Memorandum

To:	John Mefford, Washington State Department of Ecology
Copies:	Surjit Singh, Big B LLC
	Louis Russell, Cascadia Law Group PLLC
	Scott MacDonald, BNSF Railway Company
From:	Gabe Cisneros and Manique Talaia-Murray, Floyd Snider
Date:	January 24, 2024
Project No:	CL-Ellensburg, Big B (Cleanup Site ID: 4901)
Re:	2023 Data Summary Memorandum

PURPOSE

Floyd | Snider has prepared this technical memorandum to summarize semiannual groundwater and soil vapor compliance monitoring performed in 2023 at the Big B Mini Mart Site (Site; Facility Site ID [FSID] #386, Cleanup Site ID [CSID] #4901) located at 1611 Canyon Road in Ellensburg, Washington (referred to as the Big B property; Figure 1). All work was completed in accordance with the Cleanup Action Plan (CAP) approved by the Washington State Department of Ecology (Ecology) in November 2020 (Ecology 2020).

In accordance with the CAP and Engineering Design Report (EDR; Appendix B of Ecology 2020), Phase I remedial excavation activities were conducted between May and October 2021, and Phase II remedial excavation activities were conducted in June 2022. During excavation, a total of 625.55 tons of petroleum-impacted soil were removed from the Site, including from areas on the south-adjacent Toad's (Astro) Station (herein referred to as Toad's) property and the westadjacent BNSF Railway Company property. Impacted soil was excavated to Site-specific remediation levels (RELs) based on residual saturation levels for diesel-range organics (DRO) and gasoline-range organics (GRO) defined in the CAP, which are greater than the Site cleanup levels (CULs). Therefore, soil impacted with contaminants of concern (COCs) at concentrations greater than the CULs and less than the RELs was left in place. The remaining petroleum-impacted soil in the vadose zone is being treated using a bioventing system beneath the properties to prevent leaching of contamination to groundwater. A temporary subslab soil vapor monitoring point was installed on July 6, 2022, within the former station building, and three monitoring wells were replaced in areas that had been excavated in 2021 and 2022 (MW-2A, MW-4B, and MW-9A). Excavation activities are summarized in the Remedial Action Completion Report (RACR; Floyd Snider 2022). The extent of excavation activities, key Site features, and monitoring locations are displayed on Figure 2.

Bioventing was selected as part of the remedy to remediate impacted soil remaining in the vadose/capillary fringe after excavation activities are complete to ensure protection of groundwater. The bioventing system was installed on May 16, 2023, and has been operational continuously since that date, except between August 27 and September 6, 2023, during which the power to the Site was turned off.

This memorandum summarizes the results for the first two semiannual groundwater and soil vapor sampling events that were conducted in accordance with the CAP and EDR. The first monitoring event occurred on May 1, 2023, and the second event occurred on September 6 and 7, 2023. Data associated with these events were submitted to Ecology's Environmental Information Management (EIM) database on July 18 and November 15, 2023, respectively.

SOIL VAPOR SAMPLE COLLECTION AND DATA SUMMARY

Soil vapor samples were collected on May 1, 2023, and September 6, 2023, from vapor point location SVP-1, within the former convenience store building (Figure 2). Barometric pressure and temperature plots for Ellensburg on the day of each sampling event are included in Attachment 1. Precipitation plots for the week of each sampling event are also included in Attachment 1. No significant rain events occurred 48 hours prior to or during sampling for both events.

The vapor point was sampled using laboratory-certified 1-liter SUMMA[®] canisters equipped with a flow control device, laboratory-provided manifolds, and polytetrafluoroethylene tubing. Prior to sample collection, a closed-valve test was performed to assess the sampling train for air leaks. The closed-valve test was conducted for approximately 5 minutes. All canisters maintained their vacuum for the duration of the test.

Isopropyl alcohol was used as a tracer gas during the sampling events to test for leaks in the vapor point seal and in the connections of the manifold during filling of the SUMMA[®] canisters. Samples were collected after purging the tubing and vapor screen of at least three volumes of vapor within the sampling train. A 6-liter SUMMA[®] canister was used to purge the tubing. After the sampling train was purged, primary and duplicate soil gas samples were collected over approximately 10 minutes at a flow rate of 167 milliliters per minute.

The soil gas samples were submitted to Friedman & Bruya, Inc. in Seattle, Washington, and were analyzed for the following: benzene, toluene, ethylene, xylene, and naphthalene (BTEX-N) by EPA Method TO-15 and the three air-phase petroleum hydrocarbons (APH) by Method MA-APH.

For both field events, isopropyl alcohol (2-*propanol*) concentrations in soil vapor samples were less than the acceptable range of 10% of the total sample concentration specified in the Floyd|Snider standard operating guidelines for soil vapor sampling, which is included in Appendix B of the EDR. The expected concentration of 2-*propanol* with a conservative leak rate of 0.1% is equivalent to a concentration of 100,000 micrograms per cubic meter (μ g/m³;ITRC 2007), assuming standard temperature and pressure and a molecular weight of 60.09 for 2-*propanol* to convert from the concentration of a liquid tracer in units of micrograms per liter (μ g/L) to that of

a gas in μ g/m³. The maximum concentration of 2-*propanol* measured in a soil vapor sample was 13,000 μ g/m³, which is an order of magnitude less than the concentration of a 0.1% leak.

Analytical results for the subslab soil vapor samples are provided in Table 1. Analyte concentrations were compared to applicable Model Toxics Control Act (MTCA) screening criteria. For both field events, concentrations of BTEX-N were either nondetect or detected at concentrations below residential and commercial MTCA Method B screening levels.

GROUNDWATER SAMPLE COLLECTION AND SUMMARY

Semiannual groundwater monitoring was conducted on May 1 and September 7, 2023. The first sampling event was conducted prior to the installation of the bioventing system, which occurred on May 16, 2023.

Static water levels were collected from Site wells prior to groundwater sample collection. Potentiometric surface maps and approximate groundwater flow directions for each event are shown on Figures 3 and 4 and groundwater elevations are summarized in Table 2. Groundwater flow direction was generally toward the southwest in the spring and toward the southeast in the fall. The hydraulic gradient for both field events was approximately 0.001 feet per foot (ft/ft).

Groundwater sampling was performed on the Big B property performance wells MW-2A, MW-4B, and MW-9A and Toad's property wells MW-1 and MW-2. At each monitoring well, disposable polyethylene tubing was inserted so that the intake was at the approximate midpoint of the well screened interval. The tubing was attached to a peristaltic pump, and groundwater was purged at a low-flow rate of less than 0.5 liters per minute. During purging, water quality parameters (i.e., temperature, pH, specific conductivity, and turbidity) were recorded at approximately 3- to 5-minute intervals using a YSI Pro DDS multiparameter water quality meter (YSI) until parameters were approximately stable (within 10%), or until a maximum of 30 minutes of purging had elapsed.

After the well had been purged, the groundwater samples were collected by directly filling the laboratory-provided bottles from the pump discharge at the same flow rate that was used for purging.

All groundwater samples were stored on ice for transport and submitted to Friedman & Bruya, Inc. for analysis of the following constituents:

- GRO by NWTPH-Gx
- DRO and oil-range organics (ORO) by NWTPH-Dx, with and without silica gel cleanup (SGC)
- BTEX and naphthalene by USEPA Method 8260

A subset of wells, MW-2A (Big B), MW-4B (Big B), and MW-1 (Toad's), were analyzed for total organic carbon (TOC) by USEPA Method 9060A and monitored natural attenuation (MNA) parameters. The following geochemical parameters were recorded in the field for MNA monitoring:

- Dissolved oxygen (DO; YSI)
- Oxidation-reduction potential (ORP; YSI)
- pH (YSI)
- Conductivity (YSI)
- Temperature (YSI)
- Ferrous iron (Hach field kits)

Samples from these wells were also analyzed for additional geochemical MNA indicators:

- Nitrate by USEPA Method 300.0
- Manganese (soluble) by USEPA Method 200.8 (field filtered)
- Sulfate by USEPA Method 300.0
- Methane by RSK-175

Groundwater analytical results are provided in Table 3. Concentrations of GRO from all samples were either not detected or were detected at concentrations less than the Site CUL of 800 μ g/L.

DRO Results without SGC: Concentrations of DRO without SGC exceeded the Site CUL of 500 μ g/L in all samples from both events, except for samples collected from MW-9A, which is in the southeast corner of the Big B property. During the May field event, the concentration of DRO of the sampled wells was greatest at MW-2 (5,400 μ g/L) on Toad's. During the September monitoring event, the concentration of DRO was greatest at MW-4B (2,200 μ g/L), a monitoring well located in the southwestern corner of the Site. Concentrations of DRO significantly decreased at four of the five sample locations between field events. The exception was at MW-1 on Toad's, at which the DRO concentration more than doubled.

DRO Results with SGC: Silica gel absorbs polar compounds such as acids (and esters), alcohols, ketones, phenols, aldehydes, and naturally occurring organic matter in the groundwater sample, leaving the nonpolar DRO to be quantified more accurately in the analytical sample. DRO concentrations analyzed with SGC in groundwater were either nondetect or less than the Site CUL at all locations in May and September. TOC concentrations and DRO chromatograms can be used to evaluate the presence of naturally occurring organic carbon and the inert constituents of weathered diesel. The average concentration of TOC in Big B groundwater samples is 6.6 milligrams per liter (mg/L), which is greater than concentrations typically found in groundwater (approximately 1x10⁻¹ mg/L; Thurman 2012). These values could indicate that there is a significant amount of naturally occurring polar organic material in Site groundwater, potentially

due to the surface infiltration from agricultural fields or groundwater–surface water interaction with nearby surface water features.

Chromatogram patterns indicate weathered diesel and biodegradation metabolites, which are present in the chromatograms for sample analyzed without SGC but are absent in chromatograms for samples analyzed with SGC (Attachment 2). The chromatograms are one line of evidence that biodegradation is occurring at the Site. Degradation of organic contaminants is largely based upon microbial respiration. Contaminant biodegradation is largely based upon microbial respiration. In respiration, microbes gain energy from the consumption or oxidation of electron donors coupled to the utilization or reduction of electron acceptors. Contaminants will either serve as electron donors or electron acceptors. For example, during the aerobic metabolism of petroleum hydrocarbons in the biodegradation process, oxygen is the electron acceptor, while hydrocarbons are the electron donors and may eventually be oxidized completely to CO2. Under anaerobic conditions, alternative electron acceptors, such as nitrate and sulfate, may be utilized in contaminant oxidation in the absence of oxygen. In general, biodegradation processes follow an order of favorable electron acceptor availability: $O2 \rightarrow Mn4+ \rightarrow NO3- \rightarrow$ Fe3+ \rightarrow SO4 2- \rightarrow CH4 \rightarrow CO2. The microbes will utilize the next available electron acceptor in the above order when one acceptor is scarce or absent. Depletion of DO, nitrate, and sulfate as well as increased ferrous iron and methane over time or distance from the source are evidence of MNA. There is no clear evidence of MNA occurring at this time at Big B; however, additional monitoring data are required from an upgradient monitoring well and over time to add additional data points.

While concentrations generally appear to be decreasing at the Site in the aftermath of the June 2022 excavation activities, more groundwater monitoring is required before this trend can be attributed to MNA. We also propose adding MW-1A and MW-3 on the Big B property to the compliance monitoring network for both DRO and MNA because it is upgradient of major Site impacts. Both of these wells are upgradient from source areas, and results can be used to determine the concentration of naturally occurring organics that may be quantified as DRO at the Site, as recommended in Ecology's *Guidance for Silica Gel Cleanup in Washington State* (2023a).

BIOVENTING SYSTEM STATUS

The results of the bioventing system pilot test indicated that an air flow rate of 30 cubic feet per minute (cfm) would be sufficient to attain a radius of influence of at least 30 feet. The perforated bioventing system screens were spaced 40 to 50 feet apart along the bioventing line to accommodate slightly lower flow rates if needed. During system startup, field personnel determined that the main check valve setting of 30 cfm was insufficient to supply air to each manifold leg, but fully opening the check valve was sufficient to allow air to flow to each line. For future monitoring events, Floyd|Snider may target specific bioventing lines for two reasons: 1) allowing the blower to flow without constriction from the main check valve is not sustainable for the blower mechanism, and 2) to target areas of potentially remaining capillary fringe impacts.

As specified in the bioventing system Operations and Maintenance (O&M) Manual (Attachment 3 of Appendix D, Floyd|Snider 2022), blower operation, injection pressure, and temperature were monitored for 24 hours following system installation and have been regularly monitored monthly. Except for the time frame between August 7 and September 6, the blower has been running continuously, and these parameters are within expected limits.

The O&M manual also specifies that readings of the bioventing lines flow rate will also be periodically collected using a handheld anemometer. Readings were collected at each semiannual monitoring event using a TSI Model 9565 VelociCalc[®] Multi-Function Ventilation Meter. Readings to each line have varied slightly but are within acceptable ranges.

The bioventing system layout is presented on Figure 2.

CONCLUSIONS

Semiannual monitoring of subslab soil vapor and groundwater was completed at the Big B Site in May and September 2023.

The soil gas concentrations of all analyzed constituents were less than selected MTCA screening criteria in subslab soil vapor samples from both events; therefore, there is no vapor intrusion risk to future occupants of the current building.

DRO concentrations analyzed without SGC show exceedances in all groundwater samples, except for samples from MW-9A. DRO results analyzed with SGC indicate that dissolved DRO are detected at concentrations less than the MTCA Method A CUL for all Site wells. These results indicate that the DRO concentrations quantified without SGC mainly consist of polar metabolites or biodegradation byproducts with relatively little dissolved hydrocarbons. Additional groundwater monitoring is required to evaluate further, but TOC concentrations in groundwater indicate there is significant naturally occurring carbon in the aquifer, which could be biasing DRO and ORO results high. We propose adding upgradient wells MW-1A and MW-3 (Big B) to the semiannual groundwater monitoring plan for 2024, for analysis by NWTPH-Dx and MNA parameters.

The bioventing system is operating normally but will be monitored monthly for general operations, outflow temperature, and outflow pressure. Flow rates from individual bioventing lines will be analyzed semiannually, coincident with future monitoring events. Future groundwater monitoring results will be used to determine whether the system is assisting with natural attenuation processes.

REFERENCES

Floyd|Snider. 2022. *Remedial Action Completion Report: Big B Mini Mart Site*. Prepared for Big B LLC. November.

Interstate Technology and Regulatory Council (ITRC). 2007. *Vapor Intrusion Pathway: A Practical Guideline*. Prepared by the Interstate Technology & Regulatory Council Vapor Intrusion Team. January.

Thurman, E.M. 2012. Organic Geochemistry of Natural Waters. Springer.

- Washington State Department of Ecology (Ecology). 2020. *Cleanup Action Plan: Big B Mini Mart Site, Ellensburg, WA*. Prepared by Floyd|Snider. November.
- _____. 2022. Guidance for Evaluating Vapor Intrusion in Washington State: Investigation and Remedial Action. Originally published January 2009. Revised March 2022.
- _____. 2023a. *Guidance for Silica Gel Cleanup in Washington State*. Publication No. 22-09-059. November.
- . 2023b. "CLARC Data Tables and Other Technical Information." Last accessed November 27, 2023. https://ecology.wa.gov/regulations-permits/guidance-technical-assistance/ contamination-clean-up-tools/clarc/data-tables

LIST OF ATTACHMENTS

- Table 12023 Soil Vapor Analytical Results
- Table 2Groundwater Elevation Summary
- Table 32023 Groundwater Analytical Results
- Figure 1 Vicinity Map
- Figure 2 Site Map
- Figure 3 Groundwater Elevation and Contour Map, May 1, 2023
- Figure 4 Groundwater Elevation and Contour Map, September 7, 2023
- Attachment 1 Barometric Pressure, Temperature, and Precipitation Plots

Attachment 2 Lab Reports

Tables

Table 12023 Soil Vapor Analytical Results

					Le	ocation Name		SV	P-1	
					5	Sample Name	SVP-1-050123	SVP-101-050123	SVP-1-090623	SVP-101-090623
						Sample Date	5/1/2023	5/1/2023	9/6/2023	9/6/2023
		Soil Gas Screening Level	Soil Gas Screening Level	Soil Gas Screening	Soil Gas Screening					
		Residential Method B	Residential Method B	Level Commercial	Level Commercial					
Analyte	CAS No.	Noncancer ⁽¹⁾	Cancer ⁽¹⁾	Worker Noncancer ⁽¹⁾	Worker Cancer ⁽¹⁾	Unit				
Conventionals by EPA Met	hod TO-15									
Isopropyl alcohol	67-63-0					μg/m³	600 J	580 J	11,000 J	13,000 J
ТРН										
Total TPH (U=0) ⁽²⁾	T_TPH (U=0)	1,500		13,000		µg/m³	600 U	600 U	300	260
Air Phase Hydrocarbons by	/ Method MA-APH									
APH aliphatic C5-8	APH_C5-C8_ALIP					µg/m³	600 U	600 U	610 U	640 U
APH aliphatic C9-12	APH_C9-C12_ALIP					µg/m³	600 U	600 U	290	260
APH aromatic C9-10	APH_C9-C10_AROM					μg/m³	130 U	140 U	200 U	210 U
VOCs by EPA Method TO-1	5									
Benzene	71-43-2	460	11	3,900	50	μg/m³	1.7 U	1.8 U	2.6 U	2.7 U
Toluene	108-88-3	76,000		650,000		μg/m³	54 U	54 U	62 U	64 U
Ethylbenzene	100-41-4	15,000		130,000		μg/m³	23 U	24 U	3.6 U	3.7 U
Xylene (meta & para)	108-38-3/106-42-3					µg/m³	47 U	49 U	7.2	7.4 U
Xylene (ortho)	95-47-6					μg/m³	23 U	24 U	3.6 U	3.7 U
Xylene (total)	1330-20-7	1,500		13,000		μg/m³	47 U	49 U	7.2	7.4 U
Naphthalene	91-20-3	46	2.5	390	11	µg/m³	1.4 U	1.5 U	2.1 U	2.2 U

Notes:

All blank cells are intentional.

All chemistry results are rounded to two significant figures.

-- Not available.

1 Screening criteria obtained from the CLARC master data table (Ecology 2023b).

2 The Total TPH concentration is the sum of detected APH analytes and detected non-carcinogenic petroleum VOCs, as specified in Ecology's Guidance for Evaluating Vapor Intrusion in Washington State (2022).

Abbreviations:

APH Air-phase petroleum hydrocarbon

CAS Chemical Abstracts Service

CLARC Cleanup levels and risk calculation

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

MTCA Model Toxics Control Act

TPH Total petroleum hydrocarbons

 $\mu g/m^3$ Micrograms per cubic meter

VOC Volatile organic compound

Qualifiers:

J Analyte was detected; concentration is an estimate.

U Analyte was not detected at the associated reporting limit.

FLOYDISNIDER

Well ID	Screened Interval (feet bgs)	TOC Elevation (feet NAVD 88)	Date	Depth to Water (feet bTOC)	Groundwater Elevation (feet NAVD 88)
Big B Propert	y				
MW-1A	4–14	1490.76	5/1/2023	4.64	1486.12
	4-14	1490.70	9/7/2023	5.61	1485.15
MW-2A	3–13	1490.91	5/1/2023	4.85	1486.06
IVI VV-ZA	5-15	1490.91	9/7/2023	5.89	1485.02
MW-3	1–11	1490.88	5/1/2023	4.82	1486.06
10100-5	1-11	1490.88	9/7/2023	5.78	1485.10
MW-4B	3–13	1489.79	5/1/2023	3.85	1485.94
WW-4D	5-15	1409.79	9/7/2023	4.82	1484.97
MW-8	3–13	1490.85	5/1/2023	4.72	1486.13
10100-0	5-15	1490.85	9/7/2023	5.76	1485.09
MW-9A	3–13	1489.97	5/1/2023	3.96	1486.01
WW-9A	5-15	1409.97	9/7/2023	4.95	1485.02
MW-10	4–14	1490.83	5/1/2023	4.78	1486.05
10100-10	4-14	1490.85	9/7/2023	5.81	1485.02
Toad's Prope	rty				
MW-1	4–14	1490.31	5/1/2023	4.36	1485.95
IVI VV - T	4-14	1490.31	9/7/2023	5.39	1484.92
MW-2	4–14	1490.24	5/1/2023	4.35	1485.89
10100-2	4-14	1490.24	9/7/2023	5.22	1485.02

Table 2Groundwater Elevation Summary

Abbreviations:

bgs Below ground surface

bTOC Below top of casing

NAVD 88 North American Vertical Datum of 1988

TOC Top of casing

Table 3 2023 Groundwater Analytical Results

		Locat	Location Name MW-2A MW-4B				MW-9A MW-1 (Toad's)					MW-2 (Toad's)			
Sample Name				MW-4B-050123	MW-104B-090723	MW-4B-090723	MW-9A-050123	-	MW-1-050123	MW-101-050123	MW-1-090723	MW-2-050123	MW-2-090723		
			mple Date	5/1/2023	9/7/2023	5/1/2023	9/7/2023	9/7/2023	5/1/2023	9/7/2023	5/1/2023	5/1/2023	9/7/2023	5/1/2023	9/7/2023
Analyte	CAS No.	CUL ⁽¹⁾													
, TPH by NWTPH-Gx, -Dx															
Gasoline-range organics	GRO	800	μg/L	390	330	440	490	490	100 U	100 U	100 U	100 U	100 U	160	100 U
Diesel-range organics	DRO	500	μg/L	2,700 ⁽²⁾	540 ⁽²⁾	5,000 ⁽²⁾	2,200 ⁽²⁾	2,200 ⁽²⁾	120 (2)	50 U	640 ⁽²⁾	680 ⁽²⁾	1,700 ⁽²⁾	5,400 ⁽²⁾	1,300 ⁽²⁾
Oil-range organics	ORO		μg/L	340 (2)	250 U	470 (2)	350 ⁽²⁾	370 ⁽²⁾	250 U	250 U	250 U	250 U	250 U	780 (2)	370 (2)
Total DRO & ORO	T DRO&ORO (U=0)		μg/L	3,000	540	5,500	2,600	2,600	120	250 U	640	680	1,700	6,200	1,700
TPH by NWTPH-Dx w/ Silica	Gel Cleanup		1 1 0,			, ,		· ·					·		· ·
Diesel-range organics	DRO	500	μg/L	110	50 U	360	430	390	50 U	50 U	99	82	210	300	150
Oil-range organics	ORO		μg/L	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Total DRO & ORO	T_DRO&ORO (U=0)		μg/L	110	250 U	360	430	390	250 U	250 U	99	82	210	300	150
BTEX-N by EPA 8260D											-				
Benzene	71-43-2	5	μg/L	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
Toluene	108-88-3		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	100-41-4		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (meta & para)	108-38-3/106-42-3		μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Xylene (ortho)	95-47-6		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	1330-20-7		μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Naphthalene	91-20-3		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dissolved Gases by RSK 175	-						-								
Methane	74-82-8		mg/L	0.27	0.22	0.65	0.62	0.62			0.11	0.10	0.20		
Dissolved Metals by EPA 602		T		1	•	-	-				-	-		-	
Manganese	7439-96-5		μg/L	760	760	1,400	910	960			780	770	860		
Conventionals	T	7	T	1	T	-	1		-	-	-	-		-	1
Ferrous iron	15438-31-0		mg/L	1.5 J	3.0 J	2.0 J		3.0 J			3.5 J		3.5 J		
Nitrate (as Nitrogen)			mg/L	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ			0.20 UJ	0.20	0.20 UJ		
Sulfate	14808-79-8		mg/L	13	16	7.9	2.6	2.7			14	14	2.9		
Total Organic Carbon	TOC		mg/L	7.8	4.2	12	6.6	6.3			4.5	4.5	7.2		
Field Parameters		1													
Depth to Water	WDepth		ft	4.85	5.87	3.85		4.84	3.96	5.00	4.36		5.39	4.35	5.22
Dissolved Oxygen			mg/L	0.21	0.29	0.20		0.13	0.30	0.17	0.05		0.23	0.08	0.28
ORP			mV	23.5	-91.0	6.0		-86.2	60.8	60.5	-50.2		-106.2	-68.9	-122.5
pH	рН		pH	6.96	6.72	7.00		6.70	7.04	6.67	6.86		6.74	6.81	6.71
Specific Conductance			μS/cm	521	770	491.6		716	344	716	470.1		828	551	764
Temperature			°C	10.7	20.0	10.4		20.8	11.1	19.5	10.8		20.3	11.0	21.7
Turbidity			ntu	3.98	0.67	1.61		0.57	1.42	0.65	3.67		0.41	2.20	0.82

Notes:

All blank cells are intentional.

All chemistry results are rounded to two significant figures.

Field parameters are reported as displayed by the sampling equipment.

-- Not available.

RED/BOLD Analyte was detected at a concentration greater than the CUL.

1 CULs are based on MTCA Method A values.

2 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Abbreviations:

- BTEX-N Benzene, toluene, ethylene, xylene, and naphthalene ft Feet mg/L Milligrams per kilogram °C Degrees Celsius CAS Chemical Abstracts Service CUL Cleanup level
 - MTCA Model Toxics Control Act mV Millivolts
- ntu Nephelometric turbidity unit ORP Oxidation-reduction potential TPH Total petroleum hydrocarbons µg/L Micrograms per liter

µS/cm Microsiemens per centimeter VOC Volatile organic compound

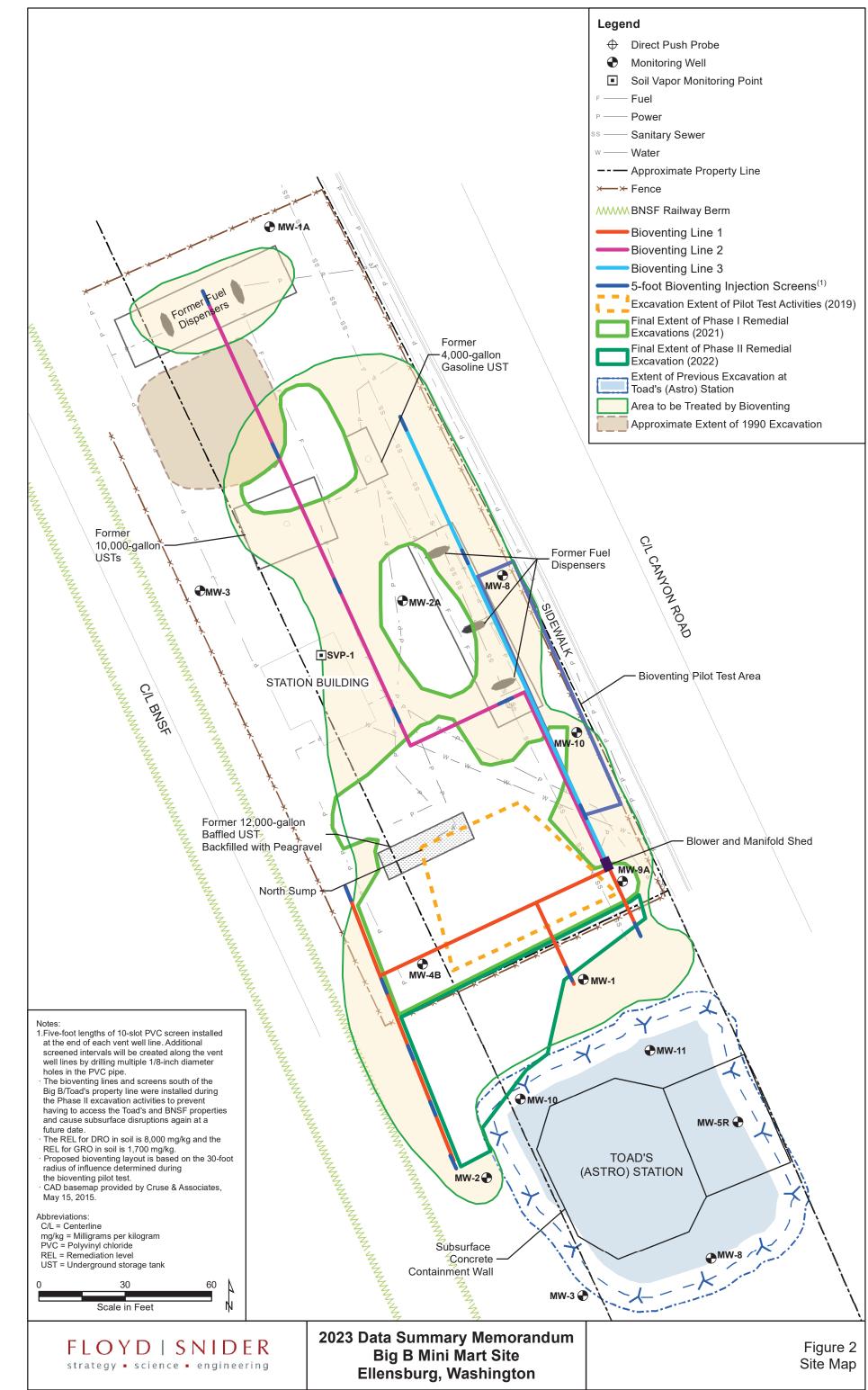
Qualifiers:

J Analyte was detected; concentration is an estimate.

U Analyte was not detected at the associated reporting limit.

UJ Analyte was not detected at the associated reporting limit, which is an estimate.

Figures



FLOYD | SNIDER strategy • science • engineering

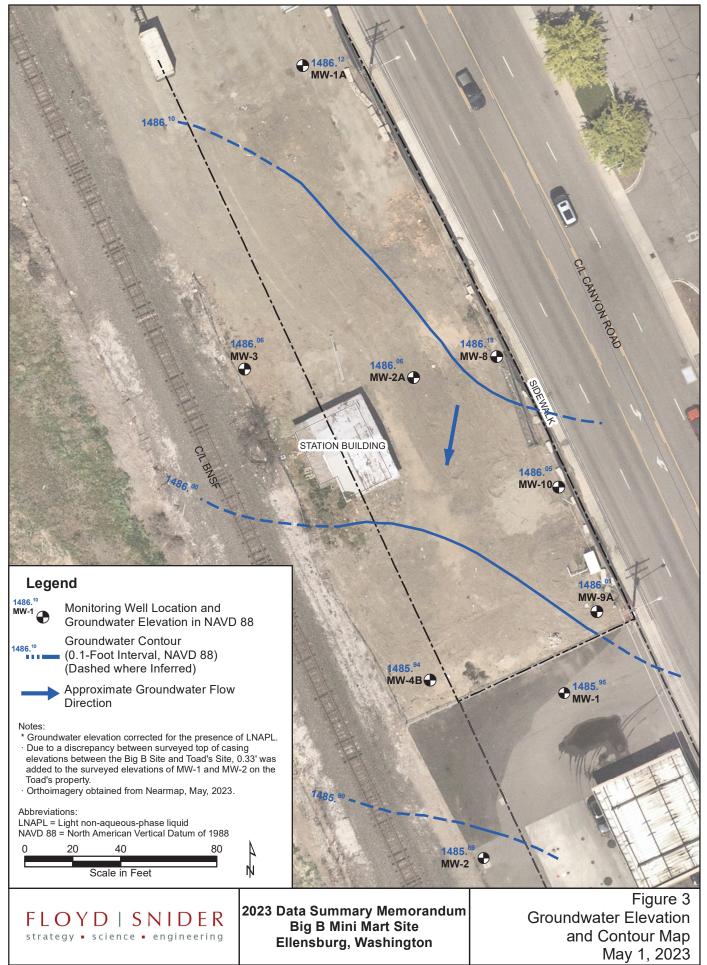
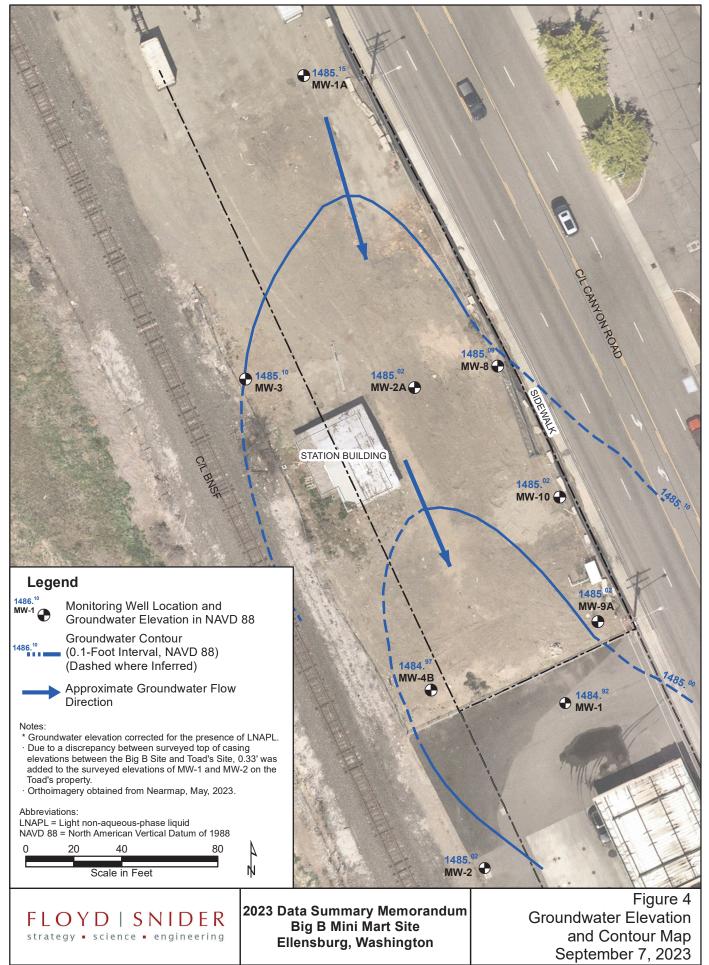
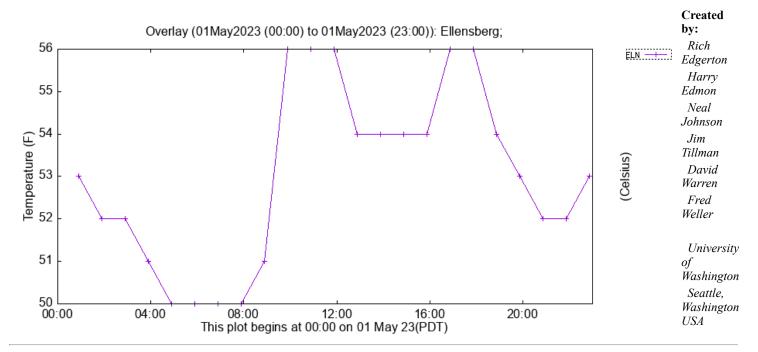

2023 Data Summary Memorandum Big B Mini Mart Site Ellensburg, Washington

Figure 1 Vicinity Map

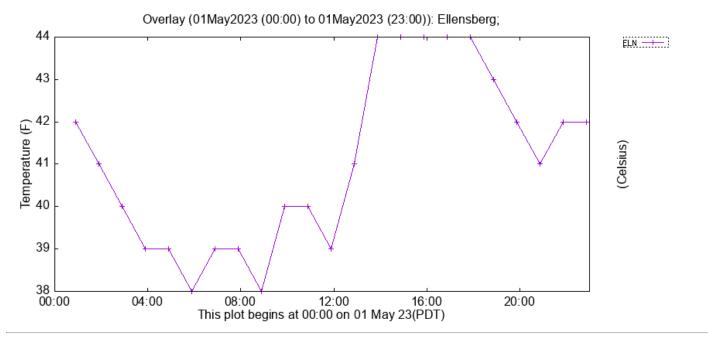

I\GIS\Projects\CL-Ellensburg\MXD\2023 Data Summary Memo\Figure 1 Vicinity Map.mxd 11/22/2023

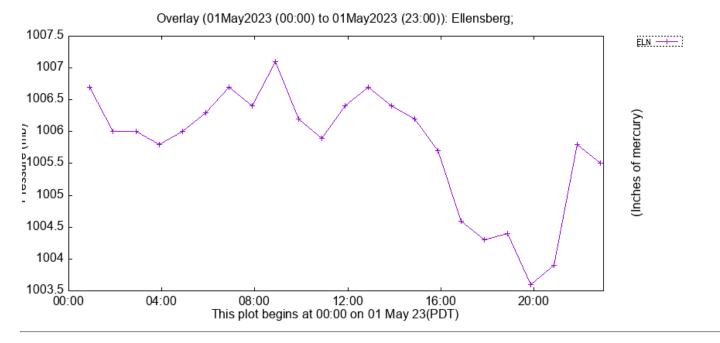
I:\GIS\Projects\CL-Ellensburg\MXD\2023 Data Summary Memo\Figure 2 Site Map.mxd 11/22/2023

LiGIS\Projects\CL-Ellensburg\MXD\2023 Data Summary Memo\Figure 3 Groundwater Elevation and Contour Map May 1, 2023.mxd 11/22/2023



LiGIS\Projects\CL-Ellensburg\MXD\2023 Data Summary Memo\Figure 4 Groundwater Elevation and Contour Map September 7, 2023.mxd 11/22/2023


Attachment 1 Barometric Pressure, Temperature, and Precipitation Plots Weather Data, Plots and Station Info


Air Temperature (Fahrenheit)

Dewpoint Temperature (Fahrenheit)

Pressure (millibars)

Clicking on a plot brings up the data file that was used to create that plot and available station information.

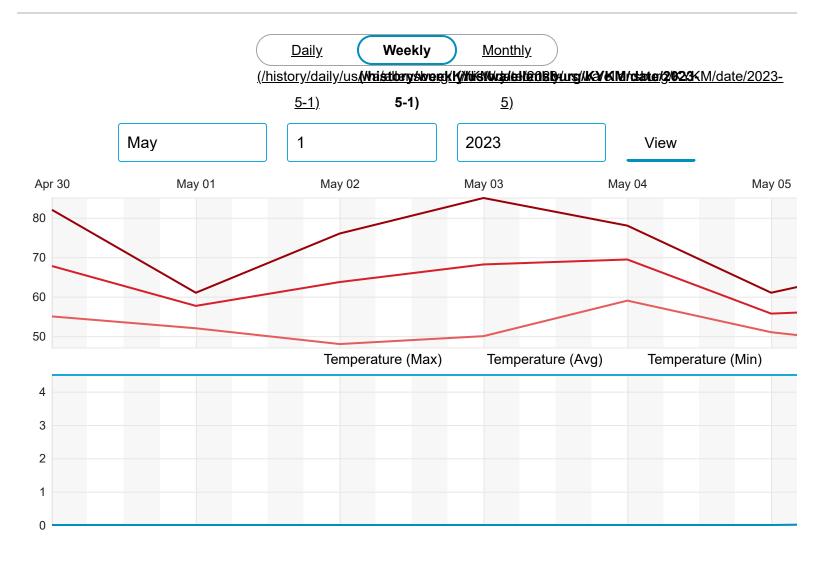
Current time GMT/UTCFri Nov 17 21:28:19 2023Local (Pacific Standard Time)Fri Nov 17 13:28:19 2023

Ger CLive from Earth & Mars

Search Locations

Popular Cities San Francisco, CA 57 °F Partly Cloudy^(/weather/us/ca/san-francisco/37.78,-122.42) Manhattan, NY 51 °F Partly Cloudy^(/weather/us/ny/manhattan/40.)

46.6 °N, 120.54 °W


Yakima, WA Weather History ★ 🏫

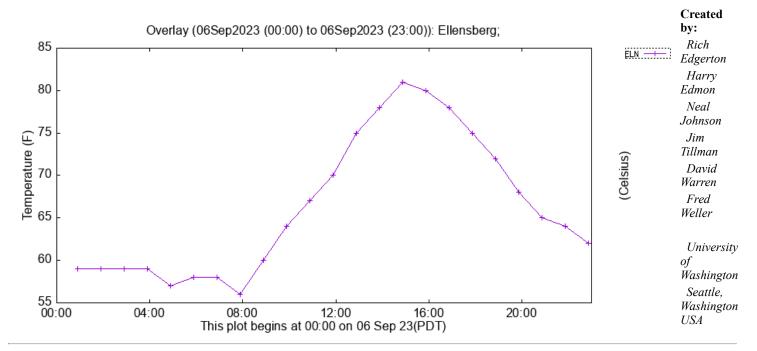
🔆 <u>35°YAKIMA AIR TERMINAL MCALLISTER FIELD STATION (/DASHBOARD/PWS/KWAYAKIM73?</u>

<u>CM_VEN=LOCALWX_PWSDASH)</u> | <u>CHANGE</u> ✓

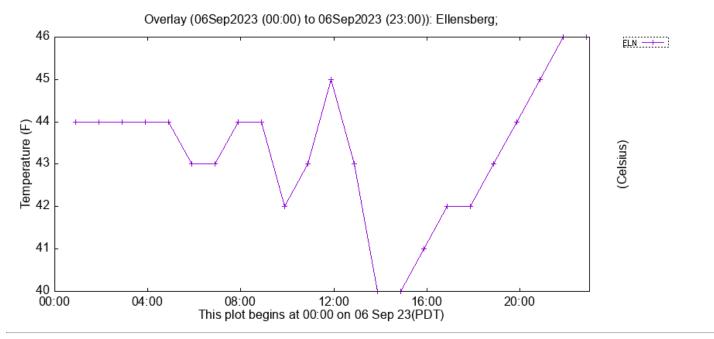
HISTORY (/HISTORY/DAILY/US/WA/YAKIMA/KYKM)

- TODAY (/WEATHER/US/WA/ELLENSBURG/KYKM)
- HOURLY (/HOURLY/US/WA/ELLENSBURG/KYKM)
- 10-DAY (/FORECAST/US/WA/ELLENSBURG/KYKM)
- CALENDAR (/CALENDAR/US/WA/YAKIMA/KYKM)
- <u>HISTORY (/HISTORY/DAILY/US/WA/YAKIMA/KYKM)</u>
- <u>WUNDERMAP (/WUNDERMAP?LAT=46.597&LON=-120.537)</u>

Summary


Temperature (°F)	Max	Average	Min	▲
Max Temperature	85	73.14	61	
Avg Temperature	69.42	62.8	55.71	
Min Temperature	59	51.71	47	
Dew Point (°F)	Max	Average	Min	•
Dew Point	54	43.86	36	
Precipitation (in)	Max	Average	Min	Sum 🔺
Precipitation	0.05	0.01	0.00	0.05
Snowdepth	0.00	0.00	0.00	0.00
Wind (mph)	Max	Average	Min	•
Wind	17	7.15	0	
Gust Wind	28	1.94	0	
Sea Level Pressure (in)	Max	Average	Min	▲
Sea Level Pressure	28.78	28.58	28.38	

Daily Observations


Weather Data, Plots and Station Info

Air Temperature (Fahrenheit)

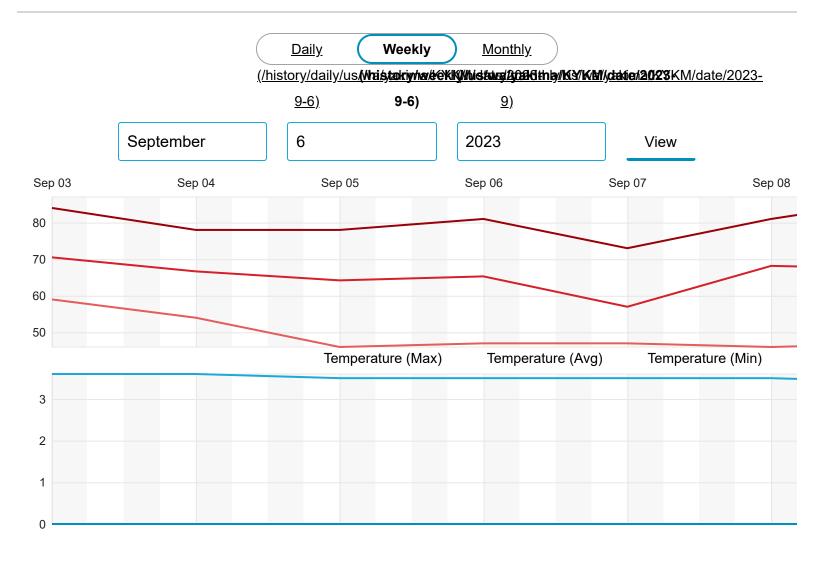
Dewpoint Temperature (Fahrenheit)

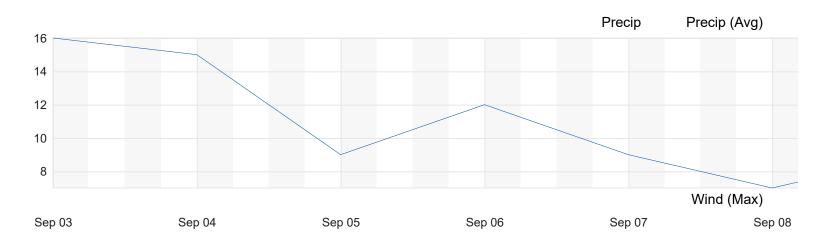
Pressure (millibars)

Search Locations

Popular Cities San Francisco, CA 57 °F Partly Cloudy^(/weather/us/ca/san-francisco/37.78,-122.42) Manhattan, NY 51 °F Partly Cloudy^{(/weather/us/ny/manhattan/40.}

46.6 °N, 120.54 °W

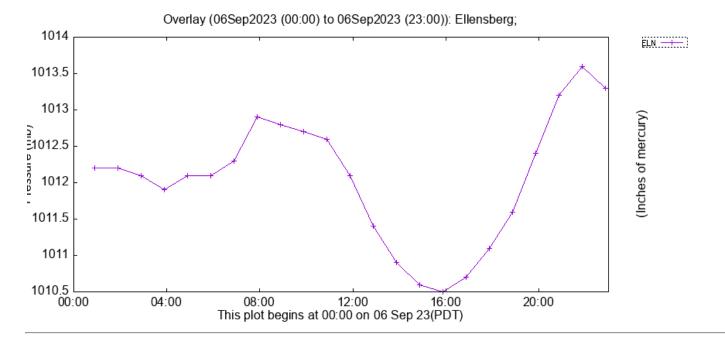

Yakima, WA Weather History ★ 🏦


🔆 35° YAKIMA AIR TERMINAL MCALLISTER FIELD STATION (/DASHBOARD/PWS/KWAYAKIM73?

<u>CM_VEN=LOCALWX_PWSDASH)</u> | <u>CHANGE</u> ✓

HISTORY (/HISTORY/DAILY/US/WA/YAKIMA/KYKM)

- TODAY (/WEATHER/US/WA/YAKIMA/KYKM)
- HOURLY (/HOURLY/US/WA/YAKIMA/KYKM)
- <u>10-DAY (/FORECAST/US/WA/YAKIMA/KYKM)</u>
- CALENDAR (/CALENDAR/US/WA/YAKIMA/KYKM)
- <u>HISTORY (/HISTORY/DAILY/US/WA/YAKIMA/KYKM)</u>
- WUNDERMAP (/WUNDERMAP?LAT=46.597&LON=-120.537)



Summary

Temperature (°F)	Max	Average	Min	▲
Max Temperature	87	80.29	73	
Avg Temperature	70.5	65.6	57	
Min Temperature	59	49.43	46	
Dew Point (°F)	Max	Average	Min	▲
Dew Point	56	44.27	35	
Precipitation (in)	Max	Average	Min	Sum 🔺
Precipitation	0.00	0.00	0.00	0.00
Snowdepth	0.00	0.00	0.00	0.00
Wind (mph)	Max	Average	Min	▲
Wind	16	5.48	0	
Gust Wind	28	1.2	0	
Sea Level Pressure (in)	Max	Average	Min	▲
Sea Level Pressure	29.01	28.81	28.64	

Daily Observations

Clicking on a plot brings up the data file that was used to create that plot and available station information.

Current time GMT/UTCFri Nov 17 21:29:13 2023Local (Pacific Standard Time)Fri Nov 17 13:29:13 2023

Ger CLive from Earth & Mars

Attachment 2 Lab Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 12, 2023

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Mr Cisneros:

Included are the results from the testing of material submitted on May 2, 2023 from the Big B Ellensburg, F&BI 305019 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Manique Talaia-Murray FDS0512R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 15, 2023

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Mr Cisneros:

Included are the results from the testing of material submitted on May 2, 2023 from the Big B Ellensburg, F&BI 305020 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Manique Talaia-Murray FDS0515R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 2, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Big B Ellensburg, F&BI 305020 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
305020 -01	SVP-1-050123
305020 -02	SVP-101-050123

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The MA-APH EC5-8 aliphatics and EC9-12 alipatics method blank detections were qualified as due laboratory contamination.

The 2-propanol concentration in the samples exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<130

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-1-050123 05/02/23 05/01/23 05/10/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 305020-01 1/5.4 050925.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 85	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<140

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-101-050123 05/02/23 05/01/23 05/10/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 305020-02 1/5.6 050926.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics<600APH EC9-12 aliphatics<600				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 05/09/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 03-1079 MB 050914.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 87	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-1-050123 05/02/23 05/01/23 05/10/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 305020-01 1/5.4 050925.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 85	70	130	
Compounds:	Conce ug/m3	ntration ppbv		
2-Propanol	600 ve	240 ve		
Benzene	<1.7	< 0.54		
Toluene	<54	<14		
Ethylbenzene	<23	<5.4		
m,p-Xylene	<47	<11		
o-Xylene	<23	<5.4		
Naphthalene	<1.4	< 0.27		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-101-050123 05/02/23 05/01/23 05/10/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 305020-02 1/5.6 050926.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Conce ug/m3	ntration ppbv		
Compounds.	ug/III3	ppnv		
2-Propanol	580 ve	240 ve		
Benzene	<1.8	< 0.56		
Toluene	<54	<14		
Ethylbenzene	<24	< 5.6		
m,p-Xylene	<49	<11		
o-Xylene	<24	<5.6		
Naphthalene	<1.5	< 0.28		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 05/09/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Floyd-Snider Big B Ellensburg, F&BI 305020 03-1079 MB 050914.D GCMS7 bat				
	%	Lower	Upper					
Surrogates:	Recovery:	Limit:	Limit:					
4-Bromofluorobenz	ene 88	70	130					
Concentration								
Compounds:	ug/m3	ppbv						
_								
2-Propanol	<8.6	<3.5						
Benzene	< 0.32	< 0.1						
Toluene	<9.5	<2.5						
Ethylbenzene	<4.3	<1						
m,p-Xylene	<8.7	<2						
o-Xylene	<4.3	<1						
Naphthalene	< 0.26	< 0.05						

ENVIRONMENTAL CHEMISTS

Date of Report: 05/15/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 304366-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	430	440	2
APH EC9-12 aliphatics	ug/m3	410	470	14
APH EC9-10 aromatics	ug/m3	<130	<130	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	97	70-130
APH EC9-12 aliphatics	ug/m3	67	108	70-130
APH EC9-10 aromatics	ug/m3	67	108	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/15/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 304366-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.7	<1.7	nm
Toluene	ug/m3	<98	<98	nm
Ethylbenzene	ug/m3	<2.3	<2.3	nm
m,p-Xylene	ug/m3	<4.5	<4.5	nm
o-Xylene	ug/m3	<2.3	<2.3	nm
Naphthalene	ug/m3	<1.4	<1.4	nm

Laboratory Code: Laboratory Control Sample

haberatory coue. haberatory con	itioi sampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	94	70-130
Toluene	ug/m3	51	110	70-130
Ethylbenzene	ug/m3	59	94	70-130
m,p-Xylene	ug/m3	120	91	70-130
o-Xylene	ug/m3	59	97	70-130
Naphthalene	ug/m3	71	93	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CAMPTER CHAIN OF CUSTORY Alsonia PROJECT NAME & ADDRESS PO# Alsonia PROJECT NAME & ADDRESS PO# Alsonia PROJECT NAME & ADDRESS PO# Alsonia Reporting Involution NOTES: Involution Inailgabe Canister Cat. SGENGES Date Initial Final	ed at 19 °C	Samples received at					ed by:	Received by:	Fax (206) 283-5044	
Alsonal SUMPLATE (Supporting PROJECT NAME & ADDRESS PO# Alsonal PROJECT NAME & ADDRESS PO# Alsonal Reporting Level: INVOICE TO Standard Standard Tab Canister Cont. Scalar Introduction Air Lab Reporting Level: Initial Level: Field Final Field Fina	SAMPLE CHAIN OF CUSTORY The data form State of the colspan="2">State of the colspan="2" The colspa="" The colspan="2" The colspan="2" The c	-11	1201	rn an	Nhan	<u>ک</u>		inshed by:	Reling	Ph. (206) 285-8282	
Alsorial SNMH-ERS (signature) Alsorial PROJECT NAME & ADDRESS PO# Reporting Reporting Involution Lab Canister Cont. Scandard Dib Dib Initial Flow Initial Dib Dib Dib Initial Flow Initial Dib Dib Dib Initial Flow Initial Initial Reporting Initial Flow Initial Flow Initial Can. Scandard Samture Initial Flow Initial Initial Flow Initial Flow Initial Flow Initial Initial Flow Initial Flow Initial Flow Initial Initial Vac. Initial Vac. Flow Initial Flow Initial Initial Vac. Initial Vac. Flow Initial Flow Initial Initial Vac. Standard Provide Provide Provide Provide Initial Vac. Initial Vac. Final Final Final Final Initial V V V <th>SAMPPIR CHANOR CUSTORY Projection Systematic Projection PROJECT NAME & ADDRESS Projection PROJECT NAME & ADDRESS Projection Projection Projection Projection <t< th=""><th>Jaks 0112</th><th></th><th>(recentration</th><th>Manzur</th><th></th><th>Sh</th><th>$\leq N$</th><th>Receive</th><th>Seattle, WA 98108</th><th></th></t<></th>	SAMPPIR CHANOR CUSTORY Projection Systematic Projection PROJECT NAME & ADDRESS Projection PROJECT NAME & ADDRESS Projection Projection Projection Projection <t< th=""><th>Jaks 0112</th><th></th><th>(recentration</th><th>Manzur</th><th></th><th>Sh</th><th>$\leq N$</th><th>Receive</th><th>Seattle, WA 98108</th><th></th></t<>	Jaks 0112		(recentration	Manzur		Sh	$\leq N$	Receive	Seattle, WA 98108	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Prove $f_{1,2}$ SAMPLE CHAIN OF CUSTORY Sample $f_{1,2}$ Norest $f_{1,2}$	CARU LANZ	t N	7 0 1	3			Try payring	Relinq	5500 4 th Avenue South	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G. Cismeros SAMPLE CHAIN OF CUSTORY Off az (z) PLONATION PROJECT NAME & ADDRESS PO# State IP Samular State PROJECT NAME & ADDRESS PO# State IP Samular State Samular State PO# State IP Samular State Samular State PO# State IP Samular State Samular State PO# State IP Samular State Flow Samular State Involce TO Date ID ID ID Correl Gas Date Vac. Initial Field Final Field Samular State NALVSIS REQUES Name ID ID ID Correl Gores Samular ('Hg) Time MALVSIS REQUES Name ID ID ID Correl Gores Samular ('Hg) Time Samular State Name ID ID ID Correl Gores Samular ('Hg) Time Tool 5 BTEXN Name IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG		COMPANY			E	JNATUH	SI		Friedman & Bruya, Inc.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE CHAINOF CUSTORY G. (Lister Showship in the constraint of the state of the st					 ~				- 	
Alsand SAMPLENS (signature) Alsand PROJECT NAME & ADDRESS PO# Reporting Reporting NOTES: INVOICE TO Intal gabe Canister Flow IA=Indoor Air Initial Final Fina	C. (Lister of the continue of the content of the					-			+		
Alsolution Statistics PROJECT NAME & ADDRESS PO# Statistics Alsolution Statistics PROJECT NAME & ADDRESS PO# Rush Intial Statistics Provide the statistics Provide the statistics PO# Rush Intial Flow IA=Indoor Air Intial Field Final Field Field <td>Character SAMPLE CHAIN OF CUSTORY SAMPLE CHAIN OF CUSTORY Statistic statistics PROJECT NAME & ADDRESS PO# Statistics Statistics PO# Statistics Statistics PO# Statistics PD# Statistics PD# Statistics PD# Statistics PD# Rush RC PD# Rush RC PD# Rush RC PD# Rush RC <</td> <td></td> <td></td> <td></td> <td></td> <td>1-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Character SAMPLE CHAIN OF CUSTORY SAMPLE CHAIN OF CUSTORY Statistic statistics PROJECT NAME & ADDRESS PO# Statistics Statistics PO# Statistics Statistics PO# Statistics PD# Statistics PD# Statistics PD# Statistics PD# Rush RC PD# Rush RC PD# Rush RC PD# Rush RC <					1-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE CHAIN OF CUSTORY Projecture SAMPLE CHAIN OF CUSTORY Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture Projecture <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>					-					
Alsociation Statistic (signature) Alsociation PROJECT NAME & ADDRESS PO # PROJECT NAME & ADDRESS PO # PROJECT NAME & ADDRESS PO # Projecting Projecting Intial Projecting Lab Canister Cont. SG=Soil Gas ID ID ID ID <td>AMPT P. CHAIN OF CUSTORY SAMPT P. CHAIN OF CUSTORY State Televal(sark SAMPT P. CHAIN OF CUSTORY PROJECT NAME & ADDRESS PO# PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Rush PROJECT NAME & ADDRESS PO# Rush</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	AMPT P. CHAIN OF CUSTORY SAMPT P. CHAIN OF CUSTORY State Televal(sark SAMPT P. CHAIN OF CUSTORY PROJECT NAME & ADDRESS PO# PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Rush					-			_		
Alsawid SAMPLERS (signature) Sufficience Alsawid PROJECT NAME & ADDRESS PO# Runaligabe Cisneros Reporting NOTES: Invoice To Notes Imail gabe Canister Flow Reporting Initial Field	SAMPLE CHAIN OF CUSTORY Projecting SAMPLE CHAIN OF CUSTORY State Projecting			ż	-	-			> .		
Alsarda PROJECT NAME & ADDRESS PO# Alsarda PROJECT NAME & ADDRESS PO# Alsarda PROJECT NAME & ADDRESS PO# Mail gabe Lisneros Pomoting Imail gabe Lisneros Reporting Reporting Lab Canister Cont. SG=Soil Gas Date Vac. ID ID ID ID ID ID ID ID ID ID ID SG=Soil Gas Sampled Time Yac. Final Yac. Yac. Yac. Yac.	A. Ciscures SAMPTE CHAIN OF CUSTORY $Glos (z)$ Plant Statistic PROJECT NAME & ADDRESS PO# Statistic PROJECT NAME & ADDRESS PO# Rush PROJECT NAME & ADDRESS PO# Rush IP Statistic Statistic PO# IP Statistic Statistic Initial Initial IP Statistic Flow Initial Field Final ID ID ID ID Statistic Statistic Time ID ID ID ID Statistic Statistic Time ID ID ID ID Statistic Statistic Time ID ID ID Statistic Statistic Time Tois ID <td< td=""><td></td><td><</td><td></td><td></td><td>/ SG</td><td></td><td>2250</td><td>12 02</td><td></td><td></td></td<>		<			/ SG		2250	12 02		
al Sanda SAMITLERS (signature) al Sanda PROJECT NAME & ADDRESS PO # PROJECT NAME & ADDRESS PO # anail gabe Cisneros Po # Imail gabe Cisneros Po # Imail gabe Cont. Science Po # ID ID ID ID ID ID ID Sampled ID ID Circle One) Sampled ID ID ID ID	AMPLE CUSTORY SAMPLE CHAIN OF CUSTORY State of the second se		V V	- }		IA / SQ	+	2433		SVP-1-05012	
Alsand Alsand Alsand Mathematica Motes: M	SAMPLE CHAIN OF CUSTORY Solution Fland Sard SAMPLE CHAIN OF CUSTORY Sta Fland Sard PROJECT NAME & ADDRESS PO # RU Ru PROJECT NAME & ADDRESS PO # RU Ru Ru Ru PROJECT NAME & ADDRESS PO # Ru Ru Ru Ru Ru INVOICE TO Def fin INVOICE TO Def fin INVOICE TO Motes Hol		TO 15 BTEXN TO 15 cVOCs APH	Field Final Initial Vac. Time ("Hg)		Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		Canister ID	Lab ID	Sample Name	
- Cismeros Pranal Sarda Stand	G. Lismeros Planal gabe Lisneros Flanal gabe Lisneros Fland Motes: IP SAMPLERS (signature) PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Sta Sta NOTES: I NOTES: I NOTES: I NOTES: I I I I I I I I I I I I I		ANALYSIS REQUEST							SAMPLE INFORMATION	
- Lisming SAMPLERS (sighture) PROJECT NAME & ADDRESS PO # Sta PROJECT NAME & ADDRESS PO # RU Sta Sta Sta Sta NOTES: 1 INVOICE TO Def	A. Lismons SAMPLE CHAIN OF CUSTORY Of or /2 Pland Same SAMPLE CHAIN OF CUSTORY Of or /2 PROJECT NAME & ADDRESS PO# Ru PROJECT NAME & ADDRESS PO # Ru RU Sta PROJECT NAME & ADDRESS PO # INVOICE TO Def Def	al report delivery d (Fee may apply):	fina Holo		S	Flandsmithm	Snerbs	abe.ci	Imail <u>a</u>	H	
v Flagd Sand SAMPLERS (signature) v Flagd Sand Sand PROJECT NAME & ADDRESS PO # Sta RUSh RUSh RUSh	Children SAMPLE CHAIN OF CUSTORY Of or (2) G. Ligneros SAMPLERS (signature) Off or (2) Fland Sta PROJECT NAME & ADDRESS PO# RU Sta Ru Ru Ru Ru	SAMPLE DISPOSAL ault:Clean following		. IN		NOTE		SSP P	e H	City, State, ZIP	
Fland Same RUJECT NAME & ADDRESS PO# Sta	PROJECT NAME & ADDRESS PO# Sta	charges authorized by:	Rush		- W	\$ 20 00		Å,	7	مما	
G. (Jameros SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY 05/02/23	ndard SH	Sta	DRESS	OT NAME & ADI	PROJE		rt.	als.		
	SAMPLE CHAIN OF CUSTONY 05/02/23	TURNAROUND TIME		Onder	ERS (signature)	SAMPL.		·	2	5	

y P.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 2, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Big B Ellensburg, F&BI 305019 project. Samples were logged in under the laboratory ID's listed below.

<u>Floyd-Snider</u>
MW-1-050123
MW-101-050123
MW-4B-050123
MW-9A-050123
MW-2-050123
MW-2A-050123
Trip Blank-050123

Samples MW-1-050123, MW-101-050123, MW-4B-050123, and MW-2A-050123 were sent to Fremont Analytical for nitrate, sulfate, TOC and methane analyses. The report is enclosed.

The 8260D 2-butanone calibration standard exceeded the acceptance criteria for the method blank. The compound was not detected, therefore this does not represent an out of control condition.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019 Date Extracted: 05/04/23 Date Analyzed: 05/04/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-1-050123 305019-01	<100	107
MW-101-050123 305019-02	<100	110
MW-4B-050123 305019-03	440	114
MW-9A-050123 305019-04	<100	108
MW-2-050123 305019-05	160	115
MW-2A-050123 305019-06	390	114
Trip Blank-050123 305019-07	<100	107
Method Blank ^{03-941 MB}	<100	101

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019 Date Extracted: 05/03/23 Date Analyzed: 05/05/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-050123 305019-01	99	<250	95
MW-101-050123 305019-02	82	<250	96
MW-4B-050123 305019-03	360	<250	95
MW-9A-050123 305019-04	<50	<250	94
MW-2-050123 305019-05	300	<250	99
MW-2A-050123 305019-06	110	<250	102
Method Blank ^{03-1141 MB}	<50	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019 Date Extracted: 05/08/23 Date Analyzed: 05/09/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-050123 305019-01	640 x	<250	116
MW-101-050123 305019-02	680 x	<250	125
MW-4B-050123 305019-03	5,000 x	470 x	118
MW-9A-050123 305019-04	120 x	<250	115
MW-2-050123 305019-05	5,400 x	780 x	145
MW-2A-050123 305019-06	2,700 x	340 x	133
Method Blank ^{03-1141 MB}	<50	<250	130

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-1-050123	Client:	Floyd-Snider
Date Received:	05/02/23	Project:	Big B Ellensburg, F&BI 305019
Date Extracted:	05/02/23	Lab ID:	305019-01
Date Analyzed:	05/02/23	Data File:	305019-01.163
Matrix:	Water	Instrument:	ICPMS2
Units: Analyte: Manganese	ug/L (ppb) Concentration ug/L (ppb) 778	Operator:	SP

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-101-050123	Client:	Floyd-Snider
Date Received:	05/02/23	Project:	Big B Ellensburg, F&BI 305019
Date Extracted:	05/02/23	Lab ID:	305019-02
Date Analyzed:	05/02/23	Data File:	305019-02.164
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Manganese	Concentration ug/L (ppb) 765	oporation.	51

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4B-050123 05/02/23 05/03/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 305019 305019-03 x50 305019-03 x50.109 ICPMS2 SP
Analyte: Manganese	Concentration ug/L (ppb) 1,390	operator.	51

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-2A-050123	Client:	Floyd-Snider
Date Received:	05/02/23	Project:	Big B Ellensburg, F&BI 305019
Date Extracted:	05/02/23	Lab ID:	305019-06
Date Analyzed:	05/02/23	Data File:	305019-06.166
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Manganese	Concentration ug/L (ppb) 755	oporation	

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Floyd-Snider
Date Received:	NA	Project:	Big B Ellensburg, F&BI 305019
Date Extracted:	05/02/23	Lab ID:	I3-342 mb
Date Analyzed:	05/02/23	Data File:	I3-342 mb.125
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Manganese	Concentration ug/L (ppb) <1	Operator.	51

9

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-0501 05/02/23 05/04/23 05/04/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-01 050419.D GCMS13 MD	BI 305019
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 105 101 103	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroetha 1,1-Dichloropethane 1,1,1-Trichloroethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-Dichloropethane 4-Methyl-2-pentane cis-1,3-Dichloropeta	hane er (MTBE) ethene ene ene (EDC) ine ie de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.4 <0.5 <10	Naphtha		<1 <1

ENVIRONMENTAL CHEMISTS

MW-101-05 05/02/23 05/04/23 05/04/23 Water ug/L (ppb)	0123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-02 050420.D GCMS13 MD	BI 305019
-d4 ene	% Recovery: 92 91 104	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene ene ene (EDC) ine ie de hane one pene oropene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene hzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene stoluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	
oropene ine	<0.4 <0.5 <10			<1 <1
	05/02/23 05/04/23 Water ug/L (ppb) -d4 ene thane hane hane (EDC) ne e de thene hane one pene oropene	$\begin{array}{ccccccc} 05/04/23 \\ 05/04/23 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & & \\ & & & & & & \\ & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

MW-4B-050 05/02/23 05/04/23 05/04/23 Water ug/L (ppb))123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-03 050412.D GCMS13 MD	BI 305019
e-d4	% Recovery: 103 101 109	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene ene ene (EDC) ine ie de hane one pene oropene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene alene	
ine	<0.5 <10	1,2,3-Tri	ichlorobenzene	<1
	05/02/23 05/04/23 Water ug/L (ppb) -d4 ene thane hane hane (EDC) ne e ene (EDC) ne e hane hane	$\begin{array}{ccccccc} 05/04/23 \\ 05/04/23 \\ Water \\ ug/L (ppb) \\ \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-9A-050 05/02/23 05/04/23 05/04/23 Water ug/L (ppb))123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-04 050421.D GCMS13 MD	BI 305019
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 89 93 104	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropro	hane er (MTBE) ethene ene ene e (EDC) une de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	nzene Cetrachloroethane ene Albenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene otoluene otoluene pylbenzene imethylbenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-0501 05/02/23 05/04/23 05/04/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-05 050422.D GCMS13 MD	BI 305019
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 92 105	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) ethene ene ene e (EDC) ine ie de hane one		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene dibenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<1 <0.4 <0.5 <10	Naphtha	orobutadiene alene ichlorobenzene	<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2A-050 05/02/23 05/04/23 05/04/23 Water ug/L (ppb))123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-06 050423.D GCMS13 MD	zBI 305019
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 99 105	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroperpar cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloroperpar cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroproper Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloroperpar Bromodichloromethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	nzene Cetrachloroethane ene dibenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 05/02/23 05/04/23 05/04/23 Water ug/L (ppb)	050123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 305019-07 050424.D GCMS13 MD	BI 305019
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 100 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine ie de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl	nzene 'etrachloroethane ene '' 'lbenzene rm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichloropropane ichloropropane	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F& 03-01006 mb 050407.D GCMS13 MD	BI 305019
-d4 ene	% Recovery: 94 91 106	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) thene ene (EDC) ne e de de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	loroethene ochloromethane omoethane (EDB) enzene nzene Tetrachloroethane ene orm lbenzene enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene pyltoluene lorobenzene lorobenzene iono-3-chloropropane orobutadiene alene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
ne	<0.5 <10	1,2,3-Tri	ichlorobenzene	<1
	Not Applica 05/04/23 05/04/23 Water ug/L (ppb) -d4 ene thane hane er (MTBE) thene ee ene (EDC) ne e de hane pene propene	$\begin{array}{ccccccc} 05/04/23 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & & & & & & & & & & & & $	Not ApplicableProject: $05/04/23$ Lab ID: $05/04/23$ $05/04/23$ Data File: Instrument: ug/L (ppb)Data File: Instrument: ug/L (ppb) ug/L (ppb)Operator: ug/L 9471 91 68ene10662Concentration ug/L (ppb)Compound thane <10 Tetrachl <0.02 <11 Tetrachl <0.02 <120 K <120 K<	Not ApplicableProject:Big B Ellensburg, F&05/04/23Lab ID:03-01006 mb05/04/23Data File:050407.DWaterInstrument:GCMS13ug/L (ppb)Operator:MD*% Recovery:Limit:-d494711329168139ene10662136Concentrationug/L (ppb)Compounds:thanconcentrationug/L (ppb)Compounds:thanthanthanand colspan=concentrationug/L (ppb)Compounds:thanthanthanthanand colspan=thanconcentrationug/L (ppb)Compounds:thanthanthanconcentrationug/L (ppb)Compounds:thanthanthanthanthanthanthanthanthanthanthanthan

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 30	5009-01 (Dupl	icate)			
	Reporting	Samp	le Duj	olicate	RPD
Analyte	Units	Resu	lt R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	:100	nm
Laboratory Code: La	boratory Cont	rol Sampl	e Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	100	70-130	_

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 1	Laboratory Contro	ol Sample	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	84	92	72-139	9

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	100	65 - 151	0

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Cod	le: 304402-01	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Manganese	ug/L (ppb)	20	3.22	91	93	75-125	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Manganese	ug/L (ppb)	20	91	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 305019-03 (Matrix Spike)

Laboratory Code. 505019-05 (Ma	Percent					
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Dichlorodifluoromethane	ug/L (ppb)	10	<1	107	27-164	
Chloromethane	ug/L (ppb)	10	<10	89	34-141	
Vinyl chloride	ug/L (ppb)	10	< 0.02	108	16-176	
Bromomethane	ug/L (ppb)	10	<5	112	10-193	
Chloroethane	ug/L (ppb)	10	<1	121	50-150	
Trichlorofluoromethane	ug/L (ppb)	10	<1	102	50-150	
Acetone	ug/L (ppb)	50	<50	66	15-179	
1,1-Dichloroethene	ug/L (ppb)	10	<1	105	50-150	
Hexane	ug/L (ppb)	10 10	<5 <5	113 99	49-161	
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<0	99 98	40-143 50-150	
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	103	50-150	
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	10	<1	103	50-150	
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<1	102	62-152	
cis-1.2-Dichloroethene	ug/L (ppb)	10	<1	100	50-150	
Chloroform	ug/L (ppb)	10	<1	98	50-150	
2-Butanone (MEK)	ug/L (ppb)	50	<20	84	34-168	
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<0.2	101	50-150	
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	101	50-150	
1,1-Dichloropropene	ug/L (ppb)	10	<1	100	50-150	
Carbon tetrachloride	ug/L (ppb)	10	<0.5	99	50-150	
Benzene	ug/L (ppb)	10	< 0.35	101	50-150	
Trichloroethene	ug/L (ppb)	10	< 0.5	95	43-133	
1,2-Dichloropropane	ug/L (ppb)	10	<1	102	50-150	
Bromodichloromethane	ug/L (ppb)	10	< 0.5	90	50-150	
Dibromomethane	ug/L (ppb)	10	<1	102	50-150	
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	101	50-150	
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	95	48-145	
Toluene	ug/L (ppb)	10	<1	98	50-150	
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	92	37 - 152	
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	102	50 - 150	
2-Hexanone	ug/L (ppb)	50	<10	97	50 - 150	
1,3-Dichloropropane	ug/L (ppb)	10	<1	97	50-150	
Tetrachloroethene	ug/L (ppb)	10	<1	99	50-150	
Dibromochloromethane	ug/L (ppb)	10	< 0.5	91	33-164	
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	93	50-150	
Chlorobenzene	ug/L (ppb)	10	<1	97	50-150	
Ethylbenzene	ug/L (ppb)	10	<1	100	50 - 150	
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	97	50-150	
m,p-Xylene	ug/L (ppb)	20	<2	100	50 - 150	
o-Xylene	ug/L (ppb)	10	<1	104	50 - 150	
Styrene	ug/L (ppb)	10	<1	98	50-150	
Isopropylbenzene	ug/L (ppb)	10	3.8	121 b	50-150	
Bromoform	ug/L (ppb)	10	<5	92	23-161	
n-Propylbenzene	ug/L (ppb)	10	6.0	142 b	50-150	
Bromobenzene	ug/L (ppb)	10	<1	99	50-150	
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	102	50-150	
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	109	57-162	
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	99	33-151	
2-Chlorotoluene	ug/L (ppb)	10 10	<1 <1	103	50-150	
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	103 101	50-150 50-150	
1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	101	50-150	
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	2.6	120 b	46-139	
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10	2.6 <1	120 5	46-139	
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	100	50-150	
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	100	50-150 50-150	
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	100	50-150 50-150	
1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10	<10	99	50-150	
1.2.4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<10	99 107	50-150 50-150	
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	10	<0.5	107	42-150	
Naphthalene	ug/L (ppb) ug/L (ppb)	10	<0.5	112	50-150	
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	107	44-155	
-,-,	ag. a (PPo)	10	· -	101	11 100	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/23 Date Received: 05/02/23 Project: Big B Ellensburg, F&BI 305019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	_	~ -	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	116	103	49-149	12
Chloromethane	ug/L (ppb)	10	93	89	34-143	4
Vinyl chloride	ug/L (ppb)	10	109	106	43-149	3
Bromomethane	ug/L (ppb)	10	109	111	28-182	2
Chloroethane Trichlorofluoromethane	ug/L (ppb)	10 10	120 101	117 95	59-157 59-141	3 6
Acetone	ug/L (ppb) ug/L (ppb)	10 50	76	95 71	20-139	6
1,1-Dichloroethene	ug/L (ppb)	10	102	97	67-138	5
Hexane	ug/L (ppb)	10	102	104	50-161	3
Methylene chloride	ug/L (ppb)	10	99	94	29-192	5
Methylete chloride Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	98	96	70-130	2
trans-1,2-Dichloroethene	ug/L (ppb)	10	102	98	70-130	4
1.1-Dichloroethane	ug/L (ppb)	10	102	98	70-130	4
2,2-Dichloropropane	ug/L (ppb)	10	117	101	71-148	15
cis-1,2-Dichloroethene	ug/L (ppb)	10	99	97	70-130	2
Chloroform	ug/L (ppb)	10	97	95	70-130	2
2-Butanone (MEK)	ug/L (ppb)	50	104	99	50-157	5
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	102	98	70-130	4
1,1,1-Trichloroethane	ug/L (ppb)	10	100	97	70-130	3
1,1-Dichloropropene	ug/L (ppb)	10	101	95	70-130	6
Carbon tetrachloride	ug/L (ppb)	10	99	95	70-130	4
Benzene	ug/L (ppb)	10	100	98	70-130	2
Trichloroethene	ug/L (ppb)	10	93	92	70-130	1
1,2-Dichloropropane	ug/L (ppb)	10	107	102	70-130	5
Bromodichloromethane	ug/L (ppb)	10	90	89	70-130	1
Dibromomethane	ug/L (ppb)	10	98	100	70-130	2
4-Methyl-2-pentanone	ug/L (ppb)	50	102	98	70-130	4
cis-1,3-Dichloropropene	ug/L (ppb)	10	95	93	70-130	2
Toluene	ug/L (ppb)	10	100	99	70-130	1
trans-1,3-Dichloropropene	ug/L (ppb)	10	99	97	70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	99	99	70-130	0
2-Hexanone	ug/L (ppb)	50	98	96	66-132	2
1,3-Dichloropropane	ug/L (ppb)	10	101	103	70-130	2
Tetrachloroethene	ug/L (ppb)	10	100	100	70-130	0 1
Dibromochloromethane	ug/L (ppb)	10	93	94	63-142	-
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	10 10	97 98	98 99	70-130 70-130	1
Chlorobenzene Ethylbenzene	ug/L (ppb)	10	101	99 101	70-130	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	101	96	70-130	5
m,p-Xylene	ug/L (ppb)	20	101	101	70-130	0
o-Xylene	ug/L (ppb)	10	101	101	70-130	1
Styrene	ug/L (ppb)	10	98	100	70-130	2
Isopropylbenzene	ug/L (ppb)	10	100	97	70-130	3
Bromoform	ug/L (ppb)	10	93	96	50-157	3
n-Propylbenzene	ug/L (ppb)	10	103	103	70-130	õ
Bromobenzene	ug/L (ppb)	10	95	97	70-130	$\overset{\circ}{2}$
1.3.5-Trimethylbenzene	ug/L (ppb)	10	100	100	52-150	0
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	107	101	75-140	6
1,2,3-Trichloropropane	ug/L (ppb)	10	103	99	40-153	4
2-Chlorotoluene	ug/L (ppb)	10	102	102	70-130	0
4-Chlorotoluene	ug/L (ppb)	10	101	101	70-130	0
tert-Butylbenzene	ug/L (ppb)	10	100	98	70-130	2
1,2,4 Trimethylbenzene	ug/L (ppb)	10	100	98	70-130	2
sec-Butylbenzene	ug/L (ppb)	10	102	98	70-130	4
p-Isopropyltoluene	ug/L (ppb)	10	102	100	70-130	2
1,3-Dichlorobenzene	ug/L (ppb)	10	97	96	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	101	98	70-130	3
1,2-Dichlorobenzene	ug/L (ppb)	10	97	94	70-130	3
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	94	97	70-130	3
1,2,4-Trichlorobenzene	ug/L (ppb)	10	98	97	70-130	1
Hexachlorobutadiene	ug/L (ppb)	10	101	96	70-130	5
Naphthalene	ug/L (ppb)	10	97	97	61-133	0
1.2.3-Trichlorobenzene	ug/L (ppb)	10	97	95	69-143	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

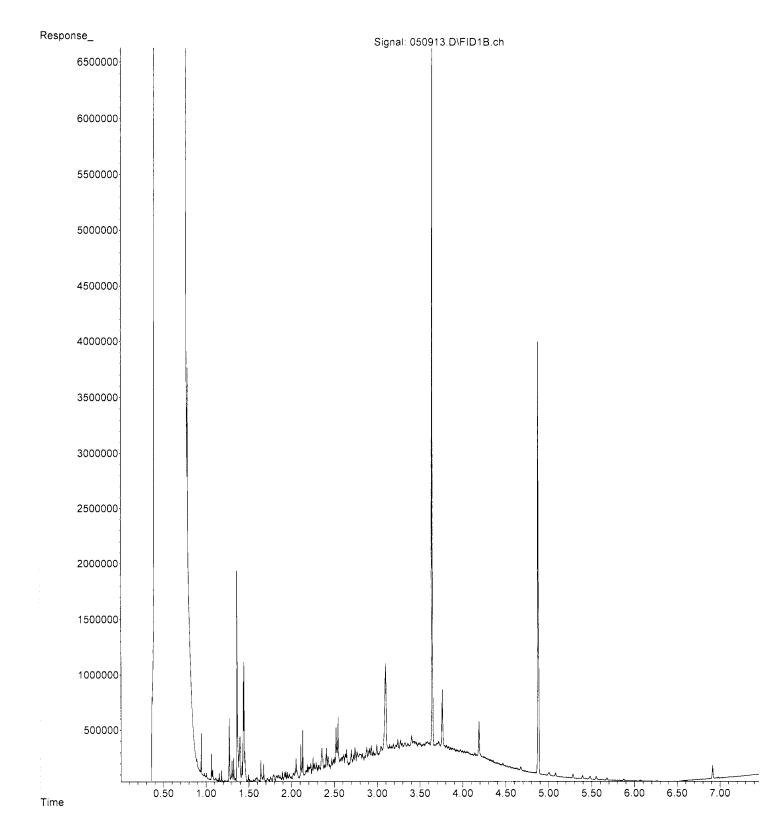
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

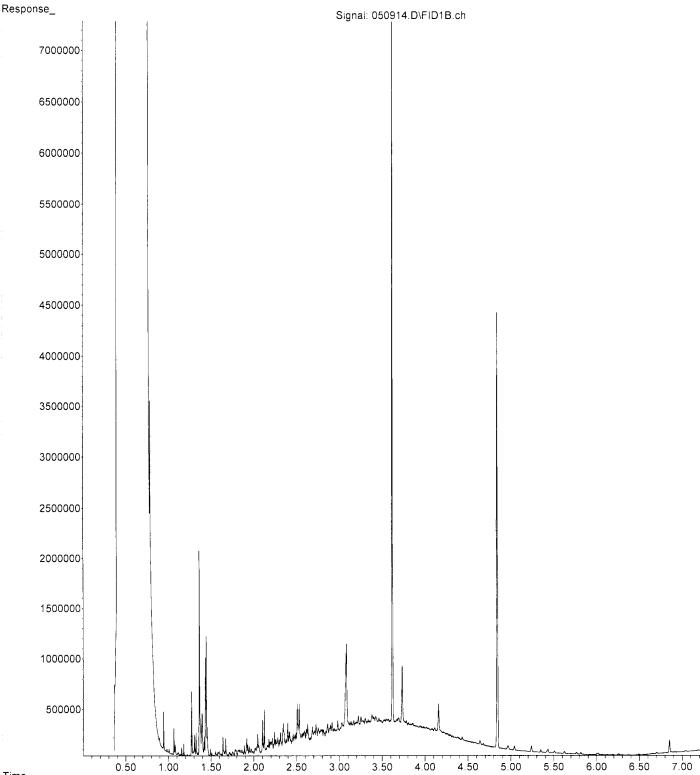
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

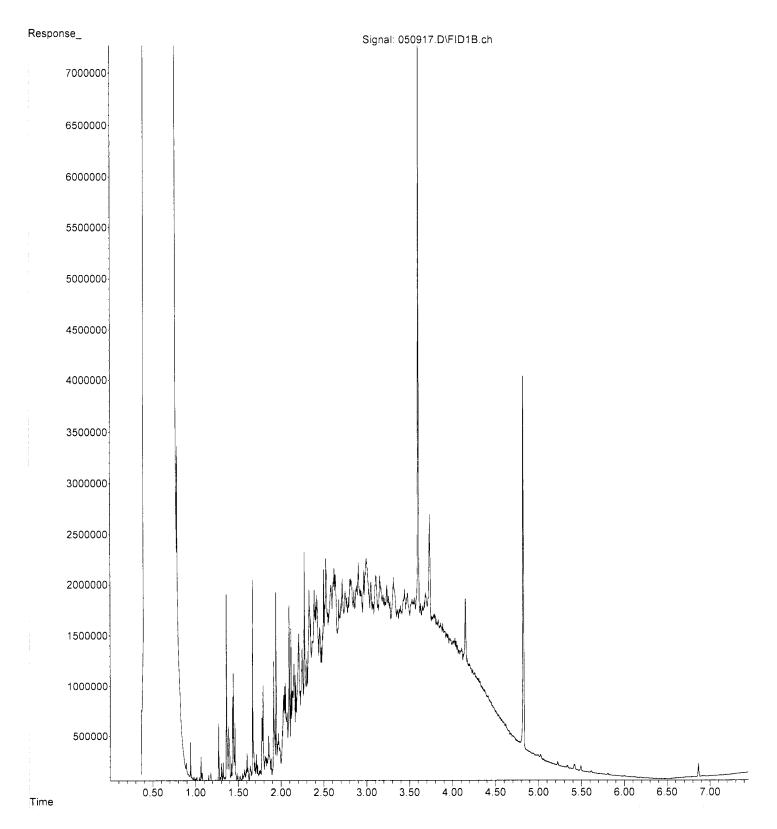
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Ph. (206) 285-8282	V Trip Blank-050123	V MW-2A-050123	MW-9A-080 23	MW-43-050123	V MW-100-050123	V MW-1-050123	Sample ID	Report To Manique Talairia - Unray MAA Company Flagd Snider Address 60/ Union St, Ste 600 City, State, ZIP Seattle, U/A 96/0/ Phone 206-292 2007 Email Manique . talain Murry Project specific RLs? -	Gale Cismers
SIGNATURE Relinquished by: Received by: Relinquished by Relinquished by	5 [1] 2 d A- FO	06 A-M 511/23	A-6-	03 A-M 5/1/23	02 A-M 511/23	01 A-M 51133	Lab ID Date Sampled	lui a- Uuray t. Ste 600 gabe innerosa tagesan ailmani que talun-mura	205019
	0 02/	1223	1137	1040	1045	1040	Time Sampled	PROJECT PROJECT By B Ellens REMARKS By Project spec	SAMPLE
Manifue Calmand	6w Z X	6~ 13 X X		6W 13 X X	6w 13 X X	6W 13 X X	Type Jars NWTPH-Dx	MAA PROJECT NAME By B Ellensburg REMARKS un Project specific RLs? - Yes / No	SAMPLE CHAIN OF CUSTODY
te te		× × ×		XXX	XX	XX	BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	PO # INVOICE TO	DY 05/.
COMPANYDATETIME S S S S β T S β β T 5 β β S β β β T β β β T β β β T β β β T β β T β β T β β T β <td< td=""><td></td><td>× × ×</td><td></td><td>X X X</td><td>X X X DRadhikred</td><td>XXX Dox why and we</td><td>Nitakin 1kk Manjanez Des Methane</td><td>TURNAROUND TIME X Standard turnaround C RUSH Rush charges authorized by: SAMPLE DISPOSAL C Archive samples C Other Default: Dispose after 30 days</td><td>/2x \$/hun El/20</td></td<>		× × ×		X X X	X X X DRadhikred	XXX Dox why and we	Nitakin 1kk Manjanez Des Methane	TURNAROUND TIME X Standard turnaround C RUSH Rush charges authorized by: SAMPLE DISPOSAL C Archive samples C Other Default: Dispose after 30 days	/2x \$/hun El/20

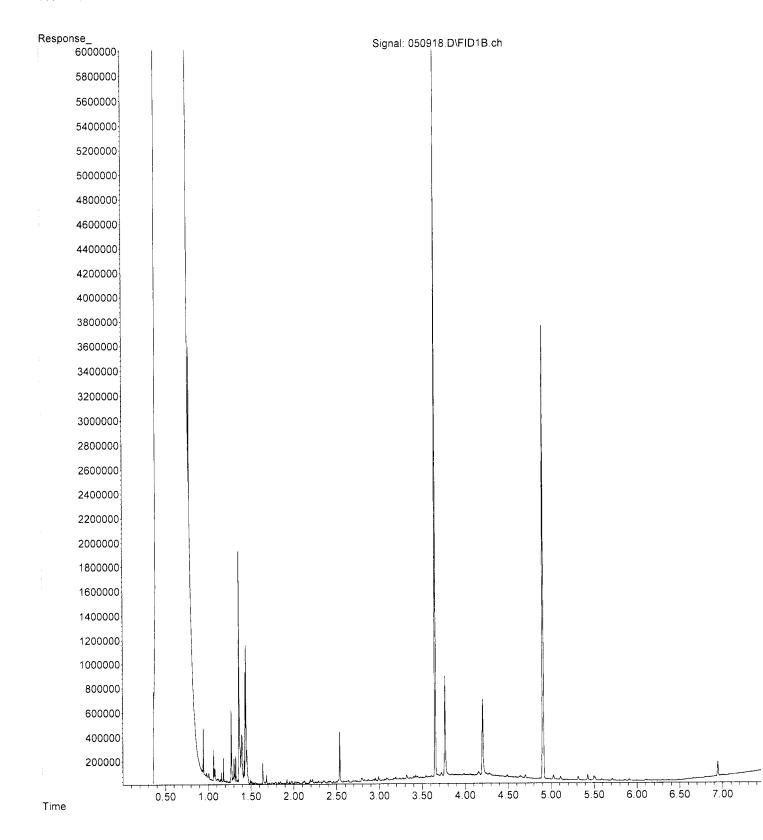

File :D:\GC14\GC14_Data\05-09-23\050913.D
Operator : TL
Acquired : 09 May 2023 12:04 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-01
Misc Info :
Vial Number: 11

ERR

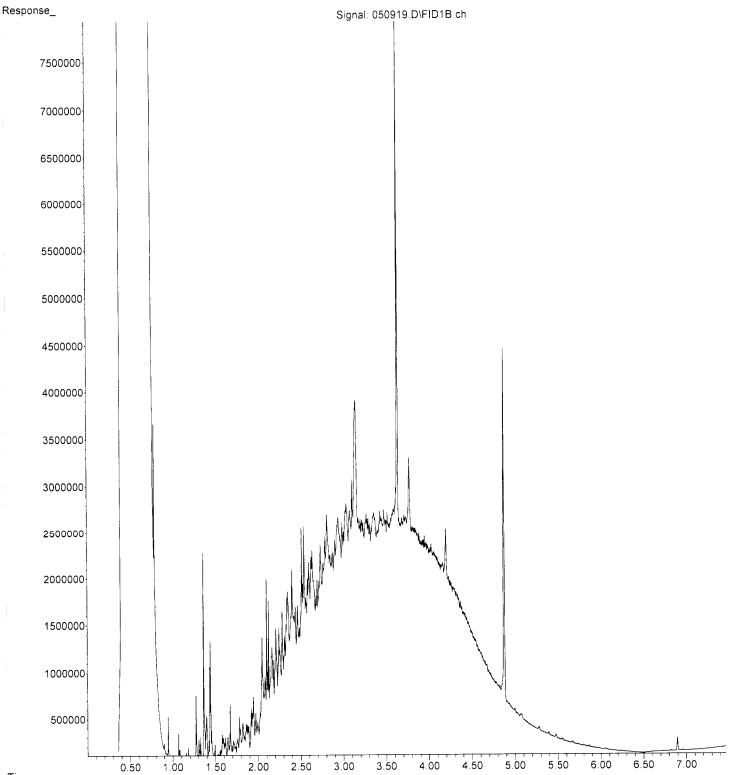
File :D:\GC14\GC14_Data\05-09-23\050914.D
Operator : TL
Acquired : 09 May 2023 12:15 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-02
Misc Info :
Vial Number: 12


ERR

Time

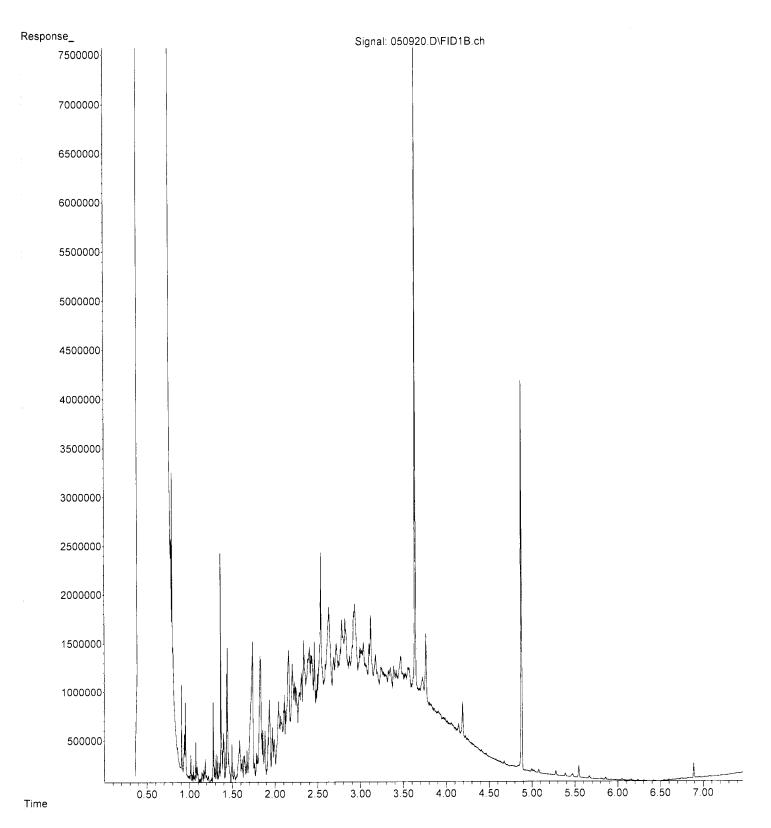

File :D:\GC14\GC14_Data\05-09-23\050917.D
Operator : TL
Acquired : 09 May 2023 12:51 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-03
Misc Info :
Vial Number: 13

ERR

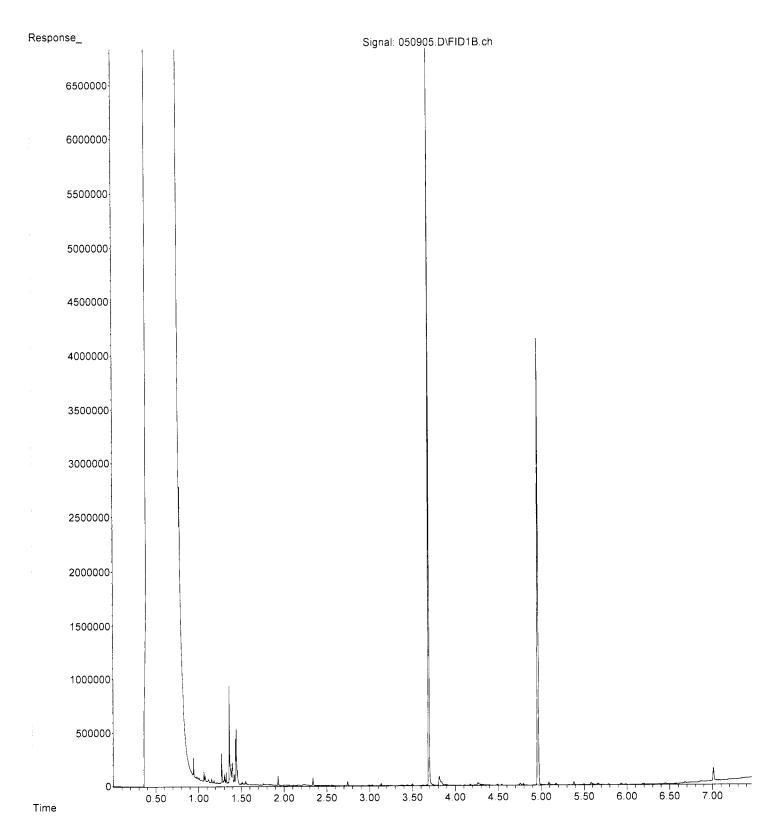

File :D:\GC14\GC14_Data\05-09-23\050918.D
Operator : TL
Acquired : 09 May 2023 01:03 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-04
Misc Info :
Vial Number: 14

ERR

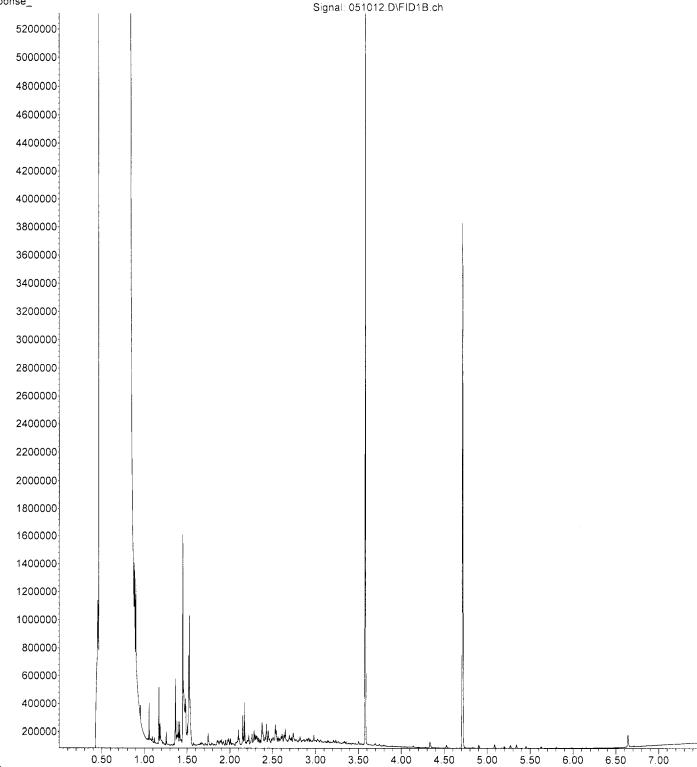
File :D:\GC14\GC14_Data\05-09-23\050919.D
Operator : TL
Acquired : 09 May 2023 01:14 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-05
Misc Info :
Vial Number: 15


ERR

Time

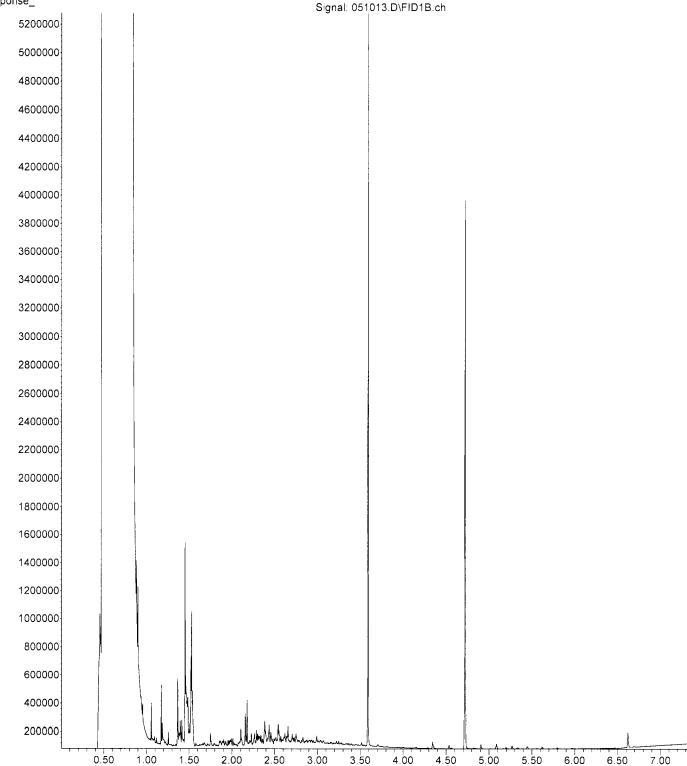

File :D:\GC14\GC14_Data\05-09-23\050920.D
Operator : TL
Acquired : 09 May 2023 01:26 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 305019-06
Misc Info :
Vial Number: 16

ERR


File :D:\GC14\GC14_Data\05-09-23\050905.D
Operator : TL
Acquired : 09 May 2023 10:30 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 03-1141 mb
Misc Info :
Vial Number: 7

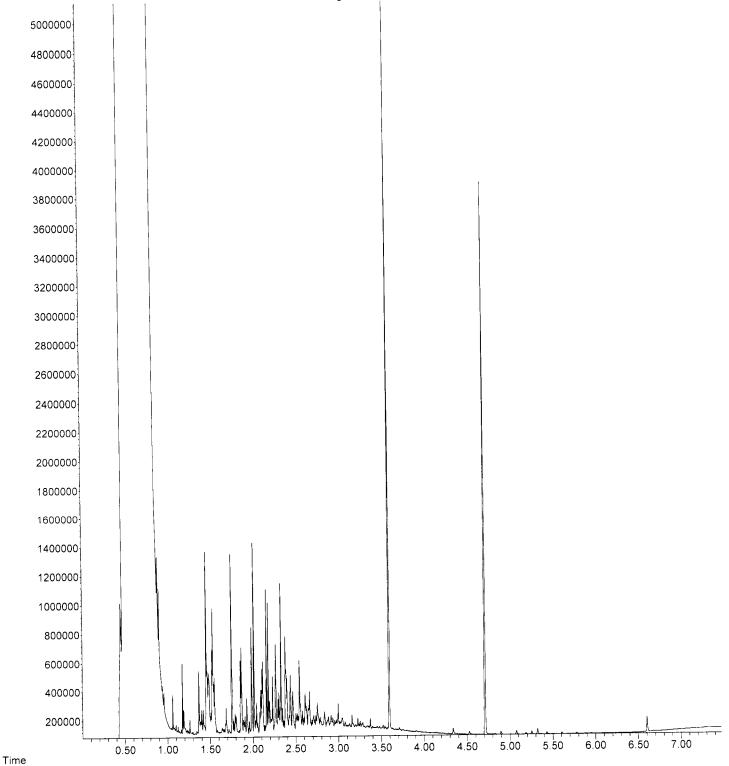
ERR

File :D:\GC10\GC10_Data\05-10-23\051012.D
Operator : TL
Acquired : 10 May 2023 11:25 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-01 sg
Misc Info :
Vial Number: 14

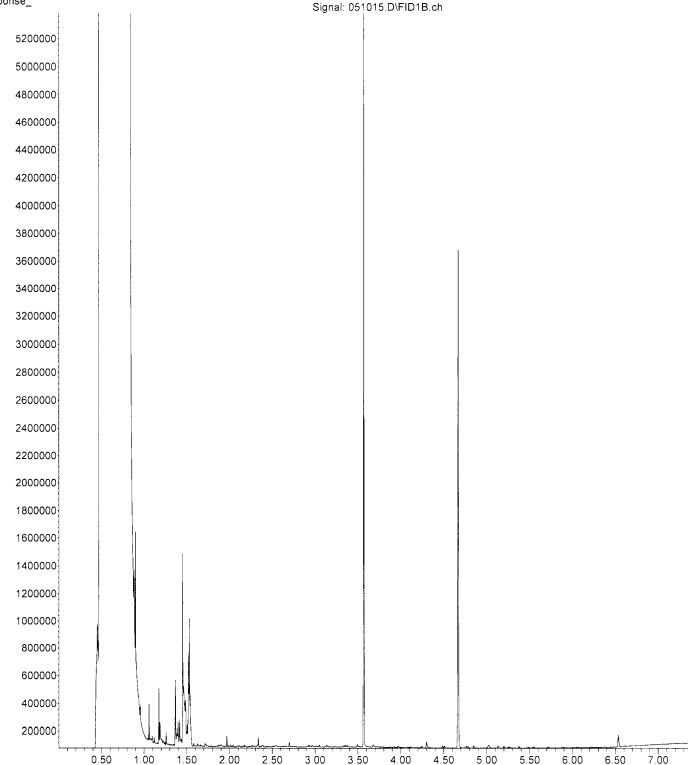

Response_

Time

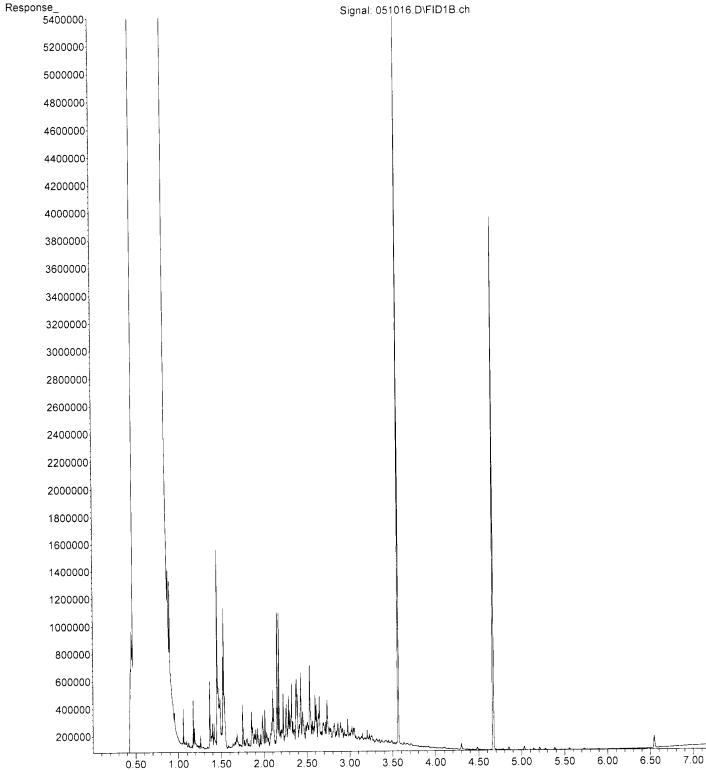
File :D:\GC10\GC10_Data\05-10-23\051013.D
Operator : TL
Acquired : 10 May 2023 11:36 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-02 sg
Misc Info :
Vial Number: 15


Response_

File :D:\GC10\GC10_Data\05-10-23\051014.D
Operator : TL
Acquired : 10 May 2023 11:47 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-03 sg
Misc Info :
Vial Number: 16

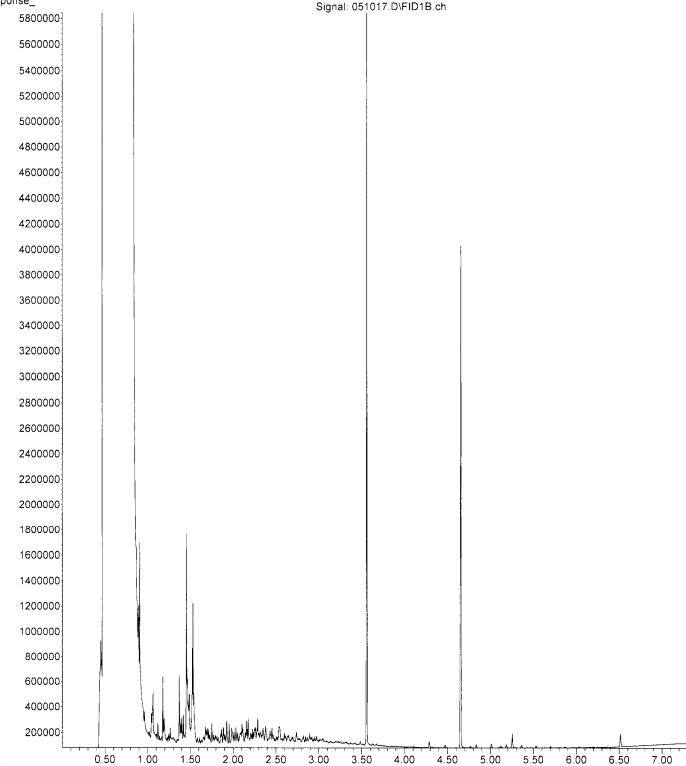

Response_

Signal: 051014.D\FID1B.ch

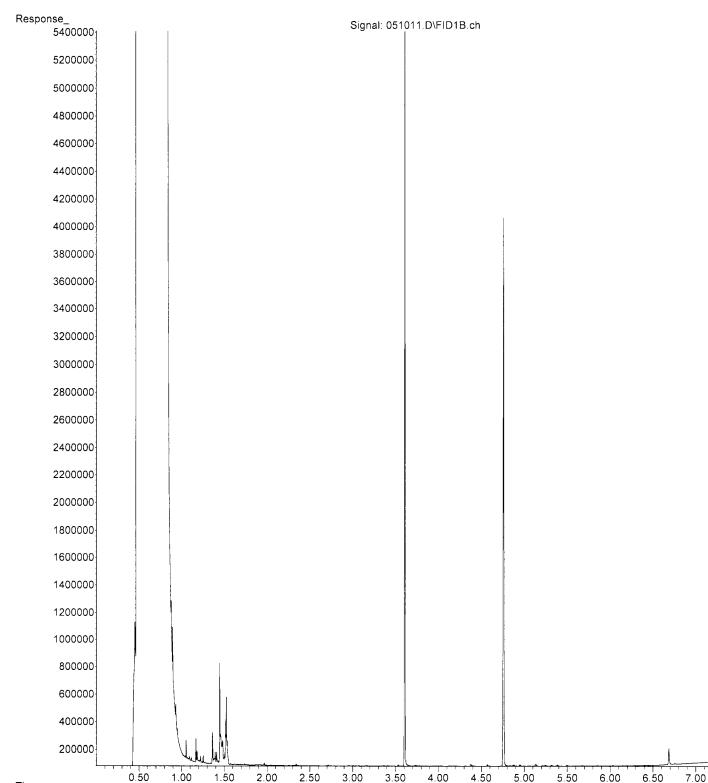


File :D:\GC10\GC10_Data\05-10-23\051015.D
Operator : TL
Acquired : 10 May 2023 11:59 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-04 sg
Misc Info :
Vial Number: 17

Response_



File :D:\GC10\GC10_Data\05-10-23\051016.D
Operator : TL
Acquired : 10 May 2023 12:10 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-05 sg
Misc Info :
Vial Number: 18



File :D:\GC10\GC10_Data\05-10-23\051017.D
Operator : TL
Acquired : 10 May 2023 12:22 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 305019-06 sg
Misc Info :
Vial Number: 19

Response_

File :D:\GC10\GC10_Data\05-10-23\051011.D
Operator : TL
Acquired : 10 May 2023 11:13 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 03-1141 mb sg
Misc Info :
Vial Number: 13

File :D:\GC10\GC10_Data\05-10-23\051003.D
Operator : TL
Acquired : 10 May 2023 08:23 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 500 DX 68-66F
Misc Info :
Vial Number: 3

Response_ Signal: 051003.D\FID1B.ch 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 1.00 3.00 4.50 0.50 2.50 5.00 1.50 2.00 3.50 5.50 6.50 7.00 4.00 6.00 Time

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 305019 Work Order Number: 2305030

May 09, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 5/2/2023 for the analyses presented in the following report.

Dissolved Gases by RSK-175 Ion Chromatography by EPA Method 300.0 Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 305019 2305030	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2305030-001	MW-1-050123	05/01/2023 10:40 AM	05/02/2023 10:56 AM
2305030-002	MW-101-050123	05/01/2023 10:45 AM	05/02/2023 10:56 AM
2305030-003	MW-4B-050123	05/01/2023 10:40 AM	05/02/2023 10:56 AM
2305030-004	MW-2A-050123	05/01/2023 12:23 PM	05/02/2023 10:56 AM

Case Narrative

WO#: **2305030** Date: **5/9/2023**

CLIENT:Friedman & BruyaProject:305019

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2305030

 Date Reported:
 5/9/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2305030

 Date Reported:
 5/9/2023

CLIENT: Friedman & Bruya Project: 305019						
Lab ID: 2305030-001 Client Sample ID: MW-1-050123				Collection Matrix: V		5/1/2023 10:40:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batc	h ID: R8	33805 Analyst: MS
Methane	0.110	0.00675		mg/L	1	5/5/2023 2:38:00 AM
Ion Chromatography by EPA Metho	<u>od 300.0</u>			Batc	h ID: 40	262 Analyst: AT
Nitrate (as N)	ND	0.200	DH	mg/L	2	5/6/2023 1:28:00 AM
Nitrate (as N) Sulfate	ND 13.8	1.00 6.00	D D	mg/L mg/L	10 10	5/2/2023 10:57:00 PM 5/2/2023 10:57:00 PM
Total Organic Carbon by SM 53100				Batc	h ID: R8	33751 Analyst: AT
Total Organic Carbon	4.47	0.700		mg/L	1	5/4/2023 10:59:00 PM

Lab ID: 2305030-002				Collection	n Date:	5/1/2023 10:45:00 AM
Client Sample ID: MW-101-050123				Matrix: W	Vater	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	n ID: R8	3805 Analyst: MS
Methane	0.104	0.00675		mg/L	1	5/5/2023 2:41:00 AM
Ion Chromatography by EPA Method	<u>d 300.0</u>			Batch	n ID: 402	262 Analyst: AT
Nitrate (as N)	ND	0.200	DH	mg/L	2	5/6/2023 1:51:00 AM
Nitrate (as N)	ND	1.00	D	mg/L	10	5/2/2023 11:20:00 PM
Sulfate	13.7	6.00	D	mg/L	10	5/2/2023 11:20:00 PM
Total Organic Carbon by SM 5310C				Batch	n ID: R8	3751 Analyst: AT
Total Organic Carbon	4.48	0.700		mg/L	1	5/4/2023 11:21:00 PM

Analytical Report

 Work Order:
 2305030

 Date Reported:
 5/9/2023

CLIENT: Friedman & Bruya Project: 305019							
Lab ID: 2305030-003 Client Sample ID: MW-4B-050123				Collection Matrix: V		5/1/202	23 10:40:00 AM
Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Dissolved Gases by RSK-175				Batcl	h ID: R8	33805	Analyst: MS
Methane	0.651	0.0270	D	ppmv	4	5/5/20	023 3:55:00 AM
Ion Chromatography by EPA Metho	od 300.0			Batcl	h ID: 40	262	Analyst: AT
Nitrate (as N)	ND	0.200	DH	mg/L	2	5/6/20	023 2:14:00 AM
Nitrate (as N) Sulfate	ND 7.90	1.00 6.00	D D	mg/L mg/L	10 10		023 11:43:00 PM 023 11:43:00 PM
Total Organic Carbon by SM 5310C				Batcl	h ID: R8	33751	Analyst: AT
Total Organic Carbon	11.5	0.700		mg/L	1	5/4/20	023 11:45:00 PM

Lab ID: 2305030-004 Client Sample ID: MW-2A-050123				Collection Matrix: V		5/1/2023 12:23:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batc	h ID: R8	3805 Analyst: MS
Methane	0.268	0.00675		mg/L	1	5/5/2023 2:46:00 AM
Ion Chromatography by EPA Method	<u>d 300.0</u>			Batc	h ID: 40	262 Analyst: AT
Nitrate (as N)	ND	0.200	DH	mg/L	2	5/6/2023 2:37:00 AM
Nitrate (as N)	ND	1.00	D	mg/L	10	5/3/2023 12:06:00 AM
Sulfate	12.7	6.00	D	mg/L	10	5/3/2023 12:06:00 AM
Total Organic Carbon by SM 5310C				Batc	h ID: R8	3751 Analyst: AT
Total Organic Carbon	7.75	0.700		mg/L	1	5/5/2023 12:08:00 AM

CLIENT: Frie	5030 edman & Bruya 6019							lon Ch	QC S	SUMMAI		-
Sample ID: MB-40212	SampType	BLK			Units: mg/L		Prep Dat	e: 5/2/202	3	RunNo: 837	/59	
Client ID: MBLKW	Batch ID:	40212					Analysis Dat	e: 5/2/202	3	SeqNo: 174	6448	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N) Sulfate			0.100 0.600									
Sample ID: LCS-40212	SampType	LCS			Units: mg/L		Prep Dat	e: 5/2/202	3	RunNo: 837	/59	
Client ID: LCSW	Batch ID:	40212					Analysis Dat	e: 5/2/202	3	SeqNo: 174	6449	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.708	0.100	0.7500	0	94.4	90	110				
Sulfate		3.46	0.600	3.750	0	92.2	90	110				
Sample ID: 2305023-001	IBDUP SampType	: DUP			Units: mg/L		Prep Dat	e: 5/2/202	3	RunNo: 837	759	
Client ID: BATCH	Batch ID:	40212					Analysis Dat	e: 5/2/202	3	SeqNo: 174	6451	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		ND	0.100						0		20	
Sulfate		4.35	0.600						4.356	0.161	20	
Sample ID: 2305023-001	IBMS SampType	MS			Units: mg/L		Prep Dat	e: 5/2/202	3	RunNo: 837	/59	
Client ID: BATCH	Batch ID:	40212					Analysis Dat	e: 5/2/202	3	SeqNo: 174	6452	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.687	0.100	0.7500	0	91.6	80	120				
Sulfate		7.91	0.600	3.750	4.356	94.8	80	120				
Sample ID: 2305023-001	IBMSD SampType	MSD			Units: mg/L		Prep Dat	e: 5/2/202	3	RunNo: 837	/59	
Client ID: BATCH	Batch ID:	40212					Analysis Dat	e: 5/2/202	3	SeqNo: 174	16453	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.694	0.100	0.7500	0	92.5	80	120	0.6870	1.01	20	
Sulfate		7.98	0.600	3.750	4.356	96.7	80	120	7.910	0.931	20	

Original

Work Order:	2305030					2.00	SUMMARY REPORT
CLIENT:	Friedman &	Bruya					
Project:	305019					Ion Chromatogra	ohy by EPA Method 300.0
Sample ID: 23050	23-001BMSD	SampType: MSD			Units: mg/L	Prep Date: 5/2/2023	RunNo: 83759
Client ID: BATC	н	Batch ID: 40212				Analysis Date: 5/2/2023	SeqNo: 1746453
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sample ID: LCS-4	0262	SampType: LCS			Units: mg/L	Prep Date: 5/5/2023	RunNo: 83794
Client ID: LCSW	1	Batch ID: 40262				Analysis Date: 5/5/2023	SeqNo: 1747606
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)		0.729	0.100	0.7500	0	97.2 90 110	
Sample ID: MB-40)262	SampType: MBLK			Units: mg/L	Prep Date: 5/5/2023	RunNo: 83794
Client ID: MBLK	W	Batch ID: 40262				Analysis Date: 5/5/2023	SeqNo: 1747608
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)		ND	0.100				

CLIENT: F	2305030 Friedman & Bru 305019	Jya							٦	•	SUMMAI		-
Sample ID: MB-8375	1 5	SampType	: MBLK			Units: mg/L		Prep Date	e: 5/4/2023		RunNo: 837	751	
Client ID: MBLKW	E	Batch ID:	R83751					Analysis Date	e: 5/4/2023		SeqNo: 174	46032	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			ND	0.700									
Sample ID: LCS-837	51 S	SampType	: LCS			Units: mg/L		Prep Date	e: 5/4/2023		RunNo: 837	751	
Client ID: LCSW	E	Batch ID:	R83751					Analysis Date	e: 5/4/2023		SeqNo: 174	46033	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			5.40	0.700	5.000	0	108	88.1	112				
Sample ID: 2305038-	-001DDUP	SampType	: DUP			Units: mg/L		Prep Date	e: 5/5/2023		RunNo: 837	751	
Client ID: BATCH	E	Batch ID:	R83751					Analysis Date	e: 5/5/2023		SeqNo: 174	46040	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			18.4	0.700						18.53	0.688	20	
Sample ID: 2305038-	-001DMS S	SampType	S MS			Units: mg/L		Prep Date	e: 5/5/2023		RunNo: 837	751	
Client ID: BATCH	E	Batch ID:	R83751					Analysis Date	e: 5/5/2023		SeqNo: 174	16041	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			23.0	0.700	5.000	18.53	88.7	75.2	115				
Sample ID: 2305038-	001DMSD	SampType	S MSD			Units: mg/L		Prep Date	e: 5/5/2023		RunNo: 837	751	
Client ID: BATCH	E	Batch ID:	R83751					Analysis Date	e: 5/5/2023		SeqNo: 174	46042	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	l		23.1	0.700	5.000	18.53	91.6	75.2	115	22.97	0.629	30	

Work Order: CLIENT:	2305030 Friedman & E	Bruya								•			-
Project:	305019									DISS	olved Gas	ses by Ra	5K-175
Sample ID: LCS-F	83805	SampType:	LCS			Units: ppmv		Prep Date	: 5/5/2023	i	RunNo: 838	05	
Client ID: LCSW	1	Batch ID:	R83805					Analysis Date	: 5/5/2023	i	SeqNo: 174	7838	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			975	0.00675	1,000	0	97.5	73.6	124				
Sample ID: MB-R	83805	SampType:	MBLK			Units: mg/L		Prep Date	5/5/2023		RunNo: 838	805	
Client ID: MBLK	W	Batch ID:	R83805					Analysis Date	5/5/2023		SeqNo: 174	7835	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			ND	0.00675									
Sample ID: 23046	40-001EREP	SampType:	REP			Units: mg/L		Prep Date	5/5/2023		RunNo: 838	805	
Client ID: BATC	н	Batch ID:	R83805					Analysis Date	: 5/5/2023		SeqNo: 174	7826	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			ND	0.00675						0		30	

Sample Log-In Check List

Cli	ent Name:	FB	Work Order Numb	per: 2305030	
Lo	gged by:	Morgan Wilson	Date Received:	5/2/2023 1	1:00:00 AM
<u>Cha</u>	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
<u>Log</u>	In				
-	Coolers are p	present?	Yes 🖌	No 🗌	
			_	_	
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🔄	_
		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present 🗹
6.	Was an atter	npt made to cool the samples?	Yes 🖌	No 🗌	
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
8	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
-		nple volume for indicated test(s)?	Yes 🗹	No 🗌	
-		properly preserved?	Yes 🗹	No 🗌	
-		ative added to bottles?	Yes	No 🗹	NA 🗌
12	Is there head	space in the VOA vials?	Yes	No 🗹	
		es containers arrive in good condition(unbroken)?	Yes 🗹		
		rork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🖌	No 🗌	
<u>Spec</u>	cial Handl	<u>ing (if applicable)</u>			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
	Person	Notified: Date	:		
	By Who	vm: Via:	eMail Phe	one 🗌 Fax 🛛	In Person
	Regardi	ng:			
	Client Ir	nstructions:			
19.	Additional rei	narks:			
Item II	<u>nformation</u>				

	Item #	Temp ^o C
Sample		2.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

PROJECT NAME/NO. PO # REMARKS PO # RSMARKS Remain and the set of
PO # PO # RUSH RUSH RUSH RUSH RUSH Rush charges authori SAMPLE DIS Dispose after 30 da Return samples Will call with instr Will call with instr Will call with instr all with instr Return samples Will call with instr all with instr SAMPLE DIS Dispose after 30 da Return samples Will call with instr all with instr Hore and all with instr SAMPLE DIS Dispose after 30 da Return samples Will call with instr all with instr all with instr SAMPLE DIS Dispose after 30 da Return samples Will call with instr all with instr all with instr SAMPLE DIS Dispose after 30 da Return samples Will call with instr all with instr all with instr all with instr Will call with instr all with instr Will call with instr all with instr Will call with instr Will call with instr all with instr Will call with instr all with instr all with instr all with instr Will call with instr all with instr
⊠ Sta RUS Rush e Bruya Bruya
TAT TAT PLE DISPO fter 30 days mples rith instruct DATE 5/1/13 5/1/33

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 17, 2023

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Mr Cisneros:

Included is the amended report from the testing of material submitted on September 7, 2023 from the Big B CL Ellensburg, F&BI 309058 project. 2-Propanol has been added to the report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Manique Talaia-Murray FDS0914R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 19, 2023

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Mr Cisneros:

Included are the results from the testing of material submitted on September 8, 2023 from the Big B Ellensburg, F&BI 309096 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Manique Talaia-Murray FDS0919R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 8, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Big B Ellensburg, F&BI 309096 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
309096 -01	MW-1-090723
309096 -02	MW-2-090723
309096 -03	MW-2A-090723
309096 -04	MW-4B-090723
309096 -05	MW-9A-090723
309096 -06	MW-104B-090723
309096 -07	Trip Blank-090723

Samples MW-1-090723, MW-2A-090723, MW-4B-090723, and MW-104B-090723 were sent to Fremont Analytical for nitrate, sulfate, TOC, and dissolved methane analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096 Date Extracted: 09/11/23 Date Analyzed: 09/12/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-1-090723 309096-01	<100	99
MW-2-090723 309096-02	<100	100
MW-2A-090723 309096-03	330	102
MW-4B-090723 309096-04	490	114
MW-9A-090723 309096-05	<100	98
MW-104B-090723 309096-06	490	113
Trip Blank-090723 309096-07	<100	100
Method Blank ^{03-2081 MB}	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096 Date Extracted: 09/11/23 Date Analyzed: 09/11/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
MW-1-090723 309096-01	210	<250	95
MW-2-090723 309096-02	150	<250	103
MW-2A-090723 309096-03	<50	<250	103
MW-4B-090723 309096-04	390	<250	105
MW-9A-090723 309096-05	<50	<250	103
MW-104B-090723 309096-06	430	<250	105
Method Blank ^{03-2125 MB}	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096 Date Extracted: 09/11/23 Date Analyzed: 09/12/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
MW-1-090723 309096-01	1,700 x	<250	120
MW-2-090723 309096-02	1,300 x	370 x	123
MW-2A-090723 309096-03	540 x	<250	127
MW-4B-090723 309096-04	2,200 x	370 x	132
MW-9A-090723 309096-05	<50	<250	123
MW-104B-090723 309096-06	2,200 x	350 x	128
Method Blank ^{03-2125 MB}	<50	<250	107

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	MW-1-090723 09/08/23 09/11/23 11:25 09/11/23 18:14:00	Client: Project: Lab ID: Data File:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-01 309096-01.118
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Manganese

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-2A-090723 09/08/23 09/11/23 11:25 09/11/23 18:18:34 Water	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-03 309096-03.119 ICPMS2
Units:	ug/L (ppb) Concentration	Operator:	SP
Analyte:	ug/L (ppb)		

Manganese

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received:	MW-4B-090723 09/08/23	Client: Project:	Floyd-Snider Big B Ellensburg, F&BI 309096
Date Extracted:	09/11/23 11:25	Lab ID:	309096-04
Date Analyzed:	09/11/23 18:23:08	Data File:	309096-04.120
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Manganese

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received:	MW-104B-090723 09/08/23	Client: Project:	Floyd-Snider Big B Ellensburg, F&BI 309096
Date Extracted:	09/11/23 11:25	Lab ID:	309096-06
Date Analyzed:	09/11/23 18:27:42	Data File:	309096-06.121
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Manganese

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/11/23 11:25 09/11/23 16:19:56 Water wg(L (app))	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider Big B Ellensburg, F&BI 309096 I3-699 mb I3-699 mb.093 ICPMS2 SP
Analyte: Manganese	ug/L (ppb) Concentration ug/L (ppb) <1	Operator:	Sr

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-0907 09/08/23 09/12/23 09/12/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-01 091212.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 99 99	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-0907 09/08/23 09/12/23 09/12/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-02 091213.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 98 101	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2A-090 09/08/23 09/12/23 09/12/23 Water ug/L (ppb))723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-03 091214.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 96 99 99	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4B-090 09/08/23 09/12/23 09/12/23 Water ug/L (ppb))723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-04 091215.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 100 108	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-9A-090 09/08/23 09/12/23 09/12/23 Water ug/L (ppb))723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-05 091216.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 99 100	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-104B-0 09/08/23 09/12/23 09/12/23 Water ug/L (ppb)	090723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-06 091217.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 107 103 108	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 09/08/23 09/12/23 09/12/23 Water ug/L (ppb)	090723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 309096-07 091218.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 98 100	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 09/12/23 09/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Big B Ellensburg, F&BI 309096 03-2108 mb 091210.D GCMS11 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	78	126
Toluene-d8		100	84	115
4-Bromofluorobenz	ene	104	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		
Naphthalene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309101-01 (Duplicate)									
	Reporting Samp		le Du	plicate	RPD				
Analyte	Units	Resu	lt R	esult	(Limit 20)				
Gasoline	ug/L (ppb)	<100) <	:100	nm				
Laboratory Code: Laboratory Control Sample Percent									
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria	_				
Gasoline	ug/L (ppb)	1,000	100	70-130	_				

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel										
			Percent	Percent						
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)				
Diesel Extended	ug/L (ppb)	2,500	96	104	72-139	8				

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	96	65 - 151	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 309055-05 (Matrix Spike) Percent Percent Reporting Spike Sample Recovery Recovery Acceptance RPD Analyte Units Level Result MSMSD Criteria (Limit 20) 20 900 221 b 75-125 Manganese ug/L (ppb) 266 b 18 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Manganese	ug/L (ppb)	20	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/08/23 Project: Big B Ellensburg, F&BI 309096

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 309096-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Acceptance Criteria
Benzene	ug/L (ppb)	10	< 0.35	115	50-150
Toluene	ug/L (ppb)	10	<1	109	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	111	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	107	50 - 150
o-Xylene	ug/L (ppb)	10	<1	108	50 - 150
Naphthalene	ug/L (ppb)	10	<1	113	50 - 150

Laboratory Couc. Laboratory Co.	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	116	114	70-130	2
Toluene	ug/L (ppb)	10	112	110	70-130	2
Ethylbenzene	ug/L (ppb)	10	114	111	70-130	3
m,p-Xylene	ug/L (ppb)	20	111	108	70-130	3
o-Xylene	ug/L (ppb)	10	110	106	70-130	4
Naphthalene	ug/L (ppb)	10	109	91	70-130	18

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Relir Ph. (206) 285-8282 Relir Ree		~			TripBlunk-090723	MW - 104 B - 0907B 06 A - N	MW-9A-090723	NW-43-090723	NW - 2A - 090773	MW-2-090723	MW-1-UP0723	Sample ID		Phone 19.1-10.70 Email	City, State, ZIP Seattle, WIT 95101	Address LOUI Union Stract	Company Floyd Snicker	Report To Galve Cinewos + Marique Talaia-UL	309096
Relinquished by Received by: M Relinquished by: Received by:	e				9-4 FO	06 A - N	05 A-G	04	05 A-N	02 A-G	01 A-N	Lab ID			WA 951	HART		Manique	
m lim linu	אוואחוופה	\langle	\nearrow		-						9/7/23	Date Sampled			01	Sute 600		Talaria-1	
W W	· -					15:09	15:51	10:51	00:41	14:02	15:35	Time Sampled		- Project :	- REMARKS		PRØJE(SAMPLE CHAIN OF CUSTO
Pamela Nhan		\langle	/		QC	+					Giv	Sample Type		Project specific RLs? -	KS	big is Ellensburg	PRØJECT NAME	May LERS (signature	CHAIN
in the second	וומס				2	51	4	13	13	4	تر	# of Jars		1		Spu	<i></i> `	Lurel	OF
h Phan				\square	۲ ۲	<u> </u>	\leq	\leq	<	<	5	NWTPH-Dx		Yes / No		Pà l		A	
2 Mar	1		-	\vdash				\leq			\leq	NWTPH-Gx BTEX EPA 8021		Jo				Z	TODY
1 not		1									-				п			A	Y
	_ [\geq	<u> </u>		<	\leq	<	<	<	<	\leq	NWTPH-HCID BIEX + Naghthr WOCS EPA 8260 PAHS EPA 8270 PCBS EPA 8082 NWTPH-DX W/ NHTATZ + SUIFATE DUS Manganase	ANAL	nq	INVOICE TO		PC		09
			\geq	$\left \right $								PAHs EPA 8270	YSES		CE TO		PO #		09/08/23
F/S F-C B-T Samples received	3					<	Z	<	<	\leq	<	NINTDH-DX WA	REQU		0				123
The BT mples rec)	$\overline{\langle}$			$\overline{\langle}$	<u>``</u>	$\langle \rangle$	Nitrate + Sulfate	JEST					,•	, F4
eceiv	á -		/			<u>ر</u>		<	<		<u>र</u>	DIST. Manganese (Field Filtered	ED	Defauk	Arc]	Rush (RU	. د	Ι2/ν
		\langle			•	<		Ś	< <		く	Methane		er R: D	SAME hive s:	charge	ndard SH	TURN.	1 VW31
9/8/ 1/8 1/8	קר		\sum			5		5	5		<	TOC		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by	RUSH	TURNAROUND TIME	1とえ
23 23 23				P.0								Notes		after	s ISPOS	norize	round	JND T	
	TIME			Ó								ŝ		. 30 d	SAL	d by:		IME	
1214 1214														AVS					

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 309096 Work Order Number: 2309079

September 15, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 9/8/2023 for the analyses presented in the following report.

Dissolved Gases by RSK-175 Ion Chromatography by EPA Method 300.0 Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 309096 2309079	Work Order Sample Summary						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
2309079-001	MW-1-090723	09/07/2023 3:35 PM	09/08/2023 2:12 PM					
2309079-002	MW-2A-090723	09/07/2023 5:00 PM	09/08/2023 2:12 PM					
2309079-003	MW-4B-090723	09/07/2023 3:01 PM	09/08/2023 2:12 PM					
2309079-004	MW-104B-090723	09/07/2023 3:09 PM	09/08/2023 2:12 PM					

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2309079** Date: **9/15/2023**

CLIENT:Friedman & BruyaProject:309096

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2309079** Date Reported: **9/15/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate

HEM - Hexane Extractable Material

- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

Work Order: 2309079 Date Reported: 9/15/2023

CLIENT:Friedman & BruyaProject:309096										
Lab ID: 2309079-001 Collection Date: 9/7/2023 3:35:00 PM Client Sample ID: MW-1-090723 Matrix: Water										
Analyses	Result	RL	Qual	Units	DF	Date	Analyzed			
Dissolved Gases by RSK-175			Batch	n ID: R8	6499	Analyst: AM				
Methane	0.201	0.00675		mg/L	1	9/12/2	2023 1:43:00 PM			
Ion Chromatography by EPA Metho	<u>od 300.0</u>			Batch	n ID: 41	438	Analyst: SS			
Nitrate (as N) Nitrate (as N) Sulfate	ND ND 2.90	1.00 0.200 1.20	D DH D	mg/L mg/L mg/L	10 2 2	9/11/2	023 5:13:00 PM 2023 7:37:00 PM 2023 7:37:00 PM			
Total Organic Carbon by SM 53100	Total Organic Carbon by SM 5310CBatch ID: R86542Analyst: SS									
Total Organic Carbon	7.19	0.700		mg/L	1	9/14/2	2023 8:18:00 PM			

Lab ID: 2309079-002 Client Sample ID: MW-2A-09072	Collection Date: 9/7/2023 5:00:00 PM Matrix: Water						
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Dissolved Gases by RSK-175			Batch	n ID: R8	6499 Analyst: AM		
Methane	0.223	0.00675	mg/L	1	9/12/2023 1:47:00 PM		
Ion Chromatography by EPA Met	<u>hod 300.0</u>		Batch	n ID: 414	438 Analyst: SS		
		_					

Nitrate (as N)	ND	1.00	D	mg/L	10	9/8/2	023 6:45:00 PM
Nitrate (as N)	ND	0.200	DH	mg/L	2	9/11/	2023 8:01:00 PM
Sulfate	16.1	1.20	D	mg/L	2	9/11/	2023 8:01:00 PM
Total Organic Carbon by SM 5310	<u>C</u>			Batcl	h ID: R8	36542	Analyst: SS
Total Organic Carbon	4.20	0.700		mg/L	1	9/14/	2023 8:40:00 PM

Analytical Report

 Work Order:
 2309079

 Date Reported:
 9/15/2023

CLIENT:Friedman & BruyaProject:309096							
Lab ID: 2309079-003 Client Sample ID: MW-4B-090723	3			Collectior Matrix: V		9/7/20	23 3:01:00 PM
Analyses	Result	RL	Qual	Units	DF	Date	e Analyzed
Dissolved Gases by RSK-175				Batch	n ID: R8	86499	Analyst: AM
Methane	0.619	0.0270	D	mg/L	4	9/12/	2023 1:58:00 PM
Ion Chromatography by EPA Meth	nod 300.0			Batch	n ID: 41	438	Analyst: SS
Nitrate (as N)	ND	1.00	D	mg/L	10	9/8/2	023 7:09:00 PM
Nitrate (as N) Sulfate	ND 2.68	0.200 1.20	DH D	mg/L mg/L	2 2	• • • •	2023 8:24:00 PM 2023 8:24:00 PM
Total Organic Carbon by SM 5310	<u>C</u>			Batch	n ID: R8	86542	Analyst: SS
Total Organic Carbon	6.32	0.700		mg/L	1	9/14/	2023 9:02:00 PM

Lab ID: 2309079-004 Client Sample ID: MW-104B-09072	23			Collection Matrix: W		9/7/2023 3:09:00 PM
Analyses	Result	RL C	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	ID: R8	6499 Analyst: AM
Methane	0.619	0.0270	D	mg/L	4	9/12/2023 2:00:00 PM
Ion Chromatography by EPA Metho	od 300.0			Batch	1D: 41	438 Analyst: SS
Nitrate (as N)	ND	1.00	D	mg/L	10	9/8/2023 7:32:00 PM
Nitrate (as N)	ND	0.200	DH	mg/L	2	9/11/2023 9:33:00 PM
Sulfate	2.63	1.20	D	mg/L	2	9/11/2023 9:33:00 PM
Total Organic Carbon by SM 5310C				Batch	ID: R8	6542 Analyst: SS
Total Organic Carbon	6.57	0.700		mg/L	1	9/14/2023 9:35:00 PM

Work Order:2309CLIENT:FriedProject:3090	man & Bruya				QC SUMMARY REPOR Ion Chromatography by EPA Method 300.
Sample ID: MB-41438	SampType: MBLK			Units: mg/L	Prep Date: 9/8/2023 RunNo: 86465
Client ID: MBLKW	Batch ID: 41438				Analysis Date: 9/8/2023 SeqNo: 1804477
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Nitrate (as N)	ND	0.100			
Sample ID: LCS-41438	SampType: LCS			Units: mg/L	Prep Date: 9/8/2023 RunNo: 86465
Client ID: LCSW	Batch ID: 41438				Analysis Date: 9/8/2023 SeqNo: 1804478
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Nitrate (as N)	0.788	0.100	0.7500	0	105 90 110
Sample ID: 2309079-001A	DUP SampType: DUP			Units: mg/L	Prep Date: 9/8/2023 RunNo: 86465
Client ID: MW-1-090723	Batch ID: 41438				Analysis Date: 9/8/2023 SeqNo: 1804480
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Nitrate (as N)	ND	1.00			0 20 D
Sample ID: 2309079-001A	MS SampType: MS			Units: mg/L	Prep Date: 9/8/2023 RunNo: 86465
Client ID: MW-1-090723	Batch ID: 41438				Analysis Date: 9/8/2023 SeqNo: 1804481
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Nitrate (as N)	7.79	1.00	7.500	0	104 80 120 D
Sample ID: 2309079-001A	MSD SampType: MSD			Units: mg/L	Prep Date: 9/8/2023 RunNo: 86465
Client ID: MW-1-090723	Batch ID: 41438				Analysis Date: 9/8/2023 SeqNo: 1804482
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Nitrate (as N)	7.69	1.00	7.500	0	103 80 120 7.790 1.29 20 D

	2309079 Enio des eus 8	David								QC S	SUMMAI	RY REF	POR [®]
	Friedman & 309096	Вгиуа							lon Ch	romatogra	phy by EP	A Method	d 300
Sample ID: LCS-414	144	SampType	e: LCS			Units: mg/L		Prep Date	e: 9/11/20	23	RunNo: 864	452	
Client ID: LCSW		Batch ID:	41444					Analysis Date	e: 9/11/20	23	SeqNo: 18	04250	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)			0.739	0.100	0.7500	0	98.5	90	110				
Sulfate			3.43	0.600	3.750	0	91.4	90	110				
Sample ID: MB-4144	14	SampType	e: MBLK			Units: mg/L		Prep Date	e: 9/11/20	23	RunNo: 864	452	
Client ID: MBLKW		Batch ID:	41444					Analysis Date	e: 9/11/20	23	SeqNo: 18	04252	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)			ND	0.100									
Sulfate			ND	0.600									
Sample ID: 2309028	-001ADUP	SampType	e: DUP			Units: mg/L		Prep Date	e: 9/11/20	23	RunNo: 864	452	
Client ID: BATCH		Batch ID:	41444					Analysis Date	e: 9/11/20	23	SeqNo: 18	04254	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Nitrate (as N)			ND	1.00						0		20	DH
Sulfate			34.6	6.00						35.11	1.55	20	D
Sample ID: 2309028	-001AMS	SampType	e: MS			Units: mg/L		Prep Date	e: 9/11/20	23	RunNo: 864	452	
Client ID: BATCH		Batch ID:	41444					Analysis Date	e: 9/11/20	23	SeqNo: 18	04255	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)			7.16	1.00	7.500	0	95.5	80	120				DH
Sulfate			73.1	6.00	37.50	35.11	101	80	120				D
Sample ID: 2309028	-001AMSD	SampType	e: MSD			Units: mg/L		Prep Date	e: 9/11/20	23	RunNo: 864	452	
Client ID: BATCH		Batch ID:	41444			-		Analysis Date	e: 9/11/20	23	SeqNo: 18	04256	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Nitrate (as N)			7.04	1.00	7.500	0	93.9	80	120	7.160	1.69	20	DH
Sulfate			71.7	6.00	37.50	35.11	97.7	80	120	73.10	1.89	20	D

Work Order: CLIENT: Project:	2309079 Friedman & 309096	Bruya				-	UMMARY REPOR hy by EPA Method 30	
Sample ID: 23090		SampType: MSD		Units: mg/L		9/11/2023	RunNo: 86452	
Client ID: BATC Analyte	н	Batch ID: 41444 Result	RL	SPK value SPK Ref Val	Analysis Date: %REC LowLimit H	: 9/11/2023 HighLimit RPD Ref Val	SeqNo: 1804256 %RPD RPDLimit Qua	ial

CLIENT: Fri	09079 iedman & Bruya 9096								SUMMAF anic Carbo		
Sample ID: MB-86542	SampTyp	e: MBLK			Units: mg/L	Pre	p Date: 9/14/20)23	RunNo: 865	42	
Client ID: MBLKW	Batch ID	R86542				Analys	is Date: 9/14/20	23	SeqNo: 180	5718	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon		ND	0.700								
Sample ID: LCS-86542	sampTyp	e: LCS			Units: mg/L	Pre	p Date: 9/14/20	023	RunNo: 865	42	
Client ID: LCSW	Batch ID	R86542				Analys	is Date: 9/14/20	23	SeqNo: 180	5719	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon		4.83	0.700	5.000	0	96.5	96 116				
Sample ID: 2309079-00	04BDUP SampTyp	e: DUP			Units: mg/L	Pre	p Date: 9/14/20	023	RunNo: 865	42	
Client ID: MW-104B-0	090723 Batch ID	R86542				Analys	is Date: 9/14/20	23	SeqNo: 180	5725	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon		6.56	0.700					6.569	0.198	20	
Sample ID: 2309079-00	04BMS SampTyp	e: MS			Units: mg/L	Pre	p Date: 9/14/20	023	RunNo: 865	42	
Client ID: MW-104B-0	090723 Batch ID	R86542				Analys	is Date: 9/14/20	23	SeqNo: 180	5726	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon		10.9	0.700	5.000	6.569	86.4 6	62.4 130				
Sample ID: 2309079-00	04BMSD SampTyp	e: MSD			Units: mg/L	Pre	p Date: 9/14/20	023	RunNo: 865	42	
Client ID: MW-104B-0	090723 Batch ID	R86542				Analys	is Date: 9/14/20	23	SeqNo: 180	5727	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon		11.2	0.700	5.000	6.569	91.8 6	62.4 130	10.89	2.42	30	

Work Order:	2309079								00.5	SUMMAI		PORT
CLIENT:	Friedman & E	Bruya							•			-
Project:	309096								Diss	solved Gas	ses by RS	SK-175
Sample ID: LCS-	R86499	SampType: LCS			Units: ppmv		Prep Date:	9/12/202	23	RunNo: 864	199	
Client ID: LCS	N	Batch ID: R86499					Analysis Date:	9/12/202	23	SeqNo: 180)5096	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		1,010	0.00675	1,000	0	101	73.6	124				
Sample ID: MB-F	86499	SampType: MBLK			Units: ppmv		Prep Date:	9/12/202	23	RunNo: 864	199	
Client ID: MBL	ĸw	Batch ID: R86499					Analysis Date:	9/12/202	23	SeqNo: 180)5095	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		ND	0.00675									
Sample ID: 2309	079-001CREP	SampType: REP			Units: mg/L		Prep Date:	9/12/202	23	RunNo: 864	199	
Client ID: MW-	1-090723	Batch ID: R86499					Analysis Date:	9/12/202	23	SeqNo: 180)5088	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane		0.204	0.00675						0.2014	1.10	30	

Client Name: FB	Work Order Num	ber: 2309079	
Logged by: Morgan Wilson	Date Received:	9/8/2023 2	2:12:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sample delivered?	Client		
Log In			
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present 🗹
4. Was an attempt made to cool the samples?	Yes 🖌	No 🗌	
5. Were all items received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples properly preserved?	Yes 🖌	No 🗌	
9. Was preservative added to bottles?	Yes	No 🖌	NA 🗌
10. Is there headspace in the VOA vials?	Yes	No 🖌	
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
12. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
13. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear what analyses were requested?	Yes 🗹	No 🗌	
15. Were all holding times able to be met?	Yes 🖌	No 🗌	
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹
Person Notified: Da	te:		
By Whom: Via	a: 🗌 eMail 🗌 Pl	hone 🗌 Fax	In Person
Regarding:			
Client Instructions:			
17. Additional remarks:			

Item Information

Item #	Temp ⁰C
Sample	3.2

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

		SUBCO	SUBCONTRACT SAMPLE CHAIN OF CUSTODY	F SAM	PLE	CH/	NIN (OF C	UST	ODY			N	8	2309079	-	
Send Report To Mich	Michael Erdahl		SU	SUBCONTRACTER	RACT	ER							T	Page #_	Page # of TURNAROUND TIME		of 13
	Friedman and Bruya, Inc	a. Inc.	PR	PROJECT NAME/NO	NAME	INO.				PO#			RUSH	ard T.	AT		e 13
	3012 16th Ave W			309096	996	V			ò	43-	D-437		Kush ch	arges	Rush charges authorized by:		Paę
City State ZIP Seatt	Seattle WA 98119		RE	REMARKS									Dispo	SAMP se aft	SAMPLE DISPOSAL Dispose after 30 days	AL	
Phone # (206) 285-828	32 merdahl@fr	(206) 285-8282_merdahl@friedmanandbruya.com	a.com	Ple	Please Email Results	mail F	lesults	03					Return samples Will call with in	n sam all wi	Return samples Will call with instructions	ns	
								ANALYSES REQUESTED	YSE	SREC	UES	TED					
					ans				+		*		14 M.* 1				
Sample ID Lab ID	ab Date D Sampled	Time Sampled	Matrix	# of jars	Dioxins/Fura	EPH	VPH	NUTRATE	SULFATE	METHANE	TOC		2		Notes	les	
Mul-1-190723	9/7/23	15:35	ξ.					7	1	1	1						1
MW-2A-090723	_	17:00	5:					1	1	1	۲						
NW-48-090723	-	15:01	3					5	1	1	۲		• (s)				
MW-104B-290723	¢	15.09	5					1	1	7	1						
								×						11			-
							÷ ،										1
					~												
											Γ	1					1
	(2															1
																	1
											T	1					
		2								-					מייהארו	TIME	
Friedman & Bruya, Inc.	t Relinquished by	SIGNATURE		Mic	Michael Erdahl	PKIN	PRINT NAME	MIE,		3	Friedman &	nan & Bruy	Bruya		DATE	TTATT	
Seattle, WA 98119-2029		Linghty				4 	Re	Clow	ande		5	1			2/8/23	14:12	
Ph. (206) 285-8282	Relinquished by:	d by:															
Fax (206) 283-5044	Received by:	.7														·	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 14, 2023

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Mr Cisneros:

Included are the results from the testing of material submitted on September 7, 2023 from the Big B CL Ellensburg, F&BI 309058 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Manique Talaia-Murray FDS0914R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 7, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Big B CL Ellensburg, F&BI 309058 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
309058 -01	SVP-1-090623
309058 -02	SVP-101-090623

The 2-propanol concentration in the samples exceeded the calibration range of the instrument. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

290

<200

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-1-090623 09/07/23 09/06/23 09/08/23 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Floyd-Snider Big B CL Ellensburg 309058-01 1/8.2 090722.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <610			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

260

<210

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-101-090623 09/07/23 09/06/23 09/08/23 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Floyd-Snider Big B CL Ellensburg 309058-02 1/8.5 090723.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <640			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

 $<\!\!25$

<25

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 09/07/23 Air ug/m3	Client: Project Lab ID Data F Instru: Operat	::):)'ile: ment:	Floyd-Snider Big B CL Ellensburg 03-2097 mb 090714.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics <75			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-1-090623 09/07/23 09/06/23 09/08/23 Air ug/m3	Instr	ect:	Floyd-Snider Big B CL Ellensburg 309058-01 1/8.2 090722.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 93	70	130	
	2			
~ .		entration		
Compounds:	ug/m3	ppbv		
2-Propanol	11,000 ve	4,400 ve		
Benzene	<2.6	< 0.82		
Toluene	<62	<16		
Ethylbenzene	<3.6	< 0.82		
m,p-Xylene	7.2	1.7		
o-Xylene	<3.6	< 0.82		
Naphthalene	<2.1	< 0.41		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVP-101-090623 09/07/23 09/06/23 09/08/23 Air ug/m3	Instr	ect:	Floyd-Snider Big B CL Ellensburg 309058-02 1/8.5 090723.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 93	70	130	
Compounds:	Conce ug/m3	entration ppbv		
2-Propanol	13,000 ve	5,200 ve		
Benzene	<2.7	< 0.85		
Toluene	<64	<17		
Ethylbenzene	<3.7	< 0.85		
m,p-Xylene	<7.4	<1.7		
o-Xylene	<3.7	< 0.85		
Naphthalene	<2.2	< 0.42		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 09/07/23 Air ug/m3	Clien Proje Lab I Data Instr Opera	ect: ID: File: ument:	Floyd-Snider Big B CL Ellensburg 03-2097 mb 090714.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 89	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
2-Propanol	<8.6	<3.5		
Benzene	< 0.32	< 0.1		
Toluene	<7.5	<2		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		
*				

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/23 Date Received: 09/07/23 Project: Big B CL Ellensburg, F&BI 309058

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 309029-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	430	460	7
APH EC9-12 aliphatics	ug/m3	390	400	3
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Couc. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	96	70-130
APH EC9-12 aliphatics	ug/m3	67	113	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/23 Date Received: 09/07/23 Project: Big B CL Ellensburg, F&BI 309058

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 309029-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
2-Propanol	ug/m3	<47	<47	nm
Benzene	ug/m3	6.1	6.1	0
Toluene	ug/m3	<41	<41	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	<2.4	<2.4	nm
Naphthalene	ug/m3	<1.4	<1.4	nm

Laboratory Code. Laboratory Con	leror bampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
2-Propanol	ug/m3	33	94	70-130
Benzene	ug/m3	43	89	70-130
Toluene	ug/m3	51	109	70-130
Ethylbenzene	ug/m3	59	96	70-130
m,p-Xylene	ug/m3	120	94	70-130
o-Xylene	ug/m3	59	99	70-130
Naphthalene	ug/m3	71	75	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

309058 Report To Gabe Cinneros + Manique Talaic Munk Company Fluyd Snider Address 601 Union St. Stuffe 600 City, State, ZIP Seattle; WA 100 Phone 202-2076 Email gabe. is neres 2 Phone 202-2076 Email gabe. is neres 2 Flow IA=Ind	The state of the s	anique Talaic unte LeOU + 9010) + 9010) + 9010) + 9010) + 1910) + 1910) + 1910) + 1910) + 1910)	Flow Flow	SAMPL SAMP PROJE PROJE Reporting Level: IA=Indoor Air	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME & ADDRESS By B/CL Ellensburg NOTES: UNOTES: Camitra Clubber P.C. Level: Indoor Air Initial Field Final	N OF	CUSTO DRESS DRESS Field	Final	Field	A 15 Full Scan 15 Full Scan 15 BTEXN D15 BTEXN D15 cVOCs APH Helium Helium TUH Rush chal Rush chal APH Helium TUH Hold (Fe	DIS BTEXN YSI TO	O15 cVOCs APH Helium Helium	APH Q H H H H H H H H	Helium Helium TURN ESTED Topanol	opanol	Image # of TURNAROUND TIME Standard RUSH Rush charges authorized by: SAMPLE DISPOSAL Default: Clean following final report delivery Hold (Fee may apply): UESTED UESTED 10/13/23 ME	of	
SVP-1-090623 SVP-161-0906023	01	2303 3752	255 254	IA / SG	9/6/23 28 1328 45	30	1328 4S		1334		\leq	~ ~	\rightarrow	AA				
				IA / SG					,						-			
				IA / SG)					•				
				IA / SG IA / SG					San	Samples		received	IV e	d at		<u>30 °C</u>		
				IA / SG														
a, Inc. outh	Reling	Relingvished by:			Man	PRI	Manique Calara-Mi	-Mura	گر (T		COMPANY	YY I		_ a _	n/1/2s	0748	- +
Seattle, WA 98108 Ph. (206) 285-8282 Fax (206) 283-5044	Relinquished Received by:	Relinquished by: Received by:	N. P.		1:2		Webber-Bruya	rya	٩		F.P				4	1/23	748	l
FORMS\COC\COCTO-15.DOC				1														