it meets groundwater cleanup levels at a conditional groundwater POC. In addition, it complies with applicable state and federal laws. ASC will reduce the amount of CKD-affected groundwater flowing downgradient from the Closed CKD Pile. ASC involves short-term risks, especially due to construction in the historic landslide and on the Closed CKD Pile. ASC installation includes measures to reduce the potential for reactivating landslides or compromising the stability of the Closed CKD Pile. Because ASC incorporates P&T components, it will generate groundwater treatment residuals requiring management and off-site disposal.

4.5.6.3 ASC-Permanence

Permanent Solution. The ASC is not a permanent solution. The upgradient groundwater/seepage control components require continual operation and maintenance. The slurry wall will not stop all groundwater contact with CKD. The downgradient P&T components require maintenance, operation, repair, and replacement, as needed, for the foreseeable future.

Permanence. The ASC exhibits a higher degree of permanence than treatment technologies alone because it reduces releases from the Closed CKD Pile and treats groundwater affected by ongoing future releases from the Pile. The degree of permanence exhibited by each ASC component is as follows:

- *Slurry Wall*. Because the slurry wall reduces the volume of hazardous substances generated at the Site, it achieves a high degree of permanence. However, the slurry wall's performance may diminish over time. As with any geologic material, the materials of the slurry wall will change as a result of natural processes, including change of moisture content and the ongoing geomorphic changes such as deformation associated with historic landslides through which the slurry wall would be constructed.
- *Groundwater Extraction Wells and Seepage Control Features*. These have a degree of permanence because they help reduce the volume of hazardous substances generated at the Site.
- **P&T.** P&T exhibits a high degree of permanence. It uses treatmentbased technologies that obviate further groundwater treatment at the POC. The technology chemically neutralizes the high pH water, resulting in a permanent reduction in pH and lower solubility and toxicity of arsenic. The process also produces treatment residuals requiring off-site management.

4.5.6.4 ASC-Cost

The estimated present value cost to design and install ASC would range from \$9.1 to \$14 million (US \$2005) (see Exhibit 4.5-2). The annual operating and maintenance cost is estimated to be approximately \$240,000. Hence, the present value of this alternative for 30 years at an annual discount rate of seven percent is estimated to range from \$12.3 to \$17.2 million. Actual costs may vary depending on the details of the final ASC system design and implementation procedures. Exhibit 4.1-7 includes the estimated costs of ASC for the three costing scenarios described in Section 3.2.3.2.3. See Appendix E for supporting information, including assumptions used in the cost analysis.

4.5.6.5 ASC-Effectiveness Over the Long Term

While the slurry wall will reduce the amount of groundwater entering the Closed CKD Pile, over time its performance may diminish. If that happens, this alternative will rely more heavily on P&T components to maintain compliance with cleanup standards. As explained in Section 4.4.1, the P&T components have proven to be successful. In addition, they are flexible, allowing adjustments in changing conditions. Thus, Lehigh has a high degree of certainty that the P&T components of ASC will be successful over the long term, but a lower degree of certainty with regard to the slurry wall component.

Lehigh will operate and maintain the ASC as long as necessary to maintain compliance with cleanup standards. Lehigh also will provide a financial assurance mechanism to cover long-term operation and maintenance.

4.5.6.6 ASC-Management of Short-Term Risks

The short-term risks associated with constructing the ASC include those commonly associated with extensive use of heavy construction equipment. Short-term risks also include the potential to reactivate the historical landslide to the south of the Closed CKD Pile, as well as slope stability concerns associated with heavy equipment working on or near the 2:1 (horizontal to vertical) slopes of the Closed CKD Pile. The risks posed are manageable with good construction safety practices, but earthwork in the area of the historic landslide requires extreme caution. Dewatering mitigates some of the concerns. Segmented installation to avoid opening long trenches that cause stability issues also mitigates some of the concerns. As with the other alternatives, it is best to avoid construction during winter conditions in Metaline Falls.

P&T is a proven technology with known and manageable construction and operation risks. There are no significant short-term risks involved in P&T construction.

DRAFT

4.5.6.7 ASC-Technical and Administrative Implementability

4.5.6.7.1 Technical Implementability

The ASC alternative uses proven technologies and is technically implementable. Construction involves significant earth-moving and subsurface work and construction techniques that are difficult in winter weather. While ASC construction is difficult in the winter months, ASC is technically implementable during other times of the year.

4.5.6.7.2 Administrative Implementability

It is not clear whether the ASC systems are administratively implementable. An NPDES permit is required for discharging treated water from the P&T and from upgradient dewatering wells. See Exhibit 3.2-1, which shows the permits and approvals needed for ASC. Lehigh's preliminary research suggests that ASC will meet the conditions connected with these permits and approvals. However, portions of ASC likely will extend off Lehigh-owned property (e.g., slurry wall alignment along Quarry Road). Lehigh not know whether using this land is feasible.

4.5.6.8 ASC-Consideration of Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.5.7 ASC-Provide a Reasonable Restoration Time Frame

Lehigh has proposed a conditional POC because ASC will not meet cleanup levels throughout the entire Site. It is difficult to precisely estimate when groundwater downgradient of the ASC will meet the cleanup levels for pH and arsenic at the conditional POC. However, the performance and confirmational monitoring components allow Lehigh and Ecology to monitor progress toward meeting groundwater restoration. The ASC will operate indefinitely to maintain compliance with cleanup standards. The ASC will achieve compliance with groundwater cleanup levels at a conditional POC in approximately the same time frame as other alternatives evaluated in this Revised dFSTR. The detailed design phase will more fully evaluate the restoration time frame for the ASC.

4.5.8 ASC-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.5.9 ASC-Prevent Domestic Use of CKD-Affected Groundwater

Measures to prevent domestic use of CKD-affected groundwater are discussed in Section 4.3.9.

4.6 <u>Partial Source Removal (PSR)</u>

4.6.1 **PSR-Alternative Description**

4.6.1.1 General

Alternative #4 – Partial Source Removal (PSR) removes CKD from certain areas of the Closed CKD Pile to reduce the amount of CKD in contact with groundwater based on Ecology interpretations of areas of inundation [Ecology, 1997]. Reducing CKD-water contact reduces the generation of CKD-affected groundwater. PSR also includes P&T components to treat affected groundwater that continues to emanate from the pile. Complete elimination of the CKD-water contact would be very difficult. Ecology believes that PSR will achieve sufficient removal of CKD-water contact to obviate groundwater treatment after residual groundwater effects are remediated. Although the exact time period that residual effects would attenuate is uncertain, Lehigh applied a five-year timeframe to Ecology's belief for the purposes of the Revised dFSTR. The five-year timeframe allows Ecology's PSR scenario to be costed and evaluated using the remedy selection criteria.

HR0196-12/MFW05-13.DOC

Lehigh believes that even implemented with a high degree of effectiveness, PSR will not result in groundwater remediation over the long-term and therefore, groundwater treatment would continue indefinitely. Lehigh has presented data and analysis that shows that PSR would need to be greater than 99% effective at removing the CKD-water contact. Lehigh also demonstrated that only full Closed CKD Pile removal will achieve this level of effectiveness because of the various mechanisms for water-CKD contact [GeoSyntec, 2004].

This section evaluates both Ecology's and Lehigh's views of the time needed for subsequent groundwater treatment. Both PSR groundwater treatment scenarios use the same CKD removal, inert backfill, and off-site disposal components, but the groundwater treatment duration differs.

Removal operations target CKD near the toe of the Closed CKD Pile and CKD inundated by groundwater in the lowest reaches of the pile. Sheet piles around the toe area isolate and stabilize the toe, followed by excavation of the CKD. The analysis examined two excavation methods for the lower reaches of the Closed CKD Pile: (1) conventional slope-back excavation through the top of the Closed CKD Pile, and (2) a coffer dam type system, using vertical shoring installed through the top of the Closed CKD Pile to allow excavation of a near-vertical shaft.

The conventional slope-back technique has significant advantages over the coffer dam system, as follows:

- Excavating the silt-like CKD using a vertical shaft poses significant safety concerns;
- The vertical distance between the top and lower reaches of the Closed CKD Pile is between 60 and 100 feet. Advancing shoring to these depths on the Closed CKD Pile would be difficult;
- The footprint of the targeted area, approximately 330 feet by 120 feet, is a rather large area to stabilize with a system of vertical shoring that requires structural integrity;
- Cross braces needed to provide horizontal support to the vertical shoring will impede the maneuvering of the excavation equipment;

- Advancing shoring through the top of the Closed CKD Pile may destabilize the slopes of the Closed CKD Pile;
- Large objects, such as boulders, will interfere with shoring advancement; and
- Various excavation contractors²¹ suggest that a conventional slopeback technique offers more control over the excavation and safety aspects of the project.

4.6.1.2 System Description

The excavation at the toe of the Closed CKD Pile likely requires advance WDOT approval because of its proximity to State Route 31. Prior to excavation activities, land would also be secured for the purposes of construction and operation of a temporary storage facility approximately five acres in size. The storage location contains the excavated CKD in a lined pad in preparation for CKD replacement back into the excavations. The storage location is equipped with horizontal perforated pipes to collect drainage from the CKD, dust control water, and precipitation. Cover components from the Closed CKD Pile will be salvaged for re-use to the extent practical at a nearby location. A truck staging and cleaning area is also needed to handle the approximately 13,000 truck trips that result from PSR.

PSR then removes and replaces the following areas of the Closed CKD Pile and includes the listed components:

- *Toe of Closed CKD Pile.* Exhibit 4.6-1 shows the following general steps that will be taken to implement this alternative:
 - 1. Install dewatering wells at the downgradient toe adjacent to State Route 31.

²¹ Lehigh and Ecology consulted several earthworks contractors during evaluation of PSR. The contractors provided input on PSR constructability, safety, and cost.

- 2. Access the top of the Closed CKD Pile and cut away the engineered cover system. Salvage components as much as possible.
- 3. Place about 500 ft of sheet piles upgradient of the affected zone.
- 4. Excavate approximately 5,500 cubic yards of CKD to the east of the sheet piles.
- 5. Transport the 5,500 cubic yards of CKD using approximately 280 trucks to a temporary storage location.
- 6. Put approximately 2,800 cubic yards of high-permeability engineered backfill into the bottom of the hole, surround it with geotextile filter fabric, and overlay it with a low-permeability soil cover.
- 7. Bring approximately 2,700 cubic yards CKD back from temporary storage, via approximately 140 trucks, and backfill with the excavated CKD.
- 8. Dispose of approximately 2,800 cubic yards of excess CKD in off-site landfill.
- 9. Reconstruct the engineered cap over the Closed CKD Pile.
- *Lower CKD Saturated Zones.* To access the lower reaches of the pile and ensure stable CKD slopes inside of the excavation, conventional excavation entails excavating about half of the entire pile, or approximately 260,000 cubic yards. Such excavation requires the following general steps:
 - 1. Install groundwater dewatering wells at the downgradient toe and upgradient side of the Closed CKD Pile to lower the groundwater level below the CKD.

- 2. Access the top of the Closed CKD Pile and cut away the engineered cover system. Salvage components as much as possible.
- 3. Excavate approximately 260,000 cubic yards of CKD to the east of the sheet piles.
- 4. Slope the excavation sides at a 2:1 (horizontal: vertical) slope, as excavation proceeds (see Exhibit 4.6-1) and removes the inundated CKD.
 - 5. Transport the 260,000 cubic yards of CKD using approximately 13,000 trucks to a temporary storage location.
 - 6. Put approximately 7,000 cubic yards of high-permeability engineered backfill into the bottom of the hole, surround it with geotextile filter fabric, and overlay it with a low-permeability soil cover.
 - 7. Bring approximately 253,000 cubic yards CKD back from temporary storage, via approximately 12,500 trucks, and backfill with the excavated CKD.
 - 8. Dispose of approximately 7,000 cubic yards of excess CKD in off-site landfill.
 - 9. Reconstruct the engineered cap over the Closed CKD Pile.
- *GWC*. Install GWC as described in Section 4.4.1.

4.6.1.3 System Performance

PSR will excavate CKD from the base of the Closed CKD Pile, thus reducing the amount of CKD in contact with groundwater. This, in turn, will decrease the volume of CKD-affected groundwater. The P&T components downgradient from the Closed CKD Pile will intercept affected groundwater, extract it with pumps, and

treat it aboveground by using carbon dioxide and ferric chloride. Carbon dioxide is the neutralization agent to lower pH, and ferric chloride precipitates the arsenic out of solution by forming insoluble complexes. See section 4.3.1.3 for the rationale Lehigh used to select carbon dioxide as the neutralizing agent. Section 4.4.1.2 provides details on the behavior of ferric chloride flocculent. Preliminary calculations show that the relatively small dosage of ferric chloride will not contribute significant dissolved chloride to the treated water stream.

Ecology and Lehigh disagree about the duration of groundwater treatment needed to meet cleanup standards. Ecology believes that removing the two areas of saturated CKD shown on Exhibit 4.6-1 will result in groundwater that meets cleanup levels after short-term flushing. The Revised dFSTR assigns a time-period of five years to the short-term flushing.

Lehigh believes that, to meet cleanup standards, groundwater treatment will be required indefinitely [GeoSyntec, 2004]. Although removing much of the CKD in contact with groundwater will reduce the production of CKD-affected groundwater, water will continue to enter the Pile from other sources. Lehigh presented information showing that water enters the Pile via deep and side seeps. Even if all saturated portions of the CKD were removed so that no more water contacted CKD, transient drainage would still occur for decades (see Section 4.5.1.3). The elevated pH of this transient drainage will cause groundwater downgradient of the Closed CKD Pile to exceed cleanup standards.

This Revised dFSTR evaluates both groundwater treatment scenarios, five years and indefinite. For purposes of evaluating PSR under Ecology's groundwater treatment scenario, Lehigh assumes that cleanup levels will be met in groundwater throughout the Site after five years, at which time treatment will stop. The five-year assumption also allows Lehigh to prepare a cost estimate for this scenario. For purposes of evaluating PSR under the second groundwater treatment scenario, Lehigh believes that treatment must continue indefinitely to maintain compliance with cleanup levels at a conditional groundwater POC. In both scenarios, Lehigh will treat affected groundwater by using a GWC consisting of the Pilot System and P&T components installed downgradient of the Closed CKD Pile.

During installation of PSR, the contractors will perform soft soil excavation construction quality assurance tests. While the contractors will estimate the amounts of CKD removed, it is not possible to calculate the percentage of the inundated CKD removed.

The PSR alternative evaluation assumes that much of the contact between CKD and groundwater will be removed by excavating and replacing two areas of CKD inundation. If desired, the information provides a basis for analyzing the removal of less inundated CKD. With a lesser alternative comes reduced control, reducing the benefits of the alternative. Please see Exhibit 4.6-2 and Appendix E for more detailed information on cost and assumptions.

4.6.1.4 Construction Schedule

PSR design, contracting, and procurement requires approximately eight months. Procurement of the approximately five acres of temporary storage requires approximately six to nine months. PSR permitting and obtaining regulatory approvals requires approximately six months to one year (see Exhibit 3.2-1 for the list of permits and regulatory approvals). Building the approximately five-acre temporary storage area requires approximately one month. Excavation, removal, and backfill require approximately twenty-five to thirty months. Cleaning the five-acre temporary storage area requires approximately two months. Cover reconstruction requires approximately seven months. Hence, the total installation time for PSR is approximately thirty-five to forty months. This estimated timeframe does not account for construction during inclement weather or winter conditions. The winter temperatures and hours of daylight in Metaline Falls may adversely affect PSR during installation. When working with time frames for tasks that last longer than six months, the construction schedule may bridge over into a second construction season. As explained earlier, it is not advisable to implement PSR during the winter.

DRAFT

4.6.2 **PSR-Protect Human Health and the Environment**

The PSR alternative protects human health and the environment for the following reasons:

- *Groundwater Quality.* Under the first groundwater treatment scenario, it is assumed that PSR meets MTCA groundwater cleanup levels at a standard POC after five years. Under the second scenario, PSR meets MTCA groundwater cleanup levels at a conditional POC.
- *ARAR Compliance*. PSR will comply with ARARs.
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

4.6.3 **PSR-Comply With Cleanup Standards**

PSR will comply with cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

- *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.
- *Point of Compliance (POC)*. Under the first scenario, Ecology presumes a standard POC is used, and groundwater meets cleanup levels throughout the Site after five years. Under the second scenario, groundwater meets cleanup levels at a groundwater conditional POC between the P&T components and Sullivan Creek (Exhibit 4.6-1).

4.6.4 **PSR-Comply With Applicable Federal and State Laws**

PSR complies with ARARs. A summary of ARARs that apply to this alternative is presented in Exhibit 3.2-1.

Calculations show that treatment residuals generated by the P&T component will not designate as dangerous waste and will be managed in accordance with applicable solid waste regulations.

4.6.5 PSR-Provide for Compliance Monitoring

Lehigh will conduct protection, performance, and confirmational monitoring as described in Section 4.3.5.

Because the CKD removal activities of PSR pose special safety concerns for workers, Lehigh's construction monitoring plan will include additional protection monitoring during construction. Additional worker training and equipment will help mitigate work space hazards associated with excavation in soft materials in a landslide area. Along with these hazards, the nature of the excavation increases the exposure of workers to CKD and CKD-affected water, requiring additional worker safety and protection monitoring.

4.6.6 **PSR-Use Permanent Solution to the Maximum Extent Practical**

4.6.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion from the disproportionate cost analysis is discussed below.

4.6.6.2 PSR-Protectiveness

As described in Section 4.6.2, PSR will protect human health and the environment by meeting cleanup standards. Under the first groundwater treatment scenario, PSR will attain groundwater cleanup levels throughout the entire Site. Under the second scenario, PSR will attain groundwater cleanup levels at a conditional POC. In addition, PSR complies with applicable state and federal laws.

PSR does, however, pose significant safety risks during construction. It also requires managing approximately 270,000 cubic yards of CKD on a five-acre site pending transport to a disposal facility. Approximately 10,000 cubic yards of CKD will be disposed of at a remote off-site facility. Rail cars or loaded trucks could be used to transport the CKD to the disposal facility. Rail and truck transport of the CKD were evaluated for PSR. Truck transport was selected for PSR because it can be implemented more rapidly for less cost than rail transport at the Site. Reactivating the rail spur near the Closed CKD Pile would be time-consuming and expensive. Hundreds of trucks are needed transport the CKD several hundred miles on public roads to the disposal facility. In addition, because PSR incorporates P&T components, it will generate groundwater treatment residuals requiring management and off-site disposal.

4.6.6.3 PSR-Permanence

Permanent Solution. As noted above in Section 3.2, Lehigh and Ecology disagree whether PSR is a permanent solution. Ecology believes that it is, because it removes source material from the Site to an extent that groundwater treatment would not be required except to treat residual effects. For purposes of evaluating PSR in this revised dFSTR under the first scenario, given Ecology's belief, Lehigh assumes that cleanup levels will be met in groundwater throughout the Site after five years, at which time treatment will stop.

Lehigh does not believe that PSR is a permanent solution because two types of "further action" will be required after CKD is excavated. First, the excavated CKD will have to be transported to a permitted off-site disposal facility, where it will be isolated and monitored in perpetuity. Second, Lehigh believes groundwater treatment and monitoring must continue indefinitely to meet cleanup levels at a conditional POC for groundwater.

Permanence. PSR exhibits a higher degree of permanence than the other alternatives, because it has the greatest potential to reduce the volume of hazardous substances at the Site by removing CKD in contact with groundwater. The GWC components of PSR also permanently reduce the toxicity and mobility of hazardous substances by lowering pH and precipitating arsenic out of groundwater. Assuming that the PSR effectively removes CKD from inundated areas, PSR has the highest degree of

permanence, and is therefore the baseline alternative to compare with the other alternatives.

4.6.6.4 PSR-Cost

Using the first groundwater treatment scenario, the present value of this alternative for 30 years at an annual discount rate of seven percent would range from \$18.8 to \$25.6 million (see Exhibit 4.6-2). The estimated cost to design and install PSR ranges from \$17.4 to \$24.2 million (US \$2005). The first five years, while GWC operates, have an estimated annual operating and maintenance costs of \$230,000. After five years, the estimated annual operating and maintenance costs is \$53,000.

Under the second groundwater treatment scenario the present value is between \$20.4 and \$27.2 million. The estimated cost to design and install PSR ranges from \$17.4 to \$24.2 million (US \$2005). Annual operating and maintenance costs are estimated to total \$230,000.

Exhibit 4.1-7 includes the estimated costs of PSR for the three projectduration and discount-rate costing scenarios described in Section 3.2.3.2.3. See Appendix E for supporting information, including assumptions used in the cost analysis.

4.6.6.5 PSR-Effectiveness Over the Long Term

PSR will be effective over the long term under either groundwater treatment assumption. Removing CKD in contact with groundwater will reduce risks at the Site by decreasing the amount of CKD-impacted groundwater. In addition, P&T is a reliable technology for remediating residual CKD-impacted groundwater, and the Pilot System has already proven successful at remediating groundwater at this Site. Lehigh will operate and maintain the GWC components as long as necessary to maintain compliance with cleanup standards. P&T components could be added or decommissioned as needed, and could easily be replaced as necessary. Lehigh would provide a financial assurance mechanism to cover long-term operation and maintenance.

DRAFT

4.6.6.6 PSR-Management of Short-Term Risks

PSR has significant short-term construction risks. Because of the construction requirements, implementing this alternative has significant challenges, as follows:

- CKD is a soft soil that is prone to sliding along the excavation side slopes.
- Controlling subsidence during excavation is difficult. Surface subsidence will compromise the integrity of the existing cover systems.
- Advancing sheet piles into the toe of the Closed CKD Pile may destabilize the face of the Closed CKD Pile.
- Dust control methods such as watering the CKD produce large areas of worker exposure risks. Additionally, water usage may reduce CKD stability.
- Without sufficient dewatering, the CKD is likely to liquefy in response to vibration and heavy equipment movement, producing unstable slopes and an extreme safety hazard.
- Prior to backfilling or disposal, the excavated and stored CKD requires large-scale mitigation and containment measures. The approximately 13,000 truck loads needed to transport approximately 270,000 cubic yards to the temporary storage site will be stopped and cleaned to reduce CKD tracking off-site. In the process of excavating such a large volume of the pile, PSR will require approximately five acres for temporary storage. The lined storage pad of about five acres collects water that drains from the CKD. This water will require handling and treatment. Dust will be controlled using tarps and water. After the excavation is complete, a slightly lesser number of trucks will transport the CKD back for backfilling into the excavated pile. Additional trucks will then transport the excess CKD to an off-site landfill for disposal. The abandoned temporary storage facility requires a thorough decontamination procedure. The land surrounding and below the

storage pad requires testing to confirm that CKD was not transferred to the five acre storage location.

4.6.6.7 PSR-Technical and Administrative Implementability

4.6.6.7.1 Technical Implementability

Although PSR is technically implementable, it poses the greatest construction challenges. The construction methods are conventional and technically implementable, but as discussed above excavating approximately 270,000 cubic yards of CKD, much of it soft and saturated, presents significant safety concerns for workers and equipment. Lehigh will select highly experienced workers and sub-contractors and require that progress is slow and in accordance with plans that mitigate risks.

Additionally, the PSR techniques do not offer flexibility to remove more CKD once the saturated portions of the bottom of the Closed CKD Pile are exposed; the targeted areas are decided prior to implementation, and the excavation is tailored to address the target areas. Lehigh will determine the areal extent of the excavation beforehand to maintain the necessary excavation side slopes prior to installation. If saturated CKD extended beyond the excavation footprint, it will not be possible to remove this additional saturated CKD without re-configuring the entire excavation.

4.6.6.7.2 Administrative Implementability

PSR requires significant administrative efforts to secure access to property needed to execute the alternative, more extensive than those noted for ASC. The project involves much heavy equipment, storage area(s) for the excavated CKD, and drainage structures for the dewatering wells and water expelled from the stored CKD. It is not known whether Lehigh can obtain access or title to the approximately five acres of land needed to store the excavated CKD. An NPDES permit is required to discharge treated water from the GWC and from the construction activities (i.e., dewatering, CKD drainage, etc.).

See Exhibit 3.2-1, which shows the permits and approvals needed for GWC. Lehigh's preliminary research suggests that PSR will meet the conditions connected with these permits and approvals.

4.6.6.8 PSR-Consideration Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.6.7 **PSR-Provide a Reasonable Restoration Time Frame**

Under the first groundwater treatment scenario, groundwater will meet cleanup levels throughout the Site at a standard POC within five years. As described in Section 4.6.1, Lehigh believes that groundwater treatment continues indefinitely. Under the second scenario, it is difficult to precisely estimate when groundwater will meet cleanup levels for at the proposed conditional POC for groundwater, but that timeframe is not expected to be longer than other alternatives. The performance and confirmational monitoring components allow Lehigh and Ecology to monitor progress. The detailed design phase will more fully evaluate the restoration time frame for PSR.

4.6.8 PSR-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.6.9 PSR-Prevent Domestic use of CKD-Affected Groundwater

Measures to prevent domestic use of CKD-affected groundwater are discussed in Section 4.3.9.

4.7 <u>Funnel and Gate Treatment (FGT)</u>

4.7.1 **FGT-Alternative Description**

4.7.1.1 General

Alternative #5 – Funnel and Gate Treatment (FGT) intercepts the CKDaffected groundwater on the east side of State Route 31 and passively funnels the water to an in situ treatment zone. After treatment, the water migrates through a subsurface discharge corridor and enters Sullivan Creek. FGT includes a system of subterranean slurry walls installed downgradient of the Closed CKD Pile. The slurry walls funnel water toward a central treatment zone, using the in situ neutralization technology discussed in Section 4.3.1. Subterranean gravel walls (French drains) on the upgradient side of the slurry walls help convey water along the slurry wall funnel to the treatment zone. The FGT gravel drainage layer components will help to conduct water to the treatment corridor. Although FGT is not a flexible alternative (i.e., once installed, the system cannot be moved), the FGT uses engineered subsurface components to gain control of the hydrogeologically complex area between State Route 31 and Sullivan Creek. Whereas PTW is prone to gaps in treatment, FGT treats water in a treatment corridor that reduces the potential for gaps. Exhibit 4.7-1 shows the conceptual layout of FGT.

4.7.1.2 System Description

The FGT description contained in this section is preliminary. System details may be modified during the design phase to enhance system performance. For example, slurry walls are a component of FGT that may be modified. Other impermeable materials such as high density polyethylene (HDPE) will be considered for use in the funnel, as will several different slurry compositions with various permeabilities and resistance to high pH water. FGT includes the main components described in this section. The FGT components are installed in a progression that begins near Sullivan Creek and moves upgradient. This construction sequence begins with installing the treatment zone and discharge corridor. Then the program builds other components that are designed to channel the upgradient water into the treatment zone. FGT general components include:

HR0196-12/MFW05-13.DOC

- *Slurry Wall Funnel.* Slurry walls²² about 2 ft wide are constructed downgradient of the Closed CKD Pile. An earthen platform a few feet thick elevates the working surface above the shallow groundwater table. The increased slurry elevation within the platform area provides the vertical distance required to increase the pressure that the slurry will exert on the formation to reduce the potential for soil sidewall collapses and slurry wall voids. The slurry walls are aligned across the CKD-affected groundwater plume to capture and direct it to the treatment zone. The slurry walls key into the upper few feet of the low-permeability glacial sediments (i.e., clay) that underlie the Site at a depth of approximately 10 to 20 ft. The slurry composition, likely a bentonitic slurry, will accommodate high pH conditions.
- *Gravel Wall.* The gravel wall French drains are upgradient and within several feet of the slurry wall funnel walls. The gravel drains stop short of the ends of the slurry wall funnels to avoid the potential for CKD-affected water to migrate around the ends of the funnel. The approximately two-foot wide gravel walls key into the top of the low-permeability glacial sediments (i.e., clay) that underlie the Site at a depth of approximately 10 to 20 ft. They will be installed by excavating trenches and backfilling them with a biodegradable slurry to hold the trenches open. Gravel displaces the slurry as it fills the trench. Geotextile filter fabric will likely line the upgradient side of the gravel wall. The ground surface will be completed with a horizontal barrier to water percolation.
- **Treatment Zone Side Walls.** The depth of the treatment zone side walls is about the same depth as the slurry wall funnel. The treatment zone side walls will possess structural characteristics to allow bulk excavation of the treatment zone. The side walls will retain the soil outside the treatment zone. The treatment zone components are placed

²² See Xanthakos (1979) for a very detailed description of the design, construction, and performance of slurry walls. ASTM (1985) includes numerous papers on slurry wall design, construction, and performance.

after the treatment zone is excavated and dewatered so that the full

treatment zone is exposed and accessible.

- **Treatment Zone.** The treatment zone lies at the mouth of the funnel and consists of several in situ neutralization segments installed in series. The segments are built after the corridor is excavated in bulk and dewatered. The structural side walls allow maneuvering inside of the treatment zone, greatly improving the ease of constructability compared with the open water-filled trench encountered during Pilot System installation. Estimates show that five to seven segments provide sufficient treatment capacity.
- *Discharge into Sullivan Creek.* After treatment, water migrates through a subsurface discharge corridor to Sullivan Creek. Armoring the discharge location by using material that mimics the current rubble-strewn creek bank protects the creek bank from erosion.
- *Performance Monitoring and Control Systems.* Performance monitoring wells installed upgradient, between, and downgradient of the treatment segments evaluate the treatment system's performance. The data monitoring and delivery system design allows Lehigh to adjust the amount of treatment to meet cleanup standards without overor under-treatment.

See Section 4.3.1.2 for discussion of the in situ treatment technology. Data from the Pilot System shows that pH is neutralized and that arsenic precipitates within the treatment zone. The rapid treatment that the Pilot System achieves supports the location of the treatment zone relatively close to Sullivan Creek.

4.7.1.3 System Performance

Although they may involve similar materials, the FGT slurry walls vary considerably from the ASC slurry walls in their construction, performance, and reliability. The FGT slurry walls are installed to relatively shallow depths using conventional excavation equipment, whereas the ASC slurry walls are installed to much greater depths using more cumbersome and complicated excavation equipment. ASC slurry walls are also installed along the toe of a historic landslide, unlike the FGT walls. To avoid activating the historical landslide by excavating a continuous trench, the ASC slurry wall is installed in alternating segments placed end to end. ASC slurry walls require detailed construction quality assurance procedures to install alternating segments without gaps between the segments, especially as depth increases. Conversely, FGT slurry walls are installed in a relatively open and flat space where trench collapses are less likely and could be controlled. Therefore, Lehigh has a significantly higher degree of confidence in the FGT slurry wall performance.

The FGT slurry wall funnel and gravel wall intercept CKD-affected groundwater and passively direct the water into an in situ treatment zone, where carbon dioxide neutralizes the high pH water. See Section 4.3.1.3 for a comparison of the different neutralizing agents that Lehigh considered. With the lower pH, arsenic in solution precipitates (i.e., forms insoluble complexes) in and immediately downgradient of the treatment zone. The discharge into Sullivan Creek from the treatment zone will meet cleanup levels for both pH and arsenic.

The FGT greatly reduces the concern over gaps in the PTW and provides a greater amount of hydraulic control.

On the upgradient side of the funnel, the gravel walls in the design of the FGT (see Exhibit 4.7-1) reduce the potential for water buildup in front of the slurry wall that could otherwise potentially overtop it. On the downgradient side of the funnel, water level fluctuations are relatively small because the upgradient dam at Sullivan Lake controls Sullivan Creek flow (Section 2.3.1). Under this fluctuation regime, water from Sullivan Creek will not overwhelm the discharge corridor and enter the treatment zone. The final design will accommodate these concerns.

4.7.1.4 Construction Schedule

FGT design, contracting, and procurement requires approximately eight months. FGT permitting and obtaining regulatory approvals requires approximately six months to one year (see Exhibit 3.2-1 for the list of permits and regulatory approvals). FGT installation requires approximately four to five months. Installation schedules for FGT accommodate restrictions on construction in the vicinity of Sullivan Creek that permit such construction only during certain months of the year, July and August at the

Site, to protect water resources. The winter temperatures and hours of daylight in Metaline Falls would adversely affect installation of the FGT. Although possible, construction of FGT during the winter months is not advisable.

4.7.2 FGT-Protect Human Health and the Environment

The FGT will protect human health and the environment for the following reasons:

- *Groundwater Quality.* The FGT will meet MTCA groundwater cleanup levels at a conditional POC. The Site-specific bench and pilot scale treatability studies [GeoSyntec, 2000, 2002, 2003a, and 2003b] demonstrated the effectiveness of the in situ treatment concept.
- *ARAR Compliance*. FGT complies with ARARs.
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

4.7.3 **FGT-Comply With Cleanup Standards**

The Site-specific bench and pilot scale treatability studies [GeoSyntec, 2000, 2002, 2003a, and 2003b] demonstrated the effectiveness of the in situ treatment concept. The FGT will meet cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

- *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.
- *Point of Compliance (POC)*. Lehigh proposes a conditional POC for groundwater at a point downgradient of the FGT treatment zone and upgradient of Sullivan Creek (Exhibit 4.7-1).

4.7.4 FGT-Comply With Applicable Federal and State Laws

The FGT complies with ARARs. Exhibit 3.2-1 presents a summary of ARARs that apply to this alternative.

4.7.5 FGT-Provide for Compliance Monitoring

Lehigh will conduct protection, performance, and confirmation monitoring as described in Section 4.3.5.

4.7.6 FGT-Use Permanent Solution to the Maximum Extent Practical

4.7.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion in the disproportionate cost analysis is discussed below.

4.7.6.2 FGT-Protectiveness

As described in Section 4.7.2, FGT will protect human health and the environment because it meets groundwater cleanup levels at a conditional groundwater POC. In addition, it complies with applicable state and federal laws. This alternative will not produce treatment residuals.

4.7.6.3 FGT-Permanence

Permanent Solution. FGT is not a permanent solution. The FGT requires indefinite maintenance, operation, repair and replacement, as needed.

Permanence. The FGT exhibits a high degree of permanence because it uses a treatment-based technology that obviates further treatment at the POC. The technology chemically neutralizes the high pH water, resulting in a permanent reduction

in pH and lower solubility (mobility) and toxicity of arsenic. The FGT generates no treatment residuals. The FGT can dewater portions of the Closed CKD Pile under certain conditions. Dewatering the CKD also has a high degree of permanence because it reduces hazardous substance releases.

4.7.6.4 FGT-Cost

The estimated present value cost to design and install an FGT is approximately \$2.3 to 2.6 million (US \$2005) (see Exhibit 4.7-2). The annual operating and maintenance cost is estimated to be approximately \$150,000. Hence the present value of this alternative for 30 years at an annual discount rate of seven percent is approximately \$4.4 to 4.7 million. Actual costs may vary depending on the details of the final FGT system design and implementation procedures. Exhibit 4.1-7 includes the estimated costs of FGT for the three costing scenarios described in Section 3.2.3.2.3. See Appendix E for supporting information, including assumptions used in the cost analysis.

4.7.6.5 FGT-Effectiveness Over the Long Term

Lehigh will operate and maintain the FGT as long as needed to maintain compliance with cleanup standards. FGT groundwater control uses slurry walls, a primarily passive system. Slurry wall imperfections are expected to be less than for ASC because of the relatively shallow FGT target depths (see Section 4.7.1.3). FGT treatment is primarily a passive system, and because it incorporates a treatment technology that has proven successful at the Site, Lehigh has a high degree of confidence that it will be reliable over the long term. Lehigh will provide a financial assurance mechanism to cover the long-term operation and maintenance. The design allows Lehigh to add, replace, or remove FGT components over time, as needed, although the in-situ design poses some challenges. As such, the FGT is effective over the long term.

DRAFT

4.7.6.6 FGT-Management of Short-Term Risks

Few short-term risks are associated with FGT. Construction of the FGT has a potential for short-term exposure to high pH water, as is common with each of the alternatives. During FGT construction the potential exposure to high pH water occurs due to open trenches that will fill with water. Dewatering of the treatment zone during excavation and construction will reduce the potential for contact with CKD-affected groundwater. The water will be treated on-site prior to disposal or discharge. Workers will use heavy equipment and may relocate utility lines. Deliberate scheduling and protective measures will reduce the risks from the relatively rapidly flowing water when work occurs near Sullivan Creek. The risks posed are manageable with good construction safety practices.

Construction during the winter months will increase the short-term risks associated with FGT. Since the trenching operation is performed in saturated conditions, short or dim daylight periods increase safety concerns for workers. The winter conditions in Metaline Falls affect certain components of the FGT installation, specifically the perforated pipe installation in the treatment zone. Construction of FGT during the winter months is not advisable.

4.7.6.7 FGT-Technical and Administrative Implementability

4.7.6.7.1 Technical Implementability

As noted above, winter construction is not recommended for certain components. FGT is technically implementable during other times of the year.

4.7.6.7.2 Administrative Implementability

The FGT is administratively implementable. See Exhibit 3.2-1, which shows the permits and approvals needed for GWC. FGT requires an NPDES permit to discharge treated water into Sullivan Creek during construction and for long-term operation. Federal permits or regulatory approvals will apply to work along the banks of Sullivan Creek. Lehigh's research suggests that FGT will meet the conditions connected with these permits and approvals.

4.7.6.8 FGT-Consideration of Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.7.7 FGT-Provide a Reasonable Restoration Time Frame

Although the alternative will clean up much of the groundwater, this alternative will not achieve clean up levels everywhere throughout the Site. Therefore, Lehigh proposes a conditional POC. It is difficult to precisely estimate when groundwater will meet the cleanup levels for pH and arsenic at the proposed conditional POC for groundwater. However, performance and confirmational monitoring allow Lehigh and Ecology to monitor progress. In addition, redundant systems, both for treatment and for performance monitoring, are designed into the FGT alternative to assist in achieving compliance and conducting compliance monitoring. The FGT achieves compliance with groundwater cleanup levels at a conditional POC in approximately the same time frame as other alternatives evaluated in this Revised dFSTR. The restoration time frame for FGT will be further refined during detailed design.

4.7.8 FGT-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.7.9 FGT-Prevent Domestic Use of CKD-Affected Groundwater

Measures to prevent domestic use of CKD-affected groundwater are discussed in Section 4.3.9.

4.8 Partial Additional Source Control (PASC)

4.8.1 **PASC-Alternative Description**

4.8.1.1 General

Alternative #6 – Partial Additional Source Control (PASC) combines two remediation concepts: source control and downgradient in situ treatment. PASC supplements the FGT remedy with a gravity drain installed under the southern side of the Closed CKD Pile. The gravity drain is a source control technology that redirects unaffected groundwater away from the Closed CKD Pile, so that it will not contact the CKD. The gravity drain, working in concert with the FGT gravel drainage layer components will help to control the water flux within the floodplain alluvial aquifer. As the gravity drain redirects water to the FGT gravel layers and the gravel layers remove water by conducting it to the treatment zone, the groundwater surface may be lowered slightly within the alluvial aquifer. This control of the water flux within the alluvial aquifer has the potential to reduce a small amount of water in contact with the CKD under certain groundwater flow regime scenarios. This could reduce the volume of CKD-affected groundwater. The amount of downgradient treatment required will decrease with time as the gravity drain dewaters the area and as transient drainage through the CKD reaches an equilibrium condition. Exhibit 4.8.1 shows the conceptual layout of this alternative.

4.8.1.2 System Description

PASC combines the FGT components described above in Section 4.7 with a gravity drain. Lehigh will install a perforated drain pipe under the southernmost margins of the Closed CKD Pile using horizontal directional drilling techniques. The gravity drain will be installed at depths that mostly target water under the static groundwater levels observed in Monitoring Well MW-8 and PM-13, abandoned Monitoring Wells MW-5 and MW-6, and abandoned Piezometers P-2, P-7, and P-8 (See Exhibit 2.3-3). The southern side of the Closed CKD Pile presents the best opportunity to redirect clean water away from the Closed CKD Pile because much of the water passing through the Site enters via subsurface flow from the uplands south of this area. The gravity drain in this location also acts as a hydraulic control to reduce the potential for CKD-affected water to by-pass the southern edge of the slurry wall funnel.

Because the gravity drain intercepts water before it enters the Closed CKD Pile, gravity drainage should meet water quality criteria for discharge into Sullivan Creek without treatment. The design will include the flexibility to convey the water to the treatment zone, if needed or desired.

The gravity drain will be installed as follows:

- Access the insertion point on the northern side of State Route 31 where the drainage will connect with the gravel wall of the FGT, if desired.
- Prepare the surface for drilling. This may include excavating a small pit for drilling, and preparing the insertion angle for the drill rods. Drilling begins in a down-angle direction before reaching target depth, at which point the hole traverses below the groundwater on the south side of the Closed CKD Pile.
- Directionally drill the pilot hole for the drain pipe in a location approximately shown on Exhibit 4.8-1. The hole will be installed at depths that are below the expected groundwater table, except for the upgradient side of the drain where it ascends sharply to exit the southern side of the Closed CKD Pile.
- The exit point may be completed in a surface monument or cut off and capped below grade. Lehigh will likely complete the drain in a manner that will provide future access to the pipe.
- Pull the perforated drain pipe back down through the pilot hole using the drilling equipment. Preliminarily, Lehigh estimates that the pipe will likely be 4-in. diameter, but it may be up to 6-in. diameter. Larger diameter pipes beyond 6-in. involve significantly more powerful and costly drilling methods to achieve the necessary boring diameter. Directing the placement of the drain is also harder with larger pipe.
- The pipe will not be perforated for a certain distance from the insertion point. The non-perforated section helps transmit the drained water to the FGT instead of allowing it to percolate back into the groundwater.

Exhibit 4.8-1 shows the conceptual layout of the PASC components.

4.8.1.3 System Performance

The gravity drain lies in the alluvium, between the CKD and the underlying clay aquitard. The gravity drain intercepts water flowing into the southern edge of the Site and conveys it near the southern tip of the slurry wall system. If the water requires treatment, the gravity drain empties it into the slurry wall funnel for eventual treatment.

Installation of the gravity drain under deep portions of the Closed CKD Pile is not recommended. The deep portions of CKD lie in areas associated with a higher density of large-diameter sediments than the southern side. Large size aggregate such as cobbles and boulders impede or stop directional drills. If a gravity drain was attempted in the deep area and intersected a deep portion of the CKD, the drain will not lower the water level below the CKD. Thus, it will not provide source control for the still submerged CKD. Furthermore, this CKD-affected water cannot be discharged into Sullivan Creek without treatment. The FGT component may not be equipped to handle the additional treatment burden, requiring substantial and impractical scale-up.

As discussed in Section 4.7, the FGT design addresses concerns related to water overtopping the slurry wall and to Sullivan Creek water entering the treatment zone during periods of high flow. The gravity drain may contribute more water to the slurry wall funnel than the FGT alone will contribute. The final design will accommodate these variables assuming the gravity drain location shown in Exhibit 4.8-1 is approximately where it will be installed.

The FGT component includes performance monitoring wells that measure groundwater treatment performance through the treatment system. This information allows Lehigh to adjust the amount of carbon dioxide delivered to the water and to comply with cleanup levels.

4.8.1.4 Construction Schedule

PASC design, contracting, and procurement requires approximately eight months. PASC permitting and obtaining regulatory approvals requires approximately

six months to one year (see Exhibit 3.2-1 for the list of permits and regulatory approvals). PASC installation requires approximately four to five months. Installation schedules for the FGT component accommodate restrictions on construction in the vicinity of Sullivan Creek that permit such construction only during certain months of the year, July and August at the Site, to protect water resources. The winter temperatures and hours of daylight in Metaline Falls would adversely affect installation of the PASC. Although possible, construction of PASC during the winter months is not advisable.

4.8.2 PASC-Protect Human Health and the Environment

The PASC protects human health and the environment for the following reasons:

- *Groundwater Quality.* The PASC meets MTCA groundwater cleanup levels at a conditional POC. The Site-specific bench and pilot scale treatability studies [GeoSyntec, 2000, 2002, 2003a, and 2003b] demonstrated that the in situ treatment technology is effective.
- *ARAR Compliance*. PASC complies with ARARs.
- *Institutional Controls*. Lehigh will use institutional controls as described in Section 4.2.2.

4.8.3 PASC-Comply With Cleanup Standards

The PASC will meet cleanup standards assumed for the purposes of the Revised dFSTR, as follows:

• *Cleanup Levels (CLs).* The proposed groundwater cleanup levels for the Site are pH between 6.5 and 8.5, and maximum arsenic concentration of 5.0 ppb.

• *Point of Compliance (POC)*. Lehigh proposes a conditional POC for groundwater at a point downgradient of the PASC treatment zone and upgradient of Sullivan Creek (Exhibit 4.8-1).

4.8.4 PASC-Comply With Applicable Federal and State Laws

The PASC complies with ARARs. Exhibit 3.2-1 presents a summary of ARARs that apply to this alternative.

4.8.5 PASC-Provide for Compliance Monitoring

Lehigh will perform protection, performance, and confirmational monitoring as described in Section 4.3.5.

4.8.6 PASC-Use Permanent Solution to the Maximum Extent Practical

4.8.6.1 Introduction

This element for selection of cleanup actions requires consideration of the criteria used in the disproportionate cost analysis (WAC 173-340-360(3)). Each criterion in the disproportionate cost analysis is discussed below.

4.8.6.2 PASC-Protectiveness

As described in Section 4.7.2, FGT alone protects human health and the environment because it meets groundwater cleanup levels at a conditional groundwater POC. In addition, it complies with applicable state and federal laws. The gravity drain component of PASC reduces the amount of groundwater entering the Closed CKD Pile, thus limiting the volume of CKD-affected groundwater requiring treatment. This alternative will not produce treatment residuals that must be transported to a disposal facility.

4.8.6.3 PASC-Permanence

Permanent Solution. PASC is not a permanent solution. The PASC will have to be indefinitely maintained, operated, and replaced, as needed.

Permanence. PASC exhibits a higher degree of permanence than alternatives that rely solely on treatment for two reasons. The gravity drain intercepts water before it contacts the CKD, so that the water remains unaffected. This reduces the volume of hazardous substances generated at the Site. PASC also uses a treatmentbased technology that chemically neutralizes the high pH water, resulting in a permanent reduction in pH and lower solubility (mobility) and toxicity of arsenic. The PASC generates no treatment residuals. The gravity drain has no moving parts and requires minimal maintenance. However, the in situ treatment zone requires maintenance, repair, and periodic replacement of parts.

4.8.6.4 PASC-Cost

The estimated present value cost to design and install PASC is approximately \$2.4 to 3.0 million (U.S. \$2005) (see Exhibit 4.8-2). The annual operating and maintenance cost is estimated to be approximately \$150,000. Hence the present value of this alternative for 30 years at an annual discount rate of seven percent is approximately \$4.4 to 5.1 million. Actual installation costs may vary depending on the details of the final PASC system design and implementation procedures. The operating and maintenance costs may decrease over time depending on the effectiveness of the gravity drain at intercepting water. Exhibit 4.1-7 includes the estimated costs of PASC for the three costing scenarios described in Section 3.2.3.2.3. See Appendix E for supporting information, including assumptions used in the cost analysis.

4.8.6.5 PASC-Effectiveness Over the Long Term

PASC will be effective over the long term. It uses a treatment technology that has proven successful at the Site. Over time, the gravity drain will reduce the amount of CKD-affected groundwater requiring treatment. Thus, there is a high degree of certainty that this alternative will be successful.

Lehigh will operate and maintain the PASC as long as necessary to maintain compliance with cleanup standards. Lehigh will provide a financial assurance mechanism to cover long-term operation and maintenance. Lehigh can add, replace or decommission PASC components as needed, although the in situ nature of the components poses some challenges.

4.8.6.6 PASC-Management of Short-Term Risks

Short-term risks associated with the slurry wall systems and the in situ treatment zone are discussed in section 4.7.6.6. The PASC gravity drain adds some construction risks due to the drilling equipment. During installation, water will emerge at the installation point. As long as the water is clean, as expected, no special measures to protect workers are needed. The risks posed by the FGT components and the gravity drain are manageable with good construction safety practices. As with the other alternatives, it would be best to avoid construction during winter conditions in Metaline Falls.

4.8.6.7 PASC-Technical and Administrative Implementability

4.8.6.7.1 Technical Implementability

While winter months pose difficulties for construction, the PASC is technically implementable during other times of the year.

4.8.6.7.2 Administrative Implementability

The PASC is administratively implementable. See Exhibit 3.2-1, which shows the permits and approvals needed for GWC. Lehigh's research suggests that PASC will meet the conditions connected with these permits and approvals. The FGT components are discussed in Section 4.7.6.7.2. The discharge from the gravity drain may also be covered by an NPDES permit. With the exception of the gravity drain, all of the PASC components reside on Lehigh property. Lehigh will require permission to install and maintain the drain under State Route 31.

DRAFT

See Exhibit 3.2-1, which shows the permits and approvals needed for GWC. Lehigh's preliminary research suggests that PASC will meet the conditions connected with these permits and approvals.

4.8.6.8 PASC-Consideration of Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.8.7 PASC-Provide a Reasonable Restoration Time Frame

The treated groundwater from PASC will meet cleanup standards. It is difficult to precisely estimate when all groundwater will meet the cleanup levels for pH and arsenic at the conditional POC for groundwater. Performance and confirmational monitoring allow Lehigh and Ecology to monitor progress. In addition, redundant systems, both for treatment and for performance monitoring, are designed into the PASC alternative to assist in achieving compliance and conducting compliance monitoring. Lehigh will operate PASC indefinitely to maintain compliance with cleanup standards. PASC achieves compliance with groundwater cleanup levels at a conditional POC in approximately the same time frame as other alternatives evaluated in this Revised dFSTR. The restoration time frame for PASC will be further evaluated during detailed design.

4.8.8 PASC-Consider Public Concerns

The public will be given an opportunity to review and comment on the dFSTR. Ecology will consider all public comments before finalizing the dFSTR.

4.8.9 PASC-Prevent Domestic Use of CKD-Affected Groundwater

Measures to prevent domestic use of CKD-affected groundwater are discussed in Section 4.3.9.

DRAFT

5. COMPARATIVE ANALYSIS OF ALTERNATIVES

5.1 <u>Introduction</u>

The six alternatives described in this Revised dFSTR resulted from a thorough collaborative FS process between Lehigh and Ecology. The FSTM screened a list of 20 alternatives. Lehigh and Ecology refined the initial list to yield the six alternatives evaluated in this Revised dFSTR:

- Alternative #1 Permeable Treatment Wall (PTW)
- Alternative #2 Pump and Treat (P&T)
- Alternative #3 Additional Source Control (ASC)
- Alternative #4 Partial Source Removal (PSR)
- Alternative #5 Funnel and Gate Treatment (FGT)
- Alternative #6 Partial Additional Source Control (PASC)

Section 4 of this Revised dFSTR describes how each of the remedy selection criteria applies to the six alternatives. This section compares the evaluation results for the alternatives to arrive at alternative rankings with respect to the remedy selection criteria. Exhibit ES-4 summarizes the rankings.

5.2 <u>Threshold Requirements</u>

As described in Section 4 of this Revised dFSTR, the six alternatives meet the following threshold requirements defined in WAC 173-340-360(2):

- protect human health and the environment;
- comply with cleanup standards;
- comply with applicable federal and state laws; and
- provide for compliance monitoring.

By meeting threshold requirements, the six alternatives passed initial evaluation and were analyzed according to the remaining evaluation criteria. The remainder of this section compares the alternatives using those remaining criteria. With respect to the provision for compliance monitoring, each of the alternatives evaluated in involved in operating engineered treatment-based remedies. There is innerent variability involved in operating engineered treatment systems. The method of evaluating compliance with cleanup standards will be established during development of the monitoring program defined in the CAP and design phases of the project, and ultimately approved by Ecology.

5.3 Use Permanent Solution to the Maximum Extent Practical

5.3.1 Introduction

The disproportionate cost analysis (WAC 173-340-360(3)) criteria evaluations are compared for each alternative in this section. The disproportionate cost analysis criteria are:

- protectiveness;
- permanence;
- cost;
- effectiveness over the long term;
- management of short-term risks;
- technical and administrative implementability; and
- public concerns.

5.3.2 Protectiveness

Each of the alternatives meets cleanup standards, and thus meets the threshold criteria to protect human health and the environment. Under the cost-disproportianailty analysis, protectiveness goes beyond meeting clean up levels. For example, protectiveness additionally examines the degree to which risks are reduced, the time required to reduce risks and risks from implementing the alternative.

PSR poses the greatest short-term risks because it breaches the engineered cover, exposing the formerly Closed CKD Pile to the environment and to workers implementing the alternative. To execute PSR, the formerly Closed CKD Pile and the new temporary dangerous waste storage area for CKD remain open for twenty-five to

thirty months, not including winter down-times. PSR also poses serious risks to workers during construction activities on the soft, saturated, and unstable CKD. ASC also involves significant construction risks due to the installation of a slurry wall across the disturbed sediments in the historic landslide area. The remaining alternatives pose short-term risks, but to a far lesser degree. Short-term risks are the greatest for PSR. ASC has the second greatest short-term risks. PASC, FGT, and PTW each have similar short-term risks that are significantly less than for PSR and ASC. GWC has the lowest short-term risk.

If PSR met groundwater cleanup levels throughout the Site in five years, as assumed in the first groundwater treatment scenario, then it would reduce environmental risks to a greater degree than other alternatives, and increases its protectiveness over the long-term. Under the second groundwater treatment scenario, in which groundwater treatment continues indefinitely and groundwater cleanup levels are met at a conditional POC, PSR reduces environmental risks to the same degree that other downgradient treatment–based alternatives do.

Alternatives that require off-site disposal of the CKD waste decrease the overall protectiveness of the remedy. PSR will require the largest volume of off-site disposal, followed by ASC and GWC. PSR disposes of approximately 10,000 cubic yards of CKD, a State dangerous waste as well as approximately 1,000 to 1,500 pounds of non-dangerous waste groundwater treatment residuals. ASC and GWC also produce non-dangerous waste groundwater treatment residuals, approximately 1,000 to 2,000 pounds per year. The alternatives that rely on the in situ carbon dioxide treatment system (PTW, FGT, and PASC) do not produce treatment wastes that must be disposed off-site. ASC, PTW, FGT, and PASC do involve non-dangerous waste excavation spoils that will also need to be managed, but will likely not be disposed off-site.

Considering all the factors that contribute to protectiveness, PASC ranks highest in terms of this criterion. ASC ranks next highest in terms of protectiveness, followed by PTW, GWC, and FGT. The PSR alternative, under both scenarios, ranks the lowest in terms of protectiveness, with the first PSR groundwater treatment scenario being slightly more protective than the second PSR groundwater treatment scenario.

5.3.3 Permanence

According to Lehigh's understanding of MTCA, a remedy, which produces waste for off-site disposal and does not treat the waste and render it harmless (i.e., untreated CKD), is not a permanent remedy. The off-site location is engaged in monitoring and possible future action. PSR, under Lehigh's analysis, is not a permanent remedy because it will not be effective at obviating future groundwater treatment needs. Ecology believes that PSR is permanent. Both Lehigh and Ecology agree that PSR has the highest degree of permanence and that, of the three alternatives that appreciably reduce the amount of CKD-affected water that is generated, PSR exhibits the highest degree of permanence. PSR removes CKD from groundwater, thereby reducing future generation of CKD-affected groundwater. Although other remedies, such as ASC and PASC, re-route water away from the Closed CKD Pile and accomplish source control, the effects are expected to be less than for PSR. Therefore, for the purposes of this disproportionate cost analysis, PSR is the baseline remedy. ASC and PASC exhibit the next greatest degree of permanence because they include a source control component. For ASC the amount of reduction depends, in part, on the size of the slurry wall and effectiveness of the dewatering. The degree of permanence of the PASC depends on the effectiveness of the gravity drain in diverting water away from the CKD. PASC also generates no treatment residuals requiring off-site management.

All six alternatives exhibit a high degree of permanence because they irreversibly treat (i.e., reduce toxicity and mobility of hazardous substances) groundwater by permanently neutralizing the pH and decreasing arsenic levels to meet cleanup levels.

As explained in Section 4, Lehigh's evaluation of the Site shows that none of the six alternatives is a permanent remedy. Regardless, the MTCA regulations require that the analysis rank the alternatives in order of their degree of permanence, with the remedy exhibiting the highest degree of permanence identified as the "baseline" remedy against which the other alternatives are compared. Therefore, PSR is the baseline alternative because it exhibits the highest degree of permanence. ASC and PASC are next, followed by FGT, PTW, and lastly, GWC, in order of decreasing degree of permanence.

5.3.4 Cost

The cost comparisons use a 30-year project duration and seven percent discount rate. Exhibit 4.1-8 shows calculation results for the other cost scenarios described in Section 3.2.3.2.3. The cost of GWC is slightly less than PTW, FGT, and PASC (see Exhibit ES-4). ASC is two or three times more costly than GWC, followed by both PSR scenarios, which is an order of magnitude more expensive than PTW, GWC, FGT, and PASC. All of the alternatives involve indefinite operation and maintenance costs. The only exception is the first groundwater treatment scenario for PSR. Under that scenario, PSR costs include operation, maintenance, and monitoring costs for five years plus monitoring costs for another three years.

The ability to effectuate treatment flexibly in a variety of locations is a critical advantage of the alternatives that employ P&T, especially in this geologic setting. PTW does not offer this advantage; once the trench is installed, the treatment zone cannot be relocated without difficulty, expense, and interruption of treatment. Alternatives with in-situ treatment zones have cost estimates that include periodic treatment zone section replacement. Further, the Site and construction technique constraints prevent a continuous line of in situ carbon dioxide diffusion treatment panels for PTW. The cost estimates for alternatives with P&T components make provisions for relocation or addition of extraction wells. GWC offers some cost benefit related to monitoring, transporting and disposing a lesser amount of treatment residuals (both treated water and solids), compared to P&T alone. This is because GWC incorporates the existing Pilot System.

ASC and PASC will reduce the long-term costs by reducing the volume of water that requires treatment, depending on the effectiveness of the source control components. The actual reduction is not quantifiable at this stage, so that any savings are not included in the cost estimates.

The other cost scenarios shown in Exhibit 4.1-8 are presented for comparison purposes only based on EPA guidance [EPA, 2000a]. The discounted 100-year project duration cost estimates show the same general results as the discounted thirty-year project duration discussed above. The non-discounted 100-year project duration estimates, which do not reflect realistic conditions, ascribe the lowest cost to PTW. In order of ascending costs, FGT, PASC, the first PSR groundwater treatment

scenario, and GWC are next. ASC and the second PSR groundwater treatment scenario are the most costly.

5.3.5 Effectiveness Over the Long Term

If installed, operated, and maintained appropriately, each of the six alternatives will be effective over the long term because all six alternatives incorporate downgradient treatment technologies that have proven successful. The treatment components of these alternatives are accessible and are operated, maintained, and replaced as necessary over the long term. However, for the PSR alternative (especially under scenario one where downgradient treatment is operated for a short period), where only portions of the CKD are removed from the water contact, changes in hydrogeologic conditions over the long term will likely decrease the alternative's long term effectiveness. These hydrogeologic changes include landslide shifts and/or a series of heavy water years that create CKD-water contact where none existed at the time of implementation.

Likewise, while the treatment components increase effectiveness over the long term, the source control component of ASC may not contribute to the long-term effectiveness of this alternative. The main component of the ASC alternative, the slurry wall, is not easily accessible. If the slurry wall fails or deteriorates, as it is expected to do over time, then ASC will rely more heavily on the treatment components. In addition, the slurry wall deterioration may lead to focused breakthrough of groundwater retained behind the wall, allowing the water to contact CKD in areas not previously exposed to water contact. Thus, ASC will not be any more effective over the long term, and may be less, than the alternatives that rely solely on treatment (PTW, GWC, and FGT). The source control components of PASC are expected to remain reliable over the long term.

Therefore, PASC and PSR with long term downgradient treatment rank the highest in terms of long-term effectiveness, followed by PTW, GWC, FGT, and PSR with short term treatment and ASC.

5.3.6 Management of Short-Term Risks

PASC, PTW, GWC, and FGT use relatively conventional construction practices, each involving risks that are manageable. These four alternatives rank equally with respect to this criterion (each ranks "easy" on Exhibit ES-4). ASC uses a conventional technology (i.e., slurry wall and dewatering wells). However, because of the danger of activating the historic landslide, ASC has significant short-term risks to workers. Hence, ASC ranks "difficult" on Exhibit ES-4.

PSR uses conventional excavation technologies, but applies them in a soft soil that is unstable and susceptible to liquefaction. PSR opens the engineered cover, thereby exposing the workers and potentially the surrounding population to large amounts of CKD. PSR targets approximately 270,000 cubic yards of CKD for removal. Those 270,000 cubic yards require handling, transport using thousands of loaded truck trips, and temporary storage on approximately 5 acres of lined containment with associated environmental controls. Hundreds of truckloads then move a portion of the CKD to a remote facility for off-site disposal. The rest of the CKD is replaced, recontoured, and the cover systems are reconstructed. Hence, PSR presents significant short-term risk and construction dangers, so that it ranks "very difficult" on Exhibit ES-4.

5.3.7 Technical and Administrative Implementability

Technical Implementability. Each of the alternatives is technically implementable. Each alternative involves a certain amount of complexity in installation. PASC, PTW, GWC, and FGT are less complex than ASC or PSR, which include several significant concerns related to construction. ASC involves work in the vicinity of the historic landslide. PSR involves handling significant quantities of CKD, excavating CKD under liquefiable conditions, counteracting CKD slope instability, transporting CKD on public roads with a large amount of truck traffic, temporarily storing CKD, then returning it to the Site for backfilling and disposing of the amount that no longer fits in the excavation to an off-site disposal facility.

Administrative Implementability. Each of the alternatives is theoretically administratively implementable. Various components of administrative effort will be required for such items as: preparing and recording restrictive covenants, obtaining

permits and regulatory approvals, land acquisition/leasing/easements, pertinent to the respective alternative. Land acquisition/leasing/easements required by PSR, ASC, and PASC may be difficult and have the potential to significantly increase the project costs and time needed to implement the alternatives.

PTW ranks the highest for administrative implementability because it does not require the additional effort required to obtain an NPDES permit for discharges of treated groundwater to Sullivan Creek, which is required for the other five alternatives (see Exhibit 3.2-1). Nor would PTW necessitate residuals management such as profiling the waste, and subsequent off-site transport. Lehigh owns all of the land needed to implement GWC, PTW, and FGT, facilitating the administrative implementability of these alternatives. PASC requires permission for a right of way under State Route 31 for the gravity drain. For ASC, the slurry wall and seepage control system may impose administrative difficulty, given portions of the slurry wall and drainage well network must be built on land Lehigh does not own. Lastly, for PSR, the need to obtain approximately five acres for temporary storage of the CKD during the excavation and backfilling phases makes PSR implementation administratively difficult. Since the CKD is regulated as dangerous waste under state law, it will have to be managed in accordance with the dangerous waste regulations while being temporarily stored. This will make PSR more difficult to implement administratively. Each alternative requires the same amount of administrative effort to prepare and record restrictive covenants to preclude the domestic use of water.

Schedule. Section 4 presents the schedules for three major tasks. Except for PTW (which, based on Lehigh's preliminary research, does not need individual permits apart from the MTCA cleanup process regulatory approvals and potential floodplain construction approval), the tasks are: (1) design, contracting, and procurement; (2) permitting; and (3) installation. The alternatives have similar design, contracting, and procurement and permitting schedules. However, they differ significantly with respect to installation schedules. GWC has the shortest installation schedule, followed by FGT. FGT requires less time to install than PTW and PASC, each of which could be installed more rapidly than ASC. PSR requires significantly longer installation time than the other five remedies. It is wise to concurrently work on several of the tasks and subtasks involved in permitting and design. Some of the information generated is needed for other tasks and it will expedite implementation. As noted elsewhere, certain tasks should not be implemented during the winter, so that delays could push project execution into a subsequent construction season. Barring unexpected delays in

permitting processes, the alternatives require approximately the following amounts of time from CAP finalization to be installed and operational:

- PTW 12 months;
- GWC 10 to 11 months;
- ASC 13 to 14 months;
- PSR 48 months;
- FGT -10 to 11 months; and
- PASC 11 to 12 months.

5.3.8 Public Concerns

The MTCA public review process will give the public several opportunities for input to the remedy selection process. The public will also have the opportunity to review and comment on the project documents. Ecology will address public concerns before finalizing this document. Therefore, public comment will be considered for each of the alternatives, giving them the same ranking for this criterion.

5.3.9 Disproportionate Cost Analysis Results

WAC 173-340-360(3)(e) requires that the alternatives be ranked in order of permanence. In this case, using the assumptions presented in this Revised dFSTR, the alternatives rank as follows in terms of permanence:

- 1) PSR
- 2) PASC, ASC
- 3) FGT, PTW, and GWC

Each of the alternatives includes groundwater treatment for some future time period. None of the alternatives are permanent. PSR groundwater treatment scenario one requires groundwater treatment to occur only over the short-term. Lehigh presented data and analysis supporting its belief that an unattainable degree of effectiveness is required to achieve cleanup standards without long-term groundwater treatment. Specifically, elimination of at least 99% of the CKD-groundwater contact is required to achieve cleanup standards [GeoSyntec, 2004]. Nevertheless, PSR is the "baseline

cleanup action alternative" for comparison with the other alternatives. The disproportionate cost test is described in WAC 173-340-360(3)(e)(i) as follows:

Test: Costs are disproportionate to benefits if the incremental costs of the alternative over that of a lower cost alternative exceed the incremental degree of benefits achieved by the alternative over that of the other lower cost alternative.

Although PSR is the baseline alternative in terms of its degree of permanence, PSR is very difficult to implement and its cost is disproportionate to the benefits of the alternative. PSR involves significant risks in the short term and difficulties in implementation. PSR also effectively destroys the engineered cover. Accessing the inundated CKD at the base of the Closed CKD Pile involves very complex construction systems. Expanding the excavation to remove more CKD than planned once the base is reached requires that the entire excavation be restarted to yield the proper excavation. Based on the current Ecology interpretations of the inundated portions of the Closed CKD Pile, PSR displaces about 270,000 cubic yards, approximately half of the pile. In addition, PSR costs about two to three times more than the ASC alternative and an order of magnitude more than PASC and the other alternatives. Estimates show PSR installation to cost approximately \$17 to \$24 million. Although not quantifiable, PSR reduces the generation of groundwater requiring treatment. Even if groundwater treatment was no longer necessary immediately following CKD excavation, estimates show that PSR would still be more costly than any of the other five alternatives operating indefinitely. Thus, PSR is impracticable and risky, and its cost in terms of dollars, implementability, and short-term risks is disproportionate to the benefits provided. Furthermore, contractors have recommended that PSR not be attempted at the Site.

The ASC cost is also disproportionate to the benefits achieved (see Exhibit ES-4). The incremental increase in cost over GWC, FGT, PTW, and PASC is substantial. The estimates show that ASC costs between \$9.1 to \$14 million in capital expense, of which the source control components cost \$8 to \$13 million and the downgradient groundwater control and common components total approximately \$4.3 million in present value. As downgradient groundwater control alone will achieve cleanup standards in the same time frame as the ASC, the ASC alternative would require spending \$8 to \$13 million with limited environmental benefit. Assuming optimistically that the slurry wall reduces the volume of affected groundwater by

50 percent, then the present value cost savings realized by adding the downgradient groundwater control components would be approximately \$600,000. This amount reflects reduced treatment costs such as pumping, chemical usage, and solids handling. Spending an additional \$8 to \$13 million on the capital costs of the ASC components alone, to save at best \$600,000 over an uncertain volume of the CKD-affected groundwater plume, is a disproportionate cost. PASC will also achieve source control using passive systems (i.e., gravity drain) at approximately one-third the cost of ASC.

PASC, a more cost-effective alternative, offers a more promising option to meet applicable remedy selection criteria. PASC includes a source control component, the gravity drain, combined with the passive funnel system of slurry walls to direct the groundwater to an in situ treatment zone. The FGT components of PASC achieve compliance with cleanup standards, whether the gravity drain is added or not. However, the gravity drain is a relatively cost effective method to reduce the volume of water that contacts the CKD.

PASC, PTW, GWC, and FGT have similar costs, and all meet cleanup standards. In addition, all four reduce the mobility and toxicity of hazardous substances. However, PASC (and to a lesser extent, FGT) has a higher degree of permanence than PTW and GWC because it also reduces the volume of hazardous substances in groundwater. PASC offers this additional permanence without greatly elevating costs, implementability concerns, or short-term risks. Based on the disproportionate cost analysis provided in WAC 173-340-360(3)(e), PASC uses permanent solutions to the maximum extent practicable.

5.4 <u>Provide a Reasonable Restoration Time Frame</u>

Section 4 presented an analysis of restoration time frames for the alternatives in accordance with MTCA and the 1999 AO. All six alternatives provide for a reasonable restoration time frame. Except for the first groundwater treatment scenario used for PSR, all alternatives will meet cleanup standards in the same approximate time frame. Under the first PSR groundwater treatment scenario, the treatment component would allow the alternative to achieve cleanup standards initially at the conditional POC. Moreover, under this scenario, the cleanup standards at a standard POC would be met in approximately five years. However, as discussed above, Lehigh believes this assumption is unrealistic. It is more realistic to assume that, because PSR removes only

part of the CKD in contact with groundwater and does not address potential for sidewall seeps intrusion into the Closed CKD Pile or other long term changes in hydrogeologic conditions, treatment would instead continue indefinitely. Therefore all alternatives would meet cleanup standards, at a conditional point of compliance, in the same approximate time frame.

5.5 <u>Consider Public Concerns</u>

The MTCA public review process will give the public several opportunities for input to the remedy selection process. The public will also have the opportunity to review and comment on the project documents. Ecology will address public concerns before finalizing this document. Therefore, public comment will be considered for each of the alternatives, giving them the same ranking for this criterion.

5.6 <u>Prevent Domestic use of CKD-Affected Groundwater</u>

Section 4 evaluates the alternatives based on this criterion. This is not a discriminating factor because under each alternative Lehigh will record restrictive covenants that will prohibit the domestic use of CKD-affected water on its land (see Exhibit ES-4).

5.7 <u>Results of Comparative Analysis</u>

Although GWC is the most cost-effective alternative that will satisfy the MTCA criteria, PASC balances the applicable remedy selection criteria in a way that meets cleanup standards, provides a significant degree of permanence, and reduces the short-term risks, implementability concerns, and high cost associated with PSR. PASC is recommended as the final remedy at the Site in preference to GWC, FGT, PTW, ASC, or PSR. Exhibits 4.1-1 through 4.1-6 present the evaluations of each alternative with respect to the selection criteria, and a comparative summary. Overall, PASC ranked "very high" in relation the other alternatives, with GWC ranking "high." Although PTW and FGT rank "high" as well, the relative inflexibility of these systems, combined with the higher capital (construction) costs, place them lower in rank when compared to GWC. Although PASC costs slightly more than PTW and FGT, PASC

includes a source control with a high degree of permanence that is not costdisproportionate.

PASC offers the following key advantages:

- Meets cleanup levels and ARARs and therefore provides protection of human health and the environment;
- Uses demonstrated and proven technologies that are technically and administratively implementable;
- Has a high degree of permanence because it will permanently reduce the toxicity and mobility of arsenic in groundwater;
- Reduces the volume generated of CKD-affected groundwater;
- Avoids the construction risks, technical implementability problems, and high cost of PSR; and
- Exhibits a high amount of benefit for the costs incurred.

6. CONCLUSIONS

6.1 Feasibility Study Conclusions

Ecology began its regulatory oversight of the investigation/remediation of the Site in 1991. Lehigh has implemented remedial actions at the Site since 1996 to address potential CKD exposure pathways including direct contact, inhalation, and water infiltration into the Closed CKD Pile. These actions were completed under the authority of hazardous waste management regulations, and were characterized as "CKD Pile Closure." They have been effective and important remedial measures. The closure "source control" measures, the cover and surface water management facilities, have performed as designed.

After the completion of the above-noted remedial measures, groundwater (including its potential impact on Sullivan Creek) remained the medium of concern. Consequently, Ecology required Lehigh to address the CKD-affected groundwater downgradient of the Closed CKD Pile. Significant investigatory work, documented in a series of reports and culminating in the Remedial Investigation Report, determined that the CKD-affected groundwater exceeds MTCA cleanup levels for pH and arsenic. In addition to investigatory work, Lehigh conducted a significant interim action in 1998, when it re-graded the WDOT "deck" to fill low areas where seeps of high pH groundwater ponded, posing a potential risk of direct contact.

This Revised dFSTR evaluates six alternatives, screened from a list of 20, and recommends a remedy in accordance with Washington Administrative Code (WAC) 173-340-350 et. seq. and the 1999 AO. After a thorough evaluation and comparison of the alternatives using the MTCA and 1999 AO criteria, and several discussions and meetings with Ecology over the past year, Lehigh concludes that Partial Additional Source Control (PASC) (a combination of source control and downgradient in situ groundwater treatment) provides the most effective and practical remedy for the Site. The PASC alternative balances applicable remedy selection criteria in a way that meets cleanup standards and best comply with Washington State procedures, regulations and laws.

PASC:

- Implements a practical source control technology that reduces the volume of water that contacts CKD, decreasing the size of the CKD-affected groundwater plume over the long term;
- Uses a demonstrated groundwater treatment technology that will meet cleanup levels and ARARs, and therefore protects human health and the environment;
- Exhibits a high degree of permanence because it provides in situ groundwater treatment that irreversibly treats the constituents of concern (pH and arsenic), permanently reducing their toxicity and mobility;
- Exerts a great degree of control over the groundwater, reducing the potential for gaps in treatment;
- Has a construction cost that is reasonable when compared to the less practical and more risky PSR and ASC alternatives;
- Produces no residual waste; and
- Achieves the greatest benefit for the least cost.

For these reasons, Lehigh recommends PASC as the Site remedy.

6.2 <u>Next Steps</u>

Following finalization of the FSTR, Ecology drafts the CAP. The CAP outlines final design elements for the Site groundwater remedy. Lehigh incorporates the design elements described in the CAP into the final design documents. The design documents show details such as the actual remedy component layout, operating parameter calculations, and design details of the selected alternative.

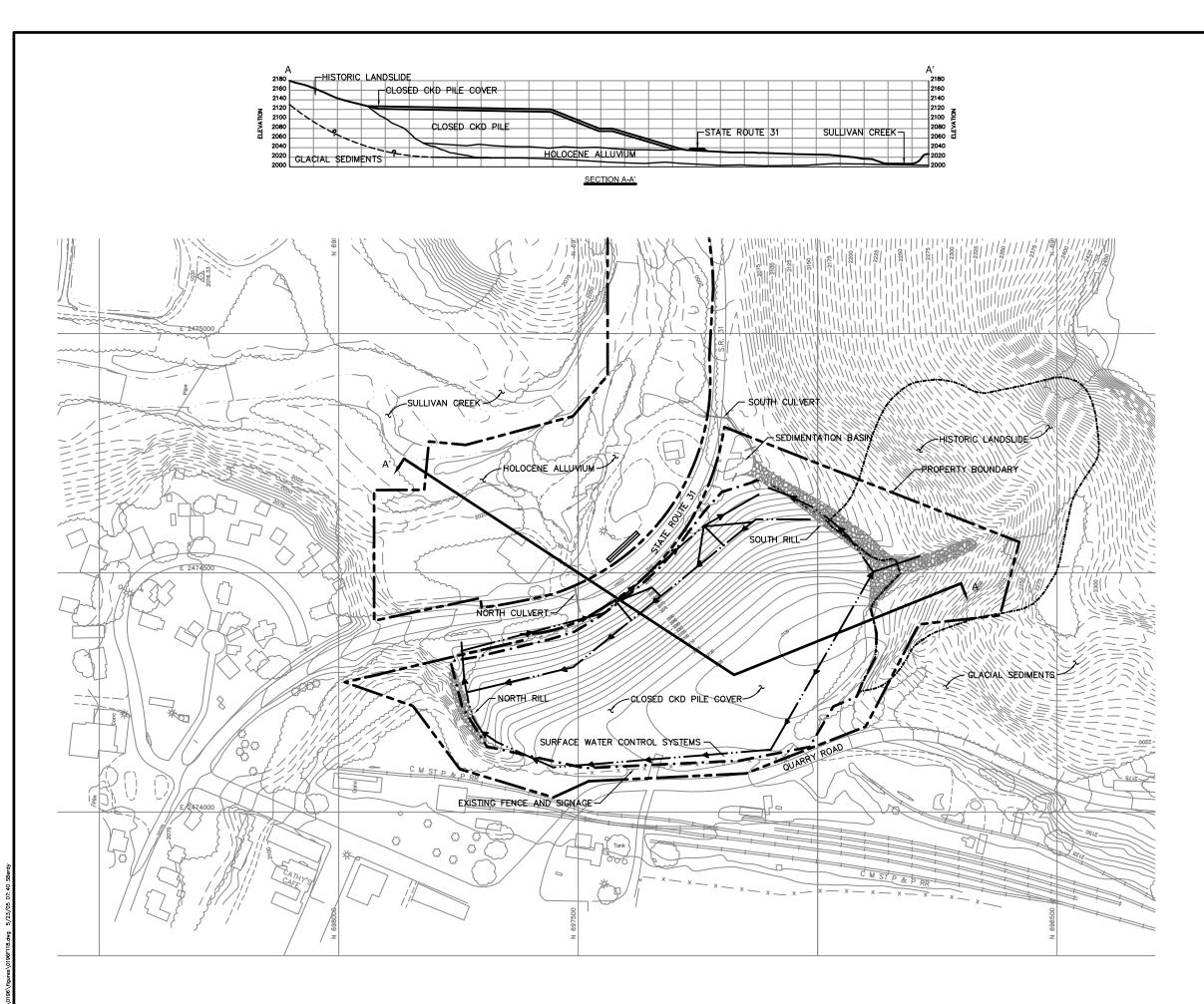
DRAFT

Lehigh will install and operate the remedy components in compliance with the documents prepared during detailed design, as follows:

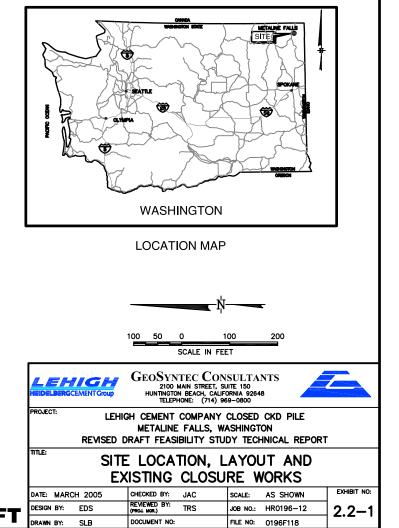
- Site Operations Plan, including Operation and Maintenance Manual;
- Compliance Monitoring Plan;
- Health and Safety Plan;
- Contingency Plan; and
- Conditions of required permits and regulatory approvals.

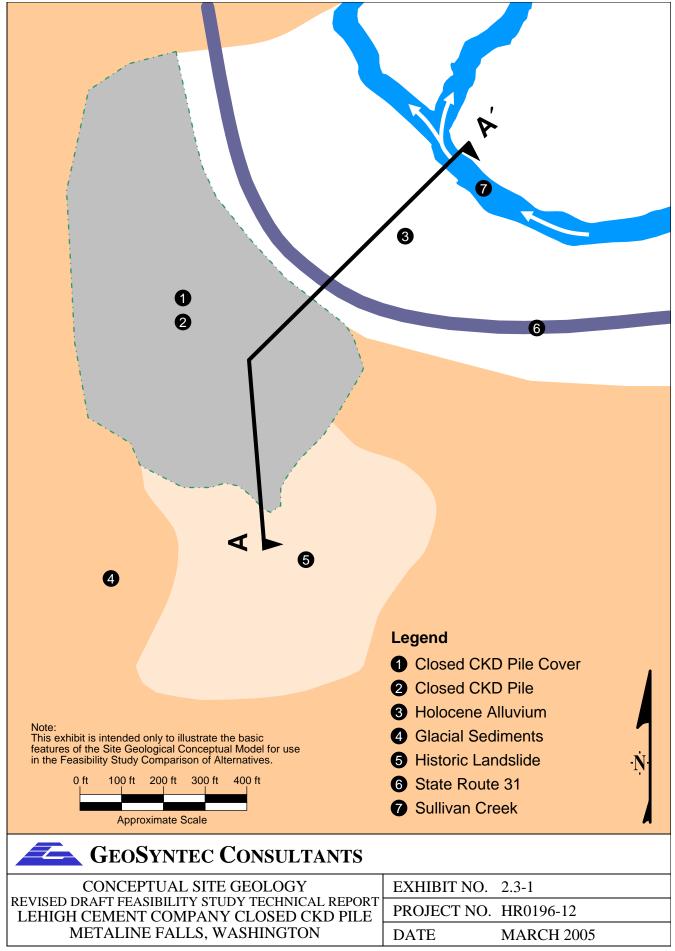
Ecology will review and approve these documents during the design phase prior to initiation of remedy installation field activities.

6.3 <u>Implementation Schedule</u>

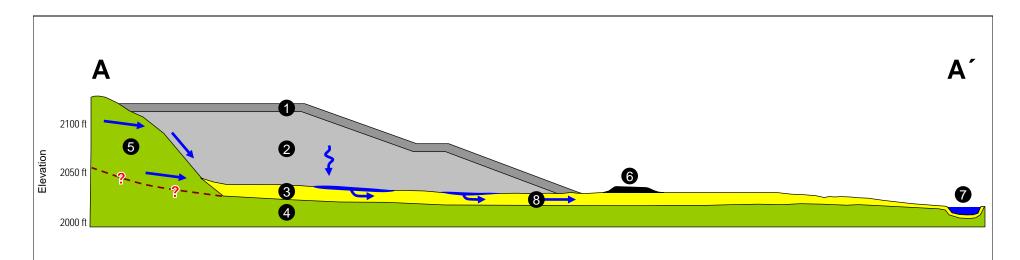

Lehigh is committed to implementing the selected groundwater remedy as soon as feasible. Exhibit 6.4-1 presents a preliminary schedule for design, procurement, and installation of system components for the PASC remedy. Actual construction depends on:

- Regulatory review and permitting time frames (primarily the NPDES process);
- Coordinated public participation; and
- Favorable weather conditions.


The schedule will be updated during the final remedy selection process, as well as during the design and procurement phases, in preparation for full-scale field installation.


EXHIBIT 1.1-1 AGREED ORDER COMPLIANCE CHECKLIST AGREED ORDER NO. DE99HS-E941 FINAL DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON (UPDATED MAY 2005)

DELIVERABLE NO.	ITEM	A.O. TASK	COMPLANCE DATE	SUBMITTAL DATE
1	Draft Work Plan for Remedial Investigation and Feasibility Study	1	6 Oct 1999	6 Oct 1999
2	Final Work Plan for Remedial Investigation and Feasibility Study	1	15 Oct 1999	15 Oct 1999
3	Begin Implementation of RI and FS	2	1 Nov 1999	1 Nov 1999
4	Draft Remedial Investigation Technical Report	3	15 Feb 2000	15 Feb 2000
5	Final Remedial Investigation Technical Report	3	5 Oct 2001	5 Oct 2001
6	Pilot Treatment Construction Report	4	4 Apr 2003	3 Apr 2003
7	Feasibility Study Technical Memorandum	4	23 May 2003	22 May 2003
8	Feasibility Study Technical Report	4		
8a	Draft Feasibility Study Technical Report	4	7 Nov 2003	12 Nov 2003
8b	Revised Draft Feasibility Study Technical Report	4	4 March 2005	4 March 2005
8c	Final Revised Draft Feasibility Study Technical Report	4	5 May 2005	5 May 2005
9	Draft Cleanup Action Plan	-		
10	Final Cleanup Action Plan	-		
11	Responsive Summary	-		
12	Break Ground to Install Remedy	-		
13	Remedy Installation Complete	-		
PERIODIC SUBMITTALS				
PS	RI/FS Progress Reports		Quarterly	



_	LEGEND	
	CLOSED CKD PILE (EXTENTS)	— · — · —
	SURFACE WATER CONTROL SYSTEMS	 ··· _
	PILOT SYSTEM	
	EXISTING FENCE AND SIGNAGE	— × — × —
	PROPERTY BOUNDARY	

HR0196-12/MFW05-13_E231

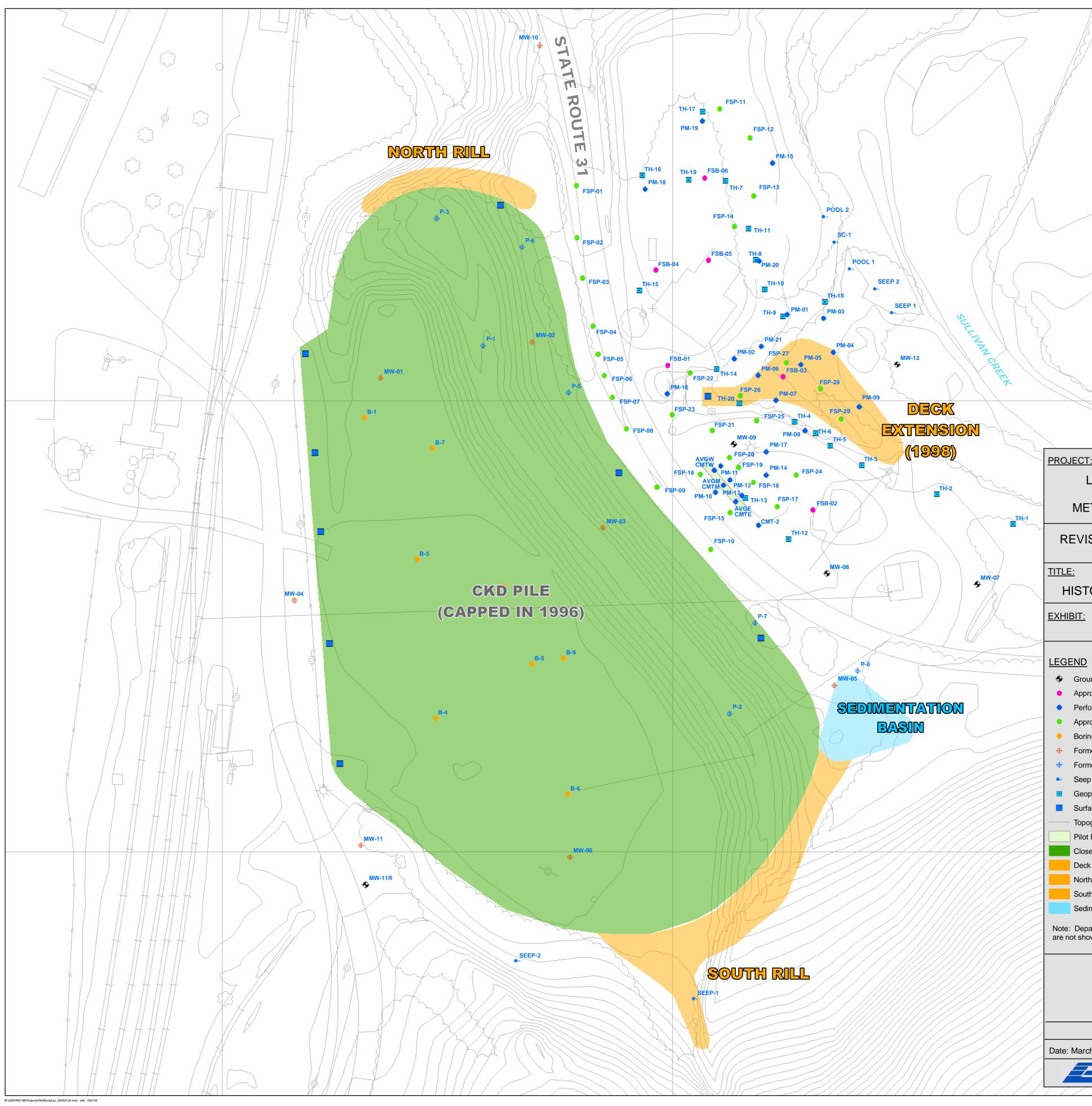
Legend

1 Closed CKD Pile Cover

- 2 Closed CKD Pile
- **3** Holocene Alluvium
- **4** Glacial Sediments

5 Historic Landslide

6 State Route 31


- **7** Sullivan Creek
- 8 Estimated Groundwater Flow Direction

0 ft 50 ft 100 ft 150 ft 200 ft Approximate Scale

Note:

This exhibit is intended only to illustrate the basic features of the Site Hydrogeologic Conceptual Model for use in the Feasibility Study Comparison of Alternatives.

GEOSYNTEC CONSULTANTS		
CONCEPTUAL SITE HYDROGEOLOGY	EXHIBIT NO.	2.3-2
REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT LEHIGH CEMENT COMPANY CLOSED CKD PILE	PROJECT NO.	HR0196-12
METALINE FALLS, WASHINGTON	DATE	MARCH 2005

R/		
8/		-
		,
ſ		
	J J /	/
		/
		/
		2
	X 3 //////////////////////////////////	2
/	A ≥ 2 / / / / / / / / / / / / / / / / / /	
	/ /////////////////////////////////////	
/		`
_ /	V / / //////	~
	<i>A / / /////</i>	
		~
J		1
ļ		
		-
<u> </u>		_
	NUMP	
		_
<u>T:</u>		L
LEHI	GH CEMENT COMPANY	
	CLOSED CKD PILE	
	INE FALLS, WASHINGTON	
ISED	DRAFT FEASIBILITY STUDY	
Т	ECHNICAL REPORT	/
	-	1
TORI	CAL SAMPLING LOCATIONS	
<u>.</u>		
	2.3-3	
		_
<u>)</u>		
_	er Monitoring Well Network Location	_
oundwate	er Monitoring Well Network Location e Rotasonic Boring Location (July 2003)	-
oundwate proximate	ů	_
oundwate proximate formance	e Rotasonic Boring Location (July 2003)	
oundwate proximate formance proximate	e Rotasonic Boring Location (July 2003) e Monitoring Location	
- oundwate proximate formance proximate ring Loca	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003)	
oundwate proximate formance proximate ring Loca mer Grou	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992)	
oundwate proximate formance proximate ring Loca mer Grou mer Piez ep Sampl	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999)	
oundwate proximate formance proximate ring Loca mer Grou mer Piez ep Sampl oprobe (1	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999)	
oundwate proximate formance proximate ring Loca mer Grou mer Piez ep Sampl oprobe (1 face Wat	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin	
oundwate proximate formance proximate ring Loca mer Grou mer Piez oprobe (1 face Wat pographic	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure)	
oundwate proximate formance proximate ring Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic pt Permea	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002)	
bundwate proximate formance proximate ring Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic pographic pt Permea	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) O Pile and Cover	
bundwate proximate formance proximate ring Loca mer Grou mer Piez poprobe (1 face Wat pographic pographic pographic pographic sed CKD ck Extens	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) O Pile and Cover sion	
bundwate proximate formance proximate ring Loca mer Grou mer Piez poprobe (1 face Wat poprobe (2 face Wat pographic pot Permea psed CKD ck Extens rth Rill / S	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) O Pile and Cover	
bundwate proximate formance proximate ring Loca mer Grou mer Piez ep Sampl oprobe (1 face Wat pographic bographic bographic bographic bt Permea esed CKD ck Extens rth Rill / S uth Rill	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) ation (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) 0 Pile and Cover sion South Rill	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic pographic ot Permea psed CKD ck Extens th Rill / S uth Rill	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) o Pile and Cover sion South Rill on Basin	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) ation (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) 0 Pile and Cover sion South Rill	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) ttion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) 0 Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure.	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) o Pile and Cover sion South Rill on Basin	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) ttion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) 0 Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure.	
bundwate proximate formance proximate ring Loca mer Grou mer Piez ep Sampl oprobe (1 face Wat pographic ot Permea ographic ot Permea sed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) D Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure.	
bundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens rth Rill / S uth Rill dimentati partment	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) 0 Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure. $V = \int_{S}^{V} E_{S}$ 30 60 120	
oundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens th Rill / S uth Rill dimentati partment nown on t	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) D Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure. $W = \sum_{s}^{N} E$ 30 60 120 Feet	
oundwate proximate formance proximate ing Loca mer Grou mer Piez ep Sampl oprobe (1 face Wat pographic ot Permea ised CKD ck Extens rth Rill / S uth Rill dimentati partment nown on t	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) D Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure. $V = \int_{S}^{V} E$ 30 60 120 Feet ntington Beach, California	
oundwate proximate formance proximate ing Loca mer Grou mer Piez p Sampl oprobe (1 face Wat pographic ot Permea bed CKD ck Extens th Rill / S uth Rill dimentati partment nown on t	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) D Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure. $V = \sum_{s} E$ 30 60 120 Feet ntington Beach, California 5 Project No: HR0196	
oundwate proximate formance proximate ing Loca mer Grou mer Piez ep Sampl oprobe (1 face Wat pographic ot Permea ised CKD ck Extens rth Rill / S uth Rill dimentati partment nown on t	e Rotasonic Boring Location (July 2003) e Monitoring Location e Direct Push Boring Location (July 2003) tion (Dames and Moore, 1992) undwater Monitoring Well (Dames and Moore 1992) cometer Location (Dames and Moore, 1992) ling Location (1999) 1999) ter Catch Basin c Elevation Line (Pre-Closure) able Treatment Wall (Installed 2002) D Pile and Cover sion South Rill on Basin t of Ecology's summer 2004 investigation locations this figure. $V = \int_{S}^{V} E$ 30 60 120 Feet ntington Beach, California	

EXHIBIT 3.2-1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON

ARAR	ALT. #1-PTW	ALT. #2-GWC	ALT. #3-ASC	ALT. #4-PSR	ALT. #5-FGT	ALT. #6-PASC
Section 404 Dredge and Fill Permit	Likely Not Applicable	Likely Not Applicable	Likely Not Applicable	Likely Not Applicable	Applicable – Would be Met	Applicable – Would be Met
Section 10 Rivers and Harbors Act	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Applicable – Would be Met	Applicable – Would be Met
Section 401 Water Quality Certification	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Applicable – Would be Met	Applicable – Would be Met
Surface Water Quality Standards	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met
Shoreline Management Act	Not Applicable	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met
Floodplain Management Act	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met
Critical Areas Ordinance	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met	Applicable – Would be Met
State Dangerous Waste Regulations	Not Applicable	Probably Not Applicable – Treatment Solids not Expected to Designate as Dangerous Waste	Probably Not Applicable – Treatment Solids not Expected to Designate as Dangerous Waste	Applicable – CKD Removed from a Closed Facility, Stored Temporarily, Disposed off-site. CKD Pile (re-) Closure Follows – Would be Met.	Not Applicable	Not Applicable
State Waste Discharge Regulations	Not Applicable	Applicable to Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Treated Water Discharged to Sullivan Creek and to Groundwater – Would be Met	Applicable to Treated Water Discharged to Sullivan Creek and to Groundwater – Would be Met
Clean Water Act/ NPDES	Possibly Applicable to Construction Stormwater if Disturbed Area Exceeds One Acre – Would be Met	Applicable to Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Construction Stormwater and Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Construction Stormwater and Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Construction Stormwater and Treated Water Discharged to Sullivan Creek – Would be Met	Applicable to Construction Stormwater and Treated Water Discharged to Sullivan Creek – Would be Met
National Toxics Rule	Site background levels govern	Site background levels govern	Site background levels govern	Site background levels govern	Site background levels govern	Site background levels govern
Hydraulics Project Approval	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Applicable – Would be Met	Applicable – Would be Met
Aquatic Use Authorization	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Potentially Applicable – Would be Met	Potentially Applicable – Would be Met
Water right permit	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable

EXHIBIT 4.1-1 ALTERNATIVE #1 EVALUATION PERMEABLE TREATMENT WALL (PTW) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

PTW Component	Description
PTW	400-ft extension of the current 80-ft Pilot System. The PTW treats groundwater with carbon dioxide in situ via diffusion tubing installed in the subsurface.
Operation and Maintenance	Carbon dioxide stored in a tank at the Site. Carbon dioxide storage and diffusion network require maintenance.
Short Term Compliance Monitoring	Site-wide quarterly groundwater monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	Groundwater pH is decreased and arsenic is precipitated. Downgradient groundwater would meet cleanup standards, providing added protection to Sullivan Creek. No treatment residuals are formed requiring management.	Yes
Comply with Cleanup Standards	Demonstrated PTW technology used to treat Site groundwater.	Yes
Comply with ARARs	PTW complies with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance 	Protection – Provision of Health and Safety Plans during construction Performance – Groundwater monitoring wells downgradient to monitor progress Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Confirmation		
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Able to meet the cleanup standards. Minor implementation risks.	Moderate-High
Permanence	Treatment-based, indefinite treatment.	High
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$2.1 \$2.2 \$4.3
Effectiveness over the Long-Term	Active components.	Moderate-High
Management of Short-Term Risks	Demonstrated installation techniques.	Easy
Technical and Administrative Implementability	Experience from the Pilot System. Installation on Lehigh's property. Light permitting.	High
Consideration of Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Disproportionate Cost Analysis Results	Practicable, Moderate Permanence	
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

- (2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.
- (3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-2 ALTERNATIVE #2 EVALUATION GROUNDWATER CONTROL (GWC) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

GWC Component	Description
GWC	Combination of the Pilot System in its current operational mode and 16 extraction wells installed between Highway 31 and Sullivan Creek. Approximately 55 gpm of groundwater is treated aboveground using carbon dioxide and ferric chloride before discharge to Sullivan Creek.
Operation and Maintenance	Diffusion network, chemical storage, extraction wells and treatment system operation and maintenance required.
Short Term Compliance Monitoring	Site-wide groundwater quarterly monitoring plus discharge monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance. Discharge monitoring.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	Groundwater pH is decreased and arsenic is precipitated. Downgradient groundwater would meet cleanup standards, providing added protection to Sullivan Creek. Lesser treatment residuals are formed.	Yes
Comply with Cleanup Standards	PTW and P&T are demonstrated and proven technologies to treat Site groundwater.	Yes
Comply with ARARs	GWC complies with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance Confirmation 	Protection – Provision of Health and Safety Plans during construction Performance – Groundwater monitoring wells downgradient to monitor progress Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Able to meet the cleanup standards. Minor implementation risks.	Moderate-High
Permanence	Treatment-based, indefinite treatment.	High
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$1.1 \$3.0 \$4.1
Effectiveness over the Long-Term	Active components.	Moderate-High
Management of Short-Term Risks	Conventional, rapid installation.	Easy
Technical and Administrative Implementability	Straightforward installation. Lehigh property, NPDES, other permits.	Moderate
Consideration of Public Concerns ⁽³⁾ Disproportionate Cost Analysis Results	Public will have the opportunity to review and provide comment on alternatives. Practicable, Moderate Permanence	Yes
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

- (2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.
- (3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-3 ALTERNATIVE #3 EVALUATION ADDITIONAL SOURCE CONTROL (ASC) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

ASC Component	Description	
ASC	A combination of an upgradient slurry wall, upgradient groundwater extraction, and downgradient P&T.	
Operation and Maintenance	Upgradient groundwater control and discharge maintenance. Chemical storage, extraction wells and treatment system operation and maintenance required.	
Short Term Compliance Monitoring	Site-wide quarterly groundwater monitoring plus discharge monitoring.	
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance. Discharge monitoring.	
New Institutional Controls	Fence and warning signs; restrictive covenants.	

Criteria	Comments	Rating
Protect Human Health and the Environment	ASC uses downgradient P&T to treat the affected groundwater that continues despite the slurry wall and upgradient dewatering.	Yes
Comply with Cleanup Standards	Slurry wall reduces groundwater volume that contacts CKD, and P&T is a proven technology to treat groundwater to meet cleanup standards.	Yes
Comply with ARARs	ASC complies with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance Confirmation 	Protection – Provision of Health and Safety Plans during construction Performance – Groundwater monitoring wells downgradient to monitor progress Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Decreases CKD-affected water generation. Able to meet the cleanup standards. Moderate to high implementation risks.	High
Permanence	Source control plus treatment-based component, indefinite treatment.	Higher
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$9.1-\$14 \$3.2 \$12.3-\$17.2
Effectiveness over the Long-Term	Active components.	Moderate-Low
Management of Short-Term Risks	Dangerous conditions, especially in the landslide area.	Difficult
Technical and Administrative Implementability	Non-Lehigh property, NPDES, other permits.	Moderate-Low
Consideration of Public Concerns ⁽³⁾ Disproportionate Cost Analysis Results	Public will have the opportunity to review and provide comment on alternatives. Disproportionate Costs	Yes
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

- (2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.
- (3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-4 ALTERNATIVE #4 EVALUATION PARTIAL SOURCE REMOVAL (PSR) SCENARIO 1: GROUNDWATER TREATMENT FOR FIVE YEARS CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

PSR Component	Description
PSR	Removal and replacement of the toe and middle of the Closed CKD Pile with inert material; downgradient GWC.
Operation and Maintenance	After implementation and initial inspections, no sustained operation of the Closed CKD Pile required. GWC maintenance for 5 years.
Short Term Compliance Monitoring	Downgradient groundwater monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	Short-term risks. GWC treats downgradient groundwater until standard POC cleanup.	Yes
Comply with Cleanup Standards	PSR results in compliance with clean-up standards.	Yes
Comply with ARARs	PSR complies with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance Confirmation 	Protection – Provision of Health and Safety Plans during construction Performance – Indirectly using groundwater monitoring wells downgradient to monitor progress Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Significant risks include: opening the Closed CKD Pile, handling CKD, excavation of the CKD, transportation. PSR also includes off-site disposal.	Low
Permanence	No groundwater treatment required after five years.	Highest- Baseline
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$17.4-\$24.2 \$1.4 \$18.8-\$25.6
Effectiveness over the Long-Term	Unlikely potential for no downgradient GWC after 5 years ⁽¹⁾ .	Low
Management of Short-Term Risks	Significant risks.	Very Difficult
Technical and Administrative Implementability	Technical concerns, significant risks, non all on Lehigh property, several years to implement, significant permitting.	Low
Consideration of Public Concerns ⁽³⁾ Disproportionate Cost Analysis Results	Public will have the opportunity to review and provide comment on alternatives. Very Difficult, Disproportionate Costs	Yes
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives. Standard POC uncertain.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

- (2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.
- (3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-5 ALTERNATIVE #4 EVALUATION PARTIAL SOURCE REMOVAL (PSR) SCENARIO 2: INDEFINITE GROUNDWATER TREATMENT PERIOD CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

PSR Component	Description
PSR	Removal and replacement of the toe and middle of the Closed CKD Pile with inert material; downgradient GWC.
Operation and Maintenance	After implementation and initial inspections, no sustained operation of the Closed CKD Pile required. GWC required for indefinite future time period.
Short Term Compliance Monitoring	Downgradient groundwater monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	Short-term risks, long-term compliance.	Yes
Comply with Cleanup Standards	PSR will result in compliance with clean-up standards.	Yes
Comply with ARARs	PSR would comply with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance Confirmation 	Protection – Provision of Health and Safety Plans during construction Performance – Indirectly using groundwater monitoring wells downgradient to monitor progress Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Significant risks include: opening the Closed CKD Pile, handling CKD, excavation of the CKD, transportation. PSR also includes off-site disposal.	Low
Permanence	Potential source removal, indefinite treatment-based GWC.	Highest- Baseline
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$17.4-\$24.2 \$3.0 \$20.4-\$27.2
Effectiveness over the Long-Term	No downgradient GWC after 5 years ⁽¹⁾ .	High
Management of Short-Term Risks	Significant risks.	Very Difficult
Technical and Administrative Implementability	Technical concerns, significant risks, non all on Lehigh property, several years to implement, significant permitting.	Low
Consideration of Public Concerns ⁽³⁾ Disproportionate Cost Analysis Results	Public will have the opportunity to review and provide comment on alternatives. Very Difficult, Disproportionate Costs	Yes
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives. Standard POC uncertain.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

- (2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.
- (3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-6 ALTERNATIVE #5 EVALUATION FUNNEL AND GATE TREATMENT (FGT) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

FGT Component	Description
FGT	Downgradient funnel and gate to PTW treatment technology. Potential minor dewatering of the Closed CKD Pile.
Operation and Maintenance	Carbon dioxide storage for groundwater treatment. Maintenance of the carbon dioxide storage and diffusion network.
Short Term Compliance Monitoring	Site-wide quarterly groundwater monitoring plus discharge monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance. Discharge monitoring.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	Treats water using PTW technology.	Yes
Comply with Cleanup Standards	FGT uses demonstrated PTW technology to treat Site groundwater.	Yes
Comply with ARARs	FGT would comply with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance Confirmation 	Protection – Provision of Health and Safety Plans Performance – Groundwater monitoring wells along treatment flowpath Confirmation – POC groundwater monitoring wells	Yes Yes Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Conditional POC.	Moderate-High
Permanence	Able to meet the cleanup standards. Minor implementation risks.	High
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$2.3-\$2.6 \$2.1 \$4.4-\$4.7
Effectiveness over the Long-Term	Passive treatment components.	Moderate-High
Management of Short-Term Risks	Conventional installation.	Easy
Technical and Administrative Implementability	Relatively straightforward installation. Lehigh property, NPDES, other permits.	Moderate
Consideration of Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Disproportionate Cost Analysis Results	Practicable, Moderate Permanence	
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

Note: (1) PSR has the highest degree of permanence.

(2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.

(3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

EXHIBIT 4.1-7 ALTERNATIVE #6 EVALUATION PARTIAL ADDITIONAL SOURCE CONTROL (PASC) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

PASC Component	Description
PASC	FGT plus a gravity drain to intercept water upgradient of the Closed CKD Pile.
Operation and Maintenance	Same as FGT, plus occasional gravity drain assessment.
Short Term Compliance Monitoring	Site-wide quarterly groundwater monitoring plus discharge monitoring.
Long-Term Compliance Monitoring	Groundwater monitoring at the point of compliance. Discharge monitoring.
New Institutional Controls	Fence and warning signs; restrictive covenants.

Criteria	Comments	Rating
Protect Human Health and the Environment	PASC would treat groundwater like the FGT and also reduce CKD-affected water generation.	Yes
Comply with Cleanup Standards	PASC uses demonstrated PTW technology to treat Site groundwater.	Yes
Comply with ARARs	PASC would comply with ARARs.	Yes
Provide for Compliance Monitoring Protection Performance 	Protection – Provision of Health and Safety Plans Performance – Same as FGT plus additional existing wells to evaluate gravity drain performance.	Yes Yes
Confirmation	Confirmation – POC groundwater monitoring wells	Yes
Use of Permanent Solutions to the Maximum Extent Practicable ⁽¹⁾	Disproportionate Cost Analysis ⁽¹⁾	
Protectiveness	Decreases CKD-affected water generation. Able to meet the cleanup standards. Minor implementation risks.	Highest
Permanence	Source control. Treatment-based technology, indefinite treatment.	Higher
Cost (in millions of dollars) ⁽²⁾ Implementation OMM Total	See Appendix E for details.	\$2.4-\$3.0 \$2.1 \$4.5-\$5.1
Effectiveness over the Long-Term	Passive treatment components. Source control components.	High
Management of Short-Term Risks	Conventional installation.	Easy
Technical and Administrative Implementability	Relatively straightforward installation. Mostly Lehigh property except for State Route 31, NPDES, other permits.	Moderate
Consideration of Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Disproportionate Cost Analysis Results	Practicable, High Permanence	
Provide for a Reasonable Restoration Time Frame	The restoration timeframe for a conditional POC would be similar to other alternatives.	Yes
Consider Public Concerns ⁽³⁾	Public will have the opportunity to review and provide comment on alternatives.	Yes
Prevent Domestic Use of CKD-Affected Groundwater	Meets cleanup levels; restrictive covenant.	Yes

Note: (1) PSR has the highest degree of permanence.

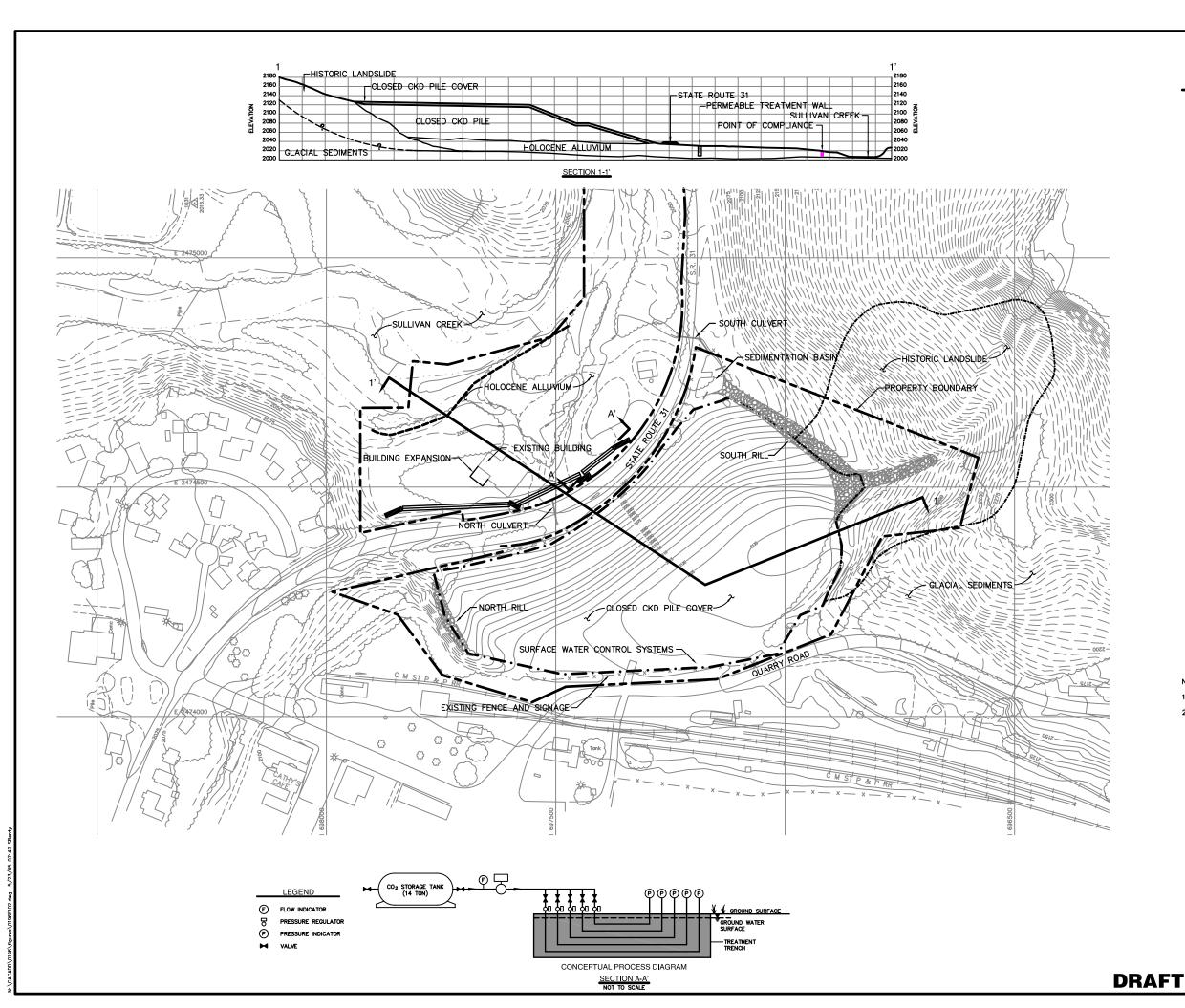
(2) Costs presented here for a 30-year project duration using a 7 percent discount rate. The detailed cost tables show results for other project durations and discount rates.

(3) The public will be provided with opportunities to comment and provide input regarding the alternatives. Ecology will address public comments before finalizing this document.

METALINE FALLS, WASHINGTON											
	ALT. #1 PTW	ALT. #2 GWC	ALT. #3 ASC	ALT. #4 PSR (Scenario 1)	ALT. #4 PSR (Scenario 2)	ALT. #5 FGT	ALT. #6 PASC				
Capital Cost	\$2.1	\$1.1	\$9.1 - \$14	\$17.4 - \$24.2	\$17.4 - \$24.2	\$2.3 - \$2.6	\$2.4 - \$3.0				
O&M	\$0.15	\$0.23	\$0.24	\$0.23 / 0.06 ⁽¹⁾	\$0.23	\$0.15	\$0.15				
Periodic Cost ⁽²⁾	\$0.60	\$0.35	\$0.35	-	\$0.35	\$0.60	\$0.60				
30-Year Present Cost (discount rate 7%)	\$4.3	\$4.1	\$12.3 - \$17.2	\$18.8 - \$25.6	\$20.4 - \$27.2	\$4.4 - \$4.7	\$4.5 - \$5.1				
100-Year Present Cost (discount rate 7%)	\$4.6	\$4.6	\$12.7 - \$17.6	\$19 - \$25.8	\$20.9 - \$27.7	\$4.8 - \$5.1	\$4.9 - \$5.5				
100-Year Cost (non-discounted)	\$20.7	\$26.2	\$35.2 - \$40.1	\$24.2 - \$31	\$42.5 - \$49.3	\$20.9 - \$21.2	\$21 - \$21.6				

EXHIBIT 4.1-8 COMPARISON OF ESTIMATED ALTERNATIVE COSTS LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON

Notes: Cost is in millions of dollars.


PSR Scenario 1 – Using Ecology's assumption, groundwater will meet clean-up levels in five years without further treatment.

PSR Scenario 2 - Groundwater will not meet clean-up levels without indefinite treatment.

(1) \$230,000 per year for first five years of operation, \$60,000 per year thereafter.

(2) Periodic cost assessed every fifteen years for large replacement items (i.e., aboveground treatment systems, buried PTW segments, etc.)

HR0196-12/MFW05-13_E418.DOC

LEGEND
CLOSED CKD PILE (EXTENTS)
HISTORIC LANDSLIDE
POINT OF COMPLIANCE
PERMEABLE TREATMENT WALL (PTW) - TREATMENT PANEL
PERMEABLE TREATMENT WALL (PTW) – BARRIER PANEL
EXISTING FENCE AND SIGNAGE $\times\times$
PROPERTY BOUNDARY

NOTES:

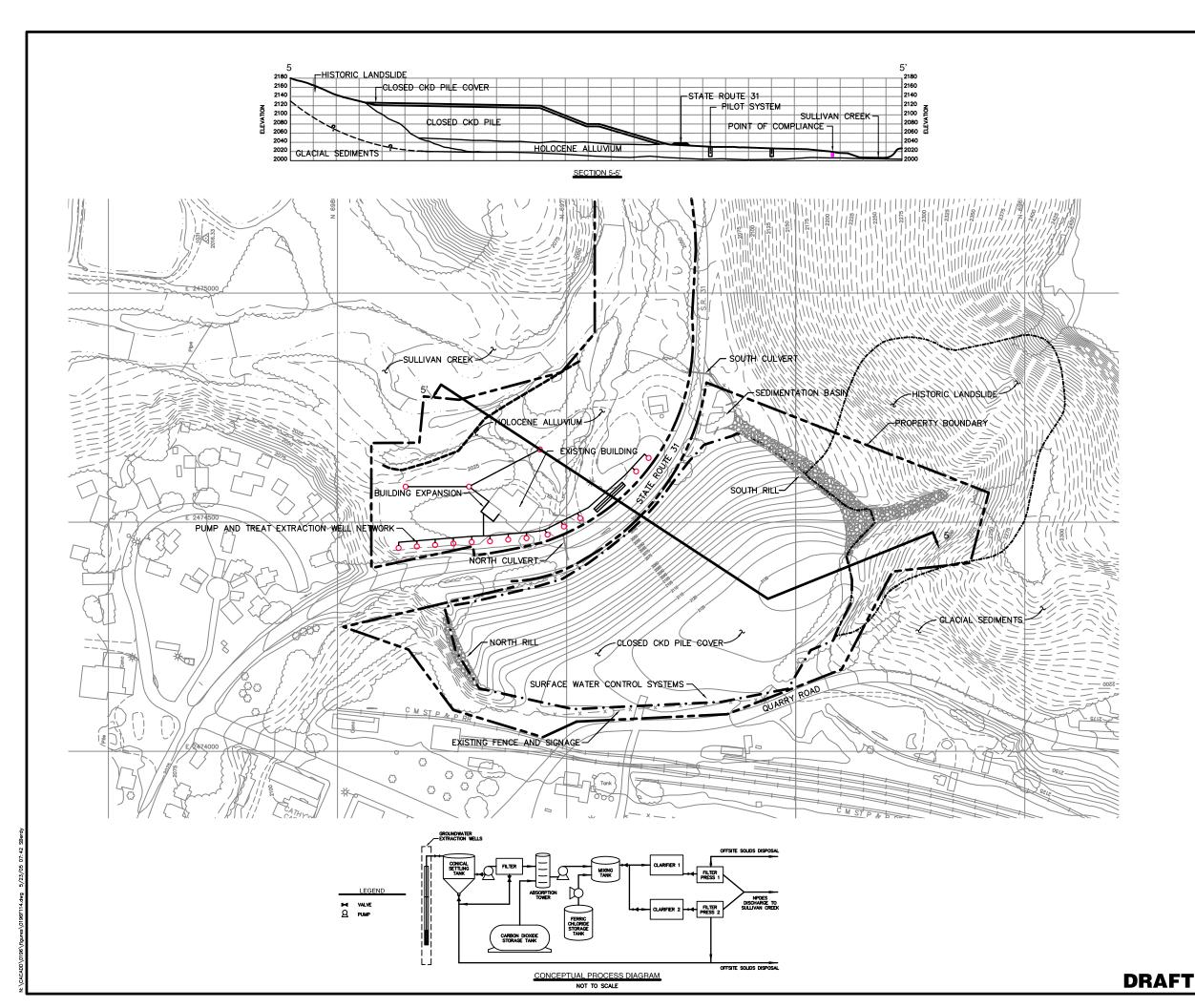
1. EXTRACTION WELLS TO BE ADDED TO ADDRESS GAPS IN TREATMENT, AS NEEDED.

2. THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE SELECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

Ņ										
	100 50 0 100 200									
	SCALE IN FEET									
GEOSYNTEC CONSULTANTS 2100 MAIN STREET, SUITE 150 HUNTINGTON BEACH, CALIFORNIA 92648 TELEPHONE: (714) 959-0800										
PROJECT: LEHIGH CEMENT COMPANY CLOSED CKD PILE METALINE FALLS, WASHINGTON REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT										
ALTERNATIVE #1 PERMEABLE TREATMENT WALL (PTW)										
date: JANUARY 2005	CHECKED BY: JAC SCALE: AS SHOWN	EXHIBIT NO:								
design by: EDS	REVIEWED BY: (PROL MOR.) TRS JOB NO.: HR0196-12	4.3-1								
DRAWN BY: SLB	DOCUMENT NO: FILE NO: 0196F102									

EXHIBIT 4.3-2 PERMEABLE TREATMENT WALL (PTW) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

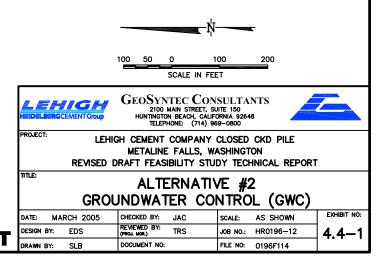
	ESTIMATED		EST	IMATED]	ESTIMATED	
ESTIMATED CAPITAL COSTS	QUANTITY	UNIT	UN	IT COST		TOTAL	Notes
1. PTW System Construction	400	lf	\$	3,100	\$	1,240,000	Approximately 400 feet PTW, 140 feet barrier walls, 20 feet deep
2. PTW alignment lithologic borings	11	each	\$	3,100	\$	33,000	Approximately 1 boring every 50 feet
3. Groundwater Monitoring Wells Installation	5	each	\$	6,300	\$	32,000	Approximately 20 feet deep
4. Compliance Monitoring Wells Installation	4	each	\$	6,300	\$	25,000	
5. Carbon Dioxide Tank and Enclosure	1	each	\$	41,000	\$	41,000	Additional tank to supplement existing, includes installation
6. Fencing and Signage	1	ls	\$	24,000	\$	24,000	
CONSTRUCTION COST SUBTOTAL ESTIN	MATE				\$	1,400,000	
7. Permitting	1	ls			\$	20,000	
8. Design (Plans and Specifications)	10	%			\$	140,000	
9. CM/CQA	10	%			\$	140,000	
10. Bonding	1	%			\$	14,000	
Subtotal					\$	1,710,000	
Contingency	20	%			\$	342,000	
TOTAL CAPITAL COST ESTIMAT	E				\$	2,100,000	


ESTIMATED O&M COSTS	ESTIMATED QUANTITY	UNIT	 TIMATED IT COST	ESTIMATED TOTAL	Notes
1. Labor	160	hour	\$ 100	\$ 16,000	System maintenance
2. Groundwater Treatment Costs	365	days	\$ 170	\$ 62,050	Includes chemicals and utilities
3. Quarterly Groundwater Monitoring	4	event	\$ 7,000	\$ 28,000	Includes sampling and analytical costs
4. Quarterly Reporting	4	event	\$ 5,000	\$ 20,000	Includes sampling and analytical costs
Subtotal	20	0/		\$ 126,000	
Contingency	20	%		\$ 25,200	
YEARLY O&M COST ESTIMATE				\$ 150,000	
30-YEAR PRESENT COST EST	TIMATE			\$4,300,000	Discount rate = 7%
COST ESTIMATE SCENARIOS FOR COM	PARISON PURI	POSES (
Installation Cost plus 100 years of Operation (Di Installation Cost plus 100 years of Operation (No	,		,600,000 0,700,000		

General Assumptions

Costs presented in 2005 US dollars (\$US 2005)

CM/CQA - Construction Management/Construction Quality Assurance


A periodic cost (\$600,000) is assessed every 15 years for large replacement items (e.g., buried carbon dioxide systems, carbon dioxide tank, etc.)

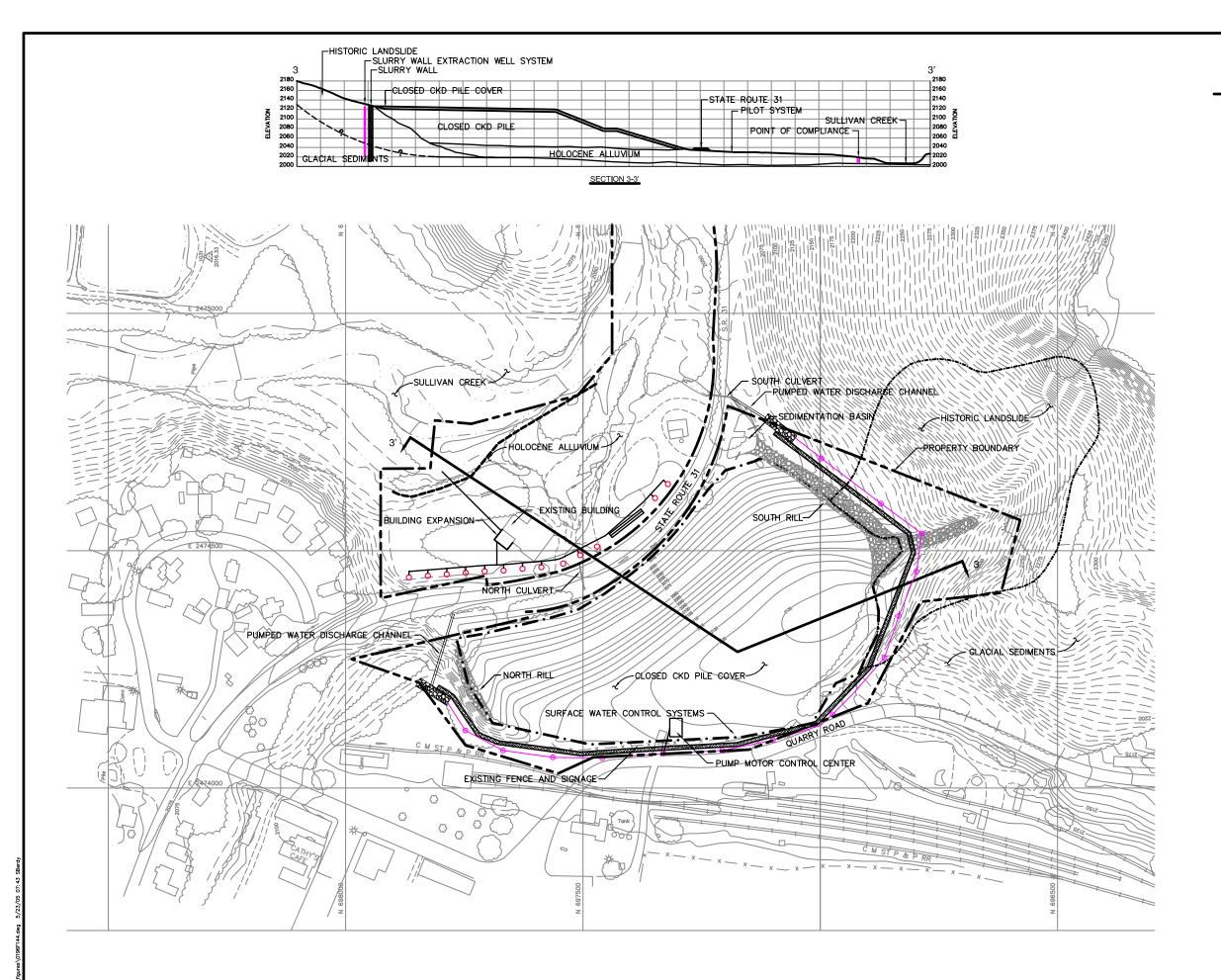
LEGEND

CLOSED CKD PILE	— · — · —
HISTORIC LANDSLIDE	······
POINT OF COMPLIANCE	•======
PILOT SYSTEM	
PUMP AND TREAT EXTRACTION WELL NETWORK	<u> </u>
EXISTING FENCE AND SIGNAGE	_ × _ × _
PROPERTY BOUNDARY	

NOTE: THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE SELECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

EXHIBIT 4.4-2 GROUNDWATER CONTROL (GWC) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

	ESTIMATED		EST	ГІМАТЕД	ESTIMATED	
ESTIMATED CAPITAL COSTS	QUANTITY	UNIT	UN	IT COST	TOTAL	Notes
1. Groundwater Extraction Well Installation	16	wells	\$	7,039	\$ 110,000	Approximately 20 feet deep
2. Extraction Pumps	18	each	\$	2,801	\$ 50,000	Includes equipment and installation labor, 2 spares
3. Earthworks	1	ls	\$	13,660	\$ 10,000	Piping trenches and treatment system pad and components
4. Extraction Piping	1,100	lf	\$	15	\$ 20,000	To treatment system and treated outfall, includes installation
5. Electrical Conduit and Wiring	1,700	lf	\$	10	\$ 20,000	Supply power to pumps, heaters, and treatment system
6. Groundwater Treatment System	1	each	\$	417,364	\$ 420,000	Carbon dioxide and ferric chloride groundwater treatment
7. Additional Carbon Dioxide Tank and Enclosure	1	each	\$	40,638	\$ 40,000	Pilot operation plus pump and treat
8. Compliance Monitoring Wells Installation	4	each	\$	6,271	\$ 30,000	
9. Fencing and Signage	1	ls	\$	24,000	\$ 24,000	
CONSTRUCTION COST SUBTOTAL ESTIMA	TE				\$ 724,000	
10. Permitting	1	ls			\$ 50,000	
11. Design (Plans and Specifications)	10	%			\$ 72,400	
12. CM/CQA	10	%			\$ 72,400	
13. Bonding	1	%			\$ 7,240	
14. Liquid Waste Disposal	1,000	gal	\$	5	\$ 5,000	
Subtotal					\$ 930,000	
Contingency	15	%			\$ 139,500	
TOTAL CAPITAL COST ESTIMATE					\$ 1,100,000	


	ESTIMATED		ES	ГІМАТЕД	ESTIMATED	
ESTIMATED O&M COSTS	QUANTITY	UNIT	UN	NIT COST	TOTAL	Notes
1. Labor	260	hour	\$	100	\$ 26,000	System maintenance
2. Extraction Pump/Well Maintenance	1	each	\$	15,000	\$ 15,000	Includes redevelopment and servicing
3. Groundwater Treatment Costs	365	day	\$	160	\$ 58,400	Includes chemicals and utilities
 Quarterly Groundwater Monitoring 	4	event	\$	7,000	\$ 28,000	Includes sampling and analytical costs
5. Quarterly Reporting	4	event	\$	5,000	\$ 20,000	Report of quarterly results
6. Monthly NPDES Sampling and Reporting	12	mo	\$	3,000	\$ 36,000	Sampling of discharge
7. Waste Disposal	25	ton	\$	700	\$ 17,500	Treatment Residuals
Subtotal					\$ 200,900	
Contingency	15	%			\$ 30,135	
YEARLY O&M COST ESTIMATE					\$ 230,000	
30-YEAR PRESENT COST ESTI	MATE				\$ 4,100,000	Discount rate = 7%
COST ESTIMATE SCENARIOS FOR COMPA	ARISON PURPO					
Installation Cost plus 100 years of Operation (Disc	ount rate $= 7\%$)		\$4	4,600,000		
Installation Cost plus 100 years of Operation (Non	-Discount)		\$2	6,200,000		

General Assumptions

Costs presented in 2005 US dollars (\$US 2005)

CM/CQA - Construction Management/Construction Quality Assurance

A periodic cost (\$350,000) is assessed every 15 years for large replacement items (e.g., groundwater treatment systems, etc.)

LEGEND	
CLOSED CKD PILE (EXTENTS)	— · — · —
HISTORIC LANDSLIDE	
PILOT SYSTEM	
POINT OF COMPLIANCE	
GROUNDWATER EXTRACTION WELL NETWORK	6 6 6
SLURRY WALL	***********
slurry wall extraction well system $igodoldoldoldoldoldoldoldoldoldoldoldoldol$	-
SLURRY WALL END DRAIN	
EXISTING FENCE AND SIGNAGE	— × — × —
PROPERTY BOUNDARY	— —

- O THE ACTUAL ALIGNMENT OF THE SLURRY WALL AND EXTRACTION WELLS WOULD BE VARIED TO ADDRESS PHYSICAL AND CONSTRUCTION CONSTRAINTS. FOR EXAMPLE, THE SLURRY WALL MIGHT BE RELOCATED TO THE WEST OF THE QUARRY ROAD.
- (b) THE PURPOSE OF THESE GROUNDWATER WELLS WOULD BE TO CONTROL GROUNDWATER ELEVATION BEHIND THE SLURRY WALL, DURING CONSTRUCTION AND DURING OPERATION. INSTALL AT APPROXIMATELY 100-FT SPACING. THE LOCATIONS SHOWN ON THE DRAWING ARE CONCEPTUAL.

NOTE: THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE ELECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

	Ņ		
	100_50_0_1 SCALE IN FEE	00 200 ET	
LEHIGH MEIDELBERGCEMENT Group	GEOSYNTEC CON 2100 MAIN STREET, SU HUNTINGTON BEACH, CALIFO TELEPHONE: (714) 96	JITE 150 DRNIA 92648	
	H CEMENT COMPANY METALINE FALLS, W/ RAFT FEASIBILITY STU		
	ALTERNATIN	/E #3 CONTROL (AS	C)
DATE: MARCH 2005	CHECKED BY: JAC	SCALE: AS SHOWN	EXHIBIT NO:
DESIGN BY: EDS	REVIEWED BY: (PROJ. MOR.) TRS	JOB NO.: HR0196-12	4.5-1
DRAWN BY: SLB	DOCUMENT NO:	FILE NO: 0196F144	

EXHIBIT 4.5-2 ADDITIONAL SOURCE CONTROL (ASC) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

	ESTIMATED		ESTIMATED	ESTIMATED UNIT COST				ESTIMATED HIGH	
ESTIMATED CAPITAL COSTS	OUANTITY	UNIT	UNIT COST (LOW)	(HIGH)		TOTAL		TOTAL	Notes
1. Slurry Cut-Off Wall	192,000	sf	\$ 30	\$ 50	\$	5,800,000	\$	9,600,000	Deep trench, landslide area
2. Slurry Wall End Drains	2	each	\$ 24,000	\$ 24,000	\$	48,000	\$		For dewatering discharge.
3. Upgradient Groundwater Dewatering/ Water Conveyance	14	wells	\$ 23,000	\$ 23,000	\$	322,000	\$	322,000	In unaffected groundwater
4. Carbon Dioxide Tank and Enclosure	1	each	\$ 41,000	\$ 41,000	\$	41,000	\$	41,000	Additional tank to supplement existing, includes installation
5. P&T Groundwater Extraction Well Installation	13	wells	\$ 7,000	\$ 7,000	\$	91,000	\$	91,000	Approximately 20 feet deep
6. Extraction Pumps for P&T	15	each	\$ 2,800	\$ 2,800	\$	42,000	\$	42,000	Includes equipment and installation labor, 2 spares
7. Earthworks for P&T	1	ls	\$ 13,660	\$ 13,660	\$	14,000	\$	14,000	Piping trenches and treatment system pad and components
8. Extraction Piping for P&T	900	lf	\$ 15	\$ 15	\$	14,000	\$	14,000	To treatment system and treated outfall, includes installation
9. Electrical Conduit and Wiring for P&T	1,500	lf	\$ 10	\$ 10	\$	15,000	\$	15,000	Supply power to pumps, heaters, and treatment system
10. Groundwater Treatment System	1	each	\$ 420,000	\$ 420,000	\$	420,000	\$	420,000	Carbon dioxide and ferric chloride groundwater treatment
11. Compliance Monitoring Well Installation	4	each	\$ 6,300	\$ 6,300	\$	25,000	\$	25,000	
12. Fencing and Signage	1	ls	\$ 24,000	\$ 24,000	\$	24,000	\$	24,000	
CONSTRUCTION COST SUBTOTAL ESTIMATE					\$	6,900,000	\$	10,700,000	
13. Permitting	1	ls			\$	50,000	¢	70,000	
14. Design and Site Investigation (Plans and Specifications)	4	%			\$	276,000		· · · · ·	
15. CM/CQA	4	%			\$	276,000		· · · · ·	
16. Bonding	1	%			\$	69,000			
Subtotal					\$	7,600,000	9	5 11,700,000	
Contingency	20	%			\$	1,520,000		5 2,340,000	
TOTAL CAPITAL COST ESTIMATE					\$	9,100,000	\$	5 14,000,000	

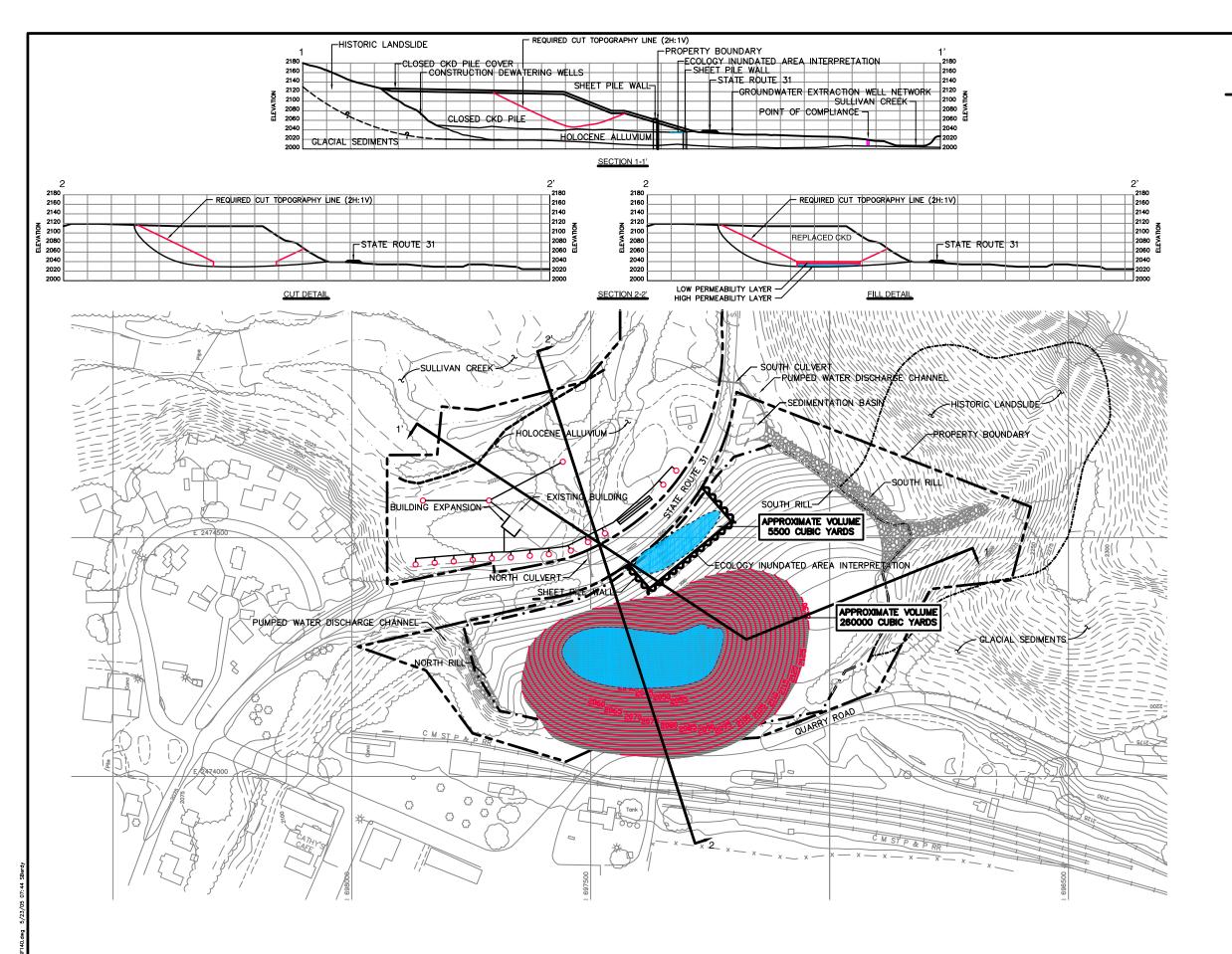
ESTIMATED O&M COSTS	ESTIMATED QUANTITY	UNIT	ESTIMATED UNIT COST	ESTIMATED TOTAL	Notes
1. Labor	400	hour	\$ 100	\$ 40,000	System maintenance
2. Extraction Pump/Well Maintenance	1	each	\$ 25,000	\$ 25,000	Includes redevelopment and servicing
3. Groundwater Treatment Costs	365	day	\$ 100	\$ 36,500	Includes chemicals and utilities
4. Quarterly Groundwater Monitoring	4	event	\$ 7,000	\$ 28,000	Includes sampling and analytical costs
5. Quarterly Reporting	4	event	\$ 5,000	\$ 20,000	Report of quarterly results
6. Monthly NPDES Sampling and Reporting	12	mo	\$ 3,000	\$ 36,000	Sampling of discharge
7. Waste Disposal	14	ton	\$ 700	\$ 9,800	Treatment Residuals
8. Dewatering Costs	131400	kWh	\$ 0.10	\$ 13,140	Electrical
Subtotal				\$ 210,000	
Contingency	15	%		\$ 31,500	
YEARLY O&M COST ESTIMATE				\$ 240,000	

30-YEAR PRESENT COST ESTIMATE RANGE

\$ 12,300,000

to

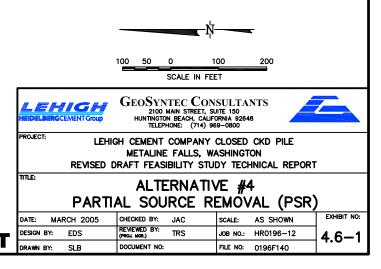
\$ 17,200,000 Discount rate = 7%


COST ESTIMATE SCENARIOS FOR COMPARISON PURPOSES ONLY			
Installation Cost plus 100 years of Operation (Discount rate = 7%)	\$12,700,000	to	\$17,600,000
Installation Cost plus 100 years of Operation (Non-Discount)	\$35,200,000	to	\$40,100,000

General Assumptions

Costs presented in 2005 US dollars (\$US 2005)

CM/CQA - Construction Management/Construction Quality Assurance


A periodic cost (\$350,000) is assessed every 15 years for large replacement items (e.g., groundwater treatment systems, etc.)

LEGEND

CLOSED CKD PILE (EXTENTS)	— · — · —
HISTORIC LANDSLIDE	
PILOT SYSTEM	
POINT OF COMPLIANCE	
GROUNDWATER EXTRACTION WELL NETWORK	
EXISTING FENCE AND SIGNAGE	
PROPERTY BOUNDARY	
ECOLOGY-INTERPRETED AREA OF INUNDATION	······································
EXCAVATION TOPOGRAPHY LINE	

NOTE: THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE ELECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

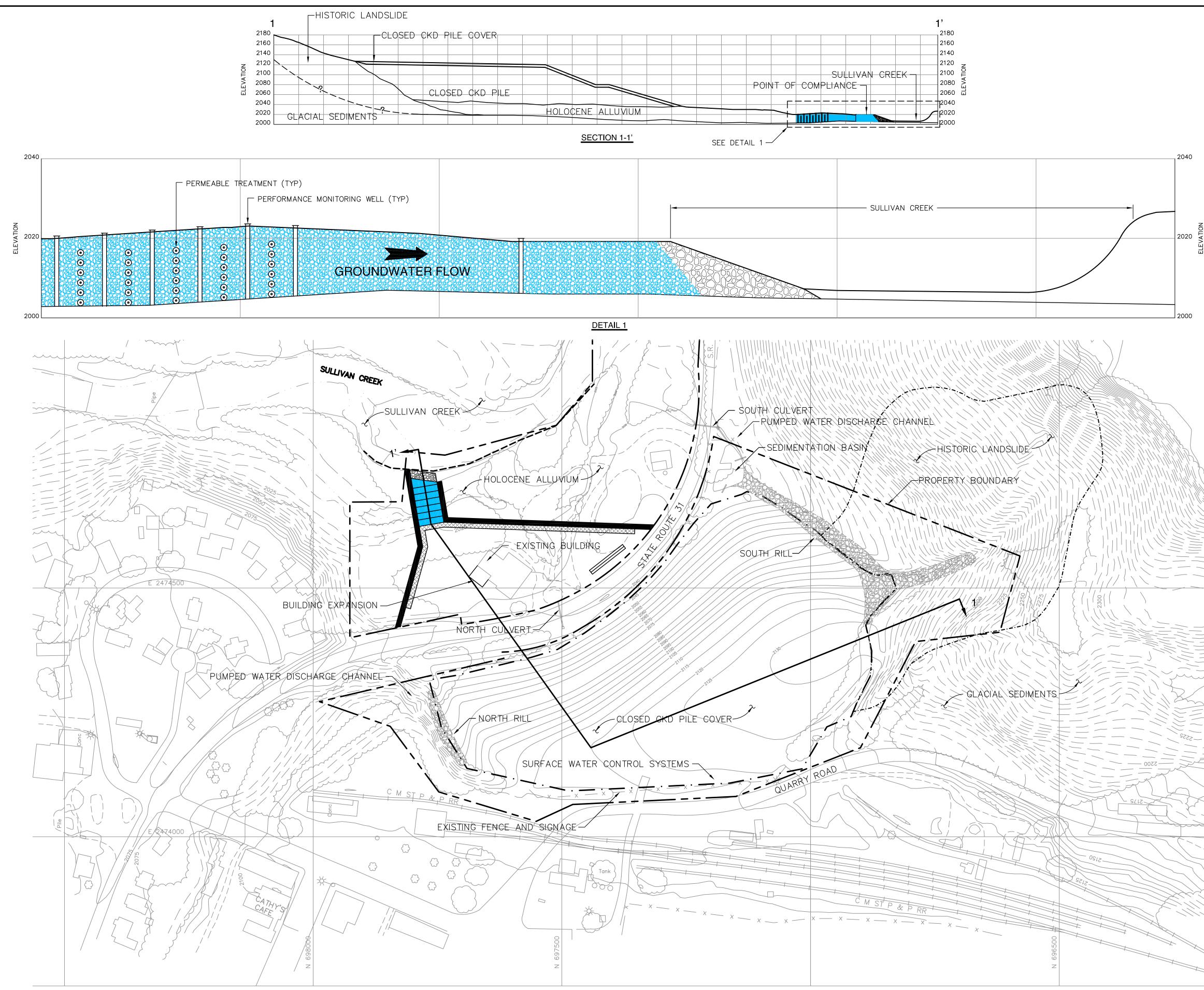


EXHIBIT 4.6-2 PARTIAL SOURCE REMOVAL (PSR) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

				ESTIMATED	ESTIMATED		ESTIMATED	1	ESTIMATED	
ESTIMATED CAPITAL COSTS	ESTIMATED QUANTITY	UNIT		UNIT COST (LOW)	UNIT COST (HIGH)		LOW TOTAL		HIGH TOTAL	Notes
I. CKD Investigative Borings	8	each	\$	16,000		\$	128,000	s	160,000	8 borings to approximately 100 feet deep
 Buy / Rent Temporary Storage Area for CKD 	1	ls	\$	50,000				s	50,000	o borings to approximately 100 reet deep
3. Build Temporary Storage for the Excavated CKD	24,000	sy	\$	16				\$	768,000	
Dewatering, Treatment, and Discharge	150	day	\$	1,000	\$ 1,200	\$		\$	180,000	
Toe Excavation (Sheet Piles)	5,500	cy	\$	20				\$	165,000	
Place Inert Backfill (Toe)	2,800	cy	\$		\$ 20			\$	56,000	
7. Replace CKD from Toe	2,700	cy	\$		\$ 20			\$	54,000	Assumes 100% compaction for purposes of Revised dFSTR
8. Lower CKD Excavation	260,000	cy	\$		\$ 20 \$ 20		3,900,000	\$ \$	5,200,000	
 Place Inert Backfill (Lower CKD) Replace CKD from the Large Excavation 	7,000 253,000	cy	\$ \$		\$ 20 \$ 20		105,000 3,800,000	5 5	140,000 5,060,000	100% - C CD - 1 17077
11. Replace Cover	34,000	cy sy	\$ \$		\$ 20 \$ 80		2,040,000	э \$	2,720,000	Assumes 100% compaction for purposes of Revised dFSTF For abandoned boreholes and excavation area
12. GWC Installation	1	each	\$	720,000			720,000	ŝ	720,000	For abandoned boreholes and excavation area
13 Compliance Monitoring Wells Installation	4	each	ŝ	6,300		\$	25,000	ŝ	25,000	for abandoned borenoies and excurrinon area
14 Fencing and Signage	1	ls	\$		\$ 24,000	\$	24,000	\$	24,000	
CONSTRUCTION COST SUBTOTAL ESTIMATE						\$	11,500,000	\$	15,300,000	•
14. Permitting	1	ls				\$	50,000	S	80,000	
15. Design and Site Investigation (Plans and Specifications)	4	%				\$		ŝ	612,000	
16. CM/CQA	4	%				\$	460,000	\$	612,000	
17. Bonding	1	%				\$	115,000	\$	153,000	
CKD Disposal										For the purposes of this Revised dFSTR, only CKD that i
18. CKD Disposal	9,800	су	\$	200	\$ 350		1,960,000	\$	3,430,000	displaced by the inert backfill will be disposed.
Subtotal						\$	14,500,000	\$	20,200,000	
Contingency	20	%				\$	2,900,000	\$	4,040,000	
TOTAL CAPITAL COST ESTIMATE						\$	17,400,000	\$	24,200,000	
ESTIMATED O&M COSTS INCLUDING GWC	ESTIMATED			ESTIMATED	ESTIMATED					
TREATMENT	QUANTITY	UNIT		UNIT COST	TOTAL	Notes	5			
1. Labor	260	hour	\$	100	\$ 26,000	Syste	m maintenance			
2. Extraction Pump/Well Maintenance	1	each	\$	15,000			des redevelopment and servicing			
Groundwater Treatment Costs	365	day	\$	160			des chemicals and utilities			
Monthly NPDES Sampling and Reporting	12	mo	\$.,	\$ 36,000	Samp	ling of discharge			
5. Waste Disposal	25	ton	\$		\$ 17,500					
 Quarterly Groundwater Monitoring Quarterly Reporting 	4	event event	\$ \$	7,000 5,000	\$ 28,000 \$ 20,000		des sampling and analytical costs rt of quarterly results			
	4	event	ş	5,000		Repo	it of quarterly results			
Subtotal					\$ 200,900					
Contingency	15	%			\$ 30,135					
YEARLY O&M COST ESTIMATE					\$ 230,000					
SCENARIO 1 - ESTIMATED O&M COSTS AFTER										
THE INITIAL FIVE YEARS OF OPERATION	ESTIMATED			ESTIMATED	ESTIMATED					
(ECOLOGY ASSUMPTION)	QUANTITY	UNIT		UNIT COST	TOTAL	Notes				
1. Quarterly Groundwater Monitoring	4	event	\$	7,000			des sampling and analytical costs			_
2. Quarterly Reporting	4	event	\$	5,000		Repo	rt of quarterly results			
Subtotal					\$ 48,000					
Contingency	15	%			\$ 7,200					
YEARLY O&M COST ESTIMATE					\$ 60,000					
SCENARIO 1 (Ecology assumes that groundy	water treatment	will not	t ha r	aquired ofter five ve	or e)			i i		
30-YEAR PRESENT COST ESTIMATE (Dis			\$	18,800,000	to	\$	25,600,000			
COST ESTIMATE SCENARIOS FOR COMPARISO			Þ	10,000,000	10	Þ	25,000,000			
Installation Cost plus 100 years of Operation (Discount ra		L1		\$19,000,000	to		\$25,800,000			
Installation Cost plus 100 years of Operation (Discount ra Installation Cost plus 100 years of Operation (Non-Discourt				\$24,200,000	to		\$25,800,000			
								•		
SCENARIO 2 (Lehigh believes that groundwa										
30-YEAR PRESENT COST ESTIMATE (Dis			\$	20,400,000	to	\$	27,200,000			
COST ESTIMATE SCENARIOS FOR COMPARISO		LŸ		\$20,000,000	4.		¢27 700 000			
Installation Cost plus 100 years of Operation (Discount ra Installation Cost plus 100 years of Operation (Non-Discou				\$20,900,000 \$42,500,000	to to		\$27,700,000 \$49,300,000			
instantiation Cost plus 100 years of Operation (Non-Disco	<i>j</i>			φτ2,300,000	10		9 4 7,300,000			
General Assumptions			-							
Costs amounted in 2005 US dellers (\$US 2005)			-							

Costs presented in 2005 US dollars (\$US 2005)

CM/CQA - Construction Management/Construction Quality Assurance Scenario 2 includes a periodic cost (\$350,000) is assessed every 15 years for large replacement items (e.g., groundwater treatment systems, etc.)

LEGEND

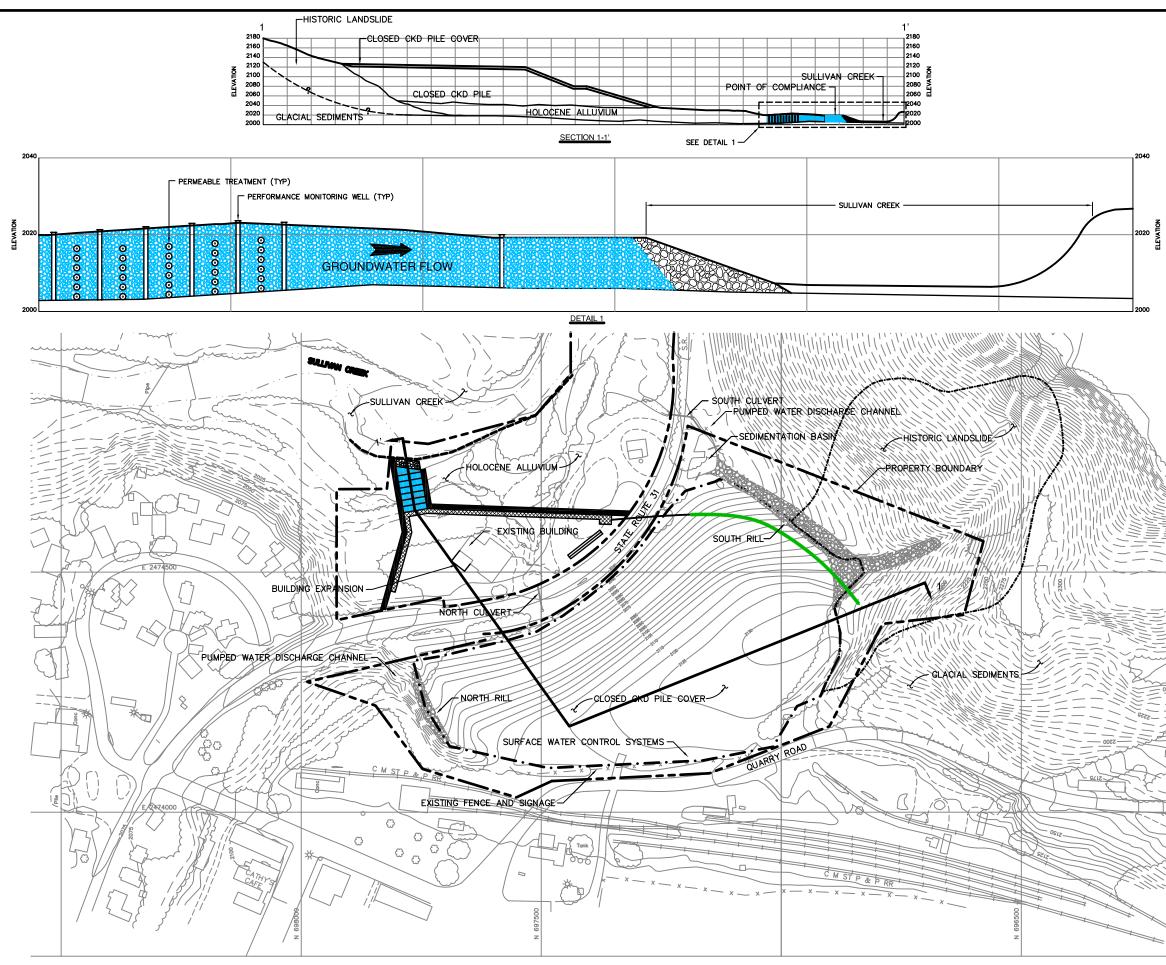
CLOSED CKD PILE (EXTENTS)	— · — · —
HISTORIC LANDSLIDE	
PROPERTY BOUNDARY	
SLURRY WALL	
FRENCH DRAIN	
GRAVEL CORRIDOR	
PERMEABLE TREATMENT	
RIP RAP	
POINT OF COMPLIANCE	
EXISTING FENCE AND SIGNAGE	× ×

NOTE: THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE SELECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

- Andrew - Andrew		NNN		
		100 50 0 1 SCALE IN FEE	00 200 T	
	LEHIGH HEIDELBERGCEMENT Group	GEOSYNTEC CON 2100 MAIN STREET, SU HUNTINGTON BEACH, CALIFO TELEPHONE: (714) 96	IITE 150 DRNIA 92648	
*		H CEMENT COMPANY METALINE FALLS, WA RAFT FEASIBILITY STUI	SHINGTON	
	TITLE: FUNNEL	ALTERNATIN		;T)
	DATE: MARCH 2005	CHECKED BY:	SCALE: AS SHOWN	EXHIBIT NO:
NDAET	DESIGN BY:	REVIEWED BY: (proj. mgr.)	JOB NO.: HR0196-12	4.7-1
DRAFT	DRAWN BY:	DOCUMENT NO:	FILE NO: 0196F145	

EXHIBIT 4.7-2 FUNNEL AND GATE TREATMENT (FGT) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

	ESTIMATED		FIMATED	ESTIMATED UNIT COST	F	ESTIMATED LOW		ESTIMATED HIGH	
ESTIMATED CAPITAL COSTS	QUANTITY	UNIT	(LOW)	(HIGH)		TOTAL		TOTAL	Notes
1. Earthen Platform for Slurry Wall Installation	5300	cy	\$ 3	\$ 3	\$	18,000	\$	18,000	Approximately 3 ft tall, 40 ft wide, 1200 ft long, plus compaction
2. Slurry Walls (Cement Bentonite)	17500	sf	\$ 10	\$ 15	\$	175,000	\$	263,000	Approximately 700 ft long, 25 ft deep
3. Slurry Diaphragm Walls	8750	sf	\$ 50	\$ 75	\$	438,000	\$	656,000	Approximately 350 ft long, 25 ft deep
4. Gravel	11963	cy	\$ 11	\$ 11	\$	134,000	\$	134,000	French Drain And Cooridor
Excavate Drainage Wall	1296	cy	\$ 2	\$ 2	\$	3,000	\$	3,000	Approximately 700 ft long, 25 ft deep, 2 ft thick
Backfill Drainage Wall with Gravel	1296	cy	\$ 6	\$ 6	\$	8,000	\$	8,000	FE loader, 200 ft haul, 35 cf bucket
7. Treatment and Discharge Cooridor Excavation	10667	су	\$ 1	\$ 1	\$	12,000	\$	12,000	FE loader, bulk bank measure, short haul (80 ft x 200 ft x 18 ft)
8. Corridor Dewatering and Treatment	80	day	\$ 1,000	\$ 1,000	\$	80,000	\$	80,000	Drainage trench, pumping 8 hours/day, recycle to pilot PTW
9. Install Carbon Dioxide Treatment System	400	lf	\$ 1,000	\$ 1,000	\$	400,000	\$	400,000	Approximately 80 ft long, 5 treatment walls
10. Surficial Termination of Treatment Pipes	1	ls	\$ 50,000	\$ 50,000	\$	50,000	\$	50,000	
11. Backfill Cooridor with Gravel	10667	су	\$ 2	\$ 2	\$	24,000	\$	24,000	
12. Rip-Rap Installation into Sullivan Creek	560	cy	\$ 42	\$ 42	\$	24,000	\$	24,000	Random, machine-placed broken stone (100 ft x 50 ft x 3 ft)
13. Instrumentation and Controls	1	ls	\$ 50,000	\$ 50,000	\$	50,000	\$	50,000	
14. Performance Monitoring Wells Installation	12	each	\$ 1,000	\$ 1,000	\$	12,000	\$	12,000	Approximately 20 feet deep in gravel cooridor
15. Compliance Monitoring Wells Installation	5	each	\$ 6,271	\$ 6,271	\$	31,000	\$	31,000	Approximately 20 feet deep in floodplain
Carbon Dioxide Tank and Enclosure	1	each	\$ 40,638	\$ 40,638	\$	41,000	\$	41,000	Additional tank to supplement existing, includes installation
17. Fencing and Signage	1	ls	\$ 24,000	\$ 24,000	\$	24,000	\$	24,000	
CONSTRUCTION COST SUBTOTAL ESTIMATE					\$	1,500,000	\$	1,800,000	
18. Permitting	1	ls			\$	60,000	\$	60,000	
19. Design (Plans and Specifications)	10	%			\$	150,000	\$	180,000	
20 CM/CQA	10	%			\$	150,000	\$	180,000	
21. Bonding	1	%			\$	15,000	\$	18,000	
Subtotal			 	 	\$	1,900,000	\$	2,200,000	
Contingency	20	%			\$	380,000	\$	440,000	
TOTAL CAPITAL COST ESTIMATE					\$	2,300,000	\$	2,600,000	
TOTAL CALIFIC COST ESTIMATE					Ψ	2,500,000	Ψ	2,000,000	


	ESTIMATED		ESTI	MATED				
ESTIMATED O&M COSTS	QUANTITY	UNIT	UNI	r cost				
1. Labor	160	hour	\$	100	\$ 16,000	System maintenance		
2. Groundwater Treatment Costs	365	days	\$	170	\$ 62,050	Includes chemicals and utili	ties	
3. Quarterly Groundwater Monitoring	4	event	\$	7,000	\$ 28,000	Includes sampling and analy	vtical costs	
4. Quarterly Reporting	4	event	\$	5,000	\$ 20,000	Includes sampling and analy	vtical costs	
Subtotal					\$ 126,000			
Contingency	20	%			\$ 25,200			
YEARLY O&M COST ESTIMATE					\$ 150,000			
30-YEAR PRESENT COST EST	IMATE RAN	GE			\$ 4,400,000	to	\$4,700,000	Discount rate = 7%
COST ESTIMATE SCENARIOS FOR COMP								
Installation Cost plus 100 years of Operation (Dis-	count rate = 7%)		\$4,8	00,000	to	\$5,100,000		
Installation Cost plus 100 years of Operation (Nor	i-Discount)		\$20,9	900,000	to	\$21,200,000		

Installation Cost plus 100 years of Operation (Non-Discount) \$20,900,000 to

General Assumptions

Costs presented in 2005 US dollars (\$US 2005)

CM/QA - Construction Management/Construction Quality Assurance A periodic cost (\$600,000) is assessed every 15 years for large replacement items (e.g., buried carbon dioxide systems, acroon dioxide tank, slurry wall)

LEGEND	
CLOSED CKD PILE (EXTENTS)	— · — · –
HISTORIC LANDSLIDE	•· • ·••••••••••
PROPERTY BOUNDARY	
SLURRY WALL	
FRENCH DRAIN	
GRAVEL CORRIDOR	······································
PERMEABLE TREATMENT	
RIP RAP	
GRAVITY DRAIN	
POINT OF COMPLIANCE	
EXISTING FENCE AND SIGNAGE	— × — × —

NOTE: THE ALTERNATIVE LAYOUT SHOWN ON THIS EXHIBIT IS INTENDED ONLY FOR THE PURPOSE OF ILLUSTRATION AND ONLY TO SUPPORT THE FEASIBILITY STUDY COMPARISON OF ALTERNATIVES. IF THIS ALTERNATIVE WERE TO BE SECTED PURSUANT TO THE FEASIBILITY STUDY, THE ACTUAL REMEDY LAYOUT, LOCATION, EXTENT, AND DESIGN DETAILS WOULD BE PREPARED AND OUTLINED IN THE CLEAN-UP ACTION PLAN AND FINAL DESIGN DOCUMENTS. ACCORDINGLY, THE LOCATION, LAYOUT AND DETAILS OF ALTERNATIVE COMPONENTS AS SHOWN HERE WILL VARY.

EXHIBIT 4.8-2 PARTIAL ADDITIONAL SOURCE CONTROL (PASC) COST ESTIMATE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

			ES	TIMATED	ES	STIMATED]	ESTIMATED	F	STIMATED	
	ESTIMATED		Uľ	NIT COST	U	NIT COST		LOW		HIGH	
ESTIMATED CAPITAL COSTS	QUANTITY	UNIT		(LOW)		(HIGH)		TOTAL		TOTAL	Notes
 Site Preparation for Gravity Drains 	1	1s	\$	5,000	\$	10,000	\$	5,000	\$	10,000	Either a pit or a platform, plus a vault
2. Gravity Drains Mobilization	1	ls	\$	10,000	\$	20,000	\$	10,000	\$	20,000	Drill rig, crew, and support truck
Gravity Drains	670	lf	\$	120	\$	200	\$	80,000	\$	134,000	1 drain, approximately 550 ft long, 120 ft vertical
4. Earthen Platform for Slurry Wall Installation	5300	cy	\$	3	\$	3	\$	18,000	\$	18,000	Approximately 3 ft tall, 40 ft wide, 1200 ft long, plus compaction
Slurry Walls (Cement Bentonite)	17500	sf	\$	10	\$	15	\$	175,000	\$	263,000	Approximately 700 ft long, 25 ft deep
Slurry Diaphragm Walls	8750	sf	\$	50	\$	75	\$	438,000	\$	656,000	Approximately 350 ft long, 25 ft deep
7. Gravel	11963	cy	\$	11	\$	11	\$	134,000	\$	134,000	French Drain And Cooridor
Excavate Drainage Wall	1296	cy	\$	2	\$	2	\$	3,000	\$	3,000	Approximately 700 ft long, 25 ft deep, 2 ft thick
Backfill Drainage Wall with Gravel	1296	cy	\$	6	\$	6	\$	8,000	\$	8,000	FE loader, 200 ft haul, 35 cf bucket
10. Treatment and Discharge Cooridor Excavation	10667	cy	\$	1	\$	1	\$	12,000	\$	12,000	FE loader, bulk bank measure, short haul (80 ft x 200 ft x 18 ft)
11. Corridor Dewatering and Treatment	80	day	\$	1,000	\$	1,000	\$	80,000	\$	80,000	Drainage trench, pumping 8 hours/day, recycle to pilot PTW
12. Install Carbon Dioxide Treatment System	400	lf	\$	1,000	\$	1,000	\$	400,000	\$	400,000	Approximately 80 ft long, 5 treatment walls
13. Surficial Termination of Treatment Pipes	1	ls	\$	50,000	\$	50,000	\$	50,000	\$	50,000	
Backfill Cooridor with Gravel	10667	cy	\$	2	\$	2	\$	24,000	\$	24,000	
15. Rip-Rap Installation into Sullivan Creek	560	cy	\$	42	\$	42	\$	24,000	\$	24,000	Random, machine-placed broken stone (100 ft x 50 ft x 3 ft)
16. Instrumentation and Controls	1	ls	\$	50,000	\$	50,000	\$	50,000	\$	50,000	
17. Performance Monitoring Wells Installation	12	each	\$	1,000	\$	1,000	\$	12,000	\$	12,000	Approximately 20 feet deep in gravel cooridor
18. Compliance Monitoring Wells Installation	5	each	\$	6,271	\$	6,271	\$	31,000	\$	31,000	Approximately 20 feet deep in floodplain
19. Carbon Dioxide Tank and Enclosure	1	each	\$	40,638	\$	40,638	\$	41,000	\$	41,000	Additional tank to supplement existing, includes installation
20. Fencing and Signage	1	1s	\$	24,000	\$	24,000	\$	24,000	\$	24,000	
CONSTRUCTION COST SUBTOTAL ESTIMATE							\$	1,600,000	\$	2,000,000	
21. Permitting	1	1s					\$	60,000	\$	60,000	
22. Design (Plans and Specifications)	10	%					\$	160,000	\$	200,000	
23. CM/CQA	10	%					\$	160,000	\$	200,000	
24. Bonding	1	%					\$	16,000	\$	20,000	
Subtotal							\$	2,000,000	\$	2,500,000	
Contingency	20	%					\$	400,000	\$	500,000	
TOTAL CAPITAL COST ESTIMATE							\$	2,400,000	\$	3,000,000	

ESTIMATED O&M COSTS	ESTIMATED QUANTITY	UNIT	ESTIMATED UNIT COST					
1. Labor	16) hour	\$ 100	\$	16,000	System maintenance		
2. Groundwater Treatment Costs	36	5 days	\$ 170	\$	62,050	Includes chemicals and u	ttilities	
3. Quarterly Groundwater Monitoring		4 event		\$	28,000	Includes sampling and analytical costs		
4. Quarterly Reporting		4 event	\$ 5,000	\$	20,000	Includes sampling and an	nalytical costs	
Subtotal				\$	126,000			
Contingency	20	%		\$	25,200			
YEARLY O&M COST ESTIMATE				\$	150,000			
30-YEAR PRESENT COST ESTIM	IATE RAN	GE		4,	,500,000	to	5,100,000	Discount rate = 7%
COST ESTIMATE SCENARIOS FOR COMPARISON PURPOSES ONLY								
Installation Cost plus 100 years of Operation (Discount rate = 7%)			\$4,900,000		to	\$5,500,000		
Installation Cost plus 100 years of Operation (Non-Di	(accumt)		\$21,000,000		to	\$21,600,000		

General Assumptions

Costs presented in 2005 US dollars (\$US 2005)

CM/CQA - Construction Management/Construction Quality Assurance

A periodic cost (\$600,000) is assessed every 15 years for large replacement items (e.g., buried carbon dioxide systems, carbon dioxide tank, slurry wall, etc.)

EXHIBIT 6.3-1 SCHEDULE MILESTONES: PASC DESIGN, PROCUREMENT, AND INSTALLATION REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

The following schedule is provided for illustrative purposes. Although the schedules differ, PTW, GWC, ASC, PSR, and FGT possess similar scheduling steps. ASC and PSR may represent to largest scheduling departures because of their time to implement, which may bridge construction seasons.

Task	Begin	End	
Feasibility Study Technical Report (FSTR)			
Revised dFSTR Submitted to Ecology	4 Ma	rch 2005	
Ecology review of Revised Draft FSTR	March 2005	April 2005	
Finalize the Revised Draft FSTR	April 2005	May 2005	
Public Comment/Public Hearing on dFSTR	May 2005	June 2005	
Responsiveness Summary/ Final FSTR Issued		e 2005	
Cleanup Action Plan (CAP)			
Draft CAP/ Construction Permits/ SEPA (DNS or Mitigated DNS)	June 2005	August 2005	
Public Comment/ Public Hearing on dCAP	August 2005	September 2005	
Responsiveness Summary/ CAP	September 2005	October 2005	
Consent Decree Issued	October 2005		
Draft Consent Decree (CD)			
Public Comment/ Public Hearing on CD	August 2005	September 2005	
Responsiveness Summary/ Final CD	September 2005	October 2005	
· · · · · · · · · · · · · · · · · · ·	September 2003	0010001 2005	
Permit for Building the CO2 Tank Enclosure	Mar-1 2005	July 2005	
Preparing and Submitting JARPA for Enclosure Construction Obtaining Pend Oreille shoreline, floodplain, and building permits	March 2005 July 2005	July 2005 September 2005	
Obtaining Pend Orenie snorenne, noodplain, and building permits	July 2005	September 2005	
NPDES Permit			
Prepare NPDES Documentation (2 - 3 months)	April 2005	June 2005	
Ecology/ EPA Documentation Review (3 - 6 months)	July 2005	January 2006	
Permit Issued	Janua	ary 2006	
Other Potential Permits/Regulatory Approvals for the Remedy			
Prepare and Submit JARPA for Remedy Implementation	March 2005	September 2005	
USCOE 404 Permitting	September 2005	January 2006	
Fish and Wildlife Hydraulics Project Approval	September 2005	October 2005	
Department of Natural Resources Aquatic Use Authorization	September 2005	November 2005	
Pend Oreille County shoreline, floodplain, and building permits	September 2005	November 2005	
Ecology Section 401 Certification	September 2005	March 2006	
Design Report			
Design and Report	March 2005	June 2005	
Plans and Specifications	June 2005	August 2005	
Ecology Review of the Design Report	August 2005	September 2005	
Public Comment/ Public Hearing on Design Report	September 2005	October 2005	
Responsiveness Summary/ Final Design Report	October 2005	November 2005	
Procurement (Bid/ Negotiate/ Contract)	I 2005	4	
Aboveground Structural Contractor CO2 Tank	June 2005 November 2005	August 2005 May 2006	
		2	
Specialty Contractors	November 2005	January 2006	
Mechanical Contractor	December 2005	January 2006	
Electrical / System Controls Contractor	December 2005	January 2006	
Other Contractor(s)	February 2006	April 2006	
Initial Mobilization	April 2006	May 2006	
REMEDY IMPLEMENTATION	M. 1 2007	4	
Build New CO2 Tank Enclosure (includes foundation)	March 2006	April 2006	
Install New CO2 Tank (includes transport)	May 2006	June 2006	
Remedy Treatment System Construction	May 2006	September 2006	
Conduct work affecting Sullivan Creek during the "fish window"	July 2006	July 2006	
Commissioning	September 2006	September 2006	
Remedy Completion	Septen	nber 2006	

NOTES

DNS - Determination of Non-Significance

NPDES - National Pollution Discharge Elimination System

JARPA - Joint Aquatic Resources Permit Application

USCOE - United States Corps of Engineers

CO2 - Carbon Dioxide

GeoSyntec Consultants

DRAFT

APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS INCLUDES UPDATE (2003 – CURRENT)

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA.DOC

3 MAR 05/10:50

TABLE OF CONTENTS

		Page
A.1.	INTRO	DUCTION1
	A.1.1	Terms of Reference 1
	A.1.2	Background 1
	A.1.3	2003 Work Program
	A.1.4	Document Organization
A.2.	2003 W	ORK PROGRAM DESCRIPTION AND RESULTS
	A.2.1	Introduction
	A.2.2	Subsurface Investigation
	A.2.3	Field Data Collection Program
	A.2.4	Sample Collection and Chemical Analysis
	A.2.5	Carbon Dioxide Sparge Point Test
	A.2.6	Pump Test
	A.2.7	Pilot Permeable Treatment Wall Operation and Maintenance
A.3.	ANALY	YSIS AND FINDINGS 13
	A.3.1	Introduction
	A.3.2	Site Subsurface
	A.3.3	Groundwater Elevation
	A.3.4	Groundwater pH Distribution
	A.3.5	Groundwater Arsenic Distribution
	A.3.6	Carbon Dioxide Sparge Point Data
	A.3.7	Pump Test Interpretation
A.4.	PILOT	SYSTEM PERFORMANCE EVALUATION
	A.4.1	General
	A.4.2	Groundwater Treatment Performance Evaluation
		A.4.2.1 Introduction

HR0196-12/MFW05-13_APA.DOC

3 MAR 05 / 10:00 AM

TABLE OF CONTENTS (cont.)

		A.4.2.2 Performance to Treat Groundwater pH and Arsenic 19
		A.4.2.2.1 General
		A.4.2.2.2 Performance in Decreasing Groundwater pH 19
		A.4.2.2.3 Performance in Decreasing Arsenic in Groundwater
		A.4.2.2.4 Conclusions Regarding PTW Efficacy in Decreasing
		Arsenic and pH Levels In Groundwater
		A.4.2.3 Groundwater Treatment Performance Indicator Evaluation
		A.4.2.3.1 General
		A.4.2.3.1 General
		A.4.2.5.2 Groundwater Dissorved morganic Carbon (DiC) Evaluation
	A.4.3	Physical Performance Evaluation
	л.+.Ј	A.4.3.1 General
		A.4.3.2 Permeable Treatment Wall Gas Purging Requirements Evaluation 25
	A.4.4	Pilot Treatment Downgradient Soil Effects
	A.4.5	Pilot Permeable Treatment Wall Conclusions
	11.110	
A.5.	UPDAT	E ON PILOT SYSTEM OPERATION AND PERFORMANCE (NOVEMBER
		EBRUARY 2005)
	A.5.1	Introduction
	A.5.2	Pilot System Operation
	A.5.3	Pilot System pH and Arsenic Treatment Progress
	A.5.4	Summary
REFE	RENCES	
EXHII	BITS	
A-1	Site	Location Map

- A-2 2003 Investigation Summary Table
- A-3 Summer 2003 Investigations
- A-4 Culvert Excavation Trench Log
- A-5 Field pH and Groundwater Elevation Data

HR0196-12/MFW05-13_APA.DOC

TABLE OF CONTENTS (cont.)

- A-6 Select Groundwater Analytical Data Summary
- A-7 Soil Analytical Data Summary
- A-8 Gas Analytical Data Summary
- A-9 Pilot Permeable Treatment Wall Operation Summary
- A-10 Historical Site Monitoring Well pH Data
- A-11 Historical Site Monitoring Well Total Arsenic Data
- A-12 Pilot Permeable Treatment Wall and Surrounding Area
- A-13 Cross Section A-A'
- A-14 Cross Section B-B'
- A-15 Cross Section C-C⁻
- A-16 Cross Section D-D'
- A-17 Pilot Permeable Treatment Trench Vicinity Time Series pH
- A-18 Pilot Permeable Treatment Trench Vicinity Time Series Dissolved Arsenic
- A-19 Dissolved Inorganic Carbon Ratios
- A-20 Pilot Permeable Treatment Trench Vicinity May 2003 Distance Series Dissolved Inorganic Carbon
- A-21 Groundwater Elevation Data
- A-22 Select Groundwater Analytical Data Summary (November 2002 November 2004)
- A-23 Pilot System Vicinity Time Series pH (through November 2004)
- A-24 Pilot System Vicinity Time Series Dissolved Arsenic (through November 2004)
- A-25 Pilot System Vicinity Time Series Dissolved Inorganic Carbon (through November 2004)

ATTACHMENT

Attachment 1:	Analytical Lab Data
	Groundwater Laboratory Data
	Soil Laboratory Data
	Gas Laboratory Data

GeoSyntec Consultants

APPENDIX A PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

A.1. INTRODUCTION

A.1.1 <u>Terms of Reference</u>

This appendix describes the work conducted in 2003 in support of the preparation of the feasibility study (FS) and presents a summary of investigatory results and analyses. This report was prepared for the Lehigh Cement Company (Lehigh) Closed Cement Kiln Dust (CKD) Pile (Site) located in Metaline Falls, Washington (see Exhibit A-1) by GeoSyntec Consultants (GeoSyntec). The 2003 work program described in Sections A.1 through A.4 was conducted during the FS phase of Agreed Order No. DE99HS-E941 (AO). GeoSyntec has continued to collect data and perform work in support of the FS since the original submittal of this appendix to the draft Feasibility Study Technical Report (dFSTR) in November 2003. Section A.5 of this appendix summarizes work conducted from November 2003 to present. This appendix and its attachments form Appendix A of the Revised draft Feasibility Study Technical Report (Revised dFSTR) submitted in March 2005.

A.1.2 <u>Background</u>

Since 1989, extensive environmental work has been conducted at the Site, including extensive site characterization, closure of the CKD pile, post-closure care and monitoring, and filling of low-lying areas downgradient of the closed CKD pile. In 1999, GeoSyntec conducted a focused remedial investigation (RI) at the Site [GeoSyntec, 2001]. The results of the RI confirmed that groundwater quality in certain areas downgradient of the CKD pile is characterized by high pH, decreased oxidation-reduction potential (redox potential or E_h), and elevated arsenic concentrations.

HR0196-12/MFW05-13_APA.DOC

Following the RI, GeoSyntec performed a series of treatability studies and geochemical evaluations to evaluate methods for treating groundwater affected by the CKD pile. This work complemented investigations into other approaches that would isolate the CKD materials from groundwater contact. Interim Progress Report No. 1 [GeoSyntec, 2000], which was submitted to Ecology in 2000, documents the treatability tests. Treatability studies were conducted to evaluate potential methods for treating groundwater with high pH, decreased redox potential, and elevated arsenic levels. GeoSyntec evaluated several methods, including treating the groundwater with carbon dioxide, pyrite, and carbohydrate. Key conclusions of the treatability studies included:

- Geochemical models predicted that decreasing pH and concurrently increasing E_h would reduce pH and arsenic levels for the Site.
- Treatability test data indicated that carbon dioxide treatment effectively decreased the pH of Site groundwater to the desired range.
- Treatability test data indicated that Site groundwater carbon dioxide treatment increased E_h .
- Based on technical research and results from chemical analysis, pyrite treatment is a potential source of heavy metals, including arsenic, in Site groundwater.
- Treatment of Site groundwater with carbohydrate (i.e., wood chips) produced unfavorable conditions during treatability tests (e.g., contaminant addition, foaming) that made it infeasible for full-scale groundwater treatment.
- Based on thermochemical calculations, heat generation from Site groundwater pH neutralization with carbon dioxide would likely be manageable at field scale. Temperature increases were not noticeable during treatability tests.
- Treatability test data indicated that significant carbonate alkalinity is present in Site groundwater, requiring more carbon dioxide than would be required for the same pH groundwater absent carbonates.
- Geochemical evaluations of the soluble calcium carbonate suggested that this compound will not precipitate in the groundwater if the pH of Site groundwater is decreased by carbon dioxide treatment.

• Based on laboratory data, naturally-occurring Site solids (native soils) contain measurable arsenic concentrations. Arsenic leaching into groundwater treated with carbon dioxide during treatability tests was not detectable.

Based on the treatability study results and following approval from Ecology, Lehigh decided to further evaluate in-situ groundwater carbon dioxide treatment to treat Site groundwater. Lehigh and GeoSyntec designed a pilot in-situ groundwater carbon dioxide treatment system, also referred to as the pilot permeable treatment wall (Pilot System), and installed the Pilot System in fall 2002. Installation and early operation (from 14 November 2002 through 31 January 2002) is described in the Pilot Groundwater Treatment System Construction Report [GeoSyntec, 2003a]. The Pilot System was installed in a trench approximately 80 ft long and 18 ft deep into the underlying aquitard. The submerged treatment system contains six perforated pipes that contain tubing to diffuse carbon dioxide to groundwater. The pipes were buried at approximate 2-ft spacing, starting at 16 ft below ground surface (bgs). Carbon dioxide is delivered to the tubing from a 14-ton capacity tank. Later, GeoSyntec produced the FS Technical Memorandum (FSTM), which further describes the Pilot System performance by using data collected over the first six months of operation (through May 2003).

Key conclusions of the Pilot System installation and first six months of operation include:

- Based on laboratory data and field measurements, the Pilot System decreased groundwater pH to neutral levels in the vicinity of the Pilot System.
- As was expected based on research, treatability studies, and geochemical modeling, arsenic concentrations decreased in groundwater in the vicinity of the Pilot System.
- The carbon dioxide tank and delivery system require manageable amounts maintenance, an important factor in a remote, unmanned location. In the absence of personnel on-Site, the automated control system was installed to monitor operating variables. Remote monitoring capabilities provide real-time insight into daily system operation.

• Because of the Pilot System design, carbon dioxide flows even in the event of power outages or other system interruptions such as restarting the control system. Treatment is also accomplished if a system segment is isolated due to equipment failure or maintenance.

In addition to the Pilot System performance evaluation component of the FSTM, the FSTM documented the initial screening of a variety of Site remediation alternatives. Based on the screening documented in the FSTM and subsequent discussions with Ecology, the remedies remaining for evaluation as part of the FS are:

- Carbon dioxide PTW;
- A combination of PTW and pump and treat with discharge into Sullivan Creek;
- Additional source control on the closed CKD pile;
- Partial source removal of the closed CKD pile;
- Downgradient funnel and gate groundwater treatment using carbon dioxide permeable treatment; and
- Downgradient funnel and gate groundwater treatment using carbon dioxide permeable treatment with a gravity drain under the southern side of the Closed CKD Pile.

To refine and update the data set used to evaluate Pilot System performance and to collect needed data for FS remedy evaluation in the FS, Lehigh and GeoSyntec designed the 2003 work program. GeoSyntec implemented the work program during July through September 2003.

DRAFT

A.1.3 2003 Work Program

In July 2003, GeoSyntec conducted the fieldwork component of the 2003 Work Program. Quarterly and supplemental groundwater monitoring were conducted in August and September 2003. The 2003 Work Program included the following elements:

- 1. Additional Lithology and Groundwater Data Collection: To better define the subsurface conditions and groundwater flow pattern at the Site, GeoSyntec collected lithology and groundwater data from locations around the Site, including the newly acquired property north-northwest of the existing toward the bluffs below the town of Metaline Falls (Exhibit A-1).
- 2. Evaluation of the North Culvert as a Potential Preferential Pathway: Based on Pilot System operation and Site history, there was concern that the north culvert was acting as a preferential pathway and consequently mixing with treated groundwater from the Pilot System. GeoSyntec investigated the North Culvert as a preferential pathway for groundwater flow.
- 3. Northern Area Groundwater Quality Evaluation: Lehigh recently acquired the property north of the existing building. To evaluate the quality and flow of the groundwater underlying this property, GeoSyntec collected field data and groundwater samples.
- 4. Evaluation of Carbon Dioxide Sparging as a Groundwater Treatment Option: To test the operation of the pilot carbon dioxide sparge points, GeoSyntec initiated carbon dioxide flow to the sparging cylinders that were installed as part of the Pilot System [GeoSyntec, 2003a].
- 5. Extraction Wells/Capture Zone Evaluation: To be used as an input in the pump and treat groundwater remedy evaluation portion of the FS, GeoSyntec performed a pump test and evaluated the test data.

- 6. **Groundwater Monitoring**: In addition to regular quarterly groundwater monitoring, GeoSyntec collected supplemental groundwater samples to evaluate PTW performance and groundwater in the northwest portion of the Site.
- 7. **Pilot System Operation Evaluation**: To evaluate the long-term feasibility of the Pilot System as a groundwater remedy, GeoSyntec evaluated and optimized the Pilot System.
- 8. **Pilot System Performance Evaluation**: To evaluate the performance of the Pilot System, GeoSyntec collected data to analyze the extent of the treated groundwater migration and the overall performance of the Pilot System.
- 9. **Pilot System Effects on Surrounding Soils Evaluation**: To evaluate if the Pilot System was affecting the downgradient saturated soil, GeoSyntec collected soil composition data.
- 10. **Purge Interval Operating Parameter Testing and Analysis**: During extended operation of the pilot (and full-scale) PTW, counterdiffusion could theoretically cause gases other than carbon dioxide dissolved in groundwater to accumulate in the tubing. This condition is addressed by periodically purging gas in the system. GeoSyntec collected data to evaluate gas compositions in the system.

A.1.4 <u>Document Organization</u>

The remainder of this appendix is organized into the following sections:

- Section A.2, *Work Description*, describes the 2003 work program.
- Section A.3, *Analysis and Findings*, evaluates the results as they apply to the Site and the FS remedy evaluation process.
- Section A.4, *Pilot Permeable Reactive Wall Evaluation*, describes the Pilot System installation, operation, and performance.

• Section A.5, *Update on Pilot System Operation and Performance*, provides data collected between November 2003 and February 2005.

Exhibits (tables and figures) and attachments are included at the end of this document.

A.2. 2003 WORK PROGRAM DESCRIPTION AND RESULTS

A.2.1 <u>Introduction</u>

The field work described in this section was performed to provide information on items outlined in Section A.1.3. Exhibit A-2 summarizes the investigations and the associated conclusions used in the remedy evaluation phase of the FS.

A.2.2 <u>Subsurface Investigation</u>

GeoSyntec performed a subsurface investigation that included installation of boring probes and groundwater monitoring locations. Exhibit A-3 shows the locations of the subsurface investigative points, which included:

- Six groundwater monitoring locations screened at depths between 15.5 to 22 feet (ft) (bgs) (PM-16, PM-17, PM-18, PM-19, PM-20, PM-21);
- Two temporary and subsequently abandoned groundwater monitoring locations in borings FSB-04 and FSB-06;
- Twenty-nine temporary direct push groundwater and/or soil probes (FSP-01 through FSP-29); and
- Six borings (FSB-01 through FSB-06).

The subsurface investigation also included the North Culvert investigation designed to evaluate the potential for the North Culvert to act as a preferential pathway for groundwater. The investigation, conducted on 31 July 2003, included the excavation of a trench across the buried North Culvert (see Exhibit A-3). Exhibit A-4 shows the culvert excavation trench log, which indicates that the culvert was observed to be above groundwater and buried in material that is similar to the surrounding native material. GeoSyntec also noted that the section of culvert observed during the investigation appeared to be a smooth-walled carbon steel pipe in good condition (i.e., no observed pitting). The trench was subsequently backfilled with the stockpiled excavation materials and compacted on 31 July 2003.

HR0196-12/MFW05-13_APA.DOC

A.2.3 Field Data Collection Program

Exhibit A-2 summarizes the 2003 data collection program. Data was collected from the newly installed sampling locations, as well as previously established sampling locations. The data collected at the Site included groundwater elevation and field pH readings. GeoSyntec also collected lithologic data from the borings drilled in 2003. Exhibit A-5 presents the groundwater elevation and field groundwater pH readings from July 2003. Lithologic logs are included in the draft Feasibility Study Technical Report.

A.2.4 Sample Collection and Chemical Analysis

GeoSyntec collected soil, groundwater, and gas samples for laboratory analysis during July 2003. GeoSyntec collected groundwater samples by using low-flow groundwater sampling techniques and submitted them for laboratory analysis to provide data on groundwater quality and contaminant distribution as well as Pilot System performance. GeoSyntec collected soil samples for laboratory analysis to provide data for the evaluation of the potential effects of the Pilot System on surrounding soil. Gas samples were collected for laboratory analysis to provide data for the evaluation of accumulated gas in the Pilot System tubing. Exhibit A-6 summarizes the groundwater analytical data, Exhibit A-7 the soil analytical data, and Exhibit A-8 the gas analytical data. The laboratory reports are presented in Attachment 1.

Summer 2003 samples and the associated analytical methods requested for those samples are summarized in Exhibit A-2. Scheduled quarterly groundwater monitoring (MW-7, -8, -9, -11, and -12) was conducted in August 2003, and supplemental groundwater monitoring (PM-1 through -21) was conducted in August and September 2003.

DRAFT

A.2.5 Carbon Dioxide Sparge Point Test

In July 2003, GeoSyntec conducted a test of the carbon dioxide sparge points installed as a component of the Pilot System. The test consisted of opening the manual ball valve feeding carbon dioxide to the sparge points and observing the response of the sparge points in the trench. The test led to the following observations:

- With the valve approximately one-quarter open, GeoSyntec heard gas bubbling in the groundwater. Audible gas bubbling suggests that a significant volume of carbon dioxide is escaping into the atmosphere. Carbon dioxide bubbling to the surface represents a major inefficiency in gas delivery.
- GeoSyntec observed that the sparging process resulted in surface emission of a gas with a hydrogen sulfide odor (i.e., rotten eggs). Even at low flow rates, where the bubbling was inaudible, GeoSyntec smelled sulfur odors that were emitted from the Pilot System during sparging tests. GeoSyntec ceased sparging operations to research the cause of the odor. The odor threshold of hydrogen sulfide varies among individuals, but is generally reported as less than 10 parts per billion by volume (ppbv), with some individuals able to detect concentrations as low as 0.5 ppbv [McGavran, 2001].

Based on the hydrogen sulfide odors, GeoSyntec discontinued the sparge point testing and resolved to research the issue further before attempting further sparge point operation. Section A.3.6 presents findings from the research.

A.2.6 <u>Pump Test</u>

GeoSyntec performed a pumping test at the PM-16 groundwater monitoring location (a 4-in. diameter groundwater monitoring location screened from 6 to 16 ft bgs). The sand filter pack surrounding the well screen extends from 3.5 to 16.5 ft bgs. The underlying clay aquitard was encountered at 13.5 ft bgs. In addition to PM-16, FSP-23 was used to measure drawdown at a distance of 24.2 ft from the PM-16.

PM-16 was pumped with a submersible pump at rates ranging from 2.4 to 5 gallons per minute (gpm). Water was collected for in drums and in a tank for subsequent disposal offsite. Groundwater levels in PM-16 before, during, and after pumping were measured to the nearest 0.01 ft with an electronic water level sounder and a down hole pressure transducer equipped with a datalogger. Water levels were measured in FSP-23 before, during, and after pumping with the electronic water level sounder. Pumping test data was analyzed by using the AQTESOLV® computer program. The pump test results and interpretation are presented in Section A.3.7. GeoSyntec transmitted the raw pump test data to Ecology in electronic format [GeoSyntec, 2004].

A.2.7 <u>Pilot Permeable Treatment Wall Operation and Maintenance</u>

Operation of the Pilot System started on 15 November 2002. From start-up through 1 October 2003, the Pilot System operated for approximately 6,750 hours. The system was shut down on occasion to perform maintenance. Exhibit A-9 summarizes other significant dates with respect to the Pilot System installation, start-up, and first 11 months of operation.

GeoSyntec conducted a thorough evaluation and optimized the operation of the Pilot System in July 2003. Activities included:

- monitoring the system for carbon dioxide leaks with a portable Gastech® GT-208 gas analyzer equipped with a carbon dioxide detector;
- modifying the operation of the carbon dioxide tank temperature control system to accommodate demanding Site weather conditions;
- testing the carbon dioxide detectors for measurement drift;
- performing maintenance on the supervisory control and data acquisition (SCADA) system (i.e., pH probe cleaning and reconditioning, pressure transmitter testing, etc.);

- installing a power conditioner on the electrical feed to the system's programmable logic controller (PLC) to partially attenuate data noise caused by power fluctuations outside of the system; and
- modifying the gas distribution network by removing clear plastic components with glued seams that are potentially susceptible to leaks.

DRAFT

A.3. ANALYSIS AND FINDINGS

A.3.1 Introduction

The 2003 work program is described in Section A.2. This section contains the data analysis and associated findings of the 2003 work program.

A.3.2 <u>Site Subsurface</u>

The Site subsurface is generally composed of 5 to 20 ft of silts, sands, and gravels overlaying a silty clay confining layer. The silty clay has been encountered in borings advanced to sufficient depths across the Site. This data, combined with the geologic nature of the Site area, suggests that the confining layer is present below the Site to Sullivan Creek. Groundwater generally first occurs in the upper several feet below ground surface (bgs). Lithologic logs and cross-sections of the Site are included in Appendix C of the Revised dFSTR.

Although preferential pathways likely exist in the form of high-permeability channels underlying the Site, the North Culvert and its surrounding material do not appear to be a preferential pathway. As shown in Exhibit A-4, the North Culvert is amidst materials that are similar to those surrounding it. The culvert appeared to be in good condition at the excavation location, which suggests that it is conducting surface water under Highway 31 as intended and not discharging that water to the groundwater prior to its surface water destination.

A.3.3 Groundwater Elevation

Exhibit A-5 contains groundwater elevation data for summer 2003. The potentiometric surface contours generated using the water level data are displayed on Exhibits A-3 and A-12. Summer 2003 groundwater elevations had generally decreased since the previous measurements taken in April and May 2003 but were consistent with historical data. The overall direction of groundwater flow is perpendicular to the Pilot System alignment. The groundwater elevation data show that groundwater flows in a north-northeasterly direction from the closed CKD pile toward Sullivan Creek (see Exhibit A-3) with localized anomalies downgradient of the Pilot System. The localized anomalies consist of variable slopes of the groundwater

potentiometric surface around the Pilot System. The anomalies could be due to several factors, including:

- The Site contains highly variable geologic conditions vertically and horizontally; and
- The gravel-filled Pilot System trench is of a different permeability than the surrounding floodplain material.

A.3.4 Groundwater pH Distribution

Groundwater pH field measurements are presented in Exhibit A-5 and analytical laboratory data in Exhibit A-6. pH measurements of samples collected from previously existing locations were generally consistent with historical data. The pH data collected from newly installed monitoring points combined with data for existing monitoring points are presented in Exhibit 2.3-5 of the Revised dFSTR. Exhibit A-10 shows time-series analytical laboratory pH readings from the Site groundwater monitoring wells (MW-07, MW-08, MW-09, MW-11, and MW-12). Exhibit A-10 illustrates that pH groundwater data have been relatively consistent since 1995, with the exception of the pH decrease observed in MW-8 following CKD pile closure.

Groundwater field measurements and laboratory results indicate that affected groundwater is present in the northern portion of the Site. Samples from the Site's northernmost groundwater monitoring locations (PM-15, PM-18 and PM-19) contained elevated pH and arsenic levels.

A.3.5 Groundwater Arsenic Distribution

Groundwater samples were collected and analyzed for arsenic at several permanent and temporary locations, as presented in Exhibit A-6.

Exhibit A-11 shows time-series analytical laboratory total arsenic data from the Site groundwater monitoring wells (MW-07, MW-08, MW-09, MW-11, and MW-12), and Exhibit 2.3-5 of the Revised dFSTR shows recent analytical arsenic data on a map of the Site.

Exhibit A-11 illustrates that arsenic groundwater data have been relatively consistent, with the exception of the decrease in arsenic concentration observed in MW-9 when low-flow sampling was initiated in 2000. The low-flow procedures were initiated to produce data more representative of groundwater conditions.

Recent reported total arsenic results, similar to pH results, indicate that affected groundwater is present in the northern portion of the Site. Total arsenic concentrations ranging from not detectable (<0.010 mg/L) to 0.278 mg/L were reported for samples collected from groundwater monitoring locations (PM-15, PM-16, PM-17, PM-18, PM-19, PM-20, and PM-21) in the northern portion of the Site .

A.3.6 Carbon Dioxide Sparge Point Data

As discussed in Section A.2.5, hydrogen sulfide was detected during the carbon dioxide sparge point tests. The detection of hydrogen sulfide can be explained as follows:

Sulfides are present in affected Site groundwater from dissolution of naturally occurring sulfides like pyrite (FeS), arsenopyrite (FeAsS), and orpiment (As_2S_3). When the groundwater pH is decreased, the sulfide ion (S⁻⁻) can participate in an acid-base reaction to form hydrogen sulfide (H₂S) according to Equation 1.

$$S^{-}(aq) + 2 H^{+}(aq) = H_2 S(aq)$$
 (1)

Exhibit A-8 contains gas data from samples collected from the Pilot System distribution system. The gas data show that hydrogen sulfide is formed as a byproduct of carbon dioxide groundwater treatment. Hydrogen sulfide emissions are not a concern during Pilot System operation due to its diffusion-based method of carbon dioxide delivery. Conversely, sparging carbon dioxide in the groundwater is an inefficient method of gas delivery because carbon dioxide is wasted when bubbles escape to the atmosphere. Sparging at the Site also causes other undesirable side effects, including surface emissions of hydrogen sulfide. Sparging Site groundwater with carbon dioxide likely caused emissions of hydrogen sulfide into the atmosphere because bubbling carbon dioxide (to decrease pH) increased the driving force for hydrogen sulfide to partition into the bubble gas-phase (i.e., stripping the hydrogen sulfide from

solution). The hydrogen sulfide partitions from the water into the bubbles and carried to the atmosphere. Based on the odors observed at the Site and the research and analysis of the hydrogen sulfide phenomenon, GeoSyntec does not plan to further operate the carbon dioxide sparge points. Actual hydrogen sulfide concentration data in the escaped data is not needed for the following reasons:

- Sparge points waste carbon dioxide because the groundwater does not consume the carbon dioxide rapidly enough to prevent carbon dioxide bubble escape to the atmosphere;
- Long-term full scale use of sparge points at the Site is also not feasible because they release odors (observed by GeoSyntec personnel) into the atmosphere that research indicates is hydrogen sulfide, which is a toxic gas and odor nuisance.

The diffusion-based Pilot System is not expected to release hydrogen sulfide to the atmosphere. The Pilot System relies on diffusion of carbon dioxide into groundwater, which does not produce bubbles that escape to the atmosphere. Without the gas bubbles providing the driving force for hydrogen sulfide to enter the gas phase, hydrogen sulfide is expected to remain dissolved according to Equation 1. Further, GeoSyntec has not observed the hydrogen sulfide odors during Pilot System operation.

A.3.7 <u>Pump Test Interpretation</u>

GeoSyntec experienced difficulties pumping at a constant rate from PM-16, but general observations include:

- PM-16 sustained an average pumping rate of 2.9 gpm for a period of over 6.5 hours;
- FSP-23, which is approximately 24 ft from PM-16, experienced a maximum measured drawdown of 0.16 ft due to the pumping at PM-16; and

• FSP-21, which is approximately 65 ft from PM-16, experienced no measurable drawdown.

AQTESOLV was used to evaluate the pumping test data. Depending on the numerical solution that is used, the resulting hydraulic conductivity value ranges from 25 to 95 ft/day, similar to results of previous tests performed at the Site [D&M, 1993]. These values are also consistent with the recorded PM-16 lithology.

DRAFT

A.4. PILOT SYSTEM PERFORMANCE EVALUATION

A.4.1 General

This section contains an evaluation of the performance of the Pilot System with regard to various evaluation parameters, including:

- Groundwater treatment performance (ability to lower pH and arsenic concentrations);
- Physical performance (i.e., ease of operation and maintenance requirements); and
- Potential impacts on downgradient soils.

In addition, an overall assessment of the effectiveness of the PTW is presented at the end of this section.

A.4.2 Groundwater Treatment Performance Evaluation

A.4.2.1 Introduction

This section describes the evaluation of the performance of the Pilot System to lower pH and arsenic concentration in Site groundwater. This evaluation was performed by analyzing pH and arsenic concentration data upgradient and downgradient of the Pilot System. In addition, chemical indicators (such as dissolved inorganic carbon) variations upgradient and downgradient of the trench were also analyzed to further evaluate the efficacy of the Pilot System. Groundwater analytical data used in this section are summarized in Exhibit A-6.

A map of the Pilot System treatment trench and the surrounding area is shown in Exhibit A-12. Cross-sections from within and through the Pilot System treatment trench are presented in Exhibits A-13, A-14, A-15, and A-16. It should be noted that although AVG-W, AVG-M, and AVG-E monitoring locations were installed in the treatment trench, only AVG-W

and AVG-E remained intact following backfill and grading of the treatment trench area; AVG-M was rendered unusable for groundwater monitoring during installation of the Pilot System.

GeoSyntec monitored groundwater from upgradient locations (PM-10, FSP-15, and FSP-16), within-trench locations (AVG-W, AVG-E, CMT-W, CMT-M, and CMT-E), immediately downgradient locations (PM-11, PM-12, and PM-13), and farther downgradient (MW-9, FSP-19, FSP-18, followed by FSP-25, PM-17, and PM-14). Exhibit A-12 shows Crosssections A-A', B-B', and C-C' along flow paths that intersect the treatment trench. The data collected from these monitoring points were used to evaluate the ability of the Pilot System to treat groundwater.

A.4.2.2 Performance to Treat Groundwater pH and Arsenic

A.4.2.2.1 General

The goals of the Pilot System are to decrease groundwater pH and arsenic concentrations. Exhibits A-13, A-14, A-15, and A-16 show 18 July 2003 field pH measured in samples collected within and along flowpaths perpendicular to the Pilot System. Where available, summer 2003 dissolved arsenic laboratory data are presented along the flowpaths in Exhibits A-14, A-15, and A-16.

A.4.2.2.2 Performance in Decreasing Groundwater pH

Exhibits A-14, A-15, and A-16 show that elevated pH groundwater (9.5 to 11.5) enters the treatment trench. In the trench and immediately downgradient of the trench, pH decreases to between approximately 5.9 and 6.0. Then pH generally increases as groundwater migrates farther downgradient of the trench. Exhibit A-17 shows a graph of pH as a function of time upgradient, within, and downgradient of the trench.

Exhibit A-17 demonstrates the ability of the trench to reduce pH from approximately 12 to 12.5 units to 6 to 7 pH units at the Site. Increase of the pH farther downgradient of the trench is consistent with the mixing of treated water with untreated water that bypassed the treatment trench. pH measurements collected in CMT-1 (a multi-depth groundwater monitoring

point) installed in August 2001 and deactivated in October 2002 when the Pilot System was installed, was used to represent groundwater pH levels before installation of the treatment trench.

A.4.2.2.3 Performance in Decreasing Arsenic in Groundwater

For the purposes of Pilot System performance evaluation, dissolved arsenic results were evaluated instead of total arsenic results since unfiltered samples (analyzed for total arsenic), especially those from temporary probe locations, contain particles from the soil matrix and may not be representative of the groundwater quality. Exhibits A-14, A-15, and A-16 display reported dissolved arsenic analytical data from recent samples collected along flow paths perpendicular to the Pilot System. Laboratory arsenic data from the 2003 work program samples show a trend similar to the pH data. Arsenic generally decreases in the Pilot System treatment trench and increases as distance from the trench increases.

Arsenic data are plotted as a function of time for the groundwater monitoring locations surrounding the Pilot System (PM-10, PM-11, PM-12, PM-13, PM-17, AVG-E, and AVG-W, and MW-9). The November 2001 groundwater sample from PM-10 was likely influenced by trenching, Pilot System installation, and elevated carbon dioxide flow rates that were used to test the Pilot System prior to start-up. However, subsequent lab data show a trend of arsenic decrease in the treatment trench and sustained low levels of arsenic in groundwater samples up to approximately 10 ft downgradient of the treatment trench. Exhibit A-18 shows time series dissolved arsenic laboratory data to illustrate the groundwater arsenic decrease since commencement of Pilot System treatment.

A.4.2.2.4 Conclusions Regarding Pilot System Efficacy in Decreasing Arsenic and pH Levels In Groundwater

Based on the data collected in summer 2003 and historical data collected since the start of operation of the Pilot System in November 2002, groundwater flowing into and through the Pilot System has the following characteristics:

• Based on field and analytical data, groundwater from upgradient of the Pilot System contains elevated pH levels and arsenic concentrations;

- Field and analytical data suggest that groundwater pH and arsenic concentrations are being decreased in the treatment trench and pH is generally meeting treatment goals;
- Decreases in groundwater pH result in decreased arsenic concentrations (as predicted by the treatability tests);
- In immediately downgradient monitoring locations, groundwater sample data indicate that they are largely composed of treated groundwater; and
- Farther downgradient sample data indicate that treated groundwater is mixing with untreated groundwater causing pH levels and arsenic concentrations to increase.

A.4.2.3 Groundwater Treatment Performance Indicator Evaluation

A.4.2.3.1 General

Arsenic and pH data are used to evaluate whether the Pilot System is accomplishing treatment goals. Dissolved inorganic carbon (DIC) and alkalinity data, which are discussed in this section, provide supplemental information on Pilot System performance, as explained below.

A.4.2.3.2 Groundwater Dissolved Inorganic Carbon (DIC) Evaluation

Once diffused into groundwater, carbon dioxide can be measured analytically in the form of DIC. Thus, the concentration of DIC in a given groundwater sample can be used to calculate the percent of that sample that is composed of groundwater that has been treated (i.e., subjected to carbon dioxide diffusion). Unlike pH, which is expressed on a nonlinear scale and may be affected by groundwater buffering, DIC is linearly related to the degree of treatment. Following a discussion of the value of DIC data in the FSTM, GeoSyntec submitted samples for DIC laboratory analysis during May 2003 groundwater monitoring and summer 2003 work.

The DIC concentration of a sample $[DIC]_S$ is related to the DIC concentration of treated water $[DIC]_T$ using Equation 2.

$$[DIC]_{S} = f_{T} [DIC]_{T} + f_{B} [DIC]_{B}$$

$$(2)$$

Equation 2 assumes that $[DIC]_S$ is equal to $[DIC]_T$ multiplied by the volume fraction of the sample represented by treated water, f_T , plus the background DIC concentration, $[DIC]_B$, multiplied by the volume fraction of the sample that is untreated water, f_B . Substituting $f_B = 1-f_T$ since the total volume fraction of a given sample of two waters, background and treated, is 1, the fraction of a sample that is treated water can be expressed in terms of f_T according to Equation 3.

$$f_{T} = \frac{[DIC]_{S} - [DIC]_{B}}{[DIC]_{T} - [DIC]_{B}}$$
(3)

Equations 2 and 3 can be used to calculate f_T if the background (i.e., upgradient) and treated (i.e., within the treatment trench) groundwater DIC data are available. The May 2003 sample data contains reported DIC concentrations from PM-10 (upgradient) and AVG-W and AVG-E (within the treatment trench). GeoSyntec calculated the mean concentration in the treatment zone, [DIC]_T, by averaging the DIC data reported for samples from AVG-E and AVG-W. For May 2003 samples results, the average treated water DIC concentration, [DIC]_T, was reported to be 335 mg/L and the PM-10 background DIC concentration, [DIC]_B, was 65 mg/L. These laboratory data were used, in conjunction with Equation 3 and downgradient DIC sample results, to calculate the percent of treated water (f_T multiplied by 100%) in samples collected from downgradient locations. Exhibit A-19 lists DIC concentrations for the May 2003 samples collected in the vicinity of the treatment trench along with the calculated percentage of treated groundwater using Equation 3. Negative values for f_T are interpreted as variations due to natural geochemical variability, or temporal variability. The laboratory DIC data are plotted in Exhibit A-20 as a function of distance from the treatment trench.

Based on experience and data variability, uncertainties of approximately 20% result from this calculation approach. Recognizing the inherent uncertainties, the May 2003 sample data indicate that:

- Samples from PM-11 and PM-12, which are just downgradient from the treatment zone, are treated groundwater; and
- PM-13 is mixing with untreated groundwater, likely due to its location at the edge of the Pilot System and the groundwater flow direction.

Based on the May 2003 evaluation and Exhibits A-19 and A-20, which display May 2003 laboratory DIC data from samples collected in the vicinity of the Pilot System, DIC can be used to evaluate the migration of treated groundwater over time. This approach could also be used as an indicator of the mechanical performance of the treatment trench. For example, a decrease in the fraction of treated groundwater in a given treatment zone location could be a diagnostic tool to detect leaks or other inefficiencies.

Laboratory DIC data for summer 2003 samples is plotted on Exhibits A-14, A-15, and A-16. DIC concentrations from samples collected downgradient of the Pilot System suggest that treated groundwater is migrating downgradient. The July DIC data for FSP-18 and FSP-20 groundwater samples indicate that they are mostly treated groundwater. FSP-19 data indicates that it is mostly untreated groundwater. (GeoSyntec collected these samples from direct push temporary groundwater sampling locations, and the data variability may be attributed to the nature of the unfiltered temporary location samples, which often contain soil particles. Additionally, GeoSyntec interrupted Pilot System operation for approximately three weeks in summer 2003 for maintenance, system diagnostics, and carbon dioxide refill.) Considering the factors that may have influenced the laboratory results, they demonstrate that the Pilot System is treating groundwater. Using the DIC calculation approach, downgradient well data are consistent with samples containing treated groundwater. As the distance from Pilot System increases, data suggest that treated groundwater mixes with untreated groundwater.

To further enhance use the DIC tracking approach outlined in this section, DIC data from a longer time interval are needed. By submitting samples for DIC analysis over several monitoring periods, historical trends can be evaluated for increases in DIC that would potentially indicate the arrival of treated groundwater at downgradient wells. This process was initiated in May 2003 during the initial quarterly monitoring event following DIC discussion in the FSTM, resulting in the evaluation in Exhibit A-19. The laboratory reports through November 2003 are presented in Attachment 1 and summarized in Exhibit A-6. Attachment 1 contains reports and results for November 2003 to present.

A.4.3 <u>Physical Performance Evaluation</u>

A.4.3.1 General

GeoSyntec conducted operation and maintenance as described in Section A.2.7. Based on observations during operation and maintenance procedures, the Pilot System is operating as designed. The system components required little maintenance following eight months of operation. Observations included:

- The carbon dioxide tank has been relatively trouble free;
- Refilling the carbon dioxide tank is a relatively straight-forward process (important at a remote site);
- Stainless steel flanges should be used at the junction where the tubing is connected at the terminus ends instead of the thermoplastic flanges for increased durability and should be replaced during a maintenance down-time period (Note: This was completed in November 2003);
- Gas flow site glass components are potential sources of leakage and are not needed for operation due to low amounts of condensation inside of the Pilot System carbon dioxide manifolds;
- The pH probes should be cleaned and calibrated (simple and straight-forward procedures) on a semiannual basis;
- Hydrogen sulfide, an odorous and potentially toxic compound, is produced as a by-product of treatment and was detected in the gas tubing; and
- One thorough yearly physical and visual evaluation is likely sufficient.

A.4.3.2 Permeable Treatment Wall Gas Purging Requirements Evaluation

GeoSyntec collected gas samples from each of the five operating Pilot System vertical pipes. The gas samples were collected from the terminus ends where purge valves are present. Exhibit A-8 tabulates the gas data. The laboratory reports are presented in Attachment 1. Based on the laboratory gas data and data from the carbon dioxide supplier, gas in the treatment system after approximately two weeks of operation can be characterized by:

- The supplier guarantees that the carbon dioxide is at least 99 volume percent pure upon delivery;
- Majority of the gas composition is carbon dioxide (96.6 to 97.5 volume percent)
- Trace concentrations of the sum of oxygen and argon (0.7 to 0.8 volume percent) and also nitrogen (1.9 to 2.6 volume percent); and
- Trace concentrations of hydrogen sulfide (non detect at 1 ppmv up to 3 ppmv).

The laboratory data show that the treatment gas, carbon dioxide, represents the major component of the gas. The laboratory data suggest that counterdiffusion, which occurs when dissolved gases in groundwater diffuse into the treatment tubing due to concentration gradients, may accumulate and that periodic purging may be advised. Reported oxygen and argon, and nitrogen concentrations could be partially attributable to dissolved atmospheric gases in groundwater (with the balance of atmospheric gases attributable to carbon dioxide supply impurities). The hydrogen sulfide concentrations are likely attributable to the hydrogen sulfide byproduct dissolved in the groundwater by treatment with the diffusion-based Pilot System. Based on these results, GeoSyntec recommends that time-series gas data be collected for the treatment gases to calculate the optimal purge interval, if a full-scale PTW is selected.

Hydrogen sulfide emissions from PTW are not expected to be a concern based on concentrations of metals levels in groundwater, the vapor pressure of hydrogen sulfide, and the diffusion coefficient of hydrogen sulfide in water. Although it may be created in the groundwater at very low concentrations during operation of the PTW, thermodynamics and chemical equilibria data indicate that hydrogen sulfide will not escape from groundwater and produce concentrations of concern at the ground surface. The mass transfer gradient needed for

hydrogen sulfide to escape solution and vent to the atmosphere is not present in the PTW since PTW operation does not involve physical processes such as bubbling.

A.4.4 <u>Pilot Treatment Downgradient Soil Effects</u>

The Pilot System treats groundwater with carbon dioxide to decrease pH and precipitate arsenic. To evaluate the potential for adverse effects of downgradient soil due to the Pilot System, GeoSyntec collected downgradient soil samples and analyzed for metals and treatment byproducts. Soil sample data are tabulated in Exhibit A-7. Attachment 1 contains the laboratory reports. Based on geochemical modeling of carbon dioxide treatment and treatability test data, laboratory samples were analyzed for:

- arsenic by EPA Method 7060 to evaluate the arsenic precipitation from treated groundwater;
- manganese by EPA Method 6010B to evaluate potential manganese precipitation from treated groundwater;
- iron by EPA Method 6010B to evaluate potential manganese precipitation from treated groundwater; and
- sulfide by using a LECO instrument to evaluate treated groundwater potential sulfide byproducts.

FSP-18 and FSP-19 are locations downgradient of the Pilot System (Exhibit A-12). The FSP-18 and FSP-19 soil samples, which were from below the groundwater surface at depths of 12 and 8 ft bgs, respectively, were reported to contain:

• arsenic concentrations of 3.00 mg/kg and 4.36 mg/kg, which are similar to the average background arsenic concentration in soil of 3.3 mg/kg reported in the RI Report [GeoSyntec, 2001 and below the Wasington Model Toxics Control Act (MTCA) Method A soil cleanup level of 20 mg/kg [WAC 173-340];

- manganese concentrations of 353 mg/kg and 419 mg/kg, which are below the MTCA Method B soil cleanup level of 2,240 mg/kg established for the protection of groundwater [WAC 173-340];
- iron concentrations of 18,900 mg/kg and 20,100 mg/kg, which are below the EPA Region 9 preliminary remediation goal (PRG) of 23,000 for iron in residential soil (MTCA cleanup levels for iron are not available) [USEPA, 2002];
- sulfide was not detected by the laboratory at or greater than 0.010 percent.

Based on the results discussed above, no significant negative effects from the Pilot System were observed in the soils.

A.4.5 <u>Pilot Permeable Treatment Wall Conclusions</u>

Based on the measurements, results, and observations discussed in this section, conclusions regarding Pilot System performance include:

- Data indicate that the Pilot System is lowering pH and arsenic levels in groundwater;
- DIC data suggest that treated groundwater has migrated downgradient from the Pilot System;
- As downgradient distance from the Pilot System treatment trench increases, groundwater is increasingly mixed with untreated Site groundwater; and
- DIC is a useful parameter to track groundwater treated with carbon dioxide. It could be used to provide a performance indicator if full-scale PTW is selected.

The installation, first 27 months of operation, and associated data provide valuable insight into the PTW. Based on the PTW insight provided by the Pilot System, Lehigh and

DRAFT

GeoSyntec have evaluated its feasibility to meet remedy requirements for inclusion as a remedy in the Revised dFSTR. The previous sections included a description of Pilot System operation from installation through November 2003. The next section, A.5, provides an update that covers Pilot System operation and performance from November 2003 to February 2005.

A.5. UPDATE ON PILOT SYSTEM OPERATION AND PERFORMANCE (NOVEMBER 2003 – FEBRUARY 2005)

A.5.1 <u>Introduction</u>

GeoSyntec prepared the following section to summarize Pilot System operational observations and Site environmental data collected from November 2003 through February 2005 (corresponding to the time between the first dFSTR submittal and the revised dFSTR submittal). This section augments the data set presented in Sections A.1 through A.4.

A.5.2 <u>Pilot System Operation</u>

As of 25 February 2005, the Pilot System has operated approximately 16,400 hours since start-up in November 2002. In addition to routine maintenance, the Pilot System required the following maintenance procedures since November 2003:

- Small amounts of condensation collected in the submerged silicon tubing. Air was injected individually into the tubing to purge the condensate and air-dry the tubing in March 2004.
- Certain connections between the silicon tubing and the stainless steel carbon dioxide distribution plate had minor leaks. Leaks were caused by the tubing detached from their barbed connections. The loose silicon tubing was reattached to the connections and the remaining connections were monitored in November 2003.
- The upper PVC flanges in the distribution system became brittle after extended use. The PVC flanges were replaced with stainless steel flanges in May 2004.
- The front portion of the building that houses the carbon dioxide tank and computer system caught fire on 1 January 2005. The fire was not in the vicinity of the tank. Treatment was not interrupted, but the computer and data collection systems were not operational for approximately one week while the building was cleared for re-entry and electrical service was restored.

GeoSyntec restored the data collection systems and re-synchronized the computer with the PLC.

A.5.3 <u>Pilot System pH and Arsenic Treatment Progress</u>

Exhibits A-21 and A-22 contain water level, pH, dissolved arsenic, total arsenic, and dissolved inorganic carbon (DIC) data collected since November 2002. Exhibits A-23, A-24, and A-25 show time-series pH, dissolved arsenic, and DIC data (respectively) from monitoring well samples in the vicinity of the Pilot System. Exhibits A-23 and A-24 augment Exhibits A-17 and A-18, including data collected since those two exhibits were originally submitted. The data and time-series plots indicate the following trends in treatment:

- The Pilot System reduces the pH and dissolved arsenic concentrations in the groundwater that intersects the treatment zone. The Pilot System has consistently treated water to neutral pH and non-detect arsenic concentrations in the treatment zone (AVG-E and AVG-W) and immediately downgradient (PM-11 and PM-12).
- Water levels have remained relatively consistent over time (within approximately 2 ft vertical variation).
- DIC remains a good treatment tracking parameter for the Pilot System. The DIC data indicate that treated groundwater continues to migrate downgradient but is overwhelmed by untreated water that migrates around and side-gradient to the treatment zone. PM-13 data suggest that the northerly groundwater flow component results in untreated water migrating obliquely around the southeastern edge of the Pilot System treatment zone.
- The Feasibility Study Technical Memorandum included a discussion of some anomalous data (April 2003 groundwater monitoring data) that were believed at the time to be erroneous due to a sampling error. Those data were omitted from Exhibits A-17 and A-18 when Appendix A was first submitted in November 2003. Since November 2003, the Pilot System has operated during two rainy seasons and two dry seasons and the resulting data suggests that the April 2003 data were not erroneous. Rather, seasonal stormwater and runoff

variations influenced the areas in the vicinity of the sampling locations. The previously omitted April 2003 data are included in Exhibits A-23 and A-24. Since November 2003, pH, dissolved arsenic, and DIC data fluctuate over time (see Exhibits A-23 through A-25). Fluctuations coincide with seasonal variations in precipitation. The data suggest that large amounts of precipitation recharging the shallow alluvial aquifer system result in a mounding around the treatment trench that "backs up" into PM-10 location.

A.5.4 <u>Summary</u>

The Pilot System continues to operate and effectively treat groundwater. Groundwater flow anomalies obscure the treatment effects downgradient and seasonal variations in stormwater infiltration cause a variable groundwater flow regime in the vicinity of the treatment zone trench. Thus, if the remedy selected for the Site includes a subsurface treatment zone, the design will accommodate stormwater infiltration so that it does not negatively effect treatment performance.

DRAFT

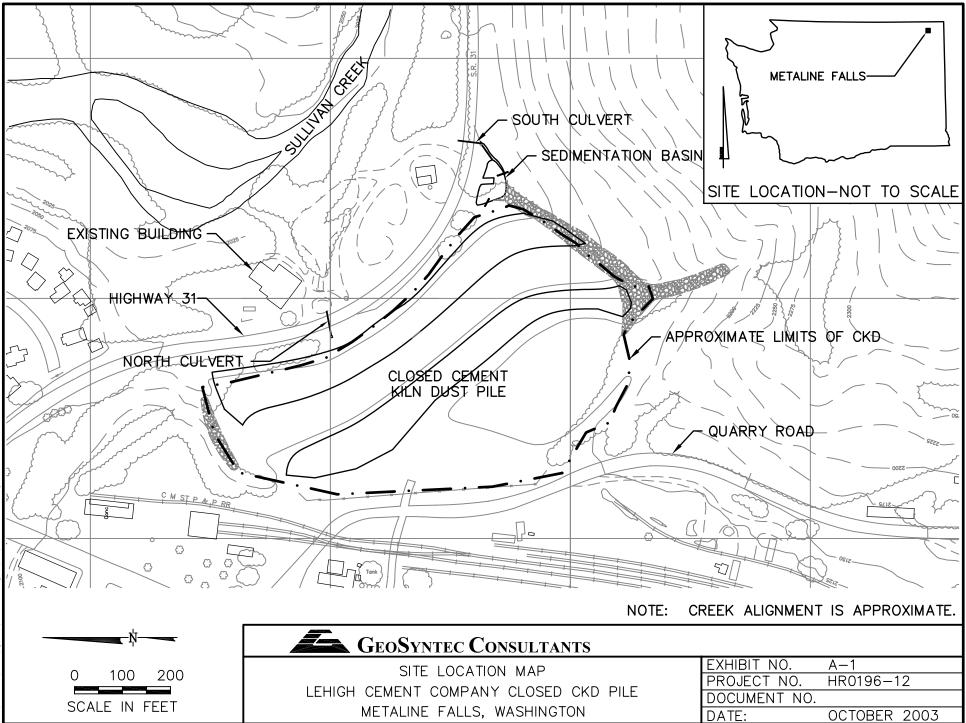
REFERENCES

- Dames & Moore, Inc., 5 October 1993, Addendum Preliminary Site Characterization Report, Lehigh Portland Cement Company, Metaline Falls, Washington
- GeoSyntec Consultants, 11 September 2000, Interim Progress Report No. 1, Subsurface Treatability Study, Lehigh Portland Cement Company, Metaline Falls, Washington.
- GeoSyntec Consultants, 5 October 2001, Draft Final Remedial Investigation Report, Lehigh Portland Cement Company, Metaline Falls, Washington.
- GeoSyntec Consultants, 3 April 2003a, Construction Report, Pilot Groundwater Treatment System, Lehigh Portland Cement Company, Metaline Falls, Washington.
- GeoSyntec Consultants, 22 May 2003b, Feasibility Study Technical Memorandum, Closed Cement Kiln Dust Pile, Lehigh Portland Cement Company, Metaline Falls, Washington.
- GeoSyntec Consultants, 30 July 2004, Correspondence from Eric Smalstig to Bill Fees containing various data, including raw pump test data.

Model Toxics Control Act (MTCA), Washington Administrative Code (WAC) 173-340.

- McGavran, P., 2001. "Literature Review of the Health Effects Associated with the Inhalation of Hydrogen Sulfide," Idaho Department of Environmental Quality, Boise, Idaho, June 19, 2001.
- United States Environmental Protection Agency (USEPA), 2002, Region 9 Preliminary Remediation Goals for Residential Soil.
- Washington State Department of Ecology (Ecology), Agreed Order No. DE99HS-E941 (AO), October 1999, with Lehigh Portland Cement Company.

GeoSyntec Consultants


EXHIBITS FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS INCLUDES UPDATE (2003 – CURRENT)

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA.DOC

3 MAR 05 / 10:00 AM

GeoSyntec Cons-

EXHIBIT A-2 2003 INVESTIGATION SUMMARY TABLE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

.

TASK	TASK INVESTIGATION	GOALS	SCOPE	CONCLUSIONS
-	Additional Lithology and Groundwater Data Collection	 Evaluate the continuity of the clay aquitard underlying the Site. Evaluate the soil layers above the clay aquitard for preferential pathways. Determine if one distinct gravel layer runs through the Site and conducts the majority of the affected groundwater. Evaluate the groundwater in new and existing monitoring locations. 	 Site-wide Geologic/hyrogeologic evaluation Topographic plotting Developed cross-sections to include: B-1, B-4, B-8, MW-1, MW-3, MW-4, MW-7, MW-8, MW-9, MW-11, MW-12 [D&M, 1992] PM-1, PM-3, PM-4, PM-5, PM-7, PM-11, PM-12, PM-13 [GeoSyntec, 2001-2002] FSB-01, FSB-03, FSB-04, FSP-2, FSP-9, FSP-11, FSP-16, PM-18, PM-19, PM-20 [installed July 2003] 	 Clay underlying the Site was encountered in boreholes across the Site. Various gradations and thicknesses of soil overly the clay aquitard, but major continuous channels are not apparent. A silty gravel layer was encountered in most borings, but it varies in thickness. Groundwater generally flows north-northeast at the Site.

HR0196-12/HR0196-14-04-06-EXA-2.doc

12:33 AM 11/7/2003

Page 1 of 5

Cons
yntec
GeoS

EXHIBIT A-2 (continued) 2003 INVESTIGATION SUMMARY TABLE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

TASK	INVESTIGATION	GOALS	SCOPE	CONCLUSIONS
2	Evaluation of the North Culvert to Act as a Potential Preferential Pathway	Investigate magnitude and chemistry of North Culvert flow.	 Upgradient Geoprobe locations FSP-6, FSP-7: Lithologic logging Groundwater field pH GW 1 analytes GW 1 analytes (FSP-6) Downgradient borehole FSB-01: Lithologic logging Downgradient Geoprobe locations FSP-21, FSP-22: Lithologic logging Groundwater field pH Groundwater field pH Groundwater field pH GW 1 analytes Lithologic logging Groundwater field pH Groundwater field pH Groundwater field pH GW 1 analytes Permanent monitoring locations FSP-23, FSP-26 Lithologic logging GW 1 analytes Permanent monitoring location PM-16: Lithologic logging Groundwater field pH GW 1 analytes Permanent monitoring location PM-16: Lithologic logging Groundwater field pH GW 1 analytes 	 Culvert is above the groundwater table under Highway 31. Culvert appeared to be intact and in good condition. Culvert is placed in bedding material that is similar to surrounding native material. Culvert and its surrounding material do not appear to be a preferential pathway for groundwater transport under Highway 31. Data indicate that the culvert is conveying surface water as intended, without leakage that is affecting downgradient groundwater.
m	Northern Area Groundwater Quality Evaluation	 Evaluate the affected groundwater plume in the property aquired by Lehigh in Summer 2003. 	 Boreholes FSB-04, FSB-05, FSB-06: Lithologic logging Geoprobe locations FSP-11, FSP-12, FSP-06) Geoprobe locations FSP-11, FSP-12, FSP-13, FSP-14: Lithologic logging Lithologic logging Croundwater field pH (FSP-11, FSP-12) Permanent monitoring locations PM-16, PM-18, PM-19, PM-20 Groundwater field pH GW 3 analytes 	• Based on laboratory data and groundwater level measurements, groundwater from the northern portion of the Site (PM-15, PM-16, PM-18, PM-19, PM-20) exhibits characteristics of CKD affected groundwater.

12:33 AM 11/7/2003

Page 2 of 5

HR0196-12/HR0196-14-04-06-EXA-2.doc

GeoSyntec Cons

EXHIBIT A-2 (continued) 2003 INVESTIGATION SUMMARY TABLE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

TASK	INVESTIGATION	GOALS	SCOPE	CONCLUSIONS
4	Evaluation of Carbon Dioxide Sparging as a Groundwater Treatment Option	 Evaluate the operation and performance of the pilot carbon dioxide sparge points. 	 Configure pilot PTW to distribute all carbon dioxide to the sparge points Initiate pilot carbon dioxide sparge point operation Test operation at various carbon dioxide flow rates Observe the sparge point operation in the field 	 Carbon dioxide was escaping to the atmosphere before being consumed. A hydrogen sulfide odor, likely attributable to hydrogen sulfide, was observed during sparging.
S.	Extraction Wells/Capture Zone Evaluation	 Evaluate groundwater flow properties at PM-16. 	• Pumping tests performed at PM-16	• Extraction wells could likely maintain sufficient extraction rates to capture affected groundwater.
v	Groundwater Monitoring	 Evaluate groundwater conditions across the Site, including at monitoring locations installed in Summer 2003. 	 New monitoring locations PM-15, PM-16, PM-18, PM-19, PM-20 : - Future routine monitoring - GW 3 analytes Site groundwater monitoring wells and PM-1 through 21 samples were collected during August and September 2003 - GW 3 analytes 	 Initial data from monitoring locations installed in July 2003 indicates groundwater flowing in a north- northeasterly direction. Continued collection of samples from various locations is planned to evaluate pilot PTW performance and groundwater effects.

12:33 AM 11/7/2003

Page 3 of 5

GeoSyntec Consi

EXHIBIT A-2 (continued) 2003 INVESTIGATION SUMMARY TABLE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

TASK	INVESTIGATION	GOALS	SCOPE	CONCLUSIONS
	Updated Evaluations of the Pilot PTW	 Evaluate pilot PTW for defects and needed improvements. Evaluate pilot treatment for overall initial performance. 	 Evaluated system during site visit Removed 10 soldered gas site glass joints Installed new monitoring equipment Power conditioner pH probe reference electrodes (PM-10, PM-12, MW-9) 	 Based on the first 11 months of operation, the pilot PTW requires little maintenance. SCADA data fluctuations are reducible. Removal of soldered joints in the distribution manifold make the system less susceptible to leaks.
×	Pilot PTW Performance Evaluation Update	 Evaluate pilot PTW performance to treat groundwater 	 Upgradient Geoprobe locations FSP-15, FSP-16: Lithologic logging Groundwater field pH GW 2 analytes Downgradient Geoprobe locations FSP-17, FSP-18, FSP-19, FSP-20 Lithologic logging GW 2 analytes GW 2 analytes 	 The pilot PTW treats groundwater in the treatment trench. Treated is traveling to and beyond the PM-11, PM-12, and PM-13 monitoring locations. Treated groundwater is mixing with untreated groundwater farther downgradient of the trench.
0	Evaluation of the Effects of the Pilot PTW on Surrounding Soils	 Determine if downgradient soil is being affected by the treated groundwater. 	 Geoprobe FSP-18, FSP-19 soil samples: SOIL sanalytes 	• Data indicates that treated groundwater is not depositing substantial amounts of metals or sulfides downgradient of the pilot PTW.

12:33 AM 11/7/2003

Page 4 of 5

GeoSyntec Cont

EXHIBIT A-2 (continued) 2003 INVESTIGATION SUMMARY TABLE CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

TASK	TASK INVESTIGATION	GOALS	SCOPE	CONCLUSIONS
10	Purge Interval Operating Parameter Testing and Analysis	 Evaluate pilot PTW accumulated gas composition. Based on smell eminating from the carbon dioxide sparge points, test gas for hydrogen sulfide related to health. 	 Gas samples PIPE AT201-8, PIPE AT203-10, PIPE AT204-12, PIPE AT205-14, PIPE AT206-16 analyzed for: Oxygen + argon [ASTM D-1946] Oxygen + argon [ASTM D-1946] Nitrogen [ASTM D-1946] Methane [ASTM D-1946] Carbon dioxide [ASTM D-1946] Hydrogen sulfide [GC/FPD] 	 Based on laboratory data, gases other than carbon dioxide are accumulating in the pilot PTW. For long-term operation, purge intervals can be evaluating using multiple gas composition data points over time. If the PTW is chosen, data will be collected to calculate if purging is necessary, and how often.

NOTES

GW 1 includes:

- Metals [EPA 200.7]

- Iron, Manganese, Arsenic

- Metals and silicon [EPA 200.7]

GW 3 includes:

- Metals [EPA 200.7]

GW 2 includes

– pH [EPA 150.1] – E_h [EPA 2580]

- pH [EPA 150.1] - E_h [EPA 2580]

- Alkalinity [EPA 2320]

- Alkalinity [EPA 2320]

- DIC [EPA 415.1] - SEC [EPA 120.1]

DIC [EPA 415.1]
 SEC [EPA 120.1]

SOIL includes:

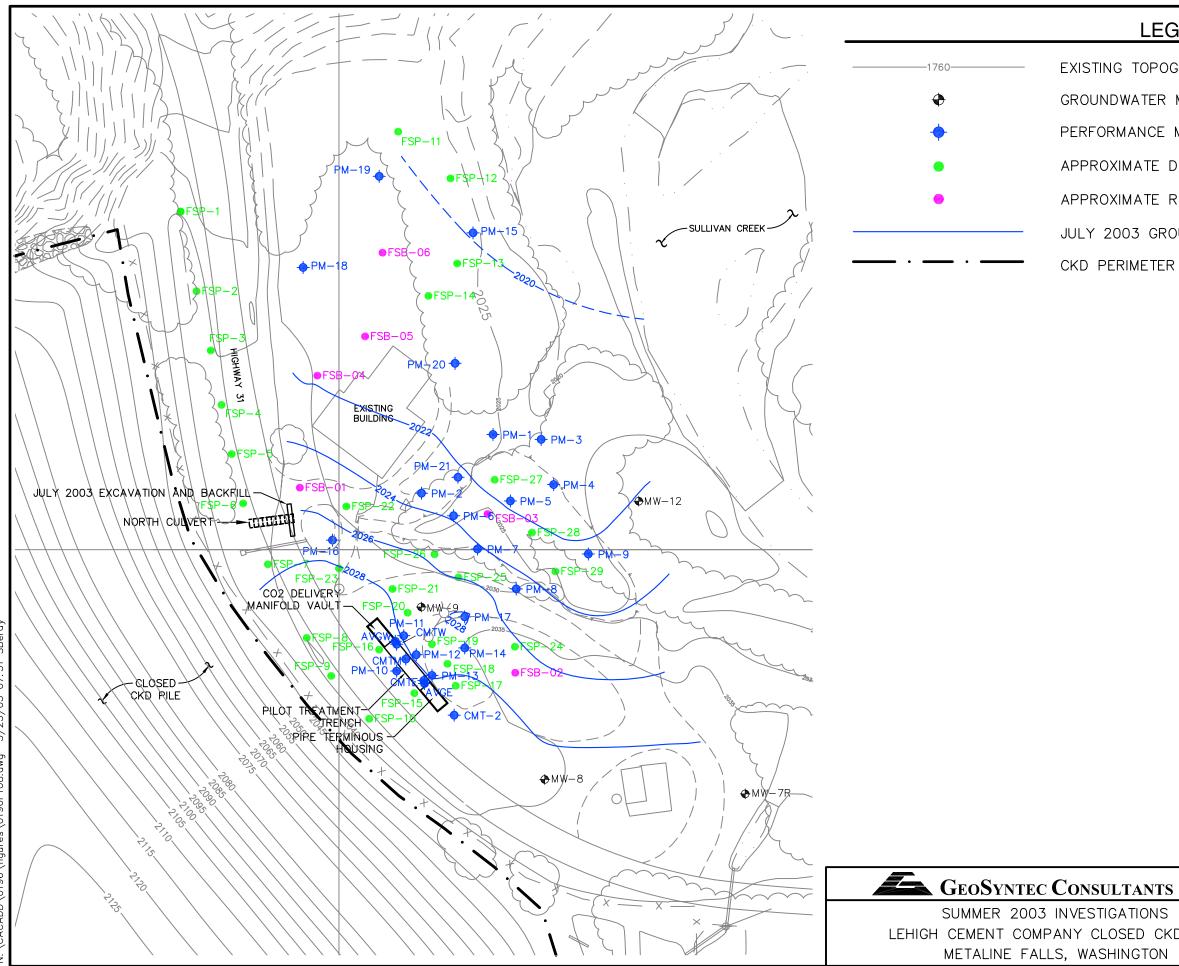
Arsenic [EPA 7060]Sulfide [LECO]

[EPA 6010B]

- pH [EPA 150.1]
 - E_h [EPA 2580]
- Alkalinity [EPA 2320]
 - DIC [EPA 415.1]
- SEC [EPA 120.1]
- Sulfide [EPA 376.1]
- Major cations and amons [EPA

- Major cations and anions [EPA 200.7, 300.0]

Major cations and anions [EPA 200.7, 300.0]


- Sulfide [EPA 376.1]

- Sulfide [EPA 376.1]

- 200.7, 300.0]
 - Ammonia [EPA 350.3]
 - Nitrite [EPA 300.0]

GW – groundwater

DIC – Discuttomater SEC – Specific electrical conductance DIC – Dissolved inorganic carbon LECO – LECO Corporation analyzer

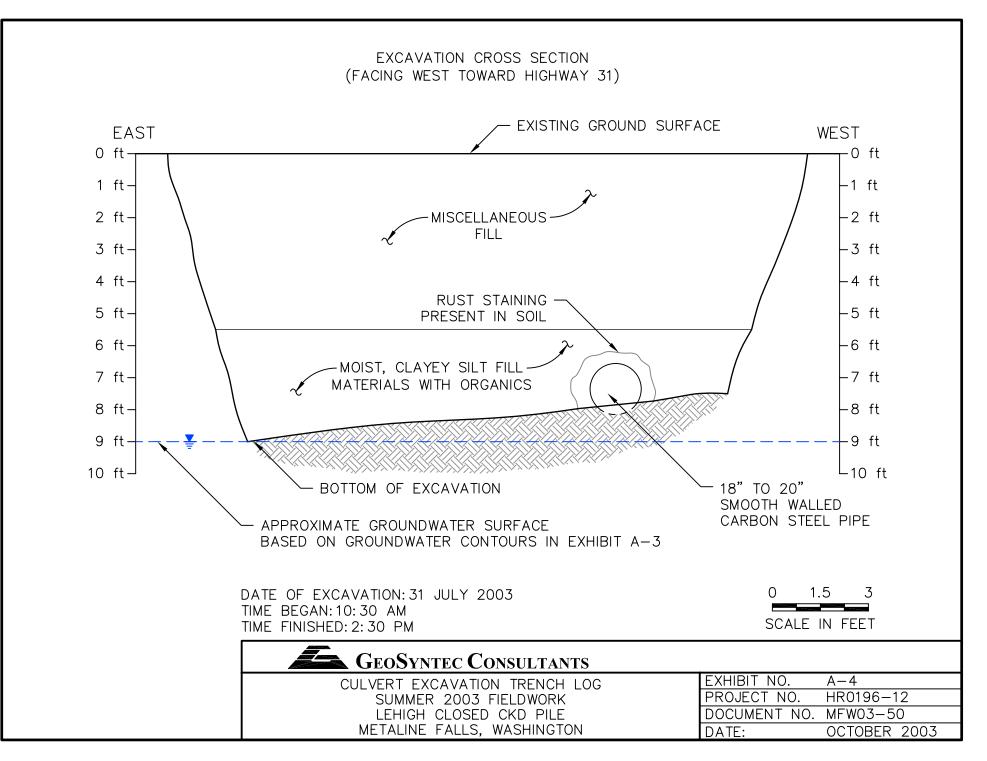
LEGEND

EXISTING TOPOGRAPHY (FEET ABOVE M.S.L.)

GROUNDWATER MONITORING WELL

PERFORMANCE MONITORING LOCATION

APPROXIMATE DIRECT PUSH BORING LOCATIONS (JULY 2003)


APPROXIMATE ROTASONIC BORING LOCATIONS (JULY 2003)

JULY 2003 GROUNDWATER CONTOUR LINE (FEET ABOVE M.S.L) CKD PERIMETER

80 40 SCALE IN FEET

NTS		
NS	EXHIBIT NO. PROJECT NO.	A-3 HR0196-12
CKD PILE	DOCUMENT NO.	
ON	DATE:	OCTOBER 2003

EXHIBIT A-5 JULY 2003 FIELD GROUNDWATER pH AND ELEVATION MEASUREMENTS CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

[pH DATA	ELEVA	TION DATA
				ELEVATION
LOCATION	DATE	рН ⁽¹⁾	DATE	(FT MSL)
		10NITORING WELL NET		
MW-7	7/18/2003	7.75	7/31/2003	2029.58
MW-8	7/18/2003	7.75	7/31/2003	2028.85
MW-9	7/18/2003	12.6	7/31/2003	2027.87
MW-11	7/18/2003	NM	7/31/2003	NM
MW-12	7/18/2003	8.5	7/31/2003	2022.05
		VATER MONITORING LO		
PM-1	7/18/2003	12.09	7/31/2003	2021.31
PM-2	7/18/2003	8.07	7/31/2003	2023.25
PM-3	7/18/2003	8.1	7/31/2003	2021.02
PM-4	7/18/2003	10.29	7/31/2003	2021.26
PM-5	7/18/2003	9.77	7/31/2003	2021.67
PM-6	7/18/2003	12.25	7/31/2003	2023.9
PM-7	7/18/2003	7.25	7/31/2003	2024.13
PM-8	7/18/2003	12.01	7/31/2003	2024.68
PM-9	7/18/2003	8.95	7/31/2003	2022.04
PM-10	7/18/2003	11.21	7/31/2003	2028.18
PM-11	7/18/2003	6.62	7/31/2003	2027.94
PM-12	7/18/2003	6.17	7/31/2003	2027.95
PM-13	7/18/2003	8.36	7/31/2003	2027.96
PM-14	7/18/2003	9.34	7/31/2003	2027.86
PM-15	7/18/2003	12.62	7/31/2003	2019.99
PM-16	7/18/2003	12.54	7/31/2003	2026.59
PM-17	7/18/2003	11.69	7/31/2003	2028.36
PM-18	7/18/2003	12.14	7/31/2003	2021.14
PM-19	7/18/2003	12.04	7/31/2003	2020.18
PM-20	7/18/2003	8.35	7/31/2003	2020.46
PM-21	7/18/2003	11.34	7/31/2003	2022.18
CMT-2-4'	7/18/2003	NM	7/31/2003	NM
CMT-2-8'	7/18/2003	NM	7/31/2003	NM
CMT-2-12'	7/18/2003	NM	7/31/2003	NM
CMT-2-16'	7/18/2003	NM	7/31/2003	NM
CMT-2-20'	7/18/2003	NM	7/31/2003	NM
		TRENCH MONITORING		
WCMT-16'	7/18/2003	6.02	7/31/2003	NM
WCMT-13'	7/18/2003	6.09	7/31/2003	NM
WCMT-10'	7/18/2003	5.79	7/31/2003	NM
WCMT-7'	7/18/2003	5.92	7/31/2003	NM
MCMT-16'	7/18/2003	5.96	7/31/2003	NM
MCMT-13'	7/18/2003	6.02	7/31/2003	NM
MCMT-10'	7/18/2003	5.91	7/31/2003	NM
MCMT-7'	7/18/2003	5.84	7/31/2003	NM
ECMT-16'	7/18/2003	6.02	7/31/2003	NM
ECMT-13'	7/18/2003	5.79	7/31/2003	NM
ECMT-10'	7/18/2003	5.83	7/31/2003	NM
ECMT-7'	7/18/2003	5.74	7/31/2003	NM
AVG-W	7/18/2003	6.06	7/31/2003	2028.1
AVG-E	7/18/2003	5.91	7/31/2003	2028.09

EXHIBIT A-5 (continued) JULY 2003 FIELD GROUNDWATER pH AND ELEVATION MEASUREMENTS CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

		рН DATA	ELEVA	TION DATA
				ELEVATION
LOCATION	DATE	рН ⁽¹⁾	DATE	(FT MSL)
	SUMME	R 2003 TEMPORARY LC	DCATIONS	
FSP-03	7/18/2003	12	7/31/2003	NM
FSP-05	7/18/2003	12.5	7/31/2003	ŃМ
FSP-06	7/18/2003	12.5	7/31/2003	NM
FSP-07	7/18/2003	13	7/31/2003	NM
FSP-08	7/18/2003	7.5	7/31/2003	NM
FSP-10	7/18/2003	8.75	7/31/2003	NM
FSP-12	7/18/2003	11	7/31/2003	NM
FSP-15	7/18/2003	9.5	7/31/2003	NM
FSP-16	7/18/2003	11.5	7/31/2003	NM
FSP-17	7/18/2003	7	7/31/2003	NM
FSP-18	7/18/2003	7.5	7/31/2003	NM
FSP-19	7/18/2003	7.5	7/31/2003	NM
FSP-20	7/18/2003	9.5	7/31/2003	NM
FSP-21	7/18/2003	10.05	7/31/2003	2027.9
FSP-22	7/18/2003	11.8	7/31/2003	NM
FSP-23	7/18/2003	12.03	7/31/2003	2028.09
FSP-24	7/18/2003	7.41	7/31/2003	NM
FSP-25	7/18/2003	12	7/31/2003	NM
FSP-26	7/18/2003	11.53	7/31/2003	NM
FSP-27	7/18/2003	10.2	7/31/2003	NM
FSP-28	7/18/2003	10.48	7/31/2003	NM
FSP-29	7/18/2003	8.36	7/31/2003	NM
FSB-04	7/18/2003	8.03	7/31/2003	2021.69
FSB-06	7/18/2003	9.78	7/31/2003	2020.16

NOTES

FT MSL - Feet above Mean Sea Level (NAVD 88)

NM - Not Measured

(1) Field pH measured with either a Myron 6P Ultrameter or pH paper.

EXHIBIT A-6 SELECT GROUNDWATER ANALYTICAL DATA SUMMARY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
			MAY 2003 SAMPLES	5	
MW-09	05/12/03	12.30	0.080	0.090	94.4
MW-09	05/12/03	12.32	0.112	0.108	NA
PM-02	05/12/03	8.33	0.007	0.007	75.2
PM-06	05/12/03	12.27	0.310	0.352	150.0
PM-07	05/12/03	7.01	< 0.006	0.015	324.0
PM-08	05/12/03	10.30	0.017	0.020	112.0
PM-10	05/12/03	10.25	0.044	0.048	65.5
PM-11	05/12/03	6.71	0.003	0.005	280.0
PM-12	05/12/03	6.40	0.007	0.014	378.0
PM-13	05/12/03	8.43	< 0.003	< 0.003	76.1
PM-14	05/12/03	9.73	0.006	0.005	66.4
AVG-E	05/12/03	5.66	< 0.003	< 0.003	364.0
AVG-W	05/12/03	5.72	< 0.003	< 0.003	308.0
			JULY 2003 SAMPLES	5	
FSP-06	07/15/03	12.10	NA	0.040	69.8
FSP-07	07/15/03	12.40	NA	0.184	80.8
FSP-15	07/16/03	10.10	NA	0.028	17.0
FSP-16	07/17/03	9.98	NA	0.120	66.3
FSP-17	07/16/03	8.56	NA	0.013	25.4
FSP-18	07/17/03	7.15	NA	0.028	140.0
FSP-19	07/16/03	8.42	NA	0.120	50.4
FSP-20	07/17/03	9.70	NA	< 1	178.0
FSP-23	07/16/03	12.00	NA	< 1	56.1
FSP-23	07/17/03	10.10	NA	0.041	46.1
FSP-26	07/16/03	11.90	NA	0.160	39.3
PM-15	07/31/03	12.10	NA	0.180	70.9
PM-16	07/19/03	12.03	NA	0.139	46.7
PM-16	07/31/03	12.00	NA	0.185	95.3
PM-17	07/31/03	11.40	NA	0.051	25.9
PM-18	07/31/03	12.10	NA	0.181	114.0
PM-19	07/31/03	11.70	NA	0.221	129.0
PM-20	07/31/03	8.16	NA	< 0.01	54.6
PM-21	07/31/03	10.30	NA	0.065	19.9

EXHIBIT A-6 (continued) SELECT GROUNDWATER ANALYTICAL DATA SUMMARY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
		AUGUST	- SEPTEMBER 2003	SAMPLES	
MW-07	08/28/03	7.45	< 0.01	< 0.01	16.2
MW-08	08/28/03	7.49	< 0.01	< 0.01	61.8
MW-09	08/28/03	12.20	0.133	0.192	26.8
MW-11	08/28/03	7.45	< 0.01	< 0.01	48.9
MW-12	08/28/03	8.11	0.010	< 0.01	43.3
MW-09	08/28/03	12.20	0.132	0.179	51.8
PM-16	08/28/03	12.46	NA	0.160	83.6
PM-01	09/04/03	12.10	0.215	0.212	173.0
PM-02	09/04/03	7.82	< 0.01	0.014	36.3
PM-03	09/04/03	7.93	< 0.01	< 0.01	347.0
PM-04	09/04/03	11.80	0.096	0.091	67.6
PM-05	09/04/03	10.30	0.036	0.037	42.9
PM-06	09/04/03	11.80	0.366	0.350	71.3
PM-07	09/04/03	7.62	< 0.01	0.024	102.0
PM-18	09/04/03	12.00	0.271	0.278	43.5
PM-19	09/04/03	12.00	0.208	0.224	87.7
PM-20	09/04/03	8.28	< 0.01	< 0.01	106.0
PM-21	09/04/03	9.92	0.038	0.048	18.6
PM-08	09/05/03	11.80	0.072	0.085	51.7
PM-09	09/05/03	8.62	< 0.01	0.018	36.4
PM-10	09/05/03	12.02	0.188	0.177	43.5
PM-11	09/05/03	7.44	< 0.01	0.012	111.0
PM-12	09/05/03	6.96	< 0.01	0.033	134.0
PM-13	09/05/03	9.53	< 0.01	< 0.01	42.3
PM-14	09/05/03	9.08	< 0.01	< 0.01	21.9
PM-15	09/05/03	12.30	0.175	0.152	55.2
PM-17	09/05/03	11.98	0.065	0.058	21.8

NOTES

DIC - Dissolved Inorganic Carbon mg/L - milligrams per liter NA - Not Analyzed

EXHIBIT A-7 SOIL ANALYTICAL LABORATORY DATA SUMMARY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

LOCATION	DATE	ARSENIC (mg/kg)	MANGANESE (mg/kg)	IRON (mg/kg)	SULFIDE (%)
FSP-06-05	07/15/03	4.46	470	18,900	< 0.010
FSP-18-12	07/17/03	3.00	353	17,800	< 0.010
FSP-19-8	07/17/03	4.36	419	20,100	< 0.010

NOTES

mg/kg - milligrams per kilogram

EXHIBIT A-8 GAS ANALYTICAL LABORATORY DATA SUMMARY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

LOCATION	DATE	CARBON DIOXIDE (%)	NITROGEN (%)	OXYGEN + ARGON (%)	METHANE (%)	HYDROGEN SULFIDE (ppmv)
PIPE AT201-8	08/01/03	97.3	2.0	0.7	< 0.1	2
PIPE AT203-10	08/01/03	96.6	2.6	0.8	< 0.1	2
PIPE AT204-12	08/01/03	97.2	2.1	0.7	< 0.1	
PIPE AT205-14	08/01/03	97.5	1.9	0.7	< 0.1	
PIPE AT206-16	08/01/03	97.3	2.0	0.7	< 0.1	< 1

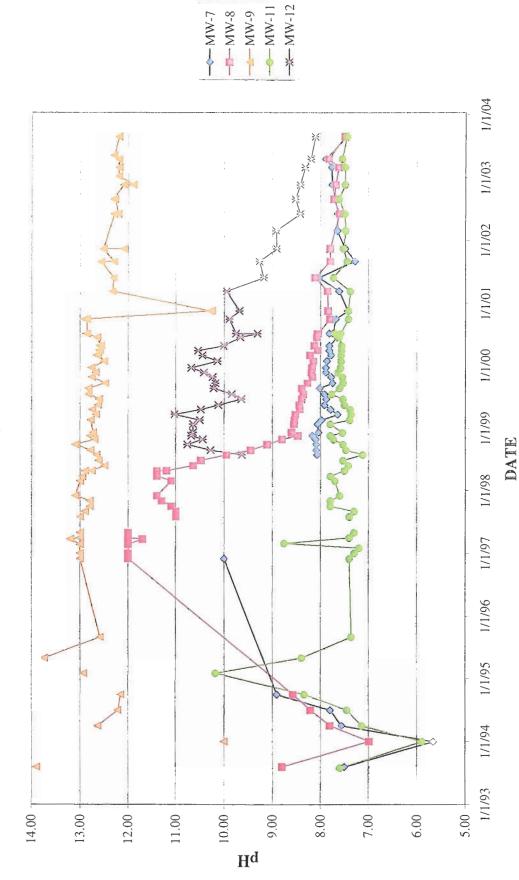
NOTES

ppmv - parts per billion, by volume

EXHIBIT A-9 PILOT PERMEABLE TREATMENT WALL (PTW) SUMMARY INSTALLATION MILESTONES CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

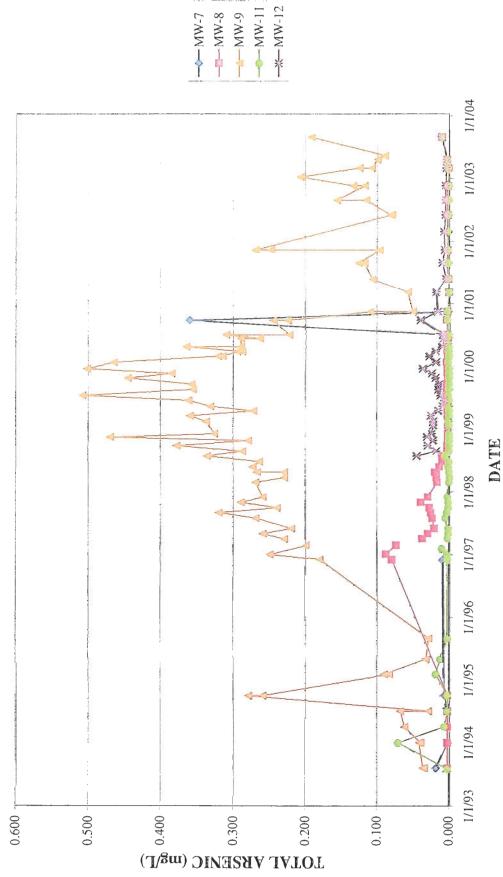
DATE	MILESTONE
13 June 2000	Begin negotiations to purchase Grant and WDOT parcels ⁽¹⁾
January 2000	Begin Developing Pilot PTW Concept
January 2001	Present Pilot PTW to Ecology
15 July 2001	Pilot Treatment Wall Designed and Ready to Implement
26 August 2002	WDOT Approves Installation of Pilot PTW
7 October 2002	Pilot PTW Installation Commences
5 November 2002	Carbon Dioxide Tank Is Filled for the First Time
7 November 2002	Initial Start-Up of the Pilot PTW
7 November 2002	Pilot PTW Start-up Commissioning Period Commences
11 November 2002	PC and PLC Connected to Pilot PTW
14 November 2002	Start-Up Commissioning Complete, Begin Commissioning Period
15 November 2002	Pilot PTW System Installation Complete
18 November 2002	First Remote System Communication/Operation
14 December 2002	Treatment System Commissioning Complete, Extended Operation Begins
9 January 2003	GeoSyntec On-Site to Evaluate the Pilot PTW
20 March 2003	Thorough Pilot PTW Physical Evaluation
3 April 2003	Construction Report Submitted to Ecology
16 July 2003	Carbon Dioxide Tank Is Refilled
July 2003	Thorough Pilot PTW Physical Evaluation and Performance Evaluation
2 October 2003	Mechanical Contractor On-Site to Pressure Test Piping and Tubing.
	 During the evaluation, a leaking pipe joint was located and tightened.
	 Additional gas vents were also installed in the pilot PTW treatment units.
14 October 2003	Carbon Dioxide Tank Manufacturer Personnel On-Site to Evaluate the Tank Condition.
	 During the evaluation, temperature control system components were allocated more electrical current to enhance operation.
Present	Pilot PTW Continues to Operate

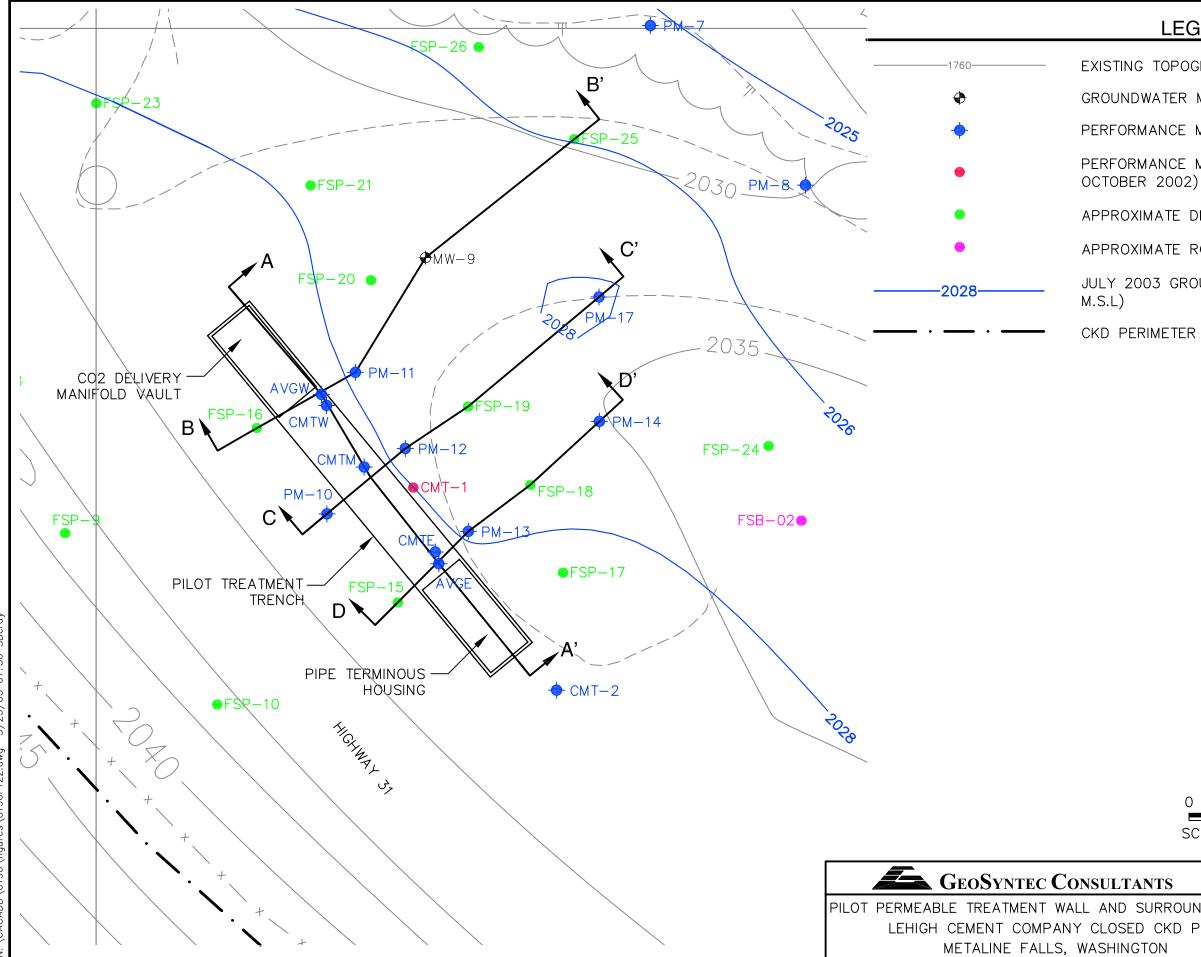
NOTES


WDOT Washington Department of Transportation

Ecology Washington Department of Ecology

(1) Data showed that affected groundwater existed on the Grant and WDOT parcels


GeoSyntee Consultants


EXHIBIT A-10 HISTORICAL SITE MONITORING WELL pH DATA CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

GeoSyntec Consultants

SBerdy 07:56 5/23/05 es\0196F122. CADD\0196\figu

LEGEND

EXISTING TOPOGRAPHY (FEET ABOVE M.S.L.)

GROUNDWATER MONITORING WELL

PERFORMANCE MONITORING LOCATION

PERFORMANCE MONITORING LOCATION (DESTORYED IN

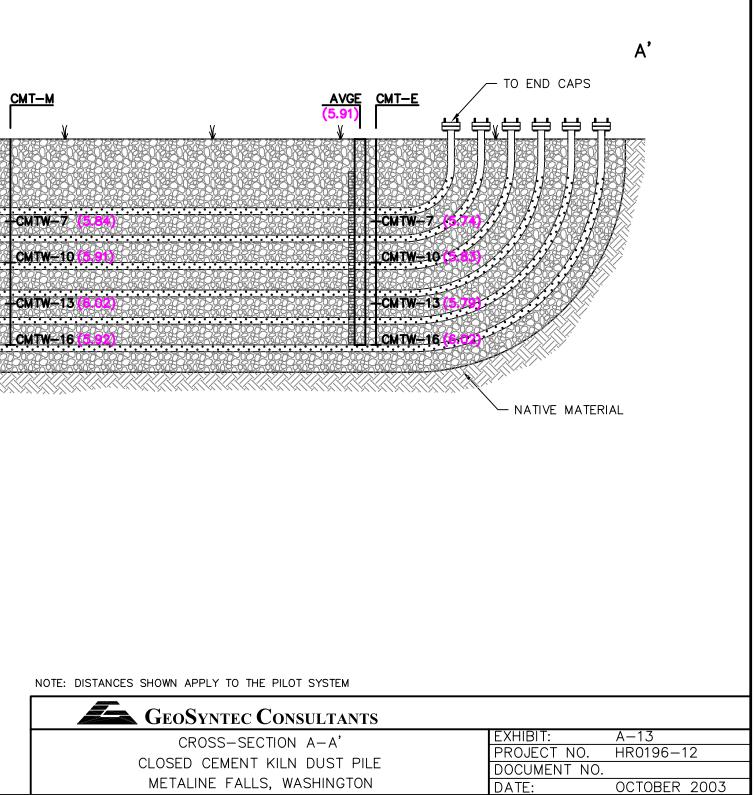
APPROXIMATE DIRECT PUSH BORING LOCATIONS (JULY 2003)

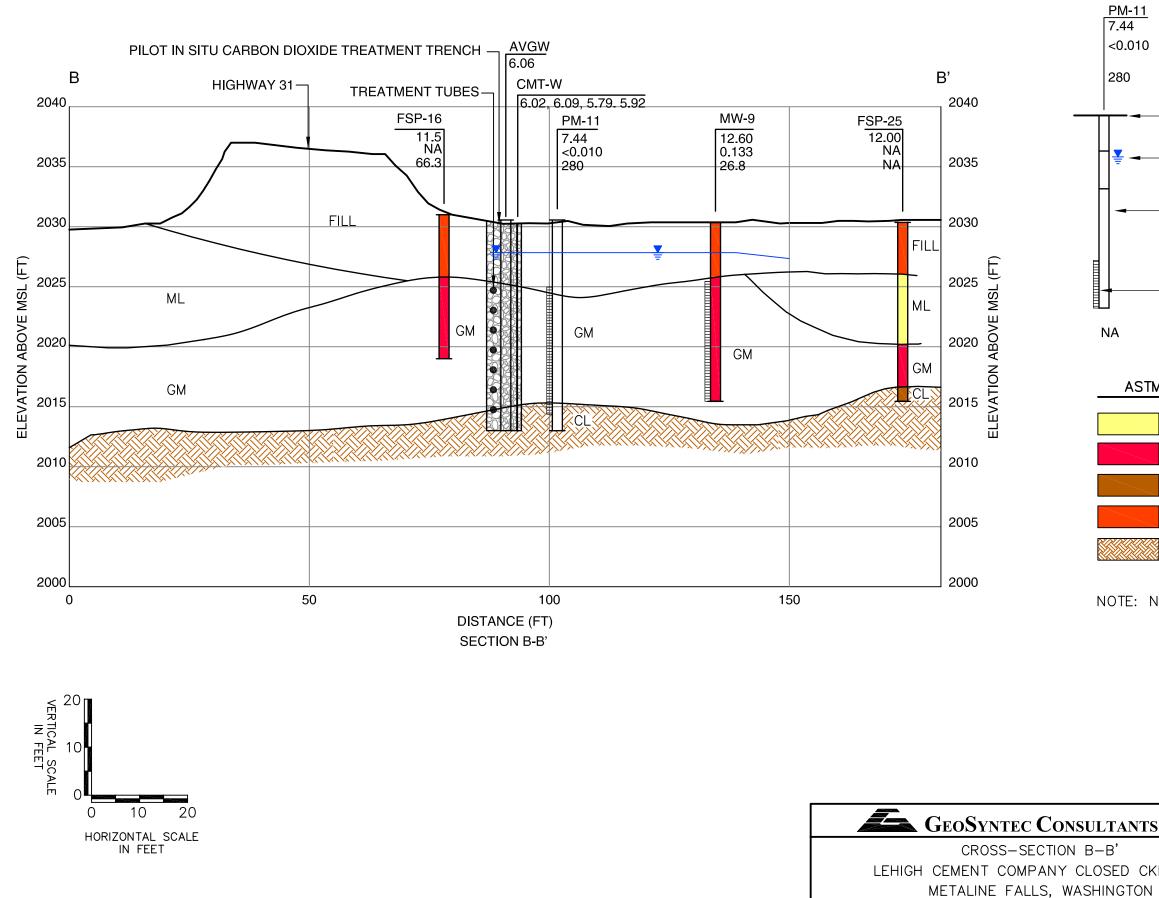
APPROXIMATE ROTASONIC BORING LOCATIONS (JULY 2003)

JULY 2003 GROUNDWATER CONTOUR LINE (FEET ABOVE

20 10 SCALE IN FEET

TS			
	ARFA	EXHIBIT NO.	A-12
	J ANLA	PROJECT NO.	HR0196-12
CKD PILE		DOCUMENT NO.	
NC		DATE:	OCTOBER 2003



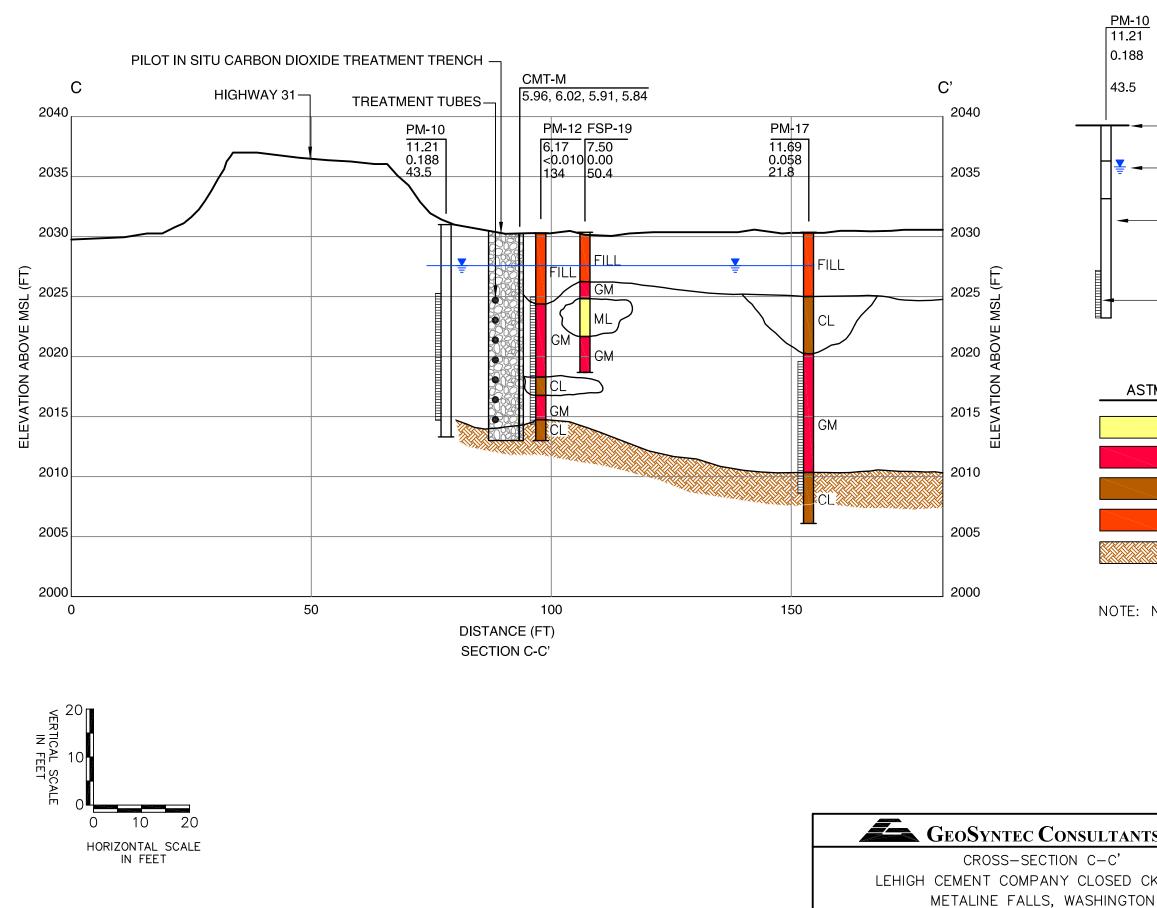

LEGEND	
--------	--

AVGW TRENCH GROUNDWATER MONITORING LOCATION

CMT-W MULTI-DEPTH TRENCH GROUNDWATER MONITORING LOCATION

(6.02) FIELD pH MEASUREMENT (18 JULY 2003) NOTE: DISTANCES SHOWN APPLY TO THE PILOT SYSTEM

N:\CACADD\0196\figures\0196F123.dwg 5/23/05 07:59 SBerd


EXPLANATION

11 - 10 -	 BOREHOLE OR WELL NAME FIELD pH MEASUREMENT (JULY 2003) LAB DISSOLVED ARSENIC (mg/L) RESULT (AUG-SEPT 2003) LAB DIC (mg/L) RESULT (JULY-SEPT 2003) EXISTING GROUND
•	STATIC GROUNDWATER LEVEL (31 JULY 2003)
	BOREHOLE LOCATION WITH PREDOMINATE LITHOLOGIC DESCRIPTION (ASTM CLASSIFICATIONS OF LITHOLOGY)
	SCREENED INTERVAL (IF APPLICABLE) NOT ANALYZED
STM	CLASSIFICATIONS OF LITHOLOGY
	ML – GRAVELLY SILT
	GM - WELL-GRADED SILTY GRAVEL
/	CL – SILTY CLAY
/	FILL – ARTIFICIAL FILL

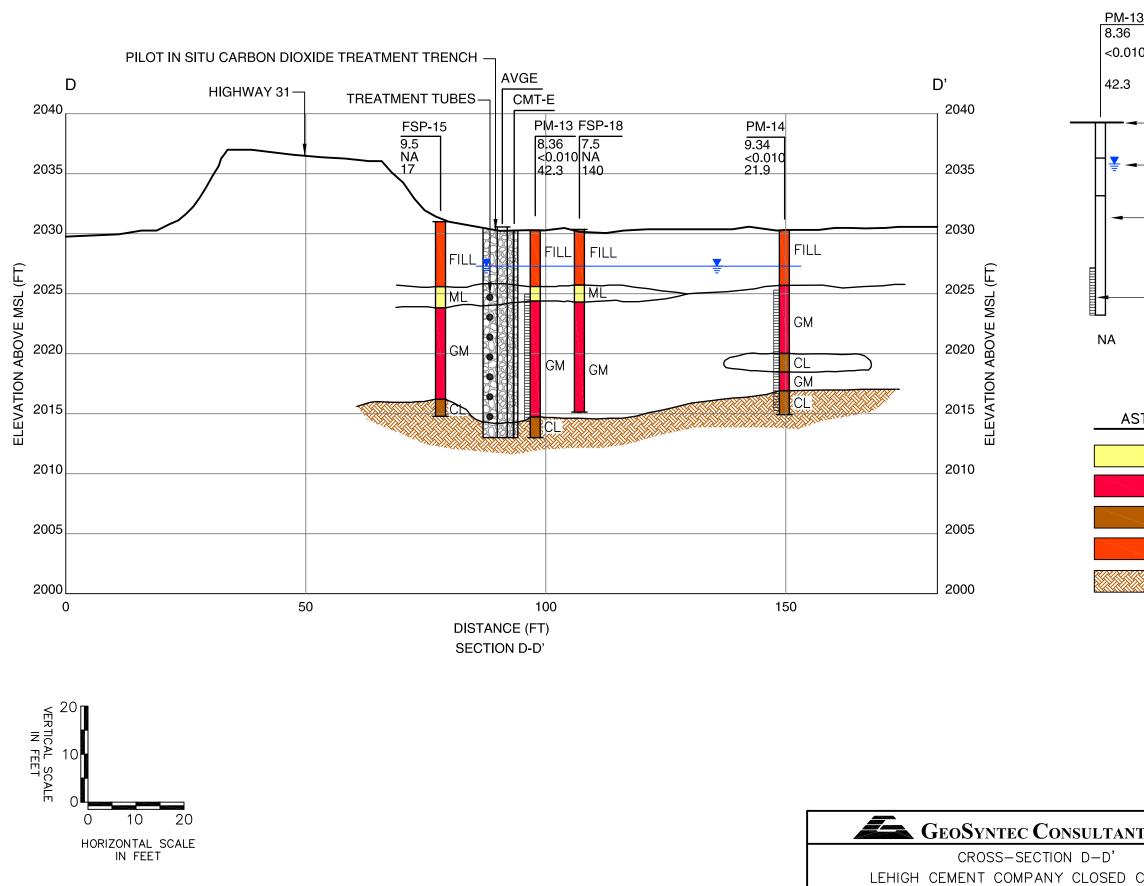
CONFINING SILTY CLAY LAYER

NOTE: NO LITHOLOGIC LOGGING OF PM-11 BOREHOLE

TS		
	EXHIBIT NO.	A-14
	PROJECT NO.	HR0196-12
CKD PILE	DOCUMENT NO.	
NC	DATE:	OCTOBER 2003

N: \CACADD \0196 \figures \0196F123.dwg 5/23/05 08:00 SBerdy

EXPLANATION


<u>10</u> 1 8	<	BOREHOLE OR WELL NAME FIELD pH MEASUREMENT (JULY 2003) LAB DISSOLVED ARSENIC (mg/L) RESULT (AUG-SEPT 2003) LAB DIC (mg/L) RESULT (JULY-SEPT 2003)
		(JULY-SEPT 2003)
-		FXISTING GROUND
-		STATIC GROUNDWATER LEVEL (31 JULY 2003)
		BOREHOLE LOCATION WITH PREDOMINATE LITHOLOGIC DESCRIPTION (ASTM CLASSIFICATIONS OF LITHOLOGY)
		SCREENED INTERVAL (IF APPLICABLE)

ASTM CLASSIFICATIONS OF LITHOLOGY

- ML GRAVELLY SILT
- GM WELL-GRADED SILTY GRAVEL
- CL SILTY CLAY
- FILL ARTIFICIAL FILL
- CONFINING SILTY CLAY LAYER

NOTE: NO LITHOLOGIC LOGGING OF PM-10 BOREHOLE

TS		
	EXHIBIT NO.	A-15
	PROJECT NO.	HR0196-12
CKD PILE	DOCUMENT NO.	
N	DATE:	OCTOBER 2003

\CACADD\0196\figures\0196F123.dwg 5/23/05 08:00 SBe

EXPLANATION

<u>13</u>))10	<u>د</u>	BOREHOLE OR WELL NAME FIELD pH MEASUREMENT (JULY 2003) LAB DISSOLVED ARSENIC (mg/L) RESULT (AUG-SEPT 2003) LAB DIC (mg/L) RESULT (JULY-SEPT 2003)
-		EXISTING GROUND
-		STATIC GROUNDWATER LEVEL (31 JULY 2003)
		BOREHOLE LOCATION WITH PREDOMINATE LITHOLOGIC DESCRIPTION (ASTM CLASSIFICATIONS OF LITHOLOGY)
		SCREENED INTERVAL (IF APPLICABLE) NOT ANALYZED

ASTM CLASSIFICATIONS OF LITHOLOGY

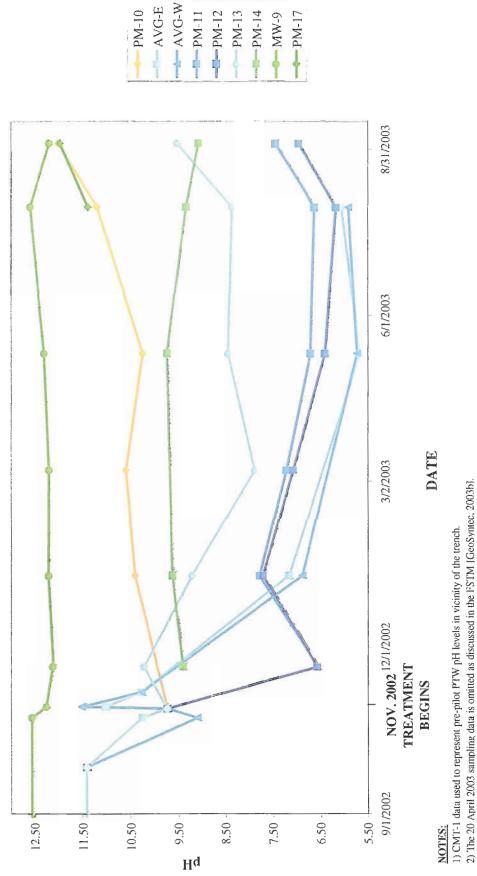
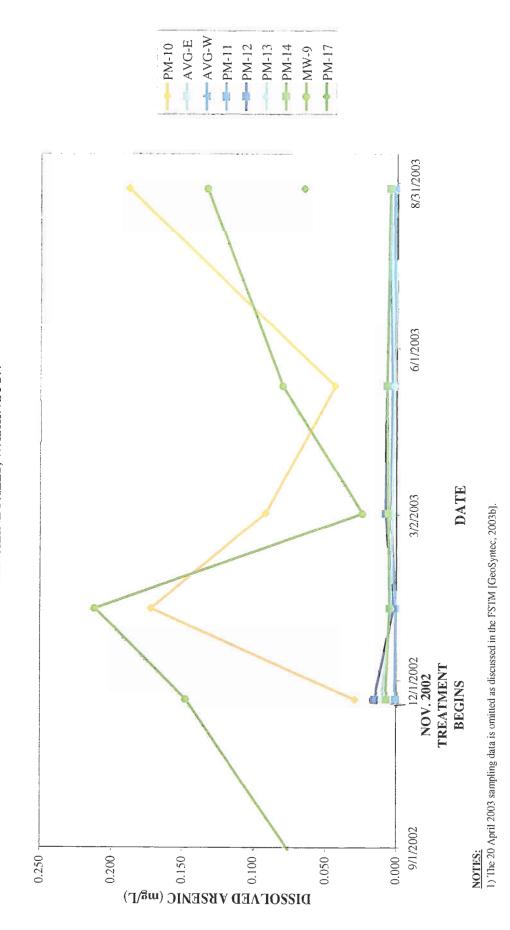

ML - GRAVELLY SILT

	EXHIBIT NO. A-16 PROJECT NO. HR0196-12
ГS	
	CONFINING SILTY CLAY LAYER
/	FILL – ARTIFICIAL FILL
/	CL – SILTY CLAY
<u> </u>	GM – WELL-GRADED SILTY GRAVEL

CROSS-SECTION D-D'	EXHIBIT NO.	A-16
	PROJECT NO.	HR0196-12
	DOCUMENT NO.	
METALINE FALLS, WASHINGTON	DATE:	OCTOBER 2003

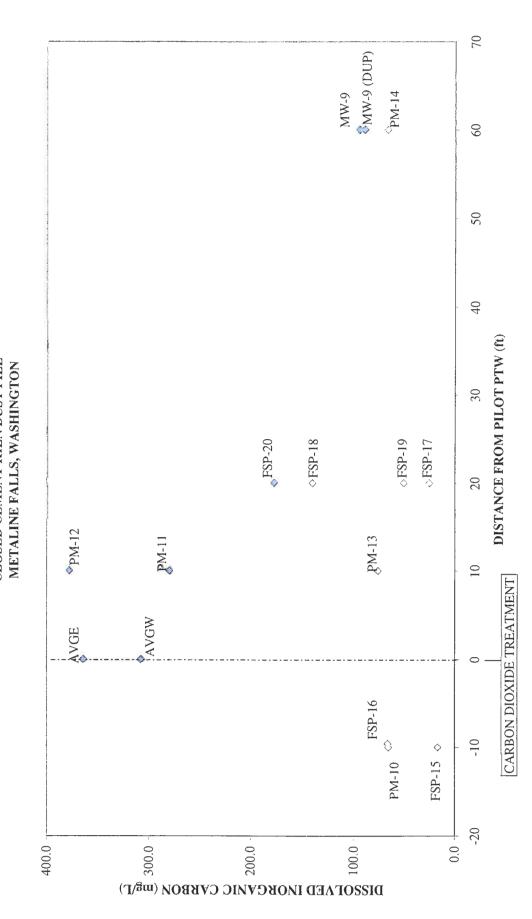
GeoSynte. Consultants


PILOT PERMEABLE TRENCH VICINITY TIME SERIES PH **CLOSED CEMENT KILN DUST PILE** METALINE FALLS, WASHINGTON **EXHIBIT A-17**

HR0196-12/HR0196-14-05-AppA-EXIBITSrev1.xls/EX A-17

GeoSyntee Consultants

EXHIBIT A-19 DISSOLVED INORGANIC CARBON RATIOS CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON


LOCATION	DATE	TOTAL DIC (mg/L)	TREATED FRACTION, f _T (%)	pН
PM-10	05/12/03	65.5	0%	10.25
FSP-15	05/12/03	17.0	-18%	10.10
FSP-16	05/12/03	66.3	0%	9.98
AVG-E	05/12/03	364.0	110%	5.66
AVG-W	05/12/03	308.0	90%	5.72
MEAN OF AVGE AND AVGW		336.0	100%	-
PM-11	05/12/03	280.0	79%	6.71
PM-12	05/12/03	378.0	116%	6.40
PM-13	05/12/03	76.1	4%	8.43
FSP-17	05/12/03	25.4	-15%	8.56
FSP-18	05/12/03	140.0	28%	7.15
FSP-19	05/12/03	50.4	-6%	8.42
FSP-20	05/12/03	178.0	42%	9.70
MW-09	05/12/03	94.4	11%	12.30
MW-09 (DUPLICATE)	05/12/03	89.5	9%	12.32
PM-14	05/12/03	66.4	0%	9.73

NOTES

DIC - Dissolved Inorganic Carbon

 $f_{\rm T}$ - defined in Equation 3 (multiplied by 100%)

EXHIBIT A-20 PILOT PERMEABLE TREATMENT TRENCH VICINITY MAY 2003 DISTANCE SERIES DISSOLVED INORGANIC CARBON CLOSED CEMENT KILN DUST PILE

50

Ś

GROUNDWATER ELEVATION DATA (THROUGH NOVEMBER 2004) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON **EXHIBIT A-21**

							DATE						
LOCATION	9/13/2002	11/21/2002	1/10/2003	3/1/2003	4/20/2003	5/12/2003	7/31/2003	8/26/2003	11/18/2003	4/5/2004	5/31/2004	7/20/2004	11/3/2004
PM-1	2021.42	2021.95	2021.87	MN	2021.9	MN	2021.31	2021.23	2021.82	2021.88	2021.6	2021.2	2022.2
PM-2	2023.33	2023.91	2023.91	MN	2023.94	2023.7	2023.25	2023.23	2023.76	2023.89	2023.68	2023.3	2024.1
PM-3	2021.09	2021.44	2021.29	MM	2021.42	NM	2021.02	2023	2021.06	2021.77	2021.19	2020.95	2021.46
PM-4	2021.32	2021.67	2021.63	MN	2021.67	MN	2021.26	2021.18	2021.69	2021.63	2021.41	2021.15	2021.92
PM-5	2021.76	2022.44	2022.46	NM	2022.51	MM	2021.67	2021.62	2021.99	2022.08	2022.05	2021.56	2022.7
PM-6	2023.74	2024.69	2025.02	MN	2024.69	2024.81	2023.9	2023.77	2025.35	2025.25	2025.04	2023.97	2024.94
PM-7	2024.15	2025.33	2025.26	MN	2025.7	2025.03	2024.13	2024.07	2025.74	2025.89	2025.43	2024.24	2025.95
PM-8	2024.92	2025.44	2025.42	MN	2025.5	2025.15	2024.68	2024.54	2025.55	2025.5	2025.05	2024.53	2025.41
PM-9	2022.03	2022.5	2022.62	MN	2022.73	WN	2022.04	2021.87	2022.44	2022.27	2022.18	2021.83	2022.44
PM-10	ĪZ	2028.72	2028.91	WN	2028.72	2029.42	2028.18	2028.03	2029.26	2029.66	2029.07	2028.43	2028.92
PM-11	IZ	2028.49	2028.67	WN	2028.49	2029.16	2027.94	2027.79	2028.95	2029.54	2028.83	2028.22	2028.72
PM-12	ĪZ	2028.48	2028.68	WN	2028.48	2029.13	2027.95	2027.8	2028.95	2029.5	2028.82	2028.21	2028.62
PM-13	īz	2028.5	2028.88	MN	2028.5	2029.15	2027.96	2027.76	2028.98	2029.65	2028.86	2028.22	2028.7
PM-14	IZ	2028.42	2028.64	MN	2029.47	2028.97	2027.86	2027.72	2028.88	2029.32	2028.76	2028.1	2028.62
PM-15	Z	2020.2	2020.28	WN	2020.54	MN	2019.99	2018.82	2020.23	2020.29	2020.27	2020.12	2020.45
PM-16	z	ĪZ	īz	IZ	IN	IN	2026.59	2026.77	2027.55	2027.77	2024.44	2027.14	2027.57
PM-17	z	ĪZ	IJ	Z	IZ	IN	2028.36	2028.2	2029.34	2029.37	2029.23	2028.61	2029.12
PM-18	Z	īz	z	ĨZ	ĪZ	īz	2021.14	2021	2021.14	2020.85	2021.23	2021.07	2021.2
PM-19	īz	ĪZ	Z	IZ	IZ	IN	2020.18	2019.96	2020.09	2021.04	2020.27	2020.09	2020.21
PM-20	ĪZ	ĪZ	īz	īz	z	Z	2020.46	2020.35	2020.72	2020.37	2020.78	2020.67	2020.77
PM-21	z	z	z	IN	IZ	IJ	2022.18	2022.14	2023.11	2023.36	2023.11	2022.35	2023.37
AVGW	IN	WN	2028.83	WN	2029.74	2029.31	2028.1	WN	2028.69	2029.23	2029.04	MN	2028.24
AVGE	Z	WN	2028.82	MN	2029.7	2029.35	2028.09	MN	2028.65	2029.14	2029.02	MN	2031.13
MW-7R	2028.52	2030.43	2030.25	2030.04	2030.17	WN	2029.58	2029.45	2030.47	2030.49	2029.69	2029.53	2030.37
MW-8	2029.23	2029.38	2029.77	2030.26	2030.76	WN	2028.85	2028.67	2029.34	2030.61	2029.76	2028.94	2029.28
0-WW	2028.57	2028.64	2028.64	2028.74	2028.74	WN	2027.87	MN	2028.99	2025.7	2028.8	2028.34	2028.7
MW-11	2060.32	2059.86	ΜN	2060.89	2060.58	MN	WN	2061.15	2061.15	2061.49	2060.45	2060.99	2060.41
MW-12	2021.44	2022.49	2022.22	2022.32	2022.37	MN	2022.05	2021.97	2022.33	2022.31	2022.24	2021.95	2022.4
FSP-21	Z	IZ	Z	IZ	IN	IN	2027.9	IN	N	IN	ĨZ	IN	IN
FSP-23	īz	IZ	Z	IN	IN	IN	2028.09	IN	ĨN	IN	IN	IN	īz
FSB-04	īz	īz	īz	ĪZ	NI	IZ	2021.69	NI	N	IZ	IN	IN	IZ
FSB-06	Z	Z	IZ	īz	īz	īz	2020.16	IN	IN	IN	IN	IN	

NOTES

Groundwater elevations are in feet above mean sea level

November 2003 · November 2004 data are presented in **BOLD**. NM - Not Measured. Depth to groundwater was not measured at the location on the date listed. NI - Not Installed. The monitoring location was not installed during the data listed. For example, PM-16 shows "NI" until 31 July 2003 because it was not installed until July 2003.

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
MW-07	11/21/02	7.76	< 0.001	< 0.001	NA
MW-07	03/03/03	7.77	< 0.001	< 0.001	NA
MW-07	04/20/03	7.89	< 0.003	< 0.003	NA
MW-07	08/28/03	7.45	< 0.01	< 0.01	16.2
MW-07	11/21/03	8.10	< 0.01	< 0.01	56.1
MW-07	03/31/04	7.88	< 0.01	< 0.01	54.5
MW-07	06/01/04	8.02	< 0.01	< 0.01	66.3
MW-07	07/30/04	8.07	< 0.01	< 0.01	72.6
MW-07	11/04/04	7.26	< 0.01	< 0.01	100.0
MW-08	11/21/02	7.68	0.002	0.002	NA
MW-08	03/03/03	7.62	< 0.001	< 0.001	NA
MW-08	04/20/03	7.83	< 0.003	0.003	NA
MW-08	08/28/03	7.49	< 0.01	< 0.01	61.8
MW-08	11/21/03	8.08	< 0.01	< 0.01	68.1
MW-08	03/31/04	7.84	< 0.01	< 0.01	71.4
MW-08	06/01/04	7.91	< 0.01	< 0.01	64.9
MW-08	07/30/04	8.11	< 0.01	< 0.01	70.8
MW-08	11/04/04	7.63	0.010	< 0.01	73.0
MW-09	11/21/02	12.10	0.148	0.134	NA
MW-09	01/10/03	12.20	0.212	0.207	NA
MW-09	03/03/03	12.20	0.052	0.125	NA
MW-09	04/20/03	12.20	0.039	0.100	NA
MW-09	05/12/03	12.32	0.112	0.108	89.5
MW-09	08/28/03	12.20	0.133	0.192	94.4
MW-09	11/21/03	12.16	0.136	0.176	51.8
MW-09	03/31/04	12.23	0.065	0.084	133.0
MW-09D	03/31/04	12.17	0.059	0.073	58.6
MW-09	06/01/04	11.87	0.074	0.076	100.0
MW-09	07/30/04	11.10	0.082	0.141	76.9
MW-09D	07/30/04	11.10	0.072	0.119	78.9
MW-09	11/04/04	10.95	0.043	0.045	89.8
MW-09D	11/04/04	10.88	0.047	0.048	90.2
MW-11	11/21/02	7.48	0.001	0.001	NA
MW-11	03/02/03	7.48	0.001	0.002	NA
MW-11	04/20/03	7.54	< 0.003	< 0.003	NA
MW-11	08/28/03	7.45	< 0.01	< 0.01	48.9
MW-11	11/21/03	8.11	< 0.01	< 0.01	93.2
MW-11	03/31/04	7.82	< 0.01	< 0.01	95.2
MW-11	06/01/04	7.86	< 0.01	< 0.01	96.7
MW-11	07/30/04	7.93	<0.01	< 0.01	98.3
MW-11	11/04/04	10.88	0.047	0.048	90.2

NOTES

DIC - Dissolved Inorganic Carbon mg/L - milligrams per liter

D - Duplicate NA - Not Analyzed

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L
MW-12	11/21/02	8.42	0.005	0.005	NA
MW-12	03/03/03	8.32	0.004	0.004	NA
MW-12	04/20/03	8.20	0.004	0.004	NA
MW-12	08/28/03	8.11	0.010	< 0.01	43.3
MW-12	11/21/03	8.18	< 0.01	< 0.01	72.9
MW-12	03/31/04	8.18	< 0.01	< 0.01	78.2
MW-12	06/01/04	8.09	< 0.01	< 0.01	69.7
MW-12	07/30/04	8.20	0.011	< 0.01	72.8
MW-12	11/04/04	6.84	0.011	< 0.01	55.0
AVG-E	01/10/03	7.15	0.001	0.004	NA
AVG-E	04/20/03	5.71	< 0.003	< 0.003	320.0
AVG-E	05/12/03	5.66	< 0.003	< 0.003	364.0
AVG-E	11/21/03	6.04	< 0.01	< 0.01	85.6
AVG-E	04/07/04	6.04	< 0.01	< 0.01	271.0
AVG-E	07/30/04	6.45	0.016	0.016	214.0
AVG-E	11/05/04	6.27	< 0.010	< 0.010	123.0
AVG-W	01/10/03	6.87	0.002	0.006	NA
AVG-W	04/20/03	5.75	< 0.003	< 0.003	370.0
AVG-W	05/12/03	5.72	< 0.003	< 0.003	308.0
AVG-W	11/21/03	6.31	< 0.01	< 0.01	164.0
AVG-W	04/07/04	5.82	< 0.01	< 0.01	276.0
AVG-W	07/30/04	6.57	0.016	0.016	188.0
AVG-W	11/05/04	5.63	< 0.010	< 0.010	138.0
PM-01	01/10/03	11.61	0.106	0.084	NA
PM-01	04/20/03	11.00	0.070	0.071	159.0
PM-01	09/04/03	12.10	0.215	0.212	173.0
PM-01	11/23/03	10.80	0.098	0.102	176.0
PM-01	04/05/04	10.40	0.047	0.050	170.0
PM-01	07/29/04	10.67	0.124	0.107	117.0
PM-01	11/04/04	10.20	0.033	0.031	200.0
PM-02	04/20/03	8.56	0.003	0.004	66.4
PM-02	05/12/03	8.33	0.007	0.007	75.2
PM-02	09/04/03	7.82	< 0.01	0.014	36.3
PM-02	11/22/03	8.23	< 0.01	< 0.01	72.1
PM-02	04/05/04	8.47	< 0.01	< 0.01	73.8
PM-02	07/29/04	8.25	0.018	0.018	56.5
PM-02	11/04/04	8.01	< 0.01	< 0.01	77.1
PM-03	01/10/03	7.77	0.333	0.001	NA
PM-03	04/20/03	7.98	0.031	< 0.003	70.1
PM-03	09/04/03	7.93	0.017	< 0.01	347.0
PM-03	11/23/03	8.03	0.117	<0.01	70.9
PM-03	04/07/04	7.67	0.022	< 0.01	78.4
PM-04	01/10/03	10.70	0.026	0.068	NA
PM-04	03/09/03	10.70	0.014	0.074	NA
PM-04	04/20/03	10.75	0.017	0.045	128.0
PM-04	09/04/03	11.80	0.180	0.091	67.6
PM-04	11/23/03	11.70	0.152	0.118	129.0
PM-04	04/07/04	10.91	0.139	0.037	142.0

NOTES

DIC - Dissolved Inorganic Carbon

mg/L - milligrams per liter

NA - Not Analyzed

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
PM-05	01/10/03	8.83	0.185	0.009	NA
PM-05	04/20/03	9.34	0.005	0.005	100.0
PM-05	09/04/03	10.30	0.036	0.037	42.9
PM-05	11/22/03	9.69	0.034	< 0.01	137.0
PM-05	04/05/04	9.60	< 0.01	< 0.01	119.0
PM-06	11/22/02	11.82	0.542	0.452	NA
PM-06	01/10/03	11.70	0.552	0.582	NA
PM-06	03/09/03	11.60	0.525	0.568	NA
PM-06	04/20/03	12.00	0.372	0.372	179.0
PM-06	05/12/03	12.27	0.310	0.352	150.0
PM-06	09/04/03	11.80	0.366	0.350	71.3
PM-06	12/02/03	11.69	0.326	0.323	161.0
PM-06	04/05/04	11.90	0.325	0.308	198.0
PM-06	07/30/04	10.75	0.333	0.333	175.0
PM-06	11/04/04	11.60	0.228	0.239	170.0
PM-07	11/22/02	9.71	0.035	0.054	NA
PM-07	01/10/03	8.64	0.240	0.039	NA
PM-07	04/20/03	7.01	0.008	0.014	291.0
PM-07	05/12/03	7.01	< 0.006	0.015	324.0
PM-07	09/04/03	7.62	< 0.01	0.024	102.0
PM-07	11/22/03	8.28	< 0.01	0.476	204.0
PM-07	04/05/04	6.87	< 0.01	0.014	257.0
PM-07	07/30/04	7.98	0.016	0.031	224.0
PM-07	11/04/04	7.74	0.020	0.026	226.0
PM-08	11/22/02	10.70	0.050	0.051	NA
PM-08	01/10/03	10.30	0.020	0.029	NA
PM-08	04/20/03	9.51	0.011	0.025	130.0
PM-08	05/12/03	10.30	0.017	0.020	112.0
PM-08	09/05/03	11.80	0.072	0.085	51.7
PM-08	11/22/03	9.76	0.029	0.021	145.0
PM-08	04/05/04	9.81	< 0.01	< 0.01	184.0
PM-08	07/29/04	9.55	0.017	0.017	139.0
PM-08	11/04/04	8.26	0.024	0.058	176.0
PM-09	04/20/03	9.17	0.004	0.004	71.4
PM-09	09/05/03	8.62	< 0.01	0.018	36.4
PM-09	12/02/03	8.40	0.017	0.015	101.0
PM-09	04/07/04	7.39	< 0.01	0.011	109.0
PM-10	11/21/02	6.90	0.030	0.031	NA
PM-10	01/10/03	10.40	0.173	0.158	NA
PM-10	03/09/03	10.60	0.092	0.123	NA
PM-10	04/20/03	7.46	0.029	0.031	138.0
PM-10	05/12/03	10.25	0.044	0.048	65.5
PM-10	09/05/03	12.02	0.188	0.177	43.5
PM-10	11/21/03	7.35	<0.01	< 0.01	201.0
PM-10	04/07/04	7.22	0.018	0.026	243.0
PM-10	07/30/04	9.46	0.117	0.117	113.0
PM-10	11/04/04	7.02	< 0.01	0.021	112.0

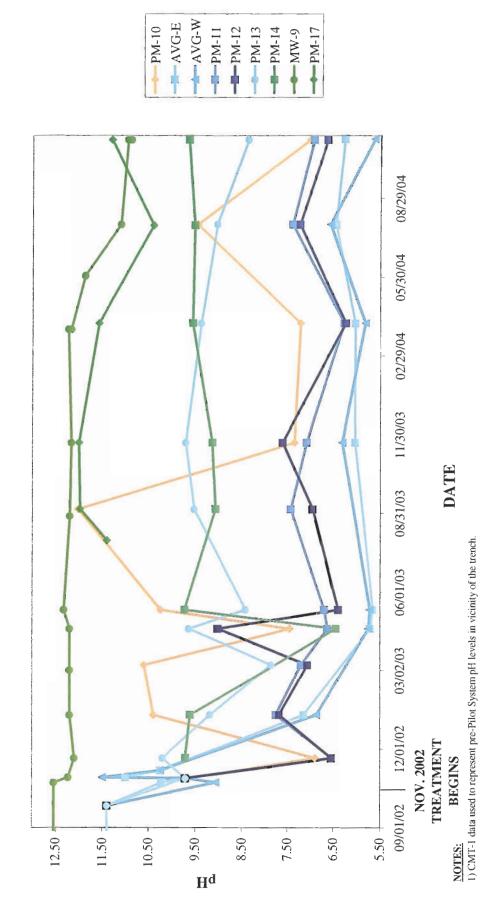
NOTES

DIC - Dissolved Inorganic Carbon mg/L - milligrams per liter

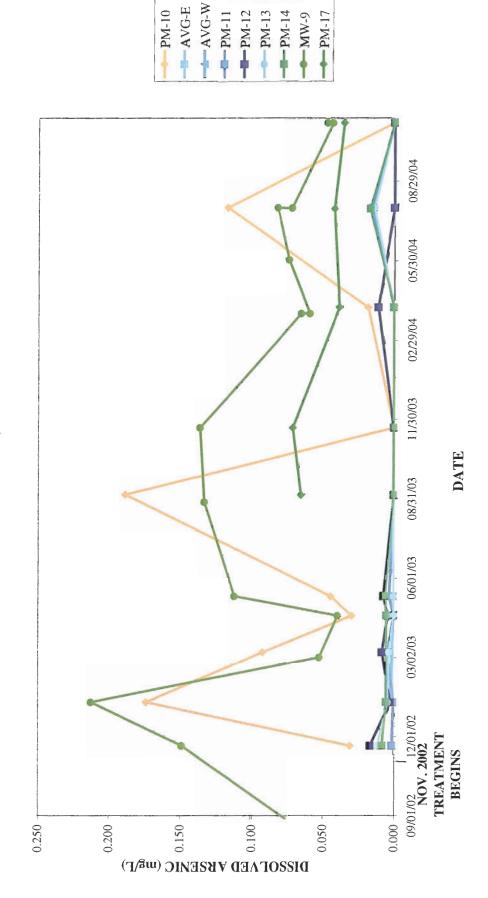
NA - Not Analyzed

LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
PM-11	11/21/02	6.54	0.001	0.010	NA
PM-11	01/10/03	7.76	< 0.001	0.012	NA
PM-11	03/09/03	7.21	0.004	0.004	NA
PM-11	04/20/03	6.64	< 0.003	0.005	305.0
PM-11	05/12/03	6.71	0.003	0.005	280.0
PM-11	09/05/03	7.44	< 0.01	0.012	111.0
PM-11	11/21/03	7.09	< 0.01	< 0.01	242.0
PM-11	04/07/04	6.27	< 0.01	< 0.01	316.0
PM-11	07/30/04	7.40	0.015	0.022	259.0
PM-11	11/04/04	6.94	< 0.01	< 0.01	124.0
PM-12	11/21/02	6.55	0.016	0.019	NA
PM-12	01/10/03	7.69	0.002	0.017	NA
PM-12	03/09/03	7.07	0.008	0.010	NA
PM-12	04/20/03	9.02	0.004	0.014	388.0
PM-12	05/12/03	6.40	0.007	0.014	378.0
PM-12	09/05/03	6.96	< 0.01	0.033	134.0
PM-12	11/21/03	7.61	< 0.01	< 0.01	217.0
PM-12	04/07/04	6.24	0.011	0.024	336.0
PM-12	07/30/04	7.24	< 0.01	0.026	306.0
PM-12	11/04/04	6.64	< 0.01	0.023	329.0
PM-13	11/21/02	10.20	0.011	0.010	NA
PM-13	01/10/03	9.19	0.004	0.004	NA
PM-13	03/09/03	7.87	0.003	0.002	NA
PM-13	04/20/03	9.64	< 0.003	< 0.003	74.4
PM-13	05/12/03	8.43	< 0.003	< 0.003	76.1
PM-13	09/05/03	9.53	< 0.01	< 0.01	42.3
PM-13	11/21/03	9.70	< 0.01	< 0.01	124.0
PM-13	04/07/04	9.38	< 0.01	< 0.01	75.3
PM-13	07/30/04	9.04	0.014	0.014	58.3
PM-13	11/04/04	8.37	< 0.01	< 0.01	161.0
PM-14	11/21/02	9.71	0.008	0.008	NA
PM-14	01/10/03	9.61	0.005	0.005	NA
PM-14	04/20/03	6.45	0.005	0.005	75.0
PM-14	05/12/03	9.73	0.006	0.005	66.4
PM-14	09/05/03	9.08	< 0.01	< 0.01	21.9
PM-14	11/21/03	9.14	< 0.01	< 0.01	82.7
PM-14	04/07/04	9.56	< 0.01	< 0.01	78.0
PM-14	07/29/04	9.52	0.017	0.017	54.0
PM-14	11/04/04	9.65	< 0.01	< 0.01	72.1
PM-15	04/20/03	12.30	0.142	0.142	110.0
PM-15	09/05/03	12.30	0.175	0.152	55.2
PM-15	11/22/03	12.20	0.143	0.133	156.0
PM-15	04/05/04	12.30	0.121	0.118	109.0
PM-15	07/29/04	12.23	0.152	0.147	105.0
PM-15	11/04/04	12.00	0.115	0.116	183.0
PM-16	04/05/04	12.40	0.086	0.115	104.0
PM-16	07/30/04	12.40	0.113	0.151	81.5
PM-16	11/04/04	12.10	0.099	0.038	113.0

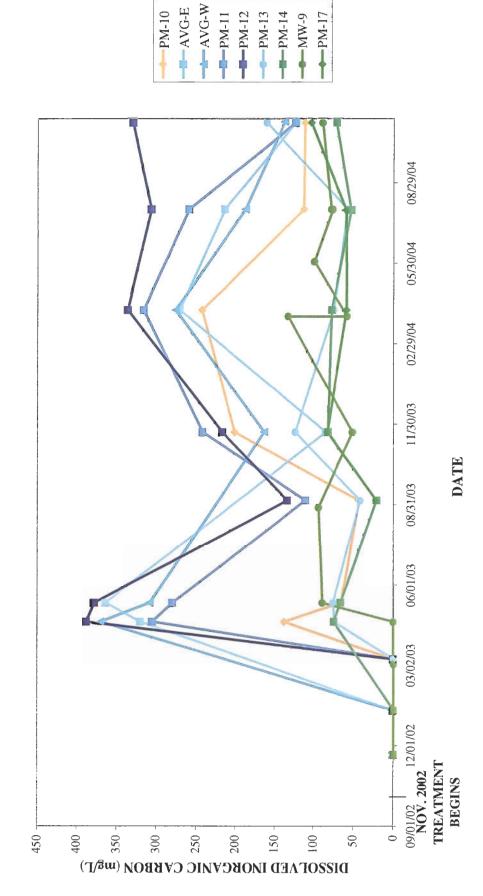
NOTES


DIC - Dissolved Inorganic Carbon mg/L - milligrams per liter NA - Not Analyzed


LOCATION	DATE	рН	DISSOLVED ARSENIC (mg/L)	TOTAL ARSENIC (mg/L)	TOTAL DIC (mg/L)
PM-17	09/05/03	11.98	0.065	0.058	21.8
PM-17	11/21/03	12.00	0.071	0.079	83.5
PM-17	04/07/04	11.58	0.038	0.033	59.1
PM-17	07/29/04	10.40	0.042	0.042	60.1
PM-17	11/04/04	11.30	0.035	0.029	104.0
PM-18	09/04/03	12.00	0.271	0.278	43.5
PM-18	11/22/03	11.84	0.194	0.198	188.0
PM-18	04/05/04	11.70	0.106	0.094	106.0
PM-18	07/29/04	11.70	0.170	0.157	87.0
PM-18	11/04/04	11.20	0.074	0.076	184.0
PM-19	09/04/03	12.00	0.208	0.224	87.7
PM-19	11/22/03	12.20	0.153	0.144	150.0
PM-19	04/05/04	12.10	0.096	0.092	101.0
PM-19	07/29/04	12.00	0.130	0.121	91.0
PM-19	11/04/04	11.70	0.126	0.122	172.0
PM-20	09/04/03	8.28	< 0.01	< 0.01	106.0
PM-20	11/22/03	8.64	< 0.01	< 0.01	203.0
PM-20	04/05/04	8.92	< 0.01	< 0.01	135.0
PM-20	07/29/04	8.80	0.024	0.016	67.1
PM-20	11/04/04	8.50	< 0.01	< 0.01	191.0
PM-21	09/04/03	9.92	0.038	0.048	18.6
PM-21	11/22/03	9.72	0.043	0.038	59.2
PM-21	04/05/04	10.70	0.065	0.054	123.0
PM-21	07/30/04	10.00	0.071	0.061	70.6
PM-21	11/05/04	9.92	< 0.01	0.010	46.4


NOTES DIC - Dissolved Inorganic Carbon

mg/L - milligrams per liter NA - Not Analyzed


EXHIBIT A-23 PILOT SYSTEM VICINITY TIME SERIES pH (THROUGH NOVEMBER 2004) CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

GeoSyntec Consultants

DRAFT

ATTACHMENT 1 FOR APPENDIX A ANALYTICAL LABORATORY DATA

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS INCLUDES UPDATE (2003 – CURRENT)

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA.DOC

3 MAR 05/10:50

GeoSyntec Consultants

GROUNDWATER LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS INCLUDES UPDATE (2003 – CURRENT)

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA (2).DOC

28 FEB 05/20:06

SVL ANALYTICAL, INC.

I

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258
 Fax: (208)783-0891

SVL JOB: 106755

CLIENT : GEOSYNTEC CONSULTANTS PROJECT: HRO196-12 CLIENT SAMPLE ID: FSP-15 Sample Collected: 7/16/03 16:00 Sample Receipt : 7/21/03 Date of Report : 8/05/03

SAMPLE: 343331

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
	Alkalinity,CaCO3	380	mg CaCO3/L		2320	7/28/03
	CO3, CaCO3.	233	mg CaCO3/L		2320	7/28/03
	Spec. Cond.	1120	umhos/cm		120.1	7/28/03
	Eh (mV)	+68.1	mV	· · · · ·	2580	7/28/03
	HCO3, CaCO3	147	mg CaCO3/L		2320	7/28/03
	рН	10.10	-		150.1	7/28/03
	Calcium	130	mg/L	·	200.7	8/03/03
	Chloride	9.25	mg/L	2	300.0	7/29/03
	Fluoride	0.64	mg/L		300.0	7/29/03
	Potassium	312	mg/L	10	200.7	8/04/03
	Magnesium	33.3	mg/L		200.7	8/03/03
	Sodium	17.1	mg/L		200.7	8/03/03
	Sulfate, SO4	112	mg/L	10	300.0	7/29/03
	Arsenic	0.028	mg/L		200.7	8/03/03
	INORGANIC CARBON	17.0	mg/L		415.1	8/01/03
1			- 1			1

SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:

Date \$15/03

8/05/03 15:12

L ANALYTICAL, INC. e Government Gulch P.O.	Box 929 •	Kellogg, Idaho	83837-0929		Ficate: CA CERTIF 4-1258 • Fax:	
CLIENT : GEOSYNTEC PROJECT: HRO196-12		NTS			SVL JOB: SAMPLE:	106755 343332
CLIENT SAMPLE ID: Sample Collected:	FSP-16 7/17/03	9:30				
Sample Receipt : Date of Report :		9.30			Matrix:	WATERG
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity, CaCO3	717	mg CaCO3/L		2320	7/28/03	
CO3, CaCO3	412	mg CaCO3/L		2320	7/28/03	
Spec. Cond.	2850	umhos/cm		120.1	7/28/03	
Eh (mV)	+66.5	mV		2580	7/28/03	
HCO3, CaCO3	306	mg CaCO3/L		2320	7/28/03	
рH	9.98	•		150.1	7/28/03	
Calcium	225	mg/L	10	200.7	8/03/03	
Chloride	21.7	mg/L	5	300.0	7/29/03	
Fluoride	1.61	mg/L	2	300.0	7/29/03	
Potassium	888	mg/L	10	200.7	8/04/03	
Magnesium	63.8	mg/L	10	200.7	8/03/03	
Sodium	43.7	mg/L	10	200.7	8/03/03	
Sulfate, SO4	519	mg/L	50	300.0	7/28/03	
Arsenic	0.120	mg/L	10	200.7	8/03/03	
INORGANIC CARBON	66.3	mg/L		415.1	8/01/03	

la.

SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:_____

Date

8/05/03 15:12

LI	ENT : GEOSYNTEC	CONSULTAN	ITS			SVL JOB:	106755
ZRC	JECT: HRO196-12					SAMPLE:	343327
CLI	ENT SAMPLE ID:	FSP-17				\mathbf{T}	OT/DIS
Sam	ple Collected:	7/16/03 1	14:00				
Sam	ple Receipt :	7/21/03				Matrix:	WATERC
Dat	e of Report :	8/05/03				•	
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity,CaCO3	267	mg CaCO3/L		2320	7/28/03	
т	CO3, CaCO3	20.4	mg CaCO3/L		2320	7/28/03	
т	Spec. Cond.	1740	umhos/cm		120.1	7/28/03	
т	Eh (mV)	+140	mV		2580	7/28/03	
т	HC03, CaC03	247	mg CaCO3/L		2320	7/28/03	
т	рН	8.56			150.1	7/28/03	
т	Calcium	37.8	mg/L		200.7	8/03/03	
т	Chloride	21.1	mg/L	5	300.0	7/28/03	
. Т	Fluoride	0.25	mg/L		300.0	7/28/03	
т	Potassium	121	mg/L	10	200.7	8/04/03	
т	Magnesium	20.0	mg/L		200.7	8/03/03	
т	Sodium	9.47	mg/L		200.7	8/03/03	
т	Ammonia as N	1.05	mg/L		350.3	7/28/03	
т	Nitrite-N	<0.050	mg/L		300.0	7/28/03	
т	Nitrate-N	<0.050	mg/L		300.0	7/28/03	
т	Sulfate, SO4	25.9	mg/L	2	300.0	7/28/03	
т	Arsenic	0.013	mg/L		200.7	8/03/03	
т	Iron	9.83	mg/L		200.7	8/03/03	
т	Manganese	0.203	mg/L		200.7	8/03/03	
т	INORGANIC CARBON	25.4	mg/L		415.1	7/31/03	
 D	Manganese	<0.020*	mg/L	10	200.7	8/03/03	

Allerens

Filtered fraction: 344202

SVL ANALYTICAL, INC.

*Elevated detection limit due to matrix interference. SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:_____

______ Date \$15/03

8/05/03 15:12

LIENT : GEOSYNTEC ROJECT: HRO196-12 LIENT SAMPLE ID:		NTS			SVL JOB: SAMPLE:	
Sample Collected: Sample Receipt : Date of Report :	7/17/03	10:00		•	Matrix:	WATERO
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	773	mg CaCO3/L	-	2320	7/28/03	
CO3, CaCO3	<1.0	mg CaCO3/L		2320	7/28/03	
Spec. Cond.	1800	umhos/cm		120.1	7/28/03	
Eh (mV)	+13.1	wV		2580	7/28/03	
HCO3, CaCO3	773	mg CaCO3/L		2320	7/28/03	
pH	7.15			150.1	7/28/03	
Calcium	377	mg/L		200.7	8/03/03	
Chloride	40.7	mg/L	10	300.0	7/28/03	
Fluoride	<0.10	mg/L		300.0	7/29/03	
Potassium	262	mg/L	10	200.7	8/04/03	
Magnesium	89.9	mg/L		200.7	8/03/03	
Sodium	48.3	mg/L		200.7	8/03/03	
Sulfate, SO4	93.6	mg/L	10	300.0	7/28/03	
Arsenic	0.028	mg/L		200.7	8/03/03	
INORGANIC CARBON	140	mg/L		415.1	8/01/03	

Deleven

SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:_____

SVL ANALYTICAL, INC.

Date \$/5/03 8/05/03 15:12

L ANALYTICAL, INC. e Government Gulch • P.O.	Box 929 •	Kellogg, Idaho	83837-0929		icate: CA CERTIA 4-1258 • Fax	
LIENT : GEOSYNTEC ROJECT: HRO196-12	CONSULTA	NTS		· · · · · · · · · · · · · · · · · · ·	SVL JOB:	106755 343328
CLIENT SAMPLE ID:	FCD_10				DAME DE.	545520
	7/16/03	14.30				
	7/21/03	14.50			Matrix:	MATTER
Date of Report :					macrix.	WAIERG
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	587	mg CaCO3/L		2320	7/28/03	
CO3, CaCO3	22.1	mg CaCO3/L		2320	7/28/03	
Spec. Cond.	1720	umhos/cm		120.1	7/28/03	
Eh (mV)	+153	mV		2580	7/28/03	
HCO3, CaCO3	565	mg CaCO3/L		2320	7/28/03	
Hq	8.42			150.1	7/28/03	
Calcium	487	mg/L	10	200.7	8/03/03	
Chloride	23.8	mg/L	5	300.0	7/29/03	
Fluoride	0.59	mg/L		300.0	7/29/03	
Potassium	538	mg/L	10	200.7	8/04/03	
Magnesium	153	mg/L	10	200.7	8/03/03	
Sodium	42.3	mg/L	10	200.7	8/03/03	
Sulfate, SO4	218	mg/L	25	300.0	7/28/03	
Arsenic	0.120	mg/L	10	200.7	8/03/03	
INORGANIC CARBON	50.4	mg/L		415.1	7/31/03	

SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS Reviewed By:

Date 8/5/03 8/05/03 15:12

SVL ANALYTICAL, INC. One Government Gulch P.O.	Box 929 🔹	Kellogg, Idaho	83837-0929			FICATE NO. 2080 :: (208)783-0891
IENT : GEOSYNTEC ROJECT: HRO196-12	CONSULTA	NTS			SVL JOB: SAMPLE:	106755 343334
CLIENT SAMPLE ID:						
Sample Collected: Sample Receipt :		11:00			Matrix:	WATERG
Date of Report :	8/05/03					
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity, CaCO3	1260	mg CaCO3/L	· · · ·	2320	7/28/03	
CO3, CaCO3	445	mg CaCO3/L		2320	7/28/03	
Spec. Cond.	3780	umhos/cm		120.1	7/28/03	
Eh (mV)	-5.0	mV		2580	7/28/03	
HCO3, CaCO3	816	mg CaCO3/L		2320	7/28/03	
pH	9.52			150.1	7/28/03	
Calcium	73.1	mg/L	10	200.7	8/03/03	
Chloride	28.9	mg/L	10	300.0	7/29/03	
Fluoride	0.43	mg/L	2	300.0	7/29/03	
Potassium	1170	mg/L	10	200.7	8/04/03	
Magnesium	52.4	mg/L	10	200.7	8/03/03	
Sodium	62.9	mg/L	10	200.7	8/03/03	
Sulfate, SO4	501	mg/L	50	300.0	7/28/03	
Arsenic	<0.10*	mg/L	10	200.7	8/03/03	
INORGANIC CARBON	110	mg/L		415.1	8/01/03	

<u>Altri ren</u>

*Elevated detection limit due to matrix interference. MPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:_____

____Date % 03 8/05/03 15:12

One Government Gulch • P.O.	. Box 929 .	Kellogg, Idaho	83837-0929	 Phone: (208)78 	4-1258 s Fa	×: (208)783-0891
LIENT : GEOSYNTEC ROJECT: HR0196-12	CONSULTA	NTS			SVL JOB	
CLIENT SAMPLE ID:					SAMPLE	: 343337
Sample Collected:		14:00				
Sample Receipt :	7/21/03	14:00			Matrix	: WATERG
Date of Report :	8/05/03				Matiix	- WAIERG
Duce of Report .						
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity, CaCO3	1340	mg CaCO3/L		2320	7/28/03	
CO3, CaCO3	620	mg CaCO3/L		2320	7/28/03	
Spec. Cond.	4090	umhos/cm		120.1	7/28/03	
Eh (mV)	+42.6	mV		2580	7/28/03	
HCO3, CaCO3	721	mg CaCO3/L		2320	7/28/03	
pH	9.70			150.1	7/28/03	
Calcium	23.4	mg/L	10	200.7	8/03/03	
Chloride	30.6	mg/L		300.0	7/29/03	
Fluoride	0.37	mg/L		300.0	7/29/03	
Potassium	1260	mg/L	10	200.7	8/04/03	
Magnesium	23.6	mg/L	10	200.7	8/03/03	· ·
Sodium	65.9	mg/L	10	200.7	8/03/03	
Sulfate, SO4	556	mg/L	50	300.0	7/28/03	
Arsenic	<0.10*	mg/L	10	200.7	8/03/03	

*Elevated detection limit due to matrix interference.

178

mg/L

Meren

MPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:

INORGANIC CARBON

SVL ANALYTICAL, INC.

8/5/03 Date

415.1

8/05/03 15:12

8/01/03

TROJECT: HR0196-12SiLIENT SAMPLE ID: FSP-06Sample Collected: 7/15/03 19:00Sample Receipt : 7/21/03Maximum Maximum Maxim	104 106755
LIENT SAMPLE ID: FSP-06 Sample Collected: 7/15/03 19:00 Sample Receipt : 7/21/03 Date of Report : 8/05/03 Determination Result Units Dilution Method Ana T Alkalinity,CaCO3 1550 mg CaCO3/L 2320 7/2 T CO3, CaCO3 750 mg CaCO3/L 2320 7/2	L JOB: 106755 AMPLE: 343324
Sample Collected: 7/15/03 19:00 Sample Receipt : 7/21/03 Date of Report : 8/05/03 Determination Result Units Dilution Method Ana T Alkalinity, CaC03 1550 T C03, CaC03 750 mg CaC03/L 2320 7/2 8/2	TOT/DIS
Sample Receipt : 7/21/03MaDate of Report : 8/05/03MaDeterminationResultUnitsDilutionMethodAnaT Alkalinity,CaC031550mg CaC03/L23207/2T C03, CaC03750mg CaC03/L23207/2	101,210
Date of Report :8/05/03DeterminationResultUnitsDilutionMethodT Alkalinity,CaCO31550mg CaCO3/L23207/2T CO3, CaCO3750mg CaCO3/L23207/2	atrix: WATERG
DeterminationResultUnitsDilutionMethodAnaTAlkalinity,CaCO31550mg CaCO3/L23207/2TCO3, CaCO3750mg CaCO3/L23207/2	
T Alkalinity,CaCO3 1550 mg CaCO3/L 2320 7/2 T CO3, CaCO3 750 mg CaCO3/L 2320 7/2	
T CO3, CaCO3 750 mg CaCO3/L 2320 7/2	lyzed
	28/03
T Spec. Cond. 7790 umhos/cm 120.1 7/2	28/03
	28/03
	28/03
	28/03
T pH 12.10 150.1 7/2	28/03
T Calcium 7.91 mg/L 200.7 8/0)3/03
T Chloride 27.3 mg/L 5 300.0 7/2	29/03
	28/03
T Potassium 2130 mg/L 100 200.7 8/0	04/03
T Magnesium 0.567 mg/L 200.7 8/0	03/03
T Sodium 73.6 mg/L 200.7 8/0	3/03
T Ammonia as N 2.64 mg/L 350.3 7/2	28/03
T Nitrite-N <0.050 mg/L . 300.0 7/2	28/03
T Nitrate-N <0.050 mg/L 300.0 7/2	28/03
T Sulfate, SO4 886 mg/L 50 300.0 7/2	28/03
T Arsenic 0.040 mg/L -200.7 8/0	3/03
T Iron 2.35 mg/L -200-7- 8/0	3/03
T Manganese 0.0804 mg/L -200.7 8/0	3/03
T INORGANIC CARBON 69.8 mg/L 415.1 7/3	1/03
D Manganese <0.020* mg/L 10 ~200.7 8/0	

_____ Date 8/5/03

8/05/03 15:12

Filtered fraction: 344200

*Elevated detection limit due to matrix interference. SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS Alleren

Reviewed By:_____

SVL ANALYTICAL, INC.

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080

Phone: (208)784-1258 • Fax: (208)783-0891

RC CLI	ENT : GEOSYNTEC DJECT: HRO196-12 ENT SAMPLE ID: mple Collected:				*		106755 343325 OT/DIS
San	ple Receipt : e of Report :	7/21/03 8/05/03			•	Matrix:	WATERO
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity, CaCO3	3280	mg CaCO3/L		2320	7/28/03	•
т	CO3, CaCO3	1580	mg CaCO3/L		2320	7/28/03	
т	Spec. Cond.	17000	umhos/cm		120.1	7/28/03	
т	Eh (mV)	-16.9	mV		2580	7/28/03	
т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	7/28/03	
т	pH	12.40			150.1	7/28/03	
т	Calcium	10.2	mg/L		200.7	8/03/03	
т	Chloride	58.7	mg/L	10	300.0	7/28/03	
т	Fluoride	1.74	mg/L	10	300.0	7/28/03	
т	Potassium	4430	mg/L	100	200.7	8/04/03	
т	Magnesium	1.06	mg/L		200.7	8/03/03	
т	Sodium	170	mg/L		200.7	8/03/03	
т	Ammonia as N	4.82	mg/L		350.3	7/28/03	
т	Nitrite-N	<0.050	mg/L		300.0	7/28/03	
т	Nitrate-N	1.15	mg/L		300.0	7/28/03	
т	Sulfate, SO4	2350	mg/L	200	300.0	7/28/03	
т	Arsenic	0.184	mg/L		200.7	8/03/03	
\mathbf{T}	Iron	2.34	mg/L		200.7	8/03/03	
Т	Manganese	0.289	mg/L		200.7	8/03/03	
Т	INORGANIC CARBON	80-8	mg/L		415.1	7/31/03	
D	Manganese	<0.020*	mg/L	10	200.7	8/03/03	

Filtered fraction: 344201

*Elevated detection limit due to matrix interference. SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS KAlexear

Reviewed By:____

Date 8/5/03 8/05/03 15:12

SVL ANALYTICAL, INC.

 Kellogg, Idaho 83837-0929 One Government Gulch
P.O. Box 929

Certificate: CA CERTIFICATE NO. 2080

Phone: (208)784-1258 • Fax: (208)783-0891

RC	ENT : GEOSYNTEC JECT: HRO196-12 ENT SAMPLE ID:		VTS				106755 343330 COT/DIS
Sample Collected: 7/16/03 15:40 Sample Receipt : 7/21/03 Date of Report : 8/05/03				Matrix: WATERO			
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity,CaCO3	1400	mg CaCO3/L		2320	7/28/03	
т	CO3, CaCO3	902	mg CaCO3/L		2320	7/28/03	
т	Spec. Cond.	8630	umhos/cm		120.1	7/28/03	
т	Eh (mV)	+1.8	mV		2580	7/28/03	
т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	7/28/03	
т	pH	12.00			150.1	7/28/03	
Т	Calcium	14.9	mg/L	10	200.7	8/03/03	
т	Chloride	36.1	mg/L	10	300.0	7/29/03	
т	Fluoride	1.76	mg/L	2	300.0	7/29/03	
т	Potassium	2140	mg/L	100	200.7	8/04/03	
т	Magnesium	2.40	mg/L	10	200.7	8/03/03	
Т	Sodium	86.5	mg/L	10	200.7	8/03/03	- ·
Т	Ammonia as N	3.02	mg/L		350.3	7/28/03	
Т	Nitrite-N	<0.050	mg/L		300.0	7/29/03	
Т	Nitrate-N	0.056	mg/L		300.0	7/29/03	
т	Sulfate, SO4	1130	mg/L	100	300.0	7/29/03	
т	Arsenic	<0.10*	mg/L	10	200.7	8/03/03	
т	Iron	11.7	mg/L	10	200.7	8/03/03	
т	Manganese	0.427	mg/L	10	200.7	8/03/03	
т	INORGANIC CARBON	56.1	mg/L		415.1	7/31/03	
D	Manganese	0.0540	mg/L	10	200.7	8/03/03	

hew

.

Filtered fraction: 344204 *Elevated detection limit due to matrix interference.

SAMPLE RECEIVED OUT OF HOLDING TIME FOR NQ2, NO3, TDS

Reviewed By:_____

Date 8/5/03 8/05/03 15:12

SVL	ANALYTICAL,	INC
-----	-------------	-----

Г

 P.O. Box 929
 Kellogg, Idaho
 83837-0929 One Government Gulch

.

Certificate: CA CERTIFICATE NO. 2080

Phone: (208)784-1258 Fax: (208)783-0891

RC	JECT: HRO196-12 ENT SAMPLE ID:	FSP-23				SAMPLE	: 106755 : 343335 : OT/DIS
Sam	ple Collected: ple Receipt : e of Report :	7/17/03 7/21/03 8/05/03	11:40			Matrix	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity,CaCO3	734	mg CaCO3/L		2320	7/28/03	
Т	CO3, CaCO3	467	mg_CaCO3/L		2320	7/28/03	
т	Spec. Cond.	3130	umhos/cm		120.1	7/28/03	
Т	Eh (mV)	+9.2	mV		2580	7/28/03	
Т	HCO3, CaCO3	266	mg CaCO3/L		2320	7/28/03	
Т	pH	10.10			150.1	7/28/03	
т	Calcium	63.4	mg/L	10	200.7	8/03/03	
Т	Chloride	485	mg/L	100	300.0	7/29/03	
Т	Fluoride	0.33	mg/L		300.0	7/29/03	
т	Potassium	360	mg/L	10	200.7	8/04/03	
Т	Magnesium	19.5	mg/L	10	200.7	8/03/03	
Т	Sodium	461	mg/L	10	200.7	8/03/03	
т	Ammonia as N	0.930	mg/L		350.3	7/28/03	
Т	Nitrite-N	<0.050	mg/L		300.0	7/29/03	
Т	Nitrate-N	<0.050	mg/L		300.0	7/29/03	
Т	Sulfate, SO4	155	mg/L	10	300.0	7/29/03	
T	Arsenic	0.041	mg/L		200.7	8/03/03	
T	Iron	48.3	mg/L	10	200.7	8/03/03	
I T	Manganese	2.40	mg/L	10	200.7	8/03/03	
Т	INORGANIC CARBON	46.1	mg/L		415.1	8/01/03	
D	Manganese	0.381	mg/L	10	200.7	8/03/03	

K Sea

Filtered fraction: 344205 SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:_____

Date 8/5/03 8/05/03 15:12

SVL ANALYTICAL, INC.

Date of Report

One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929

•

8/05/03

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 • Fax: (208)783-0891

LIENT : GEOSYNTEC CONSULTANTS	SVL JOB: 106755
ROJECT: HRO196-12	SAMPLE: 343329
CLIENT SAMPLE ID: FSP-26	TOT/DIS
Sample Collected: 7/16/03 15:00	
Sample Receipt : 7/21/03	Matrix: WATERG

Determination Result Units Dilution Method Analyzed 1320 mg CaCO3/L 2320 7/28/03 т Alkalinity, CaCO3 910 mg CaCO3/L т CO3, CaCO3 2320 7/28/03 Spec. Cond. 6540 umhos/cm 120.1 7/28/03 т +18.7 2580 7/28/03 т Eh (mV) mV т HCO3, CaCO3 <1.0 mg_CaCO3/L 2320 7/28/03 11.90 150.1 7/28/03 т ЪЦ 13.2 8/03/03 т Calcium mg/L 10 200.7 84.1 25 7/28/03 mg/L 300.0 т Chloride 1.51 2 300.0 7/28/03 т Fluoride mg/L 200.7 1620 mg/L 100 8/04/03 т Potassium Magnesium 4.93 mg/L 10 200.7 8/03/03 т 91.0 mq/L 10 200.7 Т Sodium 8/03/03 т Ammonia as N 2.24 mg/L 350.3 7/28/03 <0.050 mg/L 300.0 7/28/03 т Nitrite-N <0.050 т Nitrate-N mg/L 300.0 7/28/03 Sulfate, SO4 702 mg/L 50 300.0 7/28/03 т 0.160 10 200.7 8/03/03 т Arsenic mg/L 33.9 10 200.7 8/03/03 Т Iron mg/L 0.753 10 200.7 8/03/03 т Manganese mg/L т INORGANIC CARBON 39.3 mg/L 415.1 7/31/03 D Manganese 0.238 mg/L 10 200.7 8/03/03

Filtered fraction: 344203 SAMPLE RECEIVED OUT OF HOLDING TIME FOR NO2, NO3, TDS

Reviewed By:

Date 8/05/03 15:12

Certificate: CA CERTIFICATE NO. 2080

One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891 CLIENT : GeoSyntec SVL JOB: 107014 SAMPLE: 346458 PROJECT: CLIENT SAMPLE ID: PM-16 Sample Collected: 7/19/03 Sample Receipt : 8/06/03 Date of Report : 8/21/03 2:30 Matrix: WATER Units Dilution Determination Result Method Analyzed Alkalinity,CaCO3 2110 mg CaĊO3/L 2320 8/08/03 CO3, CaCO3 1120 2320 mg CaCO3/L 8/08/03 Spec. Cond. umhos/cm 120.1 10500 8/08/03 +58_8 mV Eh (mV) 2580 8/08/03 HCO3, CaCO3 mg_CaCO3/L 2320 8/08/03 <1.0

		mg CacO3/			8/08/03
PH	12.03			150.1	8/08/03
Calcium	4.55	mg/L		200.7	8/20/03
Chloride	39.7	mg/L	10	300.0	8/07/03
Fluoride	2.86	mg/L	10	300.0	8/07/03
Potassium	2570	mg/L	100	200.7	8/20/03
Magnesium	0.052	mg/L		200.7	8/20/03
Sodium	102	mg/L		200.7	8/20/03
Ammonia as N	2.49	mg/L		350.3	8/11/03
Nitrite-N	<0.050	mg/L		300.0	8/07/03
Nitrate-N	0.053	mg/L		300.0	8/07/03
Sulfate, SO4	1210	mg/L	100	300.0	8/07/03
Arsenic	0.139	mg/L		200.7	8/20/03
Iron	6.45	mg/L		200.7	8/20/03
Manganese	0.109	mg/L		200.7	8/20/03
Silica	115	mg/L	10	200.7	8/20/03
INORGANIC CARBON	46.7	mg/L		415.1	8/13/03
CalcTDS: 5339.6	TDS/Cor	nd:	CATION SUM:	70.64meq/L	BALANCE
TDS/CalcTDS:	CalcTDS/Con	nd:	ANION SUM:	68.42meq/L	1.60%
	Calcium Chloride Fluoride Potassium Magnesium Sodium Ammonia as N Nitrite-N Nitrate-N Sulfate, SO4 Arsenic Iron Manganese Silica INORGANIC CARBON CalcTDS: 5339.6	Calcium 4.55 Chloride 39.7 Fluoride 2.86 Potassium 2570 Magnesium 0.052 Sodium 102 Ammonia as N 2.49 Nitrite-N <0.050	Calcium 4.55 mg/L Chloride 39.7 mg/L Fluoride 2.86 mg/L Potassium 2570 mg/L Magnesium 0.052 mg/L Sodium 102 mg/L Ammonia as N 2.49 mg/L Nitrite-N <0.050	Calcium 4.55 mg/L Chloride 39.7 mg/L 10 Fluoride 2.86 mg/L 10 Potassium 2570 mg/L 100 Magnesium 0.052 mg/L 100 Magnesium 0.052 mg/L 100 Magnesium 0.052 mg/L 100 Ammonia as N 2.49 mg/L Nitrite-N Nitrite-N <0.050	Calcium 4.55 mg/L 200.7 Chloride 39.7 mg/L 10 300.0 Fluoride 2.86 mg/L 10 300.0 Potassium 2570 mg/L 100 200.7 Magnesium 0.052 mg/L 100 200.7 Sodium 102 mg/L 200.7 Ammonia as N 2.49 mg/L 200.7 Nitrite-N <0.050

FROM SVL JOB# 106755. SVL RECEIVED AN HNO3 AND UNPRESERVED CONTAINER. SVL WILL REANALYZE THE SAMPLE, USING THE CONTAINER LABELED HNO3 FOR GENERAL MINERAL PARAMETERS AND USE THE CONTAINER LABELED UNPRESERVED FOR METALS, PER EMAIL FROM BRIAN PETTY NH-3: SVL PRESERVED FROM RAW SAMPLE. ALKALINITY; NO2-N; NO3-N: SAMPLE RECEIVED AND ANALYZED PAST HOLDING TIME. Reviewed By:______ Date 8/2//03

8/21/03 14:03

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Jient :GeoSyntec	2						SVL JOB I	No: 107014
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS-	Found	LCS %R	Analysis Date
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.959	95.9	8/20/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	21.0	105.0	8/20/03
Iron	200.7	WATER	mg/L	<0.020	10.0	10.1	101.0	8/20/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.4	101.3	8/20/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.3	101.5	8/20/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.01	101.0	8/20/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.4	102.0	8/20/03
Silica	200.7	WATER	mg/L	<0.171	10.7	11.1	103.7	8/20/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	5.00	100.0	8/07/03
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.48	99.2	8/07/03
Nitrite-N	300.0	WATER	mg/L	<0.050	2.50	2.50	100.0	8/07/03
Nitrate-N	300.0	WATER	mg/L	<0.050	2.50	2.51	100.4	8/07/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	10.3	103.0	8/07/03
Alkalinity,CaCO3	2320	WATER	mg/L	<1.0	53.2	57.6	108.3	8/08/03
рH	150.1	WATER		5.81	6.10	6.09	99.8	8/08/03
Spec. Cond.	120.1	WATER	umhos/cm	0.159	375	360	96.0	8/08/03
Eh (mV)	2580	WATER	mV	N/A	+228	+238	104.4	8/08/03
Ammonia as N	350.3	WATER	mg/L	<0.10	13.4	12.8	95.5	8/11/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	5.00	5.60	112.0	8/13/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

n:	t :Geo	Syntec									o: 107014
			ſ	-QC SAMPI		Duplicate of	1	1	atrix Spike		Analysis
Test	Method	Matrix		Units	Result	Found	RPD%	Result	SPK ADD	%R	Date
As	200.7	WATER	1	mg/L	0.139	0.142	2.1	1.19	1.00	105.1	8/20/03
Ca	200.7	WATER	1	mg/L	4.55	4.83	6.0	25.0	20.0	102.3	8/20/03
Fe	200.7	WATER	1	mg/L	6.45	6.62	2.6	17.4	10.0	109.5	8/20/03
Χ	200.7	WATER	1	mg/L	2570	2580	0.4	2570	30.0	R >4S	8/20/03
Мg	200.7	WATER	1	mg/L	0.052	<0.040	200.0	20.9	20.0	104.2	8/20/03
Mn	200.7	WATER	1	mg/L	0.109	0.110	0.9	1.15	1.00	104.1	8/20/03
Ма	200.7	WATER	1	mg/L	102	103	1.0	-	20.0	85.0	8/20/03
3i02	200.7	WATER	1	mg/L	115	129	11.5	129	10.7	R >4S	8/20/03
21	300.0	WATER	1	mg/L	39.7	40.6	2.2	60.4	20.0	103.5	8/07/03
F	300.0	WATER	1	mg/L	2.86	3.00	4.8	20.9	20.0	90.2	8/07/03
N-20K	300.0	WATER	1	mg/L	<0.050	<0.050	UDL	1.76	2.00	88.0	·8/07/03
N-80K	300.0	WATER	1	mg/L	0.053	0.051	3.8	1.99	2.00	96.9	8/07/03
504	300.0	WATER	1	mg/L	1210	1190	1.7	1730	500	104.0	8/07/03
ALK	2320	WATER	1	mg/L	2110	2060	2.4	N/A	N/A	N/A	8/08/03
203	2320	WATER	1	mg/L	1120	1160	3.5	N/A	N/A	N/A	8/08/03
HCO3	2320	WATER	1	mg/L	<1.0	<1.0	UDL	N/A	N/A	N/A	8/08/03
рH	150.1	WATER	1		12.03	12.03	0.0	N/A	N/A	N/A	8/08/03
COND	120.1	WATER	1	umhos/c	10500	10500	0.0	N/A	N/A	N/A	8/08/03
Eh	2580	WATER	1	mV	+58.8	+60.7	3.2	N/A	N/A	N/A	8/08/03
NH3-N	350.3	WATER	1	mg/L	2.49	2.42	2.9	3.38	1.00	89.0	8/11/03
ORG18D	415.1	WATER	1	mg/L	46.7	49.9	6.6	94.6	50.0	95.8	8/13/03

LEGEND:

P^^~ = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

.

SPINE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC Sample 1: SVL SAM No.: 346458 Client Sample ID: PM-16

	[X] These	ADDITIONAL	*We trac	344204 344204 344205 *			344200*	343339	343336 343337	SVL#	FAX:	CLIENT:	
	samples samples	COMM	k Total	W FSP-20 W FSP-23 W FSP-23			W FSP-06	W PM-16	พ FSP-25 พ FSP-20	M ClientID	HUNTINGTONBEACH (714)969-0820	ERIC SMALSTIG GEOSYNTEC CON 2100 MAIN STR	
	will be r will be r	FOR JO	(^T), Tot.								IBEACH CA 1820	SUL	
	DISPOSED ARCHIVED	Samp	Rec. (^R).	10 7/16/0 10 7/16/0 10 7/17/0			1/15 d	7/19/0	7/1 7/1	sam	92648	#150	
	44 100 00). Pot			ω	5/03 1	9/03	7/17/03 1 7/17/03 1	ampled			
	days a	er/co Analy	. Dis	1:40 1:40	~~~~		00:0	2:30	3:00 4:00	Time			One Go
	after j	ntaine: ZE FOR	d./ 5	य स प्रस 7 7 7			BP 7	8P	ש ש ש ש	By Re		SA	vernm
	job comp. You will	r temp (SULFII) and	/21/0 /21/0 /21/0	7/21/03	7/21/03	/21/0	7/21/03	7/21/03 7/21/03	Received		SAMPLE R	SVL ANA Government Gulch
	letion. receive	E C C C C C C C C C C C C C C C C C C C	Disaulved	ພ ພ ພ	ι <u>ω</u>	ω	3	SAMPLE	SAMPLE ON HOLI *Elevat	Sample		RECEIPT CONF	ANALYTICAL, IN 11ch - Kellogg,
1	e Letter	ΞC	1701 fran					CEIVED detect	CEIVED ER CLII detect	Comments		CONFIRMATION	INC. gg, ID
	requesting	receipt.	frantiona aon						1				83837-0929
	g disposal						OF HOLDING TIME	OF HOLDING TIME FOR limit due to matrix	OF HOLDING TIME FOR limit due to matrix				U U
	1 options.	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					FOR		1			Expected	
	•	រោះ នុតក្ខណ៍ទេន					NOZ, NOJ, TUS	NO2, NO3, TDS interference.	NO2,NO3,TDS interference.			SVL JOB Nc: Received: ed Due date:	
		may appear						¢0 •	Ф •			Ned:	Page
		ear twice.	H									106755 7/21/03 8/03/03	2 of 2

Please c'

act Crystal Sevy (208-784-1258) if you have quest 'ns regarding the receipt of these samples.

8/~~/03 15:53

CONFIRMATION	REPORT -	MEMORY	SEND

			Time : Fax number: Name :	AUG-07-0 †2087830 SVL ANAL	891				
Job	:	068							
Date	:	AUG-07 11:13							
To	:	917149690820							
Doc. pages	:	01							
Start time	:	AUG-07 11:13							
End time	:	AUG-07 11:14							
Pages sent	:	01							
Job: 058 [X] These samples will be DISPOSED 45 days after job completion. [] These samples will be ARCEIVED 45 days, then you will receive a letter requesting disposal options.		*** SEND SU	SAUPLE OUT OF BOLIDING TIME FOR NO2, NO3, 4 ALEXALIBITY	ADDITIONAL COMMENTS FOR JOB: Sample Cooler/Container temp	346458 W [PM-16 7/19/03] 2130 BP 8/06/03 FROM SVL JOB# 106755. SVL NECEIVED AN ENOS AND UNPRESEND CONTAINER. SVL WILL REMAILINE THE SAMPLE, USING THE CONTAINER LABELED UNPRESENVED FOR GENERAL MINERAL FRANLE FROM BRILN PETTY	SVE# N ClientID Sampled Time By Received Sample Comments	EUNTINGTOHBEACE CA 92548 72X: (714)969-0820	CLIENT: Brian Petty SANTLE RECTIFY CONFIRMANION SVL JOB NO: GeoSyntec Received: 2100 Main St. #150 Expected Due date:	SVI ANALYTICAL, INC. One Covernment Gilch - Kellogg, 10 83837-0929
					VED TALKER CONTAINER FY			107014 8/06/03 8/20/01	Page 1 of 1

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples. 8/07/03 8:38

ł

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GEOSYNTEC CONSULTANTS SVL JOB NO											
lalyte	Method	Matrix	Units	Prep Blank	True——LC	SFound	LCS %R	Analysis Date			
Arsenic	200.7	WATER	mg/L	<0.010	1.00	1.06	106.0	8/03/03			
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.1	95.5	8/03/03			
Iron	200.7	WATER	mg/L	<0.020	10.0	9.97	99.7	8/03/03			
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.9	103.0	8/04/03			
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.7	103.5	8/03/03			
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.993	99.3	8/03/03			
Sodium	200.7	WATER	mg/L	<0.50	20.0	18.6	93.0	8/03/03			
Chloride	300.0	WATER	mg/L ·	<0.20	5.00	4.90	98.0	7/28/03			
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.44	97.6	7/28/03			
Nitrite-N	300.0	WATER	mg/L	<0.050	2.50	2.48	99.2	7/28/03			
Nitrate-N	300.0	WATER	mg/L	<0.050	2.50	2.45	98.0	7/28/03			
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.70	97.0	7/28/03			
Alkalinity, CaCO3	2320	WATER	mg/L	<1.0	53.2	56.9	107.0	7/28/03			
pH	150.1	WATER		5.85	6.10	6.10	100.0	7/28/03			
Spec. Cond.	120.1	WATER	umhos/cm	0.129	400	415	103.8	7/28/03			
Eh (mV)	2580	WATER	mV	N/A	+228	+232	101.8	7/28/03			
Ammonia as N	350.3	WATER	mg/L	<0.10	13.4	14.5	108.2	7/28/03			
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	10.0	9.70	97.0	7/31/03			
Acidity	2310	WATER	mg/L	<1.0	N/A		N/A	8/01/03			

LEGEND:

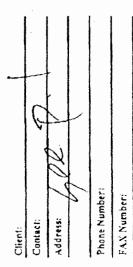
LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Client : GEOSYNTEC CONSULTANTS SVL JOB No: 106755											
			٢	-QC SAMPI	LE ID	Duplicate or	MSD-	Ма	atrix Spike		Analysis
1	Method M	atrix		Units	Result	Found	RPD%	Result	SPK ADD	۶R	Date
ls	200.7 W	IATERG	1	mg/L	0.040	0.038	5.1	1_14	1.00	110.0	8/03/03
la'	200.7 W	IATERG	1	mg/L	7.91	7.82	1.1	26.0	20.0	90.5	8/03/03
i'e	200.7 W	ATERG	1	mg/L .	2.35	2.51	6.6	12.3	10.0	99.5	8/03/03
ς	200.7 W	ATERG	1	mg/L	2130	1910	10.9	1890	30.0	R >4S	8/04/03
1g	200.7 W	ATERG	1	mg/L	0.567	0.591	4.1	21.0	20.0	102.2	8/03/03
1n	200.7 W	ATERG	1	mg/L	0.0804	0.0834	3.7	1.07	1.00	99.0	8/03/03
In	200.7 W	ATERG	2	mg/L	<0.020*	<0.020*	UDL	0.0640	0 1.00	6.4	8/03/03
la	200.7 W	ATERG	1	mg/L	73.6	74.8	1.6	90.7	20.0	85.5	8/03/03
:1	30.0.0 W	ATERG	1	mg/L	27.3	26.8	1.8	37.1	10.0	98.0	7/29/03
7	300.0 W	ATERG	1	mg/L	2.70	2.46	9.3	11.8	10.0	91.0	7/28/03
102-N	300.0 W	ATERG	1	mg/L	<0.050	<0.050	UDL	1.71	2.00	85.5	7/28/03
103-и	300.0 W	ATERG	1	mg/L	<0.050	<0.050	UDL	1.91	2.00	95.5	7/28/03
504	300.0 W	ATERG	1	mg/L	886	904 :	2.0	1160	250	109.6	7/28/03
1 LK	2320 W	ATERG	1	mg/L	1550	1550	0.0	N/A	N/A	N/A	7/28/03
203	2320 W	ATERG	1	mg/L	750 .	797	6.1	N/A	N/A	N/A	7/28/03
ICO3	2320 W	ATERG	1	mg/L	<1.0	<1.0	UDL	N/A	N/A	N/A	7/28/03
ЪH	150.1 W	ATERG	1	-	12.10	12.10	0.0	N/A	N/A	N/A	7/28/03
COND	120.1 W	ATERG	1	umhos/c	7790	7760	0.4	N/A	N/A	N/A	7/28/03
Eh	2580 W	ATERG	1	mV	+58.5	+57.8	1.2	N/A	N/A	N/A	7/28/03
VH3-N	350.3 W	ATERG	1	mg/L	2.64	2.62	0.8	4.64	2.00	100.0	7/28/03
	415.1 W				69.8	70.0	0.3	124	50.0	108.4	7/31/03
ACID	2310 W				1490	1450	2.7	N/A	N/A	N/A	8/01/03


ND:

: = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution.
RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike AddedQC Sample 1:SVL SAM No.: 343324Client Sample ID: FSP-06^TQC Sample 2:SVL SAM No.: 344200Client Sample ID: FSP-06^DQC Sample 3:SVL SAM No.: 343339Client Sample ID: PM-16

-i M SVL-COC 12/95 FOR SYL USE ONLY SVL JOB # Comments Time: Line Page I Q たう Ì EHN Date: X Date Yellow: CUSTOMER COPY 3 = Soil/Sediment, 4 = Rinsale, 5 = Oil 1 = Surface Water, 2 = Ground Water X W x X X X X X Table 1. -- Matrix Type 5 Ð Analyses Required 6 = Waste, 7 = Other (Specify) Ś X Samplers Signature: 5 X D D $\overline{\mathbf{x}}$ CHAIN OF CUSTODY RECORD **î**∕∕ White: LAB COPY 4 Other (Specify) Received by erived by 2) Ship samples promptly following collection. Preservative(s) HOVN Project Namer Mola we Falls * 3) Designate Sample Reject Disposition POSZH 1) Ensure proper container packaging. нсг FAX (208) 783-0891 1620-5.22-202 PON: 4 [2019/2. (2 EONH Time: Ĕ (yapreserved (lee Oaly) S 2 \leq 2 2 2 2 N/Å berstfil stans? Miscellapeous R el Containcrs One Government Gulch, Kellogg, ID 83837-0929 NOTES: ろ I sldeT mord Dates 2 NO ~ N Date: Į (208) 784-1258 * Sample Reject: | | Refurn | | Dispose | | Store (30 Days) ady Trinel 28. Collected by: (Init.) SHKP 020 OUH 1400 Soo Que 50 0020 714-969-0820 2 Time S Collection いかい 115 03 NH03 Lab Name: SVL Analytical, Inc. Date 540-452 X Reach Client: LocoSynt.ec untington Address: ZCD M Sample ID £0.03 0 5.00 F47 05 Contact: PTIC ۱ たりつぐ Phone Numbers たんじい Relinguished by: FAN Number: Relipgaished by FSP-C 7 なり Address: tt -Y ġ ¥ XX **

CHAIN OF CUSTODY RECORD

5
щ
5
0

1) Ensure proper container packaging.

2) Ship samples promptly following collection. * 3) Designate Sample Reject Disposition PO#:

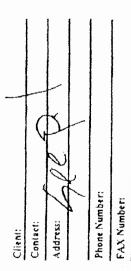
Project Name:

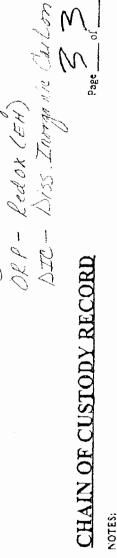
3 = SolVSediment, 4 = Ripsate, 5 = Oil I = Surface Water, 2 = Ground Water 6 = Waste, 7 = Other (Specify) Samplers Signature:

Page 2 of 2

Table 1. -- Matrix Type

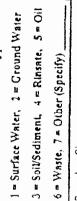
Lab Name: SVL Analytical, Inc.	tical, Inc.	(208) 7	(208) 784-1258	~	FAX (208) 7	FAX (208) 783-0891	1				Αn	B ly'se	Analyses Required	Fed		-1			
Address: One Government Gulch, Kellogg,	ment Gulch,	Kellogg, I	D 8383	83837-0929	6								È.	$\frac{1}{2}$	7-5	Í	⊇¢ -7			
	Collection	tion	Mis	cella	Miscellaneous		Pres	Preservative(s)	ive(s)				ŢĮ,	1 () 1	4	7	\mathbf{T}^{\dagger}	6		_
Sample D	Dale	Time	Collected by: (Init.)	Маנгіх Туре Ггот Тяде I	No. of Containers	Sample Filtered ? Y/N Unpreserved (Ice Only)	EONH	HJ2O4 HCT	ΗΟΥΝ	Other (Specify)	ECORD'S	$-e> \sqrt{10}$	6 total alkalimity A	and the second and a second and a second and a second a s	1991	T+barkezi Onm	Eante av EIN	Com	Comments	
*= + + > > 3	711403	OF	do l	3	21						х Х	Y V	×	Х Х	<u>۶</u>	X	X			
米ゴロノーの	71463	(122)		3	<u>.</u> N	ς Γ	•				$\hat{\mathbf{x}}$	× v	Y	X X	-					
* #1-16	71/7/03	0240	````	5	、 、 、 、	lΓ	-				X	\times	\times	X						
来まじ, 18		(m)		1	2		•				X	X V	Х	X	$\overline{\nabla}$				4	
ションしつ		∞		Ø	3	(Ý	4	Х	XX	$\overline{\mathbf{v}}$					
1 . K.P. (3)		8		M							\sim	2			\times	\times				
米トキシンシン		1 Onl		Ń	0		-				X	メメ	X	× X	x X	X	X			
N 20-25		2002		$\overline{\eta}$	2		ر ا											701	\cap	
· tr v , v		0071	5	0	C						X	X X	Х	X X						
h. yeidsa m		1490	Z	5	A A												-	170	\wedge	
Relinguished by:		1 6 1	1	Dalei		Tine:	ae:	Re	Received by:								Date:	1	ניסוג:	
Relinguisted by:				Dsie:		Time:	ne:	Rc	Received by:								Date:	1	Time:	
																				ſ

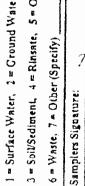

* Sample Reject: | | Return | | Dispose | | Store (30 Days)


SVL-COC 12/95

Vellow: CUSTOMER COPY

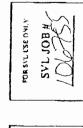
White: LAB COPY

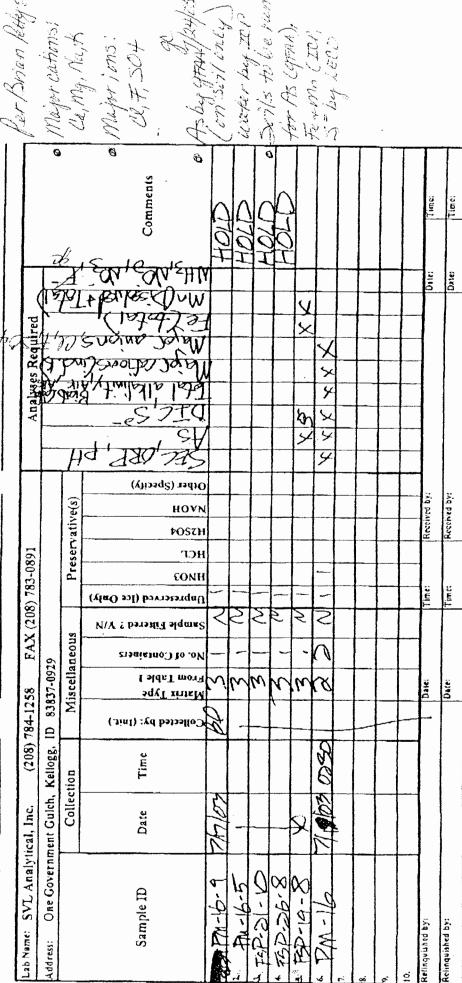




SEC - ('onductivity






Project Name:

PO#:

X

* Sample Reject: [] Return |] Dispose [] Store (30 Days)

SVL-COC 12/95

Yellow: CUSTOMER COPY

White: LAB COPY

101AL P. 04

......

 SVL ANALYTICAL, INC.
 Certificate: CA CERTIFICATE NO. 2080

 One Government Gulch
 P.O. Box 929
 Kellogg, Idaho
 83837-0929
 Phone: (208)784-1258
 Fax: (208)783-0891

LLIENT : GeoSyntec PROJECT: LLIENT SAMPLE ID:					SVL JOB: SAMPLE:	106973 345929
Sample Collected: Sample Receipt : Date of Report :	7/31/03 8/04/03 8/20/03	7:41			Matrix:	WATERG
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	2640	mg CaCO3/L		2320	8/11/03	
CO3, CaCO3	1420	mg CaCO3/L		2320	8/11/03	
Spec. Cond.	12600	umhos/cm		120.1	8/07/03	
Eh (mV)	-182	mV		2580	8/11/03	
HCO3, CaCO3	<1.0	mg CaCO3/L		2320	8/11/03	
рH	12.10			150.1	8/11/03	
Calcium	3.80	mg/L		200.7	8/18/03	
Chloride	54.6	mg/L	10	300.0	8/05/03	
Fluoride	1.50	mg/L	10	300.0	8/05/03	
Potassium	3140	mg/L	100	200.7	8/18/03	
Magnesium	0.095	mg/L		200.7	8/18/03	
Sodium	129	mg/L		200.7	8/18/03	
•Sulfide	2.30	mg/L		376.1	8/06/03	
Sulfate, SO4	1670	mg/L	100	300.0	8/05/03	
Arsenic	0.180	mg/L		200.7	8/18/03	
Silicon	58.1	mg/L		200.7	8/18/03	
INORGANIC CARBON	70.9	mg/L		415.1	8/07/03	

8/20/03 11:11

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

PRO	ENT : GeoSyntec JECT: ENT SAMPLE ID:						: 106973 : 345932 : TOT/DIS
	ple Collected:	7/31/03	9:10				
	ple Receipt :	8/04/03	9.10			Matrix	WATERG
	e of Report :	8/20/03				Mati IA.	WAILING
Dat	e of Report .	0/20/05					-
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	2320	mg CaCO3/L		2320	8/11/03	
Т	CO3, CaCO3	1090	mg CaCO3/L		2320	8/11/03	
Т	Spec. Cond.	15400	umhos/cm		120.1	8/07/03	
Т	Eh (mV)	-167	mV		2580	8/11/03	
T	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	8/11/03	
T	pH	12.00			150.1	8/11/03	
T	Calcium	4.22	mg/L		200.7	8/18/03	
T	Chloride	59.6	mg/L	10	300.0	8/05/03	
T	Fluoride	1.60	mg/L	10	300.0	8/05/03	
T	Potassium	3670	mg/L	100	200.7	8/18/03	
T	Magnesium	0.177	mg/L		200.7	8/18/03	
Т	Sodium	145	mg/L		200.7	8/18/03	
Т	Ammonia as N	3.12	mg/L		350.1	8/05/03	
T	Nitrite-N	<0.50*	mg/L	10	300.0	8/05/03	
Т	Nitrate-N	<0.050	mg/L		300.0	8/05/03	
Т	Sulfide	11.5	mg/L		376.1	8/06/03	
Т	Sulfate, SO4	1960	mg/L	100	300.0	8/05/03	
' T	Arsenic	0.185	mg/L		200.7	8/18/03	
т	Iron	13.9	mg/L		200.7	8/18/03	
T	Manganese	0.232	mg/L		200.7	8/18/03	
T	Silicon	77.3	mg/L		200.7	8/18/03	
Т	INORGANIC CARBON	95.3	mg/L		415.1	8/07/03	
D	Manganese	0.0033	mg/L		200.7	8/18/03	
D	Silicon	68.3	mg/L		200.7	8/18/03	
L			1				

Filtered fraction: 345934 *Elevated detection limit due to matrix interference. NO2-N, NO3-N: RECEIVED AND ANALYZED OUT OF HOLDING TIME. AMMONIA-N: RAW SAMPLES RECEIVED; SVL PRESERVED AND ANALYZED.

Ale low

Date \$20/03 8/20/03 11:11

CLIENT : GeoSyntec	:				SVL JOB:	10697
PROJECT:	D)(17				SAMPLE:	34593
CLIENT SAMPLE ID: Sample Collected:	7/31/03	8:50				
	8/04/03	0.50			Matrix:	መንጥድ ጋ
Date of Report :					Mati IA.	WAIER
Date of Report :	0720705					
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	754	mg CaCO3/L		2320	8/11/03	
CO3, CaCO3	506	mg CaCO3/L		2320	8/11/03	
Spec. Cond.	4360	umhos/cm		120.1	8/07/03	
Eh (mV)	-113	ΜV		2580	8/11/03	
HCO3, CaCO3	<1.0	mg CaCO3/L		2320	8/11/03	
pH	11.40			150.1	8/11/03	
Calcium	5.48	mg/L		200.7	8/18/03	
Chloride	22.2	mg/L	10	300.0	8/05/03	
Fluoride	1.21	mg/L	10	300.0	8/05/03	
Potassium	990	mg/L	100	200.7	8/18/03	
Magnesium	0.047	mg/L		200.7	8/18/03	
Sodium	47.7	mg/L		200.7	8/18/03	
Sulfide	3.90	mg/L		376.1	8/06/03	
Sulfate, SO4	394	mg/L	25	300.0	8/05/03	
Arsenic	0.051	mg/L		200.7	8/18/03	
Silicon	18.2	mg/L		200.7	8/18/03	
TNODONNIO ONDRON	25 0			415 1	0/07/00	

Klew

mg/L

25.9

Reviewed By:

INORGANIC CARBON

SVL ANALYTICAL, INC.

8/20/03 11:11 Date

8/07/03

415.1

Certificate: CA CERTIFICATE NO. 2080

OVL ANALYTICAL, INC.One Government GulchP.O.		Kellogg, Idaho	83837-0929		icate: CA CERTIF 4-1258 • Fax:	
LIENT : GeoSyntec	1				SVL JOB:	106973
PROJECT:					SAMPLE:	345926
CLIENT SAMPLE ID:						
Sample Collected:	7/31/03	5:45				
Sample Receipt :	8/04/03				Matrix:	WATERG
Date of Report :	8/20/03					
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	1890	mg CaCO3/I	-	2320	8/11/03	
CO3, CaCO3	1340	mg CaCO3/I	- 	2320	8/11/03	
Spec. Cond.	9000	umhos/cm		120.1	8/07/03	
Eh (mV)	+58.1	mV		2580	8/11/03.	
HCO3, CaCO3	<1.0	mg CaCO3/I	- -	2320	8/11/03	
pH	12.10	-		150.1	8/11/03	
Calcium	3.99	mg/L		200.7	8/18/03	
Chloride	50.3	mg/L	.10	300.0	8/05/03	
Fluoride	<0.20*	mg/L	2	300.0	8/05/03	
Potassium	2390	mg/L	100	200.7	8/18/03	
Magnesium	<0.040	mg/L		200.7	8/18/03	
Sodium	156	mg/L		200.7	8/18/03	
Sulfide	3.10	mg/L		376.1	8/06/03	
Sulfate, SO4	1420	mg/L	100	300.0	8/05/03	
Arsenic	0.181	mg/L		200.7	8/18/03	
Silicon	42.4	mg/L		200.7	8/18/03	
INORGANIC CARBON	114	mg/L		415.1	8/07/03	

Salarous

plevated detection limit due to matrix interference.

Reviewed By:_____

Date 8/20/03 8/20/03 11:11

.

_

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

Certificate: CA CERTIFICATE NO. 2080

-1

LIENT : GeoSyntec ROJECT: LIENT SAMPLE ID: 1	PM-19				SVL JOB: SAMPLE:	106973 345927
ample Collected: ample Receipt : ate of Report :	7/31/03 8/04/03 8/20/03	6:08			Matrix:	WATERG
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	2220	mg CaCO3/L		2320	8/11/03	
CO3, CaCO3	1530	mg CaCO3/L		2320	8/11/03	
Spec. Cond.	10500	umhos/cm		120.1	8/07/03	
Eh (mV)	+49.5	mV		2580	8/11/03	
HCO3, CaCO3	<1.0	mg CaCO3/L		2320	8/11/03	
pH	11.70			150.1	8/11/03	
Calcium	3.06	mg/L		200.7	8/18/03	
Chloride	49.0	mg/L	10	300.0	8/05/03	
Fluoride	1.40	mg/L	10	300.0	8/05/03	
Potassium	2830	mg/L	100	200.7	8/18/03	
Magnesium	<0.040	mg/L		200.7	8/18/03	
Sodium	120	mg/L		200.7	8/18/03	
Sulfide	2.50	mg/L		376.1	8/06/03	
Sulfate, SO4	1570	mg/L	100	300.0	8/05/03	
Arsenic	0.221	mg/L		200.7	8/18/03	
Silicon	44.4	mg/L		200.7	8/18/03	
INORGANIC CARBON	129	mg/L		415.1	8/07/03	

SVL ANALYTICAL, INC. One Government Gulch P.O. Box 929	Kellogg, Idaho	83837-0929		icate: CA CERTIF 4-1258 • Fax:	
LIENT : GeoSyntec				SVL JOB:	
PROJECT: CLIENT SAMPLE ID: PM-20				SAMPLE:	345928
Sample Collected: 7/31/03	7:09				
Sample Receipt : 8/04/03	,.05			Matrix:	WATERG
Date of Report : 8/20/03				THE FILME	
Determination Result	Units	Dilution	Method	Analyzed	J
Alkalinity,CaCO3 518	mg CaCO3/I		2320	8/11/03	
CO3, CaCO3 <1.0	mg CaCO3/I	J	2320	8/11/03	
Spec. Cond. 2740	umhos/cm		120.1	8/07/03	
Eh (mV) +193	mV		2580	8/11/03	
HCO3, CaCO3 518	mg CaCO3/I	J	2320	8/11/03	
рН 8.16			150.1	8/11/03	
Calcium 139	mg/L		200.7	8/18/03	
Chloride 30.9	mg/L	10	300.0	8/05/03	
Fluoride <1.0*	mg/L	10	300.0	8/05/03	
Potassium 600	mg/L	100	200.7	8/18/03	
Magnesium 27.2	mg/L		200.7	8/18/03	
Sodium 68.2	mg/L		200.7	8/18/03	
Sulfide <1.0	mg/L		376.1	8/06/03	
Sulfate, SO4 785	mg/L	50	300.0	8/05/03	
Arsenic <0.010	mg/L		200.7	8/18/03	
Silicon 5.81	mg/L		200.7	8/18/03	
INORGANIC CARBON 54.6	mg/L		415.1	8/07/03	

Altaleus

levated detection limit due to matrix interference.

Date 8/20/03 8/20/03 11:11

-	NALYTICAL, INC. nment Gulch • P.O.	Box 929 •	Kellogg, Idaho	83837-0929		icate: CA CERTIF 1-1258 • Fax:	
PROJ CLIE	ENT : GeoSyntec JECT: ENT SAMPLE ID: ble Collected:		8:20			SVL JOB: SAMPLE: T	
Samp	e of Report :	8/04/03 8/20/03	0.20			Matrix:	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	431	mg CaCO3/L		2320	8/11/03	
Т	CO3, CaCO3	343	mg CaCO3/L		2320	8/11/03	
Т	Spec. Cond.	2780	umhos/cm		120.1	8/07/03	
Т	Eh (mV)	+4.6	mV		2580	8/11/03	
Т	HCO3, CaCO3	87.8	mg CaCO3/L		2320	8/11/03	
Т	PH	10.30			150.1	8/11/03	
Т	Calcium	25.7	mg/L		200.7	8/18/03	
Т	Chloride`	74.2	mg/L	25	300.0	8/05/03	
Т	Fluoride	0.70	mg/L		300.0	8/05/03	
Т	Potassium	680	mg/L	100	200.7	8/18/03	
TI	Magnesium	5.53	mg/L		200.7	8/18/03	
Т	Sodium	130	mg/L		200.7	8/18/03	
Т	Ammonia as N	2.37	mg/L		350.1	8/05/03	
ТІ	Nitrite-N	<1.25*	mg/L	25	300.0	8/05/03	
ТІ	Nitrate-N	<0.050	mg/L		300.0	8/05/03	
Т	Sulfide	<1.0	mg/L		376.1	8/06/03	
Т	Sulfate, SO4	650	mg/L	50	300.0	8/05/03	
Т	Arsenic	0.065	mg/L		200.7	8/18/03	
T	Iron	2.10	mg/L		200.7	8/18/03	
	Manganese	0.0539	mg/L		200.7	8/18/03	
	Silicon	11.6	mg/L		200.7	8/18/03	
T :	INORGANIC CARBON	19.9	mg/L		415.1	8/07/03	
DI	Manganese	0.0216	mg/L		200.7	8/18/03	

Filtered fraction: 345933 *Elevated detection limit due to matrix interference. NO2-N, NO3-N: RECEIVED AND ANALYZED OUT OF HOLDING TIME. AMMONIA-N: RAW SAMPLES RECEIVED;SVL PRESERVED AND ANALYZED.

Reviewed By:_____

Allerens

Date \$70/03 8/20/03 11:11

Quality Control Report Part I Prep Blank and Laboratory Control Sample

nt :GeoSyntee	2						SVL JOB 1	No: 106973 Analysis
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS	5Found	LCS %R	Date
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.988	98.8	8/18/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	21.2	106.0	8/18/03
Iron	200.7	WATER	mg/L	<0.020	10.0	10.1	101.0	8/18/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	29.9	99.7	8/18/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.1	100.5	8/18/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.01	101.0	8/18/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.4	102.0	8/18/03
Silícon	200.7	WATER	mg/L	<0.080	5.00	5.13	102.6	8/18/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.89	97.8	8/05/03
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.40	96.0	8/05/03
Nitrite-N	300.0	WATER	mg/L	<0.050	2.50	2.54	101.6	8/05/03
Nitrate-N	300.0	WATER	mg/L	<0.050	2.50	2.60	104.0	8/05/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.58	95.8	8/05/03
Alkalinity,CaCO3	2320	WATER	mg/L	<1.0	53.0	57.5	108.5	8/11/03
рН	150.1	WATER		5.81	6.10	6.11	100.2	8/11/03
Spec. Cond.	120.1	WATER	umhos/cm	0.167	375	355	94.7	8/07/03
Eh (mV)	2580	WATER	mV	+5.6	+228	+236	103.5	8/11/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	5.00	5.20	104.0	8/07/03
Sulfide	376.1	WATER	mg/L	<1.0	2.00	1.70	85.0	8/06/03
Ammonia as N	350.1	WATER	mg/L	<0.010	10.5	9.94	94.7	8/05/03

LEGEND:

LCS = Laboratory Control Sample

.

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

^D

-	t :GeoSyntec								o: 106973
		C-QC SAMPI		Duplicate c			atrix Spike		Analysis
ſest	Method Matrix	Units	Result	Found	RPD%	Result	SPK ADD	%R	Date
3	200.7 WATERG	l 1 mg/L	0.065	0.065	0.0	1.09	1.00	102.5	8/18/03
£	200.7 WATERG	2 mg/L	3.99	4.10	2.7	26.1	20.0	110.6	8/18/03
a	200.7 WATERG	1 mg/L	25.7	26.1	1.5	47.9	20.0	111.0	8/18/03
Ð	200.7 WATERG	1 mg/L	2.10	2.01	4.4	12.0	10.0	99.0	8/18/03
	200.7 WATERG	2 mg/L	2390	2250	6.0	5170	30.0	R >4S	8/18/03
	200.7 WATERG	1 mg/L	680	660	3.0	3420	30.0	R >4S	8/18/03
g	200.7 WATERG	2 mg/L	<0.040	<0.040	UDL	20.6	20.0	103.0	8/18/.03
ģ	200.7 WATERG	1 mg/L	5.53	5.62	1.6	27.5	20.0	109.9	8/18/03
n	200.7 WATERG	1 mg/L	0.0539	0.0539	0.0	1.06	1.00	100.6	8/18/03
n	200.7 WATERG	3 mg/L	0.0033	0.0031	6.3	0.936	1.00	93.3	8/18/03
a	200.7 WATERG	2 mg/L	156	151	3.3	165	20.0	R >4S	8/18/03
a	200.7 WATERG	1 mg/L	130	131	0.8	144	20.0	R >4S	8/18/03
i	200.7 WATERG	1 mg/L	11.6	11.6	0.0	16.6	5.00	100.0	8/18/03
i	200.7 WATERG	3 mg/L	68.3	68.2	0.1	N/A	N/A	N/A	8/18/03
1	300.0 WATERG	1 mg/L	74.2	73.4	1.1	120	50.0	91.6	8/05/03
	300.0 WATERG	1 mg/L	0.70	0.67	4.4	2.36	2.00	83.0	8/05/03
02-N	300.0 WATERG	1 mg/L	<1.25*	<1.25*	UDL	47.4	50.0	94.8	8/05/03
03-N	300.0 WATERG	1 mg/L	<0.050	<0.050	UDL	2.00	2.00	100.0	8/05/03
04	300.0 WATERG	1 mg/L	650	648	0.3	906	250	102.4	8/05/03
LK	2320 WATERG	1 mg/L	431	434	0.7	N/A	N/A	N/A	8/11/03
03	2320 WATERG	1 mg/L	343	340	0.9	N/A	N/A	N/A	8/11/03
CO3	2320 WATERG	1 mg/L	87.8	93.5	6.3	N/A	N/A	N/A	8/11/03
·H	150.1 WATERG	1	10.30	10.30	0.0	N/A	N/A	N/A	8/11/03
1140	120.1 WATERG	1 umhos/c	2780	2770	0.4	N/A	N/A	N/A	8/07/03
	2580 WATERG	1 m∨	+4.6	+4.3	6.7	N/A	N/A	N/A	8/11/03
RC. JD	415.1 WATERG	1 mg/L	19.9	18.8 M	125.2	81.7	50.0	123.6	8/07/03
(H3-N	350.1 WATERG	1 mg/L	2.37	2.32	2.1	4.52	2.00	107.5	8/05/03

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution.
RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; $\Re R$ = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added OC Sample 1: SVL SAM No : 345930 Cliept Sample ID: PM=21

QC Sample 1:SVL SAM No.: 345930Client Sample ID: PM-21TQC Sample 2:SVL SAM No.: 345926Client Sample ID: PM-18

QC Sample 3: SVL SAM No.: 345934 Client Sample ID: PM-16

. .

Eqtils use solat to fiter + pres tens sure l'et as past Z tor per Brind - CM + he decused 101AL P.02 272 (12) (12) (122) 344 (122) 848.9702 CHAIN OF CUSTODY RECORD Time: 1:50 m ġ Time: 4:00 09/10/01 Revision X Y P++4 86 9.0 7 COOLER RECEIP Brian ア ъ TEMP = REQUESTED ANALYSES X P.O. NO. 3 à 4 Q 489 1494 Dale: NR SCH Dale: Oate: refrequent $\overline{\mathbf{x}}$ uW NO3 MO3 5510 7-19] Page Page EDB / DBCP (504.1) or (8011) PCBs (8082) Z CLIENT PROJECT NAME / NUMBER: A 06470 (A1808) T239 Dark (JOLZ8) \$ JOAS VOCs (5035 / 82608) EnCore SAMPLER(S): (SIGNATURE) 2 Q VOCs (82608) PROJECT CONTACT PIQN NO. DISTRIBUTION: While with final report, Green to File, Yeltow and Pink to Client. (81208) ZNO8RAJOJAH b Received for Laboratory by: (Signature) 81EX / W18E (80218) 6 10 (O) HAT (9) Hat (BIgnature) py: (Signature) DE CONTEC, On HO, OF N/ Exizer 2001 CONT. MMM M \mathcal{M} M M MATRIX He perived by 0 0 . So S 6 Ø 1 ð 1-20-1and a c eceived (0,0%) 200 7109 1100 (3:1) 11:0 14:0 JHE The surger SAMPLING C DATE 7/31 5 M (2) 2) ſ Container 🗖 72 HR V È COELT REPORTING COM REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) SAMPLE ID 70(-(1++) 804 760 trout ריאושואואנאשנא J GARDEN OROVE, CA 92841-1432 -1- WA 0 48 HR -WC ABORA. URES, ING. 1-4 -Wa ۱ NSOC 1 ξ TAD LINCOLN WAY 10 14 24 HR elinquished by: (Signatore) (ed by:/(Signature) telinquished by: (Signature) PIPE. UST PIPE RWOCB REPORTING GEIMS ID ECIAL INSTRUCTIONS: t Bris LEN SAME DAY TEAST t B 979 1 - 0 bg z ORATORY LAN-0 9 4 2

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929

.

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 Fax: (208)783-0891

PRC CLI	IENT : GeoSyntec DJECT: LEHIGH IENT SAMPLE ID: nple Collected:		9:00				107389 351224 OT/DIS
San	nple Receipt : ce of Report :	8/29/03 9/16/03	5.00			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity, CaCO3	279	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	552	umhos/cm		120.1	9/04/03	
Т	Eh (mV)	+107	mV		2580	9/02/03	
Т	HCO3, CaCO3	279	mg CaCO3/L	•	2320	9/10/03	
Т	рH	7.45			150.1	8/29/03	
Т	TDS	291	mg/L		160.1	9/04/03	
Т	Turbidity	0.831	NTU'S		180.1	8/29/03	
Т	Calcium	70.0	mg/L		200.7	9/15/03	
Т	Chloride	0.68	mg/L		300.0	9/10/03	
Т	Potassium	6.0	mg/L		200.7	9/15/03	
Т	Magnesium	27.1	mg/L		200.7	9/15/03	
Т	Sodium	2.17	mg/L		200.7	9/15/03	
Т	Sulfide	<1.0	mg/L		376.1	9/04/03	
Т	Sulfate, SO4	16.5	mg/L		300.0	9/10/03	
Т	Arsenic	<0.010	mg/L		200.7	9/15/03	
Т	Chromium	<0.0060	mg/L		200.7	9/15/03	
Τ	Iron	0.041	mg/L		200.7	9/15/03	
, T	Manganese	0.0103	mg/L		200.7	9/15/03	
T	Phosphorus	<0.050	mg/L		200.7	9/15/03	
Т	Lead	<0.0050	mg/L		200.7	9/15/03	
Т	Silica	17.7	mg/L		200.7	9/15/03	
Т	INORGANIC CARBON	*16.2	mg/L		415.1	9/10/03	
D	Arsenic	<0.010	mg/L		200.7	9/15/03	
D	Chromium	<0.0060	mg/L		200.7	9/15/03	
D	Lead	<0.0050	mg/L		200.7	9/15/03	
TDS	CalcTDS: 312 /CalcTDS: 0.9	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	5.96meq/L 5.93meq/L	BALANCE 0.25%	
105	, calcibb. 0.9		u.	ANTON SUPI:	2.32med/P	0.238	

Filtered fraction: 351230 *DISSOLVED INORGANIC CARBON

Alterear

Date 9/16/03 9/16/03 10:41

Certificate: CA CERTIFICATE NO. 2080

Phone: (208)784-1258 • Fax: (208)783-0891

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929 CLIENT : GeoSyntec PROJECT: LEHIGH SVL JOB: 107389 SAMPLE: 351225 CLIENT SAMPLE ID: MW-8 TOT/DIS Sample Collected: 8/28/03 8:30 Sample Receipt : 8/29/03 Matrix: WATER Date of Report : 9/16/03 Determination Result Units Dilution Method Analyzed Alkalinity,CaCO3 285 mg CaCO3/L 2320 9/10/03 Т mg CaCO3/L 2320 т CO3, CaCO3 <1.0 9/10/03 Spec. Cond. 568 umhos/cm 120.1 Т 9/04/03 +117mV т Eh (mV) 2580 9/02/03 HCO3, CaCO3 285 Т mg CaCO3/L 2320 9/10/03 т 7.49 150.1 8/29/03 pН т TDS **3**22 mg/L 160.1 9/04/03 87.7 NTU'S 180.1 Т Turbidity 8/29/03 70.2 Т Calcium mq/L 200.7 9/15/03 9/10/03 Chloride 1.62 mg/L 300.0 Т 11.3 9/15/03 Potassium mg/L 200.7 Т 28.9 Т Magnesium mg/L 200.7 9/15/03 3.72 Т Sodium mg/L 200.7 9/15/03 Sulfide <1.0 mg/L Т 376.1 9/04/03 Sulfate, SO4 Т 19.0 mg/L 300.0 9/10/03 <0.010 Т Arsenic mg/L 200.7 9/15/03 Т Chromium <0.0060 mg/L 200.7 9/15/03 Т 6.46 mg/L 200.7 9/15/03 Iron 2.14 mg/L 200.7 9/15/03 Т Manganese Phosphorus <0.050 mg/L 200.7 т 9/15/03 Т Lead <0.0050 mg/L 200.7 9/15/03 т Silica 16.7 mg/L 200.7 9/15/03 т INORGANIC CARBON *61.8 mg/L 415.1 9/10/03 D Arsenic <0.010 mg/L 200.7 9/15/03 <0.0060 mg/L D Chromium 200.7 9/15/03 <0.0050 mg/L 200.7 D Lead 9/15/03 CATION SUM: CalcTDS: 333 TDS/Cond: 6.64meg/L BALANCE TDS/CalcTDS: 1.0 CalcTDS/Cond: ANION SUM: 6.14meg/L 3.91%

Filtered fraction: 351231 *DISSOLVED INORGANIC CARBON

Date <u>9/16/03</u> 9/16/03 10:41

SVL	ANALYTICAL,	INC.
-----	-------------	------

One Government Gulch . P.O. Box 929 .

Kellogg, Idaho 83837-0929 .

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 Fax: (208)783-0891

PRO CLI	ENT : GeoSyntec DJECT: LEHIGH ENT SAMPLE ID:		-			SVL JOB: SAMPLE: TO	
Sam	ple Collected: ple Receipt : e of Report :	8/29/03 9/16/03	11.00			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	2330	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1230	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	11700	umhos/cm		120.1	9/04/03	
Т	Eh (mV)	-304	mV		2580	9/02/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	pH	12.20			150.1	8/29/03	
Т	TDS	6500	mg/L		160.1	9/04/03	
Т	Turbidity	1.06	NTU'S		180.1	8/29/03	
Т	Calcium	4.15	mg/L		200.7	9/15/03	
Т	Chloride	44.1	mg/L	25	300.0	9/10/03	
Т	Potassium	2800	mg/L	100	200.7	9/15/03	
Т	Magnesium	<0.040	mg/L		200.7	9/15/03	
Т	Sodium	104	mg/L		200.7	9/15/03	
Т	Sulfide	2.14	mg/L		376.1	9/04/03	
Т	Sulfate, SO4	1380	mg/L	100	300.0	9/10/03	
Т	Arsenic	0.192	mg/L		200.7	9/15/03	
Т	Chromium	<0.0060	mg/L		200.7	9/15/03	
T	Iron	0.786	mg/L		200.7	9/15/03	
T	Manganese	0.0069	mg/L		200.7	9/15/03	
(T	Phosphorus	1.28	mg/L		200.7	9/15/03	
Т	Lead	<0.0050	mg/L		200.7	9/15/03	
Т	Silica	89.8	mg/L		200.7	9/15/03	
Т	INORGANIC CARBON	*26.8	mg/L		415.1	9/10/03	
D	Arsenic	0_133	mg/L		200.7	9/15/03	
D	Chromium	<0.0060	mg/L		200.7	9/15/03	
D	Lead	<0.0050	mg/L		200.7	9/15/03	
TDS.	CalcTDS: 5840 /CalcTDS: 1.1	TDS/Con CalcTDS/Con	1	CATION S ANION S	4.		

Filtered fraction: 351232 *DISSOLVED INORGANIC CARBON

AlDraw Date 9/16/03 9/16/03 10:41 Reviewed By:

PR(CLI Sar Sar	LENT : GeoSynted DJECT: LEHIGH LENT SAMPLE ID: nple Collected: nple Receipt : te of Report :	MW∸11 8/28/03 8/29/03	10:15			SVL JOB: SAMPLE: T Matrix:	35122 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity,CaCO3	401	mg CaCO3/L		2320	9/10/03	
т	CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	803	umhos/cm		120.1	9/04/03	
т	Eh (mV)	+78.0	mV		2580	9/02/03	
т	HCO3, CaCO3	401	mg CaCO3/L		2320	9/10/03	
т	pH	7.45			150.1	8/29/03	
т	TDS	504	mg/L		160.1	9/04/03	
т	Turbidity	2.36	NTU'S		180.1	8/29/03	
т	Calcium	108	mg/L		200.7	9/15/03	
т	Chloride	3.15	mg/L		300.0	9/10/03	
Т	Potassium	3.2	mg/L		200.7	9/15/03	
Т	Magnesium	41.3	mg/L		200.7	9/15/03	
Т	Sodium	4.52	mg/L		200.7	9/15/03	
Т	Sulfide	<1.0	mg/L		376.1	9/04/03	
Т	Sulfate, SO4	51.0	mg/L	5	300.0	9/10/03	
Т	Arsenic	<0.010	mg/L		200.7	9/15/03	
Т	Chromium	<0.0060	mg/L		200.7	9/15/03	
Т	Iron	0.159	mg/L		200.7	9/15/03	
Т	Manganese	0.0051	mg/L		200.7	9/15/03	
Т	Phosphorus	<0.050	mg/L		200.7	9/15/03	
Т	Lead	<0.0050	mg/L		200.7	9/15/03	
Т	Silica	22.4	mg/L		200.7	9/15/03	
Т	INORGANIC CARBON	*48.9	mg/L		415.1	9/10/03	
D	Arsenic	<0.010	mg/L		200.7	9/15/03	
D	Chromium	<0.0060	mg/L		200.7	9/15/03	
D	Lead	<0.0050	mg/L		200.7	9/15/03	

Filtered fraction: 351233 *DISSOLVED INORGANIC CARBON

Allero Date 9/16/03 9/16/03 10:41

SVL ANALYTICAL, INC. One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 Fax: (208)783-0891

PRO	ENT : GeoSyntec JECT: LEHIGH					SVL JOB: SAMPLE:	35122
	ENT SAMPLE ID:		0.50			1	OT/DIS
	ple Collected:	8/28/03	9:50			Maturi	573 mm
	ple Receipt :	8/29/03				Matrix:	WATER
Dat	e of Report :	9/16/03			•		
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity, CaCO3	284	mg CaCO3/L		2320	9/10/03	
т	CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	1200	umhos/cm		120.1	9/04/03	
т	Eh (mV)	+75.3	mV		2580	9/02/03	
Т	HCO3, CaCO3	284	mg CaCO3/L		2320	9/10/03	
Т	pH	8.11			150.1	8/29/03	
Т	TDS	668	mg/L		160.1	9/04/03	
т	Turbidity	5.07	NTU'S		180.1	8/29/03	
Т	Calcium	53.8	mg/L		200.7	9/15/03	
Т	Chloride	182	mg/L	50	300.0	9/11/03	
Т	Potassium	47.5	mg/L		200.7	9/15/03	
Т	Magnesium	27.1	mg/L		200.7	9/15/03	
Т	Sodium	121	mg/L		200.7	9/15/03	
т	Sulfide	<1.0	mg/L		376.1	9/04/03	
т	Sulfate, SO4	27.6	mg/L	2	300.0	9/11/03	
Т	Arsenic	<0.010	mg/L		200.7	9/15/03	
Т	Chromium	<0.0060	mg/L		200.7	9/15/03	
т	Iron	0.519	mg/L		200.7	9/15/03	
T	Manganese	0.810	mg/L		200.7	9/15/03	
Т	Phosphorus	<0.050	mg/L		200.7	9/15/03	
Т	Lead	<0.0050	mg/L		200.7	9/15/03	
\mathbf{T}	Silica	9.51	mg/L		200.7	9/15/03	
T	INORGANIC CARBON	*43.3	mg/L		415.1	9/10/03	
D	Arsenic	0.010	mg/L		200.7	9/15/03	
D	Chromium	<0.0060	mg/L		200.7	9/15/03	
D	Lead	<0.0050	mg/L		200.7	9/15/03	
	CalcTDS: 642	TDS/Con	d:	CATION SUM:	11.44meg/L	BALANCE	
TDS.	/CalcTDS: 1.0	CalcTDS/Con	4	ANION SUM:	11.37meg/L	0.31%	

Filtered fraction: 351234 *DISSOLVED INORGANIC CARBON

Reviewed By:

Alleheur Date 9/16/03 9/16/03 10:41

Certificate: CA CERTIFICATE NO. 2080

Core Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

PRC CLI San	ENT : GeoSyntec DJECT: LEHIGH ENT SAMPLE ID: mple Collected:	MW-19 8/28/03 1	1:00				351229 DT/DIS
	aple Receipt : te of Report :	8/29/03 9/16/03				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	2280	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1390	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	11800	umhos/cm		120.1	9/04/03	
Т	Eh (mV)	-322	mV		2580	9/02/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	pH	12.20			150.1	8/29/03	
Т	TDS	6150	mg/L		160.1	9/04/03	
Т	Turbidity	1.05	NTU'S		180.1	8/29/03	
Т	Calcium	4.11	mg/L		200.7	9/15/03	
т	Chloride	45.1	mg/L	25	300.0	9/11/03	
Т	Potassium	2810	mg/L	100	200.7	9/15/03	
т	Magnesium	<0.040	mg/L		200.7	9/15/03	
Т	Sodium	104	mg/L		200.7	9/15/03	
Т	Sulfide	1.72	mg/L		376.1	9/04/03	
Т	Sulfate, SO4	1370	mg/L	100	300.0	9/11/03	
т	Arsenic	0.179	mg/L		200.7	9/15/03	
Т	Chromium	<0.0060	mg/L		200.7	9/15/03	
т	Iron	0.763	mg/L		200.7	9/15/03	
Т	Manganese	0.0072	mg/L		200.7	9/15/03	
т	Phosphorus	1.28	mg/L		200.7	9/15/03	
т	Lead	<0.0050	mg/L		200.7	9/15/03	
Т	Silica	88.7	mg/L		200.7	9/15/03	
·Τ	INORGANIC CARBON	*51.8	mg/L		415.1	9/10/03	
D	Arsenic	0.132	mg/L		200.7	9/15/03	
D	Chromium	<0.0060	mg/L		200.7	9/15/03	
D	Lead	<0.0050	mg/L		200.7	9/15/03	
TDS	CalcTDS: 5820 /CalcTDS: 1.1	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	76.64meq/L 75.36meq/L	BALANCE 0.84%	

Filtered fraction: 351235 *DISSOLVED INORGANIC CARBON

Killbeir Date 2/16/03 9/16/03 10:41

					Quality		
Part	Ι	Prep	Blank	and	Laboratory	Control	Sample

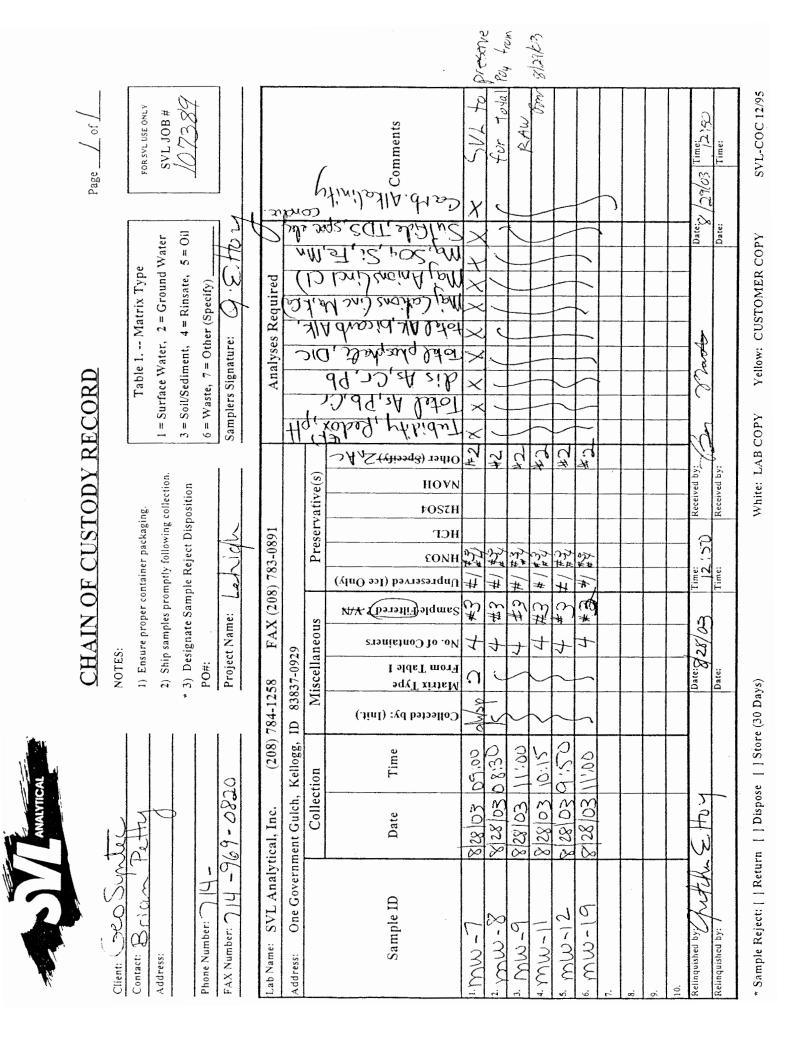
ient :GeoSyntec	:						SVL JOB	No: 107389
Analyte	Method	Matrix	Units	Prep Blank	TrueLC	SFound	LCS %R	Analysis Date
Ársenic	200.7	WATER	mg/L	<0.010	1.00	0.907	90.7	9/15/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	20.9	104.5	9/15/03
Chromium	200.7	WATER	mg/L	<0.0060	1.00	1.01	101.0	9/15/03
Iron	200.7	WATER	mg/L	<0.020	10.0	10.2	102.0	9/15/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.2	100.7	9/15/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.1	100.5	9/15/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.01	101.0	9/15/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.6	103.0	9/15/03
Phosphorus	200.7	WATER	mg/L	<0.050	2.50	2.43	97.2	9/15/03
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.980	98.0	9/15/03
Silica	200.7	WATER	mg/L	<0.171	10.7	11.1	103.7	9/15/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.81	96.2	9/10/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.97	99.7	9/10/03
Alkalinity,CaCO3	2320	WATER	mg/L	<1.0	55.0	57.0	103.6	9/10/03
pН	150.1	WATER		7.27	6.10	6.08	99.7	8/29/03
Spec. Cond.	120.1	WATER	umhos/cm	0.327	375	349	93.1	9/04/03
Eh (mV)	2580	WATER	mV	N/A	+228	+236	103.5	9/02/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	15.0	14.6	97.3	9/10/03
Sulfide	376.1	WATER	mg/L	<1.0	2.81	2.80	99.6	9/04/03
TDS	160.1	WATER	mg/L	<10	236	247	104.7	9/04/03
Turbidity	180.1	WATER	NTU'S	0.073	13.6	13.3	97.8	8/29/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable


Quality Control Report Part II Duplicate and Spike Analysis

) P	nt :Geo	Syntec		OC SAMPI		Duplicate or	MCD	Ma	SVI trix Spike): 107389 Analysis
Test	Method	Matrix	- 1	Units	Result	Found	RPD%	Result	SPK ADD	%R	Date
As	200.7	WATER	1	mg/L	<0.010	<0.010	UDL	0.934	1.00	93.4	9/15/03
As	200.7	WATER	2	mg/L	<0.010	<0.010	UDL	1.02	1.00	102.0	9/15/03
Ca	200.7	WATER	1	mg/L	70.0	68.4	2.3	91.2	20.0	106.0	9/15/03
Cr	200.7	WATER	1	mg/L	<0.0060	<0.0060	UDL	0.995	1.00	99.5	9/15/03
Cr	200.7	WATER	2	mg/L	<0.0060	<0.0060	UDL	1.01	1.00	101.0	9/15/03
Fe	200.7	WATER	1	mg/L	0.041	0.036	13.0		10.0	99.6	9/15/03
К	200.7	WATER	1	mg/L	6.0	5.9	1.7	36.2	30.0	100.7	9/15/03
Mg	200.7	WATER	1	mg/L	27.1	26.6	1.9	47.0	20.0	99.5	9/15/03
Mn	200.7	WATER	1	mg/L	0.0103	0.0099	4.0	1.01	1.00	100.0	9/15/03
Na	200.7	WATER	1	mg/L	2.17	2.12	2.3	22.8	20.0	103.2	9/15/03
P	200.7	WATER	1	mg/L	<0.050	<0.050	UDL	2.44	2.50	97.6	9/15/03
Pb	200.7	WATER	1	mg/L	<0.0050	<0.0050	UDL	0.988	1.00	98.8	9/15/03
Pb	200.7	WATER	2	mg/L	<0.0050	<0.0050	UDL	0.9998	1.00	100.0	9/15/03
SiO2	200.7	WATER	1	mg/L	17.7	17.4	1.7	28.2	10.7	98.1	9/15/03
Cl	300.0	WATER	1	mg/L	0.68	0.76	11.1	2.68	2.00	100.0	9/10/03
S04	300.0	WATER	1	mg/L	16.5	16.7	1.2	21.6	5.00	102.0	9/10/03
ALK	2320	WATER	1	mg/L	279	281	0.7	N/A	N/A	N/A	9/10/03
CO3	2320	WATER	1	mg/L	<1.0	<1.0	UDL	N/A	N/A	N/A	9/10/03
HCO3	2320	WATER	1	mg/L	279	281	0.7	N/A	N/A	N/A	9/10/03
рН	150.1	WATER	1		7.45	7.45	0.0	N/A	N/A	N/A	8/29/03
COND	120.1	WATER	1	umhos/c	552	541	2.0	N/A	N/A	N/A	9/04/03
Eh	2580	WATER	1	mV	+107	+110	2.8	N/A .	N/A	N/A	9/02/03
ORG18D	415.1	WATER	1	mg/L	16.2	14.4	11.8	44.5	50.0	56.6	9/10/03
TDS	160.1	WATER	1	mg/L	291	332	13.2	N/A	N/A	N/A	9/04/03
-	180.1	WATER	1	NTU'S	0.831	0.835	0.5	N/A	N/A	N/A	8/29/03

LEGEND:

 $\begin{array}{l} RPD\% = (\left|SAM - DUP\right|/((SAM + DUP)/2) * 100) & UDL = Both SAM \& DUP not detected. & Result or & Found: Interference required dilution. \\ RPD\% = (\left|SPK - MSD\right|/((SPK + MSD)/2) * 100) & M in Duplicate/MSD column indicates MSD. \end{array}$

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike AddedControl limits for MS recoveries apply only if the spike add is at least 0.25 times the concentration of the analyte in the sample.Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.QC Sample 1: SVL SAM No.: 351224 Client Sample ID: MW-7 TQC Sample 2: SVL SAM No.: 351230 Client Sample ID: MW-7 D

	ALYTICAL, INC. ment Gulch . P.O.	. Box 929 🔹	Kellogg, Idaho	83837-0929	Certif Phone: (208)784	icate: CA CERTIF -1258 • Fax:	
· PROJI CLIE	NT : GeoSyntec ECT: LEHIGH NT SAMPLE ID: le Collected:		2:30	<u> </u>		SVL JOB: SAMPLE: T	
Samp	le Receipt : of Report :	9/08/03 9/23/03	2.30			Matrix:	WATERG
D	Determination	Result	Units	Dilution	Method	Analyzed	
ТА	Alkalinity,CaCO3	2190	mg CaCO3/L		2320	9/10/03	
TC	CO3, CaCO3	1660	mg CaCO3/L		2320	9/10/03	
TS	Spec. Cond.	10900	umhos/cm		120.1	9/10/03	
ΤE	Eh (mV)	-246	mV		2580	9/09/03	
ТН	ICO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Тр	ъH	12.10			150.1	9/09/03	
ТТ	DS	6290	mg/L		160.1	9/11/03	
ТС	Calcium	5.15	mg/L		200.7	9/19/03	
TC	Chloride	81.6	mg/L	25	300.0	9/15/03	
TP	Potassium	2930	mg/L	100	200.7	9/21/03	
TM	lagnesium	0.158	mg/L		200.7	9/19/03	
TS	Sodium	152	mg/L		200.7	9/19/03	
TS	Sulfide	2.10	mg/L		376.1	9/10/03	
TS	Sulfate, SO4	1710	mg/L	100	300.0	9/15/03	
ТА	luminum	2.75	mg/L		200.7	.9/19/03	
ТА	rsenic	0.212	mg/L	5	200.7	9/22/03	
TI	ron	3.79	mg/L		200.7	9/19/03	
T M	langanese	0.0561	mg/L		200.7	9/19/03	
т р	hosphorus	2.22	mg/L	5	200.7	9/22/03	
TS	ilica	83.1	mg/L		200.7	9/19/03	
TI	NORGANIC CARBON	173	mg/L		415.1	9/17/03	
DA	luminum	2.67	mg/L		200.7	9/19/03	
DA	ršenic	0.215	mg/L		200.7	9/22/03	
DI	ron	3.01	mg/L		200.7	9/19/03	
DM	anganese	0.0484	mg/L		200.7	9/19/03	
DS	ilica	80.9	mg/L		200.7	9/19/03	
	alcTDS: 6410 alcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	82.69meq/L 81.70meq/L	BALANCE 0.60%	

Filtered fraction: 352874

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Date 9/23/03 12:53

PROJEC CLIENT	: GeoSyntec T: LEHIGH SAMPLE ID: Collected:		3:00			SVL JOB: SAMPLE: T	
Sample	Receipt : f Report :	9/08/03 9/23/03	5.00			Matrix:	WATER
Det	ermination	Result	Units	Dilution	Method	Analyzed	
T Alk	alinity,CaCO3	315	mg CaCO3/L		2320	9/10/03	
	, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
т Spe	c. Cond.	967	umhos/cm		120.1	9/10/03	
	(mV)	+62.9	mV		2580	9/09/03	
T HCO	3, CaCO3	315	mg CaCO3/L		2320	9/10/03	
т рН		7.82			150.1	9/09/03	
T TDS		573	mg/L		160.1	9/11/03	
T Cal	cium	84.3	mg/L .		200.7	9/19/03	
T Chl	oride	14.0	mg/L	2	300.0	9/15/03	
T Pot	assium	78.5	mg/L.		200.7	9/19/03	
T Mag	nesium	22.4	mg/L		200.7	9/19/03	
T Sod	ium	28.9	mg/L		200.7	9/19/03	
	fide	<1.0	mg/L		376.1	9/10/03	
	fate, SO4	148	mg/L	10	300.0	9/15/03	
	minum	0.142	mg/L		200.7	9/19/03	
	enic	0.014	mg/L		200.7	9/22/03	
T Iro		0.197	mg/L		200.7	9/19/03	
	ganese	0.905	mg/L		200.7	9/19/03	
	sphorus	0.256	mg/L		200.7	9/22/03	
T Sil		18.6	mg/L		200.7	9/19/03	
T INO	RGANIC CARBON	36.3	mg/L		415.1	9/11/03	
D Alu	minum	0.021	mg/L		200.7	9/19/03	
D Ars	enic	<0.010	mg/L		200.7	9/22/03	
D Iro		<0.020	mg/L		200.7	9/19/03	
D Man	ganese	0.186	mg/L		200.7	9/19/03	
D Sil	ica	9.65	mg/L		200.7	9/19/03	

.

Filtered fraction: 352875 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:_____

Date 1/23/03 9/23/03 12:53

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

PRC CLI	IENT : GeoSyntec DJECT: LEHIGH IENT SAMPLE ID:	РМЗ					107516 352856 OT/DIS
San	nple Collected: nple Receipt : te of Report :	9/04/03 9/08/03 9/23/03	5:15			Matrix:	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
т	Alkalinity, CaCO3	261	mg CaCO3/I	J	2320	9/10/03	
Т	CO3, CaCO3	<1.0	mg CaCO3/L	,	2320	9/10/03	
т	Spec. Cond.	1510	umhos/cm		120.1	9/10/03	
т	Eh (mV)	+88.6	mV		2580	9/09/03	
т	HCO3, CaCO3	261	mg CaCO3/I	J	2320	9/10/03	
т	рH	7.93	2		150.1	9/09/03	
т	TDS	962	mg/L		160.1	9/11/03	
Т	Calcium	153	mg/L		200.7	9/19/03	
T	Chloride	104	mg/L	25	300.0	9/15/03	
T	Potassium	145	mg/L		200.7	9/19/03	
Т	Magnesium	40.6	mg/L		200.7	9/19/03	
т	Sodium	68.8	mg/L		200.7	9/19/03	
T	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	404	mg/L	25	300.0	9/15/03	
т	Aluminum	0.067	mg/L		200.7	9/19/03	
Т	Arsenic	<0.010	mg/L		200.7	9/22/03	
Т	Iron	0.134	mg/L		200.7	9/19/03	
т	Manganese	0.964	mg/L		200.7	9/19/03	
T	Phosphorus	0.074	mg/L		200.7	9/22/03	
т	Silica	13.7	mg/L		200.7	9/19/03	
т	INORGANIC CARBON	347	mg/L		415.1	9/11/03	
D	Aluminum	<0.020	mg/L		200.7	9/19/03	
D	Arsenic	<0.010	mg/L		200.7	9/22/03	
D	Iron	<0.020	mg/L		200.7	9/19/03	
D	Manganese	0.789	mg/L		200.7	9/19/03	
D	Silica	12.7	mg/L		200.7	9/19/03	
TDS	CalcTDS: 1110 /CalcTDS: 0.9	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	17.75meq/L 16.55meq/L	BALANCE 3.50%	

. Filtered fraction: 352876

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:

Date 1/23/03 9/23/03 12:53

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

Certificate: CA CERTIFICATE NO. 2080

PRC CLI	ENT : GeoSyntec DJECT: LEHIGH ENT SAMPLE ID: mple Collected:	PM4 9/04/03	4:30			SVL JOB: SAMPLE: TO	
	ple Receipt : te of Report :	9/08/03 9/23/03				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	1350	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1150	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	6200	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-372	WM		2580	9/09/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	pН	11.80			150.1	9/09/03	
\mathbf{T}	TDS	3610	mg/L		160.1	9/11/03	
т	Calcium	3.76	mg/L		200.7	9/19/03	
т	Chloride	80.4	mg/L	25	300.0	9/15/03	
Т	Potassium	1700	mg/L	100	200.7	9/21/03	
Т	Magnesium	0.109	mg/L		200.7	9/19/03	
Т	Sodium	104	mg/L		200.7	9/19/03	
Т	Sulfide	2.40	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	916	mg/L	50	300.0	9/15/03	
T	Aluminum	1.72	mg/L		200.7	9/19/03	
т	Arsenic	0.091	mg/L	5	200.7	9/22/03	
Т	Iron	1.03	mg/L		200.7	9/19/03	
Т	Manganese	0.0160	mg/L		200.7	9/19/03	
Т	Phosphorus	1.15	mg/L	5	200.7	9/22/03	
Т	Silica	55.8	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	67.6	mg/L		415.1	9/11/03	
D	Aluminum	1.55	mg/L		200.7	9/19/03	
D	Arsenic	0.096	mg/L		200.7	9/22/03	
D	Iron	0.711	mg/L		200.7	9/19/03	
D	Manganese	0.0118	mg/L		200.7	9/19/03	
D	Silica	53.1	mg/L		200.7	9/19/03	
	CalcTDS: 3750	TDS/Con	d:	CATION SUM:	48.64meg/L	BALANCE	
rds	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	48.21meq/L	0.448	

Filtered fraction: 352877 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:_____

Allan Date 2/23/03 9/23/03 12:53

.

SVL	ANA	LYTI	CAL,	INC.
-----	-----	------	------	------

One Government Gulch P.O. Box 929 .

Certificate: CA CERTIFICATE NO. 2080 Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03								
LLENT SAMPLE ID: PM5 TOT/DIS sample Collected: 9/04/03 4:10 sample Receipt : 9/23/03 Matrix: WATER Determination Result Units Dilution Method Analyzed T Alkalinity, CaCO3 693 mg CaCO3/L 2320 9/10/03 T Co3, caCO3 558 mg CaCO3/L 2320 9/10/03 T Spec. Cond. 6240 unhos/cm 120.1 9/10/03 T Betormination 120 9/10/03 9/10/03 T Betormination 120.1 9/10/03 T Spec. Cond. 6240 unhos/cm 120.1 9/10/03 T Betormination 10.30 150.1 9/09/03 T TDS 3580 mg/L 200.7 9/19/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Sulfate, SO4 435 mg/L 200.7 9/19/03 T Sulfate, SO4 435 mg/L 200.7 9/19/03 T Aluminum 0.273			2					
Sample Collected: 9/04/03 4:10 Matrix: WATER Sample Receipt : 9/08/03 Matrix: WATER Determination Result Units Dilution Method Analyzed T Alkalinity, CaC03 693 mg CaC03/L 2320 9/10/03 T C03, CaC03 558 mg CaC03/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Bh (mV) -128 mV 2580 9/09/03 T HC03, CaC03 135 mg CaC03/L 2320 9/10/03 T DB 3580 mg/L 201.1 9/10/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Coloride 1500 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Alsenic 0.374 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Sample Receipt 9/08/03 Matrix: WATER Determination Result Units Dilution Method Analyzed T Alkalinity,CaCO3 693 mg CaCO3/L 2320 9/10/03 T C03, CaCO3 558 mg CaCO3/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Eh (mV) -128 mV 2580 9/09/03 T FB (mV) -128 mV 2580 9/09/03 T DFH 10.30 150.1 9/10/03 T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Calcium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Solium 742 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.7				1.10			1	OT/DIS
Date of Report : 9/23/03 Determination Result Units Dilution Method Analyzed T Alkalinity,CaC03 693 mg CaC03/L 2320 9/10/03 T C03, CaC03 558 mg CaC03/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T BM (mV) -128 mV 2580 9/09/03 T HC03, CaC03 135 mg CaC03/L 2320 9/10/03 T DB 3580 mg/L 160.1 9/10/03 T DEdicium 10.5 mg/L 200.7 9/19/03 T Calcium 162 mg/L 200.7 9/19/03 T Solium 742 mg/L 200.7 9/19/03 T Solium 742 mg/L 200.7 9/19/03 T Sulfate, S04 <td></td> <td></td> <td></td> <td>4:10</td> <td></td> <td></td> <td></td> <td></td>				4:10				
Determination Result Units Dilution Method Analyzed T Alkalinity,CaCO3 693 mg CaCO3/L 2320 9/10/03 T CO3, CaCO3 558 mg CaCO3/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Eh (mV) -128 mV 2580 9/09/03 T HCO3, CaCO3 135 mg CaCO3/L 2320 9/10/03 T HCO3, CaCO3 135 mg CaCO3/L 2320 9/10/03 T HCO3, CaCO3 135 mg CaCO3/L 2320 9/10/03 T DFH 10.30 150.1 9/09/03 9/19/03 T Calcium 10.5 mg/L 500 300.0 9/15/03 T Calcium 1.62 mg/L 10 200.7 9/19/03 T Solfide 2.20 mg/L 200.7 9/19/03 T Solfide 2.20							Matrix:	WATERG
T Alkalinity, CaC03 693 mg CaC03/L 2320 9/10/03 T C03, CaC03 558 mg CaC03/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Eb (mV) -128 mV 2580 9/09/03 T Eb (mV) -128 mV 2320 9/10/03 T HC03, CaC03 135 mg CaC03/L 2320 9/10/03 T DH 10.30 TS0.1 9/09/03 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Calcium 1.62 mg/L 200.7 9/19/03 T Solian 742 mg/L 50 300.0 9/19/03 T Sulfate, SO4 435 mg/L 200.7 9/19/03	Dat	e of Report :	9/23/03					
T CO3, CaCO3 558 mg CaCO3/L 2320 9/10/03 T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Eh (mV) -128 mV 2580 9/09/03 T HCO3, CaCO3 135 mg CaCO3/L 2320 9/10/03 T DH 10.30 150.1 9/09/03 T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Choride 1500 mg/L 500 300.0 9/15/03 T Potassium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 <t< td=""><td></td><td>Determination</td><td>Result</td><td>Units</td><td>Dilution</td><td>Method</td><td>Analyzed</td><td></td></t<>		Determination	Result	Units	Dilution	Method	Analyzed	
T Spec. Cond. 6240 umhos/cm 120.1 9/10/03 T Eh (mV) -128 mV 2580 9/09/03 T HC03, CaCO3 135 mg CaCO3/L 2320 9/10/03 T pH 10.30 150.1 9/09/03 T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Chloride 1500 mg/L 500 300.0 9/15/03 T Potassium 756 mg/L 10 200.7 9/19/03 T Solium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 200.7 9/19/03 T Sulfide 0.037 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Arsenic 0.0348 mg/L 200.7 9/19/03 <t< td=""><td>Т</td><td>Alkalinity, CaCO3</td><td></td><td>mg CaCO3/1</td><td></td><td>2320</td><td>9/10/03</td><td></td></t<>	Т	Alkalinity, CaCO3		mg CaCO3/1		2320	9/10/03	
T Eh (mV) -128 mV 2580 $9/09/03$ THCO3, CaCO3135mg CaCO3/L 2320 $9/10/03$ TpH10.30150.1 $9/09/03$ TTDS3580mg/L160.1 $9/09/03$ TCalcium10.5mg/L 200.7 $9/19/03$ TChloride1500mg/L10 200.7 $9/19/03$ TChloride1500mg/L10 200.7 $9/19/03$ TSodium742mg/L 200.7 $9/19/03$ TSulfate, SO4435mg/L 200.7 $9/19/03$ TSulfate, SO4435mg/L 200.7 $9/19/03$ TSulfate, SO4435mg/L 200.7 $9/19/03$ TAluminum 0.273 mg/L 200.7 $9/19/03$ TAluminum 0.273 mg/L 200.7 $9/19/03$ TManganese 0.0348 mg/L 200.7 $9/19/03$ TFhosphorus 0.721 mg/L 200.7 $9/19/03$ TINORGANIC CARBON42.9mg/L 200.7 $9/19/03$ DAluminum 0.104 mg/L 200.7 $9/19/03$ DAluminum 0.104 mg/L 200.7 $9/19/03$ DArsenic 0.036 mg/L 200.7 $9/19/03$ DAluminum 0.104 mg/L 200.7 $9/19/03$ DAluminum 0.104 mg/L 200.7 <td>Т</td> <td></td> <td></td> <td>mg CaCO3/1</td> <td>J</td> <td></td> <td>9/10/03</td> <td></td>	Т			mg CaCO3/1	J		9/10/03	
T HCO3, CaCO3 135 mg CaCO3/L 2320 9/10/03 T pH 10.30 150.1 9/09/03 T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Chloride 1500 mg/L 500 300.0 9/15/03 T Potassium 756 mg/L 10 200.7 9/21/03 T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.034 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03	Т			umhos/cm		120.1	9/10/03	
T pH 10.30 150.1 9/09/03 T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Calcium 150.1 9/09/03 200.7 9/19/03 T Calcium 10.5 mg/L 500 300.0 9/15/03 T Potassium 756 mg/L 10 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, S04 435 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Iron 0.104 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03	Т	Eh (mV)	-128	mV		2580	9/09/03	
T TDS 3580 mg/L 160.1 9/11/03 T Calcium 10.5 mg/L 200.7 9/19/03 T Chloride 1500 mg/L 500 300.0 9/15/03 T Chloride 1500 mg/L 10 200.7 9/19/03 T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfate, S04 35 mg/L 50 300.0 9/15/03 T Sulfate, S04 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Arsenic 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T NORGANIC CARBON 42.9 mg/L 200.7 9/19/03 D Arsenic 0.036	Т	HCO3, CaCO3	135	mg CaCO3/I	J	2320	9/10/03	
T Calcium 10.5 mg/L 200.7 9/19/03 T Chloride 1500 mg/L 500 300.0 9/15/03 T Potassium 756 mg/L 10 200.7 9/21/03 T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Iron 0.487 mg/L 200.7 9/19/03 T Norganese 0.0348 mg/L 200.7 9/19/03 T Norganize 0.721 mg/L 200.7 9/19/03 T NORGANIC CARBON 42.9 mg/L 200.7 9/	Т	рН	10.30			150.1	9/09/03	
T Chloride 1500 mg/L 500 300.0 9/15/03 T Potassium 756 mg/L 10 200.7 9/21/03 T Magnesium 1.62 mg/L 10 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Manganese 0.721 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036	Т	TDS	3580	mg/L		160.1	9/11/03	
T Potassium 756 mg/L 10 200.7 9/21/03 T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Arsenic 0.0348 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7	Т	Calcium	10.5	mg/L		200.7	9/19/03	
T Potassium 756 mg/L 10 200.7 9/21/03 T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, S04 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7	Т	Chloride	1500	mg/L	500	300.0	9/15/03	
T Magnesium 1.62 mg/L 200.7 9/19/03 T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, S04 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Iron 0.487 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.8 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 </td <td>Т</td> <td>Potassium</td> <td>756</td> <td></td> <td>10</td> <td>200.7</td> <td></td> <td></td>	Т	Potassium	756		10	200.7		
T Sodium 742 mg/L 200.7 9/19/03 T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/19/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Arsenic 0.0150 mg/L 200.7 9/19/03<	Т	Magnesium	1.62	mg/L		200.7	1	
T Sulfide 2.20 mg/L 376.1 9/10/03 T Sulfate, SO4 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/22/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/22/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 </td <td>Т</td> <td>Sodium</td> <td>742</td> <td>mg/L</td> <td></td> <td>200.7</td> <td></td> <td></td>	Т	Sodium	742	mg/L		200.7		
T Sulfate, SO4 435 mg/L 50 300.0 9/15/03 T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/22/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 <td>Т</td> <td>Sulfide</td> <td>2.20</td> <td></td> <td></td> <td>376.1</td> <td></td> <td></td>	Т	Sulfide	2.20			376.1		
T Aluminum 0.273 mg/L 200.7 9/19/03 T Arsenic 0.037 mg/L 200.7 9/22/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/22/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE </td <td>Т</td> <td>Sulfate, SO4</td> <td>435</td> <td>mg/L</td> <td>50</td> <td>300.0</td> <td></td> <td></td>	Т	Sulfate, SO4	435	mg/L	50	300.0		
T Arsenic 0.037 mg/L 200.7 9/22/03 T Iron 0.487 mg/L 200.7 9/19/03 T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/19/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34med/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L<	Т	Aluminum	0.273			200.7		
T Manganese 0.0348 mg/L 200.7 9/19/03 T Phosphorus 0.721 mg/L 200.7 9/22/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	Arsenic	0.037	mg/L		200.7		
T Phosphorus 0.721 mg/L 200.7 9/22/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	Iron	0.487	mg/L		200.7	9/19/03	
T Phosphorus 0.721 mg/L 200.7 9/22/03 T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/19/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	Manganese	0.0348	mg/L		200.7	9/19/03	
T Silica 42.8 mg/L 200.7 9/19/03 T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/22/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	Phosphorus	0.721	mg/L		200.7	1	
T INORGANIC CARBON 42.9 mg/L 415.1 9/11/03 D Aluminum 0.104 mg/L 200.7 9/19/03 D Arsenic 0.036 mg/L 200.7 9/22/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	Silica	42.8			200.7	1	
D Arsenic 0.036 mg/L 200.7 9/22/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	Т	INORGANIC CARBON	42.9					
D Arsenic 0.036 mg/L 200.7 9/22/03 D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	D	Aluminum	0.104	mg/L		200.7	9/19/03	
D Iron 0.290 mg/L 200.7 9/19/03 D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	D							
D Manganese 0.0150 mg/L 200.7 9/19/03 D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	D							
D Silica 34.2 mg/L 200.7 9/19/03 CalcTDS: 3960 TDS/Cond: CATION SUM: 52.34meq/L BALANCE DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	D	Manganese						
DS/CalcTDS: 0.9 CalcTDS/Cond: ANION SUM: 65.11meq/L -10.87%	D			+				
							BALANCE	
	TDS	/CalcTDS: 0.9	CalcTDS/Con	d:	ANION SU	M: 65.11meq/L	-10.87%	
]	

Filtered fraction: 352878

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON Reviewed By:

Date 1/23/03 9/23/03 12:53

PRC CLI San San	ENT : GeoSynted JECT: LEHIGH ENT SAMPLE ID: ple Collected: ple Receipt : e of Report :	9/04/03 9/08/03	3:25			SVL JOB: SAMPLE: T Matrix:	35285 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity, CaCO3	1870	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1560	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	8570	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-13.0	mV		2580	9/09/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	рН	11.80	-		150.1	9/09/03	
Т	TDS	5300	mg/L		160.1	9/11/03	
Т	Calcium	4.88	mg/L		200.7	9/19/03	
Т	Chloride	59.0	mg/L	10	300.0	9/15/03	
Т	Potassium	2310	mg/L	100	200.7	9/21/03	
Т	Magnesium	<0.040	mg/L		200.7	9/19/03	
Т	Sodium	158	mg/L		200.7	9/19/03	
Т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	1510	mg/L	100	300.0	9/15/03	
Т	Aluminum	1.32	mg/L		200.7	9/19/03	
Т	Arsenic	0.350	mg/L	5	200.7	9/22/03	
Т	Iron	0.467	mg/L		200.7	9/19/03	
Т	Manganese	0.0141	mg/L		200.7	9/19/03	
Т	Phosphorus	3.33	mg/L	5	200.7	9/22/03	
Т	Silica	151	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	71.3	mg/L 		415.1	9/11/03	
D	Aluminum	1.05	mg/L		200.7	9/20/03	
D	Arsenic	0.366	mg/L		200.7	9/22/03	
D	Iron	0.286	mg/L		200.7	9/20/03	
D	Manganese	0.0104	mg/L		200.7	9/20/03	
D	Silica	157	mg/L		200.7	9/20/03	

Filtered fraction: 352879

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Date 4/23/23 9/23/03 12:53

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

amp ate T T T T T T	ble Collected: ble Receipt : b of Report : Determination Alkalinity,CaCO3 CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS Calcium	9/04/03 9/08/03 9/23/03 Result 846 <1.0 2480 -66.2 846 7.62 1580 187	3:50 Units mg CaCO3/L mg CaCO3/L umhos/cm mV mg CaCO3/L mg/L		Method 2320 2320 120.1 2580 2320	Matrix: WAT Analyzed 9/10/03 9/10/03 9/10/03 9/09/03 9/10/03
T T T T T T T	Alkalinity,CaCO3 CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS	846 <1.0 2480 -66.2 846 7.62 1580	mg CaCO3/L mg CaCO3/L umhos/cm mV mg CaCO3/L mg/L		2320 2320 120.1 2580 2320	9/10/03 9/10/03 9/10/03 9/09/03
T 1 T 1 T 1 T 1 T 1	CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS	<1.0 2480 -66.2 846 7.62 1580	mg CaCO3/L umhos/cm mV mg CaCO3/L mg/L		2320 120.1 2580 2320	9/10/03 9/10/03 9/09/03
TI TI TI TI	Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS	2480 -66.2 846 7.62 1580	umhos/cm mV mg CaCO3/L mg/L		120.1 2580 2320	9/10/03 9/09/03
TI TI TI T	Eh (mV) HCO3, CaCO3 pH TDS	-66.2 846 7.62 1580	mV mg CaCO3/L mg/L		2580 2320	9/09/03
TI TI T	HCO3, CaCO3 pH TDS	846 7.62 1580	mg CaCO3/L mg/L		2320	
T j T j	pH TDS	7.62 1580	mg/L			9/10/03
Т	TDS	1580				
					150.1	9/09/03
~	Calcium	187			160.1	9/11/03
T (mg/L		200.7	9/19/03
T (Chloride	198	mg/L	50	300.0	9/15/03
ΓJ	Potassium	238	mg/L	10	200.7	9/21/03
T 1	Magnesium	39.6	mg/L		200.7	9/19/03
	Sodium	218	mg/L		200.7	9/19/03
T S	Sulfide	<1.0	mg/L		376.1	9/10/03
	Sulfate, SO4	310	mg/L	25	300.0	9/15/03
ΤŻ	Aluminum	0.141	mg/L		200.7	9/19/03
T Z	Arsenic	0.024	mg/L		200.7	9/22/03
	Iron	23.7	mg/L		200.7	9/19/03
	Manganese	3.50	mg/L		200.7	9/19/03
	Phosphorus	0.468	mg/L		200.7	9/22/03
	Silica	28.6	mg/L		200.7	9/19/03
Г J	INORGANIC CARBON	102	mg/L		415.1	9/11/03
	Aluminum	<0.020	mg/L		200.7	9/20/03
) I	Arsenic	<0.010	mg/L		200.7	9/22/03
	Iron	0.782	mg/L		200.7	9/20/03
	Manganese	3.08	mg/L		200.7	9/20/03
) S	Silíca	24.7	mg/L		200.7	9/20/03
	CalcTDS: 1790 CalcTDS: 0.9	TDS/Cor CalcTDS/Cor		CATION SUM: ANION SUM:	29.30meq/L 28.94meq/L	

Filtered fraction: 352880 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:

Ale 1/25/03 9/23/03 12:53

SVL ANALY	TICAL.	INC.
-----------	--------	------

Certificate: CA CERTIFICATE NO. 2080

Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891 One Government Gulch P.0. Box 929 CLIENT : GeoSyntec SVL JOB: 107516 PROJECT: LEHIGH SAMPLE: 352861 CLIENT SAMPLE ID: PM8 TOT/DIS Sample Collected: 9/05/03 12:20 Sample Receipt : 9/08/03 Matrix: WATERG • Date of Report 9/23/03 Method Analyzed Units Dilution Determination Result 9/10/03 Alkalinity,CaCO3 1500 mg CaCO3/L 2320 Т CO3, CaCO3 1190 mg CaCO3/L 2320 9/10/03 Т T Spec. Cond. 6560 umhos/cm 120.1 9/10/03 +94.8 2580 T Eh (mV) πV 9/09/03 T HCO3, CaCO3 <1.0 mg CaCO3/L 2320 9/10/03 11.80 150.1 т рН 9/09/03 3750 T TDS mg/L 160.1 9/11/03 T Calcium 4.16 mg/L 200.7 9/19/03 T Chloride 42.2 mg/L 10 300.0 9/15/03 1680 100 200.7 9/21/03 T Potassium mg/L 0.823 9/19/03 T Magnesium mg/L 200.7 T Sodium 81.4 mg/L 200.7 9/19/03 9/10/03 T Sulfide 2.90 mg/L 376.1 T Sulfate, SO4 894 50 9/15/03 mg/L 300.0 T Aluminum 0.678 200.7 9/19/03 mg/L T Arsenic 5 0.085 mg/L 200.7 9/22/03 Iron 1.20 Т mg/L 200.7 9/19/03 T Manganese 0.0189 mg/L 200.7 9/19/03 5 Т Phosphorus 1.03 mg/L 200.7 9/22/03 Т Silica 63.7 mg/L 200.7 9/19/03 T INORGANIC CARBON 51.7 mg/L 415.1 9/12/03 0.530 D Aluminum mg/L 200.7 9/20/03 0.072 D Arsenic mg/L 200.7 9/22/03 D Iron 200.7 0.908 mg/L 9/20/03 0.0152 mg/L D Manganese 200.7 9/20/03 D Silica 61.6 mg/L 200.7 9/20/03 CalcTDS: 3770 TDS/Cond: CATION SUM: 47.00meg/L BALANCE

Filtered fraction: 352881 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

1.0 CalcTDS/Cond:

Reviewed By:

TDS/CalcTDS:

Date 9/23/63 9/23/03 12:53

49.81meg/L

-2.90%

ANION SUM:

ple Collected: ple Receipt : e of Report :	PM9 9/05/03 9/08/03 9/23/03	11:50			T Matrix:	OT/DIS WATER
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	365	mg CaCO3/L	area - character - a - a - a - a - a - a - a - a - a -	2320	9/10/03	
	30.2			2320	9/10/03	
Spec. Cond.	3600	umhos/cm		120.1	9/10/03	
Eh (mV)	-34.0	mV		2580	9/09/03	
HCO3, CaCO3	335	mg CaCO3/L		2320	9/10/03	
pН	8.62			150.1	9/09/03	
TDS	1880	mg/L		160.1	9/11/03	
Calcium	34.0			200.7	9/19/03	
Chloride	924		200			
Potassium	219	-	10	200.7		
Magnesium	32.1			200.7	1	
Sodium	501	-		200.7	,	
Sulfide	<1.0			376.1		
Sulfate, SO4	104	-	5	300.0	1	
Aluminum	<0.020			200.7		
Arsenic	0.018			200.7		
Iron	0.171			200.7	1	
Manganese	0.193			200.7		
Phosphorus	0.118			200.7		
Silica	7.91			200.7		
INORGANIC CARBON	36.4	mg/L		415.1	9/12/03	
Aluminum	<0.020	mg/L		200.7	9/20/03	
Arsenic	<0.010	mg/L		200.7	9/22/03	
Iron	0.127	mg/L		200.7	9/20/03	
Manganese	0.184	mg/L		200.7	9/20/03	
Silica	7.70	mg/L		200.7	9/20/03	
CalcTDS: 2050 CalcTDS: 0.9	TDS/Cor CalcTDS/Cor		CATION SUM: ANION SUM:	31.76meq/L 35.53meq/L	BALANCE -5.60%	
•	e of Report : Determination Alkalinity,CaCO3 CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS Calcium Chloride Potassium Magnesium Sodium Sulfide Sulfate, SO4 Aluminum Arsenic Iron Manganese Phosphorus Silica INORGANIC CARBON Aluminum Arsenic Iron Manganese Silica CalcTDS: 2050	e of Report : 9/23/03 Determination Result Alkalinity,CaCO3 365 CO3, CaCO3 30.2 Spec. Cond. 3600 Eh (mV) -34.0 HCO3, CaCO3 335 pH 8.62 TDS 1880 Calcium 34.0 Chloride 924 Potassium 219 Magnesium 32.1 Sodium 501 Sulfide <1.0	e of Report : 9/23/03 Determination Result Units Alkalinity,CaCO3 365 mg CaCO3/L CO3, CaCO3 30.2 mg CaCO3/L Spec. Cond. 3600 umhos/cm Eh (mV) -34.0 mV HCO3, CaCO3 335 mg CaCO3/L pH 8.62 TDS 1880 mg/L Calcium 34.0 mg/L Calcium 34.0 mg/L Calcium 34.0 mg/L Potassium 219 mg/L Sodium 501 mg/L Sulfide <1.0	e of Report : 9/23/03 Determination Result Units Dilution Alkalinity,CaC03 365 mg CaC03/L CO3, CaC03 30.2 mg CaC03/L Spec. Cond. 3600 umhos/cm Eh (mV) -34.0 mV HCO3, CaC03 335 mg CaC03/L pH 8.62 TDS 1880 mg/L Calcium 34.0 mg/L Chloride 924 mg/L 200 Potassium 219 mg/L 10 Magnesium 32.1 mg/L 5 Sulfide <1.0	e of Report : 9/23/03 Determination Result Units Dilution Method Alkalinity,CaCO3 365 mg CaCO3/L 2320 CO3, CaCO3 30.2 mg CaCO3/L 2320 Spec. Cond. 3600 umhos/cm 120.1 Eh (mV) -34.0 mV 2580 HCO3, CaCO3 335 mg CaCO3/L 2320 pH 8.62 150.1 TDS 1880 mg/L 200.7 Chloride 924 mg/L 200.7 Chloride 924 mg/L 200.7 Sodium 501 mg/L 200.7 Sulfide <1.0	e of Report 9/23/03 Determination Result Units Dilution Method Analyzed Alkalinity,CaC03 365 mg CaC03/L 2320 9/10/03 C03, CaC03 30.2 mg CaC03/L 2320 9/10/03 Spec. Cond. 3600 umhos/cm 120.1 9/10/03 Eh (mV) -34.0 mV 2580 9/09/03 HC03, CaC03 335 mg CaC03/L 2320 9/10/03 DH 8.62 150.1 9/09/03 TDS 1880 mg/L 160.1 9/11/03 Calcium 34.0 mg/L 200 79/19/03 Othoride 924 mg/L 200 79/19/03 Sodium 501 mg/L 200.7 9/19/03 Sulfate <1.0

RC LI	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID: aple Collected:	PM10 [.] 9/05/03	3:15			SVL JOB: SAMPLE: T	
an	ple Collected. ple Receipt : ce of Report :	9/08/03 9/23/03	5.15			Matrix:	WATEF
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	1560	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1090	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	7640	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-428	mV		2580	9/09/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	pН	12.02			150.1	9/09/03	
Т	TDS	3940	mg/L		160.1	9/11/03	
Т	Calcium	39.2	mg/L		200.7	9/19/03	
Т	Chloride	37.7	mg/L	5	300.0	9/15/03	
Т	Potassium	1720	mg/L	100	200.7	9/21/03	
Т	Magnesium	15.4	mg/L		200.7	9/19/03	
Т	Sodium	71.4	mg/L		200.7	9/19/03	
Т	Sulfide	10.6	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	1020	mg/L	100	300.0	9/15/03	
Т	Aluminum	16.5	mg/L		200.7	9/19/03	
Т	Arsenic	0.177	mg/L	5	200.7	9/22/03	
Т	Iron	34.3	mg/L		200.7	9/19/03	
Т	Manganese	0.785	mg/L		200.7	9/19/03	
Т	Phosphorus	2.49	mg/L	5	200.7	9/22/03	
Т	Silica	86.3	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	43.5	mg/L		415.1	9/12/03	
D	Aluminum	3.86	mg/L		200.7	9/20/03	
D	Arsenic	0.188	mg/L		200.7	9/22/03	
D	Iron	1.52	mg/L		200.7	9/20/03	
D	Manganese	0.0226	mg/L		200.7	9/20/03	
-							

Filtered fraction: 352883

SVL ANALYTICAL, INC.

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

CalcTDS: 4060 TDS/Cond: TDS/CalcTDS: 1.0 CalcTDS/Cond:

Reviewed By:_____

Allow Date 2/2/03 9/23/03 12:53

53.91meq/L

53.30meq/L

BALANCE

0.57%

÷

CATION SUM:

ANION SUM:

Certificate: CA CERTIFICATE NO. 2080

SVL	ANALYTICAL,	INC.
-----	-------------	------

CLIENT : GeoSyntec

CLIENT SAMPLE ID: PM11

PROJECT: LEHIGH

L NAME LANDIAL CO. -

Sample Collected: 9/05/03 2:45 Sample Receipt : 9/08/03 Date of Report : 9/23/03

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0891

Certificate: CA CERTIFICATE NO. 2080

SVL JOB: 107516 SAMPLE: 352864

Matrix: WATERG

TOT/DIS

	Determination	Result	Units	Dilution	Method	Analyzed
Т	Alkalinity, CaCO3	923	mg CaCO3/I		2320	9/10/03
Т	CO3, CaCO3	<1.0	mg CaCO3/I	J	2320	9/10/03
Т	Spec. Cond.	3320	umhos/cm		120.1	9/10/03
Т	Eh (mV)	-14.2	mV		2580	9/09/03
Т	HCO3, CaCO3	923	mg CaCO3/I	J	2320	9/10/03
Т	Hq	7.44			150.1	9/09/03
Т	TDS	2270	mg/L		160.1	9/11/03
Т	Calcium	94.5	mg/L		200.7	9/19/03
Т	Chloride	31.7	mg/L	5	300.0	9/15/03
Т	Potassium	848	mg/L	10	200.7	9/21/03
Т	Magnesium	12.6	mg/L		200.7	9/19/03
Т	Sodium	53.5	mg/L		200.7	9/19/03
Т	Sulfide	<1.0	mg/L		376.1	9/10/03
Т	Sulfate, SO4	662	mg/L	50	300.0	9/15/03
Т	Aluminum	0.318	mg/L		200.7	9/19/03
Т	Arsenic	0.012	mg/L		200.7	9/22/03
Т	Iron	26.0	mg/L		200.7	9/19/03
ΙT	Manganese	3.48	mg/L		200.7	9/19/03
T	Phosphorus	0.149	mg/L		200.7	9/22/03
T	Silica	26.6	mg/L		200.7	9/19/03
Т	INORGANIC CARBON	111	mg/L		415.1	9/12/03
D	Aluminum	0.107	mg/L		200.7	9/20/03
D	Arsenic	<0.010	mg/L		200.7	9/22/03
D	Iron	16.1	mg/L		200.7	9/20/03
D	Manganese	3.34	mg/L		200.7	9/20/03
D	Silica	25.4	mg/L		200.7	9/20/03
	CalcTDS: 2360	TDS/Con	d:	CATION SUM:	31.59meq/L	BALANCE
TDS,	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	33.11meq/L	-2.35%

Filtered fraction: 352884

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

All Date 9/27/03 9/23/03 12:53

PRC Ll	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID:		2:10			SVL JOB: SAMPLE: T	
an	ple Collected: ple Receipt : e of Report :	9/08/03 9/23/03	2.10			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	935	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	3170	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-58.9	mV		2580	9/09/03	
Т	HCO3, CaCO3	935	mg CaCO3/L		2320	9/10/03	
Т	pH	6.96			150.1	9/09/03	
Т	TDS	2110	mg/L		160.1	9/11/03	
Т	Calcium	152	mg/L		200.7	9/19/03	
Т	Chloride	34.3	mg/L	5	300.0	9/15/03	
Т	Potassium	716	mg/L	10	200.7	9/21/03	
Т	Magnesium	16.4	mg/L		200.7	9/19/03	
Т	Sodium	52.7	mg/L		200.7	9/19/03	
Т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	613	mg/L	25	300.0	9/15/03	
Т	Aluminum	0.327	mg/L		200.7	9/19/03	
Т	Arsenic	0.033	mg/L		200.7	9/22/03	
Т	Iron	57.7	mg/L		200.7	9/19/03	
Т	Manganese	4.82	mg/L		200.7	9/19/03	
Т	Phosphorus	0.611	mg/L		200.7	9/22/03	
Т	Silica	39.1	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	134	mg/L		415.1	9/12/03	
D	Aluminum	0.056	mg/L		200.7	9/20/03	
D	Arsenic	<0.010	mg/L		200.7	9/22/03	
D	Iron	13.0	mg/L		200.7	9/20/03	
D	Manganese	3.61	mg/L		200.7	9/20/03	
D	Silica	32.5	mg/L		200.7	9/20/03	

Filtered fraction: 352885

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Date 2/23/03 9/23/03 12:53

SVL AN	ALYTICAL,	INC.
--------	-----------	------

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080 (208)784-1258 • Fax: (208)783-0891

Phone:	(208)784-
	(

PRC CLI	ENT : GeoSynteo DJECT: LEHIGH ENT SAMPLE ID: ple Collected:		1:45			SVL JOB: SAMPLE: J	+
San	ple Collected: ple Receipt : .e of Report :	9/08/03 9/23/03	1.45			Matrix:	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity,CaCO3	311	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	113	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	977	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-56.2	mV		2580	9/09/03	
Т	HCO3, CaCO3	198	mg CaCO3/L		2320	9/10/03	
Т	pH	9.53	5		150.1	9/09/03	
Т	TDS	606	mg/L		160.1	9/11/03	
Т	Calcium	8.55	mg/L		200.7	9/19/03	
Т	Chloride	11.8	mg/L	5	300.0	9/15/03	
Т	Potassium	256	mg/L	10	200.7	9/21/03	
Т	Magnesium	2.85	mg/L		200.7	9/19/03	
Т	Sodium	16.3	mg/L		200.7	9/19/03	
Т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	92.7	mg/L	5	300.0	9/15/03	
Т	Aluminum	0.232	mg/L		200.7	9/19/03	
Т	Arsenic	<0.010	mg/L		200.7	9/22/03	
Т	Iron	1.11	mg/L		200.7	9/19/03	
T	Manganese	0.0802	mg/L		200.7	9/19/03	
Т	Phosphorus	0.109	mg/L		200.7	9/22/03	
Т	Silica	4.95	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	42.3	mg/L		415.1	9/12/03	
D	Aluminum	0.077	mg/L		200.7	9/20/03	
D	Arsenic	<0.010	mg/L		200.7	9/22/03	
D	Iron	0.436	mg/L		200.7	9/20/03	
D	Manganese	0.0691	mg/L		200.7	9/20/03	
D	Silica	4.24	mg/L		200.7	9/20/03	
TDS	CalcTDS: 588 /CalcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	8.02meq/L 8.47meq/L	BALANCE -2.73%	

Filtered fraction: 352886

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Klaren-Date 4/28/2.3 9/23/03 12:53

	PM14 9/05/03	1:15			Т	35286 OT/DIS
Determination	Result	Units	Dilution	Method	Analyzed	
Alkalinity,CaCO3	307	mg CaCO3/L		2320	9/10/03	
				2320	9/10/03	
Spec. Cond.	1080	umhos/cm		120.1	9/10/03	
Eh (mV)	-31.5	mV		2580	9/09/03	
HCO3, CaCO3	256	mg CaCO3/L		2320	9/10/03	
pH	9.08			150.1	9/09/03	
TDS	687	mg/L		160.1	9/11/03	
Calcium	19.3	mg/L		200.7	9/19/03	
Chloride	29.3	mg/L	10	300.0	9/15/03	
Potassium	272	mg/L	10	200.7	9/21/03	
Magnesium	3.96	mg/L		200.7	9/19/03	
Sodium	29.5	mg/L		200.7	9/19/03	
Sulfide					9/10/03	
			10		9/15/03	
					1	
					1	
INORGANIC CARBON	21.9	mg/L		415.1	9/12/03	
Aluminum	0.094	mg/L		200.7	9/20/03	
Arsenic	<0.010	mg/L		200.7	9/22/03	
Iron	0.381	mg/L		200.7	9/20/03	
	0.0509				9/20/03	
Silica	5.02	mg/L	-	200.7	9/20/03	
		d:	CATION SUM:	9.88meq/L	BALANCE	
	ECT: LEHIGH ENT SAMPLE ID: ple Collected: ple Receipt : ple Receipt : Determination Alkalinity,CaCO3 CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS Calcium Chloride Potassium Magnesium Sodium Sulfide Sulfate, SO4 Aluminum Arsenic Iron Manganese Phosphorus Silica INORGANIC CARBON Aluminum Arsenic Iron Manganese Phosphorus Silica	ECT:LEHIGHCNTSAMPLEID:PM14DeleCollected:9/05/03DeleReceipt:9/23/03DeterminationResultAlkalinity,CaCO3307CO3, CaCO350.4Spec.Cond.1080Eh(mV)-31.5HCO3, CaCO3256pH9.08TDS687Calcium19.3Chloride29.3Potassium272Magnesium3.96Sodium29.5Sulfide<1.0	ECT: LEHIGH ENT SAMPLE ID: PM14 ple Collected: 9/05/03 1:15 ple Receipt : 9/23/03 Determination Result Units Alkalinity,CaCO3 307 mg CaCO3/L CO3, CaCO3 50.4 mg CaCO3/L Spec. Cond. 1080 umhos/cm Eh (mV) -31.5 mV HCO3, CaCO3 256 mg CaCO3/L pH 9.08 TDS 687 mg/L Calcium 19.3 mg/L Chloride 29.3 mg/L Colloride 29.3 mg/L Sodium 29.5 mg/L Sulfide <1.0 mg/L Sulfide <1.0 mg/L Sulfate, SO4 124 mg/L Aluminum 1.63 mg/L Phosphorus 0.192 mg/L Silica 9.98 mg/L Silica 9.98 mg/L NORGANIC CARBON 21.9 mg/L Aluminum 0.094 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Silica 9.98 mg/L Aluminum 0.094 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Aluminum 0.094 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Aluminum 0.094 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Aluminum 0.094 mg/L Arsenic <0.010 mg/L Arsenic <0.010 mg/L Aluminum 0.094 mg/L Aluminum 0.094 mg/L Aluminum 0.094 mg/L Aluminum 0.094 mg/L	ECT: LEHIGH NT SAMPLE ID: PM14 ole Collected: 9/05/03 1:15 ole Receipt : 9/23/03 Determination Result Units Determination Result Units Dilution Alkalinity,CaCO3 307 mg CaCO3/L CCO3/L Co3, CaCO3 50.4 mg CaCO3/L CCO3/L Spec. Cond. 1080 umhos/cm Endition Eh (mV) -31.5 mV MCO3/L CCO3/L Spec. Cond. 1080 umhos/cm Endition Endition Eh (mV) -31.5 mV MCO3/L CCO3/L Spec. Cond. 1080 umhos/cm Endition Endition Calcium 19.3 mg/L 10 Calcium 19.3 mg/L 10 Magnesium 3.96 mg/L 10 Magnesium 3.96 mg/L Solium 29.5 mg/L Sulfate, SO4 124 mg/L 10 Maluminum Aluminum 1.63 mg/L Aluminum 0.6192 mg/L Mg/L	ECT: LEHIGH NT SAMPLE ID: PM14 ole Collected: 9/05/03 1:15 le Receipt : 9/08/03 of Report : 9/23/03 Determination Result Date Collected: 9/08/03 a. of Report : 9/23/03 Determination Result Determination Result Alkalinity,CaC03 307 gCaC03/L 2320 Spec. Cond. 1080 umhos/cm 120.1 Eh (mV) -31.5 mV 2580 HCO3, CaC03 256 mg CaC03/L 2320 Spec. Cond. 1080 Units Dilution MC03, CaC03 256 mg CaC03/L 2320 pH 9.08 TDS 687 mg/L 10 Calcium 19.3 mg/L 10 Choride 29.3 gold mg/L Sodium 29.5 mg/L 200.7 Sodium 29.5 sulfate, SO4 124	ECT: LEHIGH SAMPLE: NT SAMPLE ID: PM14 T Ole Collected: 9/05/03 1:15 See of Report: 9/23/03 Matrix: Determination Result Units Dilution Method Analyzed Alkalinity,CacO3 307 mg CacO3/L 2320 9/10/03 Co3, CacO3 50.4 mg CacO3/L 2320 9/10/03 Spec. Cond. 1080 umhos/cm 120.1 9/10/03 Co3, CacO3 256 mg CacO3/L 2320 9/10/03 Co3, CacO3 256 mg CacO3/L 2320 9/10/03 Calcium 19.3 mg/L 200.7 9/19/03 Calcium 19.3 mg/L 100 300.0 9/15/03 Potassium 272 mg/L 10 200.7 9/19/03 Sulfide <1.0

SVL A	NALY	TICA	L,	INC.
-------	------	------	----	------

One Government Gulch • P.O. Box 929 •

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 • Fax: (208)783-0891

C PM15	2 40				107516 352868 OT/DIS
9/05/03 9/08/03 9/23/03	3:40			Matrix:	WATERG
Result	Units	Dilution	Method	Analyzed	
2530	mg CaCO3/L		2320	9/10/03	
1510	mg CaCO3/L		2320	9/10/03	
12800	umhos/cm		120.1	9/10/03	
-236	mV		2580	9/09/03	
<1.0	mg CaCO3/L		2320	9/10/03	
12.30	2		150.1	9/09/03	
6800	mg/L		160.1	9/11/03	
3.46	mg/L		200.7	9/19/03	
60.2	mg/L	10	300.0	9/15/03	
3220	mg/L	100	200.7	9/21/03	
<0.040	mg/L		200.7	9/19/03	
134	mg/L		200.7	9/19/03	
2.60	mg/L		376.1	9/10/03	
1910	mg/L	100	300.0	9/15/03	
3.38	mg/L		200.7	9/19/03	
0.152	mg/L	5	200.7	9/22/03	
0.333	mg/L		2.00.7	9/19/03	
0.0042	mg/L		200.7	9/19/03	
1.42	mg/L	5	200.7	9/22/03	
120	mg/L		200.7	9/19/03	
55.2	mg/L		415.1	9/12/03	
3.39	mg/L		200.7	9/20/03	
0.175	mg/L		200.7	9/22/03	
0.325	mg/L		200.7	9/20/03	
0.0054	mg/L		200.7	9/20/03	
118	mg/L		200.7	9/20/03	
			1	BALANCE	
	118 TDS/Con		118 mg/L TDS/Cond: CATION SU	118 mg/L 200.7 TDS/Cond: CATION SUM: 89.15meq/L	118 mg/L 200.7 9/20/03 TDS/Cond: CATION SUM: 89.15meq/L BALANCE

Kellogg, Idaho 83837-0929

.

Filtered fraction: 352888 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Date 9/23/07 9/23/03 12:53

Gamp Date T T T T T S	<pre>le Collected: le Receipt : of Report : Determination Alkalinity,CaCO3 CO3, CaCO3</pre>	9/05/03 9/08/03 9/23/03 Result 1260	1:30 Units			Matrix:	WATER
T A T C T S T B	Alkalinity,CaCO3 CO3, CaCO3		Units				
T C T S T E	CO3, CaCO3	1260		Dilution	Method	Analyzed	,
T S T E			mg CaCO3/L		2320	9/10/03	
ΤĒ		792	mg CaCO3/L		2320	9/10/03	
	Spec. Cond.	5960	umhos/cm		120.1	9/10/03	
TΓ	Eh (mV)	-318	Wm		2580	9/09/03	
T 1	1CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
ΤĘ	H	11.98			150.1	9/09/03	
Т Т	TDS	2890	mg/L		160.1	9/11/03	
т с	Calcium	5.92	mg/L		200.7	9/19/03	
т с	Chloride	34.7	mg/L	5	300.0	9/15/03	
ΤĒ	Potassium	1440	mg/L	100	200.7	9/21/03	
т м	Magnesium	<0.040	mg/L		200.7	9/19/03	
T S	Sodium	61.4	mg/L		200.7	9/19/03	
т 5	Sulfide	2.80	mg/L		376.1	9/10/03	
ΤЗ	Sulfate, SO4	684	mg/L	50	300.0	9/15/03	
T A	Aluminum	1.75	mg/L		200.7	9/19/03	
T A	Arsenic	0.058	mg/L	2	200.7	9/22/03	
т І	ron	0.939	mg/L		200.7	9/19/03	
Т М	langanese	0.0141	mg/L		200.7	9/19/03	
T F	Phosphorus	0.620	mg/L	2	200.7	9/22/03	
T S	Silica	49.1	mg/L		200.7	9/19/03	
T I	NORGANIC CARBON	21.8	mg/L		415.1	9/15/03	
	Aluminum	1.71	mg/L		200.7	9/20/03	
	rsenic	0.065	mg/L		200.7	9/22/03	
	ron	0.794	mg/L		200.7	9/20/03	
	langanese	0.0132	mg/L		200.7	9/20/03	
D S	Silica	48.1	mg/L		200.7	9/20/03	

Filtered fraction: 352889 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:_____

SVL ANALYTICAL, INC.

Date 1/2 3/03 9/23/03 12:53

Certificate: CA CERTIFICATE NO. 2080

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

· PR(CLI San San	IENT : GeoSyntec DJECT: LEHIGH IENT SAMPLE ID: nple Collected: nple Receipt : te of Report :		1:05			Т	107516 352870 OT/DIS WATERG
L	Determination	Result	Units	Dilution	Method	Analyzed	
T T T T T T T T T T T T T T T T T T T	Alkalinity,CaCO3 CO3, CaCO3 Spec. Cond. Eh (mV) HCO3, CaCO3 pH TDS Calcium Chloride Potassium Magnesium Sodium Sulfide Sulfate, SO4 Aluminum Arsenic Iron Manganese Phosphorus Silica INORGANIC CARBON	$\begin{array}{c} 2020\\ 1470\\ 10200\\ -237\\ <1.0\\ 12.00\\ 5940\\ 4.46\\ 54.1\\ 2640\\ <0.040\\ 148\\ 3.20\\ 1710\\ 3.08\\ 0.278\\ 0.215\\ 0.0031\\ 1.21\\ 95.3\\ \end{array}$	mg CaCO3/L mg CaCO3/L umhos/cm mV mg CaCO3/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg		2320 2320 120.1 2580 2320 150.1 160.1 200.7 300.0 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	9/10/03 9/10/03 9/10/03 9/09/03 9/10/03 9/10/03 9/11/03 9/19/03 9/15/03 9/19/03 9/19/03 9/19/03 9/19/03 9/19/03 9/19/03 9/19/03 9/19/03 9/19/03	
T D D D D TDS	Aluminum Arsenic Iron Manganese Silica CalcTDS: 6010 /CalcTDS: 1.0	43.5 3.10 0.271 0.179 0.0030 93.7 TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	415.1 200.7 200.7 200.7 200.7 200.7 74.89meq/L 77.43meq/L	9/15/03 9/20/03 9/22/03 9/20/03 9/20/03 9/20/03 BALANCE -1.67%	

Filtered fraction: 352890

.

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Date 9/23/03 9/23/03 12:53

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 • Fax: (208)783-0891

PR(CLI	LENT : GeoSyntec DJECT: LEHIGH LENT SAMPLE ID: aple Collected:		1:25			SVL JOB: SAMPLE: TC	
San	aple Receipt : te of Report :	9/08/03 9/23/03	1.20			Matrix:	WATEI
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity, CaCO3	2350	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	1790	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	11000	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-156	mV		2580	9/09/03	
Т	HCO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	PН	12.00	2		150.1	9/09/03	
Т	TDS	6210	mg/L		160.1	9/11/03	
Т	Calcium	2.96	mg/L		200.7	9/19/03	
Т	Chloride	55.9	mg/L	10	300.0	9/15/03	
Т	Potassium	2980	mg/L	100	200.7	9/21/03	
Т	Magnesium	<0.040	mg/L		200.7	9/19/03	
Т	Sodium	125	mg/L		200.7	9/19/03	
Т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	1890	mg/L	100	300.0	9/15/03	
Т	Aluminum	3.76	mg/L		200.7	9/19/03	
Т	Arsenic	0.224	mg/L		200.7	9/22/03	
Т	Iron	0.163	mg/L		200.7	9/19/03	
Т	Manganese	0.0052	mg/L		200.7	9/19/03	
Т	Phosphorus	1.57	mg/L		200.7	9/22/03	
Т	Silica	89.7	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	87.7	mg/L		415.1	9/15/03	
D	Aluminum	3.76	mg/L		200.7	9/20/03	
D	Arsenic	0.208	mg/L		200.7	9/22/03	
D	Iron	0.133	mg/L		200.7	9/20/03	
D	Manganese	0.0045	mg/L		200.7	9/20/03	
D	Silica	89.7	mg/L		200.7	9/20/03	
	CalcTDS: 6690 /CalcTDS: 0.9	TDS/Con CalcTDS/Con	1	CATION SUM: ANION SUM:	82.67meq/L 87.80meq/L	BALANCE -3.01%	

Filtered fraction: 352891 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:____

Date 9/23/03 12:53

.

	SVL	ANALYTIC	CAL.	INC.
--	-----	----------	------	------

One Government Gulch

P.O. Box 929

Kellogg, Idaho 83837-0929

Phone: (208)784-1258

Fax: (208)783-0891

Certificate: CA CERTIFICATE NO. 2080

PRC CLI	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID:		12.20			SVL JOB: SAMPLE: T(
Sam	ple Collected: ple Receipt : e of Report :	9/08/03 9/23/03	12:20			Matrix:	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	Alkalinity, CaCO3	700	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	<1.0	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	3660	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	+73.9	mV		2580	9/09/03	
Т	HCO3, CaCO3	700	mg CaCO3/L		2320	9/10/03	
Т	рН	8.28			150.1	9/09/03	
Т	TDS	2440	mg/L		160.1	9/11/03	
Т	Calcium	90.2	mg/L		200.7	9/19/03	
Т	Chloride	32.9	mg/L	5	300.0	9/15/03	
Т	Potassium	1000	mg/L	10	200.7	9/21/03	
Т	Magnesium	18.4	mg/L		200.7	9/19/03	
Т	Sodium	79.1	mg/L		200.7	9/19/03	
Т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	1050	mg/L	50	300.0	9/15/03	
Т	Aluminum	0.228	mg/L		200.7	9/19/03	
Т	Arsenic	<0.010	mg/L		200.7	9/22/03	
$1_{\rm T}$	Iron	0.684	mg/L		200.7	9/19/03	
Т	Manganese	0.766	mg/L		200.7	9/19/03	
Т	Phosphorus	0.115	mg/L		200.7	9/22/03	
ΊT	Silica	9.72	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	106	mg/L		415.1	9/15/03	
D	Aluminum	0.022	mg/L		200.7	9/20/03	
D	Arsenic	<0.010	mg/L		200.7	9/22/03	
D	Iron	0.274	mg/L		200.7	9/20/03	
D	Manganese	0.818	mg/L		200.7	9/20/03	
D	Silica	8.59	mg/L		200.7	9/20/03	
mpg	CalcTDS: 2720	TDS/Cor		CATION SUM:	35.15meq/L	BALANCE	
TDS.	/CalcTDS: 0.9	CalcTDS/Cor	na:	ANION SUM:	36.80meq/L	-2.29%	

Filtered fraction: 352892

INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

.

Date 9/23/03 12:53

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

R(L]	LENT : GeoSyntec DJECT: LEHIGH LENT SAMPLE ID: nple Collected:		2:10			SVL JOB: 10 SAMPLE: 35 TOT/1	28
an	nple Receipt : te of Report :		2.10			Matrix: WA	ΤĒ
	Determination	Result	Units	Dilution	Method	Analyzed	
T	Alkalinity,CaCO3	318	mg CaCO3/L		2320	9/10/03	
Т	CO3, CaCO3	184	mg CaCO3/L		2320	9/10/03	
Т	Spec. Cond.	2460	umhos/cm		120.1	9/10/03	
Т	Eh (mV)	-16.7	mV		2580	9/09/03	
Т	HCO3, CaCO3	134	mg CaCO3/L		2320	9/10/03	
Т	pH	9.92			150.1	9/09/03	
Т	TDS	1470	mg/L		160.1	9/11/03	
Т	Calcium	26.7	mg/L		200.7	9/19/03	
Т	Chloride	67.0	mg/L	10	300.0	9/15/03	
Т	Potassium	553	mg/L	10	200.7	9/21/03	
Т	Magnesium	6.43	mg/L		200.7	9/19/03	
Т	Sodium	112	mg/L		200.7	9/19/03	
т	Sulfide	<1.0	mg/L		376.1	9/10/03	
Т	Sulfate, SO4	694	mg/L	50	300.0	9/15/03	
Т	Aluminum	0.264	mg/L		200.7	9/19/03	
Т	Arsenic	0.048	mg/L		200.7	9/22/03	
Т	Iron	0.832	mg/L		200.7	9/19/03	
Т	Manganese	0.0245	mg/L		200.7	9/19/03	
Т	Phosphorus	0.729	mg/L		200.7	9/22/03	
Т	Silica	14.9	mg/L		200.7	9/19/03	
Т	INORGANIC CARBON	18.6	mg/L		415.1	9/15/03	
D	Aluminum	0.090	mg/L		200.7	9/20/03	
D	Arsenic	0.038	mg/L		200.7	9/22/03	
D	Iron	0.392	mg/L		200.7	9/20/03	
D	Manganese	0.0200	mg/L		200.7	9/20/03	
D	Silica	14.0	mg/L		200.7	9/20/03	
	CalcTDS: 1690 /CalcTDS: 0.9	TDS/Con CalcTDS/Con	1	CATION SUM: ANION SUM:	20.96meq/L 22.69meq/L	BALANCE -3.96%	

Filtered fraction: 352893 INORGANIC CARBON IS DISSOLVED INORGANIC CARBON

Reviewed By:

Date 7/23/03 9/23/03 12:53

Quality Control Report Part I Prep Blank and Laboratory Control Sample

ent :GeoSyntee	SVL JOB 1	No: 107516						
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS-	Found	LCS %R	Analysis Date
Aluminum	200.7	WATER	mg/L	<0.020	1.00	0.991	99.1	9/19/03
Arsenic	200.7	WATER	mg/L	<0.010	1.00	1.11	111.0	9/22/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	20.4	102.0	9/19/03
Iron	200.7	WATER	mg/L	<0.020	10.0	9.97	99.7	9/19/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.7	102.3	9/19/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	19.7	98.5	9/19/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.02	102.0	9/19/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.4	102.0	9/19/03
Phosphorus	200.7	WATER	mg/L	<0.050	2.50	2.55	102.0	9/22/03
Silica	200.7	WATER	mg/L	<0.171	10.7	11.0	102.8	9/19/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	5.35	107.0	9/15/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	10.6	106.0	9/15/03
Alkalinity,CaCO3	2320	WATER	mg/L	<1.0	55.0	57.0	103.6	9/10/03
pH	150.1	WATER		5.61	6.10	6.13	100.5	9/09/03
Spec. Cond.	120.1	WATER	umhos/cm	0.251	375	368	98.1	9/10/03
Eh (mV)	2580	WATER	mV	N/A	+228	+234	102.6	9/09/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	15.0	14.9	99.3	9/11/03
Sulfide	376.1	WATER	mg/L	<1.0	2.00	1.90	95.0	9/10/03
TDS	160.1	WATER	mg/L	<10	300	309	103.0	9/11/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

C en	t :Geo	Syntec	r-OC SAMPI	LF ID	Duplicate or	MSD-		SVI atrix Spike): 107516 Analysis
Test 1	Method	Matrix	Units	Result	Found	RPD%	Result	SPK ADD	%R	Date
1	200.7	WATERG	l 1 mg/L	2.75	2.79	1.4	3.86	1.00	111.0	9/19/03
1		WATERG		0.318	N/A	N/A	1.47	1.00	115.2	9/19/03
1	200.7	WATERG	3 mg/L	2.67	2.71	1.5	3.68	1.00	101.0	9/19/03
11		WATERG	-	0.107	N/A	N/A	1.14	1.00	103.3	9/20/03
15	200.7	WATERG	1 mg/L	0.212	0.213	0.5	1.38	1.00	116.8	9/22/03
ls	200.7	WATERG	2 mg/L	0.012	N/A	N/A	1.22	1.00	120.8	9/22/03
15	200.7	WATERG	3 mg/L	0.215	0.211	1.9	1.22	1.00	100.5	9/22/03
łs	200.7	WATERG	4 mg/L	<0.010	N/A	N/A	1.02	1.00	102.0	9/22/03
la	200.7	WATERG	1 mg/L	5.15	5.14	0.2	25.9	20.0	103.8	9/19/03
la	200.7	WATERG	2 mg/L	94.5	N/A	N/A	115	20.0	102.5	9/19/03
?e	200.7	WATERG	1 mg/L	3.79	3.83	1.0	13.9	10.0	101.1	9/19/03
?e	200.7	WATERG	2 mg/L	26.0	N/A	N/A	36.7	10.0	107.0	9/19/03
?e		WATERG		3.01	3.06	1.6	12.7	10.0	96.9	9/19/03
?e	200.7	WATERG	4 mg/L	16.1	N/A	N/A	28.4	10.0	123.0	9/20/03
5	200.7	WATERG	1 mg/L	2930	2870	2.1	2890	30.0	R >4S	9/21/03
Χ	200.7	WATERG	2 mg/L	848	N/A	N/A	882	30.0	113.3	9/21/03
1g	200.7	WATERG	1 mg/L	0.158	0.164	3.7	19.7	20.0	97.7	9/19/03
1g	200.7	WATERG	2 mg/L	12.6	N/A	N/A	32.8	20.0	101.0	9/19/03
ſn	200.7	WATERG	1 mg/L	0.0561	0.0562	0.2	1.08	1.00	102.4	9/19/03
Mn	200.7	WATERG	2 mg/L	3.48	N/A	N/A	4.53	1.00	105.0	9/19/03
٩n	200.7	WATERG	3 mg/L	0.0484	0.0487	0.6	1.04	1.00	99.2	9/19/03
Mn	200.7	WATERG	4 mg/L	3.34	N/A	N/A	4.23	1.00	89.0	9/20/03
Na	200.7	WATERG	1 mg/L	152	159	4.5	181	20.0	R >4S	9/19/03
Na	200.7	WATERG	2 mg/L	53.5	N/A	N/A	74.2	20.0	103.5	9/19/03
P	200.7	WATERG	1 mg/L	2.22	2.21	0.5	5.15	2.50	117.2	9/22/03
£	200.7	WATERG	2 mg/L	0.149	N/A	N/A	3.38	2.50	129.2	9/22/03
Р	200.7	WATERG	2 mg/L	0.149	N/A	N/A	2.61	2.50 A	98.4	9/22/03
SiO2	200.7	WATERG	1 mg/L	83.1	83.9	1.0	93.2	10.7	94.4	9/19/03
SiO2	200.7	WATERG	2 mg/L	26.6	N/A	N/A	38.6	10.7	112.1	9/19/03
SiO2	200.7	WATERG	3 mg/L	80.9	81.7	1.0	88.0	10.7	R >4S	9/19/03
SiO2	200.7	WATERG	4 mg/L	25.4	N/A	N/A	35.9	10.7	98.1	9/20/03
C1	300.0	WATERG	1 mg/L	81.6	81.1	0.6	131	50.0	98.8	9/15/03
SO4	300.0	WATERG	1 mg/L	1710	1710	0.0	2290	500	116.0	9/15/03
ALK	2320	WATERG	1 mg/L	2190	2160	1.4	N/A	N/A	N/A	9/10/03
CO3	2320	WATERG	l mg/L	1660	1520	8.8	N/A	N/A	N/A	9/10/03
HCO3	2320	WATERG	mg/L	<1.0	<1.0	UDL	N/A	N/A	N/A	9/10/03
pН		WATERG		12.10	12.10	0.0	N/A	N/A	N/A	9/09/03
COND	120.1	WATERG	1 umhos/c	10900	10800	0.9	N/A	N/A	N/A	9/10/03
Eh		WATERG	1	-246	-247	0.4	N/A	N/A	N/A	9/09/03
ORG18D	415.1	WATERG	l mg/L	173	176	1.7	220	50.0	94.0	9/17/03
TDS	160.1	WATERG	l mg∕L	6290	6240	0.8	N/A	N/A	N/A	9/11/03

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; ZR = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike AddedControl limits for MS recoveries apply only if the spike add is at least 0.25 times the concentration of the analyte in the sample.Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.QC Sample 1:SVL SAM No.: 352854QC Sample 2:SVL SAM No.: 352864QC Sample 3:SVL SAM No.: 352874QC Sample 4:SVL SAM No.: 352884QC Sample 4:SVL SAM No.: 352884

							0165.	J J J	with No.													
:	Page / of A	FOR SVL USE ONLY	SVL JOB#			Bothes: *	#1 - 1 Hr. Man JUND		#4.500 m] 00 m]											5/03	Time:	SVL-COC 12/95
	SCORD	Table 1 Matrix Type	1 = Surface Water, 2 = Ground Water 3 = Soil/Sediment 4 = Rinsate 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature: q . \mathcal{E} . $\mathcal{H}_{\mathcal{A}}$	Analyses Required		_	A Tot, Dic, tot A barballe, Brown My cationed My cationed My Source My Source Hon, Source Hon, Source Hon, Source	XXXXXXXXXX										e. What Date: 9	Date:	OPY Yellow: CUSTOMER COPY
	OF CUSTODY RECORD	ainer packaging.	.u		Min	(208) 783-0891		Preservative(s)	Undreserved (Ice Only)	×										Tithen : 10 Received by ()	ime: Received by:	White: LAB COPY
	CHAIN OI	 Ensure proper container packaging. 	2) Ship samples promptly following collectio	PO#:	Project Name: 🕖	FAX (83837-0929	Miscellaneous	Collected by: (Init.) Matrix Type From Table 1 No. of Containers Sample Filtered ? Y/N	* + 6 %										80/8/6	Date:	0 Days)
CAL					R	(208) 784-1258	Kellogg, ID	tion	Time	2:30 G	3:00 2	5:15	4:30	4:10	3,250	3150	12:20	05: (1	3:15			se [] Store (3
ANALYTIC	101	Detty	- 2	10% 0% 0% 0%	80-696-	tical, Inc.	One Government Gulch, Kellogg,	Collection	Date	56	914	9) y	9/4	9/4	9/4	h/6	9/5-	9/5-	915	Hur		ırn [] Dispo:
			Address: 2100 May	Phone Number:) 14 - 0	FAX Number:	Lab Name: SVL Analytical, Inc.	Address: One Governi		Sample ID	1 Wd .	2. PM 2	3. PM3	4. PWJ	S. P. MS	6. PMC	1. P M J	8. PM8	9. PMG.	10. J M /U	Relinquished by: Q.S.	Relinquished by: '	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

	Page 2 of 2		FOR SVL USE ONLY	SVL JOB #	015t01				×		1) S	6	Comments												18/03 Time: 2.1/7	Time:	SVL-COC 12/95
	CORD		Table 1 Matrix Type	1 = Surface Water, 2 = Ground Water	3 = Soil/Sediment, $4 = $ Rinsate, $5 = $ Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature: Q , S , fhy	Analyses Required	7	N C C	A M Suind M S S S S S S S S S S S S S S S S S S	Di set	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Add a star	XXXXXXXXXXX										20 Mate Date: of	Date:	COPY Yellow: CUSTOMER COPY
	CHAIN OF CUSTODY RECORD	NOTES:	1) Ensure proper container packaging.	2) Ship samples promptly following collection.	* 3) Designate Sample Reject Disposition	PO#:	Project Name: 0 2 AAA	58 FAX (208) 783-0891	83837-0929	Miscellaneous Preservative(s)	1	ی پر ۲۵ میں ۲۰ ۲۰ ۲۰	1 sle ntaine illered ved (Io	Лайтік Т гот Таі мо. оf Со 12504 1003 1005 100											Date: 7/K/03 Times; 10 Received by:	Date: Time: Received by:	ys) White: LAB COPY
ANALYTICAL		4	,ttv	C1 #120	ch g zugle	0080-616	969-0820	cal, Inc. (208) 784-1258	Kellogg, ID			(.1in)	Date Time		915- 2:47-01	9/5- 2:10 11	9/5- 1:45- 1	a//- 1:15-	9/5 3:40	9 / S- 1 : 30	7/4/1:05/7/	9/4 11:25 1	9/4 12:00	101:2 4/6	H.		* Sample Reject:] Return] Dispose] Store (30 Days)
1 CO		Client: Ceound	Contact Britch Pe	Address: 2100 Main	Hurt Bch	Phone Number:	FAX Number: 714 -	Lab Name: SVL Analytical, Inc.	Address: One Government Gulch,				Sample ID		1. fr m 1/	2. D M 12	B. P.M. B.	4. PM14	s. pm15	6. PM 17	7. PMIS	8. DM 19	9. PM 2U	10. PM 21	Relinquished by: A. S.	Relinquished by:	* Sample Reject: { Returi

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

CLIENT	: GeoSy	ntec	:		
PROJECT	: LEHIĜ	H			١
CLIENT	SAMPLE	ID:	GW - 1	MW-1	۱.
Sample (Collect	ed:	11/21	/03	9:30
Sample 1	Receipt		11/24		
Date of	Report	:	12/10	/03	

SVL JOB: 108796 SAMPLE: 366667 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	399	mg CaCO3/I		2320B	12/04/03
Т	Spec. Cond.	834	umhos/cm		120.1	11/25/03
Т	Eh (mV)`	+248	mV		2580	11/25/03
Т	pH	8.11			150.1	12/04/03
Т	TDS	475	mg/L		160.1	11/25/03
Т	Turbidity	0.415	NTU'S		180.1	12/01/03
Т	Calcium	113	mg/L		200.7	12/09/03
Т	Chloride	5.34	mg/L		300.0	12/08/03
Т	Fluoride	0.11	mg/L		300.0	12/08/03
Т	Potassium	2.7	mg/L		200.7	12/09/03
Т	Magnesium	43.7	mg/L		200.7	12/09/03
Т	Sodium	4.57	mg/L		200.7	12/09/03
Т	Sulfide	<1.0	mg/L		376.1	11/25/03
Т	Sulfate, SO4	63.1	mg/L	· 5	300.0	12/08/03
Т	Arsenic	<0.010	mg/L		200.7	12/09/03
Т	Chromium	<0.0060	mg/L		200.7	12/09/03
Т	Iron	0.163	mg/L		200.7	12/09/03
T	Manganese	0.0060	mg/L		200.7	12/09/03
Т	Lead	<0.0050	mg/L		200.7	12/09/03
Т	Silica	23.3	mg/L		200.7	12/09/03
Т	INORGANIC CARÉON	93.2	mg/L		415.1	12/01/03
D	Arsenic	<0.010	mg/L	3	200.7	12/09/03
D	Chromium	<0.0060	mg/L		200.7	12/09/03
D	Iron	<0.020	mg/L		200.7	12/09/03
D	Manganese	<0.0020	mg/L		200.7	12/09/03
D	Lead	<0.0050	mg/L		200.7	12/09/03
D	Silica	22.6	mg/L		200.7	12/09/03
TDS,	CalcTDS: 530 /CalcTDS: 0.9	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	9.52meq/L 9.44meq/L	BALANCE 0.42%

Filtered fraction: 366673

Reviewed By:

Date 12/10

12/10/03 8:13

DAP WARDITCAP' THE	SVL	ANALYTICAL,	INC
--------------------	-----	-------------	-----

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

SVL JOB: 108796 SAMPLE: 366668 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	305	mg CaCO3/	L	2320B	12/04/03
Т	Spec. Cond.	1050	umhos/cm		120.1	11/25/03
Т	Eh (mV)	+191	mV		2580	11/25/03
Т	pн	8.18			150.1	12/04/03
Т	TDS	535	mg/L		160.1	11/25/03
Т	Turbidity	0.883	NTU'S		180.1	12/01/03
Т	Calcium	59.6	mg/L		200.7	12/09/03
Т	Chloride	126	mg/L	25	300.0	12/08/03
Т	Fluoride	0.17	mg/L		300.0	12/08/03
Т	Potassium	52.8	mg/L		200.7	12/09/03
T	Magnesium	29.8	mg/L		200.7	12/09/03
T	Sodium	82.4	mg/L		200.7	12/09/03
T	Sulfide	<1.0	mg/L		376.1	11/25/03
Т	Sulfate, SO4	29.3	mg/L	2	300.0	12/08/03
Т	Arsenic	<0.010	mg/L		200.7	12/09/03
Т	Chromium	<0.0060	mg/L		200.7	12/09/03
Т	Iron	0.790	mg/L		200.7	12/09/03
Т	Manganese	0.955	mg/L		200.7	12/09/03
Т	Lead	<0.0050	mg/L		200.7	12/09/03
Т	Silica	10.9	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	72.9	mg/L		415.1	12/01/03
D	Arsenic	< 0.010	mg/L		200.7	12/09/03
D	Chromium	<0.0060	mg/L		200.7	12/09/03
D	Iron	0.027	mg/L		200.7	12/09/03
D	Manganese	0.878	mg/L		200.7	12/09/03
D	Lead	<0.0050	mg/L		200.7	12/09/03
D	Silica	10.2	mg/L		200.7	12/09/03
TDS,	CalcTDS: 591 /CalcTDS: 0.9	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	10.44meq/L 10.26meq/L	BALANCE 0.87%

Filtered fraction: 366674 TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME)

Reviewed By: ______ King Lay

Date 12/10/03 12/10/03 8:14

PRO CLI Sam Sam		GW-3 MW-	7 9:00			SVL JOB: SAMPLE: T Matrix:	36666 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	232	mg CaCO3/L		2320B	12/04/03	
т	Spec. Cond.	467	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+208	mV		2580	11/25/03	
Т	pН	8.10			150.1	12/04/03	
Т	TDS	266	mg/L		160.1	11/25/03	
Т	Turbidity	0.245	NTU'S		180.1	12/01/03	
Т	Calcium	61.0	mg/L		200.7	12/09/03	
Т	Chloride	1.09	_mg/L		300.0	12/08/03	
Т	Fluoride	0.14	mg/L		300.0	12/08/03	
Т	Potassium	3.3	mg/L		200.7	12/09/03	
Т	Magnesium	26.6	mg/L		200.7	12/09/03	
Т	Sodium	3.07	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	34.6	mg/L	2	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Chromium	<0.0060	mg/L ·		200.7	12/09/03	
Т	Iron	0.021	mg/L		200.7	12/09/03	
Т	Manganese	0.0025	mg/L		200.7	12/09/03	
Т	Lead	<0.0050	mg/L		200.7	12/09/03	
Т	Silica	11.9	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	56.1	mg/L		415.1	12/01/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Chromium	<0.0060	mg/L		200.7	12/09/03	
D	Iron	<0.020	mg/L		200.7	12/09/03	
D	Manganese	0.0095	mg/L		200.7	12/09/03	
D	Lead	<0.0050	mg/L		200.7	12/09/03	
D	Silica	11.4	mg/L		200.7	12/09/03	

Filtered fraction: 366675 TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME) Reviewed By:______

SVL ANALYTICAL, INC.

Date <u>12/10/03</u> 12/10/03 8:14

Certificate: CA CERTIFICATE NO. 2080

SVL	ANALYTICAL,	INC.
-----	-------------	------

Certificate: CA CERTIFICATE NO. 2080

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-089

CLIENT : GeoSyntec PROJECT: LEHIGH CLIENT SAMPLE ID: GW-4 MW-8 Sample Collected: 11/21/03 8:00 Sample Receipt : 11/24/03 Date of Report : 12/10/03

SVL JOB: 108796 SAMPLE: 366670 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	279	mg CaCO3,	/L	2320B	12/04/03
Т	Spec. Cond.	563	umhos/cm		120.1	11/25/03
Т	Eh (mV)	+223	mV		2580	11/25/03
Т	pH	8.08			150.1	12/04/03
Т	TDS	274	mg/L		160.1	11/25/03
Т	Turbidity	30.8	NTU'S		180.1	12/01/03
Т	Calcium	65.1	mg/L		200.7	12/09/03
Т	Chloride	1.74	mg/L		300.0	12/08/03
Т	Fluoride	0.19	mg/L		300.0	12/08/03
Т	Potassium	11.2	mg/L		200.7	12/09/03
T	Magnesium	28.6	mg/L		200.7	12/09/03
Т	Sodium	3.30	mg/L		200.7	12/09/03
Т	Sulfide	<1.0	mg/L		376.1	11/25/03
Т	Sulfate, SO4	23.0	mg/L	2	300.0	12/08/03
Т	Arsenic	<0.010	mg/L		200.7	12/09/03
Т	Chromium	<0.0060	mg/L		200.7	12/09/03
Т	Iron	4.74	mg/L		200.7	12/09/03
Т	Manganese	1.83	mg/L		200.7	12/09/03
Т	Lead	<0.0050	mg/L		200.7	12/09/03
Т	Silica	15.4	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	68.1	mg/L		415.1	12/01/03
D	Arsenic	<0.010	mg/L		200.7	12/09/03
D	Chromium	<0.0060	mg/L		200.7	12/09/03
D	Iron	<0.020	mg/L		200.7	12/09/03
D	Manganese	1.67	mg/L		200.7	12/09/03
D	Lead	<0.0050	mg/L		200.7	12/09/03
D	Silica	14.2	mg/L		200.7	12/09/03
TDS	CalcTDS: 343 /CalcTDS: 0.8	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	6.33meq/L 6.11meq/L	1 1

Filtered fraction: 366676

TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME)

Reviewed By: July Liny

Date 12/10/03 12/10/03 8:14

CLIENT : G PROJECT: L CLIENT SAM Sample Col Sample Rec Date of Re	LEHIGH MPLE ID: llected: ceipt :	GW-5 MW 11/21/03 11/24/03)- 9 10:30
Date of Re	eport :	12/10/03	

SVL JOB: 108796 SAMPLE: 366671 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	2170	mg CaCO3/I	-	2320B	12/04/03
Т	Spec. Cond.	11400	umhos/cm		120.1	11/25/03
Т	Eh (mV)	- 3'37	mV		2580	11/25/03
Т	pH	12.14			150.1	12/04/03
T	TDS	6180	mg/L		160.1	11/25/03
Т	Turbidity	0.671	NTU'S		180.1	12/01/03
Т	Calcium	4.17	mg/L		200.7	12/09/03
Т	Chloride	46.2	mg/L	10	300.0	12/08/03
Т	Fluoride	1.91	mg/L	10	300.0	12/08/03
Т	Potassium	2960	mg/L	50	200.7	12/09/03
Т	Magnesium	<0.040	mg/L		200.7	12/09/03
Т	Sodium	110	mg/L		200.7	12/09/03
Т	Sulfide	2.20	mg/L		376.1	11/25/03
Т	Sulfate, SO4	1490	mg/L	100	300.0	12/08/03
Т	Arsenic	0.169	mg/L		200.7	12/09/03
Т	Chromium	<0.0060	mg/L		200.7	12/09/03
Т	Iron	0.714	mg/L		200.7	12/09/03
T	Manganese	0.0067	mg/L		200.7	12/09/03
T	Lead	<0.0050	mg/L		200.7	12/09/03
Т	Silica	87.7	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	131	mg/L		415.1	12/01/03
D	Arsenic	0.136	mg/L		200.7	12/09/03
D	Chromium	<0.0060	mg/L		200.7	12/09/03
D	Iron	0.603	mg/L		200.7	12/09/03
D	Manganese	0.0075	mg/L		200.7	12/09/03
D	Lead	<0.0050	mg/L		200.7	12/09/03
D	Silica	80.5	mg/L		200.7	12/09/03
TDS	CalcTDS: 6130 /CalcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	80.77meq/L 75.68meq/L	BALANCE 3.25%

Filtered fraction: 366677

TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME) Reviewed By: Surlay May

Date 12/10/07 12/10/03 8:14

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

Certificate: CA CERTIFICATE NO. 2080 One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0891

RC	ENT : GeoSyntec DJECT: LEHIGH ENT SAMPLE ID: ple Collected:	GW-15 MW	-9(D)			SVL JOB: SAMPLE: T(
am	ple Receipt :	11/24/03 12/10/03	0.50			Matrix:	WATI
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	2150	mg CaCO3/L		2320B	12/04/03	
Т	Spec. Cond.	11500	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	-333	mV		2580	11/25/03	
Т	pH	12.16			150.1	12/04/03	
Т	TDS	5920	mg/L		160.1	11/25/03	
Т	Turbidity	0.713	NTU'S		180.1	12/01/03	
Т	Calcium	4.14	mg/L		200.7	12/09/03	
Т	Chloride	46.2	mg/L	10	300.0	12/08/03	
Т	Fluoride	1.98	mg/L	10	300.0	12/08/03	
Т	Potassium	2990	mg/L	50	200.7	12/09/03	
Т	Magnesium	<0.040	mg/L		200.7	12/09/03	
Т	Sodium	107	mg/L		200.7	12/09/03	
Т	Sulfide	2.30	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	1480	mg/L	100	300.0	12/08/03	
Т	Arsenic	0.176	mg/L		200.7	12/09/03	
Т	Chromium	<0.0060	mg/L		200:7	12/09/03	
Т	Iron	0.713	mg/L		200.7	12/09/03	
Т	Manganese	0.0061	mg/L		200.7	12/09/03	
Т	Lead	<0.0050	mg/L		200.7	12/09/03	
Т	Silica	86.7	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	133	mg/L		415.1	12/01/03	
D	Arsenic	0.130	mg/L		200.7	12/09/03	
D	Chromium	<0.0060	mg/L		200.7	12/09/03	
D	Iron	0.566	mg/L		200.7	12/09/03	
D	Manganese	0.0061	mg/L		200.7	12/09/03	
D	Lead	<0.0050	mg/L		200.7	12/09/03	
D	Silica	83.4	mg/L		200.7	12/09/03	
	CalcTDS: 6140 /CalcTDS: 1.0	TDS/Con CalcTDS/Con	1	CATION SUM: ANION SUM:	81.39meq/L 75.23meq/L	BALANCE 3.93%	

Filtered fraction: 366678 TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME) Reviewed By: July Surger

Date <u>12/10/03</u> 12/10/03 8:14

					Quality	Control	Report
Part	Ι	Prep	Blank	$an\alpha$	Laboratory	Control	Sample

Client :GeoSyntee	2						SVL JOB I	No: 108796
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS-	Found	LCS %R	Analysis Date
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.944	94.4	12/09/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.8	99.0	12/09/03
Chromium	200.7	WATER	mg/L	<0.0060	1.00	0.944	94.4	12/09/03
Iron	200.7	WATER	mg/L	<0.020	10.0	10.5	105.0	12/09/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	31.2	104.0	12/09/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.2	101.0	12/09/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.04	104.0	12/09/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.1	100.5	12/09/03
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.962	96.2	12/09/03
Silica	200.7	WATER	mg/L	<0.171	10.7	11.1	103.7	12/09/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.86	97.2	12/08/03
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.56	102.4	12/08/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.82	98.2	12/08/03
ALKALINITY	2320B	WATER	mg/L	<1.0	55.0	59.4	108.0	12/04/03
pH	150.1	WATER	_	5.36	7.42	7.39	99.6	12/04/03
Spec. Cond.	120.1	WATER	umhos/cm	0.700	494	497	100.6	11/25/03
Eh (mV)	2580	WATER	mV	+225	+228	+238	104.4	11/25/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	30.0	29.3	97.7	12/01/03
Sulfide	376.1	WATER	mg/L	<1.0	2.00	2.20	110.0	11/25/03
TDS	160.1	WATER	mg/L	< 1 0	525	460	87.6	11/25/03
Turbidity	180.1	WATER	NTU'S	0.075	13.1	12.5	95.4	12/01/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Clien	t :Geo	Syntec		E ID	Duplicato			SVI trix Spike		p: 108796
st 1	Method	Matrix	Units	Result	Duplicate of Found	RPD%	Result	SPK ADD	۶R	Date
As	200.7	WATERG 1	mg/L	<0.010	<0.010	UDL	0.967	1.00	96.7	12/09/03
As	200.7	WATERG 2	2 mg/L	<0.010	<0.010	UDL	0.942	1.00	94.2	12/09/03
Ca	200.7	WATERG 1	mg/L	113	111	1.8	131	20.0	90.0	12/09/03
Cr	200.7	WATERG 1	mg/L	<0.0060	<0.0060	UDL	0.940	1.00	94.0	12/09/03
Cr	200.7	WATERG 2	2 mg/L	<0.0060	<0.0060	UDL	0.922	1.00	92.2	12/09/03
Fe	200.7	WATERG 1	mg/L	0.163	0.148	9.6	10.4	10.0	102.4	12/09/03
Fe	200.7	WATERG 2	2 mg/L	<0.020	<0.020	UDL	10.3	10.0	103.0	12/09/03
K	200.7	WATERG 1	mg/L	2.7	2.6	.3.8	34.1	30.0	104.7	12/09/03
Mg	200.7	WATERG 1	mg/L	43.7	42.8	2.1	62.0	20.0	91.5	12/09/03
Mn	200.7	WATERG 1	mg/L	0.0060	0.0061	1.7	1.02	1.00	101.4	12/09/03
Mn	200.7	WATERG 2	2 mg/L	<0.0020	<0.0020	UDL	1.01	1.00	101.0	12/09/03
Na	200.7	WATERG 1	mg/L	4.57	4.46	2.4	24.5	20.0	99.7	12/09/03
Pb	200.7	WATERG 1	mg/L	<0.0050	<0.0050	UDL	0.942	1.00	94.2	12/09/03
Pb	200.7	WATERG 2	2 mg/L	<0.0050	<0.0050	UDL	0.958	1.00	95.8	12/09/03
SiO2	200.7	WATERG 1	mg/L	23.3	22.7	2.6	33.9	10.7	99.1	12/09/03
SiO2	200.7	WATERG 2	2 mg/L	22.6	22.4	0.9	31.2	10.7	80.4	12/09/03
Cl	300.0	WATERG 1	mg/L	5.34	5.34	0.0	7.40	2.00	103.0	12/08/03
F	300.0	WATERG 1	mg/L	0.11	<0.10	200.0	1.94	2.00	91.5	12/08/03
SO4	300.0	WATERG 1	mg/L	63.1	63.9	1.3	90.8	25.0	110.8	12/08/03
ALK	2320B	WATERG 1	mg/L	399	397	0.5	N/A	N/A	N/A	12/04/03
pН	150.1	WATERG 1		8.11	8.09	0.2	N/A	N/A	N/A	12/04/03
COND	120.1	WATERG 1	umhos/c	834	843	1.1	N/A	N/A	N/A	11/25/03
Eh	2580	WATERG 1	mV	+248.	+239	3.7	N/A	N/A	N/A	11/25/03
ORG18D	415.1	WATERG 1	mg/L	93.2	95.2	2.1	122	50.0	57.6	12/01/03
S-2	376.1		mg/L	<1.0		N/A		N/A	N/A	11/25/03
ΨŪ,S	160.1	WATERG 1	mg/L	475	485	2.1	N/A	N/A	N/A	11/25/03
В	180.1	WATERG 1	NTU'S	0.415	0.432	4.0	N/A	N/A	N/A	12/01/03

LEGEND:

 $\begin{array}{l} \mbox{RPD\%} = (\left| \mbox{SAM} - \mbox{DUP} \right| / ((\mbox{SAM} + \mbox{DUP}) / 2) & 100) & \mbox{UDL} = \mbox{Both SAM \& DUP not detected.} & \mbox{Result or *Found: Interference required dilution.} \\ \mbox{RPD\%} = (\left| \mbox{SPK} - \mbox{MSD} \right| / ((\mbox{SPK} + \mbox{MSD}) / 2) & 100) & \mbox{M in Duplicate} / \mbox{MSD column indicates MSD.} \end{array}$

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike AddedControl limits for MS recoveries apply only if the spike add is at least 0.25 times the concentration of the analyte in the sample.Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.QC Sample 1: SVL SAM No.: 366667 Client Sample ID: GW-1 TQC Sample 2: SVL SAM No.: 366673 Client Sample ID: GW-1 D

G	ANALYTICAL	T		НJ		C	C I		A CIISTONV BROOM - HNOS	ケイシャ	- 600	1338	3 3 7 7 7	AT RE	JA 2 2		T S	្ស	Hand -	Freques bub filter HNO3	EUN
(別)				NOTES:				2										ν. ι Γ	rage		
Contact: URIAN	EEY.	=		1) Ensure proper container packaging	re prof	er cont	ainer 1	oackag	ing,			, H	Table 1	. (Matrix Type	ype			FOR SVL USE ONLY	SE ONLY	
HUNTINITUN	PEACH CA	#	$\frac{1}{2}$ $\frac{1}$	 Ship samples promptly following collection. Designate Sample Reject Disposition 	sample ignate	s prom Sampl	ptly fol e Reie	lowing ct Dis	collect positio	ion. n	3 	Surfa Soil/S	1 = Surface Water, 2 = Ground Water 3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	it, 4=	E)Gro	2 = 0 Ground Water 4 = Rinsate, 5 = 0i	ater = Oil		SVL JOB #	08# H(
Phone Number:	\mathbf{T}	$ \cap $))	PO#:	D						9 =	Waste	6 = Waste, 7 = Other (Specify)	Other	Specif	y)				*	
FAX Number:) 4 - 0	280-695	8		Project Name:	Name	J	Ś	0	,		San	plers	Samplers Signature:	ure:	O	4.		×1	A_		
Lab Name: SVL Analytical, Inc.	tical, Inc.	(208) 784-1258	84-12	82	FAX	(208) 783-0891	783-	0891			-		Analy	Analyses Required	equir	ed					
Address: One Govern	One Government Gulch, Kellogg,		ID 838	83837-0929	6								-		62	(1)	þ'0				
	Collection	ion	M	Miscellaneous	neous		Р	reser	Preservative(s)	e(s)			10	1	53	0	56. 11				
Sample ID	Date	Time	Collected by: (Init.)	Aatrix Type From Table I	Vo. of Containers	Sample Filtered ? Y/N	HNO3 Unpreserved (Ice Only)	HCL	¢OSZH	HOAN HOAN	Uther (Specify) A	Kopos Ha	ALA ToTazia	mon interest	1311A (0822)H3	$\frac{1}{2} \frac{1}{2} \frac{1}$	L'OP (YOP (OC)) LAN		Comments	nts	
1- 90 -1	11/21/03	7930 b			7		1 1			-	X	2	<u>פ</u> ע	8	8	N	12				
2. GW-2	/ /	10:00	1 J		,	7					-		-								
3. G W-S		2900																			
* 6 W ' Y		0890		$\overline{}$	+	-	-				\neq	7		\pm				Creve	4 2 2	<01V	
S(1) -1 X					t	$\overline{\mathbf{k}}$				\vdash	Ĺ		+		F	+-					
7.							<u>t</u> +			$\left \right $	$\left \right\rangle$		\vdash			$\left\{ \right\}$					
8,							-	_			_										,
9.						+								_							,
Relinquished by: CALFC	the the			Date:	-1	1	Time:	_	Receiv	Received by	-15	4	- 2	_			Date:	101	Time:	. Carlo	
Relinquished by:				Date:			Time:		Received by	ed by:							Date:	5	Time:	Ş	
* Sample Reject: [] Return [] Dispose [] Store (30 Days)	rn [] Dispose	[] Store	(30 Da	(s/					Whit	e: LA	White: LAB COPY	~	Yello	Yellow: CUSTOMER COPY	STON	IER C	ОРҮ		SVL-C	SVL-COC 12/95	

.....

					٦		
			TRANSMISSION VERIFIC	ATION REPORT	TIME : 11/24/2003 1 NAME : SVL ANALYTIC FAX : 2087830891 TEL : 2087841258 SER.# : BROF3J496071	AL	
	DATE,TIME FAX NO./NA DURATION PAGE(S) RESULT MODE	AME		11/24 13:34 917149690820 00:00:26 01 OK FINE ECM			
Page 1 of 1	SVL JOB No: 108796 Received: 11/24/03 Expected Due date: 12/09/03			Y. Field samples may appear twice.	·	sal options.	збе ватрlев. 11/24/03 11:25
SVL ANALYTICAL, INC. Government Gulch - Kellogg, ID 83837-0929	SAMPLE RECEIPT CONFIRMATION	ВУ	0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 0 11/24/03 0 11/24/03 0 0 11/24/03 0 11/24/03 0 11/24/03 0 11/24/03 0 11/24/03 0 11/24/03	iss. (^P) and Dissolved (^D) fractions separately temp: 10°C. ED OUT OF HOLDING TIME FOR TURBIDITY		after job completion. , then you will receive a letter requesting dispos	f you have guestions regarding the receipt of these

Gover	nment Gulch P.0.	Box 929	Kellogg, Idaho	83837-0929	Phone: (208)784	-1256 • Fax:	(208)783-0
	ENT : GeoSyntec]				SVL JOB:	
	JECT: LEHIGH						366696
	ENT SAMPLE ID:					Т	OT/DIS
Samp	ple Collected:	11/22/03	15:00				
Samp Date	ple Receipt : e of Report :	11/24/03 12/11/03				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
		Nesurc	0111 05			Anaryzeu	
Т	ALKALINITY	300	mg CaCO3/L		2320B	11/25/03	
_	Spec. Cond.	1090	umhos/cm		120.1	11/25/03	
	Eh (mV)	+193	mV		2580	11/25/03	
	рН	8.23			150.1	11/25/03	
	TDS	642	mg/L		160.1	11/25/03	
Т	Calcium	70.7	mg/L		200.7	12/09/03	
Т	Chloride	17.6	mg/L	5	300.0	12/08/03	
Т	Fluoride	<0.50*	mg/L	5	300.0	12/08/03	
Т	Potassium	134	mg/L	5	200.7	12/10/03	
	Magnesium	19.0	mg/L		200.7	12/09/03	
Т	Sodium	25.6	mg/L		200.7	12/09/03	
	Sulfide	<1.0	mg/L		376.1	11/25/03	
	Sulfate, SO4	175	mg/L	10	300.0	12/08/03	
_	Arsenic	<0.010	mg/L		200.7	12/09/03	
	Iron	0.923	mg/L		200.7	12/09/03	
	Manganese	0.274	mg/L		200.7	12/09/03	
	Silica	16.4	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	72.1	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/10/03	
	Iron	<0.020	mg/L		200.7	12/10/03	
	Manganese	0.0544	mg/L		200.7	12/10/03	
D	Silica	13.8	mg/L		200.7	12/10/03	
	CalcTDS: 661	TDS/Con	ıd:	CATION SUM:	9.67meg/L	BALANCE	
	CalcTDS: 1.0	CalcTDS/Con	.d.	ANION SUM:	10.13meg/L	-2.32%	

Filtered fraction: 366716

.

Date <u>12/11/03</u> 12/11/03 11:00

_

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929

Certificate: CA CERTIFICATE NO. 2080

Phone: (208)784-1258 Fax: (208)783-0891

PRC CLI	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID: ple Collected:	PM-3	12-45				108797 366698 OT/DIS
San	ple Receipt :	11/24/03 12/11/03	12.10			Matrix:	WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	151	mg CaCO3/1		2320B	11/25/03	
Т	Spec. Cond.	1750	umhos/cm		120.1	12/10/03	
Т	Eh (mV)	+193	mV		2580	11/25/03	
Т	рĤ	8.03			150.1	11/25/03	
Т	TDS	1160	mg/L		160.1	11/25/03	
Т	Calcium	167	mg/L		200.7	12/09/03	
Т	Chloride	108	mg/L	50	300.0	12/08/03	
Т	Fluoride	<1.0*	mg/L	10	300.0	12/08/03	
Т	Potassium	143	mg/L	5	200.7	12/10/03	
т	Magnesium	43.0	mg/L		200.7	12/09/03	
Т	Sodium	75.6	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
т	Sulfate, SO4	465	mg/L	50	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	0.804	mg/L		200.7	12/09/03	
Т	Manganese	0.786	mg/L		200.7	12/09/03	
Т	Silica	15.7	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	70.9	mg/L	·	415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/10/03	
D	Iron	<0.020	mg/L		200.7	12/10/03	
D	Manganese	0.717	mg/L		200.7	12/10/03	
D	Silica	13.3	mg/L		200.7	12/10/03	
	CalcTDS: 1130	TDS/Cor	nd:	CATION SUM:	18.91meq/L	BALANCE	
TDS	/CalcTDS: 1.0	CalcTDS/Con	nd:	ANION SUM:	15.75meg/L	9.128	

Filtered fraction: 366718

*Elevated detection limit due to matrix interference. Reviewed By:______

Date 12/11/03 12/11/03 11:00

	JECT: LEHIGH ENT SAMPLE ID:		2.05			SAMPLE: 3666 TOT/DI
Sam		11/23/03 11/24/03 12/11/03	3:05			Matrix: WATE
	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	1510	mg CaCO3/L	,	2320B	11/25/03
Т	Spec. Cond.	7190	umhos/cm		120.1	11/25/03
Τ	Eh (mV)	-218	mV		2580	11/25/03
Т	рН	11.70			150.1	11/25/03
Т	TDS	4130	mg/L		160.1	11/25/03
Т	Calcium	7.53	mg/L		200.7	12/09/03
Т	Chloride	93.5	mg/L	100	300.0	12/08/03
Т	Fluoride	1.36	mg/L	10	300.0	12/09/03
Т	Potassium	2050	mg/L	100	200.7	12/10/03
Т	Magnesium	1.48	mg/L		200.7	12/09/03
Т	Sodium	122	mg/L		200.7	12/09/03
Т	Sulfide	2.70	mg/L		376.1	11/25/03
Т	Sulfate, SO4	1020	mg/L	100	300.0	12/08/03
Т	Arsenic	0.118	mg/L		200.7	12/09/03
Т	Iron	3.56	mg/L		200.7	12/09/03
Т	Manganese	0.0948	mg/L		200.7	12/09/03
Т	Silica	55.5	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	129	mg/L		415.1	12/02/03
D	Arsenic	0.101	mg/L		200.7	12/10/03
D	Iron	0.480	mg/L		200.7	12/10/03
D	Manganese	0.0122	mg/L		200.7	12/10/03
D	Silica	45.8	mg/L		200.7	12/10/03
	CalcTDS: 4330	TDS/Con		CATION SUM:	58.40meq/L	BALANCE
	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	54.06meg/L	3.86%

	NALYTICAL, INC. rnment Gulch • P.O.	. Box 929 🔹	Kellogg, Idaho	83837-0929 •	Certif Phone: (208)784	icate: CA CERTIFIC -1258 • Fax: (
PRO CLI Sam Sam		PM-5	5:45				366697 F/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	817	mg CaCO3/L		2320B	11/25/03	
T	Spec. Cond.	6390	umhos/cm		120.1	11/25/03	
T	Eh (mV)	+121	mV		2580	11/25/03	
T	pH	9.69	111 4		150.1	11/25/03	
T	TDS	3660	mg/L		160.1	11/25/03	
T	Calcium	29.5	mg/L		200.7	12/09/03	
	Chloride	1190	mg/L	200	300.0	12/08/03	
Т	Fluoride	<1.0*	mg/L	10	300.0	12/08/03	
T	Potassium	539	mg/L	20	200.7	12/10/03	
T	Magnesium	25.2	mg/L	20	200.7	12/09/03	
T	Sodium	983	mg/L	20	200.7	12/10/03	
T	Sulfide	<1.0	mg/L	20	376.1	11/25/03	
т Т	Sulfate, SO4	612	mg/L	50	300.0	12/08/03	
T	Arsenic	<0.010	mg/L	00	200.7	12/09/03	
Ť	Iron	0.211	mg/L		200.7	12/09/03	
T	Manganese	0.0690	mg/L		200.7	12/09/03	
T	Silica	18.9	mg/L		200.7	12/09/03	
T	INORGANIC CARBON	137	mg/L		415.1	12/02/03	
D	Arsenic	0.034	mg/L		200.7	12/10/03	
D	Iron	0.217	mg/L		200.7	12/10/03	
D	Manganese	0.0153	mg/L		200.7	12/10/03	
D	Silica	25.7	mg/L		200.7	12/10/03	
TDS	CalcTDS: 3930 /CalcTDS: 0.9	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	60.11meq/L 62.63meq/L	BALANCE -2.05%	

Filtered fraction: 366717 *Elevated detection limit due to matrix interference. Reviewed By:______

Date 12/11/03 12/11/03 11:00

RC LI	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID:	РМ-6				SVL JOB: SAMPLE: TC	
an		12/02/03 1 12/03/03 12/18/03	2:30		·	Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1860	mg CaCO3/L		2320B	12/04/03	
Т	Spec. Cond.	8200	umhos/cm		120.1	12/04/03	
Т	Eh (mV)	+45.1	mV		2580	12/08/03	
Т	рН	11.69			150.1	12/04/03	
Т	TDS	5390	mg/L		160.1	12/04/03	
Т	Calcium	24.5	mg/L		200.7	12/17/03	
Т	Chloride	50.1	mg/L	10	300.0	12/12/03	
Т	Fluoride	1.13	mg/L	10	300.0	12/12/03	
Т	Potassium	2790	mg/L	50	200.7	12/17/03	
Т	Magnesium	0.951	mg/L		200.7	12/17/03	
Т	Sodium	149	mg/L		200.7	12/17/03	
Т	Sulfide	<1.0	mg/L		376.1	12/05/03	
Т	Sulfate, SO4	1380	mg/L	100	300.0	12/12/03	
Т	Arsenic	0.323	mg/L		200.7	12/17/03	
Т	Iron	2.01	mg/L		200.7	12/17/03	
Т	Manganese	0.0510	mg/L		200.7	12/17/03	
Τ	Silica	138	mg/L	50	200.7	12/17/03	
Т	INORGANIC CARBON	161	mg/L		415.1	12/05/03	
D	Arsenic	0.326	mg/L		200.7	12/17/03	
D	Iron	0.180	mg/L		200.7	12/17/03	
D	Manganese	0.0075	mg/L		200.7	12/17/03	
	Silica	139	mg/L	50	200.7	12/17/03	
D							

.

Filtered fraction: 367595 Reviewed By: <u>Surly Surv</u>

SVL ANALYTICAL, INC.

Date 12/18/83 12/18/03 14:10

Certificate: CA CERTIFICATE NO. 2080

	ENT : GeoSyntee	2				SVL JOB:	
	JECT: LEHIGH					SAMPLE:	
CLI	ENT SAMPLE ID:	PM-/	0.20			.1.	OT/DIS
	ple Collected: ple Receipt :	11/24/03	9:30			Matrix:	សង្ខភាភាទ
		12/11/03				Matiix.	WALEN
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	1030	mg CaCO3/L	J	2320B	11/25/03	
Т	Spec. Cond.	3550	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+156	mV		2580	11/25/03	
Т	pH	8.28			150.1	11/25/03	
Т	TDS	2390	mg/L		160.1	11/25/03	
Т	Calcium	438	mg/L		200.7	12/09/03	
Т	Chloride	225	mg/L	25	300.0	12/08/03	
Т	Fluoride	1.34	mg/L	10	300.0	12/08/03	
Т	Potassium	502	mg/L	20	200.7	12/10/03	
Т	Magnesium	75.3	mg/L		200.7	12/09/03	
Т	Sodium	270	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	541	mg/L	25	300.0	12/08/03	
Т	Arsenic	0.476	mg/L		200.7	12/09/03	
Т	Iron	458	mg/L		200.7	12/09/03	
Т	Manganese	15.3	mg/L		200.7	12/09/03	
Т	Silica	117	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	204	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/10/03	
D	Iron	7.02	mg/L		200.7	12/10/03	
D	Manganese	1.20	mg/L		200.7	12/10/03	
D	Silica	17.2	mg/L		200.7	12/10/03	
	CalcTDS: 3310	TDS/Co	nd:	CATION SUM:	69.90meg/L	BALANCE	

Filtered fraction: 366710 Reviewed By: Buly Dray

Date 12/11/03 12/11/03 11:00

PRC CLI San San		PM-8	9:00			SVL JOB: SAMPLE: T Matrix:	36668 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	947	mg CaCO3/L		2320B	11/25/03	
T	Spec. Cond.	5620	umhos/cm		120.1	11/25/03	
$\hat{\mathbf{T}}$	Eh (mV)	+56.3	mV		2580	11/25/03	
Î	pH	9.76			150.1	11/25/03	
T	TDS	3170	mg/L		160.1	11/25/03	
$\hat{\mathbf{T}}$	Calcium	17.9	mg/L		200.7	12/09/03	
T	Chloride	1030	mg/L	200	300.0	12/08/03	
Ť	Fluoride	<1.0*	mg/L	10	300.0	12/08/03	
т	Potassium	672	mg/L	20	200.7	12/10/03	
Т	Magnesium	20.1	mg/L		200.7	12/09/03	
Т	Sodium	818	mg/L	20	200.7	12/10/03	
Т	Sulfide	1.40	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	359	mg/L	50	300.0	12/08/03	
Т	Arsenic	0.021	mg/L		200.7	12/09/03	
Т	Iron	0.716	mg/L		200.7	12/09/03	
Т	Manganese	0.0146	mg/L		200.7	12/09/03	
Т	Silica	24.7	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	145	mg/L		415.1	12/02/03	
D	Arsenic	0.029	mg/L		200.7	12/10/03	
D	Iron	0.393	mg/L		200.7	12/10/03	
	Manganese	0.0110	mg/L		200.7	12/10/03	
D	maniganesso						

Filtered fraction: 366709

*Elevated detection limit due to matrix interference.

Reviewed By: Bully Ling Date 12/11/03 12/11/03 11:00

PRC CL1 San San	JENT : GeoSyntec OJECT: LEHIGH JENT SAMPLE ID: PM-9 mple Collected: 12/02/03 12:00 mple Receipt : 12/03/03 te of Report : 12/18/03				SVL JOB: 108900 SAMPLE: 367594 TOT/DIS Matrix: WATERO		
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	438	mg CaCO3/L		2320B	12/04/03	
Т	Spec. Cond.	4600	umhos/cm		120.1	12/04/03	
т	Eh (mV)	+150	mV		2580	12/08/03	
Т	рН	8.40			150.1	12/04/03	
Т	TDS	2260	mg/L		160.1	12/04/03	
Т	Calcium	38.2	mg/L		200.7	12/17/03	
Т	Chloride	997	mg/L	20	300.0	12/12/03	
Т	Fluoride	<1.0*	mg/L		300.0	12/12/03	
Т	Potassium	358	mg/L	10	200.7	12/17/03	
Т	Magnesium	40.4	mg/L		200.7	12/17/03	
Т	Sodium	636	mg/L	10	200.7	12/17/03	
Т	Sulfide	<1.0	mg/L		376.1	12/05/03	
Т	Sulfate, SO4	142	mg/L	10	300.0	12/12/03	
Т	Arsenic	0.015	mg/L		200.7	12/17/03	
Т	Iron	1.05	mg/L		200.7	12/17/03	
Т	Manganese	0.472	mg/L		200.7	12/17/03	
Т	Silica	9.28	mg/L		200.7	12/17/03	
Т	INORGANIC CARBON	101	mg/L		415.1	12/05/03	
D	Arsenic	0.017	mg/L		200.7	12/17/03	
D	Iron	0.420	mg/L		200.7	12/17/03	
D	Manganese	0.434	mg/L		200.7	12/17/03	
D	Silica	8.48	mg/L		200.7	12/17/03	

Filtered fraction: 367596

*Elevated detection limit due to matrix interference. Reviewed By: Burlup June

Date 12/18/03 12/18/03 15:38

PRC	ENT : GeoSynteo JECT: LEHIGH ENT SAMPLE ID:					SVL JOB: SAMPLE: T	
San San	ple Collected: ple Receipt :		12:00			Matrix:	
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	766	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	2300	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+299	mV		2580	11/25/03	
Т	рН	7.35			150.1	11/25/03	
Т	TDS	1580	mg/L		160.1	11/25/03	
Т	Calcium	99.3	mg/L		200.7	12/09/03	
Т	Chloride	105	mg/L	25	300.0	12/08/03	
Т	Fluoride	<1.0*	mg/L	10	300.0	12/08/03	
Т	Potassium	490	mg/L	20	200.7	12/10/03	
Т	Magnesium	10.2	mg/L		200.7	12/09/03	
Т	Sodium	79.8	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	236	mg/L	10	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	20.6	mg/L		200.7	12/09/03	
Т	Manganese	2.95	mg/L		200.7	12/09/03	
Т	Silica	18.3	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	201	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	9.24	mg/L		200.7	12/09/03	
D	Manganese	2.73	mg/L		200.7	12/09/03	
D	Silica	16.6	mg/L		200.7	12/09/03	

Filtered fraction: 366701 *Elevated detection limit due to patrix interference. Reviewed By:_______

_____Date 12/11/03 12/11/03 10:59

PRC CLI	ENT : GeoSynted JECT: LEHIGH ENT SAMPLE ID: ple Collected:	PM11	12:30			SVL JOB: SAMPLE: T	
San	ple Receipt :	11/24/03 12/11/03				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	783	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	1700	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+80.7	mV		2580	11/25/03	
Т	PH	7.09			150.1	11/25/03	
Т	TDS	1030	mg/L		160.1	11/25/03	
Т	Calcium	166	mg/L		200.7	12/09/03	
Т	Chloride	37.4	mg/L	5	300.0	12/08/03	
Т	Fluoride	<0.20*	mg/L	2	300.0	12/08/03	
Т	Potassium	228	mg/L	10	200.7	12/10/03	
Т	Magnesium	14.0	mg/L		200.7	12/09/03	
Т	Sodium	36.0	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	76.1	mg/L	5	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	41.8	mg∕L		200.7	12/09/03	
Т	Manganese	4.50	.mg/L		200.7	12/09/03	
Т	Silica	22.5	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	242	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	31.8	mg/L		200.7	12/09/03	
D	Manganese	4.36	mg/L		200.7	12/09/03	
D	Silica	21.3	mg/L		200.7	12/09/03	

Filtered fraction: 366702 *Elevated detection limit due to matrix interference. Reviewed By: <u>Fully</u> May

Date 12/11/03 12/11/03 10:59

PRO	ENT : GeoSyntec JECT: LEHIGH ENT SAMPLE ID:	PM-12	12.20			SVL JOB: 1087 SAMPLE: 3666 TOT/DI
San	aple Collected: aple Receipt : ae of Report :	11/24/03	13:30			Matrix: WATE
	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	949	mg CaCO3/I		2320B	11/25/03
Т	Spec. Cond.	2970	umhos/cm		120.1	11/25/03
Т	Eh (mV)	+236	mV		2580	11/25/03
Т	На	7.61			150.1	11/25/03
Т	TDS	1850	mg/L		160.1	11/25/03
Т	Calcium	78.7	mg/L		200.7	12/09/03
Т	Chloride	109	mg/L	25	300.0	12/08/03
Т	Fluoride	<0.50*	mg/L	5	300.0	12/08/03
Т	Potassium	728	mg/L	20	200.7	12/10/03
Т	Magnesium	10.3	mg/L		200.7	12/09/03
Т	Sodium	90.7	mg/L		200.7	12/09/03
Т	Sulfide	<1.0	mg/L		376.1	11/25/03
Т	Sulfate, SO4	297	mg/L	25	300.0	12/08/03
Т	Arsenic	<0.010	mg/L		200.7	12/09/03
Т	Iron	26.2	mg/L		200.7	12/09/03
Т	Manganese	2.75	mg/L		200.7	12/09/03
Т	Silica	24.1	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	217	mg/L		415.1	12/02/03
D	Arsenic	<0.010	mg/L		200.7	12/09/03
D	Iron	3.74	mg/L		200.7	12/09/03
D	Manganese	2.58	mg/L		200.7	12/09/03
D	Silica	21.3	mg/L		200.7	12/09/03
	CalcTDS: 1970	TDS/Cor	nd:	CATION SUM:	28.61meq/L	
TDS	/CalcTDS: 0.9	CalcTDS/Con	ad.	ANION SUM:	28.21meg/L	0.70%

Filtered fraction: 366/04 *Elevated detection limit due to matrix interference. Reviewed By: ______ Date <u>/2/11/03</u> 12/11/03 11:00

SVL ANALYTICAL, INC.

Certificate: CA CERTIFICATE NO. 2080

PRC CLI San San		PM-13 11/21/03 11/24/03	14:00			SVL JOB: SAMPLE: T Matrix:	36668 OT/DIS
	Determination	12/11/03 Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	707	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	2070	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+134	mV		2580	11/25/03	
T	pH	9.70			150.1	11/25/03	
Т	TDS	1270	mg/L		160.1	11/25/03	
Т	Calcium	13.9	mg/L		200.7	12/09/03	
Ť	Chloride	91.2	mg/L	25	300.0	12/08/03	
Т	Fluoride	<0.50*	mg/L	5	300.0	12/08/03	
Ť	Potassíum	572	mg/L	20	200.7	12/10/03	
T	Magnesium	3.88	mg/L		200.7	12/09/03	
T	Sodium	67.6	mg/L		200.7	12/09/03	
Ť	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	91.5	mg/L	5	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	1.04	mg/L		200.7	12/09/03	
Т	Manganese	0.235	mg/L		200.7	12/09/03	
Т	Silica	6.70	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	124	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	0.730	mg/L		200.7	12/09/03	
D	Manganese	0.219	mg/L		200.7	12/09/03	
	Silica	6.13	mg/L		200.7	12/09/03	

*Elevated detection limit due to matrix interference.

Reviewed By: Bisly Gray

Date 12/11/03 12/11/03 11:00

PRC CLI San San	LENT : GeoSynted DJECT: LEHIGH LENT SAMPLE ID: nple Collected: nple Receipt : te of Report :	PM-14 11/21/03	15:30			SVL JOB: SAMPLE: I Matrix:	36668 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	394	mg CaCO3/L		2320B	11/25/03	
T	Spec. Cond.	1410	umhos/cm		120.1	11/25/03	
T	Eh (mV)	+201	mV		2580	11/25/03	
T	pH	9.14			150.1	11/25/03	
Т	TDS	878	mg/L		160.1	11/25/03	
T	Calcium	13.3	mg/L		200.7	12/09/03	
Т	Chloride	57.5	mg/L	10	300.0	12/08/03	
Т	Fluoride	1.06	mg/L	10	300.0	12/08/03	
Т	Potassium	364	mg/L	10	200.7	12/10/03	
Т	Magnesium	2.10	mg/L		200.7	12/09/03	
Т	Sodium	43.6	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	135	mg/L	10	300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	0.948	mg/L		200.7	12/09/03	
Т	Manganese	0.154	mg/L		200.7	12/09/03	
Т	Silica	5.13	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	82.7	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	0.670	mg/L		200.7	12/09/03	
D	Manganese	0.154	mg/L		200.7	12/09/03	
	Silica	4.87	mg/L		200.7	12/09/03	

Reviewed By: Birly Liny

_____Date_/2/11/03 12/11/03 11:00

SVL ANALYTICAL, IN

One Government Gulch P.O. Box 929 **F**

Kellogg, Idaho 83837-0929

.

Certificate: CA CERTIFICATE NO. 2080 Phone: (208)784-1258 • Fax: (208)783-0891

PRC CLI	IENT : GeoSyntec DJECT: LEHIGH IENT SAMPLE ID: nple Collected:	PM-15	13-30			SVL JOB: 10 SAMPLE: 30 TOT,	566
San	mple Receipt : te of Report :	11/24/03				Matrix: WA	ΥTΕ
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	2370	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	12000	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	-211	mV		2580	11/25/03	
Т	рН	12.20			150.1	11/25/03	
Т	TDS	6590	mg/L		160.1	11/25/03	
Т	Calcium	3.31	mg/L		200.7	12/09/03	
Т	Chloride	50.7	mg/L	10	300.0	12/08/03	
Т	Fluoride	1.27	mg/L	10	300.0	12/08/03	
Т	Potassium	3190	mg/L	100	200.7	12/10/03	
Т	Magnesium	<0.040	mg/L		200.7	12/09/03	
Т	Sodium	121	mg/L		200.7	12/09/03	
Т	Sulfide	1.50	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	1730	mg/L	100	300.0	12/08/03	
Т	Arsenic	0.133	mg/L		200.7	12/09/03	
Т	Iron	0.191	mg/L		200.7	12/09/03	
Т	Manganese	<0.0020	mg/L		200.7	12/09/03	
Т	Silica	102	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	156	mg/L		415.1	12/02/03	
D	Arsenic	0.143	mg/L		200.7	12/10/03	
D	Iron	0.198	mg/L		200.7	12/10/03	
D	Manganese	0.0023	mg/L		200.7	12/10/03	
D	Silica	102	mg/L		200.7	12/10/03	
	CalcTDS: 6770 CalcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	87.05meq/L 84.73meq/L	BALANCE 1.35%	

Filtered fraction: 366713

Reviewed By: Furly Gray

_____Date______Date______ 12/11/03 11:00

PRO CLI Sam Sam	ENT : GeoSynted DJECT: LEHIGH ENT SAMPLE ID: mple Collected: mple Receipt : e of Report :	PM-17 11/21/03 1 11/24/03	6:00			SVL JOB: SAMPLE: T Matrix:	366688 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1300	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	6370	umhos/cm		120.1	11/25/03	
Ť	Eh (mV)	-225	mV		2580	11/25/03	
Ť	pH	12.00			150.1	11/25/03	
Ť	TDS	2800	mg/L		160.1	11/25/03	
T	Calcium	4.85	mg/L		200.7	12/09/03	
Ť	Chloride	32.3	mg/L	10	300.0	12/08/03	
Ť	Fluoride	1.34	mg/L	10	300.0	12/08/03	
T	Potassium	1590	mg/L	50	200.7	12/10/03	
Ť	Magnesium	<0.040	mg/L		200.7	12/09/03	
Т	Sodium	61.4	mg/L		200.7	12/09/03	
Ť	Sulfide	2.30	mg/L		376.1	11/25/03	
Ť	Sulfate, SO4	719	mg/L	50	300.0	12/08/03	
Т	Arsenic	0.079	mg/L	50	200.7	12/09/03	
Ť	Iron	0.899	mg/L		200.7	12/09/03	
Ť	Manganese	0.0118	mg/L		200.7	12/09/03	
Т	Silica	47.0	mg/L		200.7	12/09/03	
Ť	INORGANIC CARBON	83.5	mg/L		415.1	12/02/03	
D	Arsenic	0.071	mg/L		200.7	12/09/03	
	Iron	0.622	mg/L		200.7	12/09/03	
D						12/09/03	
D D	Manganese	0.0114	mg/L		200.7	12/09/03 1	

Filtered fraction: 366708 Reviewed By: Jump Jump

Date <u>12/11/03</u> 12/11/03 11:00

PRC CLI San San		PM-18	12:45				366691 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
T T T T T T T T T T T T T T T T T T T	ALKALINITY Spec. Cond. Eh (mV) pH TDS Calcium Chloride Fluoride Potassium Magnesium Sodium Sulfide Sulfate, SO4 Arsenic Iron Manganese Silica INORGANIC CARBON	1990 9170 -22.4 11.84 5510 4.31 41.1 1.12 2740 <0.040 120 <1.0 1650 0.198 0.161 0.0041 73.3 188	mg CaCO3/L umhos/cm mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 10 10 100	2320B 120.1 2580 150.1 160.1 200.7 300.0 300.0 200.7 200.7 200.7 376.1 300.0 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	11/25/03 11/25/03 11/25/03 11/25/03 11/25/03 12/09/03 12/08/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03 12/09/03	
	Arsenic Iron Manganese Silica	0.194 0.119 0.0033 74.8	mg/L mg/L mg/L mg/L		200.7 200.7 200.7 200.7	12/10/03 12/10/03 12/10/03 12/10/03	
TDS	CalcTDS: 5940 /CalcTDS: 0.9	TDS/Con CalcTDS/Con	d:	CATION SUM: ANION SUM:	75.54meq/L 75.29meq/L	BALANCE 0.17%	

Filtered fraction: 366711 Reviewed By: Jusky Gray

Date 12/11/03 12/11/03 11:00

PRC CLI	ENT : GeoSyntec DJECT: LEHIGH ENT SAMPLE ID:	PM-19				SVL JOB: SAMPLE: T(
San	ple Collected: ple Receipt : e of Report :	11/22/03 1 11/24/03 12/11/03	3:15			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	2170	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	10900	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	-82.2	mV		2580	11/25/03	
Т	Hq	12.20			150.1	11/25/03	
Т	TDS	5830	mg/L		160.1	11/25/03	
Т	Calcium	1.98	mg/L		200.7	12/09/03	
Т	Chloride	43.4	mg/L	10	300.0	12/08/03	
Т	Fluoride	1.15	mg/L	10	300.0	12/08/03	
Т	Potassium	2920	mg/L	100	200.7	12/10/03	
Т	Magnesium	<0.040	mg/L		200.7	12/09/03	
Т	Sodium	111	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	1680	mg/L	100	300.0	12/08/03	
Т	Arsenic	0.144	mg/L		200.7	12/09/03	
Т	Iron	0.146	mg/L		200.7	12/09/03	
Т	Manganese	0.0206	mg/L		200.7	12/09/03	
Т	Silica	101	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	150	mg/L		415.1	12/02/03	
D	Arsenic	0.153	mg/L		200.7	12/10/03	
D	Iron	0.147	mg/L		200.7	12/10/03	
D	Manganese	0.0197	mg/L		200.7	12/10/03	
~	Silica	102	mg/L		200.7	12/10/03	

Filtered fraction: 366712 Reviewed By: <u>Sarly May</u>

Date <u>12/11/03</u> 12/11/03 11:00

SVL	ANALYTICAL,	INC.
-----	-------------	------

	PM-20	14:00
--	-------	-------

SVL JOB: 108797 SAMPLE: 366694 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	997	mg CaCO3/	'L	2320B	11/25/03
Т	Spec. Cond.	4490	umhos/cm		120.1	11/25/03
Т	Eh (mV)	+147	mV		2580	11/25/03
Т	Hq	8.64			150.1	11/25/03
T	TDS	2900	mg/L		160.1	11/25/03
Т	Calcium	80.7	mg/L		200.7	12/09/03
T	Chloride	30.4	mg/L	10	300.0	12/08/03
Т	Fluoride	1.17	mg/L	10	300.0	12/08/03
Т	Potassium	1130	mg/L	50	200.7	12/10/03
Т	Magnesium	19.2	mg/L		200.7	12/09/03
T	Sodium	85.5	mg/L		200.7	12/09/03
Т	Sulfide	<1.0	mg/L		376.1	11/25/03
Т	Sulfate, SO4	1030	mg/L	100	300.0	12/08/03
Т	Arsenic	<0.010	mg/L		200.7	12/09/03
Т	Iron	0.576	mg/L		200.7	12/09/03
T	Manganese	0.658	mg/L		200.7	12/09/03
Т	Silica	8.60	mg/L		200.7	12/09/03
Т	INORGANIC CARBON	203	mg/L		415.1	12/02/03
D	Arsenic	<0.010	mg/L		200.7	12/10/03
D	Iron	0.257	mg/L		200.7	12/10/03
D	Manganese	0.544	mg/L		200.7	12/10/03
D	Silica	7.66	mg/L		200.7	12/10/03
TDS.	CalcTDS: 2990 /CalcTDS: 1.0	TDS/Cor CalcTDS/Cor		CATION SUM: ANION SUM:	38.31meq/L 42.22meq/L	BALANCE -4.86%

Filtered fraction: 366714 Reviewed By: <u>Farly Nay</u>

.

Date 12/11/03 12/11/03 11:00

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

RC LI an	ENT : GeoSynted JECT: LEHIGH ENT SAMPLE ID: ple Collected: ple Receipt : e of Report :	PM-21 11/22/03 1	4:45			SVL JOB: SAMPLE: TO Matrix:	36669 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
T	ALKALINITY	343	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	2570	umhos/cm		120.1	11/25/03	
T	Eh (mV)	+119	mV		2580	11/25/03	
Т	рН	9.72			150.1	11/25/03	
Т	TDS	1820	mg/L		160.1	11/25/03	
Т	Calcium	24.1	mg/L		200.7	12/09/03	
Т	Chloride	60.0	mg/L	10	300.0	12/08/03	
Т	Fluoride	1.14	mg/L	10	300.0	12/08/03	
Т	Potassium	633	mg/L	20	200.7	12/10/03	
\mathbf{T}	Magnesium	5.10	mg/L		200.7	12/09/03	
Т	Sodium	115	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	673	mg/L	50	300.0	12/08/03	
Т	Arsenic	0.038	mg/L		200.7	12/09/03	
Т	Iron	0.628	mg/L		200.7	12/09/03	
Т	Manganese	0.0152	mg/L		200.7	12/09/03	
Т	Silica	16.0	mg/L		200.7	12/09/03	
T	INORGANIC CARBON	59.2	mg/L		415.1	12/02/03	
D	Arsenic	0.043	mg/L		200.7	12/10/03	
D	Iron	0.284	mg/L		200.7	12/10/03	
D	Manganese	0.0123	mg/L		200.7	12/10/03	
D	Silica	14.0	mg/L		200.7	12/10/03	
TIDS	CalcTDS: 1760 /CalcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	22.84meq/L 22.61meg/L	BALANCE 0.51%	

*

SVL ANALYTICAL, INC.

Certificate: CA CERTIFICATE NO. 2080

LI am	ENT : GeoSynted JECT: LEHIGH ENT SAMPLE ID: ple Collected:	AVG-E 11/21/03	14:45				36668 T/DIS
		11/24/03 12/11/03				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	143	mg CaCO3/L		2320B	12/10/03	
Т	Spec. Cond.	503	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+273	ΜV		2580	11/25/03	
Т	pH	6.04			150.1	11/25/03	
T T	TDS Calcium	239 31.7	mg/L mg/L		160.1 200.7	11/25/03 12/09/03	
т Т	Chloride	52.3	mg/L	10	300.0	12/08/03	
т	Fluoride	<0.10	mg/L	10	300.0	12/08/03	
T	Potassium	27.2	mg/L		200.7	12/10/03	
Т	Magnesium	6.69	mg/L		200.7	12/09/03	
Т	Sodium	37.5	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	17.9	mg/L		300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т Т	Iron	1.90 0.490	mg/L		200.7	12/09/03	
T	Manganese Silica	6.94	mg/L mg/L		200.7 200.7	12/09/03	
T	INORGANIC CARBON	85.6	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	0.664	mg/L		200.7	12/09/03	
D D	Manganese Silica	0.454 4.29	mg/L mg/L		200.7 200.7	12/09/03 12/09/03	
	CalcTDS: 276 /CalcTDS: 0.9	TDS/Cor CalcTDS/Cor		CATION SUM: ANION SUM:	4.59meq/L 4.71meq/L	BALANCE -1.29%	
DS.				1111 CII DOLL	· · / hucd/ h		

PRC CLI	LENT : GeoSynted DJECT: LEHIGH LENT SAMPLE ID: mple Collected:	AVG-W	12.15			SVL JOB: SAMPLE: T	
San	ple Receipt :	11/24/03 12/11/03	12.15			Matrix:	WATERC
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	157	mg CaCO3/L		2320B	11/25/03	
Т	Spec. Cond.	444	umhos/cm		120.1	11/25/03	
Т	Eh (mV)	+249	mV		2580	11/25/03	
Т	рН	6.31			150.1	11/25/03	
Т	TDS	228	mg/L		160.1	11/25/03	
Т	Calcium	26.7	mg/L		200.7	12/09/03	
Т	Chloride	24.7	mg/L	5	300.0	12/08/03	
Т	Fluoride	<0.10	mg/L		300.0	12/08/03	
Т	Potassium	33.9	mg/L		200.7	12/10/03	
Т	Magnesium	8.33	mg/L		200.7	12/09/03	
Т	Sodium	22.6	mg/L		200.7	12/09/03	
Т	Sulfide	<1.0	mg/L		376.1	11/25/03	
Т	Sulfate, SO4	6.76	mg/L		300.0	12/08/03	
Т	Arsenic	<0.010	mg/L		200.7	12/09/03	
Т	Iron	2.16	mg/L		200.7	12/09/03	
Т	Manganese	0.573	mg/L		200.7	12/09/03	
Т	Silica	8.12	mg/L		200.7	12/09/03	
Т	INORGANIC CARBON	164	mg/L		415.1	12/02/03	
D	Arsenic	<0.010	mg/L		200.7	12/09/03	
D	Iron	0.382	mg/L		200.7	12/09/03	
D	Manganese	0.534	mg/L		200.7	12/09/03	
D	Silica	3.99	mg/L		200.7	12/09/03	
	,						

Reviewed By: July Hay

Date <u>12/11/03</u> 12/11/03 11:00

SVL ANALYTICAL, INC.

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntee	2						SVL JOB 1	No: 108797
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS	Found	LCS %R	Analysis Date
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.970	97.0	12/09/03
Calcium	200.7	WATER	mg/L	<0.040	20.0	18.8	94.0	12/09/03
Iron	200.7	WATER	mg/L	<0.020	10.0	9.68	96.8	12/09/03
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.4	101.3	12/10/03
Magnesium	200.7	WATER	mg/L	<0.040	20.0	18.8	94.0	12/09/03
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.989	98.9	12/09/03
Sodium	200.7	WATER	mg/L	<0.50	20.0	19.4	97.0	12/09/03
Silica	200.7	WATER	mg/L	<0.171	10.7	10.5	98.1	12/09/03
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.83	96.6	12/08/03
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.54	101.6	12/08/03
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.41	94.1	12/08/03
ALKALINITY	2320B	WATER	mg/L	<1.0	55.0	59.4	108.0	11/25/03
pH	150.1	WATER		5.38	7.42	7.40	99.7	11/25/03
Spec. Cond.	120.1	WATER	umhos/cm	0.700	494	497	100.6	11/25/03
Eh (mV)	2580	WATER	mV	+225	+228	+238	104.4	11/25/03
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	30.0	29.3	97.7	12/02/03
Sulfide	376.1	WATER	mg/L	<1.0	2.00	2.20	110.0	11/25/03
TDS	160.1	WATER	mg/L	< 1 0	525	460	87.6	11/25/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

SVL ANALYTICAL, INC.

Quality Control Report Part II Duplicate and Spike Analysis

Client :GeoSyntec SVL JOB No: 108797											
ll st 1	Method Matrix	QC SAMPL Units	Result	Found	RPD%	Result	SPK ADD	۶R	Date		
· · · · · · · · · · · · · · · · · · ·				0.040		1.07	1 0.0	102.0			
As	200.7 WATERG		<0.010	<0.010	UDL	1.03	1.00		12/09/03		
As	200.7 WATERG		0.198	N/A	N/A	1.22	1.00	102.2	1		
As	200.7 WATERG	-	<0.010	<0.010	UDL	0.987	1.00	1	12/09/03		
As	200.7 WATERG		0.194	N/A	N/A	1.20	1.00	100.6	- / /		
Ca	200.7 WATERG		99.3	99.3	0.0	119	20.0		12/09/03		
Ca	200.7 WATERG		4.31	N/A	N/A	22.5	20.0		12/09/03		
Fe	200.7 WATERG	1 mg/L	20.6	20.7	0.5	29.8	10.0	1	12/09/03		
Fe	200.7 WATERG	2 mg/L	0.161	N/A	N/A	9.65	10.0	1	12/09/03		
Fe	200.7 WATERG	3 mg/L	9.24	9.00	2.6	18.3	10.0		12/09/03		
Fe	200.7 WATERG	4 mg/L	0.119	N/A	N/A	9.40	10.0	1	12/10/03		
K	200.7 WATERG	1 mg/L	490	489	0.2	524	30.0	113.3	12/10/03		
K	200.7 WATERG	2 mg/L	2740	N/A	N/A	2790	30.0	R >4S	12/10/03		
Mg	200.7 WATERG	1 mg/L	10.2	10.3	1.0	28.5	20.0	91.5	12/09/03		
Mg	200.7 WATERG	2 mg/L	<0.040	N/A	N/A	18.2	20.0	91.0	12/09/03		
Mn	200.7 WATERG	1 mg/L	2.95	2.95	0.0	3.89	1.00	94.0	12/09/03		
Mn	200.7 WATERG	2 mg/L	0.0041	N/A	N/A	0.968	1.00	96.4	12/09/03		
Mn	200.7 WATERG	3 mg/L	2.73	2.69	1.5	3.57	1.00	84.0	12/09/03		
Mn	200.7 WATERG	4 mg/L	0.0033	N/A	N/A	0.940	1.00	93.7	12/10/03		
Na	200.7 WATERG		79.8	80.7	1.1	98.7	20.0	94.5	12/09/03		
Na	200.7 WATERG		120	N/A	N/A	141	20.0	105.0	12/09/03		
SiO2	200.7 WATERG	-	18.3	18.4	0.5	28.5	10.7		12/09/03		
SiO2	200.7 WATERG	10	73.3	N/A	N/A	86.8	10.7		12/09/03		
SiO2	200.7 WATERG	-	16.6	16.4	1.2	25.7	10.7	1	12/09/03		
SiO2	200.7 WATERG	-	74.8	N/A	N/A	79.7	10.7	1	12/10/03		
C1	300.0 WATERG	-	105	105	0.0	154	50.0		12/08/03		
Cl	300.0 WATERG		41.1	N/A	N/A	62.2	20.0	1	12/08/03		
<u><u></u></u>	300.0 WATERG	-	<1.0*	<1.0*	UDL	18.4	20.0	1	12/08/03		
	300.0 WATERG		1.12	N/A	N/A	18.3	20.0	1	12/08/03		
S04	300.0 WATERG		236	229	3.0	354	125	1	12/08/03		
S04	300.0 WATERG	-	1650	N/A	N/A	2230	500	1	12/08/03		
ALK	2320B WATERG	10	766	757	1.2	N/A	N/A	N/A	11/25/03		
Hq	150.1 WATERG	-	7.35	7.40	0.7	N/A	N/A	N/A	11/25/03		
COND	120.1 WATERG		2300	2310	0.4	N/A	N/A	N/A	11/25/03		
Eh	2580 WATERG	1 mV	+299	+307	2.6	N/A	N/A	N/A	11/25/03		
	415.1 WATERG	1	201	201	0.0	232	50.0		12/02/03		
	415.1 WATERG		188	N/A	N/A	220	50.0	1	12/02/03		
TDS	160.1 WATERG	-	1580	1360	15.0	N/A	N/A	N/A	11/25/03		
									, 33, 33		

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike AddedControl limits for MS recoveries apply only if the spike add is at least 0.25 times the concentration of the analyte in the sample.Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.QC Sample 1:SVL SAM No.: 366681Client Sample ID:PM10QC Sample 2:SVL SAM No.: 366691Client Sample ID:PM-18QC Sample 3:SVL SAM No.: 366701Client Sample ID:PM10DClient Sample ID:QC Sample 4:SVL SAM No.: 366711Client Sample ID:PM-18DD

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec SVL JOB No:													
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS-	Found	LCS %R	Analysis Date					
Arsenic	200.7	WATER	mg/L	<0.010	1.00	1.03	103.0	12/17/03					
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.1	95.5	12/17/03					
Iron	200.7	WATER	mg/L	<0.020	10.0	10.3	103.0	12/17/03					
Potassium	200.7	WATER	mg/L	<1.0	30.0	31.9	106.3	12/17/03					
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.9	104.5	12/17/03					
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.01	101.0	12/17/03					
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.0	100.0	12/17/03					
Silica	200.7	WATER	mg/L	<0.171	10.7	11.5	107.5	12/17/03					
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.76	95.2	12/12/03					
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.40	96.0	12/12/03					
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.50	95.0	12/12/03					
ALKALINITY	2320B	WATER	mg/L	<1.0	55.0	59.4	108.0	12/04/03					
pH	150.1	WATER		5.36	7.42	7.39	99.6	12/04/03					
Spec. Cond.	120.1	WATER	umhos/cm	0.200	494	495	100.2	12/04/03					
Eh (mV)	2580	WATER	mV	N/A	+228	+228	100.0	12/08/03					
INORGANIC CARBON	415.1	WATER	mg/L	<1.0	30.0	30.2	100.7	12/05/03					
Sulfide	376.1	WATER	mg/L	<1.0	2.00	1.90	95.0	12/05/03					
TDS	160.1	WATER	mg/L	<10	237	268	113.1	12/04/03					

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Puplicate and Spike Analysis

Clien	Client :GeoSyntec SVL JOB No: 108900												
11		1~			-	01	1	1	-		1 1		
st I	Method Mt:	K UI	nits	Result	Found		RPD%	Result	SPK ADD	%R	Date		
As	200.7 W	1 ma	g/L	0.015	0.013		14.3	1.15	1.00	113.5	12/17/03		
As	200.7 W	2 mg	- 1	0.017	0.022		25.6	1.10	1.00	108.3	12/17/03		
Ca	200.7 W		g/L	38.2	37.7		1.3	58.2	20.0	100.0	12/17/03		
Fe	200.7 W		g/L	1.05	1.03		1.9	11.5	10.0	104.5	12/17/03		
Fe	200.7 W	2 ma	- (0.420	0.425		1.2	11.0	10.0	105.8	12/17/03		
K	200.7 W		g/L	358	374		4.4	396	30.0	R >4S	12/17/03		
Mq	200.7 W	-	g/L	40.4	39.6		2.0	64.0	20.0	118.0	12/17/03		
Mn	200.7 W		g/L	0.472	0.466		1.3	1.51	1.00	103.8	12/17/03		
Mn	200.7 W	2 mc	-	0.434	0.433		0.2	1.37	1.00	93.6	12/17/03		
Na	200.7 W	1 mc	g/L	636	667		4.8	677	20.0	R >4S	12/17/03		
SiO2	200.7 W	1 mc	g/L	9.28	8.86		4.6	21.2	10.7	111.4	12/17/03		
SiO2	200.7 W	2 m	- 1	8.48	8.46		0.2	19.4	10.7	102.1	12/17/03		
Cl	300.0 W	3 ma		50.1	50.3		0.4	70.8	20.0	103.5	12/12/03		
F	300.0 W	3 mg	g/L	1.13	1.13		0.0	18.2	20.0	85.4	12/12/03		
S04	300.0 W	3 ma	- 1	1380	1440		4.3	1980	500	120.0	12/12/03		
ALK	2320B W	3 mc	- (1860	1830		1.6	N/A	N/A	N/A	12/04/03		
Ha	150.1 W	3	-	11.69	11.50		1.6	N/A	N/A	N/A	12/04/03		
COND	120.1 W	3 ur	mhos/c	8200	8670		5.6	N/A	N/A	N/A	12/04/03		
Eh	2580 W	3 mV	v	+45.1	+45.1		0.0	N/A	N/A	N/A	12/08/03		
ORG18D	415.1 W	3 mg	g/L	161	165		2.5	204	50.0	86.0	12/05/03		
S- 2	376.1 W	3 mc	-	<1.0			N/A		N/A	N/A	12/05/03		
TDS	160.1 W	3 mg	-	5390	5230		3.0	N/A	N/A	N/A	12/04/03		

LEGEND:

 $\begin{array}{l} RPD\% = (|SAM - DUP|/((SAM + DUP)/2) * 100) & UDL = Both SAM \& DUP not detected. & Result or *Found: Interference required dilution. \\ PD\% = (|SPK - MSD|/((SPK + MSD)/2) * 100) & M in Duplicate/MSD column indicates MSD. \end{array}$

KE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed

= Accuracy of spike %R reduced; sample analyte conc. is disproportionate to spike. The LCS %R was acceptable.

OC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.

QC Sample 1:	SVL SAM No.:	367594 Cl	ient Sample ID:	РМ-9 ^Т
QC Sample 2:	SVL SAM No.:	367596 Cl	ient Sample ID:	РМ-9 ^D
QC Sample 3:	SVL SAM No.:	367593 Cl	ient Sample ID:	РМ-6 ^Т

VH P	Page of	FOR SVL USE ONLY	SVL JOB#	F7401		159				Comments								& n'alsHNOS)		1/24-63 Time; 100		SVL-COC 12/95
ZNAC -reduces HNOVH		Table 1 Matrix Type	1 = Surface Water, 2 + Ground Water	3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature: Q , H , H	Analyses Required		28 28 28		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										DANNES Date	Date:	Yellow: CUSTOMER COPY
* + + +	NIN UF CUSTODI RECORD	ckaging.			6 = Wa		391		Preservative(s) つせ	рада Офек (Specify)Zn A идон H2SO4 HCL HCL		$\downarrow \downarrow \mid \mid \mid \downarrow \downarrow \downarrow$									Received by: N LUN	Received by:	White: LAB COPY
2		e proper container packaging.	2) Ship samples promptly following collection.	* 3) Designate Sample Reject Disposition		Vame: Lehig	⁷ AX (208) 783-0891			1403 Sample Filtered ? Y/V Unpreserved (Ice Only)	S N										Time:	Time:	
	NOTES:	I) Ensure	2) Ship se	Z * 3) Desig	PO#:	Project Name:	(208) 784-1258 F	ID 83837-0929	Miscellaneous	Collected by: (Init.) Matrix Type From Table I	ah so 2 t									1 1	Date:	Date:	re (30 Days)
ANALYTICAL	t	2etu	St #150	ich geby	3	OCLO		One Government Gulch, Kellogg,	Collection	Date Time	12/03/200	/z/ 1230	1/21 1245	1/21 1330	00/1 12/1	1/21 1445	11/2/ 153D	1/21 1/00	1/22 0900	11/22 0930	いたい		[] Dispose [] Sto
G	Client: Coro SU V	₿	Address: 2100 Main	A	ñ	FAX Number:) 14 -9 69-4	Lab Name: SVL Analytical, Inc.	Address: One Governme		Sample ID	1. Pm 10 (1)	2. Pm 1/ 1/	3.AVG-W	Pm-12	5. Pm-13 1	6. AVG-E	1 + 1-wd.	8. PM - 17 1	". PM-8 1	10. Pm - 7	Relinquished by	Relinquished by:	* Sample Reject; [] Return [] Dispose [] Store (30 Days)

-required al filler + HNOS -required al filler + HNOS (- HNOS Page Dor 2	FOR EVL USE ONLY SVL JOB # 108797			Comments	avials HNOS	Suidly HNUS	BUN Slair C		well young dry	0	2 vials HNOS	7-24-23 Time: 00	Time:	SVL-COC 12/95
N'te: #14 ! Iter-NONE #24 ! tter-ZnAC #34 SZOM - require lab #44 SZOM - HNO NOF CUSTODY RECORD NOF CUSTODY RECORD	1 = Surface Water, 2 = Ground Water 3 = Soil/Sediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Samplers Signature:	ired	(I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	All(120,1), eH(252) All(120,1), eH(2525) All((2220) Drc(4) Sec(120,1), TIS Sulf(20(2), c, 1) Sulf(20(2), c, 1) Sulf(200), addro (200),	X X X X X X							1, BAMPA Daje	Date:	Yellow: CUSTOMER COPY
1、 ta: # 24 # 2/4 -+ # 3/4 ST # 4/4 ST USTODY RECC	or			ичон HISO4 HICT	X							Received by: N DUO	Received by:	White: LAB COPY
CHAIN OF CI	 I) Ensure proper container packaging. 2) Ship samples promptly following collection. * 3) Designate Sample Reject Disposition PO#: Project Name: / O / / O / O / O / O / O / O / O / O	FAX (208) 783-	, L	Matrix Type From Table I No. of Containers Sample Filtered ? Y/N Unpreserved (Ice Only) HUO3	N 4 0								Date: Time:	(sk
ANALYTICAL	1 + 150 1 +	nc. (208) 784-1258	Keilogg, ID 8	Collected by: (Init.)	2 12:45 gh/so	22 13:15/1	2 13:30 /		22 1570	2°	14:12+	SHUN		/ Dispose [] Store (30 Da
Client Geo Sunte	DD Mal DD Mal DI4-960	nalytical.	Address: One Government Gulch,	Sample ID Date	1. PM-18 11/22	2. Pm-19 11/2	3 Pm-15 11 22	11	6. PM-3 11/2 7. PM-5 11/2	- S 11/2	They are	Relinquished by:	Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)
		. 13			1	1	;	<u>,</u>	1	<u> </u>	J-Wd		<u> </u>	Ň

Pageof /	FOR SVL USE ONLY SVL JOB # 208900	SUL to Filter tor Digg. Metals Dim done 12/3/03 Comments	Date: Time: Date: Time: Date: Time: PY SV1-COC 12/95
Clert: Geo Sunded. NOTES:	: Brian Petry #150 : 2100 Main Start #150 Hunt: 14-969-0800 mber: 714-969-0800	Lab Name: SVL Analytical, Inc. (208) 784-1258 FAX (208) 783-0891 Address: One Government Gutch, Kellogs, ID 8337-0929 Address: One Government Gutch, Kellogs, ID 8337-0929 Sample ID Date Time Image: Solution of Collection Miscellaneous Sample ID Date Time Image: Solution of Collected by: (Init) Miscellaneous Image: Solution of Collected by: (Init) Miscellaneous Image: Solution of Collected by: (Init) Miscellaneous Image: Solution of Solution of Collected by: (Init) Miscellaneous Image: Solution of Solution of Collected by: (Init) Miscellaneous Image: Solution of Solution	10. 10. 10. Relip of State Bate: $2/2/2/5$ Time: Received by: $2/2/2/10$ Date: $2/2/2/5$ Relip of State $2/2/2/5$ $1/1$: $1/2$ $1/2$ $2/2/2/5$ $2/2/2/5$ $2/2/2/5$ Relip of State $2/2/5$ $1/1$: $1/2$ Received by: $2/2/2/10$ $2/2-2/2/2$ Relip of State $1/2$ $1/2$ $1/2$ $1/2$ $2/2-2/2/2$ Relip of State $1/2$ $1/2$ $1/2$ $2/2/2/2$ $2/2-2/2/2$ Relip of State $1/2$ $1/2$ $1/2$ $1/2$ $2/2-2/2/2$ $2/2-2/2/2$ Relip of State $1/2$ $1/2$ $1/2$ $1/2$ $2/2-2/2/2$ $2/2-2/2/2$ * Sample Reject: I Return I 1 Dispose [1 Store (30 Days) White: LAB COPY Yellow: CUSTOMER COPY

	DATE, TIME FAX NO./NA DURATION PAGE(S) RESULT MODE	\$ME	TRANS	MISS	ON VER	12/03 18:32 917149690820 00:00:23 01 OK FINE ECM	TIME NAME FAX TEL SER.#	: 12/03/2003 18: SVL ANALYTICAL 2087830891 2087841258 BROF3J496071	33	
Page 1 of 1	SVL JOB NO: 108900 Received: 12/03/03 Expected Due date: 12/17/03			separately. Field samples may appear twice.			·		ing disposal options.	pt of these samples. 12/03/03 12:29
sVL ANALYTICAL, INC. SOVERDMENT GUICh - Kellogg, ID 83837-0929	SAMPLE RECEIPT CONFIRMATION	BY Received Sample Comments SP 12/03/03	er SP	Lss. ($^{\circ}$ P) and Dissolved ($^{\circ}$ D) fractions se	cemp: 9°C. & PRESERVE FOR DISSOLVED METALS			•	after job completion.	f you have questions regarding the receipt

ample Collected: ample Receipt : ate of Report : Determination T ALKALINITY T Spec. Cond. T Eh (mV) T pH T TDS T Turbidity T Calcium T Chloride T Fluoride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4 T Arsenic	3/31/04 4/01/04 4/16/04 Result 243 385 +105 7.88 244 0.209 51.6 0.54 0.15 3.4	Units mg CaCO3/L umhos/cm mV mg/L NTU'S mg/L mg/L mg/L mg/L	Dilution	Method 2320B 120.1 2580 150.1 160.1 180.1 200.7 300.0	Matrix: Analyzed 4/09/04 4/08/04 4/08/04 4/01/04 4/06/04 4/02/04 4/13/04 4/07/04	WATER
T ALKALINITY T Spec. Cond. T Eh (mV) T pH T TDS T Turbidity T Calcium T Chloride T Fluoride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	243 385 +105 7.88 244 0.209 51.6 0.54 0.15 3.4	mg CaCO3/L umhos/cm mV mg/L NTU'S mg/L mg/L mg/L		2320B 120.1 2580 150.1 160.1 180.1 200.7 300.0	4/09/04 4/08/04 4/08/04 4/01/04 4/06/04 4/02/04 4/13/04	
T Spec. Cond. T Eh (mV) T pH T TDS T Turbidity T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	385 +105 7.88 244 0.209 51.6 0.54 0.15 3.4	umhos/cm mV mg/L NTU'S mg/L mg/L mg/L		120.1 2580 150.1 160.1 180.1 200.7 300.0	4/08/04 4/08/04 4/01/04 4/06/04 4/02/04 4/13/04	
T Eh (mV) T pH T TDS T Turbidity T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	+105 7.88 244 0.209 51.6 0.54 0.15 3.4	mV mg/L NTU'S mg/L mg/L mg/L		2580 150.1 160.1 180.1 200.7 300.0	4/08/04 4/01/04 4/06/04 4/02/04 4/13/04	
T pH T TDS T Turbidity T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	7.88 244 0.209 51.6 0.54 0.15 3.4	mg/L NTU'S mg/L mg/L mg/L		150.1 160.1 180.1 200.7 300.0	4/01/04 4/06/04 4/02/04 4/13/04	
T TDS T TDS T Turbidity T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	244 0.209 51.6 0.54 0.15 3.4	NTU'S mg/L mg/L mg/L		160.1 180.1 200.7 300.0	4/06/04 4/02/04 4/13/04	
T Turbidity T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	0.209 51.6 0.54 0.15 3.4	NTU'S mg/L mg/L mg/L		180.1 200.7 300.0	4/02/04 4/13/04	
T Calcium T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	51.6 0.54 0.15 3.4	mg/L mg/L mg/L		200.7 300.0	4/13/04	
T Chloride T Fluoride T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	0.54 0.15 3.4	mg/L mg/L		300.0		
I Fluoride I Potassium I Magnesium I Sodium I Sulfide I Sulfate, SO4	0.15 3.4	mg/L			4/07/04 1	
T Potassium T Magnesium T Sodium T Sulfide T Sulfate, SO4	3.4	-			1	
I Magnesium I Sodium I Sulfide I Sulfate, SO4		ma/L		300.0	4/07/04	
T Sodium T Sulfide T Sulfate, SO4				200.7	4/13/04	
T Sulfide T Sulfate, SO4	21.2	mg/L		200.7	4/13/04	
T Sulfate, SO4	4.98	mg/L		200.7	4/13/04	
	<1.0	mg/L		376.1	4/06/04	
T Arsenic	24.5	mg/L		300.0	4/07/04	
	<0.010	mg/L		200.7	4/13/04	
T Chromium	<0.0060	mg/L		200.7	4/13/04	
T Iron	<0.020	mg/L		200.7	4/13/04	
T Manganese	0.0091	mg/L		200.7	4/13/04	
T Lead	<0.0050	mg/L		200.7	4/13/04	
T Silica	10.8	mg/L		200.7	4/13/04	
T DIS. INOR CARBON	54.5	mg/L		415.1	4/14/04	
D Arsenic	<0.010	mg/L		200.7	4/15/04	
D Chromium	2<0.0060	mg/L		200.7	4/15/04	
D Iron	<0.020	mg/L		200.7	4/15/04	
D Manganese	0.0026	mg/L		200.7	4/15/04	
D Lead	<0.0050	mg/L		200.7	4/15/04	
D Silica	11.5	mg/L		200.7	4/15/04	
CalcTDS: 280	TDS/Con	ld:	CATION SUM:	4.62meq/L	BALANCE	

SVL ANALYTICAL, INC.

Reviewed By:

Date 4/16/04 4/16/04 11:56

Certificate: WA CERTIFICATE NO. CO74

PRC CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID:					SVL JOB: 110 SAMPLE: 378 TOT/D
San	nple Collected: nple Receipt : te of Report :	3/31/04 4/01/04 4/16/04				Matrix: WAT
	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	296	mg CaCO3/L		2320B	4/09/04
Т	Spec. Cond.	716	umhos/cm		120.1	4/08/04
Т	Eh (mV)	+130	mV		2580	4/08/04
Т	рН	7.84			150.1	4/01/04
Т	TDS	371	mg/L		160.1	4/06/04
Т	Turbidity	46.4	NTU'S		180.1	4/02/04
Т	Calcium	68.3	mg/L		200.7	4/15/04
Т	Chloride	31.4	mg/L	5	300.0	4/08/04
Т	Fluoride	0.21	mg/L		300.0	4/07/04
Т	Potassium	30.6	mg/L		200.7	4/15/04
Т	Magnesium	31.8	mg/L		200.7	4/15/04
Т	Sodium	14.6	mg/L		200.7	4/15/04
Т	Sulfide	<1.0	mg/L		376.1	4/06/04
Т	Sulfate, SO4	41.7	mg/L	5	300.0	4/08/04
Т	Arsenic	<0.010	mg/L		200.7	4/15/04
Т	Chromium	<0.0060	mg/L		200.7	4/15/04
Т	Iron	4.74	mg/L		200.7	4/15/04
Т	Manganese	1.82	mg/L		200.7	4/15/04
Т	Lead	<0.0050	mg/L		200.7	4/15/04
Т	Silica	12.6	mg/L		200.7	4/15/04
Т	DIS. INOR CARBON	71.4	mg/L		415.1	4/14/04
D	Arsenic	<0.010	mg/L		.200.7	4/15/04
D	Chromium	<0.0060	mg/L		200.7	4/15/04
D	Iron	0.167	mg/L		200.7	4/15/04
D	Manganese	1.67	mg/L		200.7	4/15/04
D	Lead	<0.0050	mg/L		200.7	4/15/04
D	Silica	12.1	mg/L		200.7	4/15/04
			ıd:	CATION SUM:	7.76meq/L	BALANCE

Reviewed By:_____

Date 4/16/04 4/16/04 11:57

Certificate: WA CERTIFICATE NO. CO74

SVL	ANA	LYT	ICAL,	INC.
-----	-----	-----	-------	------

Certificate: WA CERTIFICATE NO. CO74 One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

PRC CLI	IENT : GeoSyntec DJECT: HR0196-12 IENT SAMPLE ID:	MW-9				SVL JOB: 1 SAMPLE: 3 TOT	
San	mple Collected: mple Receipt : te of Report :	3/31/04 4/01/04 4/16/04				Matrix: W	VATE
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1070	mg CaCO3/L		2320B	4/09/04	
Т	Spec. Cond.	5110	umhos/cm		120.1	4/08/04	
Т	Eh (mV)	-251	mV		2580	4/08/04	
Т	pН	12.23			150.1	4/01/04	
Т	TDS	CO74	mg/L		160.1	4/06/04	
Т	Turbidity	2.14	NTU'S		180.1	4/02/04	
\mathbf{T}	Calcium	3.18	mg/L		200.7	4/15/04	
Т	Chloride	26.7	mg/L	10	300.0	4/07/04	
Т	Fluoride	1.51	mg/L	10	300.0	4/07/04	
Т	Potassium	1260	mg/L	20	200.7	4/15/04	
Т	Magnesium	<0.040	mg/L		200.7	4/15/04	
Т	Sodium	51.7	mg/L		200.7	4/15/04	
Т	Sulfide	2.6	mg/L		376.1	4/06/04	
Т	Sulfate, SO4	356	mg/L	25	300.0	4/08/04	
Т	Arsenic	0.084	mg/L		200.7	4/15/04	
Т	Chromium	<0.0060	mg/L		200.7	4/15/04	
Т	Iron	0.728	mg/L		200.7	4/15/04	
Т	Manganese	0.0093	mg/L		200.7	4/15/04	
Т	Lead	<0.0050	mg/L		200.7	4/15/04	
Т	Silica	56.6	mg/L		200.7	4/15/04	
Т	DIS. INOR CARBON	58.6	mg/L	_	415.1	4/14/04	
D	Arsenic	0.065	mg/L		200.7	4/15/04	
D	Chromium	<0.0060	mg/L		200.7	4/15/04	
D	Iron	0.535	mg/L		200.7	4/15/04	
D	Manganese	0.0081	mg/L		200.7	4/15/04	
D	Lead	<0.0050	mg/L		200.7	4/15/04	
D	Silica	56.0	mg/L		200.7	4/15/04	
	CalcTDS: 2480	TDS/Con	1	CATION SUM:	34.69meq/L	BALANCE	
DS	/CalcTDS: 0.8	CalcTDS/Con	d:	ANION SUM:	29.58meq/L	7.95%	

Filtered fraction: 378324

Reviewed By:_____

Allelar Date 4/16/04 4/16/04 11:57

	NALYTICAL, INC. ernment Gulch P.0	• . Box 929 •	Kellogg, Idaho	83837-0929	Certif Phone: (208)784	icate: WA CERTIF -1258 = Fax	FICATE NO. CO : (208)783-08
?RC CLI Sam	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: aple Collected:	2 MW-9D 3/31/04				Т	378319 OT/DIS
Dat	ple Receipt : le of Report :	4/01/04 4/16/04				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1000	mg CaCO3/L		2320B	4/09/04	
Т	Spec. Cond.	4730	umhos/cm		120.1	4/08/04	
Т	Eh (mV)	-242	mV		2580	4/08/04	
Т	рH	12.17			150.1	4/01/04	
Т	TDS	1990	mg/L		160.1	4/06/04	
Т	Turbidity	1.41	NTU'S		180.1	4/02/04	
Т	Calcium	3.08	mg/L		200.7	4/15/04	
Т	Chloride	26.0	mg/L	10	300.0	4/07/04	
Т	Fluoride	1.45	mg/L	10	300.0	4/07/04	1
Т	Potassium	1130	mg/L	20	200.7	4/15/04	
Т	Magnesium	<0.040	mg/L		200.7	4/15/04	
Т	Sodium	45.3	mg/L		200.7	4/15/04	
Т	Sulfide	2.9	mg/L		376.1	4/06/04	
Т	Sulfate, SO4	310	mg/L	25	300.0	4/08/04	
Т	Arsenic	0.073	mg/L		200.7	4/15/04	
Т	Chromium	<0.0060	mg/L		200.7	4/15/04	
Т	Iron	0.711	mg/L		200.7	4/15/04	
Т	Manganese	0.0097	mg/L		200.7	4/15/04	
Т	Lead	<0.0050	mg/L		200.7	4/15/04	
Т	Silica	53.0	mg/L		200.7	4/15/04	
Т	DIS. INOR CARBON	55.8	mg/L		415.1	4/14/04	
Ð	Arsenic	0.059	mg/L		200.7	4/15/04	
D	Chromium	<0.0060	mg/L		200.7	4/15/04	
D	Iron	0.518	mg/L		200.7	4/15/04	
D	Manganese	0.0080	mg/L		200.7	4/15/04	
D	Lead	<0.0050	mg/L		200.7	4/15/04	
D	Silica	54.1	mg/L		200.7	4/15/04	
	CalcTDS: 2250	TDS/Con	(CATION SUM:	31.08meq/L	BALANCE	
TDS.	/CalcTDS: 0.9	CalcTDS/Con	id:	ANION SUM:	27.30meq/L	6.478	

Reviewed By:_____

Aller Date 4/16/04 4/16/04 11:57

SVL ANALYTICAL, 1	INC.
-------------------	------

-

Certificate: WA CERTIFICATE NO. CO74

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0891

PRC CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID:	MW - 11				SVL JOB: 11 SAMPLE: 37 . TOT/	783
Sam	ple Collected: ple Receipt : e of Report :	3/31/04 4/01/04 4/16/04			Matrix: WATE		
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	406	mg CaCO3/L	· ·	2320B	4/09/04	
Т	Spec. Cond.	1310	umhos/cm		120.1	4/08/04	
\mathbf{T}	Ēĥ (mV)	+115	mV		2580	4/08/04	
Т	рН	7.82			150.1	4/01/04	
Т	TDS	507	mg/L		160.1	4/06/04	
Т	Turbidity	0.288	NTU'S		180.1	4/02/04	
Т	Calcium	132	mg/L		200.7	4/15/04	
Т	Chloride	8.14	mg/L		300.0	4/08/04	
Т	Fluoride	0.14	mg/L		300.0	4/08/04	
Т	Potassium	3.6	mg/L		200.7	4/15/04	
Т	Magnesium	46.9	mg/L		200.7	4/15/04	
Т	Sodium	5.57	mg/L		200.7	4/15/04	
T	Sulfide	<1.0	mg/L		376.1	4/06/04	
T	Sulfate, SO4	110	mg/L	5	300.0	4/08/04	
Ť	Arsenic	<0.010	mg/L	-	200.7	4/15/04	
T	Chromium	<0.0060	mg/L		200.7	4/15/04	
T	Iron	1.03	mg/L		200.7	4/15/04	
T	Manganese	0.0190	mg/L		200.7	4/15/04	
Ť	Lead	<0.0050	mg/L		200.7	4/15/04	
T	Silica	27.1	mg/L		200.7	4/15/04	
T	DIS. INOR CARBON	95.2	mg/L		415.1	4/14/04	
D	Arsenic	<0.010	mg/L		200.7	4/15/04	
D	Chromium	<0.0060	mg/L		200.7	4/15/04	
D	Iron	<0.020	mg/L		200.7	4/15/04	
D	Manganese	<0.0020	mg/L		200.7	4/15/04	
D	Lead	<0.0050	mg/L		200.7	4/15/04	
D	Silica	25.9	mg/L		200.7	4/15/04	
	CalcTDS: 618 /CalcTDS: 0.8	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	10.82meq/L 10.64meq/L	BALANCE 0.84%	

Filtered fraction: 378326

Reviewed By:_____

Here Date 4/16/04 11:57

-

Certificate: WA CERTIFICATE NO. CO74 One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

PRC CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID:	MW-12					110277 378321 OT/DIS
	ple Collected:	3/31/04					
	ple Receipt :	4/01/04				Matrix:	WATER
Dat	e of Report :	4/16/04					
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	689	mg CaCO3/L		2320B	4/09/04	
Т	Spec. Cond.	901	umhos/cm		120.1	4/08/04	
Т	Eh (mV)	+110	mV		2580	4/08/04	
Т	рН	8.18			150.1	4/01/04	
Т	TDS	680	mg/L		160.1	4/06/04	
Т	Turbidity	9.40	NTU'S		180.1	4/02/04	
Т	Calcium	75.8	mg/L		200.7	4/15/04	
Т	Chloride	188	mg/L	50	300.0	4/08/04	
Т	Fluoride	0.14	mg/L		300.0	4/08/04	
Т	Potassium	52.6	mg/L		200.7	4/15/04	
Т	Magnesium	37.8	mg/L		200.7	4/15/04	
Т	Sodium	114	mg/L		200.7	4/15/04	
Т	Sulfide	<1.0	mg/L		376.1	4/06/04	
T	Sulfate, SO4	51.3	mg/L	5	300.0	4/08/04	
Т	Arsenic	<0.010	mg/L		200.7	4/15/04	
T	Chromium	<0.0060	mg/L		200.7	4/15/04	
Т	Iron	2.22	mg/L		200.7	4/15/04	
Т	Manganese	1.61	mg/L		200.7	4/15/04	
T	Lead	<0.0050	mg/L		200.7	4/15/04	
T	Silica	11.7	mg/L		200.7	4/15/04	
T	DIS. INOR CARBON	78.2	mg/L		415.1	4/14/04	
D	Arsenic	<0.010	mg/L		200.7	4/15/04	
D	Chromium	<0.0060	mg/L		200.7	4/15/04	
D	Iron	0.035	mg/L		200.7	4/15/04	
D	Manganese	1.54	mg/L		200.7	4/15/04	
D	Lead	<0.0050	mg/L		200.7	4/15/04	
D	Silica	11.2	mg/L		200.7	4/15/04	
TDS	CalcTDS: 964 /CalcTDS: 0.7	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	13.40meq/L 20.15meq/L	BALANCE -20.12%	

Filtered fraction: 378327

Reviewed By:_____

Date 4/16/04 4/16/04 11:57

SVL ANALYTICAL, INC.

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec SVL JOB No: 110277 Analysis											
halyte	Method	Matrix	Units	Prep Blank	TrueLC	S-Found	LCS %R	Date			
Arsenic	200.7	WATER	mg/L	<0.010	1.00	· 0.881	88.1	4/13/04			
Calcium	200.7	WATER	mg/L	<0.040	20.0	18.9	94.5	4/13/04			
Chromium	200.7	WATER	mg/L	<0.0060	1.00	0.943	94.3	4/13/04			
Iron	200.7	WATER	mg/L	<0.020	10.0	9.13	91.3	4/13/04			
Potassium	200.7	WATER	mg/L	<1.0	30.0	28.1	93.7	4/13/04			
Magnesium	200.7	WATER	mg/L	<0.040	20.0	18.1	90.5	4/13/04			
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.932	93.2	4/13/04			
Sodium	200.7	WATER	mg/L	<0.50	20.0	18.8	94.0	4/13/04			
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.923	92.3	4/13/04			
Silica	200.7	WATER	mg/L	<0.171	10.7	10.6	99.1	4/13/04			
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.84	96.8	4/07/04			
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.39	95.6	4/07/04			
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.60	96.0	4/07/04			
ALKALINITY	2320B	WATER	mg/L	<1.0	20.5	23.4	114.1	4/09/04			
pН	150.1	WATER	_	5.46	7.70	7.69	99.9	4/01/04			
Spec. Cond.	120.1	WATER	umhos/cm	0.048	488	498	102.0	4/08/04			
Eh (mV)	2580	WATER	mV	N/A	+228	+234	102.6	4/08/04			
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	13.9	99.3	4/14/04			
Sulfide	376.1	WATER	mg/L	<1.0	2.0	2.1	105.0	4/06/04			
TDS	160.1	WATER	mg/L	<10	450	488	108.4	4/06/04			
Turbidity	180.1	WATER	NTU'S	0.097	13.1	12.2	93.1	4/02/04			

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

п

Quality Control Report Part II Duplicate and Spike Analysis

Client :GeoSyntec SVL JOB No: 110277										
r ti	Method Mt	- 1	-QC SAMPI Units	E ID Result	Duplicate or Found	MSD- RPD%	Result	trix Spike SPK ADD	%R	Analysis Date
As	200.7 W	+	mg/L	<0.010	<0.010	UDL	· 0.984	1.00	98.4	4/13/04
As	200.7 W	2	mg/L	<0.010	<0.010	UDL	1.08	1.00	108.0	4/15/04
Ca	200.7 W	1	mg/L	51.6	51.9	0.6	73.5	20.0	109.5	4/13/04
Cr	200.7 W	1	mg/L	<0.0060	<0.0060	UDL	1.05	1.00	105.0	4/13/04
Cr	200.7 W	2	mg/L	<0.0060	<0.0060	UDL	1.07	1.00	107.0	4/15/04
Fe	200.7 W	1	mg/L	<0.020	<0.020	UDL	10.1	10.0	101.0	4/13/04
Fe	200.7 W	2	mg/L	<0.020	<0.020	UDL	11.0	10.0	110.0	4/15/04
K	200.7 W	1	mg/L	3.4	3.5	2.9	1	30.0	102.7	4/13/04
Ma	200.7 W	1	mg/L	21.2	21.5	1.4	44.6	20.0	117.0	4/13/04
Mn	200.7 W	1	mg/L	0.0091	0.0099	8.4	1.00	1.00	99.1	4/13/04
Mn	200.7 W	2	mg/L	0.0026	0.0026	0.0	1.08	1.00	107.7	4/15/04
Na	200.7 W	1	mg/L	4.98	5.03	1.0	25.3	20.0	101.6	4/13/04
Рb	200.7 W	1	mg/L	<0.0050	<0.0050	UDL	1.01	1.00	101.0	4/13/04
Рb	200.7 W	2	mg/L	<0.0050	<0.0050	UDL	1.08	1.00	108.0	4/15/04
SiO2	200.7 W	1	mg/L	10.8	10.9	0.9	21.7	10.7	101.9	4/13/04
SiO2	200.7 W	2	mg/L	11.5	11.4	0.9	23.1	10.7	108.4	4/15/04
21	300.0 W	1	mg/L	0.54	0.55	1.8	2.32	2.00	89.0	4/07/04
F	300.0 W	1	mg/L	0.15	0.15	0.0	2.02	2.00	93.5	4/07/04
SO4	300.0 W	1	mg/L	24.5	24.6	0.4	34.3	10.0	98.0	4/07/04
ALK	2320B W	1	mg/L	243	233	4.2	N/A	N/A	N/A	4/09/04
ЪН	150.1 W	1		7.88	7.97	1.1	N/A	N/A	N/A	4/01/04
COND	120.1 W	1	umhos/c	385	383	0.5	N/A	N/A	N/A	4/08/04
Sh	2580 W	1	mV	+105	+105	0.0	N/A	N/A	N/A	4/08/04
ORG18D	415.1 W	1	mg/L	54.5	54.7	0.4	97.7	50.0	86.4	4/14/04
TDS	160.1 W	1	mg/L	244	206	16.9	N/A	N/A	N/A	4/06/04
TURB	180.1 W	1	NTU'S	0.209	0.210	0.5	N/A	N/A	N/A	4/02/04

END: L.

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. $^{\rm T}$ QC Sample 1: SVL SAM No.: 378316 Client Sample ID: MW-7 QC Sample 2: SVL SAM No.: 378322 Client Sample ID: MW-7 ^D

4/16/04 11:03

Address: Client: (Contact: Brian Address: Lab Name: FAX Number: Phone Number: 7 14 - 969 -0820 Relinquished b**j** Relinquished b 2 Ber-1-36 **3**8-MW - 1236-26 nw-9 Hundington Beaul Sample ID an have SVL Analytical, Inc. One Government Gulch, Kellogg, ID 83837-0929 t Potty 33104 Date Collection 4 Time (208) 784-1258 \odot 7 Collected by: (Init.) Miscellaneous * 3) Designate Sample Reject Disposition 1) Ensure proper container packaging. Date: Date: Matrix Type Project Name: PO# HRO196-12 2) Ship samples promptly following collection. NOTES: CHAIN OF N From Table 1 4 FAX (208) 783-0891 No. of Containers 104 2 Sample Filtered ? Y/N MMAIL Time: S | H land Unpreserved (Ice Only) 02 CUSTODY RECORD HNO3 Preservative(s) HCL White: LAB COPY Received by: Received by: H2SO4 NAOH Other (Specify)Zn λ Samplers Signature: 3 = Soil/Sediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) 1 =Surface Water (2) =Ground Water K Hq Z Table 1. -- Matrix Type Analyses Required \mathbf{C} 376 Ž Mark mà cat (Na, Ca SO. an Date: Date: lab Atered all samples-Ħ A preserved muchs to be bottle #3 if questions Call Brian 2 Page___ FOR SVL USE ONLY SVL JOB # Time: // '.// l'ime: of いいて 92

* Sample Reject: [] Return [] Dispose [] Store (30 Days)

Yellow: CUSTOMER COPY

SVL-COC 12/95

RC Ll	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID: mple Collected:		9:30			SVL JOB: 110 SAMPLE: 378 TOT/I	833
an	ple Receipt : ce of Report :	4/01/04	9.30			Matrix: WAT	ΓER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	283	mg CaCO3/L		2320B	4/02/04	
Т	Spec. Cond.	527	umhos/cm		120.1	4/02/04	
Т	Eh (mV)	+295	mV		2580	4/02/04	
Т	pH	8.34			150.1	4/02/04	
Т	TDS	298	mg/L		160.1	4/02/04	
Т	Turbidity	17.1	NTU'S		180.1	4/02/04	
Т	Calcium	83.9	mg/L		200.7	4/07/04	
Т	Chloride	0.50	mg/L		300.0	4/07/04	
Т	Fluoride	0.11	mg/L		300.0	4/07/04	
Т	Potassium	2.7	mg/L		200.7	4/07/04	
Т	Magnesium	30.6	mg/L		200.7	4/07/04	
Т	Sodium	2.30	mg/L		200.7	4/07/04	
Т	Sulfide	<1.0	mg/L		376.1	4/06/04	
Т	Sulfate, SO4	23.9	mg/L	2	300.0	4/07/04	
Т	Arsenic	<0.010	mg/L		200.7	4/07/04	
Т	Chromium	<0.0060	mg/L		200.7	4/07/04	
Т	Iron	1.43	mg/L		200.7	4/07/04	
Т	Manganese	0.0360	mg/L		200.7	4/07/04	
Т	Lead	<0.0050	mg/L		200.7	4/07/04	
T	Silica	17.6	mg/L		200.7	4/07/04	
Т	DIS. INOR CARBON	59.5	mg/L		415.1	4/05/04	
D	Arsenic	<0.010	mg/L		200.7	4/07/04	
D	Chromium	<0.0060	mg/L		200.7	4/07/04	
D	Iron	<0.020	mg/L		200.7	4/07/04	
D	Manganese	0.0049	mg/L		200.7	4/07/04	
D	Lead	<0.0050	mg/L		200.7	4/07/04	
ν					200.7	4/07/04	

Filtered fraction: 378331 TURBIDITY (RECEIVED AND ANALYZED PAST HOLDING TIME).

Reviewed By:_____

Date 4/15/04 4/15/04 10:24

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec SVL JOB No: 110278										
Analyte	Method	Matrix	Units	Prep Blank	TrueLCS	Found	LCS %R	Analysis Date		
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.999	99.9	4/07/04		
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.6	98.0	4/07/04		
Chromium	200.7	WATER	mg/L	<0.0060	1.00	1.04	104.0	4/07/04		
Iron	200.7	WATER	mg/L	<0.020	10.0	9.57	95.7	4/07/04		
Potassium	200.7	WATER	mg/Ļ	<1.0	30.0	29.3	97.7	4/07/04		
Magnesium	200.7	WATER	mg/L	<0.040	20.0	18.8	94.0	4/07/04		
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.02	102.0	4/07/04		
Sodium	200.7	WATER	mg/L	<0.50	20.0	19.0	95.0	4/07/04		
Lead	200.7	WATER	mg/L	<0.0050	1.00	1.00	100.0	4/07/04		
Silica	200.7	WATER	mg/L	<0.171	10.7	11.3	105.6	4/07/04		
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.85	97.0	4/07/04		
Fluoride	300.0	WATER	mg/Ĺ	<0.10	2.50	2.50	100.0	4/07/04		
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.84	98.4	4/07/04		
ALKALINITY	2320B	WATER	mg/L	<1.0	20.5	23.3	113.7	4/02/04		
рН	150.1	WATER		5.41	7.70	7.65	99.4	4/02/04		
Spec. Cond.	120.1	WATER	umhos/cm	0.045	488	501	102.7	4/02/04		
Eh (mV)	2580	WATER	mV	N/A	+228	+234	102.6	4/02/04		
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	13.9	99.3	4/05/04		
Sulfide	376.1	WATER	mg/L	<1.0	2.0	2.1	105.0	4/06/04		
TDS	160.1	WATER	mg/L	<10	450	413	91.8	4/02/04		
Turbidity	180.1	WATER	NTU'S	0.087	13.1	12.2	93.1	4/02/04		

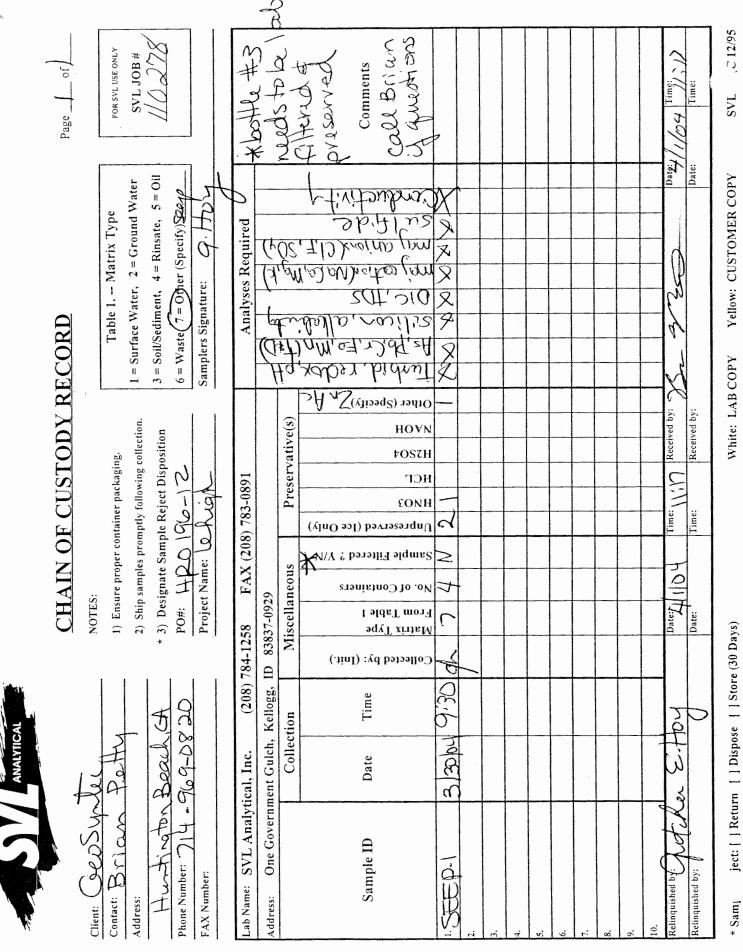
LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

 $N/A \approx Not Applicable$

Quality Control Report Part II Duplicate and Spike Analysis


Clien	t :Geos	Syn	te									: 110278
11			ſ	-QC SAMPI		Duplicate o	r	MSD-7		trix Spike		Analysis
∙st I	Method	Mt	x	Units	Result	Found		RPD%	Result	SPK ADD	8R	Date
As	200.7	W	1	mg/L	<0.010	<0.010		UDL	1.02	1.00	102.0	4/07/04
As	200.7	W	2	mg/L	<0.010	<0.010		UDL	1.07	1.00	107.0	4/07/04
Ca	200.7	W	1	mg/L	83.9	81.4		3.0	108	20.0	120.5	4/07/04
Cr	200.7	W	1	mg/L	<0.0060	<0.0060		UDL	1.02	1.00	102.0	4/07/04
Cr	200.7	W	2	mg/L	<0.0060	<0.0060		UDL	1.01	1.00	101.0	4/07/04
Fe	200.7	W	1	mg/L	1.43	1.13		23.4	11.1	10.0	96.7	4/07/04
Fe	200.7	W	2	mg/L	<0.020	<0.020		UDL	9.49	10.0	94.9	4/07/04
K	200.7	W	1	mg/L	2.7	2.6		3.8	33.8	30.0	103.7	4/07/04
Mg	200.7	W	1	mg/L	30.6	29.7		3.0	49.1	20.0	92.5	4/07/04
Mn	200.7	W	1	mg/L	0.0360	0.0325		10.2	1.08	1.00	104.4	4/07/04
Mn	200.7	W	2	mg/L	0.0049	0.0044		10.8	1.00	1.00	99.5	4/07/04
Na	200.7	W	1	mg/L	2.30	2.21		4.0	22.4	20.0	100.5	4/07/04
Pb	200.7	W	1	mg/L	<0.0050	<0.0050		UDL	0.983	1.00	98.3	4/07/04
Pb	200.7	W	2	mg/L	<0.0050	<0.0050		UDL	1.01	1.00	101.0	4/07/04
SiO2	200.7	W	1	mg/L	17.6	15.7		11.4	30.2	10.7	117.8	4/07/04
SiO2	200.7	W	2	mg/L	12.4	12.6		1.6	22.3	10.7	92.5	4/07/04
Cl	300.0	W	1	mg/L	0.50	0.50		0.0	2.34	2.00	92.0	4/07/04
F	300.0	W	1	mg/L	0.11	0.11		0.0	2.00	2.00	94.5	4/07/04
SO4	300.0	W	1	mg/L	23.9	23.9		0.0	33.8	10.0	99.0	4/07/04
ALK	2320B	W	1	mg/L	283	284		0.4	N/A	N/A	N/A	4/02/04
рН	150.1	W	1		8.34	8.37		0.4	N/A	N/A	N/A	4/02/04
COND	120.1	W	1	umhos/c	527	529		0.4	N/A	N/A	N/A	4/02/04
Eh	2580	W	1	mV	+295	+295		0.0	N/A	N/A	N/A	4/02/04
ORG18D	415.1	W	1	mg/L	59.5	62.1		4.3	101	50.0	83.0	4/05/04
TDS	160.1	W	1	mg/L	298	304		2.0	N/A	N/A	N/A	4/02/04
TURB	180.1	W	1	NTU'S	17.1	17.0		0.6	N/A	N/A	N/A	4/02/04

_GEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; ZR = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.QC Sample 1:SVL SAM No.: 378330Client Sample ID: SEEP-1TQC Sample 2:SVL SAM No.: 378331Client Sample ID: SEEP-1D

Client: GeoSynte Sample ID: AVE E			R	Job N eport Dat		
Collected: 4/07	lected: 4/07/04 16:00 By: GH Matrix: WATERG			SVL Sample:379635 Received: 4		
PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	5 TOTAL 6.04 581	DISSOLVED	Chromium Cobalt Copper Gallium	TOTAL	DISSOLVED	
NONMETALS (mg/L) Alkalinity as CaCO Bicarbonate Carbonate	TOTAL 3 399	DISSOLVED	Iron Lanthanum Lead Lithium Magnesium	4.11 26.1 1.41	0.030	
Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	108 <0.10		Manganese Mercury Molybdenum Nickel Phosphorus		(.55	
Sulfate METALS (mg/L)	45.1 TOTAL	DISSOLVED	Potassium Scandium Selenium	70.2		
Aluminum Antimony Arsenic Barium Beryllium Bismuth	<0.010	<0.010	Silica Silver Sodium Strontium Thallium Tin	18.7 67.0	11.4	
Boron Cadmium Calcium	99.1		Titanium Vanadium Zinc			
ADDITIONAL TESTS Eh (mV) Sulfide	TOTAL -194 <1.0	DISSOLVED	Turbidity DIS. INOR CARBON	TOTAL 54.2 271	DISSOLVED	
Calculated Ti Meas/Calc TDS rat: TDS/Cond Rat: CalcTDS/Cond Rat:	lo: 0.8	QUALITY 3	CONTROL Cation-Anion Bala Cation Sum, meq/1 Anion Sum, meq/L	L 12.0	0.05	

SVL ANALYTICAL, I	NC.
-------------------	-----

One Government Gulch . PO Box 929 . Kellogg, Idaho 83837-0929

.

REPORT OF ANALYTICAL RESULTS

Phone: (208)784-1258 • Fax: (208)783-0891

Client: GeoSyntec

Sample ID: AVG W Collected: 4/07/04 14:16 By: GH Matrix: WATERG

Job No: 110422 Report Date: 4/23/04

SVL Sample: 379634 379645 4/09/04 Received:

PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	TOTAL 5.82 585	DISSOLVED	METALS (cont'd) Chromium Cobalt Copper Gallium	TOTAL	DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO3 Bicarbonate Carbonate	TOTAL 386	DISSOLVED	Iron Lanthanum Lead Lithium Magnesium	0.640 20.1	0.185
Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	69.1 <0.10		Manganese Mercury Molybdenum Nickel Phosphorus	1.28	1.23
Sulfate METALS (mg/L)	46.9 TOTAL	DISSOLVED	Potassium Scandium Selenium	72.4	
Aluminum Antimony			Silica Silver	11.2	10.9
Arsenic Barium Beryllium Bismuth Boron Cadmium	<0.010	<0.010	Sodium Strontium Thallium Tin Titanium Vanadium	56.8	
Calcium 1	02		Zinc		
	TOTAL 79 <1.0	DISSOLVED	Turbidity DIS. INOR CARBON	TOTAL 4.25 276	DISSOLVED
			CONTROL		
Calculated TDS Meas/Calc TDS ratio TDS/Cond Ratio CalcTDS/Cond Ratio): 0.9		Cation-Anion Bala Cation Sum, meq/L Anion Sum, meq/L		3 0.05

Certificate: WA CERTIFICATE NO. C074 This report has been checked and is certified to be accurate.

Signed:

Date: 4/23/04 4/23/04 15:33

Certificate: WA CERTIFICATE NO. C074

LI an an)JECT: HR0196-12 ENT SAMPLE ID: ple Collected: ple Receipt : e of Report :	PM-1 4/05/04 1 4/07/04	3:30			SAMPLE: T(Matrix:	DT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	1200	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	+17.2	mV		2580	4/08/04	
Т	рН	10.40			150.1	4/08/04	
Т	TDS	2890	mg/L		160.1	4/12/04	
Т	Turbidity	1.57	NTU'S		180.1	4/07/04	
Т	Calcium	9.88	mg/L		200.7	4/20/04	
Т	Chloride	99.7	mg/L	10	300.0	4/14/04	
Т	Fluoride	<1.0*	mg/L	10	300.0	4/14/04	
Т	Potassium	1310	mg/L	10	200.7	4/21/04	
Т	Magnesium	1.66	mg/L		200.7	4/20/04	
Т	Sodium	125	mg/L		200.7	4/20/04	
Т	Sulfide	<1.0	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	694	mg/L	50	300.0	4/14/04	
Т	Arsenic	0.050	mg/L		200.7	4/21/04	
Т	Iron	0.505	mg/L		200.7	4/20/04	
Т	Manganese	0.0115	mg/L		200.7	4/21/04	
Т	Silica	25.4	mg/L		200.7	4/20/04	
Т	DIS. INOR CARBON	170	mg/L		415.1	4/15/04	
Ð	Arsenic	0.047	mg/L		200.7	4/21/04	
Ð	Iron	0.381	mg/L		200.7	4/20/04	
D	Manganese	0.0111	mg/L		200.7	4/21/04	
D	Silica	24.1	mg/L		200.7	4/20/04	
	CalcTDS: 3020 /CalcTDS: 1.0	TDS/Con	d:	CATION SUM:	39.61meq/L	BALANCE	
DS	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	41.20meq/L	-1.97%	

Certificate: WA CERTIFICATE NO. C074

RC LI an an	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID: ple Collected: ple Receipt : e of Report :	PM-2 4/05/04 1 4/07/04	5:40			SVL JOB: SAMPLE: T Matrix:	37902 OT/DIS
_	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	330	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	+50.0	mV		2580	4/08/04	
Т	Hq	8.47			150.1	4/08/04	
Т	TDS	658	mg/L		160.1	4/12/04	
Т	Turbidity	2.01	NTU'S		180.1	4/07/04	
Т	Calcium	59.2	mg/L		200.7	4/20/04	
Т	Chloride	14.6	mg/L	2	300.0	4/14/04	
Т	Fluoride	0.19	mg/L		300.0	4/14/04	
Т	Potassium	144	mg/L		200.7	4/21/04	
Т	Magnesium	15.9	mg/L		200.7	4/20/04	
Т	Sodium	51.6	mg/L		200.7	4/20/04	
Т	Sulfide	<1.0	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	172	mg/L ·	10	300.0	4/14/04	
Т	Arsenic	<0.010	mg/L		200.7	4/21/04	
Т	Iron	0.507	mg/L		200.7	4/20/04	
Т	Manganese	0.324	mg/L		200.7	4/21/04	
Т	Silica	11.7	mg/L		200.7	4/20/04	
T	DIS. INOR CARBON	73.8	mg/L		415.1	4/15/04	
D	Arsenic	<0.010	mg/L		200.7	4/21/04	
D	Iron	<0.020	mg/L		200.7	4/20/04	
D	Manganese	0.0526	mg/L		200.7	4/21/04	
D	Silica	8.91	mg/L		200.7	4/20/04	
	CalcTDS: 682	TDS/Con	d-	CATION SUM:	10.21meq/L	BALANCE	

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

Filtered fraction: 379037

Reviewed By:_____

Date 4/22/04 10:19

Client: GeoSyntee Sample ID: PM-3	C		Re	Job N port Dat	
Collected: 4/07, Matrix: WATER		By: GH		Sample:37 ceived:	9625 37963 4/09/0
PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	TOTAL 7.67 1190	DISSOLVED	METALS (cont'd) Chromium Cobalt Copper Gallium	TOTAL	DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO3 Bicarbonate	'TOTAL 332	DISSOLVED	Iron Lanthanum Lead Lithium	0.150	<0.020
Carbonate Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	122 <0.20*		Magnesium Manganese Mercury Molybdenum Nickel Phosphorus	46.8 0.522	0.500
Sulfate METALS (mg/L)	501 TOTAL	DISSOLVED	Potassium Scandium Selenium	156	
Aluminum Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium	<0.010 186	<0.010	Silica Silver Sodium Strontium Thallium Tin Titanium Vanadium Zinc	13.4 82.9	12.9
ADDITIONAL TESTS Eh (mV) + Sulfide	TOTAL 251 <1.0	DISSOLVED	Turbidity DIS. INOR CARBON	TOTAL 1.20 78.4	DISSOLVED
Calculated TD	s: 1327.4		CONTROL		
Meas/Calc TDS rati TDS/Cond Rati CalcTDS/Cond Rati	o: 0.9 o:		Cation-Anion Bala Cation Sum, meq/L Anion Sum, meq/L		0.02

SAMPLE FOR TURB RECEIVED & ANALYZED PAST HOLDING TI Certificate: WA CERTIFICATE NO. C074 Certificate: WA CERTIFICATE NO. C074This report has been checked and is certified to be accurate. Signed:______ Date: 4/25/04 4/23/04 15:33

REPORT OF ANALYTICAL RESULTS

One Government Gulch • PO Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

Client: GeoSyntec Sample ID: PM-4	Re	Job No eport Date	
Collected: 4/07/04 11:45 By: GH Matrix: WATERG		Sample:379 ceived:	626 37963 4/09/0
PHYSICAL PROPERTIES TOTAL DISSOLVED pH 10.91 TDS, mg/L 2440 TSS, mg/L Conductivity	METALS (cont'd) Chromium Cobalt Copper Gallium	TOTAL	DISSOLVED
NONMETALS (mg/L) TOTAL DISSOLVED Alkalinity as CaCO3 1190 Bicarbonate Carbonate	Iron Lanthanum Lead Lithium Magnesium	0.715	0.353
Hydroxide Chloride 165 Fluoride <1.0* Nitrate-N Orthophosphate	Manganese Mercury Molybdenum Nickel Phosphorus	0.0116	0.0056
Sulfate 496 METALS (mg/L) TOTAL DISSOLVED Aluminum	Potassium Scandium Selenium Silica	22.5	21.3
Antimony Arsenic 0.037 0.033 Barium Beryllium Bismuth Boron Cadmium Calcium 4.40	Silver Sodium Strontium Thallium Tin Titanium Vanadium Zinc	153	
ADDITIONAL TESTS TOTAL DISSOLVED Eh (mV) +91.5 Sulfide 1.6	Turbidity DIS. INOR CARBON	TOTAL 1.89 142	DISSOLVED
QUALITY Calculated TDS: 2819.5	CONTROL		
Meas/Calc TDS ratio: 0.87 TDS/Cond Ratio: CalcTDS/Cond Ratio:	Cation-Anion Bala Cation Sum, meq/L Anion Sum, meq/L		0.01

*Elevated detection limit due to matrix interference. SAMPLE FOR TURB RECEIVED & ANALYZED PAST HOLDING TIME Certificate: WA CERTIFICATE NO. C074 This report has been checked and is certified to be accurate.

Signed:

Date: 4/23/04 4/23/04 15:33

CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID:	РМ-5				SVL JOB: SAMPLE: T(
Sam	ple Collected: ple Receipt : e of Report :	4/05/04 1 4/07/04 4/22/04	8:00			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	621	mg CaCO3/L		2320B	4/08/04	
\mathbf{T}	Eh (mV)	+7.3	mV		2580	4/08/04	
Т	рН	9.60			150.1	4/08/04	
Т	TDS	3100	mg/L		160.1	4/12/04	
Т	Turbidity	1.70	NTU'S		180.1	4/07/04	
Т	Calcium	16.5	mg/L		200.7	4/20/04	
Т	Chloride	1470	mg/L	500	300.0	4/14/04	
Т	Fluoride	1.17	mg/L	10	300.0	4/14/04	
Т	Potassium	515	mg/L	10	200.7	4/21/04	
Т	Magnesium	16.6	mg/L		200.7	4/20/04	
Т	Sodium	913	mg/L		200.7	4/20/04	
Т	Sulfide	1.2	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	293	mg/L	25	300.0	4/14/04	
Т	Arsenic	<0.010	mg/L		200.7	4/21/04	
Т	Iron	0.130	mg/L		200.7	4/20/04	
Т	Manganese	0.0239	mg/L		200.7	4/21/04	
Т	Silica	14.9	mg/L		200.7	4/20/04	
Τ	DIS. INOR CARBON	119	mg/L		415.1	4/16/04	
D	Arsenic	<0.010	mg/L		200.7	4/21/04	
D	Iron	0.066	mg/L		200.7	4/21/04	
	Manganese	0.0169	mg/L		200.7	4/21/04	
D	Silica	13.9	mg/L		200.7	4/21/04	

Filtered fraction: 379041

Reviewed By:_____

Helens Date 4/22/04 4/22/04 10:19

Certificate: WA CERTIFICATE NO. C074

PRC LI	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID: ple Collected:		5.10			SVL JOB: SAMPLE: T	
lan	ple Coffected. ple Receipt : ce of Report :	4/03/04 4/07/04 4/22/04	5.10			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1950	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	-92.5	mV		2580	4/08/04	
Т	pН	11.90			150.1	4/08/04	
Т	TDS	5840	mg/L		160.1	4/12/04	
Т	Turbidity	2.84	NTU'S		180.1	4/07/04	
Т	Calcium	4.81	mg/L		200.7	4/20/04	
Т	Chloride	57.0	mg/L	10	300.0	4/14/04	
Т	Fluoride	1.16	mg/L	10	300.0	4/14/04	
Т	Potassium	2540	mg/L	50	200.7	4/21/04	
Т	Magnesium	0.117	mg/L		200.7	4/20/04	
Т	Sodium	153	mg/L		200.7	4/20/04	
Т	Sulfide	<1.0	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	1570	mg/L	100	300.0	4/14/04	
Т	Arsenic	0.308	mg/L		200.7	4/21/04	
Т	Iron	0.405	mg/L		200.7	4/20/04	
Т	Manganese	0.0155	mg/L		200.7	4/21/04	
Τ	Silica	120	mg/L		200.7	4/20/04	
Т	DIS. INOR CARBON	198	mg/L		415.1	4/16/04	
D	Arsenic	0.325	mg/L		200.7	4/21/04	
D	Iron	0.117	mg/L		200.7	4/21/04	
D	Manganese	0.0100	mg/L		200.7	4/21/04	
D	Silica	120	mg/L		200.7	4/21/04	
	CalcTDS: 5800	TDS/Con		CATION SUM:	71.89meq/L	BALANCE	

Filtered fraction: 379040

Reviewed By:_____

Date 4/22/04 4/22/04 10:19

ſ

Certificate: WA CERTIFICATE NO. C074

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

ROJECT: HR0196-12 LIENT SAMPLE ID:		17-00				379 T/D
ample Collected: ample Receipt : ate of Report :	4/07/04 4/22/04	17.00			Matrix:	WAT
Determination	Result	Units	Dilution	Method	Analyzed	
r alkalinity	1050	mg CaCO3/L		2320B	4/22/04	
ſ Eh (mV)	-39.1	mV		2580	4/08/04	
Г рН	6.87			150.1	4/08/04	
r TDS	1410	mg/L		160.1	4/12/04	
f Turbidity	2.95	NTU'S		180.1	4/07/04	
6 Calcium	203	mg/L		200.7	4/20/04	
Chloride	114	mg/L	25	300.0	4/14/04	
5 Fluoride	<0.20*	mg/L	2	300.0	4/14/04	
Potassium	199	mg/L		200.7	4/21/04	
r Magnesium	29.4	mg/L		200.7	4/20/04	
r Sodium	180	mg/L		200.7	4/20/04	
Sulfide	<1.0	mg/L		376.1	4/12/04	
Sulfate, SO4	121	mg/L	10	300.0	4/14/04	
C Arsenic	0.014	mg/L		200.7	4/21/04	
f Iron	69.1	mg/L		200.7	4/20/04	
l' Manganese	7.18	mg/L		200.7	4/21/04	
F Silica	42.5	mg/L		200.7	4/20/04	
DIS. INOR CARBON	257	mg/L		415.1	4/15/04	
) Arsenic	<0.010	mg/L		200.7	4/21/04	
) Iron	7.41	mg/L		200.7	4/21/04	
) Manganese	6.48	mg/L		200.7	4/21/04	
) Silica	33.7	mg/L		200.7	4/21/04	
CalcTDS: 1650 DS/CalcTDS: 0.9	TDS/Con CalcTDS/Con	1	CATION SUM: ANION SUM:	28.71meq/L 26.78meq/L	BALANCE 3.48%	

Certificate: WA CERTIFICATE NO. CO74

LIENT SAMPLE ID: 1 ample Collected:	PM-8 4/05/04 1	6.15			SVL JOB: SAMPLE: T(
ample Receipt : ate of Report :	4/07/04 4/22/04	0.15			Matrix:	WATER
Determination	Result	Units	Dilution	Method	Analyzed	
T ALKALINITY	1020	mg CaCO3/L		2320B	4/08/04	
T Eh (mV)	+8.4	mV		2580	4/08/04	
Т рН	9.81			150.1	4/08/04	
T TDS	2330	mg/L		160.1	4/12/04	
T Turbidity	2.81	NTU'S		180.1	4/07/04	
T Calcium	10.2	mg/L		200.7	4/20/04	
T Chloride	480	mg/L	100	300.0	4/14/04	
T Fluoride	<1.0*	mg/L	10	300.0	4/14/04	
T Potassium	648	mg/L	10	200.7	4/21/04	
T Magnesium	15.6	mg/L		200.7	4/20/04	
T Sodium	407	mg/L		200.7	4/20/04	
T Sulfide	<1.0	mg/L		376.1	4/12/04	
T Sulfate, SO4	250	mg/L	10	300.0	4/14/04	
T Arsenic	<0.010	mg/L		200.7	4/21/04	
T Iron	1.66	mg/L		200.7	4/20/04	
T Manganese	0.0411	mg/L		200.7	4/21/04	
T Silica	9.64	mg/L		200.7	4/20/04	
T DIS. INOR CARBON	184	mg/L		415.1	4/15/04	
D Arsenic	<0.010	mg/L		200.7	4/21/04	
D Iron	0.709	mg/L		200.7	4/20/04	
D Manganese	0.0323	mg/L		200.7	4/21/04	
D Silica	7.90	mg/L		200.7	4/20/04	
CalcTDS: 2450	TDS/Con		CATION SUM:	36.16meq/L	BALANCE	
IDS/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	39.17meq/L	-4.00%	
ltered fraction: 3790 Clevated detection lim		atnix inter	forongo			
eviewed By:			And a		4/22/04	

Client: GeoSyntec				Rep	Job N bort Dat	
Sample ID: PM-9 Collected: 4/07/0 Matrix: WATERG	4 12:20	By: GH	S		ample:37 eived:	9627 379638/ 4/09/04
рH	TOTAL 7.39 810	DISSOLVED	METALS (cont'd Chromium Cobalt Copper Gallium Iron Lanthanum Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus	t'd)	TOTAL	DISSOLVED
	TOTAL 458	DISSOLVED			18.3	6.41
Hydroxide	876 <0.20*				1.78	1.63
Sulfate	86.2		Potassium Scandium		225	
METALS (mg/L) T [.] Aluminum Antimony	OTAL	DISSOLVED	Selenium Silica Silver		13.5	12.1
Barium Beryllium Bismuth Boron Cadmium	0.011	<0.010	Sodium Strontium Thallium Tin Titanium Vanadium Zinc		519	
Eh (mV) +17	OTAL 1 1.0	DISSOLVED	Turbidity DIS. INOR CA		TOTAL 127 109	DISSOLVED
	2120 0	QUALITY	CONTROL			
Calculated TDS: Meas/Calc TDS ratio: TDS/Cond Ratio: CalcTDS/Cond Ratio:	2129.8 0.85	5	Cation-Anion Cation Sum, 1 Anion Sum, ma	meq/L	ce -1.1 34.8 35.6	0.29

Certificate: WA CERTIFICATE NO. C074 This report has been checked and is certified to be accurate.

Signed:_____

Aller Date: 4/23/04 4/23/04 15:33

Client: GeoSynte Sample ID: PM-10)			Job 1 Report Dat	
Collected: 4/07 Matrix: WATER		By: GH		Sample:37	79628 379639 4/09/04
PHYSICAL PROPERTIE pH TDS, mg/L TSS, mg/L Conductivity	S TOTAL 7.22 2450	DISSOLVED	METALS (cont'c Chromium Cobalt Copper Gallium		DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO Bicarbonate Carbonate Hydroxide	TOTAL 3 860	DISSOLVED	Iron Lanthanum Lead Lithium Magnesium Manganese	20.2 17.3 2.42	2.23
Chloride Fluoride Nitrate-N Orthophosphate Sulfate	98.0 <1.0* 745		Mercury Molybdenum Nickel Phosphorus Potassium	920	2.23
METALS (mg/L) Aluminum Antimony	TOTAL	DISSOLVED	^J Scandium Selenium Silica Silver	19.7	17.9
Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	0.026	0.018	Sodium Strontium Thallium Tin Titanium Vanadium Zinc	95.8	
ADDITIONAL TESTS Eh (mV) Sulfide	TOTAL +183 <1.0	DISSOLVED	Turbidity DIS. INOR CARBO	TOTAL 16.2 DN 243	DISSOLVED
Calculated TI Meas/Calc TDS rat TDS/Cond Rat CalcTDS/Cond Rat	io: 0.9 io:	QUALITY	CONTROL Cation-Anion Ba Cation Sum, meg Anion Sum, meg/	I/L 33.9	50 0.67

Client: GeoSynte Sample ID: PM-11				Jc Report	b No: Date:	11042 4/23/0
Collected: 4/07 Matrix: WATER	/04 13:55	By: GH	S	VL Sample Received	2:379629 1:	37964 4/09/0
PHYSICAL PROPERTIE pH TDS, mg/L TSS, mg/L Conductivity	S TOTAL 6.27 1110	DISSOLVED	METALS (cont Chromium Cobalt Copper Gallium	t'd) tota	L DIS	SOLVED
NONMETALS (mg/L) Alkalinity as CaCO Bicarbonate	TOTAL 3 820	DISSOLVED	Lead Lithíum	46.1		27.3
Carbonate Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	88.0 <0.20*		Magnesium Manganese Mercury Molybdenum Nickel Phosphorus	26.3 3.9		3.65
Sulfate	120		Potassium Scandium	185		
METALS (mg/L) Aluminum Antimony	TOTAL	DISSOLVED	Selenium Silica Silver	33.1	ź	25.1
Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	<0.010 236	<0.010	Sodium Strontium Thallium Tin Titanium Vanadium Zinc	67.2		
ADDITIONAL TESTS Eh (mV) Sulfide	TOTAL +91.0 <1.0	DISSOLVED	Turbidity DIS. INOR CAN	TOTA 398 RBON 316	L DIS	SSOLVED
Calculated T	DS: 1361.6	2	CONTROL			
Calculated 1 Meas/Calc TDS rat TDS/Cond Rat CalcTDS/Cond Rat	io: 0.8 io:		Cation-Anion Cation Sum, r Anion Sum, me	meq/L	4.51% 23.38 21.36	1_11

One Government Gulch • PO Box 929 • Kellogg, Idaho 83837-0929

REPORT OF ANALYTICAL RESULTS

Phone: (208)784-1258 Fax: (208)783-0891

Client: GeoSynte Sample ID: PM-1				Report Dat	o: 11042 e: 4/23/0
Collected: 4/0 Matrix: WATE	7/04 13:30	D By: GH		L Sample: 37 Received:	
PHYSICAL PROPERTIN pH TDS, mg/L TSS, mg/L Conductivity	6.24	DISSOLVED	Chromium Cobalt Copper Gallium		DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCC Bicarbonate	TOTAL 03 960	DISSOLVED	Iron Lanthanum Lead Lithium	80.0	56.3
Carbonate Hydroxide Chloride	95.2		Magnesium Manganese	30.1 5.45	5.14
Chloride Fluoride Nitrate-N Orthophosphate	<0.20*		Mercury Molybdenum Nickel Phosphorus		
Sulfate .	122		Potassium Scandium	178	
METALS (mg/L) Aluminum Antimony	TOTAL	DISSOLVED	Selenium Silica Silver	43.2	31.5
Arsenic Barium Beryllium	0.024	0.011	Sodium Strontium Thallium	77.3	

Bismuth Tin Titanium Boron Cadmium Vanadium 275 Calcium Zinc ADDITIONAL TESTS TOTAL DISSOLVED TOTAL DISSOLVED Eh (mV) +15.7 Turbidity 284 Sulfide DIS. INOR CARBON 336 <1.0 QUALITY CONTROL Calculated TDS: 1584.5 Cation-Anion Balance 5.35% Meas/Calc TDS ratio: 0.76 Cation Sum, meq/L 27.17 2.21 TDS/Cond Ratio: Anion Sum, meq/L 24.41 CalcTDS/Cond Ratio:

*Elevated detection limit due to matrix interference. Certificate: WA CERTIFICATE NO. C074 This report has been checked and is certified to be accurate. Lew Date: 4/23/04 4/23/04 15:33

Signed:

Client: GeoSyntec Sample ID: PM-13	:		F	Job N Report Dat	
Collected: 4/07/ Matrix: WATERG		By: GH		Sample:37 eceived:	9631 379642 4/09/04
PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	TOTAL 9.38 607	DISSOLVED	Chromium Cobalt Copper Gallium		DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO3 Bicarbonate	TOTAL 328	DISSOLVED	- Iron Lanthanum Lead Lithium	2.70	1.54
Carbonate Hydroxide Chloride	55.5		Magnesium Manganese Mercury	2.92 0.378	0.327
Fluoride Nitrate-N Orthophosphate	0.50		Molybdenum Nickel Phosphorus		
Sulfate	75.4		Potassium Scandium	241	
METALS (mg/L) Aluminum Antimony	TOTAL	DISSOLVED	Selenium Silica Silver	7.80	6.77
Arsenic Barium Beryllium Bismuth Boron Cadmium	<0.010	<0.010	Sodium Strontium Thallium Tin Titanium Vanadium	43.1	
Calcium ADDITIONAL TESTS	12.4	DICCOLUED	Zinc	momar	DI COOL VED
ADDITIONAL TESIS Eh (mV) Sulfide	TOTAL +9.3 <1.0	DISSOLVED	Turbidity DIS. INOR CARBON	TOTAL 4.81 75.3	DISSOLVED
Calculated TDS	5: 650.3	P0	CONTROL		
Meas/Calc TDS ratio TDS/Cond Ratio CalcTDS/Cond Ratio	b: 0.9		Cation-Anion Bal Cation Sum, meg/ Anion Sum, meg/L	L 9.0	0 0.07

This report has been checked and is certified to be accurate. Signed:_______ Date: 4/23/04 15:33

Client: GeoSynte Sample ID: PM-14				Job N Report Dat	
Collected: 4/07 Matrix: WATER		By: GH		VL Sample: 37 Received:	9632 37964 4/09/04
PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	TOTAL 9.56 779	DISSOLVED	METALS (cont Chromium Cobalt Copper Gallium	'd) TOTAL	DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO3 Bicarbonate	TOTAL 396	DISSOLVED	Lead Lithium	5.31	4.36
Carbonate Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	114 <1.0*		Magnesium Manganese Mercury Molybdenum Nickel Phosphorus	1.81 0.316	0.299
Sulfate	89.7		Potassium Scandium	314	
METALS (mg/L) Aluminum Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	TOTAL <0.010 11.8	DISSOLVED <0.010	Selenium Silica Silver Sodium Strontium Thallium Tin Titanium Vanadium Zinc	4.36 76.6	3.98
ADDITIONAL TESTS Eh (mV) Sulfide	TOTAL +27.7 <1.0	DISSOLVED	Turbidity DIS. INOR CAR	TOTAL 2.88 BON 78.0	DISSOLVED
Calculated TD	S: 865.7	QUALITY	CONTROL		
Meas/Calc TDS rati TDS/Cond Rati CalcTDS/Cond Rati	o: 0.9 o:	0	Cation-Anion Cation Sum, m Anion Sum, me	eq/L 12.3	0 0.17

Signed:_____

Date: 4/23/04 15:33

Certificate: WA CERTIFICATE NO. C074

RC LI	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID:	PM-15				SVL JOB: SAMPLE: T(
am	ple Collected: ple Receipt : e of Report :	4/05/04 1 4/07/04 4/22/04	2:15			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1900	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	-166	mV		2580	4/08/04	
Т	рH	12.30			150.1	4/08/04	
Т	TDS	4770	mg/L		160.1	4/12/04	
Т	Turbidity	0.414	NTU'S		180.1	4/07/04	
Т	Calcium	2.35	mg/L		200.7	4/20/04	
Т	Chloride	44.5	mg/L	10	300.0	4/14/04	
Т	Fluoride	1.33	mg/L	10	300.0	4/14/04	
Т	Potassium	2360	mg/L	50	200.7	4/21/04	
Т	Magnesium	<0.040	mg/L		200.7	4/20/04	
Т	Sodium	91.0	mg/L		200.7	4/20/04	
Т	Sulfide	1.1	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	1130	mg/L	100	300.0	4/14/04	
Т	Arsenic	0.118	mg/L		200.7	4/21/04	
Т	Iron	0.290	mg/L		200.7	4/20/04	
Т	Manganese	0.0033	mg/L		200.7	4/21/04	
Т	Silica	101	mg/L		200.7	4/20/04	
Т	DIS. INOR CARBON	109	mg/L		415.1	4/15/04	
Ð	Arsenic	0.121	mg/L		200.7	4/21/04	
D	Iron	0.255	mg/L		200.7	4/20/04	
D	Manganese	0.0027	mg/L		200.7	4/21/04	
D	Silica	94.5	mg/L		200.7	4/20/04	
			2- C		200.7	4/20/04	

Filtered fraction: 379032

Reviewed By:_____

Date 4/22/04 4/22/04 10:18

Certificate: WA CERTIFICATE NO. CO74

RO LI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID:	PM-16				SVL JOB: SAMPLE: TC	
am	ple Collected: ple Receipt : e of Report :	4/05/04 1 4/07/04 4/22/04	4:55			Matrix:	WATEI
	Determination	Result	Units	Dilution	Method	Analyzed	
T	ALKALINITY	2020	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	-349	mV		2580	4/08/04	
Т	pН	12.40			150.1	4/08/04	
Т	TDS	5010	mg/L		160.1	4/12/04	
Т	Turbidity	1.19	NTU'S		180.1	4/07/04	
Т	Calcium	3.22	mg/L		200.7	4/20/04	
Т	Chloride	44.4	mg/L	10	300.0	4/14/04	
Т	Fluoride	1.30	mg/L	10	300.0	4/14/04	
Т	Potassium	2540	mg/L	50	200.7	4/21/04	
Т	Magnesium	0.114	mg/L		200.7	4/20/04	
Τ	Sodium	98.0	mg/L		200.7	4/20/04	
Т	Sulfide	2.8	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	1190	mg/L	100	300.0	4/14/04	
Т	Arsenic	0.115	mg/L		200.7	4/21/04	
Т	Iron	0.767	mg/L		200.7	4/20/04	
Т	Manganese	0.0104	mg/L		200.7	4/21/04	
Т	Silica	95.9	mg/L		200.7	4/20/04	
Τ	DIS. INOR CARBON	104	mg/L		415.1	4/15/04	
D	Arsenic	0.086	mg/L		200.7	4/21/04	
D	Iron	0.434	mg/L		200.7	4/20/04	
D	Manganese	0.0045	mg/L		200.7	4/21/04	
D	Silica	97.0	mg/L		200.7	4/20/04	
					69.45meg/L	BALANCE	

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

Filtered fraction: 379036

Reviewed By:_____

Date 4/22/04 4/22/04 10:19

Client: GeoSynteo Sample ID: PM-17	2		Re	Job No Port Date	
Collected: 4/07, Matrix: WATER		By: GH		Sample:37	9633 379644 4/09/04
PHYSICAL PROPERTIES pH TDS, mg/L TSS, mg/L Conductivity	TOTAL 11.58 1430	DISSOLVED	METALS (cont'd) Chromium Cobalt Copper Gallium	TOTAL	DISSOLVED
NONMETALS (mg/L) Alkalinity as CaCO3 Bicarbonate Carbonate	TOTAL 698	DISSOLVED	Iron Lanthanum Lead Lithium Magnesium	0.675	0.456
Hydroxide Chloride Fluoride Nitrate-N Orthophosphate	35.4 1.16		Manganese Mercury Molybdenum Nickel Phosphorus	0.0113	0.0103
Sulfate	185		Potassium Scandium	648	
METALS (mg/L) Aluminum Antimony Arsenic Barium Beryllium Bismuth	TOTAL 0.033	DISSOLVED 0.038	Selenium Silica Silver Sodium Strontium Thallium Tin	28.4 38.9	27.9
Boron Cadmium Calcium	3.47		Titanium Vanadium Zinc		
ADDITIONAL TESTS Eh (mV) - Sulfide	TOTAL 164 1 ₋ 7	DISSOLVED	Turbidity DIS. INOR CARBON	TOTAL 0.573 59.1	DISSOLVED
Calculated TD	s: 1403.3		CONTROL		
Meas/Calc TDS rati TDS/Cond Rati CalcTDS/Cond Rati	o: 1.0 o:		Cation-Anion Bala Cation Sum, meq/I Anion Sum, meq/L		6 0.02

SVL	ANALYTICAL	, INC.
-----	------------	--------

One Government Gulch . P.O. Box 925 . Kellogg, Idaho 83837-0929 . rnone: (208)784-1258 . Fax: (208)783-0891

CLIENT : GeoSynte PROJECT: HR0196-11		
CLIENT SAMPLE ID: Sample Collected: Sample Receipt : Date of Report :	4/05/04 4/07/04	11:15

SVL JOB: 110352 SAMPLE: 379018 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	1180	mg CaCO3/L	,	2320B	4/08/04
Т	Eh (mV)	+103	mV		2580	4/08/04
Т	pH	11.70			150.1	4/08/04
Т	TDS	3560	mg/L		160.1	4/12/04
Т	Turbidity	0.597	NTU'S		180.1	4/07/04
Т	Calcium	2.98	mg/L		200.7	4/20/04
Т	Chloride	68.3	mg/L	10	300.0	4/14/04
Т	Fluoride	<1.0*	mg/L	10	300.0	4/14/04
Т	Potassium	1610	mg/L	10	200.7	4/21/04
Т	Magnesium	<0.040	mg/L		200.7	4/20/04
Т	Sodium	95.7	mg/L		200.7	4/20/04
Т	Sulfide	<1.0	mg/L		376.1	4/12/04
Т	Sulfate, SO4	1060	mg/L	100	300.0	4/14/04
Т	Arsenic	0.094	mg/L		200.7	4/21/04
Т	Iron	0.121	mg/L		200.7	4/20/04
Т	Manganese	0.0021	mg/L		200.7	4/21/04
Т	Silica	63.7	mg/L		200.7	4/20/04.
Т	DIS. INOR CARBON	106	mg/L		415.1	4/14/04
D	Arsenic	0.106	mg/L		200.7	4/21/04
D	Iron	0.064	mg/L		200.7	4/20/04
D	Manganese	<0.0020	mg/L		200.7	4/21/04
D	Sílica	64.7	mg/L		200.7	4/20/04
	CalcTDS: 3710	TDS/Con		CATION SUM:	45.49meq/L	BALANCE
TDS,	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	47.60meq/L	-2.27%

Filtered fraction: 379030

*Elevated detection limit due to matrix interference.

Reviewed By:

Date 422/04 4/22/04 14:10

Certificate: WA CERTIFICATE NO. CO74

RC LI	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID: aple Collected:	: PM-20 4/05/04 1	3:00			SVL JOB: SAMPLE: T	
	nple Receipt : ce of Report :	4/07/04 4/22/04				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	580	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	+102	mV		2580	4/08/04	
Т	рН	8.92			150.1	4/08/04	
Т	TDS	1520	mg/L		160.1	4/12/04	
Т	Turbidity	1.97	NTU'S		180.1	4/07/04	
Т	Calcium	21.5	mg/L		200.7	4/20/04	
Т	Chloride	14.0	mg/L	5	300.0	4/14/04	
Τ	Fluoride	0.62	mg/L	5	300.0	4/14/04	
Т	Potassium	522	mg/L	10	200.7	4/21/04	
Т	Magnesium	6.57	mg/L		200.7	4/20/04	
Т	Sodium	163	mg/L		200.7	4/20/04	
Т	Sulfide	<1.0	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	466	mg/L	50	300.0	4/14/04	
Т	Arsenic	<0.010	mg/L		200.7	4/21/04	
Τ	Iron	0.437	mg/L		200.7	4/20/04	
Т	Manganese	0.108	mg/L		200.7	4/21/04	
Т	Silica	10.6	mg/L		200.7	4/20/04	
T	DIS. INOR CARBON	135	mg/L		415.1	4/15/04	
D	Arsenic	< 0_010	mg/L		200.7	4/21/04	
D	Iron	0.073	mg/L		200.7	4/20/04	
D	Manganese	0.0868	mg/L		200.7	4/21/04	
D	Silica	9.53	mg/L		200.7	4/20/04	
					· · · · · · · · · · · · · · · · · · ·		

Filtered fraction: 379033

Reviewed By:_____

Selecter Date 4/22/04 10:18

RC LI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: ple Collected:	2	4.00			SVL JOB: SAMPLE: T	
am	ple Receipt : e of Report :	4/07/04	4.00			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	922	mg CaCO3/L		2320B	4/08/04	
Т	Eh (mV)	-3.9	mV		2580	4/08/04	
Т	рH	10.70			150.1	4/08/04	
Т	TDS	2920	mg/L		160.1	4/12/04	
Т	Turbidity	0.955	NTU'S		180.1	4/07/04	
Т	Calcium	10.9	mg/L		200.7	4/20/04	
Т	Chloride	64.7	mg/L	10	300.0	4/14/04	
Т	Fluoride	1.05	mg/L	10	300.0	4/14/04	
Т	Potassium	1340	mg/L	10	200.7	4/21/04	
Т	Magnesium	0.473	mg/L		200.7	4/20/04	
Т	Sodium	116	mg/L		200.7	4/20/04	
Т	Sulfide	<1.0	mg/L		376.1	4/12/04	
Т	Sulfate, SO4	948	mg/L	50	300.0	4/14/04	
Т	Arsenic	0.054	mg/L		200.7	4/21/04	
Т	Iron	0.542	mg/L		200.7	4/20/04	
Т	Manganese	0.0089	mg/L		200.7	4/21/04	
Т	Silica	23.1	mg/L		200.7	4/20/04	
Т	DIS. INOR CARBON	123	mg/L		415.1	4/15/04	
D	Arsenic	0.065	mg/L		200.7	4/21/04	
D	Iron	0.342	mg/L		200.7	4/20/04	
D	Manganese	0.0072	mg/L		200.7	4/21/04	
	Silica	22.1	mg/L		200.7	4/20/04	

Filtered fraction: 379035

Reviewed By:_____

.

Date 4/22/04 4/22/04 10:18

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntee	Client :GeoSyntec SVL JOB No: 110352											
nalyte	Method	Matrix	Units	Prep Blank	TrueLCS-	Found	LCS %R	Date				
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.982	98.2	4/21/04				
Calcium	200.7	WATER	mg/L	<0.040	20.0	20.5	102.5	4/20/04				
Iron	200.7	WATER	mg/L	<0.020	10.0	10.2	102.0	4/20/04				
Potassium	200.7	WATER	mg/L	<1.0	30.0	29.6	98.7	4/21/04				
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.0	100.0	4/20/04				
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.984	98.4	4/21/04				
Sodium	200.7	WATER	mg/L	<0.50	20.0	20.4	102.0	4/20/04				
Silica	200.7	WATER	mg/L	<0.171	10.7	11.7	109.3	4/20/04				
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.79	95.8	4/14/04				
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.41	96.4	4/14/04				
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.69	96.9	4/14/04				
ALKALINITY	2320B	WATER	mg/L	<1.0	20.5	23.4	114.1	4/08/04				
Hq	150.1	WATER		5.46	7.70	7.68	99.7	4/08/04				
Eh (mV)	2580	WATER	mV	N/A	+228	+233	102.2	4/08/04				
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	13.9	99.3	4/14/04				
Sulfide	376.1	WATER	mg/L	<1.0	2.0	1.9	95.0	4/12/04				
TDS	160.1	WATER	mg/L	< 10	233	250	107.3	4/12/04				
Turbidity	180.1	WATER	NTU'S	0.074	1.77	1.75	98.9	4/07/04				

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Clien	t :GeoSy	nte	C QC SAMPI		-Duplicate o		MCD	D.G.		L JOB No	b: 110352
ll et l	Method M	1+~	Units	Result	Found	r	MSD- RPD%	Result	atrix Spike SPK ADD	%R	Analysis Date
			011205		round		1(1 2 3	Resure		01(Date
As	200.7 W	1	mg/L	0.094	0.096		2.1	1.15	1.00	105.6	4/21/04
As	200.7 W	2	mg/L	0.308	N/A		N/A	1.37	1.00	106.2	4/21/04
As	200.7 W	3	mg/L	0.106	0.098		7.8	1.24	1.00	113.4	4/21/04
As	200.7 W	4	mg/L	0.325	N/A		N/A	1.45	1.00	112.5	4/21/04
Ca	200.7 W	1	mg/L	2.98	3.07		3.0	23.9	20.0	104.6	4/20/04
Ca	200.7 W	2	mg/L	4.81	N/A		N/A	26.0	20.0	106.0	4/20/04
Fe	200.7 W	1	mg/L	0.121	0.121		0.0	10.3	10.0	101.8	4/20/04
Fe	200.7 W	2	mg/L	0.405	N/A		N/A	10.7	10.0	103.0	4/20/04
Fe	200.7 W	3	mg/L	0.064	0.120		60.9	9.97	10.0	99.1	4/20/04
Fe	200.7 W	4	mg/L	0.117	N/A		N/A	10.2	10.0	100.8	4/21/04
K	200.7 W		-	1610	1690		4.8	1720	30.0	R >45	4/21/04
K	200.7 W	. 2	mg/L	2540	N/A		N/A	2500	30.0	R >4S	4/21/04
Mg	200.7 W	1	mg/L	<0.040	<0.040		UDL	19.9	20.0	99.5	4/20/04
Mg	200.7 W	2	mg/L	0.117	N/A		N/A	20.2	20.0	100.4	4/20/04
Mn	200.7 W	1	mg/L	0.0021	0.0022		4.7	0.996	1.00	99.4	4/21/04
Mn	200.7 W	2	mg/L	0.0155	N/A		N/A	0.996	1.00	98.1	4/21/04
Mn	200.7 W	3	mg/L	<0.0020	0.0021		200.0	1.02	1.00	102.0	4/21/04
Mn	200.7 W	4	mg/L	0.0100	N/A		N/A	1.00	1.00	99.0	4/21/04
Na	200.7 W	1	mg/L	95.7	98.6		3.0	119	20.0	116.5	4/20/04
Na	200.7 W	2	mg/L	153	N/A		N/A	178	20.0	125.0	4/20/04
SiO2	200.7 W	1	mg/L	63.7	65.7		3.1	75.6	10.7	111.2	4/20/04
SiO2	200.7 W	2	mg/L	120	N/A		N/A	130	10.7	93.5	4/20/04
SiO2	200.7 W	3	mg/L	64.7	63.1		2.5	71.5	10.7	R >4S	4/20/04
SiO2	200.7 W	4	mg/L	120	N/A		N/A	128	10.7	R >4S	4/21/04
Cl	300.0 W	1	mg/L	68.3	68.0		0.4	107	50.0	77.4	4/14/04
Cl	300.0 W	2	mg/L	57.0	N/A		N/A	98.9	50.0	83.8	4/14/04
Г	300.0 W	1	mg/L	<1.0*	<1.0*		UDL	19.1	20.0	95.5	4/14/04
r	300.0 W	2	mg/L	1.16	N/A		N/A	47.3	50.0	92.3	4/14/04
S04	300.0 W	1	mg/L	1060	1060		0.0	1610	500	110.0	4/14/04
SO4	300.0 W	2	mg/L	1570	N/A		N/A	2140	500	114.0	4/14/04
ALK	2320B W	1	mg/L	1180	1200		1.7	N/A	N/A	N/A	4/08/04
ALK	2320B W	5	mg/L	1050	1080		2.8	N/A	N/A	N/A	4/22/04
pН	150.1 W	1		11.70	11.70		0.0	N/A	N/A	N/A	4/08/04
Eh	2580 W	1	mV	+103	+104		1.0	N/A	N/A	N/A	4/08/04
ORG18D	415.1 W	1	mg/L	106	110		3.7	395	250	115.6	4/14/04
TDS	160.1 W	1	mg/L	3560	3590		0.8	N/A	N/A	N/A	4/12/04
TURB	180.1 W	1	NTU'S	0.597	0.592		0.8	N/A	N/A	N/A	4/07/04

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.

QC Sample 1	: SVL	SAM No.:	379018	Client	Sample	ID:	PM-18	îΤ
QC Sample 2	SVL	SAM No.:	379028	Client	Sample	ID:	РМ-6	^т
QC Sample 3	SVL	SAM No.:	379030	Client	Sample	ID:	PM-18	^D
QC Sample 4	: SVL	SAM No.:	379040	Client	Sample	ID:	РМ-6	^D
QC Sample 5	: SVL	SAM No.:	379027	Client	Sample	ID:	РМ-7	T

Page Of 2- Page Of 2- S=011 FOR SVL USE ONLY Water S=011 FOR SVL USE ONLY S=011 FOR SVL USE		K SAMPLE	label read	WWW-11	HOILIH					Date: 7-04 Time: 000 Date: Time:	DPY SVL-COC 12/95
Allecesson, Dredis, 1 Matrix Type (ater, 2 = Ground Allecesson, Dredis, 1 Subject No Ce, Mari Majes Required	XXXXXXXXXX									pull par !!	.B COPY Yellow: CUSTOMER COPY
AIN OF CUSTODY e proper container packaging. amples promptly following collection. amples Filtered (Ice Only) HUO3 HUO3 HUO3 HUC1 HCL HCL HCL HCL HCL HCL HCL HCL	t N ý V									4/6/04 1.1me: Received by:	White: LAB COPY
Collected by: (Init.) In Collected by: (Init.) Market Collected by: (Init.) Collected by	YGr	1:42 1/ 1	12:12		1 00:4	4:35	06:5	6:15	n 100()	E Ho J Date: 4	/ [] Store (30 Days)
	45/04									1-h-	rn [] Dispose
	7	1. PM-19	- + / N-1/	P S I	6. P (M - 2)	r. P.M - 16	"PM-2	". p.m. &	10.PM-7	Kelinquished by: Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

	Page Zof Z		FOR SVL USE ONLY	SVL JOB#	65201				xhall # 2	َ ر	and and	Comments	if guestions										124 Time: Time:	SVL-COC 12/95
	ECORD		Table 1 Matrix Type	I = Surface Water 23 Ground Water	3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature: CA. + + + h		Analyses Required	-		Hredox, Hurdox, Hurdox, Hurdox, Hur, Cu, Hur, Cu, Hurdox, Hur	1221 1221 1221 1221 1221 1221 1221 122	XXXXXXXX	N S R A R R R	2							l & Tac	COPY Yellow: CUSTOMER COPY
	HAIN OF CUSTODY RECORD		1) Ensure proper container packaging.	2) Ship samples promptly following collection.	nple Reject Disposition	1-9-1-	letude		FAX (208) 783-0891		Preservative(s)	stred (Ice Only)	НО∀N H520¢ HCГ HИО3	2									Time: Roceived by: Time: Received by:	White: LAB COPY
	CHAIN (NOTES:	1) Ensure proper o	2) Ship samples pr		PO# HRO	Project Name:		4-1258	83837-0929	Miscellaneous		Matrix ' From T: No. of C		21 2 1 / N								Date: 4/Le OU	30 Days)
Į				2	G	200	20		(208) 78	Kellogg, II	tion	Time		15:10 0	18:00 1								Hut	e [] Store (
ANALYTICAL		el .	etty	LIS W	Beach	0-695-	169-08	,	ical, Inc.	nent Gulch,	Collection	Date		HISIOY	415104	-							N V	odsid [] n
5		Client: Ceos w	Contact: BY) CM	Address: JUO Ma	Hunterter	710	FAX Number:) 4-6		Lab Name: SVL Analytical, Inc.	Address: One Government Gulch, Kellogg, ID		Sample ID		I. PM-L	2. P M-5	3,	4.	5. 6.	7.	8.	6	10.	Relinquished by: Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

Ŷ

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec SVL JOB No: 110												
nalyte	Method	Matrix	Units	Prep Blank	True-	-LCSFound	LCS %R	Analysis Date				
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.976	97.6	4/22/04				
Calcium	200.7	WATER	mg/L	<0.040	20.0	21.4	107.0	4/22/04				
Iron	200.7	WATER	mg/L	<0.020	10.0	10.5	105.0	4/22/04				
Potassíum	200.7	WATER	mg/L	<1.0	30.0	30.9	103.0	4/22/04				
Magnesium	200.7	WATER	mg/L	<0.040	20.0	20.5	102.5	4/22/04				
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.01	101.0	4/22/04				
Sodium	200.7	WATER	mg/L	<0.50	20.0	21.3	106.5	4/22/04				
Silica	200.7	WATER	mg/L	<0.171	10.7	11.4	106.5	4/22/04				
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.92	98.4	4/15/04				
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.55	102.0	4/15/04				
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.82	98.2	4/15/04				
ALKALINITY	2320B	WATER	mg/L	<1.0	20.5	23.5	114.6	4/13/04				
рН	150.1	WATER		5.68	7.70	7.68	99.7	4/12/04				
Eh (mV)	2580	WATER	m∨	N/A	+228	+232	101.8	4/12/04				
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	14.5	103.6	4/16/04				
Sulfide	376.1	WATER	mg/L	<1.0	2.0	1.9	95.0	4/12/04				
TDS	160.1	WATER	mg/L	<10	450	419	93.1	4/14/04				
Turbidity	180.1	WATER	NTU'S	0.087	13.1	12.1	92.4	4/09/04				

LEGEND:

LCS = Laboratory Control Sample

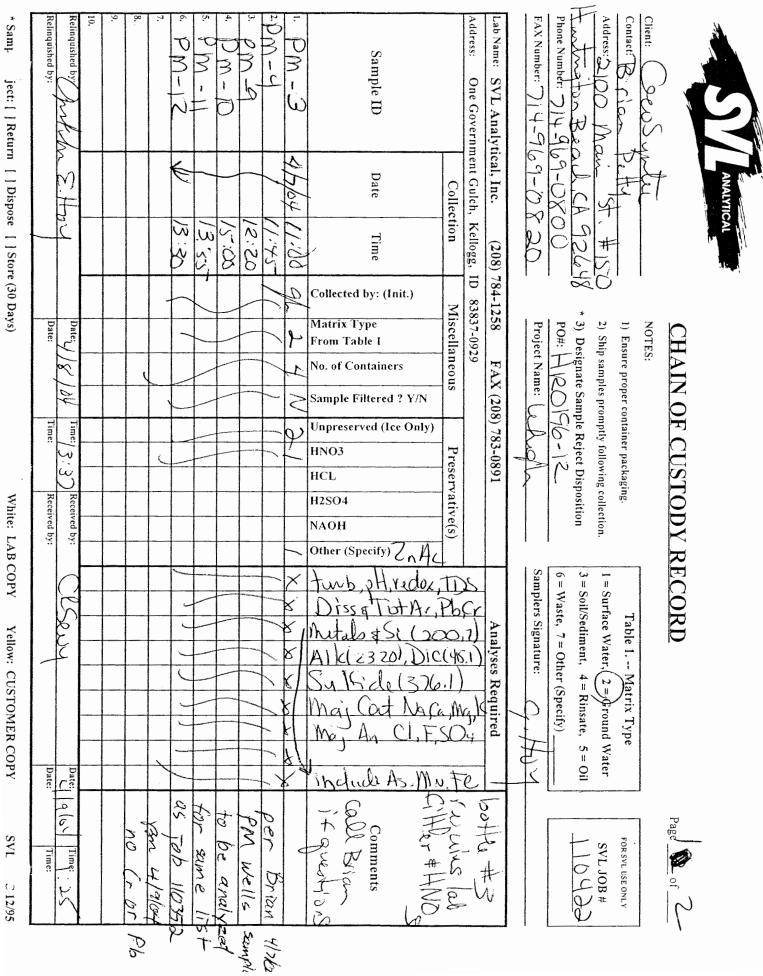
LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Clien	at :GeoSyn		c —QC SAMPI	E ID	Duplicate	or	MSD		Aatrix Spi			: 110422 Analysis
	Method Mt		Units	Result	Found		RPD%	Result			%R	Date
IS	200.7 W	1	mg/L	<0.010	<0.010		UDL	1.03	1.00		103.0	4/22/04
1S	200.7 W		mg/L	<0.010	N/A		N/A	0.995	1.00		99.5	4/22/04
1S	200.7 W	3	mg/L	<0.010	<0.010		UDL	1.09	1.00		109.0	4/22/04
1S	200.7 W	4	mg/L	<0.010	N/A		N/A	1.02	1.00		102.0	4/23/04
la	200.7 W	.1		186	189		1.6	208	20.0		110.0	4/22/04
la	200.7 W		mg/L	99.1	N/A		N/A	125	20.0		R >4S	4/22/04
'е	200.7 W		mg/L	0.150	0.179		17.6	10.6	10.0		104.5	4/22/04
чe	200.7 W	2	mg/L	4.11	N/A		N/A	14.7	10.0		105.9	4/22/04
'e	200.7 W		mg/L	<0.020	<0.020		UDL	10.2	10.0		102.0	4/22/04
·е	200.7 W	4	mg/L	0.030	N/A		N/A	10.1	10.0		100.7	4/23/04
<	200.7 W	1	mg/L	156	158		1.3	189	30.0		110.0	4/22/04
<	200.7 W	2	mg/L	70.2	N/A		N/A	105	30.0		116.0	4/22/04
1g	200.7 W		mg/L	46.8	47.0		0.4	67.4	20.0		103.0	4/22/04
1g	200.7 W		mg/L	26.1	N/A		N/A	46.6	20.0		102.5	4/22/04
In	200.7 W	1	mg/L	0.522	0.534		2.3	1.54	1.00		101.8	4/22/04
1n	200.7 W	2	mg/L	1.41	N/A		N/A	2.42	1.00		101.0	4/22/04
1n	200.7 W	3	mg/L	0.500	0.500		0.0	1.45	1.00		95.0	4/22/04
1n	200.7 W	4	mg/L	1.35	N/A		N/A	2.24	1.00		89.0	4/23/04
√a	200.7 W	1	mg/L	82.9	83.6		0.8	105	20.0		110.5	4/22/04
√a	200.7 W	2	mg/L	67.0	N/A		N/A	91.9	20.0		124.5	4/22/04
3i02	200.7 W	1	mg/L	13.4	13.5		0.7	25.4	10.7		112.1	4/22/04
SiO2	200.7 W	2	mg/L	18.7	N/A		N/A	34.7	10.7		149.5	4/22/04
5iO2	200.7 W	2	mg/L	18.7	N/A		N/A	28.5	10.7	A	91.6	4/22/04
SiO2	200.7 W	3	mg/L	12.9	12.9		0.0	23.9	10.7		102.8	4/22/04
5i02	200.7 W	4	mg/L	11.4	N/A		N/A	22.3	10.7		101.9	4/23/04
23	300.0 W	1	mg/L	122	122		0.0	211	100		89.0	4/15/04
2	300.0 W	2	mg/L	108	N/A		N/A	152	50.0		88.0	4/15/04
1	300.0 W	1	mg/L	<0.20*	<0.20*		UDL	3.77	4.00		94.3	4/15/04
?	300.0 W	2	mg/L	<0.10	N/A		N/A	1.86	2.00		93.0	4/15/04
504	300.0 W	1	mg/L	501	505		0.8	766	250		106.0	4/15/04
504	300.0 W	2	mg/L	45.1	N/A		N/A	71.1	25.0		104.0	4/15/04
<i>f</i> TK	2320B W	1	mg/L	332	331		0.3	N/A	N/A		N/A	4/13/04
ЪH	150.1 W	1		7.67	7.68		0.1	N/A	N/A		N/A	4/12/04
Eh	2580 W	1	mV	+251	+249		0.8	N/A	N/A		N/A	4/12/04
DRG18D	415.1 W	1	mg/L	78.4	78.0		0.5	110	50.0		63.2	4/16/04
ſDS	160.1 W	1	mg/L	1190	1210		1.7	I/S	I/S		N/A	4/14/04
CURB	180.1 W	1	ити'я	1.20	1.16		3.4	N/A	N/A		N/A	4/09/04

LEGEND:


RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. I/S: Insufficient sample for QC test.

QC Sample 1: SVL SAM No.: 379625 Client Sample ID: PM-3	îΤ
QC Sample 2: SVL SAM No.: 379635 Client Sample ID: AVE	E ^T
QC Sample 3: SVL SAM No.: 379636 Client Sample ID: PM-3	^D
QC Sample 4: SVL SAM No.: 379646 Client Sample ID: AVE	E ^D

Reliaquished by: /	Relinquished by: Moult	10.	9,	8,	7.	6.	5 Avd E	AVC W	3. PM-17	2. PM - 14	1. Pm - 213	Sample ID		Address: One Government Gulch,	Lab Name: SVL Analytical, Inc.	FAX Number:) 4 – 9(Phone Number: 7 4 -9	Tor a	Address: 2190 M	Contact: By Cim	Client: Geo Sy		B
n f l Dience	1.5 3					A	¢			1 1	to the	Date	Collection	ient Gulch,	cal, Inc.	80-60	09-0	Ľ	S wol	Potr	Rt f	-	ANALYTICAL
	t t						00:7/	14:16	17:00	17:45	15:30	Time	tion	Kellogg, I	(208)	06	0080	\mathbb{N}					Ă
Date: 7	Date:									0	a 2	Collected by: (Init.) Matrix Type From Table 1	Miscellaneous	ID 83837-0929	(208) 784-1258	Projec	PO#:	$(\mathcal{L} \setminus \mathcal{J}^* 3)$ Designate Sample Reject Disposition	O 2) Shi	1) Ens	NOTES:	CH	
1 1 1	1/8/04									-	N P	No. of Containers Sample Filtered ? Y/N	ineous	29	FAX (208	Project Name:	HRUD	signate Samp	p samples pron	ure proper cor	S:	HAIN OF	
Time:	^{Time} / <i>3</i> :37										21	Unpreserved (Ice Only) HNO3 HCL	Preserv		(208) 783-0891	April	1-95	le Reject Disp	2) Ship samples promptly following collection.	1) Ensure proper container packaging.		-	
Received by: White: T.A.F.												H2SO4 NAOH Other (Specify) Zn Ac	Preservative(s)				r	osition	collection.	ng.		CUSTODY REC	
1 AB COPY Vollow: CUSTOMED COPY	ICSEWY 1										XXXXXXX	tubid, pH, rudo Dissa Tot Ar, P Netalog Si (200 Alk (2320), Dic Sulfide (576 Maj Cat (Na Ca Maj An Cl, t. Sc			Analyses Required	Samplers Signature: Q , $H_{\mathcal{O}}$	b = waste, / = Other (Specify)		Surface Water 2 #Ground	Table 1 Mat		ECORD	
Date: Time:	Date: 19/04 Time 125										01	ind Asimi, ANO3 Comments Comments Ind Pall Brian	V infunes	: ج ا	10/12° # 2	X			r SVL JOB #	 		Page Jof J	

Yellow: CUSTOMER COPY

L]	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID:	MW-7	1.1.5			SVL JOB: SAMPLE: T(
an	nple Collected: nple Receipt : te of Report :	6/01/04 1 6/02/04 6/17/04	11:10			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	289	mg CaCO3/L		2320B	6/04/04	
Т	Eh (mV)	+245	mV		2580	6/02/04	
Т	рH	8.02			150.1	6/04/04	
Т	TDS	267	mg/L		160.1	6/03/04	
Т	Turbidity	0.331	NŢU'S		180.1	6/03/04	
Т	Calcium	64.6	mg/L		200.7	6/15/04	
Т	Chloride	0.28	mg/E		300.0	6/15/04	
Т	Fluoride	0.15	mg/L		300.0	6/15/04	
Т	Potassium	5.0	mg/L		200.7	6/15/04	
Т	Magnesium	26.2	mg/L		200.7	6/15/04	
Т	Sodium	2.34	mg/L		200.7	6/15/04	
Т	Sulfide	<1.0	mg/L		376.1	6/04/04	
Т	Sulfate, SO4	20.6	mg/L		300.0	6/15/04	
Т	Arsenic	<0.010	mg/L		200.7	6/15/04	
Т	Chromium	<0.0060	mg/L		200.7	6/15/04	
Т	Iron	<0.020	mg/L		200.7	6/15/04	
Т	Manganese	0.0032	mg/L		200.7	6/15/04	
Т	Lead	<0.0050	mg/L		200.7	6/15/04	
Т	Silica	13.6	mg/L		200.7	6/15/04	
Т	DIS. INOR CARBON	66.3	mg/L		415.1	6/04/04	
D	Arsenic	<0.010	mg/L		200.7	6/15/04	
D	Chromium	<0.0060	mg/L		200.7	6/15/04	
D	Iron	<0.020	mg/L		200.7	6/15/04	
D	Manganese	0.0023	mg/L		200.7	6/15/04	
D	Lead	<0.0050	mg/L		200.7	6/15/04	
	Silica	12.8	mg/L		200.7	6/15/04	

Reviewed By:_____

Allehow

_____Date____6/17/04 6/17/04 14:33

SVL ANALYTICAL, INC.

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929 • Phone: (208)784-1258 • Fax: (208)783-0891

CLIENT : GeoSyntec
PROJECT: HR0196-12
CLIENT SAMPLE ID: MW-8
Sample Collected: 6/01/04 10:45
Sample Receipt : 6/02/04
Date of Report : 6/17/04

SVL JOB: 111266 SAMPLE: 388789 TOT/DIS

Matrix: WATERG

	Determination	Result	Units	Dilution	Method	Analyzed
Т	ALKALINITY	284	mg CaCO3/	Ĺ	2320B	6/04/04
Т	Eh (mV)	+220	mV		2580	6/02/04
Т	рH	7.91			150.1	6/04/04
Т	TDS	292	mg/L		160.1	6/03/04
Т	Turbidity	53.2	NTU'S		180.1	6/03/04
Т	Calcium	61.4	mg/L		200.7	6/15/04
Т	Chloride	7.48	mg/L		300.0	6/15/04
Т	Fluoride	0.18	mg/L		300.0	6/15/04
Т	Potassium	9.6	mg/L		200.7	6/15/04
Т	Magnesium	26.0	mg/L		200.7	6/15/04
Т	Sodium	5.15	mg/L		200.7	6/15/04
Т	Sulfide	<1.0	mg/L		376.1	6/04/04
Т	Sulfate, SO4	29.8	mg/L	2	300.0	6/15/04
Т	Arsenic	<0.010	mg/L		200.7	6/15/04
Т	Chromium	<0.0060	mg/L		200.7	6/15/04
Т	Iron	5.50	mg/L		200.7	6/15/04
Т	Manganese	2.07	mg/L		200.7	6/15/04
T	Lead	<0.0050	mg/L		200.7	6/15/04
T	Silica	13.2	mg/L		200.7	6/15/04
'Τ	DIS. INOR CARBON	64.9	mg/L		415.1	6/04/04
D	Arsenic	<0.010	mg/L		200.7	6/15/04
D	Chromium	<0.0060	mg/L		200.7	6/15/04
D	Iron	0.185	mg/L		200.7	6/15/04
D	Manganese	2.00	mg/L		200.7	6/15/04
D	Lead	<0.0050	mg/L		200.7	6/15/04
D	Silica	12.4	mg/L		200.7	6/15/04
TDS	CalcTDS: 348 /CalcTDS: 0.8	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	6.03meq/L 6.51meq/L	BALANCE -3.83%

Filtered fraction: 388795

Reviewed By:_____

Alter haw Date 6/17/04

6/17/04 14:33

PRC CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: ple Collected:					SVL JOB: SAMPLE: T	11126 38879 OT/DIS
lan	ple Collected. ple Receipt : e of Report :	6/02/04 6/17/04				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1410	mg CaCO3/L		2320B	6/04/04	
Т	Eh (mV)	-386	mV		2580	6/02/04	
Т	рН	11.87			150.1	6/04/04	
Τ	TDS	2890	mg/L		160.1	6/03/04	
Т	Turbidity	4.65	NTU'S		180.1	6/03/04	
Т	Calcium	3.99	mg/L		200.7	6/15/04	
Т	Chloride	35.3	mg/L	10	300.0	6/15/04	
Т	Fluoride	1.30	mg/L	10	300.0	6/15/04	
Т	Potassium	1380	mg/L	10	200.7	6/15/04	
Т	Magnesium	0.116	mg/L		200.7	6/15/04	
Т	Sodium	63.6	mg/L		200.7	6/15/04	
Т	Sulfide	9.8	mg/L		376.1	6/04/04	
Т	Sulfate, SO4	655	mg/L	100	300.0	6/15/04	
Т	Arsenic	0.074	mg/L		200.7	6/15/04	
Т	Chromium	<0.0060	mg/L		200.7	6/15/04	
Т	Iron	1.12	mg/L		200.7	6/15/04	
Т	Manganese	0.0169	mg/L		200.7	6/15/04	
Т	Lead	0.0056	mg/L		200.7	6/15/04	
Т	Silica	45.9	mg/L		200.7	6/15/04	
Т	DIS. INOR CARBON	100	mg/L		415.1	6/04/04	
D	Arsenic	0.074	mg/L		200.7	6/15/04	
D	Chromium	<0.0060	mg/L		200.7	6/15/04	
D	Iron	0.823	mg/L		200.7	6/15/04	
D	Manganese	0.0130	mg/L		200.7	6/15/04	
D	Lead	<0.0050	mg/L		200.7	6/15/04	
	Silica	45.3	mg/L		200.7	6/15/04	

Reviewed By:_____

Date 6/17/04 6/17/04 14:33

	SVL	ANAL	YTICAL	INC.
--	-----	------	--------	------

PRC CLI San San	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: aple Collected: aple Receipt :)				SAMPLE:	T/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	1420	mg CaCO3/L		2320B	6/04/04	
Т	Eh (mV)	-376	mV		2580	6/02/04	
T	pH (MV)	11.86			150.1	6/04/04	
Т	TDS	2790	mg/L		160.1	6/03/04	
Ť	Turbidity	2.53	NTU'S		180.1	6/03/04	
Т	Calcium	4.00	mg/L		200.7	6/15/04	
Т	Chloride	36.9	mg/L	10	300.0	6/15/04	
Т	Fluoride	1.30	mg/L	10	300.0	6/15/04	
Т	Potassium	1420	mg/L	10	200.7	6/15/04	
Т	Magnesium	0.115	mg/L		200.7	6/15/04	
Т	Sodium	62.8	mg/L		200.7	6/15/04	
Т	Sulfide	9.7	mg/L		376.1	6/04/04	
Т	Sulfate, SO4	647	mg/L	100	300.0	6/15/04	
Т	Arsenic	0.076	mg/L		200.7	6/15/04	
Т	Chromium	<0.0060	mg/L		200.7	6/15/04	
Т	Iron	1.10	mg/L		200.7	6/15/04	
Т	Manganese	0.0164	mg/L		200.7	6/15/04	
Т	Lead	<0.0050	mg/L		200.7	6/15/04	
Т	Silica	45.5	mg/L		200.7	6/15/04	
Т	DIS. INOR CARBON	99.0	mg/L		415.1	6/04/04	
D	Arsenic	0.065	mg/L		200.7	6/15/04	
D	Chromium	<0.0060	mg/L		200.7	6/15/04	
D	Iron	0.799	mg/L		200.7	6/15/04	
D	Manganese	0.0125	mg/L		200.7	6/15/04	
D	Lead	<0.0050	mg/L		200.7	6/15/04	
D	Silica	44.0	mg/L		200.7	6/15/04	

Reviewed By:_____

Date 6/17/04 14:33

PRC CLI San San	mple Receipt :	2 MW-11 6/01/04 1	11:35			SVL JOB: SAMPLE: T Matrix:	388792 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	417	mg CaCO3/L		2320B	6/04/04	
Т	Eh (mV)	+55.2	mV		2580	6/02/04	
Т	рН	7.86			150.1	6/04/04	
Т	TDS	502	mg/L		160.1	6/03/04	
\mathbf{T}	Turbidity	1.97	NTU'S		180.1	6/03/04	
Т	Calcium	122	mg/L		200.7	6/15/04	
Т	Chloride	8.39	mg/L		300.0	6/15/04	
Т	Fluoride	0.10	mg/L		300.0	6/15/04	
Т	Potassium	3.1	mg/L		200.7	6/15/04	
Т	Magnesium	38.6	mg/L		200.7	6/15/04	
Т	Sodium	5.51	mg/L		200.7	6/15/04	
Т	Sulfide	<1.0	mg/L	_	376.1	6/04/04	
Т	Sulfate, SO4	93.2	mg/L	5	300.0	6/15/04	
Т	Arsenic	<0.010	mg/L		200.7	6/15/04	
Т	Chromium	<0.0060	mg/L		200.7	6/15/04	
Т	Iron	0.630	mg/L		200.7	6/15/04	
Т	Manganese	0.0136	mg/L		200.7	6/15/04	
T T	Lead	<0.0050	mg/L		200.7	6/15/04	
T	Silica DIS. INOR CARBON	24.8 96.7	mg/L mg/L		200.7 415.1	6/15/04 6/04/04	
D	Arsenic	<0.010	mg/L		200.7	6/15/04	
D	Chromium	<0.0060	mg/L		200.7	6/15/04	
D	Iron	<0.020	mg/L		200.7	6/15/04	
D	Manganese	0.0040	mg/L		200.7	6/15/04	
D	Lead	<0.0050	mg/L		200.7	6/15/04	
	Silica					6/15/04	

Reviewed By:_____

Alternas Date 6/17/04 6/17/04 14:33

RC LI	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID:	2 MW-12 ·	0.55			SVL JOB: SAMPLE: T	
an	ple Collected: ple Receipt : e of Report :	6/01/04 6/02/04 6/17/04	9:55			Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
т	ALKALINITY	323	mg CaCO3/L		2320B	6/04/04	
Т	Eh (mV)	+95.3	mV		2580	6/02/04	
Т	pH	8.09			150.1	6/04/04	
Т	TDS	661	mg/L		160.1	6/03/04	
Т	Turbidity	14.5	NTU'S		180.1	6/03/04	
Т	Calcium	71.8	mg/L		200.7	6/15/04	
Т	Chloride	228	mg/L	25	300.0	6/15/04	
Т	Fluoride	0.16	mg/L		300.0	6/15/04	
Т	Potassium	40.3	mg/L		200.7	6/15/04	
Т	Magnesium	27.5	mg/L		200.7	6/15/04	
Т	Sodium	120	mg/L		200.7	6/15/04	
Т	Sulfide	<1.0	mg/L		376.1	6/04/04	
Т	Sulfate, SO4	40.5	mg/L	2	300.0	6/15/04	
Т	Arsenic	<0.010	mg/L		200.7	6/15/04	
Т	Chromium	<0.0060	mg/L		200.7	6/15/04	
Т	Iron	2.41	mg/L		200.7	6/15/04	
Т	Manganese	1.99	mg/L		200.7	6/15/04	
Т	Lead	<0.0050	mg/L		200.7	6/15/04	
Т	Silica	11.0	mg/L		200.7	6/15/04	
Т	DIS. INOR CARBON	69.7	mg/L		415.1	6/04/04	
D	Arsenic	<0.010	mg/L		200.7	6/15/04	
D	Chromium	<0.0060	mg/L		200.7	6/15/04	
D	Iron	0.054	mg/L		200.7	6/15/04	
D	Manganese	1.92	mg/L		200.7	6/15/04	
D	Lead	<0.0050	mg/L		200.7	6/15/04	
D	Silica	10.5	mg/L		200.7	6/15/04	

Reviewed By:_____

Date 6/17/04 6/17/04 14:33

				Quality	Control	Report
Part I	[Prep	Blank	anu	Laboratory	Control	Sample

Client :GeoSyntee	Client :GeoSyntec SVL JOB No: 11126											
nalyte	Method	Matrix	Units	Prep Blank	True	-LCSFound	LCS %R	Analysis Date				
Arsenic	200.7	WATER	mg/L	<0.010	1.00	0.976	97.6	6/15/04				
Calcium	200.7	WATER	mg/L	<0.040	20.0	20.1	100.5	6/15/04				
Chromium	200.7	WATER	mg/L	<0.0060	1.00	0.992	99.2	6/15/04				
Iron	200.7	WATER	mg/L	<0.020	10.0	9.64	96.4	6/15/04				
Potassium	200.7	WATER	mg/L	<1.0	30.0	30.3	101.0	6/15/04				
Magnesium	200.7	WATER	mg/L	<0.040	20.0	19.3	96.5	6/15/04				
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.979	97.9	6/15/04				
Sodium	200.7	WATER	mg/L	<0.50	20.0	19.8	99.0	6/15/04				
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.969	96.9	6/15/04				
Silica	200.7	WATER	mg/L	<0.171	10.7	10.6	99.1	6/15/04				
Chloride	300.0	WATER	mg/L	<0.20	5.00	5.00	100.0	6/15/04				
Fluoríde	300.0	WATER	mg/L	<0.10	2.50	2.55	102.0	6/15/04				
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.89	98.9	6/15/04				
ALKALINITY	2320B	WATER	mg/L	<1.0	20.5	23.8	116.1	6/04/04				
рН	150.1	WATER		5.61	7.70	7.69	99.9	6/04/04				
Eh (mV)	2580	WATER	mV	N/A	+228	+228	100.0	6/02/04				
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	8.00	7.96	99.5	6/04/04				
Sulfide	376.1	WATER	mg/L	<1.0	1.2	1.3	108.3	6/04/04				
TDS	160.1	WATER	mg/L	<10	450	432	96.0	6/03/04				
Turbidity	180.1	WATER	NTU'S	0.072	13.1	12.8	97.7	6/03/04				

LEGEND:

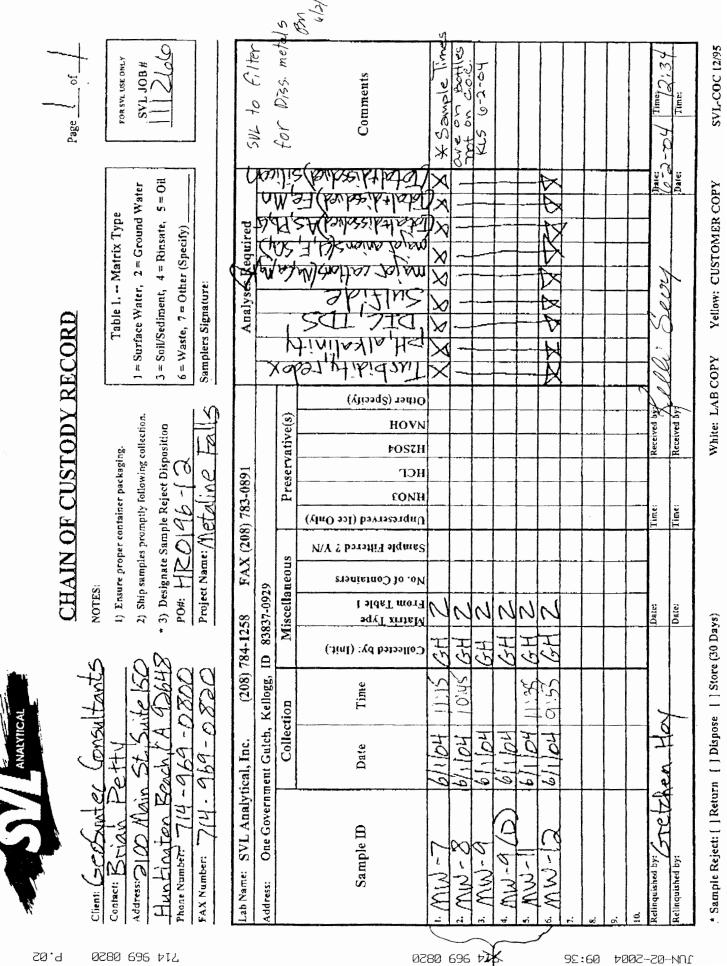
LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Client :GeoSyntec SVL JOB No: 111											- ()
11	Method Mt	<	Units	Result	Found	01	RPD%		SPK ADD	믱R	Analysis Date
As	200.7 W	1	mg/L	<0.010	<0.010		UDL	0.924	1.00	92.4	6/15/04
As	200.7 W	2	mg/L	<0.010	<0.010		UDL	0.898	1.00	89.8	6/15/04
Ca	200.7 W	1	mg/L	64.6	63.8		1.2	80.8	20.0	81.0	6/15/04
Cr	200.7 W	1	mg/L	<0.0060	<0.0060		UDL	0.948	1.00	94.8	6/15/04
Cr	200.7 W	2	mg/L	<0.0060	<0.0060		UDL	0.907	1.00	90.7	6/15/04
Fe	200.7 W	1	mg/L	<0.020	<0.020		UDL	9.11	10.0	91.1	6/15/04
Fe	200.7 W	2	mg/L	<0.020	<0.020		UDL	8.93	10.0	89.3	6/15/04
K	200.7 W	1	mg/L	5.0	4.9		2.0	34.1	30.0	97.0	6/15/04
Mg	200.7 W	1	mg/L	26.2	26.0		0.8	43.7	20.0	87.5	6/15/04
Mn	200.7 W	1	mg/L	0.0032	0.0033		3.1	0.929	1.00	92.6	6/15/04
Mn	200.7 W	2	mg/L	0.0023	0.0021		9.1	0.910	1.00	90.8	6/15/04
Na	200.7 W	1	mg/L	2.34	2.30		1.7	21.3	20.0	94.8	6/15/04
Pb	200.7 W	1	mg/L	<0.0050	<0.0050		UDL	0.911	1.00	91.1	6/15/04
Pb	200.7 W	2	mg/L	<0.0050	<0.0050		UDL	0.909	1.00	90.9	6/15/04
SiO2	200.7 W	1	mg/L	13.6	13.3		2.2	23.0	10.7	87.9	6/15/04
SiO2	200.7 W	2	mg/L	12.8	13.1		2.3	22.2	10.7	87.9	6/15/04
Cl	300.0 W	1	mg/L	0.28	0.29		3.5	2.13	2.00	92.5	6/15/04
F	300.0 W	1	mg/L	0.15	0.15		0.0	2.10	2.00	97.5	6/15/04
SO4	300.0 W	1	mg/L	20.6	20.5		0.5	45.6	25.0	100.0	6/15/04
ALK	2320B W	1	mg/L	289	289		0.0	N/A	N/A	N/A	6/04/04
рН	150.1 W	1		8.02	8.03		0.1	N/A	N/A	N/A	6/04/04
Eh	2580 W	1	mV	+245	+245		0.0	N/A	N/A	N/A	6/02/04
ORG18D	415.1 W	1	mg/L	66.3	65.5		1.2	104	50.0	75.4	6/04/04
TDS	160.1 W	1	mg/L	267	282		5.5	N/A	N/A	N/A	6/03/04
TURB	180.1 W	1	NTU'S	0.331	0.368		10.6	N/A	N/A	N/A	6/03/04


END:

 κ . s = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; ZR = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 388788 Client Sample ID: MW-7 T QC Sample 2: SVL SAM No.: 388794 Client Sample ID: MW-7 D

INSUFFICIENT SAMPLE FOR SULFIDE*

S0.9 JATOT

120-581-20C

TRANSMISSION VERIFICATION REPORT

						NAME FAX TEL SER.#	0670272004 SVL ANALYT 2087830891 2087841258 BROF3J4960	ICAL 3
	DATE,TI FAX NO. DURATIO PAGE(S) RESULT MODE			05/02 13:59 917149690820 00:00:25 01 OK FINE ECM				
SVL LYTICAL, INC. Page 1 of 1 of 1 overnment Guilon - Kellogg, ID 83837-0929	SAMPLE RECEIPT CONFIRMATION SVL JOB No: 111266 Received: 6/02/04 Expected Due date: 6/16/04	By Received Sample Comments	GH 6/02/04 GH 6/02/04	ss. (^P) and Dissolved (^D) fractions separately. Field samples may appear twice.	emp: 19°C.		after job completion. then you will receive a letter requesting disposal options.	you have guestions regarding the receipt of these samples. 6/02/04 13:13

L ANALYTICAL, INC. Government Gulch P.O	. Box 929 .	Kellogg, Idaho	83837-0929	 Phone: (208)784 	Certificat 1258 • Fax:	e: CA NO. 200 : (208)783-08
CLIENT : GeoSyntec PROJECT: HR0196-12 CLIENT SAMPLE ID: Sample Collected:	2	10-45			SVL JOB: SAMPLE: T	
	8/02/04	10.45			Matrix:	WATER
Determination	Result	Units	Dilution	Method	Analyzed	
T ALKALINITY	317	mg CaCO3/L		2320B	8/09/04	
T Eh (mV)	+194	mV		2580	8/10/04	
т рН	8.07			150.1	8/09/04	
T TDS	295	mg/L		160.1	8/06/04	
T Turbidity	0.167	NTU'S		180.1	8/04/04	
T Calcium	68.9	mg/L		200.7	8/13/04	
T Chloride	0.47	mg/L		300.0	8/11/04	
T Fluoride	0.10	mg/L		300.0	8/11/04	
T Potassium	5.5	mg/L		200.7	8/13/04	
T Magnesium	27.6	mg/L		200.7	8/13/04	
T Sodium	2.43	mg/L		200.7	8/13/04	
T Sulfide	<1.0	mg/L		376.1	8/05/04	
T Sulfate, SO4	16.6	mg/L		300.0	8/11/04	
T Arsenic	<0.010	mg/L		200.7	8/13/04	
T Chromium	<0.0060	mg/L		200.7	8/13/04	
T Iron	0.030	mg/L		200.7	8/13/04	
T Manganese	0.0034	mg/L		200.7	8/13/04	
T Lead	<0.0050	mg/L		200.7	8/13/04	
T Silica	17.3	mg/L		200.7	8/13/04	
T DIS. INOR CARBON	72.6	mg/L		415.1	8/13/04	

Reviewed By:

TDS/CalcTDS:

.

D Chromium

D Manganese

D Silica

CalcTDS:

D Arsenic

D Iron

D Lead

Date 16/04

8/16/04 13:54

8/13/04

8/13/04

8/13/04

8/13/04

8/13/04

BALANCE

-5.85%

200.7 8/13/04

200.7

200.7

200.7

200.7

200.7

5.96meg/L

6.70meq/L

AZ: AZ0538 CA: NO. 2080 CO: 08/13/03 ID: ID00019 NV: ID-19-2004-19 TX: TX241-2002A WA: DOE NO. C074; DOH NO. 050

CATION SUM:

ANION SUM:

<0.010 mg/L

<0.020

17.1

355 TDS/Cond:

0.8 CalcTDS/Cond:

0.0045

<0.0060 mg/L

<0.0050 mg/L

mg/L

mg/L

mg/L

SVL	ANALYTICAL,	INC.	
-----	-------------	------	--

PRC CLI San San	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: ple Collected: ple Receipt : e of Report :		10:15			SVL JOB: SAMPLE: T Matrix:	40221 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	311	mg CaCO3/L		2320B	8/09/04	
Т	Eh (mV)	+200	mV		2580	8/10/04	
Т	pH	8.11			150.1	8/09/04	
Т	TDS	321	mg/L		160.1	8/06/04	
Т	Turbidity	3.82	NTU'S		180.1	8/04/04	
Т	Calcium	66.1	mg/L		200.7	8/13/04	
\mathbf{T}	Chloride	10.4	mg/L		300.0	8/12/04	
Т	Fluoride	0.16	mg/L		300.0	8/11/04	
Т	Potassium	10.6	mg/L		200.7	8/13/04	
Т	Magnesium	27.8	mg/L		200.7	8/13/04	
т	Sodium	4.25	mg/L		200.7	8/13/04	
т	Sulfide	<1.0	mg/L		376.1	8/05/04	
\mathbf{T}	Sulfate, SO4	26.1	mg/L	2	300.0	8/12/04	
Т	Arsenic	<0.010	mg/L		200.7	8/13/04	
Т	Chromium	<0.0060	mg/L		200.7	8/13/04	
Т	Iron	6.02	mg/L		200.7	8/13/04	
Т	Manganese	2.30	mg/L		200.7	8/13/04	
Т	Lead	<0.0050	mg/L		200.7	8/13/04	
Т	Silica	15.5	mg/L		200.7	8/13/04	
T	DIS. INOR CARBON	70.8	mg/L		415.1	8/13/04	
D	Arsenic	<0.010	mg/L		200.7	8/13/04	
D	Chromium	<0.0060	mg/L		200.7	8/13/04	
D	Iron	0.176	mg/L		200.7	8/13/04	
D	Manganese	2.29	mg/L		200.7	8/13/04	
D	Lead	<0.0050	mg/L		200.7	8/13/04	
D	Silica	14.4	mg/L		200.7	8/13/04	

Filtered fraction: 402220

Reviewed By:____

_____ Date 8/16/04

8/16/04 13:54

AZ: AZ0538 CA: NO. 2080 CO: 08/13/03 ID: ID00019 NV: ID-19-2004-19 TX: TX241-2002A WA: DOE NO. C074; DOH NO. 050

One Government Gulch P.O. Box 929

CLIENT : GeoSyntec SVL JOB: 112402 PROJECT: HR0196-12 SAMPLE: 402215 CLIENT SAMPLE ID: MW-9 TOT/DIS Sample Collected: 7/30/04 9:35 Sample Receipt : 8/02/04 Matrix: WATER Date of Report : 8/16/04 Determination Result Units Dilution Method Analyzed 1480 Т ALKALINITY mg CaCO3/L 2320B 8/09/04 Т Eh (mV) -277 mV 2580 8/10/04 Т pН 11.10 150.1 8/09/04 Т TDS 3590 mg/L 160.1 8/06/04 1.08 Т Turbidity NTU'S 180.1 8/04/04 T Calcium 4.35 mg/L 200.7 8/13/04 34.2 mg/L <1.00* mg/L T Chloride 300.0 8/12/04 T Fluoride 10 300.0 8/12/04 T Potassium 1830 mg/L 10 200.7 8/13/04 T Magnesium 0.430 mg/L 200.7 8/13/04 T Sodium 200.7 8/13/04 376.1 8/05/04 73.0 mg/L T Sulfide 2 1 mg/T

Kellogg, Idaho 83837-0929

T	Sulfide	3.1	mg/L		376.1	8/05/04
Т	Sulfate, SO4	639	mg/L	50	300.0	8/12/04
Т	Arsenic	0.141	mg/L		200.7	8/13/04
Т	Chromium	<0.0060	mg/L		200.7	8/13/04
Т	Iron	1.59	mg/L		200.7	8/13/04
Т	Manganese	0.0292	mg/L		200.7	8/13/04
Т	Lead	0.0100	mg/L		200.7	8/13/04
T	Silica	66.7	mg/L		200.7	8/13/04
Т	DIS. INOR CARBON	76.9	mg/L		415.1	8/13/04
D	Arsenic	0.082	mg/L		200.7	8/13/04
D	Chromium	<0.0060	mg/L		200.7	8/13/04
D	Iron	0.597	mg/L		200.7	8/13/04
D	Manganese	0.0093	mg/L		200.7	8/13/04
D	Lead	<0.0050	mg/L		200.7	8/13/04
D	Silica	62.1	mg/L		200.7	8/13/04
	CalcTDS: 3630	TDS/Con	d:	CATION SUM:	50.33meg/L	BALANCE
TDS	/CalcTDS: 1.0	CalcTDS/Con	d:	ANION SUM:	43.81meq/L	6.93%
L						L

Filtered fraction: 402221

*Elevated detection limit due to matrix interference.

Reviewed By:

Allar Date 8/16/09

8/16/04 13:54

AZ: AZ0538 CA: NO. 2080 CO: 08/13/03 ID: ID00019 NV: ID-19-2004-19 TX: TX241-2002A WA: DOE NO. C074; DOH NO. 050

Certificate: CA NO. 2080 Phone: (208)784-1258 Fax: (208)783-0891

PRC CLI	ENT : GeoSyntec JECT: HR0196-12 ENT SAMPLE ID: nple Collected:	2				SVL JOB: SAMPLE: T	
San	ple Receipt : ce of Report :	8/02/04 8/16/04				Matrix:	WATER
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	1580	mg CaCO3/L		2320B	8/09/04	
Т	Eh (mV)	-278	mV		2580	8/10/04	
Т	pH	11.10			150.1	8/09/04	
Т	TDS	3320	mg/L		160.1	8/06/04	
Т	Turbidity	0.987	NTU'S		180.1	8/04/04	
Т	Calcium	4.31	mg/L		200.7	8/13/04	
Т	Chloride	38.6	mg/L		300.0	8/12/04	
Т	Fluoride	<1.00*	mg/L	10	300.0	8/12/04	
Т	Potassium	1680	mg/L	10	200.7	8/13/04	
Т	Magnesium	0.049	mg/L		200.7	8/13/04	
Т	Sodium	66.2	mg/L		200.7	8/13/04	
Т	Sulfide	3.1	mg/L		376.1	8/05/04	
Т	Sulfate, SO4	718	mg/L	50	300.0	8/12/04	
Т	Arsenic	0.119	mg/L		200.7	8/13/04	
Т	Chromium	<0.0060	mg/L		200.7	8/13/04	
Т	Iron	0.824	mg/L		200.7	8/13/04	
Т	Manganese	0.0105	mg/L		200.7	8/13/04	
Т	Lead	<0.0050	mg/L		200.7	8/13/04	
Т	Silica	62.5	mg/L		200.7	8/13/04	
Т	DIS. INOR CARBON	78.9	mg/L		415.1	8/13/04	
D	Arsenic	0.072	mg/L		200.7	8/13/04	
D	Chromium	<0.0060	mg/L		200.7	8/13/04	
D	Iron	0.620	mg/L		200.7	8/13/04	
D	Manganese	0.0089	mg/L		200.7	8/13/04	
D	Lead Silica	<0.0050 60.6	mg/L mg/L		200.7 200.7	8/13/04	
						8/13/04	

*Elevated detection limit due to matrix interference.

Reviewed By:_____

Stabus

						1–1258 ∎ Fax	
CLI	ENT : GeoSynteo	2				SVL JOB:	112402
	DJECT: HR0196-12					SAMPLE:	
	ENT SAMPLE ID:					Т	OT/DIS
	nple Collected:	7/30/04	9:00				
	ple Receipt :	8/02/04				Matrix:	WATER
Dat	e of Report :	8/16/04					
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	435	mg CaCO3/L		2320B	8/09/04	
Т	Eh (mV)	+192	mV		2580	8/10/04	
т	рН	7.93			150.1	8/09/04	
Т	TDS	517	mg/L		160.1	8/06/04	
Т	Turbidity	0.791	NTU'S		180.1	8/04/04	
Т	Calcium	128	mg/L		200.7	8/13/04	
Т	Chloride	9.68	mg/L	5	300.0	8/11/04	
Т	Fluoride	<0.10	mg/L		300.0	8/11/04	
\mathbf{T}	Potassium	2.6	mg/L		200.7	8/13/04	
\mathbf{T}	Magnesium	40.6	mg/L		200.7	8/13/04	,
Т	Sodium	4.53	mg/L		200.7	8/13/04	
Т	Sulfide	<1.0	mg/L	_	376.1	8/05/04	
Т	Sulfate, SO4	91.7	mg/L	5	300.0	8/11/04	
Т	Arsenic	<0.010	mg/L		200.7	8/13/04	
Т	Chromium	<0.0060	mg/L		200.7	8/13/04	
Т	Iron	0.325	mg/L		200.7	8/13/04	
T T	Manganese Lead	0.0076	mg/L		200.7	8/13/04	
T	Silica	<0.0050 25.5	mg/L		200.7	8/13/04	
T	DIS. INOR CARBON	98.3	mg/L		200.7 415.1	8/13/04	
1	DIS. INOR CARBON	20.3	mg/L		413.1	8/13/04	
D	Arsenic	<0.010	mg/L		200.7	8/13/04	
D	Chromium	<0.0060	mg/L		200.7	8/13/04	
D	Iron	0.023	mg/L		200.7	8/13/04	
Ď	Manganese	0.0047	mg/L		200.7	8/13/04	
D	Lead	<0.0050	mg/L		200.7	8/13/04	
D	Silica	24.1	mg/L		200.7	8/13/04	
	CalcTDS: 601	TDS/Con	d:	CATION SUM:	10.01meg/L	BALANCE	

Reviewed By:_____

Albertas Date 8/16/04 8/16/04 13:53

SVL	ANALYTICAL,	INC.
-----	-------------	------

PRO CLI San San	LENT : GeoSynted DJECT: HR0196-12 LENT SAMPLE ID: aple Collected: aple Receipt : te of Report :	2 MW-12 7/30/04 1 8/02/04	11 :1 5			SVL JOB: SAMPLE: T Matrix:	402212 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	324	mg CaCO3/L		2320B	8/09/04	
Т	Eh (mV)	+176	mV		2580	8/10/04	
Т	pH	8.20			150.1	8/09/04	
Т	TDS	466	mg/L		160.1	8/06/04	
Т	Turbidity	2.02	NTU'S		180.1	8/04/04	
Т	Calcium	56.4	mg/L		200.7	8/13/04	
Т	Chloride	93.8	mg/L	50	300.0	8/12/04	
Т	Fluoride	0.15	mg/L		300.0	8/11/04	
Т	Potassium	46.2	mg/L		200.7	8/13/04	
Т	Magnesium	24.6	mg/L		200.7	8/13/04	
Т	Sodium	55.3	mg/L		200.7	8/13/04	
Т	Sulfide	<1.0	mg/L		376.1	8/05/04	
Т	Sulfate, SO4	28.0	mg/L	2	300.0	8/12/04	
Т	Arsenic	<0.010	mg/L		200.7	8/13/04	
Т	Chromium	<0.0060	mg/L		200.7	8/13/04	
Т	Iron	1.49	mg/L		200.7	8/13/04	
Т	Manganese	1.34 <0.0050	mg/L		200.7	8/13/04	
Т Т	Lead Silica	11.1	mg/L mg/L		200.7	8/13/04	
1 T	DIS. INOR CARBON	72.8	mg/L		200.7 415.1	8/13/04 8/13/04	
D	Arsenic	0.011	mg/L		200.7	8/13/04	
D	Chromium	<0.0060	mg/L		200.7	8/13/04	
D	Iron	0.141	mg/L		200.7	8/13/04	
D	Manganese	1.30	mg/L		200.7	8/13/04	
D	Lead	<0.0050	mg/L		200.7	8/13/04	
D	Silica	10.8	mg/L		200.7	8/13/04	

Reviewed By:_____

Date 8/16/04 8/16/04 13:54 Allow

Certificate: CA NO. 2080

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntee	2						SVL JOB N	No: 112402 Analysis
nalyte	Method	Matrix	Units	Prep Blank	True	LCS——Found	LCS %R	Date
Arsenic	200.7	WATER	mg/L	<0.010	1.00	1.01	101.0	8/13/04
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.9	99.5	8/13/04
Chromium	200.7	WATER	mg/L	<0.0060	1.00	0.9998	100.0	8/13/04
Iron	200.7	WATER	mg/L	<0.020	10.0	9.87	98.7	8/13/04
Potassium	200.7	WATER	mg/L	<1.0	30.0	29.8	99.3	8/13/04
Magnesium	200.7	WATER	mg/L	<0.040	20.0	19.6	98.0	8/13/04
Manganese	200.7	WATER	mg/L	<0.0020	1.00	1.02	102.0	8/13/04
Sodium	200.7	WATER	mg/L	<0.50	20.0	18.7	93.5	8/13/04
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.992	99.2	8/13/04
Silica	200.7	WATER	mg/L	<0.171	10.7	10.7	100.0	8/13/04
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.92	98.4	8/11/04
Fluoride	300.0	WATER	mg/L	<0.10	2.50	2.43	97.2	8/11/04
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.85	98.5	8/11/04
ALKALINITY	2320B	WATER	mg/L	<1.0	14.8	18.5	125.0	8/09/04
pH	150.1	WATER	_	5.13	8.50	8.56	100.7	8/09/04
Eh (mV)	2580	WATER	mV	N/A	+228	+232	101.8	8/10/04
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	14.2	101.4	8/13/04
Sulfide	376.1	WATER	mg/L	<1.0	4.0	3.9	97.5	8/05/04
TDS	160.1	WATER	mg/L	<10	45	27	60.0	8/06/04
Turbidity	180.1	WATER	NTU'S	0.079	13.1	12.1	92.4	8/04/04

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Clien	t :GeoSynte									: 112402
h I		QC SAMPI		Duplicate Found	or	MSD- RPD%	Result	trix Spike SPK ADD	%R	Analysis Date
L	Method Mtx	Units	Result	Found		RPD	Result	SPK ADD	TR.	Date
As	200.7 W 1	mg/L	<0.010	<0.010		UDL	1.06	1.00	106.0	8/13/04
As	200.7 W 2	2 mg/L	<0.010	<0.010		UDL	1.05	1.00	105.0	8/13/04
Ca	200.7 W 1	mg/L	128	126		1.6	149	20.0	105.0	8/13/04
Cr	200.7 W 1	mg/L	<0.0060	<0.0060		UDL	1.02	1.00	102.0	8/13/04
Cr	200.7 W 2	2 mg/L	<0.0060	<0.0060		UDL	0.984	1.00	98.4	8/13/04
Fe	200.7 W 1	mg/L	0.325	0.313		3.8	10.1	10.0	97.8	8/13/04
Fe	200.7 W 2	2 mg/L	0.023	0.021		9.1	9.65	10.0	96.3	8/13/04
К	200.7 W 1	mg/L	2.6	2.5		3.9	33.1	30.0	101.7	8/13/04
Mg	200.7 W 1	mg/L	40.6	40.1		1.2	60.3	20.0	98.5	8/13/04
Mn	200.7 W 1	mg/L	0.0076	0.0075		1.3	1.02	1.00	101.2	8/13/04
Mn	200.7 W 2	2 mg/L	0.0047	0.0045		4.3	0.962	1.00	95.7	8/13/04
Na	200.7 W 1	mg/L	4.53	4.48		1.1	23.6	20.0	95.4	8/13/04
Pb	200.7 W 1	mg/L	<0.0050	<0.0050		UDL	0.999	1.00	99.9	8/13/04
Pb	200.7 W 2	2 mg/L	<0.0050	<0.0050		UDL	0.994	1.00	99.4	8/13/04
SiO2	200.7 W 1	mg/L	25.5	25.2		1.2	36.1	10.7	99.1	8/13/04
SiO2	200.7 W 2	2 mg/L	24.1	23.9		0.8	34.0	10.7	92.5	8/13/04
Cl	300.0 W 1	mg/L	9.68	10.3		6.2	20.6	10.0	109.2	8/11/04
F	300.0 W 1	mg/L	<0.10	<0.10		UDL	2.06	2.00	103.0	8/11/04
SO4	300.0 W 1	mg/L	91.7	91.0		0.8	117	25.0	101.2	8/11/04
ALK	2320B W 1	mg/L	435	440		1.1	N/A	N/A	N/A	8/09/04
pН	150.1 W 1		7.93	8.01		1.0	N/A	N/A	N/A	8/09/04
Eh	2580 W 1	mV	+192	+191		0.5	N/A	N/A	N/A	8/10/04
ORG18D	415.1 W 1	mg/L	. 98.3	100		1.7	138	50.0	79.4	8/13/04
TDS	160.1 W 1	mg/L	517	557		7.4	I/S	I/S	N/A	8/06/04
TURB	180.1 W 1	NTU'S	0.791	0.761		3.9	N/A	N/A	N/A	8/04/04

END:

RHUZ = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPDZ = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; $\Re R = Percent Recovery N/A = Not Analyzed$; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least <math>1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. I/S: Insufficient sample for QC test.

QC Sample 1:	SVL SAM No.:	402211 C	lient Sample	ID: MW-11	^T
QC Sample 2:	SVL SAM No.:	402217 C	lient Sample	ID: MW-11	^D

	Page of /		FOR SVL USE ONLY	SVL JOB #	E04/01					Retato		Vulue	ר בי ר	SONH &								/		1 Z. Trimar	10/1	SVL-COC 12/95
	ICORD		Table 1 Matrix Type	1 = Surface Water (2) = Ground Water	3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature:		Analyses Required	L.	50	M. et M. et M. et M. et M. v. f	1, b, 12, 2101 2101 2101 201	driet Stan Stan Stan	V N N N N N										2 and later Dates	COPY Yellow: CUSTOMER COPY
•	CHAIN OF CUSTODY RECORD		tainer packaging.	2) Ship samples promptly following collection.		-	teli talla	2) 783-0891		Preservative(s)	e Only)		Oquet (2t NYOH H5204 HCF HCF HNO3 Dublesel										Times - Description	Time: C : S Received by:	 White: LAB COPY
	CHAIN OI	NOTES:	1) Ensure proper container packaging.	D 2) Ship samples prom	$\frac{1}{10}$, $\frac{1}$	FIONT HOA	Project Name: MU		(208) 784-1258 FAX (208) 783-0891	D 83837-0929	Miscellaneous	S.	99e I əlc 1ənisən	Collected Matrix T <u>;</u> From Tat No. of Co Sample F	2 #						1 1				Date: 6/2/04	 (30 Days)
ANALYTICAL		LC	itu.	212 St . HIS	CP DJ'T'	109-0200	9.0			tent Gulch, Kellogg, ID	Collection		Date Time		7/30 9:00 4		1 10:45	10:17	1 9:37						2 2: HUY	n [] Dispose [] Store
G		Client Cur Client	Contact: Brink	Address: 2) DO M	Hurtineth Bio	- h(C	FAX Number:) / J.		Lab Name: SVL Analytical, Inc.	Address: One Government Gulch,			Sample ID		1: MM -1	21-(MM - 2	C-CVIW .	4. MW - 8	5. MW-9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.	8	9.	10.	Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

Chris Meyer

From:Dr. Gretchen Hoy [hoyinc@mindspring.com]Sent:Tuesday, August 03, 2004 10:13 AMTo:Chris MeyerCc:BPetty@GeoSyntec.comSubject:conductivity...Hi Chris-

Say... rec'd a definitive answer from Brian.

He said asked me to contact you, to say conductivity should be taken OFF the COC for the MW wells.

My fault, sorry about the confusion,

gh

	TRANSMISSION VERIFICATION REPORT	TIME : 08/03/2004 08:37 NAME : SVL ANALYTICAL FAX : 2087830891 TEL : 2087841258 SER.# : BROF3J496071
DATE,TIME FAX NO./NAME DURATION PAGE(S) RESULT MODE	08/03 08:37 917149650820 00:00:19 01 OK FINE ECM	
SVLYTICAL, INC.Page 1 of 1Dvernment Gulch - Kellogg, ID83837-0929SVL JOB No: 112402SAMPLE RECEIPT CONFIRMATIONSVL JOB No: 112402Received: 8/16/04Received: 8/16/04By Received Sample CommentsExpected Due date: 8/16/04GH8/02/04GH8/02/04	<pre>GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 GH 8/02/04 CH 8/0</pre>	ter job completion. Then you will receive a letter requesting disposal options. have questions regarding the receipt of these samples. 8/03/04 6:31

One Government Gulch . P.O. Box 523 . Kellogg, Idaho 83827-0929 . Migne: (208)784-1258 . Fax: (208)783-0891

PORT OF ANALYTICAL RESULTS

CLIENT : GeoSyntec PROJECT: HR0196-12

Sample Receipt: 8/02/04 Report Date: 8/18/04 SVL JOB: 112403

SVL ID	CLIENT SAMPLE ID		As 200.7	ALK 2320B	рН 150.1	Eh 2580	ORG18D 415.1
W402225	AVG-E	^T 7/30/04	0.016mg/L	544mg/L	6.45	+73.6mV	214mg/L
W402226	AVG-W	^T 7/30/04	0.016mg/L	586mg/L	6.57	+97.8mV	188mg/L
W402227	PM-1	^T 7/29/04	0.107mg/L	1720mg/L	10.67	-76.OmV	117mg/L
W402228	PM-2	T 7/29/04	0.010mg/L	339mg/L	8.25	+80.8mV	56.5mg/L
W402229	PM-6	^T 7/30/04	0.307mg/L	2110mg/L	10.75	-55,5mV	175mg/L
W402230	PM-7	^T 7/30/04	0.031mg/L	1090mg/L	7.98	+86.4mV	224mg/L
W402231	PM-8	^T 7/29/04	0.017mg/L	889mg/L	9.55	+21.1mV	139mg/L
W402232	PM-10	^T 7/30/04	0.109mg/L	756mg/L	9.46	-3.6mV	113mg/L
W402233	PM-11	^T 7/30/04	0.022mg/L	769mg/L	7.40	+118mV	259mg/L
W402234	PM-12	^т 7/30/04	0.026mg/L	845mg/L	7.24	+20.0mV	306mg/L
W402235	PM-13	T 7/30/04	0.011mg/L	361mg/L	9.04	+40.1mV	58.3mg/L
W402236	PM-14	^T 7/29/04	0.014mg/L	383mg/L	9.52	+23.3mV	54.0mg/L
W402237	PM-15	^T 7/29/04	0.147mg/L	***	12.23	***	105mg/L
W402238	PM-16	^T 7/30/04	0.151mg/L	***	12.40	***	81.5mg/L
w402239	PM-17	^Т 7/29/04	0.042mg/L	916mg/L	10.40	-132mV	60.1mg/L
W402240	PM-18	^T 7/29/04	0.157mg/L	***	11.70	***	87.0mg/L
W402241	PM-19	^T 7/29/04	0.121mg/L	***	12.00	***	91.0mg/L
w402242	PM-20	^T 7/29/04	0.016mg/L	***	8.80	***	67.1mg/L
W402243	PM-21	T 7/30/04	0.061mg/L	884mg/L	10.00	-45.1mV	70.6mg/L
W402244	AVG-E	D 7/30/04	0.016mg/L	***	***	***	***
W402245	AVG-W	D 7/30/04	0.016mg/L	***	***	***	***
W402246	PM-1	D 7/29/04	0.124mg/L	***	***	***	***
W402247	PM~2	D 7/29/04	0.018mg/L	**	***	***	***
W402248	PM-6	D 7/30/04	0.333mg/L	***	***	***	***
w402249	PM-7	D 7/30/04	0.016mg/L	***	***	***	***
w402250	PM-8	D 7/29/04	0.017mg/L	***	***	***	***
w402251	PM-10	D 7/30/04	0.117mg/L	***	***	***	***
w402252	PM-11	D 7/30/04	0.015mg/L	***	***	***	***
w402253	PM-12	^D 7/30/04	<0.010mg/L	***	***	***	2010
W402254	PM-13	D 7/30/04	0.014mg/L	***	**	求字章	20.25.25
W402255	PM-14	^D 7/29/04	0.017mg/L	***	****	***	***
W402256	PM-15	D 7/29/04	0.152mg/L	***	非水水	***	***
402257	PM-16	^D 7/30/04	0.113mg/L	***	举杂举	***	***
402258	PM-17	^D 7/29/04	0.042mg/L	水水水	***	***	***
402259	PM-18	^D 7/29/04	0.170mg/L	***	***	***	***
402260	PM-19	^D 7/29/04	0.130mg/L	水水水	***	***	***
402261	PM-20	^D 7/29/04	0.024mg/L	**	***	***	***
402262	PM-21	^D 7/30/04	0.071mg/L	***	***	***	***

*** Not Requested

Certificate: WA NO. CO74

Reviewed By:____

Stelaw Date: 8/18/04

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec

SVL JOB No: 112403

Cilent :Geosynte	C							10. 112405
Analyte	Method	Matrix	Units	Prep Blank	True	-LCSFound	LCS %R	Analysis Date
Arsenic ALKALINITY pH Eh (mV) DIS. INOR CARBON	2320B 150.1 2580		mg/L mg/L mV mg/L	<0.010 <1.0 5.13 N/A <1.0	. 1.00 14.8 8.50 +228 14.0	1.07 18.5 8.56 +232 13.0	107.0 125.0 100.7 101.8 92.9	8/12/04 8/09/04 8/09/04 8/09/04 8/16/04

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II بuplicate and Spike Analysis

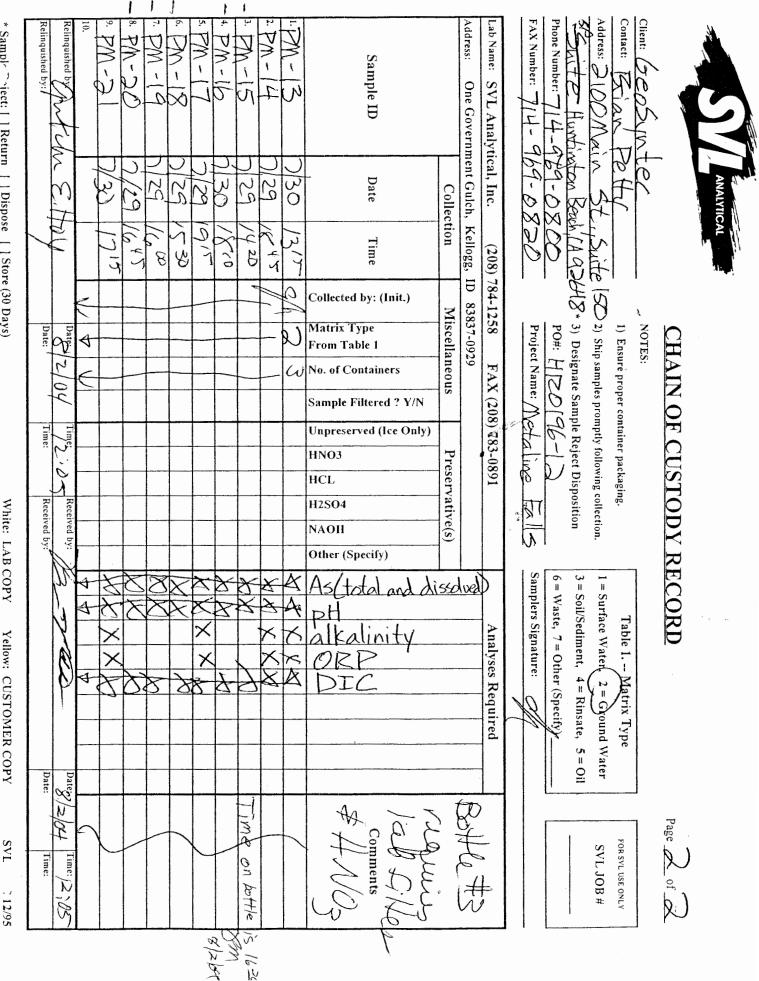
Client :GeoSynte	-QC SAMPI	LE ID Result	Duplicate Found	or MSD- RPD%	_	SVI trix Spike SPK ADD		o: 112403 Analysis Date
As 200.7 W 3 As 200.7 W 4	mg/L 2 mg/L 3 mg/L 4 mg/L mg/L mV mg/L	0.016 0.011 0.016 0.014 544 6.45 +73.6 214	<0.01.0 N/A 0.018 N/A 551 6.48 +74.5 231	200.0 N/A 11.8 N/A 1.3 0.5 1.2 7.6	1.03	1.00 1.00 1.00 1.00 N/A N/A N/A 50.0	105.4 101.9 111.4 110.6 N/A N/A N/A 120.0	8/14/04 8/14/04

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. OC Sample 1: SVL SAM No.: 402225 Client Sample ID: AVG-E ^T


20	Dampro		0.1	DINI	140	102222	$O \perp \perp O m O$	Douubto		11. O E	-
QC	Sample	2:	SVL	SAM	No.:	402235	Client	Sample	ID:	PM-13	$^{\rm T}$
QC	Sample	3:	SVL	SAM	No.:	402244	Client	Sample	ID:	AVG-E	^D
QC	Sample	4:	SVL	SAM	No.:	402254	Client	Sample	ID:	PM-13	^D

Relinquished by:	0E/C EI-WG.01	∞/C): - Md :	8 PM - 10 b/30	1. PM- X D/29	6 PM - 7 1/30	5/3 3- MAS	12/C C- Wd.	3. PM-1 129	2 AUG-W 7/30	1. AUG-E 7/30	Sample ID Date	Collection	Address: One Government Gulch, Kellogg,	Lab Name: SVL Analytical, Inc.	n:: Geosyntec act: Bhian Petty ress: 2100 Main Petty ress: 2100 Main Steach CA luntington Beach CA re Number: 714-969-0 Number: 714-969-0
they	14 20 1	1345	q r	1940	1/ 30	1420	1725	1 70 CI	12:451/	12:1570	Time	tion	Kellogg, ID	(208) 78	I DOBET I
Date:	14									s N	Collected by: (Init.) Matrix Type From Table I No. of Containers	Miscellaneous	83837-0929	784-1258 FAX	CHAIN NOTES: 1) Ensure prope 2) Ship samples * 3) Designate S PO#: HC
0 4 Time:											Sample Filtered ? Y/N Unpreserved (Ice Only) HNO3	-		X (208) 783-0891	OF C promptly for ample Reje
Received by											HCL H2SO4 NAOH	Preservative(s)		891	USTODY packaging. Ilowing collection. ct Disposition ID ID ID
Bienne	XXXXX	XXXXXX	K X X K K	X X X X	XXXXX	XXXX	XXXXX	XXXX	XXXXX	XXXXX	Other (Specify) As/total and dis plf alkalinity ORP DIC		(k	Analyses Required	RECORD Table 1 Matrix Type 1 = Surface Water, 2 = Ground Water 3 = Soil/Sediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Samplers Signature:
Dates /2/04 Time: Date: Time:									$\overline{}$		Comments HMQS	(romin	टवन्द प्र	, TT "11'O	Page of FOR SVL USE ONLY SVL JOB # //2 4/23

* Samı ject: [] Return [] Dispose [] Store (30 Days)

White: LAB COPY Yellow: CUSTOMER COPY

SV1 C 12/95

٢

* Sample "riect: [] Return [] Dispose [] Store (30 Days)

White: LAB COPY Yellow: CUSTOMER COPY SVL

	TRANSMISSION VERIFICATION REPORT TIME : 08/03/2004 08:34 NAME : SVL ANALYTICAL FAX : 2087830891 TEL : 2087841258 SER.# : BROF3J496071
DATE, TIME. FAX NO./NAME DURATION PAGE(S) RESULT MODE	08/03 08:34 917149690820 00:00:30 02 0K FINE ECM
vernment SAMPI SAMPI GH 8/0 GH 8/0 GH 8/0	5 3 502/04 6 8/02/04 7 8/02/04 6 8/02/04 7 8/02/04 6 8/02/04 7 8/02/04 6 8/02/04 7 8/02/04 7 1 7 1 7

SVL ANALYTICAI	, . ,	INC.					
One Government Gulch		P.O. Box 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258	5	Fax: (208)783-089

PRO	ENT : GeoSynteo DJECT: HR0196-12	2				SVL JOB: SAMPLE:	426294
	ENT SAMPLE ID:					Т	OT/DIS
	ple Collected:	11/04/04 1	1:00				
	aple Receipt :	11/09/04				Matrix:	WATERG
Dat	e of Report :	11/23/04					
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	432	mg CaCO3/I	1	2320B	11/10/04	
Т	Eh (mV)	+194	mV		2580	11/23/04	
Т	рH	7.26			150.1	11/10/04	
Т	TDS	540	mg/L		160.1	11/11/04	
Т	Turbidity	0.326	NTU'S		180.1	11/10/04	
Т	Calcium	130	mg/L		200.7	11/19/04	
Т	Chloride	9.01	mg/L	2	300.0	11/10/04	
T	Potassium	2.6	mg/L		200.7	11/19/04	
Т	Magnesium	41.1	mg/L		200.7	11/19/04	
Т	Sodium	4.59	mg/L		200.7	11/19/04	
Т	Nitrate-N	0.189	mg/L		300.0	11/10/04	
Т	Sulfide	<1.0	mg/L		376.1	11/10/04	
Т	Sulfate, SO4	115	mg/L	10	300.0	11/10/04	
Т	Arsenic	<0.010	mg/L		200.7	11/19/04	
Т	Chromium	<0.0060	mg/L		200.7	11/19/04	
Т	Iron	0.408	mg/L		200.7	11/19/04	
Т	Manganese	0.0086	mg/L		200.7	11/19/04	
Т	Lead	<0.0050	mg/L		200.7	11/19/04	
Т	DIS. INOR CARBON	100	mg/L		415.1	11/16/04	
D	Arsenic	<0.010	mg/L		200.7	11/19/04	
D	Chromium	<0.0060	mg/L		200.7	11/19/04	
D	Iron	<0.020	mg/L		200.7	11/19/04	
D	Manganese	<0.0020	mg/L		200.7	11/19/04	
D	Lead	<0.0050	mg/L		200.7	11/19/04	
	CalcTDS: 562	TDS/Con	1	CATION SUM:	10.15meg/L	BALANCE	
TDS	/CalcTDS: 1.0	CalcTDS/Con	a:	ANION SUM:	11.28meq/L	-5.27%	

TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By:_____

Killer Date "123/09 11/23/04 11:52

SVL ANALYTICAL,	INC.
-----------------	------

Sample Coll Sample Rece Date of Rep Determin T ALKALINIT T Eh (mV) T pH T TDS T Turbidit T Calcium T Chloride T Potassiun T Nitrate-I T Sulfide T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO D Arsenic	eipt : port : ation TY	11/04/04 11/09/04 11/23/04 Result 316 +191 7.63 308 33.8 62.6 6.85	8:30 Units mg CaCO3/L mV mg/L NTU'S mg/L	Dilution	Method 2320B 2580 150.1 160.1	Matrix: Analyzed 11/10/04 11/23/04 11/10/04 11/11/04	WATER
T ALKALINI T Eh (mV) T pH T TDS T Turbidit T Calcium T Chloride T Potassium T Sodium T Nitrate-I T Sulfide T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	ТҮ	316 +191 7.63 308 33.8 62.6	mg CaCO3/L mV mg/L NTU'S		2320B 2580 150.1	11/10/04 11/23/04 11/10/04	
T Eh (mV) T pH T TDS T Turbidity T Calcium T Chloride T Potassium T Sodium T Nitrate-I T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	У	+191 7.63 308 33.8 62.6	mV mg/L NTU'S		2580 150.1	11/23/04 11/10/04	
T pH T TDS T Turbidit; T Calcium T Chloride T Potassium T Sodium T Nitrate-I T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO D Arsenic	-	7.63 308 33.8 62.6	mg/L NTU'S		150.1	11/10/04	
T TDS T Turbidity T Calcium T Chloride T Potassium T Sodium T Nitrate-1 T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	-	308 33.8 62.6	NTU'S				
T TDS T Turbidity T Calcium T Chloride T Potassium T Sodium T Nitrate-1 T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	-	33.8 62.6	NTU'S		160.1	11/11/04	
T Calcium T Chloride T Potassium T Sodium T Nitrate-I T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	-	62.6					
T Chloride T Potassiun T Magnesiun T Sodium T Nitrate-1 T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO			ma/L		180.1	11/10/04	
T Potassiuu T Magnesiuu T Sodium T Nitrate- T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO		6.85			200.7	11/19/04	
T Magnesium T Sodium T Nitrate- T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO			mg/L	2	300.0	11/10/04	
T Sodium T Nitrate- T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	111	17.3	mg/L		200.7	11/19/04	
T Nitrate- T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO	m	27.0	mg/L		200.7	11/19/04	
T Sulfide T Sulfate, T Arsenic T Chromium T Iron T Manganese T Lead T DIS. INO D Arsenic		5.13	mg/L		200.7	11/19/04	
T Sulfate, T Arsenic T Chromium T Iron T Manganes T Lead T DIS. INO D Arsenic	N	0.086	mg/L		300.0	11/10/04	
T Arsenic T Chromium T Iron T Manganes T Lead T DIS. INO D Arsenic		<1.0	mg/L		376.1	11/10/04	
T Chromium T Iron T Manganese T Lead T DIS. INO D Arsenic	SO4	23.3	mg/L	2	300.0	11/10/04	
T Iron T Manganese T Lead T DIS. INO D Arsenic		<0.010	mg/L		200.7	11/19/04	
T Manganes T Lead T DIS. INO D Arsenic		<0.0060	mg/L		200.7	11/19/04	
T Lead T DIS. INO D Arsenic		3.39	mg/L		200.7	11/19/04	
T DIS. INO D Arsenic	е	0.927	mg/L		200.7	11/19/04	
D Arsenic		<0.0050	mg/L		200.7	11/19/04	
	R CARBON	73.0	mg/L		415.1	11/16/04	
		0.010	mg/L		200.7	11/19/04	
D Chromium		<0.0060	mg/L		200.7	11/19/04	
D Iron		0.286	mg/L		200.7	11/19/04	
D Manganes	e	0.788	mg/L		200.7	11/19/04	
D Lead		<0.0050	mg/L		200.7	11/19/04	
CalcTDS:		TDS/Con	ıd:	CATION SUM:	6.19meq/L	BALANCE	

TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By:_____

Holen Date 11/23/04 11/23/04 11:52

ne Gove	ernment Gulch • P.O.	. Box 929 .	Kellogg, Idaho	83837-0929	Phone: (208)784	~1258 = Fax:	: (208)783-089
PRC	ENT : GeoSyntec JECT: HR0196-12	2				SVL JOB: SAMPLE:	426296
San San			9:45			T Matrix:	OT/DIS WATERG
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	903	mg CaCO3/L		2320B	11/10/04	
Т	Eh (mV)	+83.0	mV		2580	11/23/04	
Т	pH	10.95			150.1	11/10/04	
Т	TDS	1690	mg/L		160.1	11/11/04	
Т	Turbidity	2.00	NTU'S		180.1	11/10/04	
Т	Calcium	5.71	mg/L		200.7	11/19/04	
Т	Chloride	28.1	mg/L	5	300.0	11/10/04	
Т	Potassium	958	mg/L	10	200.7	11/19/04	
Т	Magnesium	0.116	mg/L		200.7	11/19/04	
Т	Sodium	44.8	mg/L		200.7	11/19/04	
Т	Nitrate-N	<0.050	mg/L		300.0	11/10/04	
Т	Sulfide	9.5	mg/L		376.1	11/10/04	
Т	Sulfate, SO4	312	mg/L	25	300.0	11/10/04	
Т	Arsenic	0.045	mg/L		200.7	11/19/04	
Т	Chromium	<0.0060	mg/L		200.7	11/19/04	
Т	Iron	1.47	mg/L		200.7	11/19/04	
Т	Manganese	0.0205	mg/L		200.7	11/19/04	
Т	Lead	0.0128	mg/L		200.7	11/19/04	
Т	DIS. INOR CARBON	89.8	mg/L		415.1	11/16/04	
D	Arsenic	0.043	mg/L		200.7	11/19/04	
D	Chromium	<0.0060	mg/L		200.7	11/19/04	
D	Iron	0.552	mg/L		200.7	11/19/04	
D	Manganese	0.0146	mg/L		200.7	11/19/04	
D	Lead	0.0133	mg/L		200.7	11/19/04	
	CalcTDS: 1890	TDS/Con		CATION SUM:	26.82meq/L	BALANCE	
TDS	/CalcTDS: 0.9	CalcTDS/Cor	id:	ANION SUM:	25.33meq/L	2.86%	

Filtered fraction: 426302

TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By:_____

Alterens Date 1/23/09 11/23/04 11:52

PRC CLI Sam Sam		MW-9(D)	9:46				426297 T/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	886	mg CaCO3/L		2320B	11/10/04	
Т	Eh (mV)	+68.0	mV		2580	11/23/04	
Т	рН	10.88			150.1	11/10/04	
Т	TDS	1730	mg/L		160.1	11/11/04	
т	Turbidity	2.03	NTU'S		180.1	11/10/04	
Т	Calcium	5.95	mg/L		200.7	11/19/04	
т	Chloride	28.1	mg/L	5	300.0	11/10/04	
Т	Potassium	1010	mg/L	10	200.7	11/19/04	
Т	Magnesium	0.107	mg/L		200.7	11/19/04	
Т	Sodium	49.0	mg/L		200.7	11/19/04	
т	Nitrate-N	<0.050	mg/L		300.0	11/10/04	
Т	Sulfide	9.4	mg/L		376.1	11/10/04	
Т	Sulfate, SO4	300	mg/L	25	300.0	11/10/04	
Т	Arsenic	0.048	mg/L		200.7	11/19/04	
Т	Chromium	<0.0060	mg/L		200.7	11/19/04	
Т	Iron	1.51	mg/L		200.7	11/19/04	
\mathbf{T}	Manganese	0.0206	mg/L		200.7	11/19/04	
\mathbf{T}	Lead	0.0115	mg/L		200.7	11/19/04	
Т	DIS. INOR CARBON	90.2	mg/L		415.1	11/16/04	
D	Arsenic	0.047	mg/L		200.7	11/19/04	
D	Chromium	<0.0060	mg/L		200.7	11/19/04	
D	Iron	0.524	mg/L		200.7	11/19/04	
D	Manganese	0.0138	mg/L		200.7	11/19/04	
D	Lead	0.0102	mg/L		200.7	11/19/04	
	CalcTDS: 1930	TDS/Con		CATION SUM:	28.35meq/L	BALANCE	
TDS	/CalcTDS: 0.9	CalcTDS/Con	nd:	ANION SUM:	24.74meg/L	6.80%	

Filtered fraction: 426303 TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By:_____

Date 1/23/04 11/23/04 11:52

Jat		2 MW-11 11/04/04 11/09/04 11/23/04	9:15			SVL JOB: 11444 SAMPLE: 42629 TOT/DIS Matrix: WATEN		
	Determination	Result	Units	Dilution	Method	Analyzed		
Т	ALKALINITY	261	mg CaCO3/L		2320B	11/10/04		
Ť	Eh (mV)	+152	mV		2580	11/23/04		
Ť	pH (MV)	6.84			150.1	11/10/04		
T	TDS	262	mg/L		160.1	11/11/04		
T	Turbidity	0.361	NTU'S		180.1	11/10/04		
T	Calcium	58.0	mg/L		200.7	11/19/04		
Т	Chloride	0.61	mg/L		300.0	11/10/04		
Т	Potassium	4.2	mg/L		200.7	11/19/04		
Т	Magnesium	23.6	mg/L		200.7	11/19/04		
Т	Sodium	3.72	mg/L		200.7	11/19/04		
Т	Nitrate-N	0.110	mg/L		300.0	11/10/04		
Т	Sulfide	<1.0	mg/L		376.1	11/10/04		
Т	Sulfate, SO4	25.2	mg/L	2	300.0	11/10/04		
Т	Arsenic	<0.010	mg/L		200.7	11/19/04		
Т	Chromium	<0.0060	mg/L		200.7	11/19/04		
Т	Iron	<0.020	mg/L		200.7	11/19/04		
Т	Manganese	0.0034	mg/L		200.7	11/19/04		
Т	Lead	<0.0050	mg/L		200.7	11/19/04		
Т	DIS. INOR CARBON	55.0	mg/L		415.1	11/16/04		
D	Arsenic	0.011	mg/L		200.7	11/19/04		
D	Chromium	<0.0060	mg/L		200.7	11/19/04		
D	Iron	<0.020	mg/L		200.7	11/19/04		
D	Manganese	0.0081	mg/L		200.7	11/19/04		
D	Lead	<0.0050	mg/L		200.7	11/19/04		
	CalcTDS: 272 /CalcTDS: 1.0	TDS/Con CalcTDS/Con		CATION SUM: ANION SUM:	5.10meq/L 5.76meq/L	BALANCE		

Filtered fraction: 426304 TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By:_____

.

Date 11/23/04 11:52

SVL	ANALYTI	CAL,	INC.
-----	---------	------	------

PRC CLI Sam Sam	ENT : GeoSyntec DJECT: HR0196-12 ENT SAMPLE ID: aple Collected: aple Receipt : te of Report :	MW-12	0:45				426299 OT/DIS
	Determination	Result	Units	Dilution	Method	Analyzed	
Т	ALKALINITY	371	mg CaCO3/L	· · · · · · · · · · · · · · · · · · ·	2320B	11/10/04	
Т	Eh (mV)	+166	mV		2580	11/23/04	
Т	pH	7.49			150.1	11/10/04	
Т	TDS	538	mg/L		160.1	11/11/04	
Т	Turbidity	3.34	NTU'S		180.1	11/10/04	
Т	Calcium	65.2	mg/L		200.7	11/19/04	
T	Chloride	108	mg/L	25	300.0	11/10/04	
Т	Potassium	47.8	mg/L		200.7	11/19/04	
T	Magnesium	28.3	mg/L		200.7	11/19/04	
Т	Sodium	67.7	mg/L		200.7	11/19/04	
Т	Nitrate-N	<0.050	mg/L		300.0	11/10/04	
Т	Sulfide	<1.0	mg/L		376.1	11/10/04	
Т	Sulfate, SO4	27.4	mg/L	2	300.0	11/10/04	
Т	Arsenic	0.015	mg/L		200.7	11/19/04	
Т	Chromium	<0.0060	mg/L		200.7	11/19/04	
Т	Iron	1.92	mg/L		200.7	11/19/04	
Т	Manganese	1.65	mg/L		200.7	11/19/04	
Т	Lead	<0.0050	mg/L		200.7	11/19/04	
Т	DIS. INOR CARBON	73.0	mg/L		415.1	11/16/04	
D	Arsenic	<0.010	mg/L		200.7	11/19/04	
D	Chromium	<0.0060	mg/L		200.7	11/19/04	
D	Iron	0.040	mg/L		200.7	11/19/04	
D	Manganese	1.59	mg/L		200.7	11/19/04	
D	Lead	<0.0050	mg/L		200.7	11/19/04	
	CalcTDS: 569	TDS/Con		CATION SUM:	9.93meq/L	BALANCE	

TURBIDITY & NITRATE-N RECEIVED AND ANALYZED PAST HOLDING TIME

Reviewed By: _____ Date ///23/04 11/23/04 11:52

					Quality	Control	Report
Part	1	Prep	Blank	and	Laboratory	Control	Sample

Client :GeoSyntec SVL JOB No: 11444										
nalyte	Method	Matrix	Units	Prep Blank	True	-LCSFound	LCS %R	Date		
Arsenic	200.7	WATER	mg/L	<0.010	1.00	1.02	102.0	11/19/04		
Calcium	200.7	WATER	mg/L	<0.040	20.0	19.4	97.0	11/19/04		
Chromium	200.7	WATER	mg/L	<0.0060	1.00	1.02	102.0	11/19/04		
Iron	200.7	WATER	mg/L	<0.020	10.0	9.81	98.1	11/19/04		
Potassium	200.7	WATER	mg/L	<1.0	20.0	19.6	98.0	11/19/04		
Magnesium	200.7	WATER	mg/L	<0.040	20.0	19.4	97.0	11/19/04		
Manganese	200.7	WATER	mg/L	<0.0020	1.00	0.990	99.0	11/19/04		
Sodium	200.7	WATER	mg/L	<0.50	19.0	18.8	98.9	11/19/04		
Lead	200.7	WATER	mg/L	<0.0050	1.00	0.997	99.7	11/19/04		
Chloride	300.0	WATER	mg/L	<0.20	5.00	4.77	95.4	11/10/04		
Nitrate-N	300.0	WATER	mg/L	<0.050	2.50	2.45	98.0	11/10/04		
Sulfate, SO4	300.0	WATER	mg/L	<0.30	10.0	9.75	97.5	11/10/04		
ALKALINITY	2320B	WATER	mg/L	<1.0	47.0	48.9	104.0	11/10/04		
рH	150.1	WATER		5.75	5.40	5.39	99.8	11/10/04		
Eh (mV)	2580	WATER	mV	N/A	+228	+232	101.8	11/23/04		
DIS. INOR CARBON	415.1	WATER	mg/L	<1.0	14.0	14.0	100.0	11/16/04		
Sulfide	376.1	WATER	mg/L	<1.0	4.0	3.9	97.5	11/10/04		
TDS	160.1	WATER	mg/L	<10	428	406	94.9	11/11/04		
Turbidity	180.1	WATER	NTU'S	0.071	12.3	12.1	98.4	11/10/04		

LEGEND:

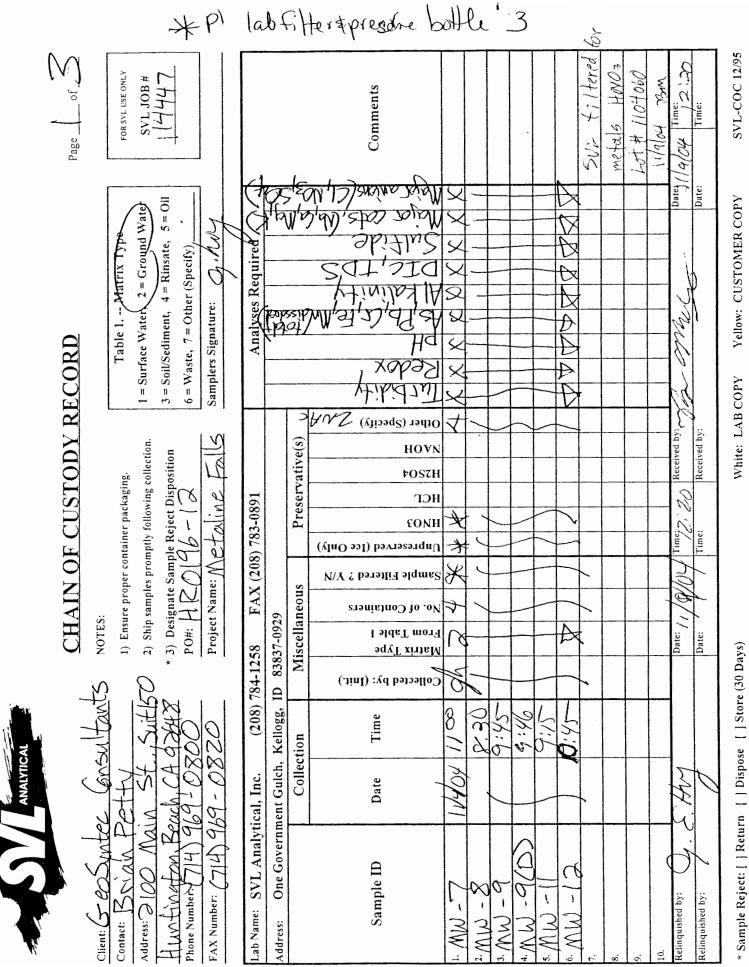
LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

Client	Client :GeoSyntec SVL JOB No: 114447												
ll.	Method Mtx	~	Result	Found	or	RPD%		SPK ADD	%R	Analysis Date			
56 1	Method Mtx	UNITES	Result	round		KED'S	Result	SFR ADD	70 	Date			
As	200.7 W	1 1 mg/L	<0.010	0.010		200.0	1.04	1.00	104.0	11/19/04			
As	200.7 W	2 mg/L	<0.010	0.015		200.0	1.10	1.00	110.0	11/19/04			
Ca	200.7 W	1 mg/L	130	129		0.8	150	20.0	100.0	11/19/04			
Cr	200.7 W	1 mg/L	<0.0060	<0.0060		UDL	1.01	1.00	101.0	11/19/04			
Cr	200.7 W	2 mg/L	<0.0060	<0.0060		UDL	0.997	1.00	99.7	11/19/04			
Fe	200.7 W	1 mg/L	0.408	0.368		10.3	10.1	10.0	96.9	11/19/04			
Fe	200.7 W	2 mg/L	<0.020	<0.020		UDL	9.76	10.0	97.6	11/19/04			
K	200.7 W	1 mg/L	2.6	2.6		0.0	22.9	20.0	101.5	11/19/04			
Mg	200.7 W	1 mg/L	41.1	41.1		0.0	60.4	20.0	96.5	11/19/04			
Mn	200.7 W	1 mg/L	0.0086	0.0075		13.7	0.994	1.00	98.5	11/19/04			
Mn	200.7 W	2 mg/L	<0.0020	<0.0020		UDL	0.986	1.00	98.6	11/19/04			
Na	200.7 W	1 mg/L	4.59	4.61		0.4	23.8	19.0	101.1	11/19/04			
Pb	200.7 W	1 mg/L	<0.0050	<0.0050		UDL	0.986	1.00	98.6	11/19/04			
Pb	200.7 W	2 mg/L	<0.0050	<0.0050		UDL	1.01	1.00	101.0	11/19/04			
Cl	300.0 W	1 mg/L	9.01	8.99		0.2	26.5	20.0	87.5	11/10/04			
NO3-N	300.0 W	1 mg/L	0.189	0.189		0.0	2.15	2.00	98.1	11/10/04			
SO4	300.0 W	1 mg/L	115	115		0.0	164	50.0	98.0	11/10/04			
ALK	2320B W	1 mg/L	432	438		1.4	N/A	N/A	N/A	11/10/04			
рН	150.1 W	1	7.26	7.10		2.2	N/A	N/A	N/A	11/10/04			
Eh	2580 W	1 mV	+194	+192	1	1.0	N/A	N/A	N/A	11/23/04			
ORG18D	415.1 W	1 mg/L	100	99.3		0.7	139	50.0	78.0	11/16/04			
TDS	160.1 W	1 mg/L	540	577		6.6	I/S	I/S	N/A	11/11/04			
TURB	180.1 W	1 NTU'S	0.326	0.320		1.9	N/A	N/A	N/A	11/10/04			


LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

 \leq ... E ADD column, A = Post Digest Spike; ZR = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. I/S: Insufficient sample for QC test.

QC Sample 1	: SVL	SAM No.:	426294	Client	Sample	ID:	MW – 7	T
QC Sample 2	2: SVL	SAM No.:	426300	Client	Sample	ID:	MW-7	^D

TRANSMISSION VERIFICATION REPORT

	DATE,TIME FAX NO./N4 DURATION PAGE(S) RESULT MODE	YME	TIME : 11/09/2004 15:20 NAME : SVL ANALYTICAL FAX : 2087830891 TEL : 2087841253 SER.# : BROF3J496071 11/09 16:27 917149690820 00:00:21 01 OK FINE ECM	8
Pade 1 of 1	SVL JOB No: 114447 Received: 11/09/04 Expected Due date: 11/23/04		ately. Field samples may appear twice. disposal options. 11/09/04 15:49	
SV: AINTICAL, INC. Government Guach - Kellogg, ID 03837-0929	SAMPLE RECEIPT CONFIRMATION	ne By Received Sample Comments 00 GH 11/09/04	<pre>10 GH 11/09/04 15 GH 11/09/04 16 GH 11/09/04 11/09/04 5 GH 11/09/04 6 GH 11/09/04 5 GH 11/09/04 5 GH 11/09/04 5 GH 11/09/04 11/09/04 5 GH 11/09/04 5 GH 11/09/04 5 GH 11/09/04 11/09/04 5 GH 11/09/04 5 GH 11/0</pre>	

PORT OF ANALYTICAL RESULT.

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83827-0929 . Phone: (208)784-1258 . Fax: (208)783-089

CLIENT : GeoSyntec PROJECT: HR0196-12 Sample Receipt: 11/09/04 Page 1 of 1 Report Date: 11/23/04 SVL JOB: 114448

SVL ID	CLIENT SAMPL	E ID	As 200.7	ALK 2320B	рН 150.1	Eh 2580	ORG18D 415.1
W426308	AVG-W	^T11/05/04	<0.010mg/L	140mg/L	5.63	+225mV	138mg/L
W426309	AVG-E	^T11/05/04	<0.010mg/L	133mg/L	6.27	+230mV	123mg/L
W426310	PM-1	^T11/04/04	0.031mg/L	1240mg/L	10.20	+118mV	200mg/L
426311	PM-2	^T11/03/04	<0.010mg/L	343mg/L	8.01	+162mV	77.1mg/L
426312	PM-6	^T11/04/04	0.239mg/L	1810mg/L	11.60	+34.OmV	170mg/L
426313	PM-7	^T11/03/04	0.026mg/L	899mg/L	7.74	+141mV	226mg/L
426314	PM8	^T11/04/04	0.058mg/L	733mg/L	8.26	+124mV	176mg/L
426315	PM-10	^T11/03/04	0.021mg/L	368mg/L	7.02	+177mV	112mg/L
426316	PM-11	^T11/03/04	<0.010mg/L	408mg/L	6.94	+183mV	124mg/L
426317	PM-12	^T11/03/04	0.023mg/L	970mg/L	6.64	+193mV	329mg/L
426318	PM-13	^T11/03/04	<0.010mg/L	647mg/L	8.37	+144mV	161mg/L
426319	PM-14	^T11/03/04	<0.010mg/L	390mg/L	9.65	+115mV	72.1mg/L
426320	PM-15	^T11/04/04	0.116mg/L	***	12.00	-206mV	183mg/L
426321	PM-16	^T11/04/04	0.038mg/L	***	12.10	-187mV	113mg/L
426322	PM-17	^T11/03/04	0.029mg/L	1150mg/L	11.30	-76.OmV	104mg/L
426323	PM-18	^T11/03/04	0.076mg/L	***	11.20	-56.OmV	184mg/L
426324	PM-19	^T11/04/04	0.122mg/L	***	11.70	-68.OmV	172mg/L
426325	PM-20	^T11/04/04	<0.010mg/L	***	8.50	+85.OmV	191mg/L
426326	PM-21	^T11/05/04	0.010mg/L	358mg/L	9.92	+31.OmV	46.4mg/L
426327	AVG-W	^D11/05/04	<0.010mg/L	***	***	***	***
426328	AVG-E	^D11/05/04	<0.010mg/L	***	***	本水本	***
426329	PM-1	^D11/04/04	0.033mg/L	***	***	***	***
426330	PM-2	^D11/03/04	<0.010mg/L	***	***	***	***
426331	PM-6	^D11/04/04	0.228mg/L	***	***	***	***
426332	PM-7	^D11/03/04	0.020mg/L	***	***	***	***
426333	PM-8	^D11/04/04	0.024mg/L	***	***	琼水水	***
426334	PM-10	^D11/03/04	<0.010mg/L	***	***	水水水	***
426335	PM-11	^D11/03/04	<0.010mg/L	***	***	***	***
426336	PM-12	^D11/03/04	<0.010mg/L	***	***	***	***
426337	PM-13	^D11/03/04	<0.010mg/L	***	***	***	***
426338	PM-14	^D11/03/04	<0.010mg/L	***	***	***	***
426339	PM-15	^D11/04/04	0.115mg/L	***	***	***	***
426340	PM-16	^D11/04/04	0.099mg/L	***	***	***	***
426341	PM-17	^D11/03/04	0.035mg/L	***	***	***	***
426342	PM-18	^D11/03/04	0.074mg/L	***	***	***	***
426343	PM-19	^D11/04/04	0.126mg/L	***	***	**	***
426344	PM-20	^D11/04/04	<0.010mg/L	***	***	***	***
426345	PM-21	^D11/05/04		***	***	***	***

WA NO. CO74

Reviewed By:___

State: "123/04

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec

SVL JOB No: 114448

	citent .Geosyntee	-							
1-	Analyte	Method	Matrix	Units	Prep Blank	True	-LCSFound	LCS %R	Analysis Date
	Arsenic ALKALINITY pH Eh (mV) DIS. INOR CARBON	2320B 150.1 2580	WATER WATER WATER	mg/L mg/L mV mg/L	<0.010 <1.0 5.72 N/A <1.0	1.00 90.0 5.40 +228 14.0	1.11 91.0 5.39 +232 13.4	111.0 101.1 99.8 101.8 95.7	11/19/04 11/15/04 11/15/04 11/23/04 11/18/04

LEGEND:

LCS = Laboratory Control Sample

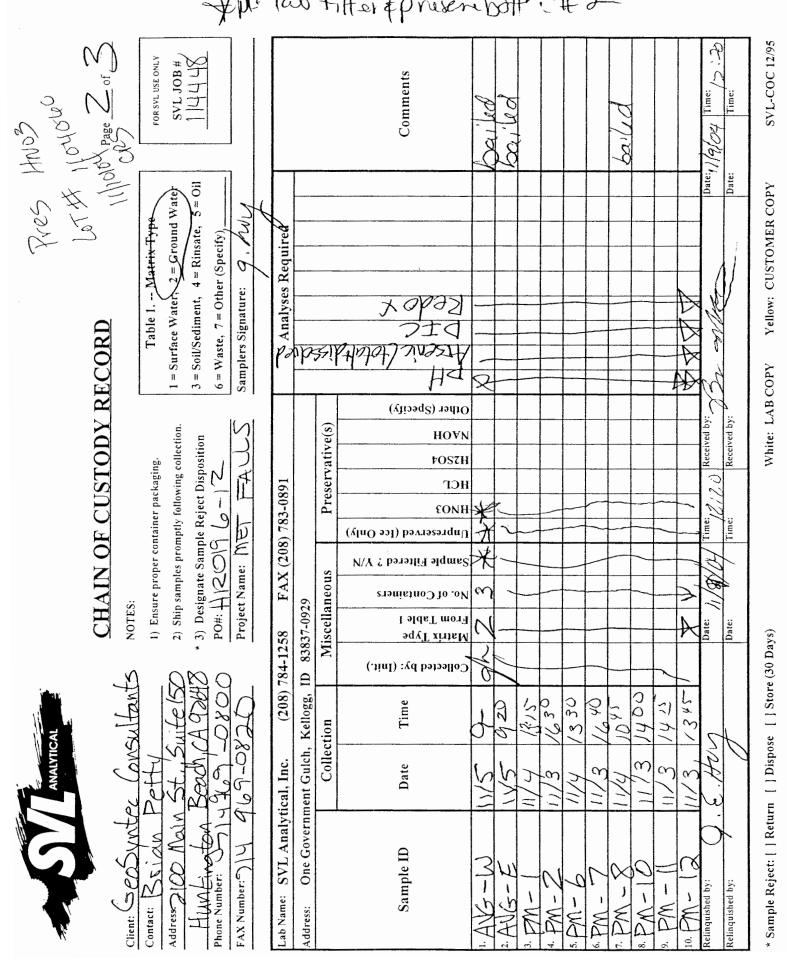
LCS %R = LCS Percent Recovery

N/A = Not Applicable

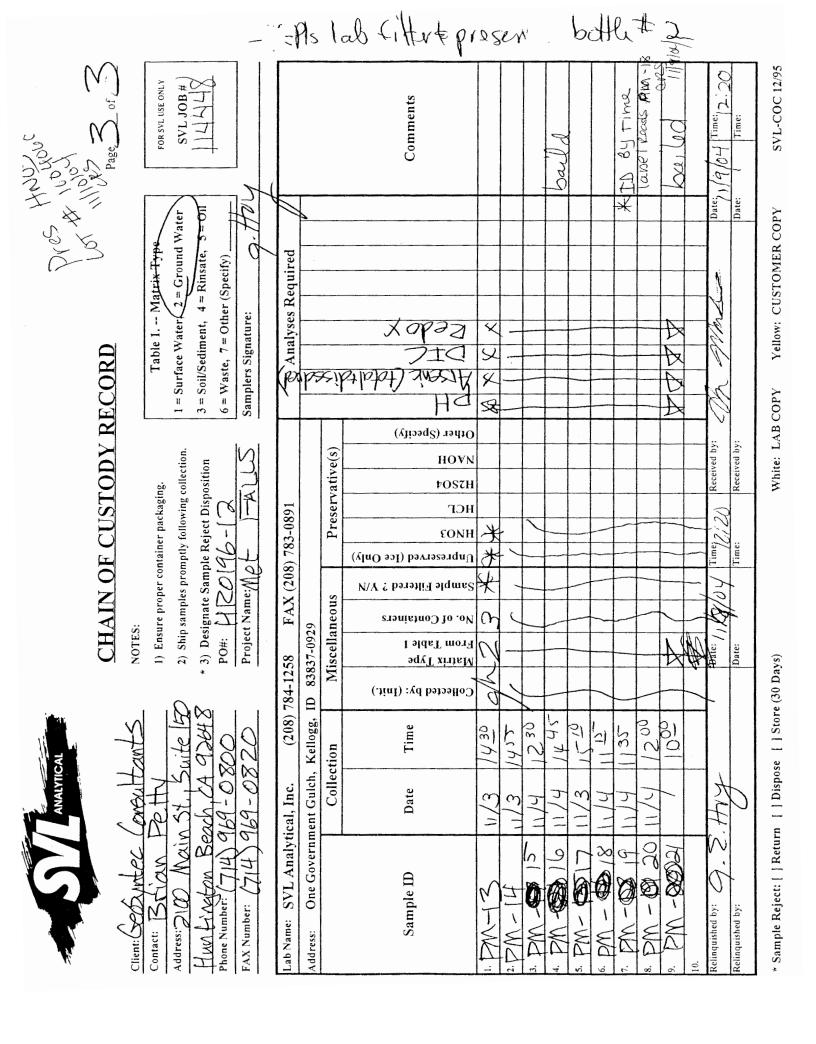
Quality Control Report Part II Duplicate and Spike Analysis

n

Client :GeoSyntec SVL JOB No: 1144											
≥st N	Method Mtx	Units	Result	Found		RPD%	Result	SPK ADD	%R	Date	
As	200.7 W	1 mg/L	<0.010	<0.010		UDL	1.13	1.00	113.0	11/18/04	
As	200.7 W	2 mg/L	<0.010	N/A		N/A	1.18	1.00	118.0	11/19/04	
As	200.7 W	3 mg/L	<0.010	<0.010		UDL	1.13	1.00	113.0	11/19/04	
As	200.7 W	4 mg/L	<0.010	N/A		N/A	1.17	1.00	117.0	11/19/04	
ALK	2320B W	1 mg/L	140	132		5.9	N/A	N/A	N/A	11/15/04	
pН	150.1 W	1	5.63	5.64		0.2	N/A	N/A	N/A	11/15/04	
Eh	2580 W	1 mV	+225	+226		0.4	N/A	N/A	N/A	11/23/04	
ORG18D	415.1 W	1 mg/L	138	140		1.4	366	250	91.2	11/18/04	


LEGEND:

π


RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPDZ = (SPK - MSD //((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

de l'initité fei lie deplié any il the spine le de leder () i the selfenter de lie did iges in the sampler													
Control limits	for th	ne RPD	apply	only i	f the concen	tration of	the analy	te in	the sample is a	at least five times t	he reporting	limit.	
QC Sample	1:	SVL :	SAM I	No.:	426308	Client	Sample	ID:	AVG-W	^т			
QC Sample	2:	SVL :	SAM I	No.:	426318	Client	Sample	ID:	PM-13	^т			
QC Sample	3:	SVL :	SAM I	No.:	426327	Client	Sample	ID:	AVG-W	^D			
QC Sample	4:	SVL :	SAM I	No.:	426337	Client	Sample	ID:	PM-13	^D			

Aple lab filler & presenbolle. #2

				TRA	NSMI	SSIC	DN VE	RIF	ICA	TIO	N R	EPOf	रा	N F T	IME AME EL ER.	: : : :	SVL 201	_ AN 3783 3784	2004 IALYT 10891 1258 14960	1	37
DATE,TIME FAX NO./NAME DURATION PAGE(S) RESULT MODE										917	00: E	690	:35 820								
Page 1 of 2	SVL JOB No: 114448 Received: 11/09/04 Expected Due date: 11/23/04			•															bosal ontions	sam	
SN MALYTICAL, INC. Government Gulch - Kellogg, ID 83837-0929	SAMPLE RECEIPT CONFIRMATION	le By Received Sample Connents	0 GH 11/09/04 0 GH 11/09/04 5 GH 11/09/04	GH 11/09/0 GH 11/09/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/C	GH 11/0	GH 11/C	GH 11/	GH 11/C	GH 11/C	GH 11/0 GH 11/0	GH 11/09/0	GH 11/0 GH 11/0	5 GH 11/09/04 5 GH 11/09/04	then you	ou have questions regarding the receipt of	

GcoSyntec Consultants

SOIL LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA (2).DOC

28 FEB 05/20:06

.

e e

REPORT OF ANALYTICAL RESULT

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83827-0929 • Phone: (208)784-1258 • Fax: (208)783-085

SVL ID	CLIENT SAMPLE ID		Fe 6010B	Mn 6010B	As 7060	S-* LECO		
\$343343	FSP-06-5	7/15/03	18900mg/kg	470mg/kg	4.46mg/kg	<0.010%		
\$343344	FSP-18-12	7/17/03	17800mg/kg	353mg/kg	3.00mg/kg	<0.010%		
\$343345	FSP-26-4	7/17/03	***	***	***	***		
\$343346	PM-16-9	7/17/03	***	李公安	***	***	i	
\$343347	PM-16-5	7/17/03	***	举举荣.	***	***	i	
\$343348	FSP-21-10	7/17/03	***	***	常常学	客水客	i	
S343349	FSP-26-8	7/17/03	本杂杂	***	奉本字	孝文字	i	
\$343350	FSP-19-8	7/17/03	20100mg/kg	419mg/kg	4.36mg/kg	<0.010%		

Client :GEOSYNTE	C CONSUI	LTANTS					SVL JOB 1	No: 106756 Analysis
nalyte	Method	Matrix	Units	Prep Blank	True	-LCS-Found	LCS %R	Date
Iron Manganese Arsenic	6010B 6010B 7060	SOIL	mg/kg mg/kg mg/kg	<2.0 0.24 <0.30	11400 534 110	9960 481 115	87.4 90.1 104.5	8/04/03 8/04/03 8/05/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

.

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

	ent :GEOSYNTEC	COL	NSULTANTS	5					. SVI	JOB NO	b: 106756
, 1.		ſ	-QC SAMPI	LE ID	Duplicate	or	MSD-	Ma	atrix Spike		Analysis
Tes	st Method Matri:	2	Units	Result	Found		RPD%	Result	SPK ADD	%R	Date
Fe	6010B SOIL	1	mg/kg	18900	19300	М	4.6	20200	1000	R >4S	8/04/03
Mn	6010B SOIL	1	mg/kg	470	551	М	4.8	525	100	R >4S	8/04/03
As	7060 SOIL	1	mg/kg	4.46	7.55	M	4.9	7.93	5.00	69.4	8/05/03
S - 2	LECO SOIL	1	010	<0.010	<0.010		UDL	N/A	N/A	N/A	8/01/03

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution.
RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC Sample 1: SVL SAM No.: 343343 Client Sample ID: FSP-06-5

SVL-COC 12/95	COPY Yellow: CUSTOMER COPY	White: LAB COPY	hite:	≩		l d	Q	$[\bigcirc]$		ays)	(30 D	Store	=	spose] Di	E	Retu		Zejec	* Sample Reject: Return Dispose Store (30 Days)	* Sai		
	Date:	Ņ	Rerrite	Re		Time:	=			Date:						\vdash			p.k.	Relinquistied by	Reling		
202 1000	aver boar and	Y	Received by		:00	Time:		-1/23	1/2	the function of the second						2	Ţ.	\mathcal{W}	Ex.	Relinquished	Reline		
		Ĺ	Γ					×.	~	$\overline{\mathcal{N}}$	$\overline{\mathcal{A}}$	â	D.				5	2,	N.S.	37	·0]	~	
et.	¥V									0	4	0	P P					Q	()	12	H-	7	7
(astronal)						_		A		5		2	3	<u> </u>				0	10	37	a;	$\langle \rangle$	~
the the is that								3		3		0	40					2	N.C.	Ŋ	H.	1	7
(as may) or										M		6	a I A	/				0	à	1.J	Å.	2	
NO that and an	V							R		(¢		0	110	<u>ــــــــــــــــــــــــــــــــــــ</u>					0	n'	H.	2	7
					-			5		0		0	8	/					$\widetilde{\mathbb{D}}$	À	Ť	\mathbf{i}	5
						-	>	n	·	()		S	R	N	710	1			91-	Ń	ħ	5	
(aspined) or						2	>	5		(X	_	0	EA	N	100	7/1			5	à	Ĕ		-
NO the on the							2	N		X	Å	0	Ă	•	in the	11/1		~	33	Ľ,	14	2	\checkmark
Comments	·	Other (Specify)	ΗΟΫΝ	¢0S7H	HCL	HNO3 Unpreserved (Ice Only)	Sample Filtered ? Y/N		From Table 1	erite Type	Collected by: (Init.)	ల	Time		Date			£	Sample ID	Sar			
			Preservative(s)	rvat	rese	6		cous	Miscellaneous	lisce	2		uo	Collection	ů								
									0929	83837-0929	1D 83	1 .52	Kellogg,		Gul	nent	vern	One Government Gulch,	1	:55:	Address:		
	Analyses Required				0891	783-0891	(208)	FAX (E	258	(208) 784-1258	08) 7	2		Inc	ical	vler	SVI, Analytical. Inc.	1	Lab Name:	Lab		
	Samplers Signature:							Project Name:	ject N	Pro									er:	FAX Number:	FAX		
	5 SolvSediment, 4 = Kinsate, 5 = Oil 6 = Waste, 7 = Other (Specify)		tion	sposi	ict Di	e Reje	ampl	 * 3) Designate Sample Reject Disposition PO#: 	Dcsigi #:	* 3) De: PO#:									ber:	Phone Number:	Phon		
SVL JOB#	1 = Surface Water, 2 = Ground Water		2) Ship samples promptly following collection.	ug coll	llowir	ptly fo	prom	un ples	ship sa	2) S				+	<u>+</u>	\mathbb{P}	2	N	4	:55;	Address:		
FOR SVL USE ONLY	Table 1 Matrix Type	L		ging.	packa	ainer	er cont	NOTES: 1) Ensure proper container packaging.	NOTES: 1) Ensure	NOV				-		6				ct:	Client: Contact:		
Page of Y	IN OF CUSTODY RECORD	RI	λQ	1 C	SD	Ũ	OF	Z	CHA	Ú								1			۰.		
						•						i ar		VIICA	ANAL			L ANALVIC				٠.	
		1																			1		

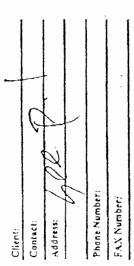
		ANALYTIC	AL MARK									Sec	See on col				
					CH	IIN	OF	CU	STC	DY	N OF CUSTODY RECORD	ORI	2		Page	Ŵ	\$.
	Client: Colory MT	e lan	Mart.	n	NOTES: 1) Ensure proper container packaging.	o hrope	r contai	ner pacl	aging.			Tab		G	FOR SVL 1	FOR SVL USE ONLY	
	Address: 200 Main	5t, g 201 14	arteis	S №	 Ship samples promptly following collection. 3) Designate Sample Reject Disposition 	amples gnate S	promptl Imple J	y follow Zeject I	ing coll Disposi	ectiun. tion		1 = Surface Water 3 ≠ Soil/Sediment,	Water 2 & Ground Water iment, 4 = Rinsate, 5 = Oi	Water 5 = Oil	SVL DOC	TOB#	
	Phone Number: 714-9	0-696	820	- 1 - 1	PO#: HZ Project Name	1 POLA Name: M	120-	(Q)	1 1	Talls	6 = 1 Saml	Vaste, Sig	6 = Waste, 7 = Other (Specify) _ Samplers Signature:				
	Lab Name: SVL Analyti	Analytical, Inc.	(208) 784-1258	84-125		FAX (208) 783-0891	208) 7	83-08	1			٩ı	Analyses Required		-	. :	
	One (tent Gulch,	Kellogg, ID		83837-0929												
		Collection	tion	Mi	Miscellaneo	eous		Pres	Preservative(s)	ive(s)						3	
	•			(יור)													
13	Sample ID	Date	Time							h.	pecify)				Comments	ents	
	,			Collected	Matrix T From Ta	No. of Co	Sample F	EONH	H520¢ HCL	HO∀N	Other (S						
7	- KP-K-K	7/15/03	1400	0			-										- -
	1. 5. 2-0.0		011		\mathcal{C}	\sim	-										See see
7	1.45P-03		(730)		\cap			_							-		
7	1. 55 05		Soo		Λ	<	-	-									
7	-1× F57 D6		2000		1	\leq	-										·
51	6. FSP - 07	>	000		20			-									
)). '	* #21/0X	NLDR.	200		no				-								
7	1. FP-14		1430		N			<u> </u>									
7	10. FSP-26	X	DOG DOG	X	6	<u> </u>						4					
	Relinquished by: Q.S.	The second			Date:	2103		1 inte: 00 2.00		Received by	Buel	and	$\left(\right)$	Date:	1-07 1-00	000	
	Relinquished by: /													-			
	* Sample Reject: [] Return [] Dispose [] Store (30 Days)	n [] Dispo	se [] Store	(30 Da)	(S)	Ĉ		5	*1	'hite: L	White: LAB COPY		Yellow: CUSTOMER COPY	r copy	SVL-O	SVL-COC 12/95	
						5		2							「「「「「「「「」」」	「「「「「「「「「「「「「」」」」」」	With States

Page Of Of	FOR SVL USE ONLY	SVLJOR#						Comments								1-05 ^{Time:} DD	SVL-COC 12/95
CORD	Table 1 Matrix Type	1 = Surface Water, 2 Ground Water 3 Soil/Sediment, 4 = Rinsate, 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature:	Analyses Required											22 (X 1920 - 1) Date: Date: Date:	COPY Yellow: CUSTOMER COPY
HAIN OF CUSTODY RECORD	L	,					tive(s)	Other (Specify) NAOH H2SO4								Received by:	White: LAB COPY
CUST	an nachaolma	 r. rasure proper contained packaging. Ship samples promptly following collection. Designate Sample Reject Disposition 			(208) 783-0891		Preservative(s)	НСГ НИОЗ								1 10 0: <u></u>	
IN OF		noper communities from pt		me:	FAX (208) 7		SUG	Sample Filtered ? Y/N Unpreserved (Ice Only)	\mathbb{Z}	Ś	5	5 2	2			50/12	Joroy
CHAJ	NOTES:) Finsure () Ship san) Designi	PO#:	Project Name:		83837-0929	Miscellaneous	Matrix Type From Table I No. of Containers	\sim	M	M	NN				Date:	(s
	2 -	- N M	<u>-</u>		(208) 784-1258	ID 8383	Mis	Collected by: (lnit.)	6	•							e (30 Day
					(208)		ion	Time					0500				e Stor
ANALYTIC					ical, Inc.	nent Gulch,	Collection	Date	70/07			-5	1.903	<u>.</u>			rn {
B	Client: Contact:	Address: All	Phone Numher:	FAX Number:	Lab Name: SVL Analytical, Inc.	Address: One Government Gulch, Kellogg,		Sample ID	1 P-9-19-1	2 - Hu - 12 - 5-	1. R.P.S O	1. 15, D. 26, 8 X 15, -10 - X	6. PM-16	7. 8.	.6	10, Relinquished by: Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)
	·								/	2	1	/) \				

Ϊ

1620-5.22-2 02 - JAU

				115 124103	S								1				
₩.	SVL JOB #	Sample	heing pult	Sthev Sol	-		Ą	Ĵ	Δ			\cap				Time:	Time:
Page		× T	a de	550°	NY 'EHN		0 1 0	HO/	HOL 10H	X	X	HOL	V		X	Dalei	Date:
	trix Type • Cround Wate Rinsate, 5# (Specify)	equired	(12) 179 15-1	1 Svoir	Laye a	××				XXX	א א א		XXX	×	XXX		
<u>XD</u>	Table 1 Matrix Type 1 = Surface Water, 2 = Ground Water 3 = SoiVSediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Samplers Signature:	Analyses Required	K H M M	-es	19992 199991 210	ζ.				X X X X	XXX	-	XXX	× X X	XXX	~	
RECO	1 = Surís 3 = Soily 6 = Wast		<u>7</u> 7	DED H	H SEC Older (Spee	X				× ×	× X		× ×	XX	XX); /	by:
CHAIN OF CUSTODY RECORD	NOTES: 1) Ensure proper container packaging. 2) Ship samples promptly following collection. 3) Designate Sample Reject Disposition POH: H [20/41, (2) Project Name M Ptc] 1.41, Tall5	168	Preservative(s)		NVOH HJSO4 HCr											Received by:	Received by:
DF CU	NOTES: 1) Ensure proper container packaging. 2) Ship samples promptly following col 3) Designate Sample Reject Dispos POM: HI ED/146. (2) Project Name/MP46. 1.11. To	FAX (208) 783-0891	Pr	(((ce Only)	Unpreserved Unpreserved) . (111) (Time:	Time:
AIN C	re proper contain iamples promptly gnate Sample R - EO 41, Name/MP46	FAX (2)) Jeous	ired ? Y/N	kao ol Conta Sample Filte	\langle	3 2	2	5	\mathbb{N}	\leq	\triangleleft	N V	2	2		
CH	NOTES: 1) Ensure proper 2) Ship samples p 2) Designate Sa POM: + C) Project Name	258	83837-0929 Miscellaneous	1	Matrix Type From Table	M	\mathcal{D}	3	$\overline{\mathbf{V}}$	(?	2	ろ	2	3	6	Date:	Dates
	r Rivij		~	(Jinl) :	Collected by	1	-						0	-	X		
4	aultar Add 820	(208	Kellogg	Ē		1400	011	22	No O	1975	2/2	10131	Outil	<u>Х</u> н	2		
	D'A L'A	tical, Inc.	ment Guich, Kell			7/15/03						X	FALLOS		8		
	Client: LacoSynt Cc (Contact: Eric Sinals Address: SUD Main St Murk Innton Boch Phone Number: 714.969 FAN Number: 714.969	Lab Name: SVL Analytical, Inc.	Addrus: One Government Guich, Kellogg, ID	٤ - د	Sample IJ	KP.N.K	RP-03	#40.03	F47 :05	E E	70.07	#50-0X	11.02	27.0	10. FSP'36	Reliagaished by:	Reliaquished by i
		1-1	-				1.4.	12	1	<u></u>	9	10	ai ai	10	1-	14	14


SVL-COC 12/95 Vellow: CUSTONIER COPY ", Sel " Orginal Cofy"

White: LAB COPY

an a than the officer there is a

* Sample Reject: |] Return | | Dispose | | Store (30 Days)

$\boldsymbol{\Omega}$
\mathbf{A}
a
$\overline{\mathbf{O}}$
Ē
RECORL
2
I
9
E
\mathbf{N}
CUSTOL
\mathbf{O}
[I]
OF
-
-
\sim

Page 2 of 2

FOR SVL USE ONLY SVL JOB# 106756

(ä
£
F
ò
~

1) Ensure proper container packaging.

2) Ship samples promptly following collection. * 3) Designate Sample Reject Disposition

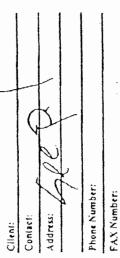
Project Name:

PO#:

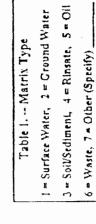
3 = Soil/Sediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Semplers Signature:

I = Surface Water, 2 = Ground Water

Table 1. -- Matrix Type


Lab Name: SVL Analytical, Inc.	ical, Inc.	(208) 7	(208) 784-1258	8	FAX (208) 783-0891	208) 7	83-08	191				~	(JRU)	ses R	Analyses Required	Pe d		L,		•
Address: One Government Gulch, Kellogg, ID	tent Gulch,	Kellogg, I		83837-0929									<u>12</u>	्त्र कर	ち-	7-	-7 71	ZĘ		-1
	Collection	tion	Mi	Miscellaneous	snoəi	_	Pre	Preservative(s)	tive(:	s)			po)		Ξú	<u> </u>	भू भू	, H		
Sample ID	Date	Time	Collected by: (Init.)	Маггіх Туре 1 макт шогд	No. of Containers	Sample Filtered (Ice Only) Unpreserved (Ice Only)	EONH	HCL BCL	HOAN \$OS2H	Other (Specify)	HERENZE	-cst	\$ 710	H KUMBAR	Deverments ((179), हुन	TAPOPES UNIT		Comments	
- 42,23	711453	OF	d	0	2						8	Ż	Ý	X X	Y	X	XIX			
「モンノノ	71463	(22)	-	0	N N	210					X	X	¥	X V	\times					
AV-10	71/7/03			5	、	$\frac{1}{2}$	-				$ \neq$	X	X X	X	Х					
£7,78		(m)		0	0						X	X	$\frac{1}{2}$	X	X				-	
00° 224:		$\frac{1}{2}$		Q	3	1					Ý	Ż	3	X	Х					
C1-22-4-19				M						-		X	<u>م</u>		-	X	X			
1,457,33		1 ani		n	0		-				Х	X	X	X	4	Ň	X V	V		
· 40-95		(2002)		5	4														$\sum_{i=1}^{n}$	
。花じ、し		OGAN	5	B	0		~				Х	×	X X	X	X					
h. yeidst in		100001	Ż	5	Y Y													9	27	
Kelinguished by:		1 6 1		Date;		11	1100	ж.	Received by:	9 kc							Datr	ï	Tione:	
Relinquished by:				Date:		Time	net	æ	Received by:	by:							Dates		Time:	<u> </u>

* Sample Reject: | | Return | | Dispose | | Store (30 Days)

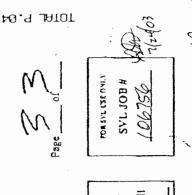

Yellow: CUSTOMER COPY White: LAB COPY

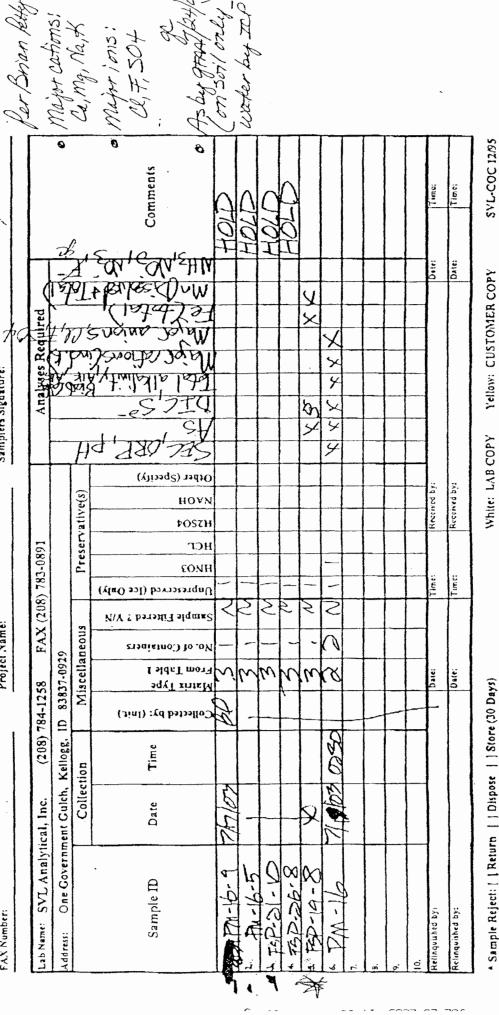
SVL-COC 12/95

2) Ship samples promptly following collection.

1) Ensure proper container packaging.

NOTES:


3) Designate Sample Reject Disposition


Samplers Signature:

Project Name:

PO#:

Page

Sample Reject: [] Return |] Dispose |] Store (30 Days)

Yellow: CUSTOMER COPY White: LAB COPY

GeoSyntec Consultants

GAS LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA (2).DOC

28 FEB 05/20:06

August 08, 2003

Brian Petty GeoSyntec Consultants 2100 Main Street, Suite 150 Huntington Beach, CA 92648-2460

Subject: Calscience Work Order No.: 03-08-0177 Client Reference: Lehigh

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/5/2003 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerel née Environmental

Calsciance Environment Laboratories, Inc. Stephen Nowak Project Manager

Michae J. Crisostomo Quality Assurance Manager

ANALYTICAL REPORT

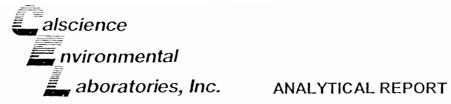
GeoSyntec Consultants	Date Sampled:	08/01/03
2100 Main Street, Suite 150	Date Received:	08/05/03
Huntington Beach, CA 92648-2460	Date Analyzed:	08/05/03
Attn: Brian Petty RE: Lehigh	Work Order No.: Method: Page 1 of 1	03-08-0177 GC/FPD

All concentrations are reported in ppm (v/v).

Sample Number	Hydrogen Sulfide Concentration	Reporting Limit
PIPE AT203-10	3	1
PIPE AT204-12	ND	1
PIPE AT205-14	ND	1
PIPE AT206-16	ND	1
PIPE ATZONS PIPE ATZOZ-2	3, 2	1
Method Blank	ND	1

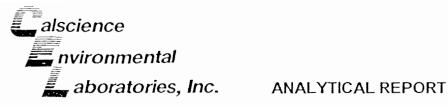
QA/QC

h.M.


Sample Number	Sample <u>Conc.</u>	Duplicate <u>Conc.</u>	<u>%RPD</u>	Control Limits (%)
PIPE AT203-10 (Duplicate)	3.39	3.20	6	0 - 15

GC/FPD pame photo ponization

ND denotes not detected at indicated reportable limit.


Each sample was received by CEL intact and with chain-

7440 Lincoln Way, Garden Grove, CA 92841-1432 ·

GeoSyntec Consultants 2100 Main Street, Suite 150 Huntington Beach, CA 92648-2460		Date Sampled: Date Received: Date Analyzed:	08/01/03 08/05/03 08/05/03
Attn: Brian Petty RE: Lehigh		Work Order No.: Method: Page 1 of 2	03-08-0177 ASTM D-1946
All concentrations are reported in perc	ent (%) by vol	lume.	
Analyte	Concentrat	ion	Reporting <u>Limit</u>
Sample Number: PIPE AT203-10			
Oxygen (O ₂) + Argon (Ar) Nitrogén (N ₂) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 2.0 ND 97.3		0.1 0.1 0.1 0.1
Sample Number: PIPE AT204-12			
Oxygen (O_2) + Argon (Ar) Nitrogen (N_2) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.8 2.6 ND 96.6		0.1 0.1 0.1 0.1
Sample Number: PIPE AT205-14			
Oxygen (O_2) + Argon (Ar) Nitrogen (N_2) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 2.1 ND 97.2		0.1 0.1 0.1 0.1
Sample Number: PIPE AT206-16			
Oxygen (O ₂) + Argon (Ar) Nitrogen (N ₂) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 1.9 ND 97.5		0.1 0.1 0.1 0.1

MAMM

GeoSyntec Consultants	Date Sampled:	08/01/03
2100 Main Street, Suite 150	Date Received:	08/05/03
Huntington Beach, CA 92648-2460	Date Analyzed:	08/05/03
Attn: Brian Petty RE: Lehigh	Work Order No.: Method: Page 2 of 2	03-08-0177 ASTM D-1946

All concentrations are reported in percent (%) by volume.

Analyte	Concentration	Reporting Limit
Sample Number: PIPE AT201-8	3	
Oxygen (O ₂) + Argon (Ar)	0.7	0.1
Nitrogen (N ₂)	2.0	0.1
Methane (CH_4)	ND	0.1
Carbon Dioxide (CO ₂)	97.3	0.1
Sample Number: Method Blan	K	
Oxygen (O ₂) + Argon (Ar)	ND	0.1
Nitrogen (N_2)	ND	0.1
Methane (CH_4)	ND	0.1
Carbon Dioxide (CO ₂)	ND	0.1

QA/QC

Sample Number: Laboratory Control Sample

Analyte	Sample <u>Conc.</u>	Duplicate <u>Conc.</u>	%RPD	Control Limits (%)
Oxygen (O ₂) + Argon (Ar)	18.5	18.5	0	0 - 30
Nitrogen (N ₂)	70.5	70.9	1	0 - 30
Carbon Dioxide (CO ₂)	5.50	5.51	0	0 - 30

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL intact and with chain-of-custody attached.

hu

WORK ORDER #:

03-08-0177

Cooler <u></u> of <u></u> σ_

SAMPLE RECEIPT FORM

CLIENT: GEOSIMEC	DATE: 5/5/->
TEMPERATURE – SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	· · · · · · · · · · · · · · · · · · ·
Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A): Initial:
SAMPLE CONDITION:	
	Yes No N/A
Chain-Of-Custody document(s) received with samples	
Sample container(s) intact and good condition	
Correct containers for analyses requested	
Proper preservation noted on sample label(s)	
VOA vial(s) free of headspace. Tedlar bag(s) free of condensation	
COMMENTS:	
·	

-	Page of		FOR SVL USE ONLY	SVL JOB #							Comments								-			[Time:	Lime:	SVL-COC 12/95
(210)	ECORD		Table 1 1		3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	$b = Waste, \gamma = D ther (Specify) (Jet)$	Samplers Signature: /	Analyses Required		da D	more more ixorbrodr bit hus b enotte	2475	$X \times X \times X$				××××××××××××××××××××××××××××××××××××××					→ → → → → → → → → → → → → → → → → → →		COPY Yellow: CUSTOMER COPY
	CHAIN OF CUSTODY RECORD		1) Ensure proper container packaging.	2) Ship samples promptly following collection.	* 3) Designate Sample Reject Disposition	NU-10-12	I: Lehigh	FAX (208) 783-0891		s Preservative(s)	t	N¥OF OS2H JDH EONH Undle	J X				X					Time:// D. Received by:	Time: /3.00	White: LAB COPY
	CHAI	NOTES:	1) Ensure pr	2) Ship samp	* 3) Designat		Project Name:	(208) 784-1258 FA	ID 83837-0929	Miscellaneous	ted by: (Init.) r Type Table I Containers	Matri From	<u> </u>	87 7	BP 7	BP 7	8					Date: $O/U/$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: (30 Days)
ANALYTICAL	7	75	Petty	Main St.	\cap	9109 0X00	Cre 80-696		Kellogg,	Collection	Date Time		10 8/1 0833	2 8/10835	14 SVI 0230	(ce/0/2 91	vedans d						x	1 [] Dispose [] Store
		Client: GEOSUN	Bria	Address: 2100 M	T.		FAX Number: 114 9	Lab Name: SVL Analytical, Inc.	Address: One Government Gulch,		Sample ID		1. PIPE AT203-	2.P.)PE AT204-1	3. PIPE AT 205-	4. DIPEATOUS-		6,	7.	Σ.	9. 10	Relinquished by:	Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

GeoSyntec Consultants

DRAFT

SOIL LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA.DOC

3 MAR 05/10:50

PORT OF ANALYTICAL RESULT.

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83827-0929 . Phone: (208)784-1258 . Fax: (208)783-089

CLIENT : GeoSyntec PROJECT: HR0196-12 Sample Receipt: 11/09/04 Page 1 of 1 Report Date: 11/23/04 SVL JOB: 114448

SVL ID	CLIENT SAMPL	E ID	As 200.7	ALK 2320B	рН 150.1	Eh 2580	ORG18D 415.1
W426308	AVG-W	^T11/05/04	<0.010mg/L	140mg/L	5.63	+225mV	138mg/L
W426309	AVG-E	^T11/05/04	<0.010mg/L	133mg/L	6.27	+230mV	123mg/L
W426310	PM-1	^T11/04/04	0.031mg/L	1240mg/L	10.20	+118mV	200mg/L
426311	PM-2	^T11/03/04	<0.010mg/L	343mg/L	8.01	+162mV	77.1mg/L
426312	PM-6	^T11/04/04	0.239mg/L	1810mg/L	11.60	+34.OmV	170mg/L
426313	PM-7	^T11/03/04	0.026mg/L	899mg/L	7.74	+141mV	226mg/L
426314	PM8	^T11/04/04	0.058mg/L	733mg/L	8.26	+124mV	176mg/L
426315	PM-10	^T11/03/04	0.021mg/L	368mg/L	7.02	+177mV	112mg/L
426316	PM-11	^T11/03/04	<0.010mg/L	408mg/L	6.94	+183mV	124mg/L
426317	PM-12	^T11/03/04	0.023mg/L	970mg/L	6.64	+193mV	329mg/L
426318	PM-13	^T11/03/04	<0.010mg/L	647mg/L	8.37	+144mV	161mg/L
426319	PM-14	^T11/03/04	<0.010mg/L	390mg/L	9.65	+115mV	72.1mg/L
426320	PM-15	^T11/04/04	0.116mg/L	***	12.00	-206mV	183mg/L
426321	PM-16	^T11/04/04	0.038mg/L	***	12.10	-187mV	113mg/L
426322	PM-17	^T11/03/04	0.029mg/L	1150mg/L	11.30	-76.OmV	104mg/L
426323	PM-18	^T11/03/04	0.076mg/L	***	11.20	-56.OmV	184mg/L
426324	PM-19	^T11/04/04	0.122mg/L	***	11.70	-68.OmV	172mg/L
426325	PM-20	^T11/04/04	<0.010mg/L	***	8.50	+85.OmV	191mg/L
426326	PM-21	^T11/05/04	0.010mg/L	358mg/L	9.92	+31.OmV	46.4mg/L
426327	AVG-W	^D11/05/04	<0.010mg/L	***	***	***	***
426328	AVG-E	^D11/05/04	<0.010mg/L	***	***	本水本	***
426329	PM-1	^D11/04/04	0.033mg/L	***	***	***	***
426330	PM-2	^D11/03/04	<0.010mg/L	***	***	***	***
426331	PM-6	^D11/04/04	0.228mg/L	***	***	***	***
426332	PM-7	^D11/03/04	0.020mg/L	***	***	***	***
426333	PM-8	^D11/04/04	0.024mg/L	***	***	琼水水	***
426334	PM-10	^D11/03/04	<0.010mg/L	***	***	水水水	***
426335	PM-11	^D11/03/04	<0.010mg/L	***	***	***	***
426336	PM-12	^D11/03/04	<0.010mg/L	***	***	***	***
426337	PM-13	^D11/03/04	<0.010mg/L	***	***	***	***
426338	PM-14	^D11/03/04	<0.010mg/L	***	***	***	***
426339	PM-15	^D11/04/04	0.115mg/L	***	***	***	***
426340	PM-16	^D11/04/04	0.099mg/L	***	***	***	***
426341	PM-17	^D11/03/04	0.035mg/L	***	***	***	***
426342	PM-18	^D11/03/04	0.074mg/L	***	***	***	***
426343	PM-19	^D11/04/04	0.126mg/L	***	***	**	***
426344	PM-20	^D11/04/04	<0.010mg/L	***	***	***	***
426345	PM-21	^D11/05/04		***	***	***	***

WA NO. CO74

Reviewed By:____

State: "123/04

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GeoSyntec

SVL JOB No: 114448

	citent .Geosyntee	-							
1-	Analyte	Method	Matrix	Units	Prep Blank	True	-LCSFound	LCS %R	Analysis Date
	Arsenic ALKALINITY pH Eh (mV) DIS. INOR CARBON	2320B 150.1 2580	WATER WATER WATER	mg/L mg/L mV mg/L	<0.010 <1.0 5.72 N/A <1.0	1.00 90.0 5.40 +228 14.0	1.11 91.0 5.39 +232 13.4	111.0 101.1 99.8 101.8 95.7	11/19/04 11/15/04 11/15/04 11/23/04 11/18/04

LEGEND:

LCS = Laboratory Control Sample

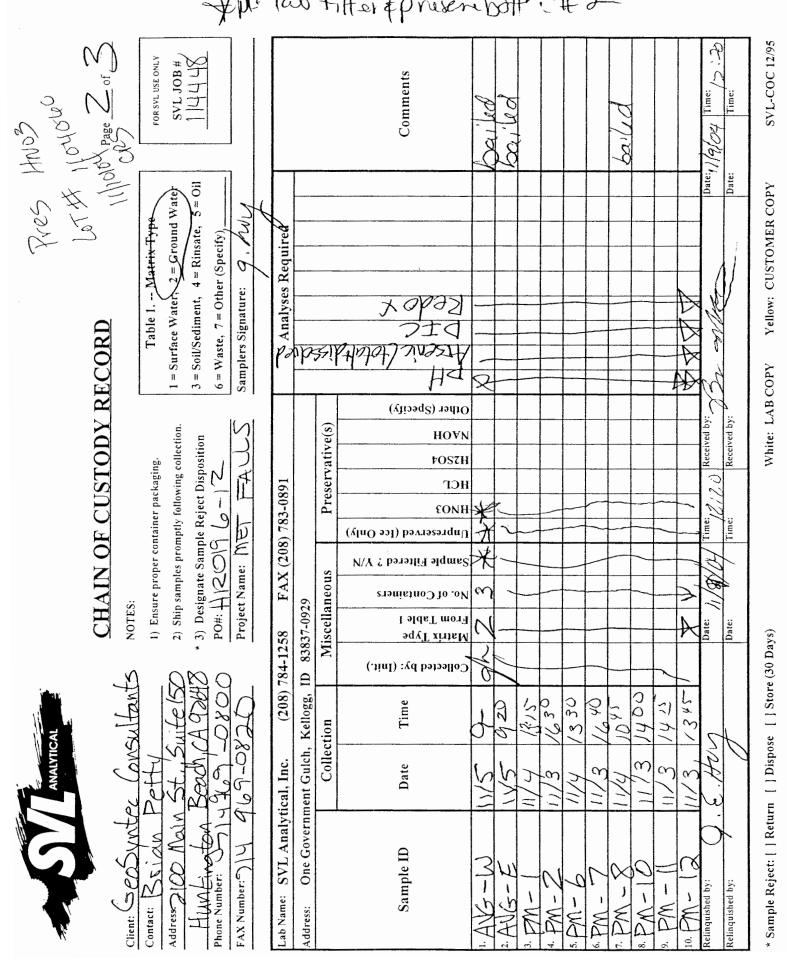
LCS %R = LCS Percent Recovery

N/A = Not Applicable

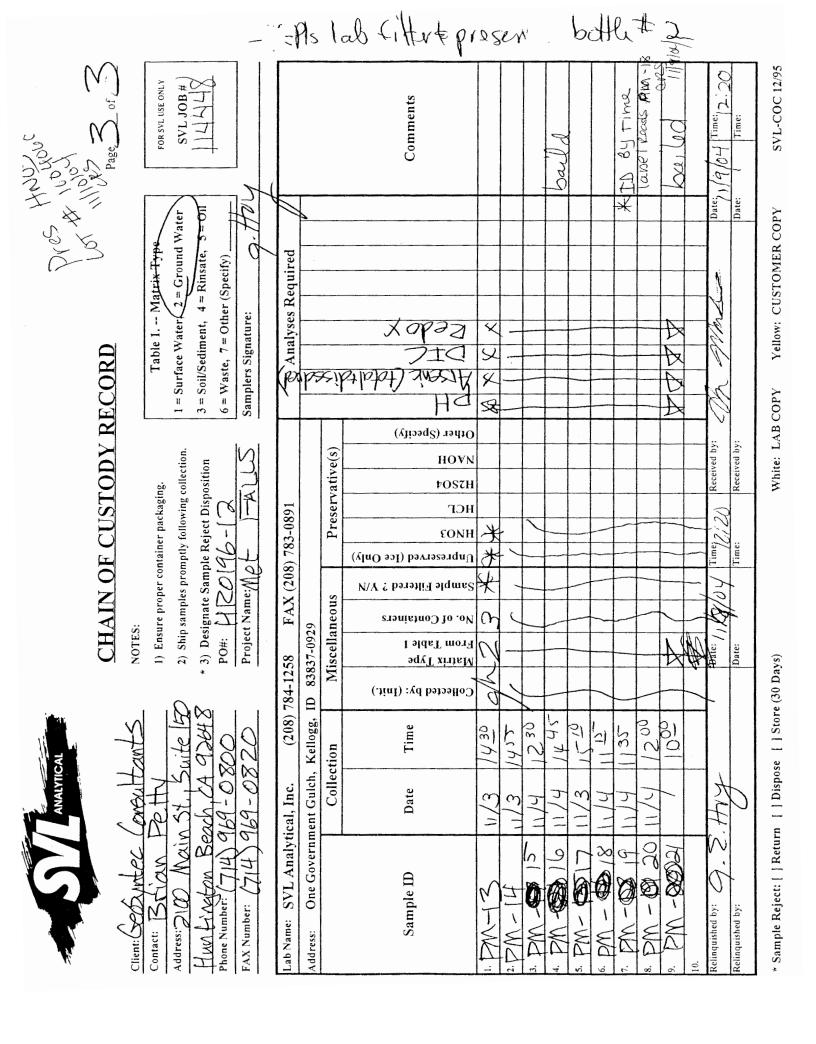
Quality Control Report Part II Duplicate and Spike Analysis

n

Client	t :GeoSynt	ec C SAMP	LE ID	Duplicate	or			SVI atrix Spike		o: 114448 Analysis
≥st N	Method Mtx	Units	Result	Found		RPD%	Result	SPK ADD	%R	Date
As	200.7 W	1 mg/L	<0.010	<0.010		UDL	1.13	1.00	113.0	11/18/04
As	200.7 W	2 mg/L	<0.010	N/A		N/A	1.18	1.00	118.0	11/19/04
As	200.7 W	3 mg/L	<0.010	<0.010		UDL	1.13	1.00	113.0	11/19/04
As	200.7 W	4 mg/L	<0.010	N/A		N/A	1.17	1.00	117.0	11/19/04
ALK	2320B W	1 mg/L	140	132		5.9	N/A	N/A	N/A	11/15/04
pН	150.1 W	1	5.63	5.64		0.2	N/A	N/A	N/A	11/15/04
Eh	2580 W	1 mV	+225	+226		0.4	N/A	N/A	N/A	11/23/04
ORG18D	415.1 W	1 mg/L	138	140		1.4	366	250	91.2	11/18/04


LEGEND:

π


RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPDZ = (SPK - MSD //((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

40 . mil 00 101	110 1 00		s app .	JJ	n one opine	10 41 100		00110	enter ale ron en	o ana joo in the ban	,101	
Control limit	ts for t	he RPD	apply	only i	if the concen	tration of	the analy	rte in	the sample is	at least five times f	the reporting	limit.
QC Sample	e 1:	SVL	SAM	No.:	426308	Client	Sample	ID:	AVG-W	^т		
QC Sample	2:	SVL	SAM	No.:	426318	Client	Sample	ID:	PM-13	^T		
QC Sample	3:	SVL	SAM	No.:	426327	Client	Sample	ID:	AVG-W	^D		
QC Sample	4:	SVL	SAM	No.:	426337	Client	Sample	ID:	PM-13	^D		

Aple lab filler & presenbolle. #2

				TRA	NSMI	5510	DN VE	ERIF	ICA	TIO	N R	EPO	 २т	N F T	IME AME EL ER.	: : : :	SVL 208 208	_ AN 3783 3784	2004 ALYT 0891 1258 4960	
	DATE,TIM FAX NO./ DURATION PAGE(S) RESULT MODE	NAME								917	00: E	690	:35 820							
Page 1 of 2	SVL JOB No: 114448 Received: 11/09/04 Expected Due date: 11/23/04			•															posal options.	sam
SN MALYTICAL, INC. Government Gulch - Kellogg, ID 83837-0929	SAMPLE RECEIPT CONFIRMATION	le By Received Sample Connents	0 GH 11/09/04 0 GH 11/09/04 5 GH 11/09/04	GH 11/09/0 GH 11/09/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/0 GH 11/0	GH 11/C	GH 11/0	GH 11/C	GH 11/	GH 11/C	GH 11/C	GH 11/0 GH 11/0	GH 11/09/0	GH 11/0	5 GH 11/09/04 5 GH 11/09/04	then you	lestions regarding the receipt of

GcoSyntec Consultants

SOIL LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA (2).DOC

28 FEB 05/20:06

.

e e

REPORT OF ANALYTICAL RESULT

One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83827-0929 • Phone: (208)784-1258 • Fax: (208)783-085

SVL ID	CLIENT SAMPLE ID		Fe 6010B	Mn 6010B	As 7060	S-* LECO		
\$343343	FSP-06-5	7/15/03	18900mg/kg	470mg/kg	4.46mg/kg	<0.010%		
\$343344	FSP-18-12	7/17/03	17800mg/kg	353mg/kg	3.00mg/kg	<0.010%		
\$343345	FSP-26-4	7/17/03	***	***	***	***		
\$343346	PM-16-9	7/17/03	***	李公安	***	***	i	
\$343347	PM-16-5	7/17/03	***	举举荣.	***	***	i	
\$343348	FSP-21-10	7/17/03	***	***	常常学	客水客	i	
S343349	FSP-26-8	7/17/03	本杂杂	***	奉本字	孝文字	i	
\$343350	FSP-19-8	7/17/03	20100mg/kg	419mg/kg	4.36mg/kg	<0.010%		

Client :GEOSYNTE	C CONSUI	LTANTS					SVL JOB 1	No: 106756 Analysis
nalyte	Method	Matrix	Units	Prep Blank	True	-LCS-Found	LCS %R	Date
Iron Manganese Arsenic	6010B 6010B 7060	SOIL	mg/kg mg/kg mg/kg	<2.0 0.24 <0.30	11400 534 110	9960 481 115	87.4 90.1 104.5	8/04/03 8/04/03 8/05/03

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

.

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

	ent :GEOSYNTEC	COL	NSULTANTS	5					. SVI	JOB NO	b: 106756
, 1.		ſ	-QC SAMPI	LE ID	Duplicate	or	MSD-	Ma	atrix Spike		Analysis
Tes	st Method Matri:	2	Units	Result	Found		RPD%	Result	SPK ADD	%R	Date
Fe	6010B SOIL	1	mg/kg	18900	19300	М	4.6	20200	1000	R >4S	8/04/03
Mn	6010B SOIL	1	mg/kg	470	551	М	4.8	525	100	R >4S	8/04/03
As	7060 SOIL	1	mg/kg	4.46	7.55	M	4.9	7.93	5.00	69.4	8/05/03
S - 2	LECO SOIL	1	010	<0.010	<0.010		UDL	N/A	N/A	N/A	8/01/03

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution.
RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC Sample 1: SVL SAM No.: 343343 Client Sample ID: FSP-06-5

SVL-COC 12/95	COPY Yellow: CUSTOMER COPY	White: LAB COPY	hite:	≩		l d	Q	$[\bigcirc]$		ays)	(30 D	Store	=	spose	Di	E	Retu		Zejec	* Sample Reject: Return Dispose Store (30 Days)	* Sai		
	Date:	Ņ	Rerrite	Re		Time:	=			Date:						\vdash			p.k.	Relinquistied by	Reling		
202 1000	aver boar and	Y	Received by		:00	Time:		-1/23	1/2	the large						2	Ţ.	\mathcal{W}	Ex.	Relinquished	Reline		
		Ĺ	Γ					×.	~	$\overline{\mathcal{N}}$	$\overline{\mathcal{A}}$	â	D.				5	2,	N.	37	·0]	~	
et.	¥V									0	4	0	P P					Q	()	12	H-	7	7
(astronal)						_		A		5		2	3	<u> </u>				0	10	37	ai ai	$\langle \rangle$	~
the the is that								3		3		0	いちつ					2	N.C.	Ŋ	H.	1	7
(as may) or										M		6	a I A	/				0	à	1.J	Å.	2	
NO that and an	V							R		(¢		0	110	<u>ــــــــــــــــــــــــــــــــــــ</u>					0	n'	H.	2	7
					-			5		0		0	8	/					$\widetilde{\mathbb{D}}$	À	Ť	\mathbf{i}	5
						-	>	n	·	()		S	R	N	710	1			91-	Ń	ħ	5	
(aspined) or						2	>	5		(X	_	0	EA	N	99	7/1			5	à	Ĕ		-
NO the on the							2	N		X	Å	0	Ă	•	CAN I	11/1		~	33	Ľ,	14	2	X
Comments	·	Other (Specify)	ΗΟΫΝ	¢0S7H	HCL	HNO3 Unpreserved (Ice Only)	Sample Filtered ? Y/N		From Table 1	eqt Type	Collected by: (Init.)	ల	Time		Date			£	Sample ID	Sar			
			Preservative(s)	rvat	rese	6		cous	Miscellaneous	lisce	2		uo	Collection	ů								
									0929	83837-0929	1D 83	1 .52	Kellogg,		Gul	nent	vern	One Government Gulch,	1	:55:	Address:		
	Analyses Required				0891	783-0891	(208)	FAX (E	258	(208) 784-1258	08) 7	2		Inc	ical	vler	SVI, Analytical. Inc.	1	Lab Name:	Lab		
	Samplers Signature:							Project Name:	ject N	Pro									er:	FAX Number:	FAX		
	5 SolvSediment, 4 = Kinsate, 5 = Oil 6 = Waste, 7 = Other (Specify)		tion	sposi	ict Di	e Reje	ampl	 * 3) Designate Sample Reject Disposition PO#: 	Dcsigi #:	* 3) De: PO#:									ber:	Phone Number:	Phon		
SVL JOB#	1 = Surface Water, 2 = Ground Water		2) Ship samples promptly following collection.	ug coll	llowir	ptly fo	prom	un ples	ship sa	2) S				+	<u>+</u>	\mathbb{P}	2	N	4	:55;	Address:		
FOR SVL USE ONLY	Table 1 Matrix Type	L		ging.	packa	ainer	er cont	NOTES: 1) Ensure proper container packaging.	NOTES: 1) Ensure	NOV				-		6				ct:	Client: Contact:		
Page of Y	IN OF CUSTODY RECORD	RI	λQ	1 C	SD	Ũ	OF	N	CHA	Ú								1			۰.		
						•						i ar		VIICA	ANAL			L ANALVIC				٠.	
		1																			1		

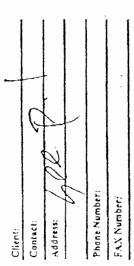
		ANALYTIC	AL MARK									Sec	See on col				
					CH	IIN	OF	CU	STC	DY	N OF CUSTODY RECORD	ORI	2		Page	Ŵ	\$.
	Client: Colory MT	e lan	Mart.	n	NOTES: 1) Ensure proper container packaging.	o hrope	r contai	ner pacl	aging.			Tab		G	FOR SVL 1	FOR SVL USE ONLY	
	Address: 200 Main	5t, g 201 14	arteis	S №	 Ship samples promptly following collection. 3) Designate Sample Reject Disposition 	amples gnate S	promptl Imple J	y follow Zeject I	ing coll Disposi	ectiun. tion		1 = Surface Water 3 ≠ Soil/Sediment,	Water 2 & Ground Water iment, 4 = Rinsate, 5 = Oi	Water 5 = Oil	SVL DOC	TOB#	
	Phone Number: 714-9	0-696	820	- 1 - 1	PO#: HZ Project Name	1 POLA Name: M	120-	(Q)	1 1	Talls	6 = 1 Saml	Vaste, Sig	6 = Waste, 7 = Other (Specify) _ Samplers Signature:				
	Lab Name: SVL Analyti	Analytical, Inc.	(208) 784-1258	84-125		FAX (208) 783-0891	208) 7	83-08	1			٩ı	Analyses Required		-	. :	
	One (tent Gulch,	Kellogg, ID		83837-0929												
		Collection	tion	Mi	Miscellaneo	eous		Pres	Preservative(s)	ive(s)						3	
	•			(יור)													
13	Sample ID	Date	Time							h.	pecify)				Comments	ents	
	,			Collected	Matrix T From Ta	No. of Co	Sample F	EONH	H520¢ HCL	HO∀N	Other (S						
7	- KP-K-K	7/15/03	1400	0			-										- -
	1. 5.2-0.2		011		\mathcal{C}	\sim	-										See see
7	1.45P-03		(730)		\cap			_							-		
7	1. 55 05		Soo		Λ	<	-	-									
7	-1× F57 D6		2000		1	\leq	-										·
51	6. FSP -07	>	000		20			-									
)). '	* #21/0X	NLDR.	200		no				-								
7	1. FP-14		1430		N			<u> </u>									
7	10. FSP-26	X	DOG DOG	X	6	<u> </u>						4					
	Relinquished by: Q.S.	The second			Date:	2103		1 inte: 00 2.00		Received by	Buel	and	$\left(\right)$	Date:	1-07 1-00	000	
	Relinquished by: /													-			
	* Sample Reject: [Return [] Dispose [] Store (30 Days)	n [] Dispo	se [] Store	(30 Da)	(S)	Ĉ		5	*1	'hite: L	White: LAB COPY		Yellow: CUSTOMER COPY	r copy	SVL-O	SVL-COC 12/95	
						5		2							「「「「「「「「」」」	「「「「「「「「「「「「」」」」」」	With States

Page Of Of	FOR SVL USE ONLY	SVLJOR#						Comments								1-05 ^{Time:} DD	SVL-COC 12/95
CORD	Table 1 Matrix Type	1 = Surface Water, 2 Ground Water 3 Soil/Sediment, 4 = Rinsate, 5 = Oil	6 = Waste, 7 = Other (Specify)	Samplers Signature:	Analyses Required											22 (X 1920 - 1) Date: Date: Date:	COPY Yellow: CUSTOMER COPY
HAIN OF CUSTODY RECORD	L	,					tive(s)	Other (Specify) NAOH H2SO4								Received by:	White: LAB COPY
CUST	an nachaolma	 r. rasure proper contained packaging. Ship samples promptly following collection. Designate Sample Reject Disposition 			(208) 783-0891		Preservative(s)	НСГ НИОЗ								1 10 0: <u></u>	
IN OF		noper communities from pt		me:	FAX (208) 7		SUG	Sample Filtered ? Y/N Unpreserved (Ice Only)	\mathbb{Z}	Ś	5	5 2	2			50/12	Joroy
CHAJ	NOTES:) Finsure () Ship san) Designi	PO#:	Project Name:		83837-0929	Miscellaneous	Matrix Type From Table I No. of Containers	\sim	M	M	NN				Date:	(s
	2 -	- N M	<u>-</u>		(208) 784-1258	ID 8383	Mis	Collected by: (lnit.)	6	•							e (30 Day
					(208)		ion	Time					0500				e Stor
ANALYTIC					ical, Inc.	nent Gulch,	Collection	Date	70/07			-5	1.903	<u>.</u>			rn {
B	Client: Contact:	Address: All	Phone Numher:	FAX Number:	Lab Name: SVL Analytical, Inc.	Address: One Government Gulch, Kellogg,		Sample ID	1 P-9-19-1	2 - Hu - 12 - 5-	1. R.P.S O	1. 15, D. 26, 8 X 15, -10 - X	6. PM-16	7. 8.	.6	10, Relinquished by: Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)
	·								/	2	1	/) \				

Ϊ

1620-5.22-2 02 - JAU

				115 124103	S								1				
₩.	SVL JOB #	Sample	heing pult	Sthev Sol	-		Ą	Ĵ	Δ			\cap				Time:	Time:
Page		× T	a de	550°	NY 'EHN		0 1 0	HO/	HOL 10H	X	X	HOL	V		X	Dalei	Date:
	trix Type • Cround Wate Ribsate, 5# (Specify)	equired	(12) 179 15-1	1 Svoir	Laye a	××				XXX	א א א		XXX	×	XXX		
<u>XD</u>	Table 1 Matrix Type 1 = Surface Water, 2 = Ground Water 3 = SoiVSediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Samplers Signature:	Analyses Required	K H M M	-es	19992 199991 210	ζ.				X X X X	XXX	-	XXX	× X X	XXX	~	
RECO	1 = Surís 3 = Soilý 6 = Wast		<u>7</u> 7	DED H	H SEC Older (Spee	X				× ×	× X		× ×	XX	XX); /	by:
CHAIN OF CUSTODY RECORD	NOTES: 1) Ensure proper container packaging. 2) Ship samples promptly following collection. 3) Designate Sample Reject Disposition POH: H [20/41, (2) Project Name M Ptc] 1.41, Tall5	168	Preservative(s)		NVOH HJSO4 HCr											Received by:	Received by:
DF CU	NOTES: 1) Ensure proper container packaging. 2) Ship samples promptly following col 3) Designate Sample Reject Dispos POM: H [D/146 () Project Name/M PLG (), 40 - 75	FAX (208) 783-0891	Pr	(((ce Only)	Unpreserved Unpreserved) . (111) (Time:	Time:
AIN C	re proper contain iamples promptly gnate Sample R - EO 41, Name/MP46	FAX (2)) Jeous	ired ? Y/N	kao ol Conta Sample Filte	\leq	3 2	2	5	\mathbb{N}	\leq	\triangleleft	N V	2	2		
CH	NOTES: 1) Ensure proper 2) Ship samples p 2) Designate Sa POM: + C) Project Name	258	83837-0929 Miscellaneous	1	Matrix Type From Table	M	3	3	$\overline{\mathbf{V}}$	(?	2	ろ	2	3	6	Date:	Dates
	r Rivij		~	(Jinl) :	Collected by	1	-						0	-	X		
4	aultar Add 820	(208	Kellogg	Ē		1400	011	22	NoO NoO	1975	210	10131	Outil	<u>Х</u> н	2		
	D'A L'A	tical, Inc.	ment Guich, Kell			7/15/03						X	FALLOS		8		
	Client: LacoSynt Cc (Contact: Eric Sinals Address: SUD Main St Murk Innton Boch Phone Number: 714.969 FAN Number: 714.969	Lab Name: SVL Analytical, Inc.	Addrus: One Government Guich, Kellogg, ID	٤ - د	Sample IJ	KP.N.K	RP-03	#40.03	F47 :05	E E	70.07	#50-0X	11.02	27.0	10. FSP'36	Reliagaished by:	Reliaquished by i
		1-1	-				1.4.	12	1	<u></u>	9	10	ai ai	10	1-	14	14


SVL-COC 12/95 Vellow: CUSTONIER COPY ", Sel " Orginal Cofy"

White: LAB COPY

ar a than the officer there are

* Sample Reject: |] Return | | Dispose | | Store (30 Days)

$\boldsymbol{\Omega}$
\mathbf{A}
a
$\overline{\mathbf{O}}$
Ē
RECORL
2
I
9
E
\mathbf{N}
CUSTOL
\mathbf{O}
[I]
OF
-
-
\sim

Page 2 of 2

FOR SVL USE ONLY SVL JOB# 106756

(ä
£
F
ò
~

1) Ensure proper container packaging.

2) Ship samples promptly following collection. * 3) Designate Sample Reject Disposition

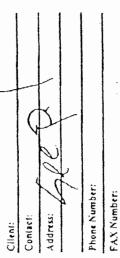
Project Name:

PO#:

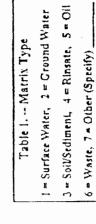
3 = Soil/Sediment, 4 = Rinsate, 5 = Oil 6 = Waste, 7 = Other (Specify) Semplers Signature:

I = Surface Water, 2 = Ground Water

Table 1. -- Matrix Type


Lab Name: SVL Analytical, Inc.	ical, Inc.	(208) 7	(208) 784-1258	8	FAX (208) 783-0891	208) 7	83-08	191				~	(JRU)	ses R	Analyses Required	Pe d		L,		•
Address: One Government Gulch, Kellogg, ID	tent Gulch,	Kellogg, I		83837-0929	-								<u>12</u>	्त्र कर	ち-	7-	-7 71	ZĘ		-1
	Collection	tion	Mi	Miscellaneous	snoəi	_	Pre	Preservative(s)	tive(:	s)			po)		Ξú	<u> </u>	भू भू	, H		
Sample ID	Date	Time	Collected by: (Init.)	Маггіх Туре 1 макт шогд	No. of Containers	Sample Filtered ? Y/N Unpreserved (Ice Only)	EONH	HCL BCL	HOAN \$OS2H	Other (Specify)	HERENZE	-cst	\$ 710	H KUMBAR	Deverments ((179), हुन	TAPOPES UNIT		Comments	
- 42,23	711453	OF	d	0	2						8	Ż	Ý	X X	Y	X	XIX			
「モンノノ	71463	(22)	-	0	N N	210					X	X	¥	X V	\times					
AV-10	71/7/03			5	、	$\frac{1}{2}$	-				$ \neq$	X	X X	X	Х					
£7,78		(m)		0	0						X	X	$\frac{1}{2}$	X	X				-	
00° 224.		$\frac{1}{2}$		Q	3	1					Ý	Ż	3	X	Х					
C1-22-4-19				M						-		X	<u>م</u>		-	X	X			
1,457,33		1 ani		n	0		-				Х	X	X	X	4	Ň	X V	V		
· 40-95		(2002)		5	4														$\sum_{i=1}^{n}$	
。花じ、し		OGAN	5	B	0		~				Х	×	X X	X	X					
h. yeidst in		100001	Ż	5	Y Y													9	27	
Kelinguished by:		1 6 1		Date;		11	1100	ж.	Received by:	9 kc							Datr	ï	Tione:	
Relinquished by:				Date:		Time	net	æ	Received by:	by:							Dates		Tíme:	<u> </u>

* Sample Reject: | | Return | | Dispose | | Store (30 Days)

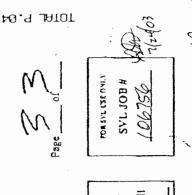

Yellow: CUSTOMER COPY White: LAB COPY

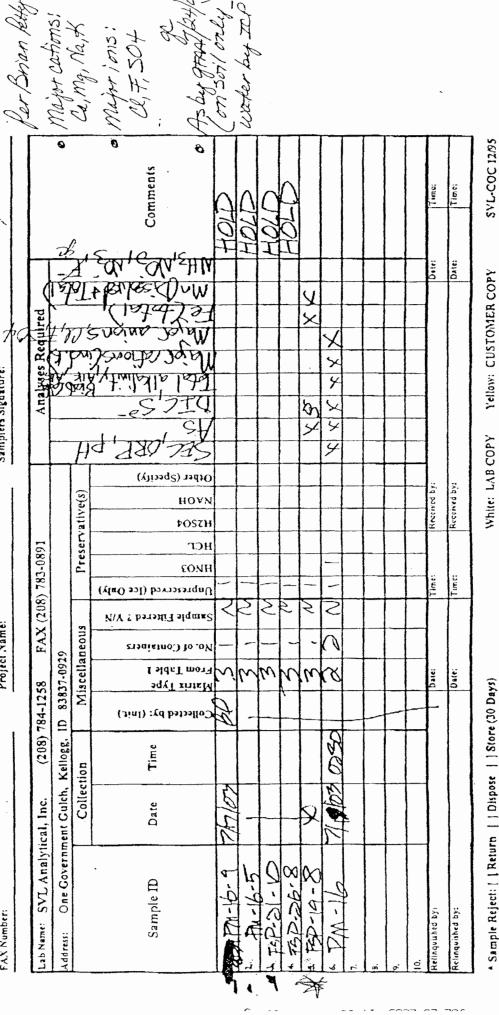
SVL-COC 12/95

2) Ship samples promptly following collection.

1) Ensure proper container packaging.

NOTES:


3) Designate Sample Reject Disposition


Samplers Signature:

Project Name:

PO#:

Page

Sample Reject: [] Return |] Dispose |] Store (30 Days)

Yellow: CUSTOMER COPY White: LAB COPY

GeoSyntec Consultants

GAS LABORATORY DATA ATTACHMENT 1 FOR APPENDIX A

PILOT TREATMENT WALL STUDY 2003 WORK PROGRAM DESCRIPTION AND SUMMARY OF FINDINGS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APA (2).DOC

28 FEB 05/20:06

August 08, 2003

Brian Petty GeoSyntec Consultants 2100 Main Street, Suite 150 Huntington Beach, CA 92648-2460

Subject: Calscience Work Order No.: 03-08-0177 Client Reference: Lehigh

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/5/2003 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerel née Environmental

Calsciance Environment Laboratories, Inc. Stephen Nowak Project Manager

Michae J. Crisostomo Quality Assurance Manager

ANALYTICAL REPORT

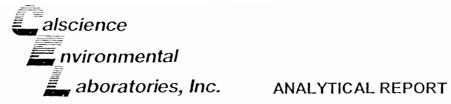
GeoSyntec Consultants	Date Sampled:	08/01/03
2100 Main Street, Suite 150	Date Received:	08/05/03
Huntington Beach, CA 92648-2460	Date Analyzed:	08/05/03
Attn: Brian Petty RE: Lehigh	Work Order No.: Method: Page 1 of 1	03-08-0177 GC/FPD

All concentrations are reported in ppm (v/v).

Sample Number	Hydrogen Sulfide Concentration	Reporting Limit
PIPE AT203-10	3	1
PIPE AT204-12	ND	1
PIPE AT205-14	ND	1
PIPE AT206-16	ND	1
PIPE ATZONS PIPE ATZOZ-2	3, 2	1
Method Blank	ND	1

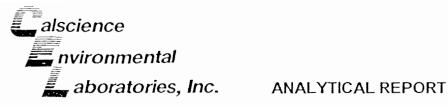
QA/QC

h.M.


Sample Number	Sample <u>Conc.</u>	Duplicate <u>Conc.</u>	<u>%RPD</u>	Control Limits (%)
PIPE AT203-10 (Duplicate)	3.39	3.20	6	0 - 15

GC/FPD pame photo ponization

ND denotes not detected at indicated reportable limit.


Each sample was received by CEL intact and with chain-

7440 Lincoln Way, Garden Grove, CA 92841-1432 ·

GeoSyntec Consultants 2100 Main Street, Suite 150 Huntington Beach, CA 92648-2460		Date Sampled: Date Received: Date Analyzed:	08/01/03 08/05/03 08/05/03
Attn: Brian Petty RE: Lehigh		Work Order No.: Method: Page 1 of 2	03-08-0177 ASTM D-1946
All concentrations are reported in perc	ent (%) by vol	lume.	
Analyte	<u>Concentrat</u>	ion	Reporting <u>Limit</u>
Sample Number: PIPE AT203-10			
Oxygen (O ₂) + Argon (Ar) Nitrogén (N ₂) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 2.0 ND 97.3		0.1 0.1 0.1 0.1
Sample Number: PIPE AT204-12			
Oxygen (O_2) + Argon (Ar) Nitrogen (N_2) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.8 2.6 ND 96.6		0.1 0.1 0.1 0.1
Sample Number: PIPE AT205-14			
Oxygen (O_2) + Argon (Ar) Nitrogen (N_2) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 2.1 ND 97.2		0.1 0.1 0.1 0.1
Sample Number: PIPE AT206-16			
Oxygen (O ₂) + Argon (Ar) Nitrogen (N ₂) Methane (CH ₄) Carbon Dioxide (CO ₂)	0.7 1.9 ND 97.5		0.1 0.1 0.1 0.1

MAMM

GeoSyntec Consultants	Date Sampled:	08/01/03
2100 Main Street, Suite 150	Date Received:	08/05/03
Huntington Beach, CA 92648-2460	Date Analyzed:	08/05/03
Attn: Brian Petty RE: Lehigh	Work Order No.: Method: Page 2 of 2	03-08-0177 ASTM D-1946

All concentrations are reported in percent (%) by volume.

Analyte	Concentration	Reporting Limit
Sample Number: PIPE AT201-8	3	
Oxygen (O ₂) + Argon (Ar)	0.7	0.1
Nitrogen (N ₂)	2.0	0.1
Methane (CH_4)	ND	0.1
Carbon Dioxide (CO ₂)	97.3	0.1
Sample Number: Method Blan	K	
Oxygen (O ₂) + Argon (Ar)	ND	0.1
Nitrogen (N_2)	ND	0.1
Methane (CH_4)	ND	0.1
Carbon Dioxide (CO ₂)	ND	0.1

QA/QC

Sample Number: Laboratory Control Sample

Analyte	Sample <u>Conc.</u>	Duplicate <u>Conc.</u>	%RPD	Control Limits (%)
Oxygen (O ₂) + Argon (Ar)	18.5	18.5	0	0 - 30
Nitrogen (N ₂)	70.5	70.9	1	0 - 30
Carbon Dioxide (CO ₂)	5.50	5.51	0	0 - 30

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL intact and with chain-of-custody attached.

hu

WORK ORDER #:

03-08-0177

Cooler <u></u> of <u></u> σ_

SAMPLE RECEIPT FORM

CLIENT: GEOSIMEC	DATE: 5/5/->
TEMPERATURE – SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	· · · · · · · · · · · · · · · · · · ·
Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A): Initial:
SAMPLE CONDITION:	
	Yes No N/A
Chain-Of-Custody document(s) received with samples	
Sample container(s) intact and good condition	
Correct containers for analyses requested	
Proper preservation noted on sample label(s)	
VOA vial(s) free of headspace. Tedlar bag(s) free of condensation	
COMMENTS:	
·	

-	Page of		FOR SVL USE ONLY	SVL JOB #							Comments								-			[Time:	Lime:	SVL-COC 12/95
(210)	ECORD		Table 1 1		3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	$b = Waste, \gamma = D ther (Specify) (Jet)$	Samplers Signature: /	Analyses Required		da D	more more ixorbrodr bit hus b enotte	247	$X \times X \times X$				××××××××××××××××××××××××××××××××××××××					→ → → → → → → → → → → → → → → → → → →		COPY Yellow: CUSTOMER COPY
	CHAIN OF CUSTODY RECORD		1) Ensure proper container packaging.	2) Ship samples promptly following collection.	* 3) Designate Sample Reject Disposition	NU-10-12	I: Lehigh	FAX (208) 783-0891		s Preservative(s)	t	N¥OF OS2H JDH EONH Undle	J X				X					Time:// D. Received by:	Time: /3.00	White: LAB COPY
	CHAI	NOTES:	1) Ensure pr	2) Ship samp	* 3) Designat		Project Name:	(208) 784-1258 FA	ID 83837-0929	Miscellaneous	ted by: (Init.) r Type Table I Containers	Matri From	<u> </u>	87 7	BP 7	BP 7	8					Date: $O/U/$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: (30 Days)
ANALYTICAL	7	75	Petty	Main St.	\cap	9109 0X00	Cre 80-696		Kellogg,	Collection	Date Time		10 8/1 0833	2 8/10835	14 SVI 0230	(ce/0/2 91	vedans d						x	1 [] Dispose [] Store
		Client: GEOSUN	Bria	Address: 2100 M	T.		FAX Number: 114 9	Lab Name: SVL Analytical, Inc.	Address: One Government Gulch,		Sample ID		1. PIPE AT203-	2.P.)PE AT204-1	3. PIPE AT 205 -	4. DIPEATOUS-		6,	7.	Σ.	9. 10	Relinquished by:	Relinquished by:	* Sample Reject: [] Return [] Dispose [] Store (30 Days)

GeoSyntec Consultants

APPENDIX B

SUMMER 2004 INVESTIGATION WASHINGTON DEPARTMENT OF ECOLOGY

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/HR0196-14-02-03-АРРА.DOC

2/22/2005/15:51

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

4601 N. Monroe Street • Spokane, Washington 99205-1295 • (509) 456-2926

October 25, 2004

Mr. Eric Smalstig, P.E. GeoSyntec Consultants, Inc. 2100 Main Street, Suite 150 Huntington Beach, CA 92648

Dear Mr. Smalstig:

The Washington Department of Ecology (Ecology) has completed the seep and pile toe investigation at the Closed CKD Kiln Dust Pile located in Metaline Falls, Washington. Drilling was performed by Cascade Drilling, Inc. on July 20 and 21, 2004, with seven borings completed at the pile toe and three borings in the south rill area. Temporary well screens were placed in six of the borings in the toe area. Groundwater was withdrawn from the wells with a peristaltic pump. Groundwater was collected into a laboratory jar from each temporary well. A calibrated Orion pH meter was used to measure the pH and the measurement was recorded. The wells were allowed to equilibrate to the end of the day at which time water levels were measured. The groundwater levels were measured with an electronic water meter to the ground surface on the north side of each temporary well. The temporary wells were abandoned with hydrated bentonite chips to ground surface in accordance with WAC 173-160. Table 1 presents the pH measurements from the temporary wells.

The three borings completed in the south rill area were used to assess the presence of seeps. Soil samples were continuously retrieved from the borings with a four-foot core sampler lined with a clear plastic insert. A visual assessment of soil moisture was made prior to slicing open the plastic insert. Areas of the samples that appeared to be moist to wet were cut from the sampler prior to slicing the sample tube open. The cut samples, typically six inches in length, were covered with Teflon sheets and capped with rubber ends. The sample interval was measured and recorded on the sample. The samples were submitted to the laboratory for physical testing, which included moisture density, moisture content and percent passing the number 200 sieve. Given the field observation of the soil, a full sieve analysis was not requested since a majority of the soil appeared to be silt with fine sand. The laboratory results are presented in Appendix A.

The soil moisture results show that the soil samples were wet, but not saturated. Based on the investigation results in the south rill, Ecology does not believe the "seeps" area as described in the draft feasibility study technical report is a significant source of groundwater. Soil moisture contents ranged from 19.6 percent in boring EB-8 at 11 feet below ground surface (bgs) to 25 percent in boring EB-10 at 19 bgs.

Mr. Eric Smalstig, P.E. October 25, 2004 Page 2

During the drilling of boring EB-10 located in the south rill, an apparent cement kiln dust (CKD) interval was encountered at 18 feet below ground surface. A paste pH was performed on the material by adding a minimal amount of distilled water to the material inside a jar. A pH strip was used to measure the pH and the resulting pH was shown to be 11.5-12 standard units (SU). Based on visual observation, the pH measurement, and physical characteristics of the material, the sample was determined to be CKD and was submitted to the analytical laboratory for analysis. The analytical parameters included calcium, potassium, magnesium, and manganese. Sample results indicated the material was mostly calcium, which is similar to the CKD information provided by Lehigh.

Additional analytical laboratory testing was performed on the CKD sample. A series of 40 milliliter (ml) vials were prepared with measured amounts of CKD in increments ranging from 0.5 grams to 15 grams. Twenty milliliters of groundwater collected from background monitoring well MW-11 were added to each vial. The vials were tumbled in a TCLP tumbler overnight. A calibrated pH meter was used to measure pH in the water after the sample was allowed to settle. The water was filtered in order to remove any suspended solids that may have affected the pH measurement. Following filtration, an additional pH measurement was performed and recorded. The two separate pH measurements were very similar. The pH values ranged from 9.8 standard units (SU) for the 0.5 gram filtered sample to 11.79 SU for the 12 and 15 gram filtered samples.

The resulting filtrate of the 0.5 gram, 1 gram, and 2 gram samples were tested again with the same procedure discussed above. A reduction in pH was observed in the three samples. The procedure was repeated a 3rd time and additional reduction in pH was observed. The pH values went from 9.8 SU to 7.49 SU in the 0.5 gram sample and 11.08 SU to 9.38 SU in the 2 gram sample. Based on the observed reduction in pH, dilution ratios were developed for the material. The first ratio suggests 10:1 water versus soil mixture is necessary to observe an appreciable reduction in water pH. The second ratio demonstrates that 80:1 water versus soil mixture is required to reduce the pH near neutral. The test results are presented as Appendix B.

James A. Sewell and Associates completed a civil survey of the boring locations. The boring were surveyed for horizontal and vertical location and placed on GeoSyntec's site map. Groundwater elevations were tabulated from the data for the temporary wells and existing monitoring points. Based on the elevations, the groundwater flow direction is to the northeast with a strong northerly flow component. This flow direction is oblique to parallel with the pilot treatment wall and may account for the limited treatment observed near MW-9 and the perceived downgradient direction of the wall.

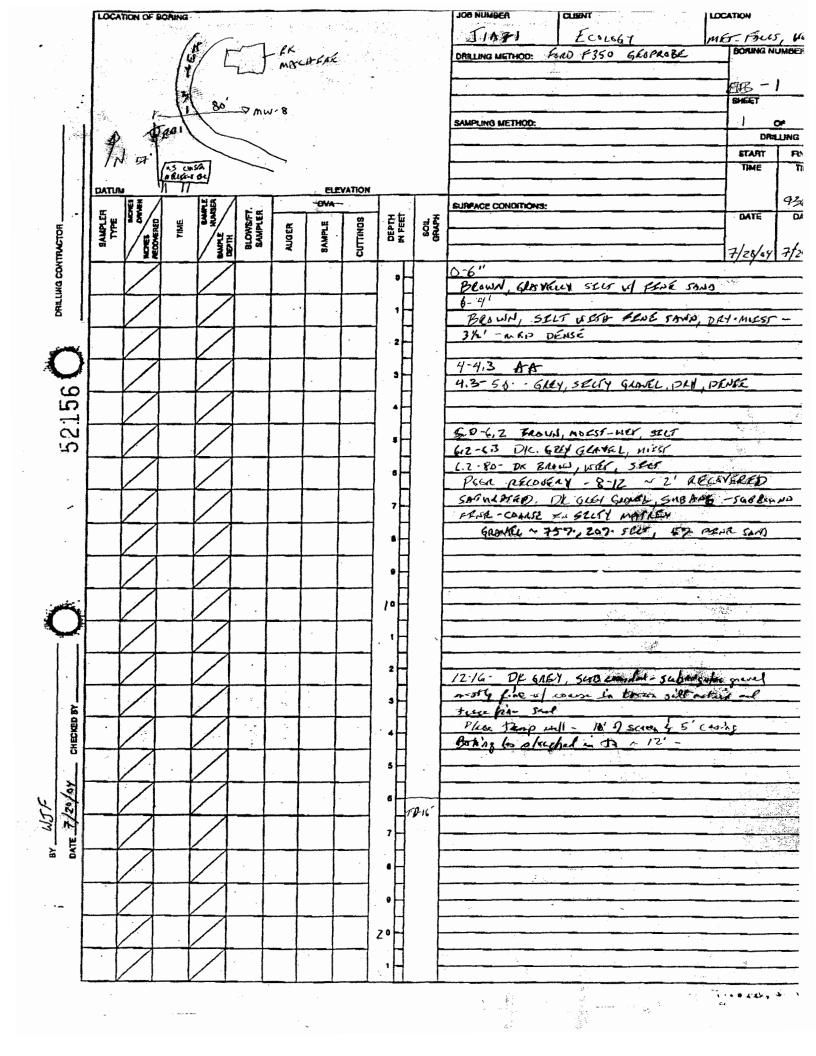
Based on the investigation results, Ecology concludes that the inundated area is the major source of groundwater contamination observed at the Site. The CKD is mostly calcium and not potassium as modeled using the Geochemist's Workbench. The pH values observed at the toe area in the temporary wells suggest that pH increases toward the central portion of the pile and decreases near the edges. While the pilot treatment wall

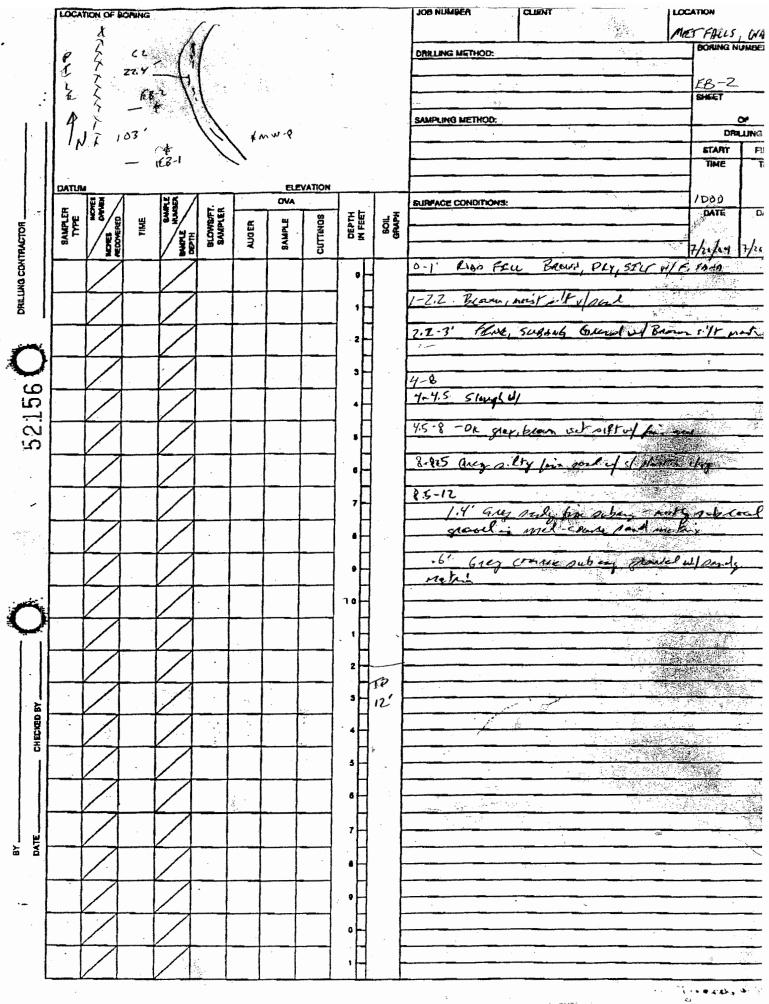
Mr. Eric Smalstig, P.E. October 25, 2004 Page 3

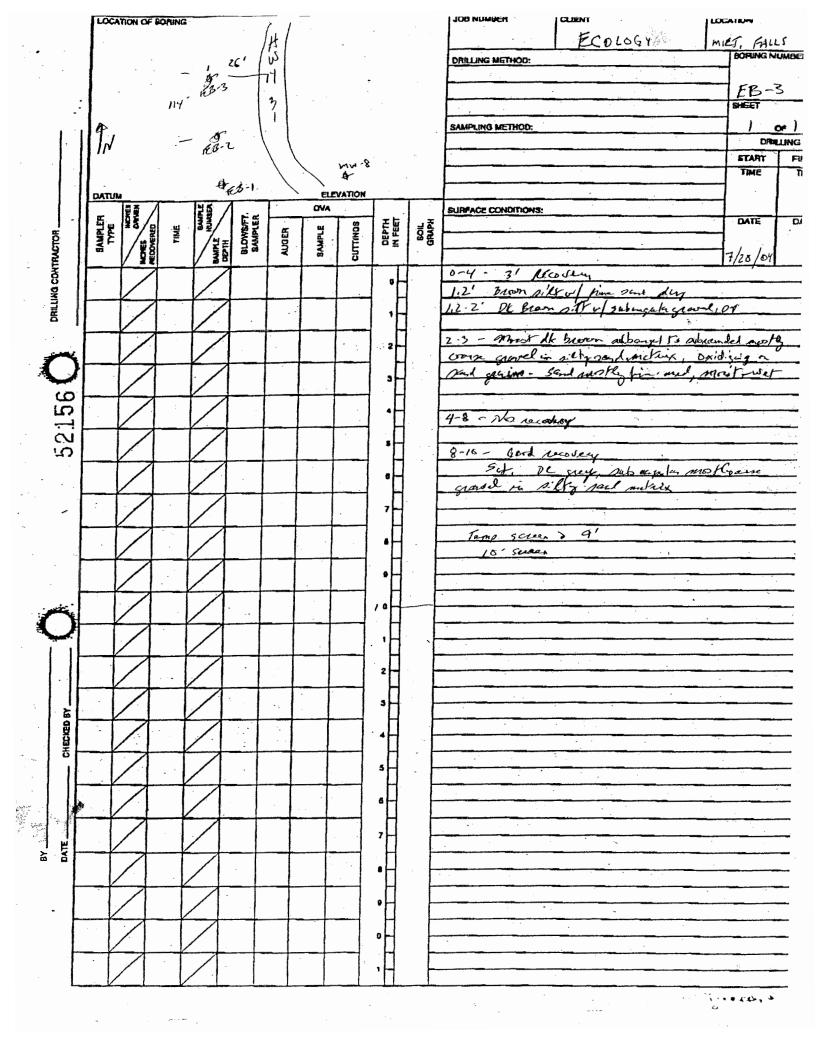
appears to be effectively treating high pH groundwater, the wall orientation does not provide the best opportunity to observe downgradient treatment.

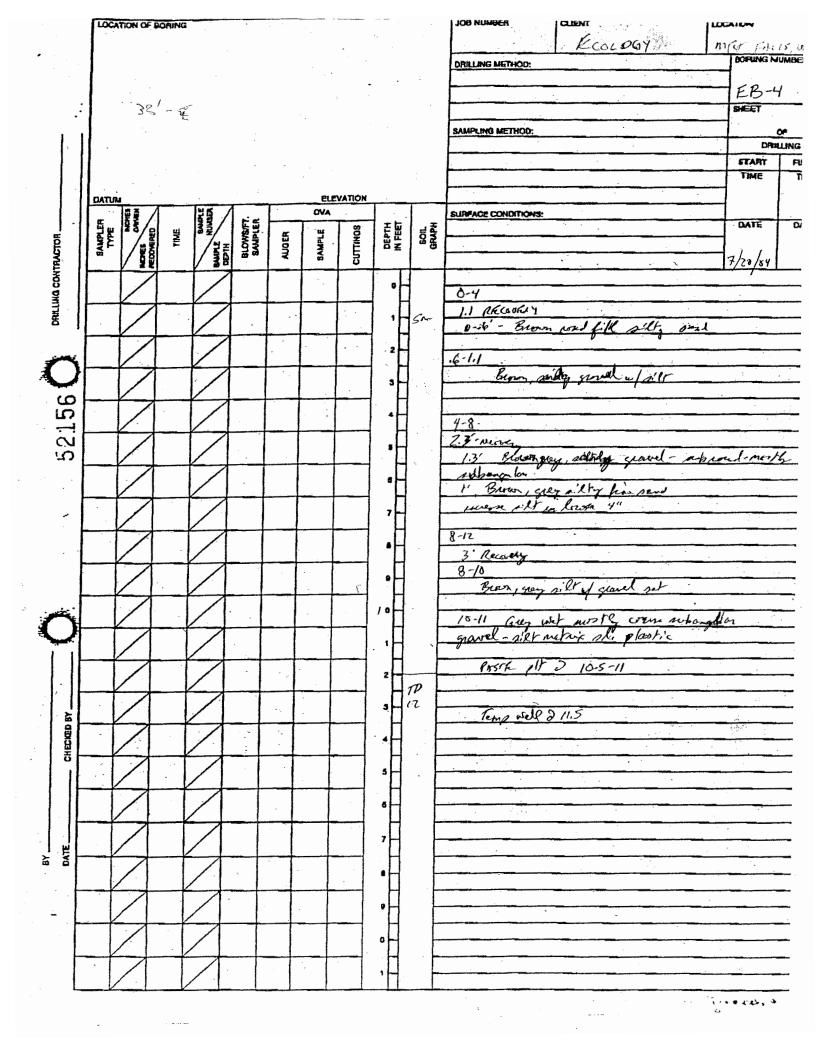
If you have any questions, please contact me at (509) 329-3589.

Sincerely,

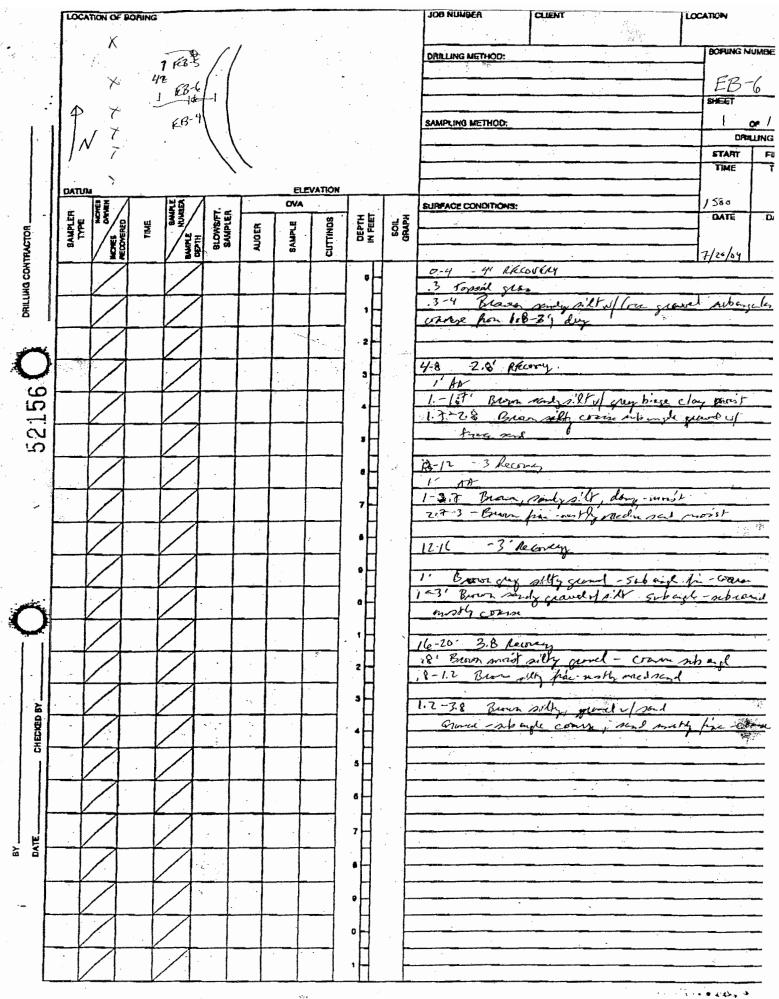

William & Beer

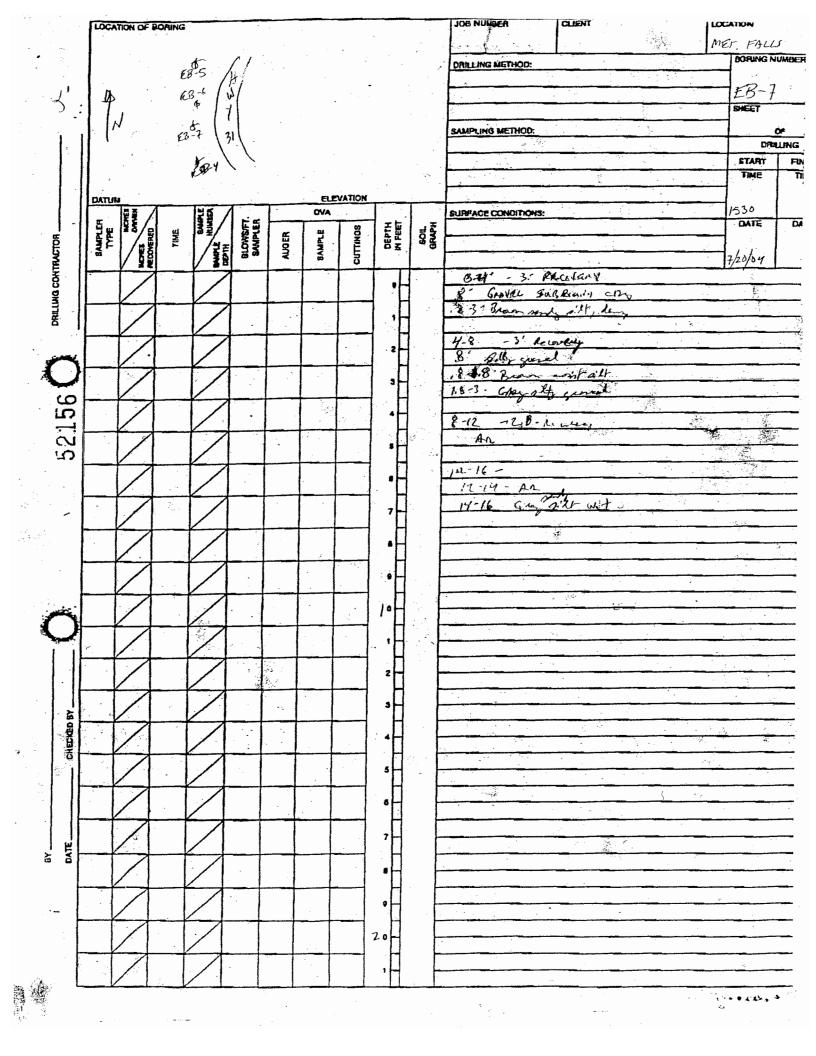

William J. Fees, P.E. Environmental Engineer Toxics Cleanup Program

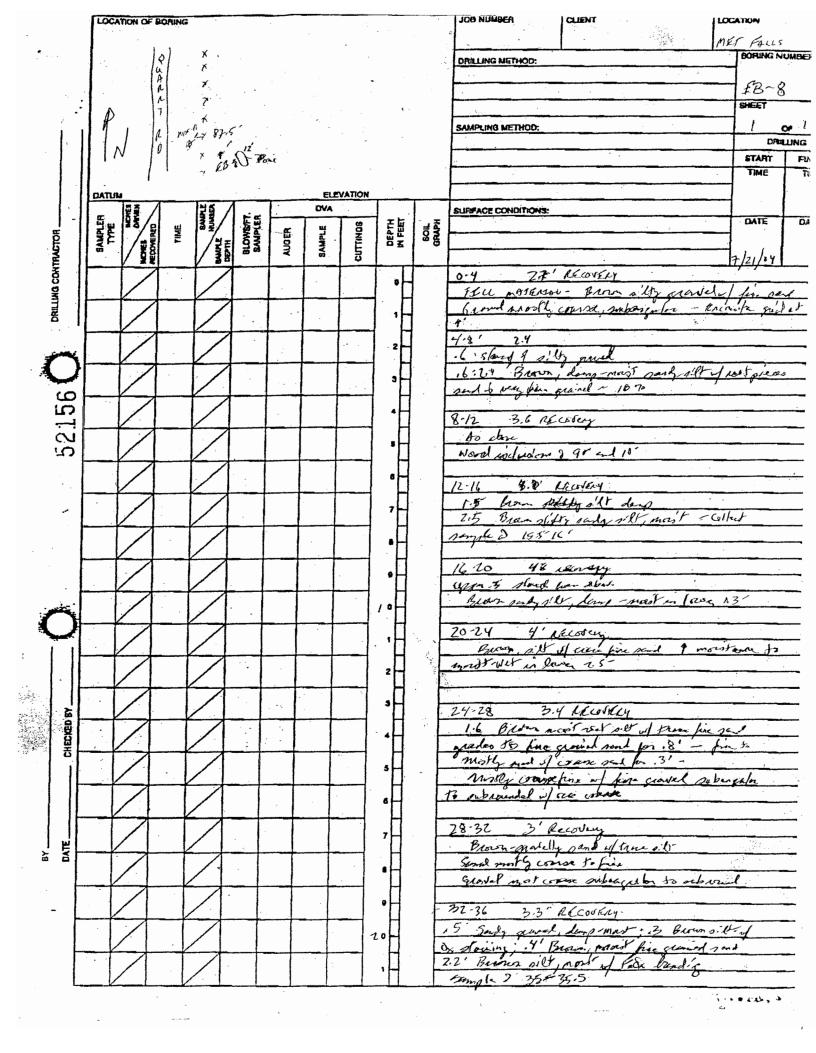

CC: Elizabeth Mikols – Lehigh Portland Cement Company Jay Manning – Brown Reavis & Manning Andy Fitz - AAG


TABLE 1 LEHIGH PORTLAND CEMENT COMPANY METALINE FALLS, WASHINGTON PH MEASUREMENTS

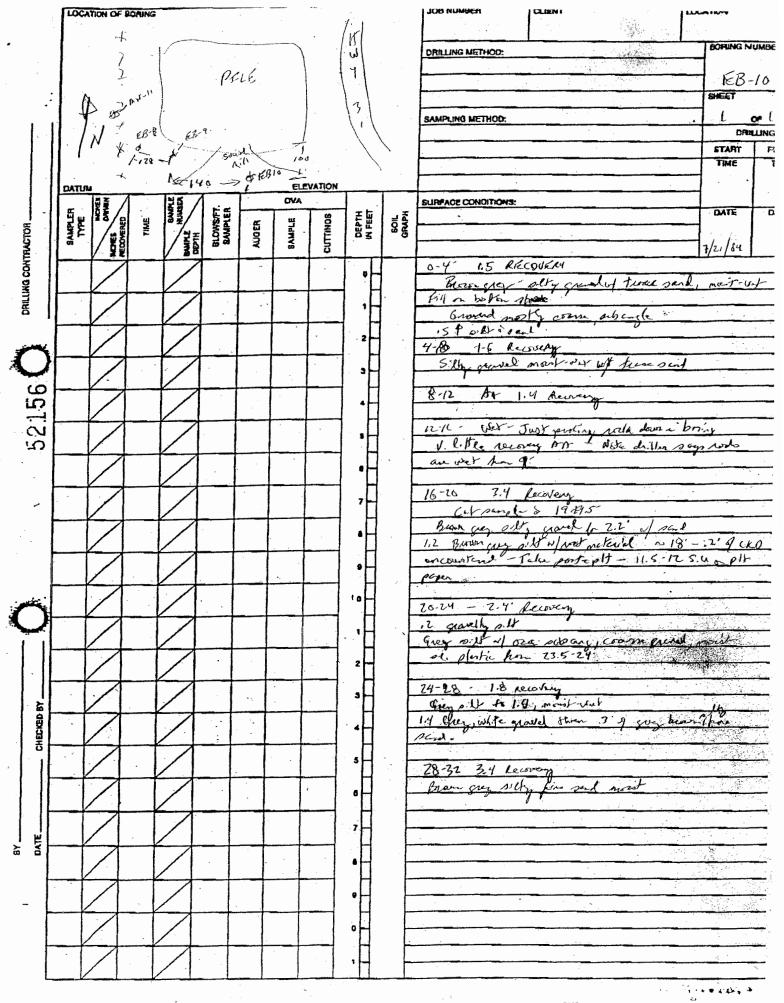
EB-1	10.14
EB-2	N/A
EB-3	8.87
EB-4	12.86
EB-5	9.99
EB-6	11.48
EB-7	12.86








	LOCA	TION OF	DORING									JOB NUMBER CLIENT LOCAT	NON	
·					321							ME	FALUS	۴.
•		. ×/		E3 55	. /	11					۰. ۱	DRILLING METHOD:	OFFING N	UMERE
		· Z		2510	. 1	1			-					
		, ×		Y		- ·							EB-5	
	130			15-						÷			HEET	
1 1		70	5-06-0	R		· ·						SAMPLING METHOD:	_	OF LUNG
		1 7		20.	3	.					· •		START	F
	11				· \								TIME	Ti
	DATUM	<i>F</i> '				$\langle \rangle$	EU							· .
			7	25	1	T	OVA	:				SUPPAGE CONDITIONS:		
	BAMPLER	25/9	TIME	32	E E	æ	1 5	80	HL	IN FEET	SOIL		DATE	Da
- E	₹¢	MEDONERU	Ē		BLOWSFT.	AUGER	SAMPLE	CUTTINOS	ä	ž	3 E		6.1	
E S		1 1		1 30	[]. 	12.		0		-+			10/01	
DRILLING CONTRACTOR								1		۰H		-36 RECOURNY		
ILLIN				17	1	<u> </u>				.H	:	Q-i7' Bran will foot gove		
5		<u> </u>		V			·	ļ		'Π		Trade Second		
	•	/	.1	1].	1		1.		гH	· .	.7-36 Bern for sal silve dans		-
\sim		<u> </u>	ļ	K-				┼──	-	Η		1 see growed - fin grind and mythe		
					· ·			l .		١H		4.8- 2.5 Recolory		
90		1		17				<u> </u>		П	_[1" PULICIES POCK 1-2' Moist.	2	4
52156				1/-				ļ		Ц	ļ	1.5 Brown, sendy a'lt w/ some ox Ash ciclusions in 1-2 moistan	·	
N N										H	.	Ash ciclusions in 1-2 mostora	-	
.7.7	 ł			K				<u> </u>	-	Η	ł	1 Blow of electric all free as fronts	1.50	D
	.	/:				· .	• •			Η	ŀ	1º Estour, of plastic silt pant sponto. piecos - Fe ay		84
		7		./	· •				Ι,		Ę	15- Greymostly course abragled growel of	alle	
	<u> </u>			Z,			;			H		and dy matin		
-									•	Η	-	12-16 Zob heurey	34) 170	1.51
	*				_					H	ŀ	1. Come grange as above	2	
		$\langle $										1 202' constain down, sandy granted subary	(-abba	ind
· mater				\land					10	Н	· -	mostly cross mond - fix - mostly five at	better	
\cap	ł		·							H.	ŀ	2.2.2.6 Burn platit cluga sit if o	ri.	
						(. [. 1	H	- F	mb ang crews period of more nond	<u>.</u>	
					:.				1.	Ц	E			
										Ц	. [K-20° 2' RELOVEN	<u>.</u>	
	• •						2		.5	Η.		Bran, days all restrict of crown	hangli	, y e
	K	1				· · ·				Η	F	cover of nover mut		<u> </u>
HECKED					-	-			- 4		Ē	14 Brown with fin Dance		
		1	Ĩ						5					
· -		$ \rightarrow $					+				Ē	28-24 - 4' RECORCEY Some along		
			.				· · · .		6	-	-	Bur gayan		
	<u></u>	オ										22. 24 pro fin age we de. 1		.
BY									7		Ľ		75-12	à
		\wedge								_	1	Porgen Vigella		
F		4								-	× F		T-	in an
_										-	ai -	Ticke render of our parts	100 C	
F		1		-						1		A COUNT OF THE O		1
				_					20		· E	pH- 85		11
		\wedge		\wedge					1	的管			<u> </u>	
· L	-V							š		<u> </u>			-/	\vdash
			-			j.							1	·/
	-			-									1	1



_.... e

Senttle 11720 North Crock Plwy N. Suite 400, Bothell, WA 99011-5244

425.420.5200 fax 425.420.5210 Spukent 11822 5. tot Avenue, Spokene Valey, VA 00200-5302

509,924,9200 fex 509,924,9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97006-7132 503,906-9201 Av. 553 S06-9210

Bend 2/1332 Empire Awrule, Suite F-1, Bend, OR 97701-5711

Effect of Dilution upon pH=Lehigh Site

807.593.9209 fax 907 583 9240

Stock pHs				
S4H0082-01	Water	MW-1	pН	7.03
S4H0082-02	Water	PM-16	pН	11.6
S4G0136-01	Soil	EB- 10-18'	pН	11.65

NCT - 1 2004

S4G0136-01 (EB-10/18') + S4H0082-01 (MW-1)

WT+VOL	рН	Filtered pH	Used Soil + 20ml (MW-1)	2nd Filtered pH	2nd Used Soil + 20ml (MW-1)
				7.10	
0.5g + 20ml	10.04		7.97	7.49	
1.0g + 20ml	10.81	11.02	9.72	9.23	
2.0g + 20ml	10.93	and the second	10.39	and the second s	9.38
5.0g + 20ml	11.17	11.33	10.99		
10g + 20ml	11.46	11.57			
12g + 20ml	11.78	11.79			
15g + 20ml	11.65	11.79			
	2 4 10 20 40 80 120	11.46 11.17 10.93 10.81 10.04 7.97 7.49		o 100 Dilution Ratio	• Series1

A sample of soil supplied by Bill Fees of WADOE was diluted with water from a monitoring well (MW-1) to determine the effect of water washing upon pH.

A series of 40 milliliter vials were prepared by adding small amounts of soil to each one in incremental amounts from 0.5 grams to 15 grams. Twenty milliliters of water were added to each vial and the vials were tumbled end-over-end in a TCLP tumbler overnight. A calibrated pH meter and electrode were used to measure pH in the water after the sample was allowed to settle. Additionally, pH was meadured on the water after filtration to eliminate any affect from soil fines that may have remained suspended in the water.

In addition, the first three soil samples were tumbled again with new 20 milliliter portions of water and pH was measured in the water after settling. This procedure was repeated twice for the first three samples.

Measurements have been summarized in the table above. Also, we made a plot of pH versus dilution ratio.

Two observations seem to be pertinent:

A ratio of 80:1 water versus soil is necessary to reduce the pH to near neutral.

A ratio of 10:1 water versus coil is necessary to see any appreciable reduction in pH in the water.

North Creek Analytical, Inc. Environmental Esboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

Department of Ecology 4601 Monroe St. Spokane WA, 99205-1295

Project: Leiteck Project Number: J1A71 Project Manager: Bill Fees

Reported: 08/09/04 17:18

Total Metals by EPA 6010/7000 Series Methods

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
EB-10/18' (S4G0136-01) Soil	Sampled: 07/21/04 00:00 R	eceived: 07/23	6/04 12:47						
Calcium	246000	250	mg/kg dry	25	4080035	08/04/04	08/05/04	EPA 6010B	
Potassium	573	0.500	•	1	•	•	-	-	
Magnesium	10100	0.400	*		•	-	-	-	
Manganese	226	0.400	-	-	•	*	-	-	

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

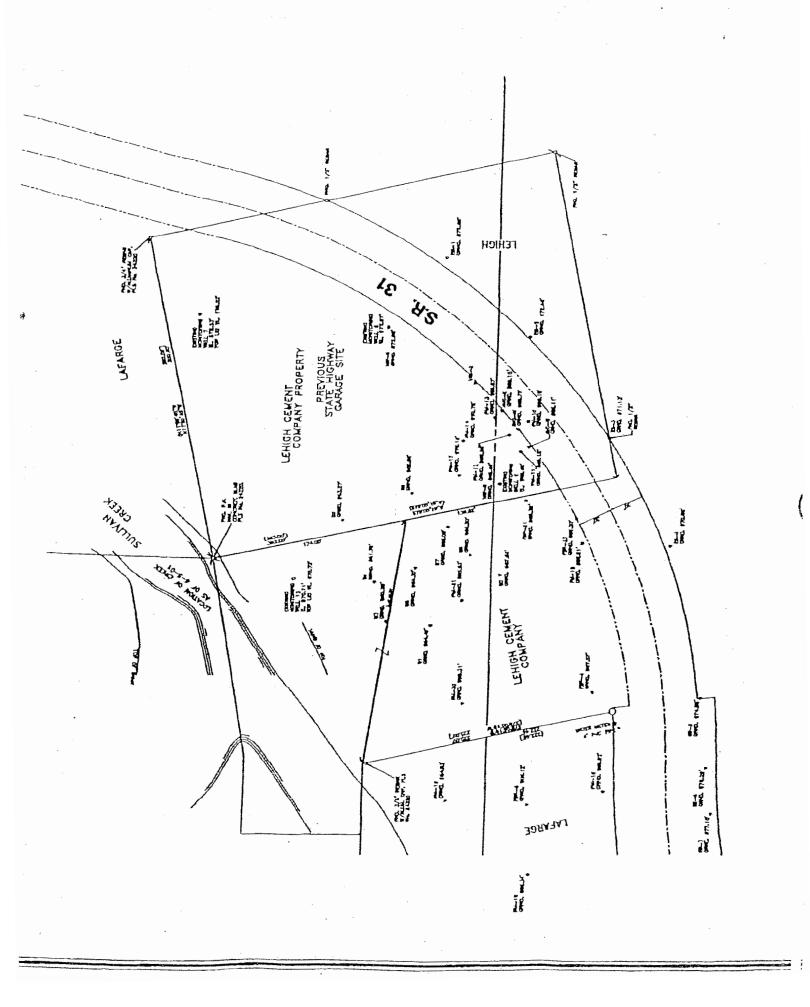
> North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 5

Dennis D Wells, Laboratory Director

aboratory Director

No. Elb-8 Elb-9 Location. V 0T 0T/26/04 Location. Unation. V 0T 15-117 15-5-16.0 35-35.5 Elb-9 V 0T 11.2-11.7 15.5-16.0 35-35.5 50.18 65.05 Virtual (g) 5.59 6.03 6.34 65.05 50.18 50.12 Virtual (g) 5.54 0.03 6.34 65.05 35-35.5 50.18 Virtual (g) 5.54 0.03 6.34 6.50 35-35.5 50.18 50.18 50.17 23.92 Virtual (g) 2.543 27.06 0.2525 0.2655 0.2655 50.17 23.46 50.17 Virtual (g) 2.543 27.43 302.1 27.47 23.64 50.17 23.65 Virtual (g) 2.543 2.74.3 302.1 27.45 23.64 50.17 Virtual (g) 2.26.1 175.9 715.9 717.5 27.4 50.17 23.65				Determinatio	ons for Ring	Sample with	I.D of 2.416	ns for Ring Sample with I.D of 2.416" Obtained per ASTM D 3550-01	er ASTM D	3550-01	
Location: dot: N. Monries St. Spokane, WA Date Due: ASAP Terrete Str. EB-3 EB-3 EB-3 EB-3 Terrete Str. Terrete Str. S-55.5 18.0-16.5 19.0-19.5 0.7127/0.4 Terrete Str. S-55.5 18.0-16.5 19.0-19.5 0.7127/0.4 Terrete Str. S-55.5 18.0-16.5 19.0-19.5 0.727/0.4 Terrete Str. S-55.5 18.0-16.5 19.0-19.5 0.727/0.4 Terrete Str. S-50.5 0.03 5.91 454.19 EF EF S-50.5 0.265.3 111.9 F EF 2.7.33 A.12.6 111.9 F 2.4.4 1.12.6 1.11.9 A.2.1 2.25.3 2.14.31 2.27.3 2.14.31 2.14.31 A.2.1 2.83.5 2.43.3 2.43.3 2.14.31 2.14.31 A.3.2 2.83.4 2.83.5 2.84.5 2.85.7 2.85.7 A.15.6 2.81.7 0.11.9 Molt fine sand, Milh fine sand, Milh fin	Owner:				File No.:	8000-001-45		Date Submitted:	107/23/04	Renorded To:	
EB-3 EB-9 EB-10 Date Combased: ()7/2/(d) Cheerer Byc. EB-3 EB-9 EB-10 Bate Combased: ()7/2/(d) Cheerer Byc. 35-35.5 18.0-16.5 19.0-16.5 19.0-16.5 ()0.0212 Cheerer Byc. 35-35.5 18.0-16.5 19.0-16.5 19.0-16.5 ()0.0212 Cheerer Byc. 501.61 457.21 3.51.1 ()0.0225 2.0327 2.03.2 2.13.3 51.72 2.03.2 2.43.31 2.03.43 Cheerer Byc. Cheerer Byc. 7.0 0.02255 2.44.31 A EF 3.43.43 Cheerer Byc. 7.12.61 2.03.7 2.24.31 2.03.43 Cheerer Byc. Cheerer Byc. 0.17 2.03.7 2.24.31 Cheerer Byc. Cheerer Byc. Cheerer Byc. 0.11 E6.7 84.56 Cheerer Byc. Cheerer Byc. Cheerer Byc. 0.1017 -93.2 2.23.7 2.23.7 Cheerer Byc. Cheerer Byc. 0.1017 -93.2 2.23.7<	Client	Department of	Feology Eastern	Regional Office	- T-	4601 N, Monroe S	1. Spokane, WA	Date Due:	ASAP	Tested By:	GT GT
EB-9 EB-10 EB-3 EB-9 EB-10 501.81 457.27 454.19 5 501.81 457.27 454.19 5 50.82 26.02 25.02 26.03 450.16 50.82 26.02 27.33 454.19 5 50.9 6.00 0.066.5 10.01 5 2.8.32 28.62 27.33 456.3 5 0.722.9	Date	07/26/04 -						Date Completed:	07/27/04	Checked By:	
EB-6 EB-9 EB-10 S55.5 18.0-16.5 9.0-19.5 5.91 6.0-19.5 5.91 7.91 <t< td=""><td>Tested by</td><td>GT</td><td></td><td>-</td><td></td><td></td><td>Î.</td><td></td><td></td><td></td><td></td></t<>	Tested by	GT		-			Î.				
EB-3 EB-9 EB-10 35-35.5 18.0-18.5 19.0-18.5 19.0-18.5 5.60 6.03 5.91 5.91 5.50 6.03 5.91 5.91 5.50 6.03 5.91 26.62 27.93 5.51 2.8.62 27.93 5.91 5.91 2.8.62 0.03 5.91 26.62 77.93 472.6 111.63 7.93 214.31 7.93 A DD FF 214.31 7.95 A DD FF 20.1 214.31 A DD FF 214.31 7.95 A DD FF 22.45.72 2.95.7 A DD FF 22.45.72 2.91.7 A E5.74 84.56 7.9	Boring No.										
35-55 180-165 159-10 50.181 457.27 454.19 591 5.00 6.03 5.91 59.19 5.00 6.03 5.91 456.3 5.01.81 457.27 454.19 591 5.00 6.03 5.91 456.3 6.00 5.03 5.91 426.3 6.02 5.03 214.31 426.3 6.02 2.03.14 2.03.44 2.04.72 2.15.4 85.74 84.56 61.7 85.74 85.74 84.56 61.7 1156.4 2.03.7 429.7 7.29.7 1156.4 2.03.7 42.56 0.03.5 1156.4 2.03.7 2.56.0 0.03.5 1156.4 2.03.7 2.56.0 0.03.5 1156.4 2.03.7 5.95.7 0.03.5 6ary NP SILT 6ary PP SILT 0.04.6 0.03.5 0.01.21 0.03.5 2.56.0 0.03.5 0.01.21 <td>Sample No.</td> <td></td> <td>EB-8</td> <td>EB-8</td> <td>EB_B</td> <td>0 00</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sample No.		EB-8	EB-8	EB_B	0 00					
50.81 457.27 850.81 454.13 650 6.03 5.91 6.53 6.13 5.61 6.03 7.61	Depth (ft.)	A DECEMBER OF	15.5-16.0	22.5-23.0	35-35.5	18 0.18 5	100.00				
5.00 6.012 3.91 404.19 5.92 2.8.62 3.591 426.3 2.8.92 2.8.62 2.8.63 2.9.1 2.8.92 2.8.63 2.9.1 426.3 472.9 428.7 426.3 426.3 2.8.92 2.8.62 0.2655. 0.2655. 2.8.14 11.6 11.6 42.1 0.16.7 85.14 2.9.7 2.41.31 0.117 2.9.7 2.41.31 2.2.45.7 0.115 2.8.5 2.6.5 6.1.4 0.117 2.9.7 84.56 6.1.4 0.117 9.3.2 2.6.17 84.56 0.115 2.8.5 5.6.5 2.0.7 0.115 2.8.5 5.6.5 5.7.5 0.115 2.8.5 5.6.5 5.7.5 0.115 0.03.1 1.014.1 1.014.1 0.115 0.03.1 1.015.1 1.014.1 0.115 0.03.1 0.03.1 1.012.1	Tube+ Wet soil (g)	409.67	448,75	476.58	RO1 81	AF7 27	0.01-0.0	- 11			
Weighting 25.43 27.10 28.54 2.328 2.301 Common Feature 26.43 2.52.7 2.301 Common Feature 26.43 2.52.7 2.201 2.66.3 Common Feature 26.51 2.202 2.201 2.603 Common Feature 26.51 2.202 2.201 2.603 Common Feature 2.61 2.61 2.203	Ave. tube height (in)	5.58	6.09	6,34	6.50	12.104	454,19				
Writish Working 26/2 32/2 44/3 712/3 22/2 44/3 712/3 22/2 22/3 <td>Tube Weight (g)</td> <td>25.43</td> <td>27.06</td> <td>28.51</td> <td>28.92</td> <td>28.67</td> <td>0.91</td> <td></td> <td></td> <td></td> <td></td>	Tube Weight (g)	25.43	27.06	28.51	28.92	28.67	0.91				
Comments End A District Table Constant Constant <thconstant< th=""> Constant Constant<td>Wet Soil Weight (g)</td><td>384.2</td><td>422.7</td><td>448.1</td><td>472.9</td><td>10'07 ···</td><td>21.33</td><td></td><td></td><td></td><td></td></thconstant<>	Wet Soil Weight (g)	384.2	422.7	448.1	472.9	10'07 ···	21.33				
Rev Numericy Total	Conversion Factor	0.2625	0.2625	0.2625			420.3				
Entry Manuel BB EE AA A DD FF A DD FF Entry Result() 26(1) 20(1)	Wet Density (pcf)	100.9	111.0	117.6	1		07070				
Perr. Mysoli(g) 245:19 243:13 302:1 277:33 303:12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.12 245:17 303.17 216:3 303.17 216:3 203.17 203.16 203.16 203.16 203.16 203.17 203.17 203.17 203.17 203.17 203.17 203.17 203.17 203.17 203.17 203.17 203.16 203.16 203.16 203.16 2	Pan Number	88	EE	AA				Statement of the second se			
Merricuptor 220.17 240.45 260.57 230.54 230.57 23	Pan + Wet Solf (g)	246.18	274.3	302.1	272.73	331.52	74 70				
Metative loss(0) 22.6.0 33.5 41.5 34.6 42.1 32.4 44.5 41.5 32.4 <td>Pan + Dry Soil (g)</td> <td>220.17</td> <td>240.45</td> <td>260.57</td> <td>238,14</td> <td>289.42</td> <td>240.12</td> <td></td> <td></td> <td></td> <td></td>	Pan + Dry Soil (g)	220.17	240.45	260.57	238,14	289.42	240.12				
Protect B1.7 B5.74 B4.56 B1.7 B1	Moisture loss(g)		33.9	41.5	34 6	1001	10,412				
Distance Control (s) 135.1 175.9 175.4 203.7 223.6 223.7 Distance Control (s) 134.4 91.1 95.2 101.7 0.07 25.0 123.4 Sol Obserrigion: 84.4 91.1 95.2 101.7 0.07 25.0 103.7 Sol Obserrigion: 84.4 91.1 95.2 101.7 0.07 25.0 103.7 Sol Obserrigion: 84.4 91.1 0.02.7 0.02.7 25.0 103.7 Sol Obserrigion: 84.4 91.1 0.02.7 0.01.6 0.02.7 Mith fine sand, with fine sand, wit	Pan W. (g)	87.25	85.31	84.68	81.7	85.74	84 ED				
Matter commit (M) 19.6 21.6 22.7 20.7 26.0 Do Vorensity (pcif) 64.4 91.1 91.2 36.5 101.7 93.2 Soll Description: (eta) NS LIT 64.7 93.2 36.5 101.7 93.2 Soll Description: (eta) NS LIT 64.7 93.2 36.5 101.7 93.2 Note:: (eta) NS LIT 64.7 105.4 MID fine sand, MID fine sand, MID fine sand, With fine sand, molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML Wote:: Matereage value of 1.835 find is used for tube damelet. molst, ML molst, ML molst, ML molst, ML Vote:: An strenge value of 1.835 find is used for tube damelet. 0.313 0.4160 0.4160 0.4160 OUT: his mean wight is transmission of tra	Ury Sail WL (g)	132.9	155.1	175.9	156.4	203.7	120 7				
Bit Number (par) 84.4 91.1 95.2 101.7 93.2 95.4 Soil Obserridion: Gray NP SiLT Soil Obserridion: Gray NP SiLT With fine sand, with fine sand, molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Molst, ML molst, ML molst, ML molst, ML Vote: molst, ML molst, ML molst, ML Vote: <td>Moisture Content (%)</td> <td>19.6</td> <td>21.8</td> <td>23.6</td> <td>22.1</td> <td>- 20.7</td> <td>787</td> <td></td> <td></td> <td></td> <td></td>	Moisture Content (%)	19.6	21.8	23.6	22.1	- 20.7	787				
Solution Gray VP SILT (arg VP SILT molet, ML Carey VP SILT with fine sand, molet, ML Carey VP SILT molet, ML Dark gray SILT molet, ML With fine sand, molet, ML with fine sand, molet, ML with fine sand, molet, ML molet, ML molet, ML Molet mile sand, molet, ML molet, ML molet, ML molet, ML molet, ML Molet mile sand, molet, ML molet, ML molet, ML molet, ML Molet mile sand, molet, ML molet, ML molet, ML Molet mile sand, molet milet measure with file sand, molet milet measure milet milet molet milet measure measure measure milet milet measure measure measure measure meas	Ury Vensity (port)	84.4	. 91.1	95.2	101:7	93.2	89.5				
Notestate An average value of 1.535 Inch is used for tube diamater. No. Rings No. Rings No. Rings No. Rings No. Rings No. Rings An average value of 1.535 Inch is used for tube diamater. Offer this record of the representation of the representation of the record of tube diamater. No. Rings No. Rings No. Rings No. Rings Rector Rector No. Rings Rector	Soil Description:	Gay NP SILT with fine sand, moist, ML		Gray NP SILT with fine sand, moist-wet, ML	Gray NP SILT with fine sand, moist, ML	Gray NP SILT With fine sand, moist-wet, ML	Dark gray SILT, moist, ML				
No. Finds No. F	Votes:	An average value	e of 1.655 inch is use	l ad for tube diameter.							
No. Fings No. Fings W. of Rings, g Eactor No. Rings W. of Rings, g Eactor 2 90.6 0.4156 4 181.2 0.2078 0.2078 3 10.5 0.4156 6 0.4156 6 0.2711 interentied by other operations or processes. 3 135.9 0.2771 6 226.5 0.1063 GOO State 0.2771 6 2271.6 6 0.1365 0.1365 GOO State 135.9 0.2771 6 226.5 0.1365 GOO State State 226.5 0.1365 0.1365 State State State State State State						-					
101E: This reporting on the reproduced, strept in full without willing approved of GeoGraphineers, inc. Teal revults are applicable only to the specific vample on which they were performed, and alroub inc the interpreted us representative of tamples of the specific vample on which they were performed, and alroub inc the interpreted us representative of tamples of the specific vample on which they were performed, and alroub inc the interpreted us representative of tamples of the specific vample on which they were performed, and alroub inc the interpreted us representative of tamples of the specific vample on which they were performed, and alroub inc the interpreted us representative of tamples of the specific value of tamples of the specific value of the specif				No. Rings	Wi, of Rings, g 45.3	Factor 0.8313	No. Rings 4	Wt. of Rings, g 181.2	Factor D 2074		
Geo Figure and Density Determinations for Ring Sample	NOTE: This report may not be rep generated by other operations or j	stroduced, especial in full, with	itoul written approval of Gev	د معادد معادد معادمها معاد	90.6 136.9 Vils are applicable only to	0,4158 0.2771 the specific sample on wh	5 hbh they were performed.	228.5 271.8 and should not be interned	0.1385		
rs Moisture and Density Determinations for Ring			-						avualueeaudau en cens	of the molet obtained at other	(mes or locations, or
		Geo	Engi	ineers		Mois	ture and D	ensity Detei	mination		mple
		S23 Bug S23	oond Areure, Spokane, Wieblin	1210m 97202				HUHH	(11474)		


		Page 1/2			
	Percen	t Passing	N0. 200 (ASTM D1140)		
Job Name: LEHIGH (JIA71) Job No: 8000-001-45			Client: Department of Ecology t Date: 07/28/04	Technician; Doviound B.r.	GT
Date Tested	07/26/04				
Boring / Test Pit No.					•
•		na	na	na	pa
Sample Derth 4		ер-8	EB-8	ШВ-8	EB-9
1 tadon odeno	11.1-11.3	15.5-16.0	22.5-23.0	35.0-35.5	18.0-18.5
MOISTURE CONTENT					
Pan	BB	ΞΞ	44		
Pan + Wet Soil	246.18	274.3	1 606	A 010 70	00
Pan + Dry Soil	220.17	240 45	202. I 280 87	212.13	331.52
Moisture Loss	26.01	33.85	A4 E5	230.14	289.42
Pan Tare	87.25	85.31	01 F0	34.59	42.1
Dry Soil	132.92	155 14	175 00	1.18	85.74
Moisture Content	19.6%	21.8%	80.071 202 CC	156.44	203.68
PERCENT PASSING #200 SIEVE	1		4 .0.70	22.1%	20.7%
Pan					
Pan + Dr/ Soll/before)	200	ΕE	AA	A	00
	220.17	240.45	260.57	238.14	280.42
Minio 200 Fail With	121.74	124.01	131.37	115.08	46746
Pon Toto From Wash	98.43	116.44	129.2	102.60	101.10
	87.25	85.31	84.68	817	07.271
	132.92	155.14	175.89	456 44	00.74
	74.1%	75.1%	73.5%	78.5%	203.00
VISUAL SOIL Description	Gray NP SILT with	-	Gray NP SILT with	Grav NP SII T with	Grav ND STI T with
-	Tine sand, moist,	fine sand, moist, ML	fine sand, moist-	fine sand. moist. MI fine sand moist-	fine sand motel-
Description based on 200			wet, ML		wet MI
	SILI WITH TINE SAND.	SILT with fine sand.	SILT with fine sand,	SILT with fine sand.	Sandy (fine) SILT.
Classification based on -200	ML	ML	ML	IW	
NOTE: This report may not be reprivinged excert in (in) with the second in (in)	evram in 6.11			NIL.	ML
and should not be intermeted as measured	A SUST IN THIS WILL BUT WILLIAM STATE	approval of GeoEngineers, Inc.	Test results are annlicable o		

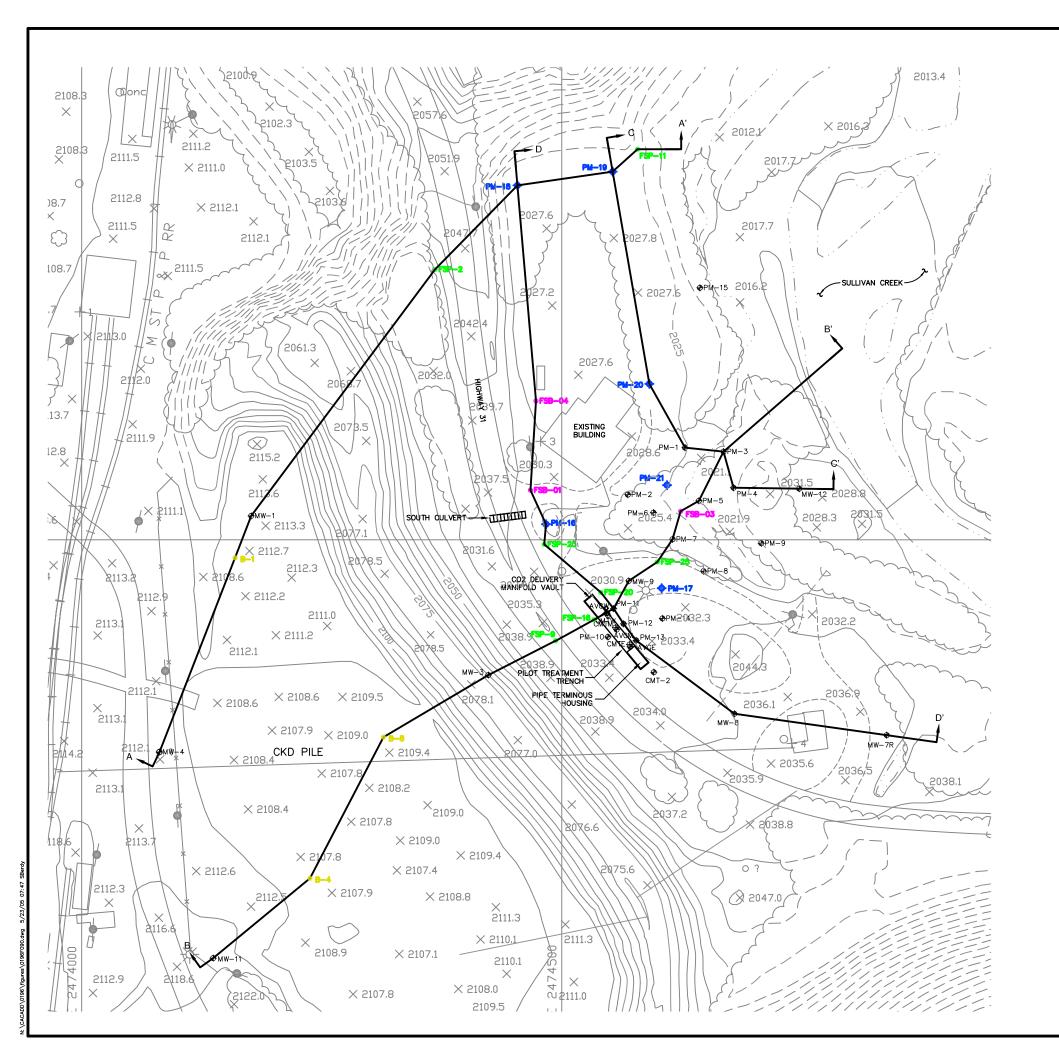
and should not be interpreted as representative of samples obtained at other times or locations, inc. Test results are applicable only to the specific sample on which the test was performed, GeoEngineers, Inc. 523 E. Second Ave., Spokane, WA 99202

		Page 2/2		
	Percent	Passing N0. 200 (ASTM D1140)	D1140)	
Job Name: LEHIGH (JIA71) Job No: 8000-001-45		Client: Department of Ecology Report Date: 07/28/04	of Ecology Technician: Reviewed By:	GT
Date Tested	07/26/04			
Boring / Test Pit No.	na			
Sample No.	EB-10			
Sample Depth, ft	19.0-19.5			
MOISTURE CONTENT				
Pan	L_ L_			
Pan + Wet Soil	246.72			
Pan + Dry Soil	214,31	-		
Moisture Loss	32.41			
Pan Tare	84.59			
Dry Soil	129.72			
Moisture Content	25.0%			
PERCENT PASSING #200 SI	SIEVE			
Pan	14 14		-	
Pan + Dry Soil(before)	214.31		-	
Pan + Dry Soil(after)	115.34			
Minus 200 From Wash	98.97			
Pan Tare	84.59			
Dry Soil	129.72			
Percent passing	76.3%			
Visual Soil Description	Dark gray SILT, moist, ML	NP (none plastic) Note: Maximum particle size sample EB-10 @19.5	NP (none plastic) Maximum particle size is approximately 0.25mm for all samples except that sample EB-10 @19.5' contained sand particle size of approximately 6.35mm.	for all samples except that ce of approximately 6.35mm.
Description based on -200	SILT with fine sand.			
		-		
Classification based on -200	ML			
NOTE: This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.	i, except in full, without written		Test results are applicable only to the spacific sample on which the test was performed.	on which the test was performed.

NOTE: This report may not be reproduced, except in full, without written approval of GeoEngineers, inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples ob

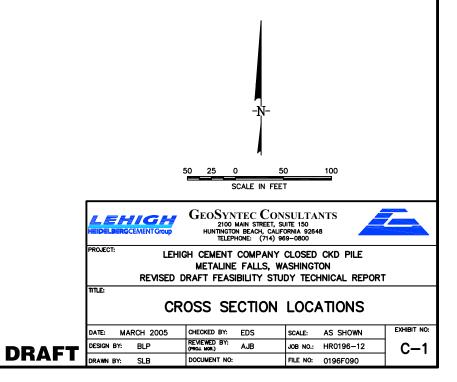
GeoEngineers, Inc. 523 E. Second Ave., Spokane, WA 99202

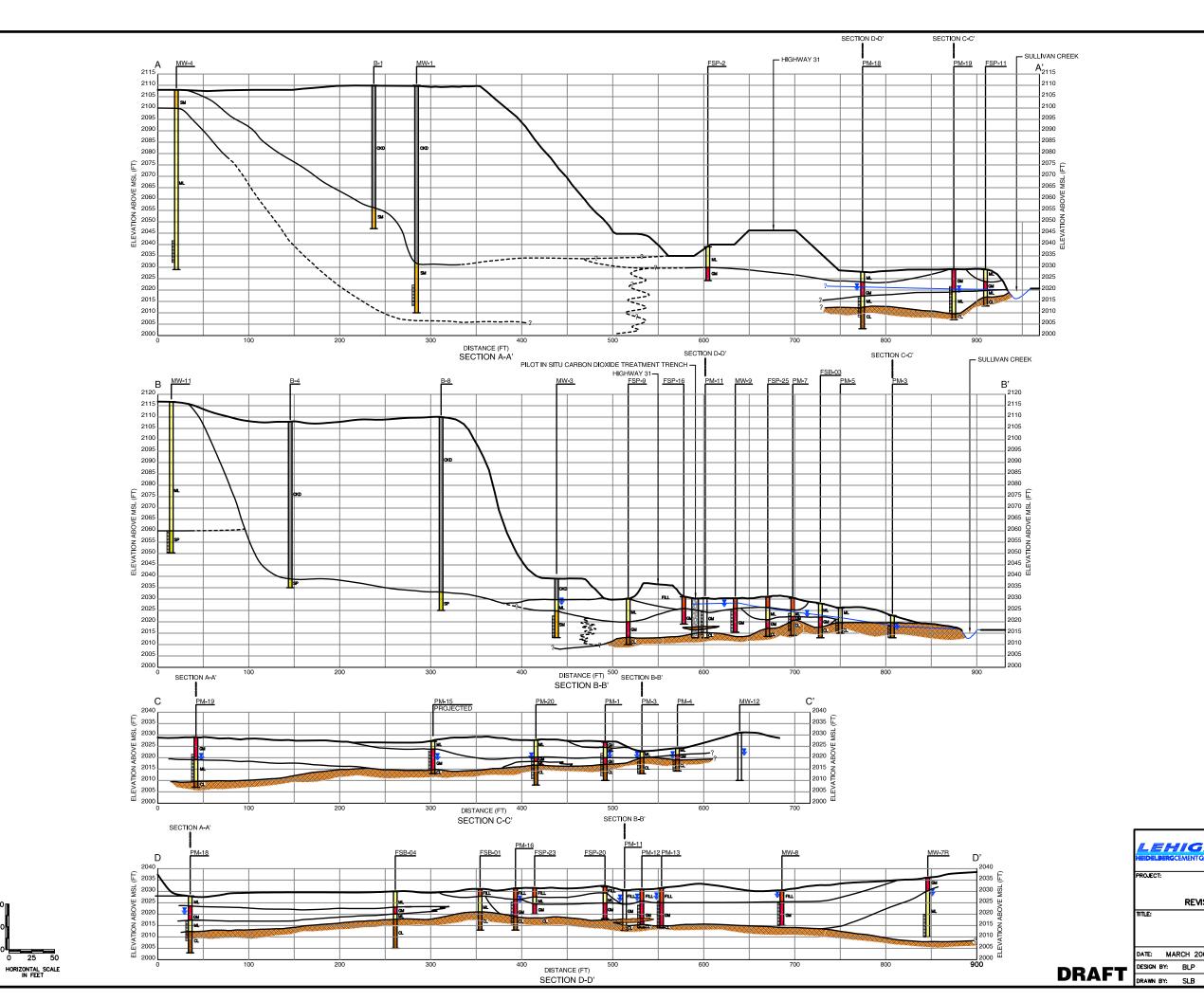
GeoSyntec Consultants


APPENDIX C

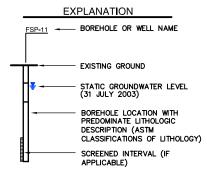
BORING LOGS AND CROSS SECTIONS

REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON


HR0196-12/MFW05-13_APC.DOC


18 FEB 05 / 5:00 PM

LEGEND


EXISTING TOPOGRAPHY (FEET ABOVE M.S.L.) GROUNDWATER MONITORING LOCATIONS PERFORMANCE MONITORING LOCATION APPROXIMATE DIRECT PUSH BORING LOCATIONS (JULY 2003) APPROXIMATE ROTASONIC BORING LOCATIONS (JULY 2003) BORING LOCATION (DAMES AND MOORE, 1992)

VERTICAL SCAL

٦<u>6</u> 25

ASTM CLASSIFICATIONS OF LITHOLOGY

ML – GRAVELLY SILT
GM - WELL-GRADED SILTY GRAVEL
CL - SILTY CLAY
FILL - ARTIFICIAL FILL
SP - SANDY GRAVEL
CKD - CEMENT KILN DUST
SM – SANDY SILT
CONFINING SILTY CLAY LAYER

	GEOSYNTEC CON 2100 Main Street, SI Huntington Beach, Calif Telephone: (714) 96	IITE 150 DRNIA 92648	
PROJECT: LEHIC	H CEMENT COMPANY	CLOSED CKD PILE	
	METALINE FALLS, W	ASHINGTON	
REVISED D	RAFT FEASIBILITY STU		
	INALL LEASIBLE IT STO		
TITLE:			
	CROSS SEC	TIONS	
	URUSS SEU	110143	
DATE: MARCH 2005	CHECKED BY: EDS	SCALE: AS SHOWN	EXHIBIT NO:
DESIGN BY: BLP	REVIEWED BY: (PROJ. MOR.) AJB	JOB NO.: HR0196-12	C-2
DRAWN BY: SLB	DOCUMENT NO:	FILE NO: 0196F091	

	210 Hu Ph	EOSYNTEC CON 00 Main Street, Suit ntington Beach, CA one: (714) 969-080	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT	L DATE		M-1 , Was	shing		gr To	OUN	
	GS FORM: ELL BORE	BOREHO		OG]	NUMBER								
DEPTH (ft)	MATE DESCR		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silty GRAVEL (GM): bro @ 1' - gravel becomes fi Silt (ML): gravel (25,0,75	ne			1		- 2025 _ -							Began drilling at 0945 on 28 August 2002
5	Clay (CL): gray; wet; wi Silty GRAVEL (GM): gra	th organics ay; wet			Tevel at 5 measure August 2 Encount groundw	d on 28 1002	- 2020 _ -							pH level at ~10.5
- 10	Clay (CL): gray; wet						- - 2015 _ -							
15 - - -							- 2010 _							Completed borehole at 1005 on 28 August 2002
20 -														
	MTHD Rotasonic	EA	RTHING STING GLE		28.400	REMARKS: above ground	d.						exten	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		VI-2	shing		gro Tof	OUN	
					NUMBER	1			SAMF)
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silty GRAVEL (GM): brown; (50,0,50) Silty GRAVEL (GM): moist; (70,0,30) Clay (CL): gray; wet		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	level at 9 measure August 2 Encounte groundw	d on 28 002	- - - 2025 _ - - - 2020 _ - - - - - - - - - - - - - - - - - - -							Began drilling at 1135 on 28 August 2002 pH level at ~7.0 pH level at ~7.0
20 -						-							Completed borehole at 1240 on 28 August 2002
	MENT EA: MTHD Rotasonic AN	RTHING STING GLE	69754 24745 Vertica	68.810	REMARKS: above ground	d.						xten	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		VI-3	shing		GRO	oun P of	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - 5 -	Silt (ML): gray; wet; gravel (25,0,75) Clay (CL): gray; silt			▼ Static gro level at 3 measure August 2	d on 28	2020 -	-						Began drilling at 1615 on 28 August 2002 pH level at ~10.0
- - 10 - - -				∑ Encounti groundw ft-bgs on 2002	ered 1st ater at 8.5 28 August	2015 -							pH level at ~9.0 Completed borehole at 1640 on 28 August 2002
- 15 - -													
- 20 - -													
25 - - - - - - - - - - - - - - - - - - -													
30 CONT EQUIP DRILL DIAME LOGG	MENT EAS MTHD Rotasonic AN	rthing Sting Gle		68.510	REMARKS: above ground	d.						xtend	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM: YELL BORE BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	DATE		VI-4 Was	shing		GR TO	OUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	-	RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silt (ML): brown; gravel (10,0,90) @ 2' - becomes moist Silty GRAVEL (GM): gray; wet Silty CLAY (CL)	5000 2000 2000		vel at 3 measure August 2 Encount groundw	d on 28 2002	- - 2020 - - - - -					Ľ		Began drilling at 1700 on 28 August 2002
- 10 - - -						2015 -							pH level at ~7.5 Completed borehole at 1730 on 28 August 2002
- 15 - - -													
20 - - -													
	MENT EA MTHD Rotasonic AN	RTHING STING GLE		78.910	REMARKS: above ground	d.						extend	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	DATE		VI-5	shing		gr Toi	OUN	
DEPTH (ft))	SYMBOLIC LOG	MELL LOG		CUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silt (ML): brown; dry Silt (ML): brown, dry; gravel (25,0,75)	۲ ۲				2025 - - -					<u> </u>		Began drilling at 0725 on 29 August 2002
5	Silt (ML): gray; wet; gravel (10,0,90) Clay(CL): gray; wet			evel at 5 measure August 2 ∑ Encounte	d on 29 002	- 2020 - -							pH level at ~9.5
10 -					29 August	- 2015 -							pH level at ~10.5 Completed borehole at 0745 on 29 August 2002
15 - - -													
20 -													
25 -													
EQUIP DRILL DIAME	MENT EA MTHD Rotasonic AN	STING	69754 24746 Vertica	42.850	REMARKS: above ground	d.						exten	ds approximately 3 feet

	GS FORM: ELL BORE	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969- BOREH	Suite 150 CA 92648 0800			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		M-6 , Was	shing		gr Toi	OUN	
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	@ 3' - becom (25,0,75)	ILL: ı silt wn; dry; gravel (5,0,95) es moist; increase in gravel . (GM): gray; wet			¥ Static gro level at 5 measurer August 2	d on 29	- 2025 - -	-						Began drilling at 0830 on 29 August 2002 pH level at ~11.0
 - - - - - - - - - - - - -	Clay (CL): gra	ay; wet	j Bik			ered 1st ater at 11 29 August	2020 -							pH level at ~9.0 Completed borehole at 0855 on 29 August 2002
15 - - - 20 -														
- - 25 - - -														
equip Drill Diame			NORTHING EASTING ANGLE		95.530	REMARKS: above ground	d.						exten	ds approximately 3 feet

WELL_BORE METFALHR0196_03.GPJ GEOSNTEC.GDT 19/5/05

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		VI-7			gr To	OUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: Gravel fill with silt; gray Gravelly SILT (ML): gray; wet (40,0,60) Clay (CL): gray; wet		$(\underline{P}_{A}, \underline{P}_{A}, \underline{P}_{A}, \underline{P}_{A})$	level at 6 measure August 2 Encount groundw	d on 29 2002	2030 - - - - - - - - - - - - - - - - - -							Began drilling at 1005 on 29 August 2002 pH level at ~10.0
- 20						-							pH level at ~8.5 Completed borehole at 1030 on 29 August 2002
25 - 25 - 30 CONTI EQUIP DRILL DIAME LOGG													
30 CONTI EQUIP DRILL DIAME LOGG	MENT EAS MTHD Rotasonic AN	rthing Sting Gle		15.450	REMARKS: above ground	d.						exten	ds approximately 3 feet

		BORING PM-8 SHEET 1 OF 1 START DRILL DATE ELEVATION DATA: FINISH DRILL DATE GROUND SURF. 2031.34 LOCATION Metaline Falls, Washington TOP OF CASING TOP OF CASING												
	GS FORM: ELL BORE	BOREH	PROJECT DATUM NUMBER											
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	GRO	RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - 5 -	@ 1' - becom brown	ILL: a silt; gray; dry es moist and color change to (ML): (25,0,75)					2030 -							Began drilling at 1150 on 29 August 2002
- - - 10 –		. (GM): poorly graded			level at 6 measure August 2 Encount groundw	d on 29 2002 ered 1st ater at 6.5 easured on 29	2025 ⁻ - - -							pH level at ~10.5
- - - 15 -	Clay (CL): gra	ay; wet					2020 -							
- - 20 -							2015 -							pH level at ~7.0 Completed borehole at 1205 on 29 August 2002
- - - 25 -														
equip Drill Diame	MENT M THD Ro	oart Longyear otasonic inch REVIEWER	REMARKS: Surface completion monument extends approximately 3 feet above ground. SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS											

WELL_BORE METFALHR0196_03.GPJ GEOSNTEC.GDT 19/5/05

	GEOSYNTEC CON 2100 Main Street, Suite Huntington Beach, CA Phone: (714) 969-080	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT	L DATE		M-9 Was	shing		gro Top	OUN	
	GS FORM: /ELL BORE BOREHOI		DG		NUMBER								
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		UCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silt (ML): brown; dry; gravel (10,0,90) @ 3' - increase in gravel (40,0,60); color change to gray; and becomes moist @ 5' - becomes wet Clay (CL): gray; wet		/ · · · · · · · · · · · · · · · · · · ·	Static gro evel at 4 neasure August 2 Encounte groundwa	002 ered 1st ater at 5.5 easured on 29	2025 - - - 2020 - - - - - - - - - - - - - -							Began drilling at 1440 on 29 August 2002
						_							pH level at ~7.0 Completed borehole at 1520 on 29 August 2002
20 -													
30 CONT EQUIF DRILL DIAMI LOGG	PMENT EAS	STING	697493. 2474707 Vertical		REMARKS: above ground	d.						xtend	ds approximately 3 feet

	2100 Hunt	Main Street, Suite ington Beach, CA ne: (714) 969-080	e 150 92648 0			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		M-10			gr Toi	OUN	
		BOREHO		.06		NUMBER								
DEPTH (ft)	MATER DESCRIP		SYMBOLIC LOG	MELL LOG		RUCTURE/ UNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	No lithologic logging of PM for similar description. PM approximately 30 feet to th	I-13 located] ~		2030 -							Began drilling at 1430 on 12 November 2002
5 -					∑ Encount groundw drilling a measure Novemb	ater during t 4.5 ft-bgs d on 12	- 2025 - -							
- 10							- 2020 - - -							
15 -							- 2015 - -							Completed borehole at
20 -														1540 on 12 November 2002
25 - 30 CONT EQUIF DRILL DIAMI LOGG														
30 CONT EQUIF DRILL DIAMI LOGG		EAS	rthing Sting Gle		48.080	REMARKS: above ground	d.						extend	ds approximately 3 feet

	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969-0 GS FORM: /ELL BORE	Suite 150 CA 92648 0800	5		BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		M-1 1			gr Tof	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	No lithologic logging of PM-11. See PM-13 for similar description. PM-13 located approximately 40 feet to the southeast.					2030				H			Began drilling at 1155 on 12 November 2002
5 -				∑ Encount groundw drilling a measure Novemb	ater during t 4.5 ft-bgs ed on 12	2025 -							
10 - - -						2020 -							
- 15 -						2015							Completed borehole at 1300 on 12 November
20 -													2002
25 -													
EQUIF	PMENT MTHD Rotasonic	NORTHING EASTING ANGLE		54.010	REMARKS: above groun	d.						exten	ds approximately 3 feet

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, CA Phone: (714) 969-08 GS FORM: VELL BORE BOREHO	te 150 \ 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		VI-12 Was			GR TO	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: Sand, silt, and clay; brown to gray; wet			∑ Encount	ered 1st	2030 _ - -					_		Began drilling at 0820 on 12 November 2002
	Silty GRAVEL (GM): gray; wet; (75,0,25)			groundw drilling a measure Novemb		2025 _ - - -							
- - - - - - - - - - - - - - - - - - -	Clay (CL): gray Gravel; gray; silt; some organics					2020 _ - - - - 2015							
	Clay (CL): gray					-							Completed borehole at 0855 on 12 November 2002
- 													
	•••	RTHING	69741 24745	2.500	REMARKS: above ground		com	pletior	n mo	num	ent e	extend	ds approximately 3 feet
	MTHD Rotasonic AN	IGLE	Vertica		SEE KEY SHEET		BOLS	AND AI	BBRE	VIATI	ONS		

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM:	e 150 92648 00			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		M-13			gro Tof	OUN	
	BOREHO		.OG		NUMBER				SAMF	PLES	})
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	ARTIFICAL FILL: brown to gray; wet					2030 -					_		Began drilling at 1030 on 12 November 2002
5 - - -	ARTIFICAL FILL: Wood: appears to be plywood; slow drilling Silty GRAVEL (GM): gray; wet (80,0,20)			∑ Encount groundw drilling a measure Novemb	ater during t 5 ft-bgs d on 12	- 2025 ⁻ -							
- 10						- 2020 - -							
- 15 - -	@ 14' - increase in silt (50,0,50) Clay (CL): gray; wet					- - 2015 ⁻ -							
- 20 -						-							Completed borehole at 1105 on 12 November 2002
	MENT EA MTHD Rotasonic AN	RTHING STING GLE		77.530	REMARKS: above ground	d.						xtenc	ds approximately 3 feet

	2100 Main Str Huntington Be Phone: (714) GS FORM:	ach, CA 92648			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		M-14 Was			GR TO	OUN	
			.00)
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5 -	No lithologic logging of PM-14. See P for similar description. PM-13 located approximately 35 feet to the southwest	M-13		∑ Encount groundw drilling a measure Novemb	ater during t 4.5 ft-bgs ed on 12	- 2030 - - - - 2025 - -	-						Began drilling at 0730 on 12 November 2002
15 -						- 2020 - - - -							
- 20 -													Completed borehole at 0800 on 12 November 2002
30 CONT EQUIF DRILL DIAMI LOGG	RACTOR Boart Longyear PMENT MTHD Rotasonic ETER 6-inch GER B. Petty REVIEWER	NORTHING EASTING ANGLE		04.830	REMARKS: above ground	d.						xten	ds approximately 3 feet

		GEOSYNTEC CO 2100 Main Street, Su Huntington Beach, C Phone: (714) 969-0	uite 150 A 92648			BORING START DRIL FINISH DRILL LOCATION	L DATE		M-1			gr Tof	oun P of	
	GS FORM: 'ELL BORE	BOREHO)LE L	.0G		PROJECT NUMBER						DA	TUM	
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - -	Silt (ML): light organics	Silt (OM): grassy layer brown; sand (0,25,75); some : (GM): light brown; dry					- 2025 - - -	-						Began drilling at 0935 on 12 November 2002
5 -	Silty GRAVEL	(GM): gray; moist; sand s wet; decrease in silt and sand			∑ Encount groundw drilling a measure Novemb	ater during t 6 ft-bgs d on 12	- 2020 - - -							pH level at ~9.5
10 - - -	Clay (CL): gra	y; wet					- - 2015 - -							pH level at ~10.0
15 -							-							pH level at ~7.5 Completed borehole at 0955 on 12 November 2002
- 20 -														
25 - 25 - 30 CONT EQUIP DRILL DIAME LOGG														
30 Cont Equip Drill Diame Logg		tasonic A	ORTHING ASTING NGLE		11.750	REMARKS: above ground	d.						xten	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 SS FORM:	e 150 92648 00			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		M-16 Was			GRO	ouni P of	
			UG		NUMBER				SAMF]
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
	ARTIFICAL FILL: brown; silt; sand; gravel (20,20,60) GRAVEL (GM): brown-gray; moist; sand; silt			∑ Encounte groundw on 15 Ju	ater at 4 ft-bgs	2030 - - - -							Began drilling at 0705 on 15 July 2003
- - - - - - - - - - - - - - - - - - 	GRAVEL (GM): gray; wet; silt (25,0,75)					2025 - - - -							pH level at 12.0
	SILT and CLAY (ML-CL): gray; wet CLAY (CL): gray; wet					2020 - - - -							
-						2015 - - -							pH level at 10.5 Completed borehole at
20 -													0915 on 15 July 2003
25 - 30 CONT EQUIF DRILL DIAMI LOGG													
30 CONT EQUIF DRILL DIAMI LOGG	MENT EAS MTHD Rotasonic AN	rthing Sting Gle		94.645	REMARKS:	Well is o						nted	vault

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648)0			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		VI-17			GRO	oun P of	
DEPTH				STR		(ft)	R		SAMF				COMMENTS
(ft)	DESCRIPTION	SYMBOLIC LOG	MELL LOG		JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	
-	ARTIFICAL FILL: light brown					- 2030 - -							Began drilling at 1145 on 15 July 2003
5 -	Silty CLAY (CL): gray; wet			∑ Encounte groundw on 15 Ju	ater at 8 ft-bgs	- 2025 - -							
10 - - - -	GRAVEL (GP): gray; wet; poorly sorted; well graded				, 2000	- 2020 - -							pH level at 10.5
15 -						- 2015 - -							pH level at 11.0
-	CLAY (CL): dark gray; wet; some gravel @ 22' - color change to gray; no gravel					- 2010 - -							pH level 9.0
25 - 30 CONT EQUIF DRILL DIAME LOGG						_							Completed borehole at 1350 on 15 July 2003
30 Cont Equip Drill Diame Logg	MENT EAS MTHD Rotasonic AN	RTHING STING GLE		04.743	REMARKS: above ground	d.						xten	ds approximately 3 feet

	2	GEOSYNTEC CO 2100 Main Street, Su Huntington Beach, C. Phone: (714) 969-08	ite 150 A 92648			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		M-18 Was			GRO	oun P of	
	GS FORM: ELL BORE	BOREHC	DLE L	.0G		NUMBER]
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
		n; dry; gravel (75,0,25) brown; moist; silt (25,0,75)		A/A A A'A'A'			- 2025 ⁻ -							Began drilling at 0700 on 16 July 2003
- - - 10		n-gray; wet; fine-grained				ater at 10	- 2020 ⁻ -							
- - - 15 -	Silty CLAY (CL):	gray; wet				16 July 2003	- 2015 ⁻ - -							pH level at 11.5 pH level at 11.5
- 20 - -	CLAY (CL): gray	/; wet					2010 -							pH level at 11.0
- 25 -							2005 -							Completed borehole at 0920 on 16 July 2003
EQUIF DRILL DIAME	MENT . MTHD Rota:	EA sonic Al	DRTHING ASTING NGLE	69773 24744 Vertica	70.164	REMARKS: above ground	d.						xten	ds approximately 3 feet

	GEOSYNTEC 2100 Main Street Huntington Beac Phone: (714) 96	, Suite 150 h, CA 92648			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		M-1 9			GRO	oun P of	
	GS FORM: /ELL BORE	HOLE L	.OG		NUMBER						DAI		
DEPTH (ft)	DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
	SILT-SAND-GRAVEL (GM): brown; dry; organics					- 2025 - -							Began drilling at 1140 on 16 July 2003
- - 10 - -				<u> </u>		- 2020 - -							
- - 15 - -	SILT (ML): gray; wet @ 16' - increase in gravel (80,0,20)				ered 1st ater at 11 16 July 2003	2015							pH level at 11.5
- 20 - - 	CLAY (CL): gray; wet					2010							pH level at 9.0 Completed borehole at
25 - - - - - - - - - - - - - - - - - - -													1210 on 16 July 2003
30 CONT EQUIP DRILL DIAME LOGG	RACTOR Boart Longyear PMENT PMENT MTHD Rotasonic ETER 6-inch GER B. Petty REVIEWER	NORTHING EASTING ANGLE		33.552	REMARKS: above groun	d.						xten	ds approximately 3 feet

	GS FORM:	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969-0 BOREH	Guite 150 CA 92648 0800	3		BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		M-2(GR TO	OUN	
(w	ELL BORE					NUMBER								
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - 5 -		wn; dry; organics nes moist; increase in fine to d cobbles		2/2 2/2 2/2 2/2			- 2025 - -							Began drilling at 1045 on 17 July 2003
- - - 10 –		: gray-brown; wet; silt (20,0,8 wn; moist; large gravel					- 2020 - -							
	CLAY (CL): gr	ay; moist					- 2015 - - -							pH level at 8.0
- - - 20 -							2010 - - -							Completed borehole at 1330 on 17 July 2003
- - 25 - - -														
EQUIP DRILL DIAME	MENT . MTHD Rot	asonic	NORTHING EASTING ANGLE	6 697655 247459 Vertica	96.773	REMARKS: above ground SEE KEY SHEET	d.						exten	ds approximately 3 feet

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		VI-2 1			GR	oun P of	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		CUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry; gravel (80,0,20) @ 1' - increase in organics; no gravel @ 4' - increase in sand; decrease in organics			1		2025 _					ď		Began drilling at 1400 on 17 July 2003
	GRAVEL (GM): gray-brown; wet; silt (25,0,75) CLAY (CL): gray; wet			⊈ Encounte groundw on 17 Ju	ater at 7 ft-bgs	- 2020 _ - -							
- - - 15 - -						- 2015 _ - -							
20 -						- 2010 _ - - -							
- 25 -													Completed borehole at 1700 on 17 July 2003
EQUIP DRILL DIAME	MENT EA: MTHD Rotasonic AN	RTHING STING GLE		99.205	REMARKS:	Well is a						Inted	l vault

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 CS FORM:	e 150 92648 0			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		SB-(gr Toi	OUN	
	BOREHO		UG		NUMBER				SAMF				
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	-	RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - - 5 - - -	ARTIFICAL FILL: brown; dry SILT (ML): brown; moist Sandy SILT (MH): brown; moist; sand; large			⊊ Ēncounte	ered 1st	2030 _ - - - 2025 _							Began drilling at 0920 on 15 July 2003
- - - 10 -	gravel (well graded); some cobbles			groundw ft-bgs on	ater at 5.5 15 July 2003	- - - 2020 -							pH level at 12
- - - 15 -						- - - 2015 _							pH level at 10.5
- 20						-							Completed borehole at 1010 on 15 July 2003
30 CONT EQUIP DRILL DIAME LOGG	MENT EAS MTHD Rotasonic ANG	RTHING STING GLE	69753 24744 Vertica	95.310	REMARKS:	Investig							

		GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SB-(gro Tof	OUN	SHEET 1 OF 1 I DATA: D SURF. 2035.5 CASING
DEPTH (ft)		TERIAL CRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
	ARTIFICAL FILL: br	st; large gravel			∑ Ēncountr groundw ft-bgs on	ered 1st ater at 7.5 15 July 2003	2035 - - 2030 - - - - - - - - - - - - - - - - - -					<u> </u>		Began drilling at 1435 on 15 July 2003
- - - - - - - - - - - - - - - -	CLAY (CL): gray; we	t					- 2020 - - - - -							Completed borehole at 1510 on 15 July 2003
- 25														
EQUIP DRILL DIAME	MTHD Rotasoni	EAS	RTHING STING GLE		56.280	REMARKS:	Investig					ONS		

	GEOSYNTEC CON 2100 Main Street, Suite Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SB-C			GR TO	OUN	
					NUMBER								
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry @ 4' - becomes moist			∑ Encount		- - 2025 _ - -							Began drilling at 1600 on 15 July 2003
-	GRAVEL (GM): gray; wet; silt (25,0,75)			Encount groundw on 15 Ju	ater at 6 ft-bos	- 2020 _ -	-						pH level at 11.0
10 -	CLAY (CL): gray; wet					- - 2015 _							pH level at 10.0
15 -						-							Completed borehole at 1630 on 15 July 2003
- 20 -													
30 CONT EQUIP DRILL DIAME LOGG	MENT EAS MTHD Rotasonic AN	rthing Sting Gle	69752 24746 Vertica	23.410	REMARKS:	Investig					IONS		

	GEOSYNTEC CC 2100 Main Street, Su Huntington Beach, C Phone: (714) 969-08 GS FORM: FELL BORE	iite 150 A 92648 300			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		SB-(gr Toi	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry; organics; large gravel			Tempora 3/4-inch ft-bgs pH level	PVC to 13	-							Began drilling at 1220 on 16 July 2003 Retry at 1235 due to refusal @ 3'
5 -	SILT (ML): brown; moist SILT and GRAVEL (GP-GM): gray-brown; moist; cobbles (50,0,50)					2025 _ - -							Retry at 1300 due to refusal @ 5.5'
- 10 - - 	SILT (ML): gray; moist CLAY (CL): gray; moist					- 2020 _ - -							
- - 15 - -						- 2015_ - -							
- 20 -						- 2010 _ -							
25 -						- 2005 _							Completed borehole at 1510 on 16 July 2003
EQUIP	MENT E. . MTHD Rotasonic A	ORTHING ASTING NGLE	69764 24744 Vertica	82.010	REMARKS:	Investig							

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 CES FORM:	e 150 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SB-(GR(TO	OUN	
	BOREHO		OG		NUMBER]
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	TYPE	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry; organics SILT (ML): brown; dry; fine to large gravel Silty GRAVEL (GM): brown; moist; small cobbles	0.66 0.66				2025	-						Began drilling at 1530 on 16 July 2003
- 10 - -	CLAY (CL): gray; wet			∑ Encount groundw ft-bgs on	ered 1st ater at 10 16 July 2003	2020 -							
15 -	SILT (ML): brown; wet; small cobbles (50,0,50) @ 17.5' - decrease in cobbles					2015 -							pH level at 10.5 pH level at 9.0
20 -	CLAY (CL): gray; wet					2010 -							
25 - 30 CONTI EQUIP DRILL DIAME LOGG						2005 -							Completed borehole at 1655 on 16 July 2003
30 CONT EQUIP DRILL DIAME LOGG	MENT EA: MTHD Rotasonic AN	rthing Sting Gle	69765 24745 Vertic	540.640	REMARKS:	Investig			-		IONS		

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08	ite 150 A 92648 600			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SB-(gro Tof	OUN	
	ELL BORE BOREHO		UG		NUMBER				SAMI				
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - - - - - - - - - - - - - - - - -	SILT (ML): brown; dry; organics; trace gravel SILT (ML): brown; moist			Tempora 3/4-inch ft-bgs pH level	ary well: PVC to 11 at 9.78	- 2025 - -							Began drilling at 1700 on 16 July 2003
	Silty GRAVEL (GM): brown; dry; cobbles (40,0,70)					- 2020 - -							
	SILT (ML): gray; moist CLAY (CL): gray; moist					2015 -							
- - 20 -						- 2010 - - -							
25 -						2005 -							Completed borehole at 0930 on 17 July 2003
EQUIP	MENT EA MTHD Rotasonic AN	DRTHING ASTING NGLE	69774 24745 Vertica	36.300	REMARKS:	Investig							

	2100 Mair Huntingto	NTEC CON Street, Suit Beach, CA 714) 969-080	e 150 92648			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-0			GRC	OUN OF	
	GS FORM: /ELL BORE	DREHO	LE L	OG		NUMBER						DAI	UIVI	
DEPTH (ft)	MATERIAL DESCRIPTION		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
-	SILT (ML): brown; dry; organics				Tempora 3/4-inch ft-bgs Groundv encounte	PVC to 17 vater not	- 2035 - -							Began drilling at 0715 on 15 July 2003
5 -	@ 7' - becomes moist; increase i decrease in organics	n gravel;					- 2030 - -							
10	Silty GRAVEL (GM): brown; moi	st; (50,0,50)					- 2025 _ -							pH level at 8.5
15 -							- 2020 - -							
20 -							- 2015 _ -							pH level at 9.5
25 - 30 CONT EQUIP DRILL DIAME LOGG	SAND (SP): brown-gray; moist; f sand	ine-grained					- 2010 - -	•						pH level at 9.5
30 CONT EQUIP DRILL DIAME LOGG	RACTOR Cascade PMENT Geoprobe MTHD Direct Push ETER 1.5-inch EER B. Petty REVIE	EA: AN	RTHING STING GLE		93.990	REMARKS:	Backfille							

Č

		GEOSYNTEC CON 100 Main Street, Suit luntington Beach, CA 'hone: (714) 969-080	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT	L DATE		SP-0			GR TOI	OUN	
	/ELL BORE	BOREHO		OG		NUMBER								
DEPTH (ft)		ferial Ription	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	-						- 2005 -							Completed borehole at 0935 on 15 July 2003
35 -	-													
40 -														
45 -	-													
50 -														
CONT EQUIF DRILL DIAME LOGG	RACTOR Cascade PMENT Geoprobe MTHD Direct Pus ETER 1.5-inch GER B. Petty	EAS	rthing Sting Gle		93.990	REMARKS:	Backfille					IONS		

	GS FORM: VELL BORE	2 H	EOSYNTEC 100 Main Stre untington Bea hone: (714) 9 BORE	et, Suite Ich, CA 169-080	e 150 92648 00			BORING START DRILL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		SP-0			gro Tof	OUN	
DEPTH (ft)			TERIAL RIPTION		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)) (ppm)	TIME	COMMENTS
	@ 1' - deci		-			60769	12 to 16 pH level	at 11.5	2035 - - - 2030 - - - 2025 - - - - - -							Began drilling at 0915 on 15 July 2003 pH level at 8.0 pH level at 7.5 Completed borehole at 0950 on 15 July 2003
EQUIF DRILL DIAMI	RACTOR PMENT . MTHD ETER EER B. Pe	Geoprobe Direct Pus 1.5-inch	h REVIEWER	EAS	rthing Sting Gle		94.750	REMARKS:	Backfille					ONS		

	GEOSYNTEC CON 2100 Main Street, Suite Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 0			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		5P-0			GRO	oune P of	SHEET 1 OF 1 DATA: D SURF. 2036 CASING
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
-	SILT (ML): brown; dry; organics @ 1' - decrease in organics					2035 _ - - -					<u> </u>		Began drilling at 1000 on 15 July 2003
5 - - -	SILT (ML): gray-brown; dry; gravel					_ 2030 _ - - -							
10 - - - -	SILT (ML): brown; moist @ 11' - color change to light gray; becomes dry; increase in gravel Silty GRAVEL (GM): brown; moist; (50,0,50)					_ 2025 _ - -							
- 15 - -	SAND (SM): brown; wet; fine-grained sand; silt (25,75,0)			Tempora 16 to 20 pH level	ry screen from ft-bgs at 12.0	_ 2020 _ - -							
20 -	SILT and SAND (ML-SP): gray; wet (50,50,0)					- 2015 _ - -							pH level at 12.0
25 - 30 CONTI EQUIP DRILL DIAME LOGG	CLAY (CL): gray; wet; silt					- 2010 _ - -							pH level at 12.0 pH level at 9.5 Completed borehole at
30 CONTI EQUIP DRILL DIAME LOGG	MENTGeoprobeEASMTHDDirect PushANO	rthing Sting Gle	697636 247440 Vertical	00.770	REMARKS:	Backfille							1105 on 15 July 2003

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08 GS FORM: ELL BORE BOREHO	te 150 A 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-C			gr Toi	OUN	SHEET 1 OF 1 I DATA: D SURF. 2036 CASING
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry; organics @ 1' - becomes moist; decrease in organics SILT (ML): dark gray; dry; gravel Silty GRAVEL (GM): brown; dry; (50,0,50) @ 11' - becomes wet			hole colli ↓ Encount		2035 - - - - 2030 - - - - - - - - - - - - - - - - - - -							Began drilling at 1115 on 15 July 2003 pH level at 7.0
15 - - - - - - - - - - - - - - - - - - -	CLAY (CL): gray; wet					_ 2020 _ - - - -							pH level at 13.0 pH level at 13.0 Completed borehole at 1140 on 15 July 2003
	PMENTGeoprobeEAMTHDDirect PushAN	DRTHING ASTING AGLE		11.960	REMARKS:	Backfille					IONS		

	GS FORM:	GEOSYNTEC CO 2100 Main Street, Su Huntington Beach, C. Phone: (714) 969-08	ite 150 A 92648 600			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		SP-0			gr To	OUN	
	/ELL BORE	BOREHC		UG		NUMBER				SAMF	PLES	<u> </u>		J
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ UNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
		wn; dry; organics (GM): brown; moist; (40,0,60)					2035 _ - - -	-						Began drilling at 1200 on 15 July 2003
5	SILT (ML): brc	wn-gray; wet; gravel (75,0,25)			∑ Encount groundw on 15 Ju	ater at 6 ft-bgs	_ 2030 _ - -							
10 -					Tempora 10 to 14 pH level	ary screen from ft-bgs at 12.5	_ 2025 _ -							pH level at 10.0 pH level at 12.5
 15 - -	CLAY (CL): gr	ay; wet					- - 2020 _							Completed borehole at 1255 on 15 July 2003
- 20														
25 - 25 - 30 CONT EQUIF DRILL DIAMI LOGG														
30 CONT EQUIF DRILL DIAMI	PMENT Ge MTHD Dire	oprobe EA	DRTHING ASTING NGLE		52.140 117.780 al	REMARKS:	Backfille					IONS		

	GS FORM: PELL BORE	2100 Hunt	SYNTEC CO Main Street, Sui ington Beach, C/ ie: (714) 969-08 BOREHO	te 150 \ 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-0		GR TO	OUN	
DEPTH (ft)		MATERI	AL	SYMBOLIC LOG	MELL LOG	1	RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	PID READING (ppm)	TIME	COMMENTS
	@ 1' - becon	SM): gray; wet;	silt (25,0,75)			on 15 Ju Tempora 8 to 12 ft pH level	ater at 6 ft-bgs ly 2003 ary screen from t-bgs at 13.0	2035 - - - 2030 - - 2025 - -						Began drilling at 1215 on 15 July 2003 pH level at 11.0 pH level at 11.0 Completed borehole at 1305 on 15 July 2003
EQUIF DRILL DIAMI	MTHD	Geoprobe Direct Push 1.5-inch	EA	Orthing Asting Igle		424.870	REMARKS:	Backfille				IONS		

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM: TELL BORE BOREHO	e 150 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		SP-0			gr Toi	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry SILT (ML): brown-gray; moist; gravel (75,0,25)					2035 _ - -					IId		Began drilling at 1315 on 15 July 2003
5 - -	GRAVEL (GM): gray; wet; silt (25,0,75)			∑ Encount	ered 1st ater at 8 ft-bgs	- 2030 _ - -							
- 10 -				on 15 Ju	ly 2003	- 2025 _ - -							pH level at 8.5 pH level at 12.0
	CLAY (CL): gray; wet			Tempora 15 to 19 pH level	ary screen from ft-bgs at 13.0	- 2020 _ -							
20 -						-							pH level at 9.5 Completed borehole at 1340 on 15 July 2003
25 -													
EQUIF	PMENTGeoprobeEAMTHDDirect PushAN	RTHING STING GLE		03.790 133.250 al	REMARKS:	Backfille							

	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969- GS FORM: VELL BORE	Suite 150 CA 92648 0800		BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		SP-0			GRC	SHEET 1 OF 1 TON DATA: DUND SURF. 2035.5 OF CASING TUM
DEPTH (ft)		SYMBOLIC LOG	L LOG	STRUCTURE/ ROUNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) s	ш Е Е
	SILT (ML): grown; dry; organics		Tem 3/4-iu ft-bg Dry	porary well: ich PVC to 7	2035 - - - - - - - - - - - - - - - - - - -					<u> </u>	Began drilling at 1400 or 15 July 2003
- - 10 - - -	GRAVEL (GM): gray-brown; wet; silt (10,0,s		⊻ Encc grou ft-bg	untered 1st ndwater at 11 s on 15 July 2003	- - 2025 - - -						pH level at 8.5
- 15 - - - -	CLAY (CL): gray; wet				2020 -						pH level at 12.5
20 - - - -					-						pH level at 12.5 Completed borehole on 15 July 2003
25 - - - -											
EQUIP DRILL DIAME	PMENT Geoprobe MTHD Direct Push	NORTHING EASTING ANGLE	697468.990 2474449.37 Vertical		Backfille					ONS	

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	e 150 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		SP-C			gro Top	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry; organics @ 1' - becomes moist; decrease in organics			No grour sampled volume	ndwater due to small	-					Ш		Began drilling at 1430 on 15 July 2003
5 - -	SILT (ML): gray-brown; wet; gravel (80,0,20)			∑ Encounte groundw on 15 Ju	ater at 5 ft-bgs	2025 _ - -							pH level at 8.5
- 10	GRAVEL (GM): gray-brown; wet; silt (10,0,90)					- 2020 _ - - -							pH level at 9.5
- 15	CLAY (CL): gray; wet					- 2015_ - -							pH level at 11.0
- 20 -						- 2010_							Completed borehole at 1515 on 15 July 2003
EQUIP	PMENTGeoprobeEA:MTHDDirect PushAN	RTHING STING GLE	69740 24744 Vertica	83.530	REMARKS:	Backfille							

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08 BOREHO	te 150 A 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP- 1			gr To	OUN	
			UG		NUMBER				SAMI]
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brown; dry @ 1' - becomes moist @ 5' - color change to gray; becomes wet			∑ Encountv groundw ft-bgs on	ered 1st ater at 5.5 15 July 2003	- - - 2025 _ -	-						Began drilling at 1530 on 15 July 2003
	Silty GRAVEL (GM): gray-brown; wet				IV screen from	- - 2020 _ - -	-						pH level at 9.0
	CLAY (CL): gray; wet			pH level	at 8.75	- 2015_ - -	-						pH level at 9.0
20 -						- 2010_							Completed borehole at 1600 on 15 July 2003
30 CONT EQUIF DRILL DIAMI	PMENTGeoprobeEAMTHDDirect PushAN	ORTHING ASTING IGLE		35.560 542.830 al	REMARKS:	Backfille					10NS		

	GS FORM:	210 Hun	0 Main Street, tington Beach ne: (714) 969	Suite n, CA 9 9-0800	150 92648)			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-1			GR TO	OUN	SHEET 1 OF 1 I DATA: D SURF. 2029 CASING
	ELL BORE		BORE			UG		NUMBER	1							J
DEPTH (ft)		MATEF DESCRII	PTION		SYMBOLIC LOG	MELL LOG	GROU	RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5	Silty GRAV	'EL (GM): gra	ravel (75,0,25) y; dry; (50,0,50) rown; wet; gravel	000000000000000000000000000000000000000			collapse	due to hole	- 2025 . - - 2020 .							Began drilling at 1615 on 15 July 2003
10 - - - - 15 -	(50,40,10)	: gray; wet					on 15 Ju	ly 2003	- - 2015 - -	-						pH level at 12.0
																Completed borehole at 1700 on 15 July 2003
25 -																
Cont Equip Drill Diame	. MTHD	Geoprobe Direct Push 1.5-inch	REVIEWER	NOR EAST ANG			52.920	REMARKS:	Backfille					IONS		

	GS FORM:	GEOSYNTEC CO 2100 Main Street, S Huntington Beach, C Phone: (714) 969-0	uite 150 CA 92648 800	5	<u> </u>	BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-1			gr To	OUN	
	ELL BORE	BOREHO		<u>.OG</u>		NUMBER						-		
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	organics	AVEL (GM): brown; dry; VL): brown; moist; (60,0,40) iy; wet			8 to 12 f pH level ⊈ncount	at 11.0 ered 1st ater at 6 ft-bgs	- 2025 - - - - - - - - - - - - - - - - - - -							Began drilling at 0700 on 16 July 2003 pH level at 10.5 Completed borehole at 0800 on 16 July 2003
30 CONT EQUIP DRILL DAME LOGG	MENT Geo MTHD Dire	probe E ect Push A	IORTHING ASTING NGLE		 92.220 586.800 al	REMARKS:	Backfille					<u>10</u> NS		

	GS FORM:	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969- BOREH	Suite 150 CA 92648 0800			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-1			gr(Tof	OUN	
DEPTH (ft)		MATERIAL	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brow	n; dry; organics /n; moist; gravel (75,0,25)					- 2025 _ - - -							Began drilling at 0810 on 16 July 2003 Two samplers bent
- - - - - -							2020 _							Completed borehole at 0830 on 16 July 2003
20 - - - - - - - - - - - - - - - - - - -														
	RACTOR Case			69772		REMARKS:	Backfille	ed wit	h ber	Itonit	e			
	MTHD Direct	ct Push	EASTING ANGLE	24745 Vertica	91.010 al	SEE KEY SHEET	FOR SYM	BOLS	AND AI	BBRE	VIATI	ONS		

	GS FORM: VELL BORE	210 Hur	O Main Stre 0 Main Stre one: (714) BORI	eet, Suite ach, CA 969-080	e 150 92648 0			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		SP-1			gr To	OUN	
DEPTH (ft)		MATEI			SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	SILT (ML):	brown; dry; o	rganics						2025					<u> </u>		Began drilling at 0835 on 16 July 2003
5 -																Refusal: no sample Terminated borehole at 0900 on 16 July 2003 Bent two samplers Angled rods Damaged two sample tips
- 10 -	-															
- 15 -																
20 -	-															
30 CONT EQUIF DRILL DIAMI LOGG	PMENT . MTHD	Cascade Geoprobe Direct Push 1.5-inch ty	REVIEWER	EAS ANG	rthing Sting Gle		69.260	REMARKS:	Backfille							

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM: TELL BORE BOREHO	te 150 \ 92648)0			BORING START DRIL FINISH DRIL LOCATION PROJECT NUMBER	L DATE		5P-1			GR TO	OUN	
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - - 5 - - -	ARTIFICAL FILL: Silt; gray and brown; dry; sand SILT (ML): brown; wet; fine gravel (75,0,25) GRAVEL (GM): gray; wet; silt; sand	-Ψ(J)		⊈ Encount groundw on 16 Ju	ater at 5 ft-bgs	2030 _ - - - 2025 _ -	-						Began drilling at 0955 on 16 July 2003
- - - - - - -	CLAY (CL): gray; wet			Tempora 12 to 16 pH level	ary screen from ft-bgs at 9.5	- - 2020 _ - - -							pH level at 8.0 pH level at 8.5
15 - - - - - 20 -						2015 _	-						Completed borehole at 1040 on 16 July 2003
25 - 25 - 30 CONT EQUIP DRILL DIAME LOGG													
30 CONT EQUIP DRILL DIAME LOGG	PMENTGeoprobeEA. MTHDDirect PushAN	RTHING STING GLE		64.440	REMARKS:	Backfille					IONS		

	SS FORM:	GEOSYNTEC C 2100 Main Street, S Huntington Beach, Phone: (714) 969-0	Suite 150 CA 92648 0800			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		SP-1			GR TOI	OUN	
	ELL BORE	BOREH				NUMBER	(ft)		5	AMF مآ				
DEPTH (ft)		MATERIAL ESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ UNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL brown; dry; grave GRAVEL (GM): (20,0,80) @ 8' - becomes of	۶l; silt; sand brown; wet; fine gravel; silt			Tempora 8 to 12 f pH level	ary screen from t-bgs at 11.5	2030 - - - 2025 - - - 2020 -					<u> </u>		Began drilling at 1050 on 16 July 2003 pH level at 8.5 pH level at 11.0 Completed borehole at 1120 on 16 July 2003
- 15 - - - - 20 -														
20 -														
25 -														
Cont Equip Drill Diame		robe t Push	NORTHING EASTING ANGLE		531.450	REMARKS:	Backfille					ONS		

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM:	te 150 \ 92648)0			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		5P-1			gr(Tof	OUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		NUMBER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5 -	ARTIFICAL FILL: brown; dry SILT (ML): dark brown; wet; very little gravel			Encount groundw on 16 Ju	ater at 5 ft-bgs	- - 2030 _ - - - - - - - - - - - - - - - - - - -							Began drilling at 1130 on 16 July 2003
10 - - - - - - - - - - - - - - - - - - -	Silty Sandy GRAVEL (GM): gray; wet			Tempora 12 to 16 pH level	ary screen from ft-bgs at 7.0	- - - 2020 - - -							pH level at 7.5 pH level at 8.5 Completed borehole at 1200 on 16 July 2003
20 -													
30 CONT EQUIF DRILL DIAMI LOGG	PMENTGeoprobeEAMTHDDirect PushAN	rthing Sting Gle		616.320	REMARKS:	Backfille					IONS		

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08 GS FORM: //ELL BORE //ELL BORE	te 150 A 92648 00		<u> </u>	BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-1			gro Tof	DUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ UNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6" B	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: brown; dry; silt; sand SILT (ML): brown-gray; wet GRAVEL (GM): gray; wet; silt			on 16 Ju	ater at 6 ft-bgs ily 2003 ary screen from ft-bgs	2030 - - - 2025 - - - - - - - - - - - - - - - - - - -							Began drilling at 1220 on 16 July 2003 pH level at 7.5
15 - - - - 20 -						-							pH level at 8.5 Completed borehole at 1300 on 16 July 2003
30 CONT EQUIF DRILL DIAMI	PMENTGeoprobeEA_ MTHDDirect PushAN	DRTHING ASTING NGLE		589.890	REMARKS:	Backfille					IONS		

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	te 150 \ 92648)0			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-1			gro Tof	OUN	SHEET 1 OF 1 I DATA: D SURF. 2032.5 CASING
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG			NUMBER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: brown; dry	SYM SYM	~			ELE	N		BLOV	RECC	PID RE/	-	Began drilling at 1310 on 16 July 2003
	Silty GRAVEL (GM): light gray Clayey SILT (ML): brown; wet Silty GRAVEL (GM): gray; wet (50,0,50)			∑ Encount groundw on 16 Ju	ater at 5 ft-bgs	2030 -							
- - 10 - -						-	-						pH level at 7.5
				Tempora 12 to 16 pH level	ary screen from ft-bgs at 7.5	-							Completed borehole at 1340 on 16 July 2003
20 -													
25 - 30 CONT EQUIP DRILL DIAME LOGG													
30 CONT EQUIP DRILL DIAME LOGG	MENTGeoprobeEAMTHDDirect PushAN	RTHING STING GLE	69742 24745 Vertica	73.770	REMARKS:	Backfille					IONS		

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08 BOREHO	te 150 \ 92648 00			BORING START DRIL FINISH DRILL LOCATION PROJECT NUMBER	L DATE		SP-2			gro Tof	OUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: brown; dry SILT (ML): gray; wet Silty GRAVEL (GM): gray; wet; (30,0,70)			∑ Encount groundw on 16 Ju	ater at 4 ft-bgs	2030 _ - - - 2025 _							Began drilling at 1350 on 16 July 2003 pH level at 10.0
- - - - - - -				Tempora 10 to 14 pH level	ary screen from ft-bgs at 9.60	- - 2020 _ -							pH level at 11.5
15 - - - 20 -													1420 on 16 July 2003
- - - 25 - - -													
Equip Drill Diame	MENTGeoprobeEAMTHDDirect PushAN	ORTHING STING IGLE		36.950 564.050 al	REMARKS:	Backfille					10NS		

	GS FORM:	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080	e 150 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT	L DATE		SP-2			GR TO	OUN	
	/ELL BORE	BOREHO			STF		ELEVATION (ft)	ER		SAMF		(mqq)		COMMENTS
(ft)	C	ESCRIPTION	SYMBOI	WELL	GRO	JNDWATER		NUMBER	ТҮРЕ	BLOWS PER	RECOVERY (%)	PID READING	TIME	Began drilling at 1500 on
	@ 3' - becomes r Silty CLAY (CL): SANDY-SILTY-G	noist brown; wet RAVEL (GM)			Tempora 8 to 12 fl pH level	ary screen from -bgs at 10.05	2030 - - - 2025 - - - - - - - - - - - - - - - - - - -							16 July 2003
														Completed borehole at 1600 on 16 July 2003
20 -														
		robe EA t Push AN	rthing Sting Gle		644.660	REMARKS:	Backfille							

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 GS FORM: FUL BORE BOREHO	e 150 92648 00		<u> </u>	BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-2			gro Tof	OUN	
L W DEPTH (ft)			MELL LOG		NUMBER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: brown; dry @ 4.5' - becomes wet; some silt SILT (ML): gray CLAY (CL): gray; wet			on 17 Ju	ater at 4 ft-bgs ly 2003	- - 2025 _ - - - 2020 _	-						Began drilling at 0710 on 17 July 2003
- - - - - - - - - - - - - - - - - - -				pH level	hole collapse	- - - 2015_ -							Completed borehole at 0735 on 17 July 2003
30 CONT EQUIP DRILL DIAME LOGG	PMENTGeoprobeEASMTHDDirect PushAN	rthing Sting Gle		519.880	REMARKS:	Backfille							

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 BOREHO	te 150 \ 92648)0			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-2			GR TO	OUN	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	ARTIFICAL FILL: brown; dry			Tempora 3/4-inch ft-bgs	rry well: PVC to 9	2030					Ľ		Began drilling at 0740 on 17 July 2003
5 - - 	SILT (ML): brown; wet GRAVEL (GM): gray; wet; silt (25,0,75)			Encounte groundw on 17 Ju	ater at 4 ft-bos	- 2025 -							
- 10 - - -						- - 2020 -							Completed borehole at 0815 on 17 July 2003
- 15 -													
- 20 - -													
- 25 -													
Equip Drill Diame	MENTGeoprobeEAMTHDDirect PushAN	RTHING STING GLE	697484 247450 Vertica	00.040	REMARKS:	Backfille							

	GS FORM:	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08	te 150 A 92648 00			BORING START DRIL FINISH DRIL LOCATION PROJECT	L DATE		SP-2			gr To		
		BOREHO		<u>.</u> UG		NUMBER	1							
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
		; wet gray-brown; wet			ft-bgs ⊈ Ēncount	PVC to 12 ered 1st ater at 7 ft-bgs ly 2003	2030							Began drilling at 0900 on 17 July 2003
diami		brobe EA	DRTHING ASTING IGLE		37.590	REMARKS:	Backfille					IONS		

	GEOSYNTEC CO 2100 Main Street, Sui Huntington Beach, C/ Phone: (714) 969-08 GS FORM: TELL BORE BOREHO	te 150 \ 92648 00			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-2			GRO	ouni P of	SHEET 1 OF 1 DATA: D SURF. 2033.5 CASING
DEPTH (ft)		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	(mqq) (TIME	COMMENTS
	ARTIFICAL FILL: brown; dry SILT (ML): dark gray; wet			Encount groundw ft-bgs or	ered 1st ater at 4.5 17 July 2003	- 2030 - - -							Began drilling at 1000 on 17 July 2003
- - - - - - - -	GRAVEL (GM): gray; wet; silt			Tempora 10 to 14 pH level	ary screen from ft-bgs at 12.0	2025 - - - - - - - -							pH level at 11.5
15 - - -	CLAY (CL): gray; wet					-							Completed borehole at 1020 on 17 July 2003
20 -													
30 CONT EQUIF DRILL DIAME LOGG	PMENTGeoprobeEA. MTHDDirect PushAN	orthing Sting Igle		93.760	REMARKS:	Backfille					IONS		

	GEOSYNTEC CON 2100 Main Street, Suit Huntington Beach, CA Phone: (714) 969-080 CES FORM:	te 150 \ 92648)0			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		SP-2			gr Tof	OUN	
UEPTH (ft)	BOREHO BOREHO MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		NUMBER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	ARTIFICAL FILL: brown; dry SILT (ML): gray-brown; wet			Encount	pred 1st	2030 _ - - -			E		JIA		Began drilling at 1130 on 17 July 2003
- - - 10 -	CLAY (CL): gray; wet			groundw on 17 Ju	ater at 5 ft-bgs ly 2003 ary screen from -bgs	2025 _ - - - 2020 _							pH level at 11.5
- - - 15 - - -						- - - 2015 -							Completed borehole at 1200 on 17 July 2003
- 20 - - -													
25 - - - - - - - - - - - - - - - - - - -													
30 CONT EQUIP DRILL DIAME LOGG	PMENTGeoprobeEAMTHDDirect PushAN	rthing Sting Gle	69750 24745 Vertica	75.710	REMARKS:	Backfille					IONS		

	GEOSYNTEC 2100 Main Street, Huntington Beach Phone: (714) 969 GS FORM:	Suite 150 a, CA 92648 9-0800			BORING START DRIL FINISH DRILL LOCATION PROJECT	L DATE		SP-2			gro Tof	OUN	SHEET 1 OF 1 DATA: D SURF. 2027 CASING
	SS FORM: /ELL BORE BORE	IOLE L	ÜĞ		NUMBER				SAMF		<u></u>		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5 -	SILT (ML): brown; dry; organics GRAVEL (GM): dark gray; silt (10,0,90) CLAY (CL): gray; wet			4 to 8 ft- pH level Encount		- 2025 - - - - 2020 -	-						Began drilling at 1220 on 17 July 2003 Completed borehole at 1252 on 17 July 2003
20 -													
B CONT EQUIP DRILL DIAME LOGG	Image: Cascade PMENT Geoprobe Image: Cascade Image: Cascade Im	NORTHING EASTING ANGLE	69754 24746 Vertica	626.630	REMARKS:	Backfille							

	GS FORM:	GEOSYNTEC CC 2100 Main Street, Su Huntington Beach, C Phone: (714) 969-08 BOREHC	ite 150 A 92648 800			BORING START DRIL FINISH DRILI LOCATION PROJECT NUMBER	L DATE		SP-2			GR TO	OUN	
UEPTH (ft)		MATERIAL	SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	SILT (ML): brow	/n; dry; organics gray; wet; fine gravel; some					- 2025 _ - -					<u> </u>		Began drilling at 1320 on 17 July 2003
- 	SILT (ML): light GRAVEL (GM): silt	gray; wet gray; wet; fine gravel; some /; wet			on 17 Ju	ater at 7 ft-bgs ly 2003 ary screen from -bgs	- 2020 _ - - - - 2015 _							
														Completed borehole at 1400 on 17 July 2003
20 - - - - - -														
	MTHD Direct	orobe Extension Extension A	ORTHING ASTING NGLE		3.460 664.660 al	REMARKS:	Backfille					IONS		

GEOSYNTEC CONSULTANTS 2100 Main Street, Suite 150 Huntington Beach, CA 92648 Phone: (714) 969-0800 GS FORM: WELL BORE BOREHOLE LOG								BORING FSP-29 SHEET 1 OF 1 START DRILL DATE ELEVATION DATA: FINISH DRILL DATE GROUND SURF. 2027 LOCATION Metaline Falls, Washington TOP OF CASING PROJECT DATUM NUMBER								
	ELL BORE							NUMBER				SAMF	PLES	6]
DEPTH (ft)			rerial Ription		SYMBOLIC LOG	MELL LOG		RUCTURE/ JNDWATER	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5	Clayey SILT	- (ML): brc	r; gravel (75,0 				Tempora	ater at 6.5 17 July 2003 ary screen from	- 2025 - - - - 2020 - - - - - - - - 							Began drilling at 1400 on 17 July 2003
- - - - - - - - - - - - -			wet; silt (20,0	,80)			10 to 14 pH level	ft-bgs at 8.36	- 2015 _ - -							Completed borehole at 1435 on 17 July 2003
20 - - - 25 - -																
EQUIP DRILL DIAME	MENT (Cascade Geoprobe Direct Pus 1.5-inch y	h REVIEW	EAS ANG	RTHING STING GLE		87.220	REMARKS:	Backfille					IONS		

APPENDIX D

RESPONSE TO ECOLOGY COMMENTS ON THE FEASIBILITY STUDY TECHNICAL MEMORANDUM

REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APD.DOC

DRAFT	GeoSyntec Consultants
RESPONSE TO ECOLOGY COMMEN CLC CLC	APPENDIX D LOGY COMMENTS ON THE FEASIBILITY STUDY TECHNICAL MEMORANDUM LEHIGH CEMENT COMPANY CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON
GENERAL COMMENTS	
ECOLOGY COMMENT	RESPONSE
Comment 1: A permanent remedy must be included in the alternatives that are evaluated for cleanup. The dismissal of CKD pile removal or partial removal as being disproportionate is premature. A disproportionate conclusion has to be demonstrated through a more thorough analysis following the process described in WAC 173-340-360(3) (e) (ii). All remedial alternatives that meet the minimum requirements must be compared in terms of costs and benefits to show a disproportionate argument. A table showing the comparisons would be very helpful.	 Based on the remotences of this site and the logistics involved in operating systems at an unmanned site, Lehigh would also prefer a permanent remedy. The Feasibility Study Technical Report (FSTR) reviews each alternative for both the concept of permanent remedy and degree of permanence. The Lehigh rationale for screening out complete CKD pile removal in the FS Technical Memorandum included: Feasibility agreements between Ecology and Lehigh referenced in the 11 April 1994 letter from Ecology to Lehigh; and No permanent remedy was identified during the screening process. As documented in the 11 April 1994 letter, No permanent remedy was identified during the screening process. As documented in the 11 April 1994 letter, No permanent remedy was identified during the screening process. As documented in the 11 April 1994 letter, No permanent remedy was identified during the screening process. As documented in the 11 April 1994 letter, No permanent remedy was identified during the screening process.
HR0196-01/MFW05-13_APD.DOC	1 2 MAR 05 / 5:00 PM

State.

DRAFT	GeoSyntec Consultants
	No partial source removal meets the definition of permanent. However, the FSTR does evaluate the alternative for its degree of permanence in Section 4.6.6. Please see the following components of the Feasibility Study Technical Report (FSTR):
	• Sections 4 and 5
	• As requested, for a summary comparison, Exhibit 5.5-1 provides a summary of each alternative's ability to meet WAC and AO criteria, including cost. Also refer to Exhibits 4.1-1, 4.1-2, 4.1-3, 4.1-4, 4.1-5, 4.1-6 for individual evaluation of alternative and cost.
Comment 2: The costs of all alternatives that meet the minimum requirements must be consistently presented for	As requested, the cost components of each alternative, including monitoring, are included in this FSTR. Please see the following components of the FSTR:
comparative purposes. Monitoring costs and expected duration of the monitoring requirements should be included in the analysis.	• Exhibits 4.3-2, 4.4-2, 4.5-2, 4.6-2, 4.7-2, 4.8-2 contain the unit prices and calculations for each alternative.
	 Appendix C provides cost assumptions for each alternative.
Comment 3: The following suggestions are made to make the forthcoming draft FS report easier to review for the public:	Pursuant to discussions with Ecology, a partial removal option, as well as a combination of source control and CKD affected groundwater containment, are included in the
 The draft FS Report should include removal and disposal of all CKD and/or partial removal and disposal of CKD in the draft FS Report. 	analysis. These alternatives are included in the discussion of Alternative #4 – Partial Source Removal and Alternative #5 –Groundwater Control, respectively. As requested, cost disproportionality is addressed in the FSTR (Section 5.14).
 Include a combination of partial removal of CKD and containment wall (i.e. CO2 wall and/or pump and treat) as an alternative. 	Please see the following components of the FSTR:Sections 4.6 and 4.7
 Perform a rigorous disproportionate cost analysis in the FS Report. 	 Exhibits 4.1-4, 4.1-6, 4.6-1, 4.6-2, 4.7-1, 4.7-2
·	

HR0196-01/MFW05-13_APD.DOC

0

,

DRAFT

SPECIFIC COMMENTS

ECOLOGY COMMENT	RESPONSE
Comment 1: Page 5, Section 2.4.2, Cleanup Levels, Is surface water a media of concern? If there were no exceedances of regulatory levels in surface water, cleanup levels for this media, as well as points of compliance are not necessary. Because groundwater discharges to surface water, cleanup levels of groundwater must be protective of both the groundwater and surface water.	 Surface water is not a media of concern for this evaluation. The final groundwater remedy will address CKD-affects to groundwater, thereby precluding affects to surface water. Method A cleanup levels for both groundwater and surface water have been proposed [GeoSyntec, 2001], resulting in a site cleanup standard that is protective of both groundwater and surface water. Please see the following components of the FSTR: Sections 3.2.2 and 3.3.4 Exhibit 4.2-1
Comment 2: Page 7, Section 3.1, Introduction, The remedial actions listed in Table 3-1 are considered as having met the definition of an interim action. The pilot study is not considered an interim action. Other remedial actions may not have been conducted under the MTCA administrative options required for an interim action. It is recommended that the term interim action not be used.	As requested, the pilot study will not be referenced as an interim action.
Comment 3: Page 8, Section 3.2, Source Control, The CKD removal discusses only full removal of the pile and not partial removal of materials in contact with groundwater. Please add partial removal to the discussion.	 As requested, a partial source removal option, Alternative #4, is included in the FSTR. Please see the following components of the FSTR: Section 4.6 Exhibits 4.1-4, 4.6-1, 4.6-2,

HR0196-01/MFW05-13_APD.DOC

ŝ

1. 20

1.12.24

Comment 4: Page 11, Section 3.4, Contaminant Migration Management, As with the CKD removal, the slurry wall discussion includes a slurry wall around the entire pile. Please include a discussion on a partial slurry wall.	As requested, a partial slurry wall has been included in the alternatives analysis in Alternative #3 - Additional Source Control, and Alternative #6 - Source and Scepage Control.
× •	 Section 4.5.1.3 (ASC) and 4.8.1.3 (SSC)
	• Exhibits 4.1-3, 4.1-6, 4.5-1, 4.5-2, 4.8-1, 4.8-2
Comment 5: Page 11, Section 3.5, Institutional Controls, Institutional controls shall include restrictive covenants in	As requested, Lehigh will implement restrictive covenants for the selected alternative, in accordance with WAC 173-340-440(1).
accordance with WAC 173-340-440.	Please see the following sections of the FSTR:
	 5.2, 6.2
Comment 6: Page 15, Section 4.3.2.2, CKD Removal and Remote Disposal, While Ecology approved in concept the CKD	Ecology identified CKD pile removal as "not economically feasible" and further recommended that the CKD material be capped in place [Ecology, 1994]:
Pile closure plan, Ecology also cautioned Lehigh about proceeding with closure while portions of the pile were in continuous contact with groundwater. Ecology did not acknowledge hy nile closure approval that CKD nile removal is	"Ecology believes that excavation and/or treatment of the CKD waste pile to meet MTCA cleanup levels is not economically feasible. It is our opinion that the CKD waste pile should be closed in place"
disproportionate. A determination of disproportionate costs is only arrived at using the procedure described in MTCA. Any further discussion regarding the disproportionate cost without an analysis is premature at this point. The henefits and costs	A brief summary of the expected timeframes for compliance monitoring are included in the evaluation of each of the alternatives.
must be compared with those of the other alternatives that are being evaluated.	As requested, where appropriate, slope stability considerations have been included in the cost analysis.
what is the expected time frame for computance monitoring and what would be the projected monitoring costs? Please include	Please see the following sections of the FSTR:
slope stability costs in the analysis.	• Section 4.5, 4.8
	• Exhibits 4.1-3, 4.1-6, 4.5-1, 4.5-2, 4.8-1, 4.8-2

HR0196-01/MFW05-13_APD.DOC

2 MAR 05 / 5:00 PM

4

States of

DRAFT

Comment 1: Page 17, Section 4.3.2.3, Vertical CKD Pile Soil Mixing/Cement Grouting, Ecology is unaware of features and boulders that may be present in the subsurface below the CKD pile that may complicate grouting.	There is a potential that objects other than CKD, including boulders, may be present based on Site surroundings and anecdotal information from former Site employees. As requested, subsurface pile grouting is included in the alternatives analysis in Alternative #3 – Additional Source Control, and Alternative #6 – Source and Seepage Control. Please see the following sections of the FSTR:
	• Section 4.5, 4.8
	• Exhibits 4.1-3, 4.1-6, 4.5-1, 4.5-2, 4.8-1, 4.8-2
Comment 8: Page 18, Section 4.3.2.4, Vertical CKD Pile Chemical Grouting, The cover system has been disturbed by GeoSyntec in the past for the slope drain installation. The idea that an additional penetration cannot be performed to perform cleanup activities is not valid.	Lehigh acknowledges and agrees with the comment. The discussion on cover disturbances was intended to cite them as one negative factor, but not necessarily a prohibitory one. While compromising the integrity of an installed cover is not preferred, alternatives requiring the disturbance of the cover systems have been considered for detailed analysis in the FSTR.
How long is the compliance monitoring going to be conducted and what are the associated costs?	As requested, monitoring time frames and cost are included in the FSTR. Please see the following sections of the FSTR:
	• Sections 4 and 5
	• Exhibits 4.3-2, 4.4-2, 4.5-2, 4.6-2, 4.7-2, 4.8-2
Comment 9: Page 23, Section 4.3.3.2, Metallic Iron In-Situ Permeable Reactive Wall, Part of the success of permeable reactive walls is that they provide viable treatment and allow for continued use of a facility. Also, settlement in the wall area is typically addressed with the design if it appears problematic. Ecology does not believe these issues to be a hindrance for wall installation.	Lehigh agrees that the appropriate design must be used when settlement is an issue. The FSTM discussion was intended to be mentioned settlement as one negative factor, but not necessarily a prohibitory one. However, the metallic iron option was screened from the alternatives list based on its potential to mobilize metals.

HR0196-01/MFW05-13_APD.DOC

2 MAR 05 / 5:00 PM

DRAFT

Comment 10: Page 29, Section 4.3.3.5, In-Situ Permeable Treatment Wall – Acid Formation, How long will the system require operation? What is the life estimate for the tubes and what are replacement costs? Please include anticipated monitoring costs.	The treatment system would require continuous operation for an indefinite period of time (likely several decades). Based on preliminary evaluations, the tubing will remain effective for decades, as well. Replacement of system components are included in the cost analysis. Please see the following components of the FSTR:
	• Sections 4.3, 4.7
	• Exhibits 4.3-2, 4.7-2
Comment 11: Page 29, Section 4.3.3.6, Gaseous Carbon Dioxide In-Situ Sparging Points, Have the air sparging points been activated? If so, when will test data be available for review?	The gas sparge points were activated for a brief period of time. The observations and evaluations conducted on this option indicate that the sulfur content of the groundwater is high enough to result in the formation of hydrogen sulfide gas, a toxic gas. The gas sparging operation, while involving microbubble formation, is sufficient to form and strip hydrogen sulfide gas from the saturated zone. This alternative is not considered for further evaluation in this FSTR.
Comment 12: Page 31, Section 4.3.3.7, Pyrite In-Situ	Samples of commercially available pyrite were submitted for laboratory analysis.
Permeable Treatment Wall, Where were lab samples collected?	
Comment 13: Page 41, Section 4.4, Results of Alternative Screening, Ecology believes source control measures are appropriate for the Site. A limited investigation of the area previously identified as having CKD in direct contact with	As requested, source control measures were included in 3 of the alternatives evaluated, Alternative #3 – Additional Source Control, Alternative #4 – Partial Source Removal, and Alternative #6 – Source and Seepage Control. This FSTR documents the evaluation of various source control alternatives.
groundwater would yield a quantifiable source area. Once the	Please see the following components of the FSTR:
source is meringrea a removal memouology can be assessed and a cost can be determined.	• Sections: 4.5, 4.6, 4.8
	• Exhibits 4.1-3, 4.1-4, 4.1-6, 4.5-1, 4.5-2, 4.6-1, 4.6-2, 4.6-3, 4.8-1, 4.8-2, 4.8-3
Comment 14: Page 44, Section 6.1, General, The pilot test is not considered an interim action as defined by WAC 173-340-430. Please remove the reference.	As requested, the pilot study will not be referenced as an interim action.

HR0196-01/MFW05-13_APD.DOC

2 MAR 05 / 5:00 PM

9

DRAFT

.

pH. Are there groundwater elevation data that can explain the advective, diffusive, and dispersive mixing with untreated groundwater?	A discussion of data collected from the PTW is presented in Appendix A. Groundwater elevation data show that flow is approximately perpendicular to treatment in the pilot PTW location. However, based on the stratified geology encountered in the floodplain alluvial materials, channeling of untreated water within high permeability zones is likely occurring in the area of the permeable treatment wall. Please see the following components of the FSTR:
Comment 16: Page 46, Section 6.3.3, Progress in Increasing Eh, What steps have been taken to obtain more accurate and precise Eh data? Ecology notes for example that two groundwater samples collected on $3/03/03$ from MW-9 had Eh readings of -203 and +179 mV. The other analytes for these samples were similar.	Redox potential was introduced to understand the geochemistry and predict the behavior of arsenic. Redox potential was evaluated as a remedy selection factor, but it is not considered an indicator of remedy performance due to the many factors that can influence it. However, redox potential data is also supplied via field monitoring devices that are used when groundwater samples are collected.
Comment 17: Page 48, Section 6.3.5, Future Data Needs, How will the dissolved inorganic carbon useful and what will it tell us? Please expand.	The permeable treatment wall consists of a carbon dioxide distribution system. The carbon dioxide reacts with water molecules to form carbonic acid, and therefore inorganic carbon. Dissolved inorganic carbon (DIC) is a linearly-related indicator of pilot treatment wall performance. DIC is also a conservative tracer which provides useful performance evaluation data downgradient of the treatment zone.
Ecology is unclear about the concept of short-circuiting of groundwater from the culvert to MW-9. The culvert elevation on the pile side is reportedly 10 feet higher than the groundwater elevation in MW-9. Please explain.	The culvert, and more importantly the bedding material into which the culvert was placed, was one potential preferential pathway for ground water migration downgradient of the closed CKD pile. Prior to the investigation, the exact depth of the culvert invert and bedding materials was unknown. The culvert investigation performed to evaluate the bedding materials Showed that the culvert and bedding materials were not acting as preferential conduits to groundwater flow. Please see the following sections of the FSTR:
	Appendix A.

HR0196-01/MFW05-13_APD.DOC

5

Comment 18: Table 3.2, Acid Injection, What regulated daughter products may be generated?	Depending on the acid selected, its conjugate base will be formed upon dissolution in water. Examples include:
	• Phosphate from phosphoric acid;
	• Nitrate from nitric acid;
	• Sulfate from sulfuric acid; and
	Chloride from hydrochloric acid.
Comment 19: Table 6.2, Oxidation Reduction Potential Data in Vicinity of the Treatment Trench, Is the "<" symbol being used as the same as a negative sign"-"? If so please use standard notation for the negative sign	As requested, standard notation will be used.
Comment 20: Attachment A, Analytical Data, See comment 19 for data presentation. Some of the data for monitoring well MW-9 is referred to as mid or shallow. What are these depths and how were they achieved? What depth were the rest of the	To evaluate the potential for the CKD affected groundwater to be stratified (i.e., not homogeneous throughout the saturated zone), GeoSyntec collected groundwater samples from monitoring well MW-9 using low flow sampling techniques. The MW-9 sample results provided in the database were collected as follows:
samples taken.	 -SHALLOW samples were collected from 1 foot below the groundwater surface (approximately 2029 feet above mean sea level (ft msl))
	-MID were collected from the midpoint of the MW-9 saturated interval (approximately 2023 ft msl)

HR0196-01/MFW05-13_APD.DOC

 ∞

1. 18 M. V

DRAFT

DRAFT

APPENDIX E

COST ESTIMATE DESCRIPTIONS

REVISED DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

HR0196-12/MFW05-13_APE

DRAFT

2 South the second

"Averesie"

TABLE OF CONTENTS

<u>Page</u>

E.1.	INTRODUCTION 1
E.1.1 E.1.2	Basis for Cost Estimates
E.2.	ALTERNATIVE DESCRIPTIONS AND ASSUMPTIONS 2
E.2.1	Introduction
E.2.2	Permeable Treatment Wall (PTW)
E.2.3	Groundwater Control (GWC)
E.2.4	Additional Source Control (ASC)
E.2.5	Partial Source Removal (PSR)
E.2.6	Funnel and Gate Treatment (FGT) 10
E.2.7	Partial Additional Source Control (PASC)
E.3.	ESTIMATION PROCEDURES 12
E.3.1	Introduction12
E.3.2	Approach13
E.3.3	Cost Estimate Accuracy

HR0196-12/MFW05-13_APE

E-i

DRAFT

APPENDIX E

COST ESTIMATE DESCRIPTIONS

DRAFT FEASIBILITY STUDY TECHNICAL REPORT CLOSED CEMENT KILN DUST PILE METALINE FALLS, WASHINGTON

E.1. INTRODUCTION

E.1.1 Basis for Cost Estimates

As part of the Feasibility Study (FS) conducted for the Lehigh Cement Company (Lehigh) Closed Cement Kiln Dust (CKD) Pile (Site) located in Metaline Falls, Washington, GeoSyntec prepared cost estimates for six remedial alternatives. Washington Administrative Code (WAC 173-340-360) and the Agreed Order No. DE99HS-E941 include cost as an evaluation criterion. The FS is documented in the Revised Draft Feasibility Study Technical Report (Revised dFSTR), of which this document is Appendix E.

Cost estimates were prepared for the following alternatives:

- 1. Permeable Treatment Wall (PTW)
- 2. Groundwater Control (GWC)
- 3. Additional Source Control (ASC)
- 4. Partial Source Removal (PSR)
- 5. Funnel and Gate Treatment (FGT)
- 6. Partial Additional Source Control (PASC)

E.1.2 Organization of this Appendix

The remainder of this appendix is organized into the following sections:

• Section 2, *Alternative Descriptions and Assumptions*, which describes the components included in the cost estimates; and

HR0196-12/MFW05-13_APE

• Section 3, *Estimating Procedures*, which presents the general methods used to estimate costs of the alternatives.

E.2. ALTERNATIVE DESCRIPTIONS AND ASSUMPTIONS

E.2.1 Introduction

This section includes assumptions regarding the conceptual layouts and operating scenarios of the remedial alternatives.

E.2.2 Permeable Treatment Wall (PTW)

For the purposes of the calculations in the Revised dFSTR, components of PTW include:

- The pilot PTW operating in its current mode;
- Boreholes at 50 feet (ft) intervals to provide lithologic information to align additional panels of the PTW;
- Approximately 400 ft of additional PTW installed to approximately 20 ft below ground surface (bgs);
- Approximately 1,500 cubic yards (cy) of coarse gravel backfill in the PTW trench;
- PTW includes approximately 60,000 lineal ft of silicon tubing encased in approximately 3,000 lineal ft of buried perforated plastic pipe;
- Structures to house PTW manifolds;

- 3 groundwater barrier walls with a total length of approximately 140 ft to conduct groundwater to the treatment panels;
- 5 additional PTW performance monitoring wells installed up to 20 ft bgs, a subset of these wells or existing wells may be converted to extraction wells to capture water that passes the PTW alignment untreated;
- 4 compliance monitoring groundwater wells installed up to 20 ft bgs;
- one additional 14-ton capacity carbon dioxide storage tank (28-ton capacity total); and
- Additional structures to house the tank and additional controls.

For the purposes of the calculations in the Revised dFSTR, components of yearly PTW operation include:

- Approximately 160 hours operation and maintenance (O&M) labor on the PTW;
- Approximately 200,000 lbs of carbon dioxide consumption;
- Water from extraction wells will be routed back to the treatment zone;
- Approximately 15 kilowatts operating power; and
- Quarterly groundwater monitoring and reporting.

DRAFT

10.00

HR0196-12/MFW05-13_APE

DRAFT

E.2.3 Groundwater Control (GWC)

For the purposes of the calculations in the Revised dFSTR, components of GWC include:

- The pilot PTW operating in its current mode;
- 16 groundwater extraction wells installed up to 20 ft bgs;
- 18 (includes 2 spares) submersible pumps capable of pumping a maximum of 15 gallons per minute each;
- Approximately 300 ft of buried 1.25-inch (in.) polyvinyl chloride (PVC) piping to conduct groundwater from the extraction wells to the header;
- Approximately 800 ft of buried 6-in. PVC header leading to the treatment system;
- Approximately 1,700 ft of electrical wiring and conduit to energize the pumps;
- Heating capability for winter operation;
- 4 compliance monitoring groundwater wells installed up to 20 ft bgs;
- one additional 14-ton capacity carbon dioxide storage tank (28-ton capacity total);
- An aboveground groundwater treatment system that uses carbon dioxide neutralization followed by ferric chloride precipitation/flocculation of metals, filtration, and treated water discharge to surface water;

- DRAFT
- Structure to house the treatment system, additional carbon dioxide tank, and controls;
- Solid waste storage area; and
- Approximately 200 ft of 6-in. PVC pipe to discharge treated groundwater to Sullivan Creek.

For the purposes of the calculations in the FSTR, components of yearly GWC operation include:

- Approximately 260 hours O&M labor on the GWC;
- Approximately 180,000 lbs of carbon dioxide consumption, which is less than in situ treatment due to enhanced carbon dioxide diffusion efficiencies in the above ground system, and the slight neutralizing effects of ferric chloride;
- Approximately 30 to 50 mg/L of ferric chloride addition;
- Approximately 35 kilowatts operating power;
- Approximate total extraction rate of 55 gpm;
- Maintenance and redevelopment of extraction pumps and wells, as needed;
- Approximately 140 lbs treatment residuals that are not expected to be State dangerous waste generated per day. GWC includes the in situ Pilot System so its treatment residuals generation rate is lower than a pure pump and treat alternative;
- Monthly NPDES testing and reporting; and
- Quarterly groundwater monitoring and reporting.

HR0196-12/MFW05-13_APE

DRAFT

E.2.4 Additional Source Control (ASC)

For the purposes of the calculations in the Revised dFSTR, components of ASC include:

- Remedy design investigation including lithologic borings and landslide investigations;
- Approximately 1,600 lineal ft of slurry cut-off wall installed hydraulically upgradient of the Closed CKD Pile to depths ranging from 40 to 120 ft deep;
- Groundwater extraction (dewatering) wells every 100 ft upgradient of the slurry cut-off wall (14 total) to approximately the same depth as the adjacent slurry wall;
- Approximately 1,800 lineal ft of conveyance piping for the water from upgradient dewatering;
- 16 (includes 2 spares) submersible pumps capable of pumping a maximum of 15 gpm each in upgradient dewatering wells; and
- 13 downgradient groundwater extraction wells installed up to 20 ft bgs for the pump-and-treat (P&T) system;
- 15 (includes 2 spares) submersible pumps capable of pumping a maximum of 15 gallons per minute each in downgradient extraction wells;
- Approximately 250 ft of buried 1.25-inch (in.) polyvinyl chloride (PVC) piping to conduct groundwater from the extraction wells to the P&T header;

- Approximately 650 ft of buried 6-in. PVC header leading to the P&T treatment system;
- Approximately 1,500 ft of electrical wiring and conduit to energize the downgradient pumps;
- Heating capability for winter operation;
- An aboveground groundwater treatment system that uses carbon dioxide neutralization followed by ferric chloride precipitation/flocculation of metals, filtration, and treated water discharge to surface water;
- one additional 14-ton capacity carbon dioxide storage tank (28-ton capacity total);
- Structure to house treatment system and controls;
- Solid waste storage area for P&T treatment residuals; and
- Approximately 200 ft of 6-in. PVC pipe to discharge treated groundwater to Sullivan Creek.

The source control components of ASC will decrease the amount of CKDaffected groundwater that requires treatment. The degree of reduction is dependent on the success of the slurry wall and dewatering walls, and is not quantifiable at this time. For the purposes of the calculations in the Revised dFSTR, components of yearly ASC operation include:

- Approximately 45 kilowatts of dewatering operating power;
- Approximate downgradient total extraction rate of 55 gallons per minute (gpm);
- Approximately 260 hours O&M labor of the P&T;

HR0196-12/MFW05-13_APE

3 MAR 05 / 5:00 PM

DRAFT

- Maintenance and redevelopment of extraction pumps and wells, as needed;
- Approximately 200,000 lbs of carbon dioxide consumption;
- Approximately 50 milligrams/liter (mg/L) of ferric chloride addition to extracted groundwater;
- Approximately 150 lbs of non-dangerous waste treatment residuals generated per day;
- On-site storage of treatment residuals for periodic off-Site transport and disposal;
- Monthly NPDES testing and reporting; and
- Quarterly groundwater monitoring and reporting.

E.2.5 Partial Source Removal (PSR)

PSR includes two major construction tasks: (1) excavating, storing and replacing the CKD and (2) installing a treatment system for residual groundwater. For the purposes of the calculations in the Revised dFSTR, components of PSR related to the first task, excavating and replacing the CKD, include:

- Construction of a lined pad (approximately 24,000 square yards (sy) or 5 acres) equipped with drainage features to receive the excavated CKD as it is removed for interim storage;
- Clearing an area adjacent to the Closed CKD Pile to stockpile the reusable cover components (i.e., approximately 35,000 cy of clay and surface water systems);
- 4 boreholes through the CKD pile to locate inundated areas;

- Dewatering wells installed prior to and operated during excavation activities;
- Treatment of the water from dewatering wells and discharge to Sullivan Creek;
- Approximately 500 ft sheet piles installed upgradient of the toe to isolate the toe of the Closed CKD Pile;
- Removal of CKD at the toe of the Closed CKD Pile (approximately 5,500 cy);
- Replacement of the CKD from the toe with a layer of inert backfill (approximately 2,800 cy) wrapped in geotextile, followed by approximately 2,700 cy of the previously removed CKD;
- Removal of the lower CKD saturated zone within the body of the Closed CKD Pile and replacement with inert material via a sloped-back excavation using 2H:1V (Horizontal:Vertical) slopes (approximately 260,000 cy);
- Replacement of the CKD from the lower saturated zone with a layer of inert backfill (approximately 7,000 cy) wrapped in geotextile, followed by previously removed approximately 253,000 cy of CKD;
- Cover repair following removal and replacement of the CKD (approximately 34,000 sy);
- Transportation and off-Site disposal of a portion of the CKD (9,800 cy); and
- GWC (described in Section E.2.3) installed to capture downgradient CKD-affected water.

DRAFT

PSR includes two groundwater treatment scenarios. The first scenario assumes that downgradient groundwater treatment with GWC will be required for approximately five years following PSR implementation. The second scenario assumes that downgradient groundwater treatment with GWC will continue for an indefinite time period. For the purposes of the calculations in the Revised dFSTR, components of yearly PSR operation include:

- GWC operation (described in Section E.2.3) for 5 years under PSR scenario #1; and
- GWC operation (described in Section E.2.3) for an indefinite time period under PSR scenario #2.

E.2.6 Funnel and Gate Treatment (FGT)

For the purposes of the calculations in the Revised dFSTR, components of FGT include:

- Construct an earthen platform approximately 3 ft thick that straddles the slurry wall alignment, approximately 1,200 lineal ft in length;
- Approximately 550 to 750 lineal ft of a subsurface gravel drainage wall installed approximately 15 to 25 ft bgs;
- Approximately 600 to 800 lineal ft of slurry walls installed approximately 15 to 25 ft bgs;
- Approximately 200 to 400 lineal ft of structural subsurface walls (such as slurry diaphragm walls) installed approximately 15 to 25 ft bgs;
- Excavation of the approximately 9,000 to 11,000 cy treatment zone;
- Dewatering and treatment of excavated corridor;

- Approximately 5 to 7 separate treatment zone panels similar to the Pilot System installed in series in the treatment zone;
 - Approximately 9,000 to 11,000 cy gravel backfill placed in the treatment zone;
- Installation of erosion protection at the banks of Sullivan Creek where the discharge emerges;
- 4 compliance monitoring groundwater wells installed up to 20 ft bgs;
- one additional 14-ton capacity carbon dioxide storage tank (28-ton capacity total); and
- Additional structures to house the tank and additional controls.

For the purposes of the calculations in the Revised dFSTR, components of yearly FGT operation include:

- Approximately 160 hours operation and maintenance (O&M) labor on the PTW;
- Approximately 200,000 lbs of carbon dioxide consumption;
- Approximately 15 kilowatts operating power;
- Monthly NPDES testing and reporting; and
- Quarterly groundwater monitoring and reporting.

DRAFT

E.2.7 Partial Additional Source Control (PASC)

For the purposes of the calculations in the Revised dFSTR, components of PASC include:

- FGT described in Section E.2.6;
- Installation of a directionally-drilled borehole under the southern end of the Closed CKD Pile that will accommodate a perforated drain pipe (approximately 4 to 6 in. in diameter);
- Subsurface vault at the borehole insertion point to house the drain outlet and direct it to the FGT for treatment if needed;
- Drain pipe (approximately 500 to 600 ft in length) installed into the borehole; and
- Drain pipe integration into the FGT system.

For the purposes of the calculations in the Revised dFSTR, components of yearly PASC operation include:

• FGT operation described in Section E.2.6.

E.3. ESTIMATION PROCEDURES

E.3.1 Introduction

MTCA includes cost as a criterion for conducting feasibility studies, and cost is a factor in engineering design. GeoSyntec prepared cost estimates for the six alternatives to evaluate and compare the costs of the alternatives. The cost estimates also allow for comparing the cash flows for each of the alternative. For example, the estimates show whether the construction or long-term operations are the major cost

HR0196-12/MFW05-13_APE

3 MAR 05 / 5:00 PM

14.00

DRAFT

components, or if they are similar. At this stage, each of the cost estimates are preliminary and include some degree of uncertainty.

E.3.2 Approach

This Revised dFSTR presents alternative costs in 2005 U.S. dollars. The cost calculations provide three project duration and discounting scenarios. The three scenarios are based on Ecology comments and EPA guidance [EPA, 2000]. The three costing scenarios are:

- 1. Thirty-year project duration using a seven percent discount rate;
- 2. One-hundred-year project duration using a seven percent discount rate; and
- 3. One-hundred-year non-discounted project. EPA guidance suggests that a non-discounting scenario be presented only for comparison purposes¹.

Future cash flows were discounted back to 2005 using seven percent for the thirty-year and one hundred-year discounted scenarios discussed above. GeoSyntec assumed that the capital costs associated with implementation would occur in the first year. The capital costs are described in the Revised dFSTR. GeoSyntec also assumed that yearly O&M costs would be incurred following implementation for the project duration. These yearly costs include operation and maintenance of the remedy, monitoring, and nominal remedy component replacements (i.e., pump replacements, pipe repairs, etc.). Large periodic charges are also included to cover major items (i.e., new GWC aboveground treatment system, replacement of a PTW panel, etc.) every fifteen years.

HR0196-12/MFW05-13 APE

¹ United States Environmental Protection Agency, 2000. A Guide for Developing and Documenting Cost Estimates During the Feasibility Study, Washington, D.C., August 2000.

E.3.3 Cost Estimate Accuracy

The remedial alternatives at this stage are at a conceptual design level and may be modified as new data is collected or if actual Site conditions are different than expected. GeoSyntec used the conceptual layouts of the remedial alternatives to estimate the alternative components that are listed in Section E.2. GeoSyntec estimated preliminary operating scenarios based on site-specific information, professional judgment, and input from contractors and vendors. GeoSyntec then used the preliminary conceptual layouts and component list, and the preliminary operating scenarios to estimate costs. GeoSyntec used existing subcontractor quotes and rates, known unit prices, known labor rates, and engineering judgment to prepare the cost estimates for the conceptual designs.

A significant level of uncertainty is implicit in a cost estimate for this level of design. Based on the level of design, actual costs may differ from those presented in the estimates in the approximate range of -20 percent to +50 percent. Contingencies ranging between 10 percent and 20 percent for capital costs and O&M costs were considered to be appropriate and were added to the estimates.

While there may be uncertainties in the estimates, they allow the six remedy costs to be compared on the same basis. The costs are included in the Revised dFSTR and used as a tool for evaluating the remedies.

Sec. Sec.